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Abstract

Graphical time series models encode the dynamic relationships among the

variables in multivariate time series in graphs, in which nodes represent the

variables and edges characterize the conditional dependence. In applica-

tions, the graph structure is not known in advance, and it is of interest to

estimate and determine the graph based on samples. To determine graphi-

cal time series models, we propose two estimation methods based on sparse

vector autoregressive models.

An alternating maximization method is introduced to estimate sparse

vector autoregressive models under sparsity constraints on both the autore-

gressive coefficients and the inverse noise covariance matrix. This alternat-

ing method estimates sparse vector autoregressive models by considering

the maximum likelihood estimation with the sparsity constraints as a bi-

concave problem. Such optimization problem is concave when either the

autoregressive coefficients or the inverse covariance matrix is fixed. Sim-

ulation experiments study the estimation performance of the alternating

method and compare with other non-linear optimization methods. We also

introduce two approaches in determining the sparsity constraints. These

two methods are studied by simulation studies for comparisons. Real data

examples are provided as illustrations.
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The sparsity constraints in the alternating maximization method, how-

ever, require being identified before the estimation procedure. A penalized

likelihood estimation for vector autoregressive models is proposed to encour-

age sparsity on both the autoregressive coefficients and the inverse noise

covariance matrix. This penalization method implements penalty terms on

the autoregressive coefficients and the off-diagonal elements of the inverse

covariance matrix to achieve parsimonious models. The finite sample prop-

erties of the penalized likelihood estimator are investigated by simulation

experiments. A real dataset application is presented for demonstration.
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Chapter 1

Introduction

1.1 Graphical Models

Probabilistic graphical models connect the concept of conditional indepen-

dencies among random variables to graph theory by representing the depen-

dencies in a graph. These independence relationships are typically visual-

ized by an undirected graph. Each node in the graph represents a variable,

and the absence of an edge between two nodes indicates the corresponding

variables are conditionally independent, given the remaining variables. Re-

searchers have also investigated the use of directed graphs to characterize

the possible causal relations between variables (Pearl, 1995; Lauritzen &

Richardson, 2002). Probabilistic graphical models offer several advantages

to analysis complex probabilistic models, including the use of graphical mod-

els as a tool to design and motivate new models. Sophisticated probabilistic

models require complicated computations to perform inference which can

be represented diagrammatically using graphical models. The recent devel-

opment of deep belief networks takes these advantages of graphical models
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to construct new models (Salakhutdinov & Hinton, 2009; Ranganath et al.,

2015).

In the situation where the variables are discrete, research on linking up

the undirected graphical models with log-linear models for multi-way con-

tingency tables was performed (Wermuth, 1976; Darroch et al., 1980). By

analogy with the log-linear models for tables of counts, graphical models for

continuous variables based on a multivariate normal distribution are broadly

studied. Edwards (1995) and Lauritzen (1996) give a general introduction

to graphical models.

Suppose a K-dimensional random variable X = (X1, · · · , XK)> follows a

multivariate normal distribution with mean µ and covariance Σ. A Gaus-

sian graphical model can be determined from the inverse covariance matrix

Θ = Σ−1 (also known as the precision matrix). Knowing that all the

conditional distributions of X are also normal, the inverse covariance ma-

trix incorporates the information about the partial covariances between the

variables. That is, the covariances between two variables conditioned on the

remaining variables. See Anderson (2003) for details. Given prior informa-

tion on the conditional independencies between variables, Dempster (1972)

formulated the covariance selection problem to estimate Gaussian graphical

models from samples by considering the following maximization problem,

maximize log det Θ− trace (SΘ)

subject to θij = 0, (i, j) ∈ S,

where S is the sample covariance matrix, S is a set of index pairs of known

conditionally independent nodes. This maximization problem can be for-

mulated as a log-determinant maximization problem with linear constraints

(Vandenberghe et al., 1998), which can be solved by the interior-point
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method based solvers such as SDPT3 (Tütüncü et al., 2003) or SeDuMi

(Sturm, 1999). For a large scale covariance selection problem, Dahl et al.

(2008) discussed several algorithms, including Newton’s method and coor-

dinate descent algorithm, to improve the computation efficiency.

The growing interest in high dimensional data analysis has led to the

development of sparse Gaussian graphical models for improving the inter-

pretability. To achieve model sparsity, researchers have proposed the use of

penalized likelihood estimation by considering the problem,

maximize log det Θ− trace (SΘ)

subject to ρ (Θ) ≤ k,

where S is the sample covariance matrix, ρ (·) is a regularization term, and

k is a tuning parameter. Various studies suggest the use of L1 regularization

(Tibshirani, 1996) in the estimation (Yuan & Lin, 2006; d’Aspremont et al.,

2008; Li & Toh, 2010). That is, ρ(Θ) =
∑

i,j |θij|. Friedman et al. (2008)

connected the L1 regularized problem to the neighbourhood-based Lasso

regression approach and called this method graphical Lasso algorithm. Re-

searchers have also applied non-convex penalty functions to the problem to

ameliorate the statistical bias issue encountered when using the L1 penalty

(Fan et al., 2009; Rothman et al., 2008). The non-convex penalties include

the smoothly clipped absolute deviation (SCAD) penalty (Fan & Li, 2001)

and the minimax concave penalty (MCP) (Zhang, 2010).

1.2 Graphical Time Series Models

Brillinger (1996) and Dahlhaus (2000) extended the graphical models from
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multivariate random variables to multiple time series, to explore the interre-

lationships between the series components. Brillinger (1981) discussed the

concept of conditional independence could be extended to multivariate time

series. This extension, in particular, suggested that the conditional indepen-

dence between two components of a multivariate Gaussian stationary time

series process can be identified by the partial spectral coherence of the time

series process. These frequency domain statistics measure the linear asso-

ciation of two series components, given the linear effects of the remaining

components (Koopmans, 1995; Brillinger, 1981). Dahlhaus (2000) proposed

the use of an undirected conditional correlation graph, similar to the Gaus-

sian graphical models, to visualize the dynamic interrelationships among the

series based on the partial spectral coherencies. This graph is particularly

called the conditional independence graph (CIG) under normality assump-

tion on the multiple series. The author also discussed a hypothesis test on

partial spectral coherence to determine the structure of the conditional cor-

relation graph. Researchers have utilized this approach to study the brain

connectivity in neuroscience (Dahlhaus et al., 1997; Medkour et al., 2009).

Oxley et al. (2004) studied the dynamic relationships among variables in

multivariate time series by constructing a sparse structural vector autore-

gressive (SVAR) model and depicted the model by a directed acyclic graph

(DAG). To identify a parsimonious graph, the authors applied the partial

correlations of variables to determine the CIG and hence estimate a sparse

SVAR model based on the graph. The estimation of a sparse SVAR model,

however, requires restrictions on the structure of the coefficients matrix such

that the model is identifiable. The monograph by Tunnicliffe-Wilson et al.

(2015) provided a detailed procedure and illustrations on graphical modeling

of structural vector autoregressive models.
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Eichler (2012) introduced an alternative approach to analyzing the dy-

namic relationships among the series components based on ordinary time

series models. Such graphical time series models are built on the concept

of Granger causality (Granger, 1969) and are encoded by mixed graphs.

Each vertex of the graph represents a component series, directed edges are

characterized by the possible Granger causal relationships, and undirected

edges indicate the contemporaneous dependence structure. Eichler (2012)

also discussed the application of such graphical time series models on various

multivariate time series models, such as vector autoregressive (VAR) mod-

els and multivariate autoregressive conditional heteroscedasticity (ARCH)

models. In this thesis, we will consider the estimation of such graphical

time series models based on sparse Gaussian VAR models. The autoregres-

sive coefficients characterize the directed edges, and the undirected edges

are determined by the non-diagonal elements of the inverse noise covariance

matrix.

To estimate sparse VAR models, one can first construct a conditional

correlation graph by computing the partial spectral coherencies from the

samples. With the conditional correlation graph, we can impose sparsity

constraints on the VAR model to reduce model complexity. Songsiri et al.

(2009) formulated the problem of maximum likelihood estimation of VAR

models subject to conditional independence constraints based on the inverse

of the spectral density matrix. The authors proposed a convex relaxation of

the problem so that the estimation is done in a tractable way and proved the

relaxation is exact when the sample autocovariance matrix is block-Toeplitz.

Davis et al. (2016) presented a two-stage estimation procedure for fit-

ting sparse VAR models by considering the constrained maximum likeli-

hood estimation on VAR models with zero constraints on the autoregres-

sive coefficients. The zero constraints are selected according to the partial
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spectral coherencies together with the Bayesian information criterion (BIC)

(Schwarz, 1978). The fitted model is then refined to reduce the number

of parameters further by using the t-ratios of the estimated autoregressive

coefficients in the second stage. Songsiri et al. (2009) and Davis et al.

(2016) also explored the penalized likelihood estimation on VAR models,

by imposing L1 regularization on the autoregressive coefficients, to achieve

sparsity. Researchers have also discussed the use of penalized regression ap-

proach for VAR modeling (Valdés-Sosa et al., 2005; Hsu et al., 2008; Song &

Bickel, 2011; Ren et al., 2013; Songsiri, 2013; Jung et al., 2015). The penal-

ized regression method, however, ignores the contemporaneous dependence

structure in multivariate time series (Song & Bickel, 2011). This ignorance

is because a loss function of the sum of squared residuals is used, which does

not consider the noise covariance matrix into account.

To encourage model sparsity, we first consider a constrained maximum

likelihood estimation on VAR models with sparsity constraints on both the

autoregressive coefficients and the inverse of the noise covariance matrix.

These sparsity constraints are predetermined using the conditional correla-

tion graph. An iterative algorithm is proposed to estimate the sparse VAR

model by considering the maximum likelihood estimation with the sparsity

constraints as a “biconcave” problem. That is, the optimization problem

is concave when either the autoregressive coefficients or the inverse noise

covariance matrix is fixed (Gorski et al., 2007).

The second strategy to build sparse VAR models is to consider the penal-

ized likelihood estimation on VAR models. The autoregressive coefficients

and the off-diagonal elements of the inverse covariance matrix are penal-

ized by penalty functions, such as L1 (Tibshirani, 1996), SCAD (Fan & Li,

2001) and MCP (Zhang, 2010). We adopt the local linear approximation
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(LLA), proposed by Zou & Li (2008), on the penalty functions to solve the

penalized estimation problem.

1.3 Outline of the Thesis

In this thesis, we will discuss the estimation of graphical time series models

based on the sparse Gaussian vector autoregressive (VAR) processes. Two

methods of the estimation for sparse Gaussian VAR models will be pre-

sented, namely a constrained likelihood estimation method and a penalized

likelihood estimation method.

Chapter 2 reviews the VAR models and its maximum likelihood estima-

tion, as a prelude to the introduction of the two estimation methods. The

partial cross-correlations and the spectral analysis of time series will then

be delivered, which act as bases for determining the conditional correlation

graph. The chapter ends by introducing the graphical time series mod-

els, including the conditional correlation graph and the Granger causality

graph. With the conditional correlation graph, we can identify the sparsity

constraints that are implemented in the constrained likelihood estimation

method.

Chapter 3 presents the constrained likelihood estimation method by first

giving the problem formulation. We show this problem is biconcave and

propose an iterative procedure to solve the problem. The procedures for

identifying the sparsity structure are provided. We end this chapter by some

numeric results, including simulation studies and real data applications, to

illustrate the constrained likelihood estimation method.

Chapter 4 exhibits the penalized likelihood estimation for sparse VAR

models. A brief introduction to the penalized estimation methods will be

7



provided in this chapter followed by the problem formulation. We next

present the estimation procedure and investigate the finite sample proper-

ties of the penalized likelihood estimator through simulation experiments.

We exemplify the penalized likelihood estimation method by a real data

application and end this chapter.

Chapter 5 concludes and suggests directions for future research.
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Chapter 2

Graphical Time Series Models

Graphical models represent the conditional independence between random

variables in multivariate data. Brillinger (1996) gave the first remarks on

graphical models for time series which provide a tool to visualize the in-

terrelationships between components of multivariate time series processes.

Dahlhaus (2000) applied undirected graphs to depict the conditional correla-

tion structure of multiple time series. Oxley et al. (2004) utilized a directed

acyclic graph to represent the dynamic relationships between components

of a multivariate time series by considering structural vector autoregres-

sive models. Eichler (2012) encoded the dynamic interdependencies among

variables of multiple time series by mixed graphs. Each node represents

a component of the series, directed edges are characterized by the possi-

ble Granger causal relationships between variables, and undirected edges

capture the contemporaneous conditional dependence structure.

The first part of this chapter presents the vector autoregressive (VAR)

models and its estimation method. We then review two graphical time series

models in the final part of this chapter. The models are the conditional cor-

relation graphs (Dahlhaus, 2000) and the causality graphs (Eichler, 2012).
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2.1 Vector Autoregressive Models

Consider a K-dimensional VAR(p) model (VAR model of order p),

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (2.1)

where yt = (y1,t, · · · , yK,t)> is a K-dimensional vector, A1, · · · ,Ap are K ×

K autoregressive coefficients matrices, ν is a K-dimensional vector of inter-

cepts, ut = (u1,t, · · · , uK,t)> is a K-dimensional Gaussian noise vector with

mean 0 and a K ×K non-singular covariance matrix Σu, and t = 1, · · · , T .

We further assume that the process is stable, i.e. det
(
IK −

∑p
l=1 Alz

l
)
6= 0,

for z ∈ C, |z| ≤ 1, and p pre-sample values, y−p+1, · · · ,y0, are available.

The compact form of (2.1) is

Y = BZ + U,

where Y = (y1, · · · ,yT ), B = (ν,A1, · · · ,Ap) is a K × (Kp+ 1) matrix

containing the coefficients and the intercepts, Zt =
(
1,y>t , · · · ,y>t−p+1

)>
,

Z = (Z0, · · · ,ZT−1), and U = (u1, · · · ,uT ). The log-likelihood function

of the conditional maximum likelihood estimation, assuming the VAR(p)

model is Gaussian, is

l(B,Σu) = −KT
2

log 2π−T
2

log det Σu−
1

2
trace

[
(Y −BZ)>Σ−1u (Y −BZ)

]
.

(2.2)

We can obtain from (2.2) that the conditional maximum likelihood estima-

tors (MLE) of B and Σu are

B̂ = YZ>
(
ZZ>

)−1
and Σ̂u =

1

T

(
Y − B̂Z

)(
Y − B̂Z

)>
, (2.3)
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respectively, see Chapter 3.4 of Lütkepohl (2005). The log-likelihood func-

tion in (2.2) can also be rewritten as

l(β,Σu) =− KT

2
log 2π − T

2
log det Σu

− 1

2

[
y −

(
Z> ⊗ IK

)
β
]> (

IT ⊗Σ−1u
) [

y −
(
Z> ⊗ IK

)
β
]
,

where β = vec(B) is a K(Kp + 1)-dimensional vector by stacking the

coefficients matrix B, y = vec(Y), IK is the K × K identity matrix, and

⊗ denotes the Kronecker product. Suppose there are linear constraints on

β which are in the form Cβ = c, where C is an N × (K2p+K) matrix

of known constants of rank N , and c is an N -dimensional vector of known

constants. Then, the constrained maximum likelihood estimators of β and

Σu are

β̂ = β̃ +
(

(ZZ>)−1 ⊗ Σ̂u

)
C>
[
C
(

(ZZ>)−1 ⊗ Σ̂u

)
C>
]−1 (

c−Cβ̃
)

and

Σ̂u =
1

T

(
Y − B̂Z

)(
Y − B̂Z

)>
,

respectively, where β̃ =
[
(ZZ>)−1Z⊗ IK

]
y.

A K-dimensional VAR(p) model consists of K(Kp + 1) parameters, or

K2p parameters if the intercepts are excluded when the model is fully

parametrized. Researchers have proposed various methods to overcome the

over-parametrization issue when the model dimension is high relative to the

sample size. One of these approaches is to identify the zero autoregressive

(AR) coefficients by the conditional correlations between component series.

The concept of conditional correlations between series components, together

with two graphical time series models, is introduced in the next section.
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2.2 Graphical Models

2.2.1 Conditional Correlation Graphs

Suppose {X(t), t ∈ Z} =
{

(X1(t), · · · , XK(t))> , t ∈ Z
}

is a zero mean

weakly stationary process, {Xa(t)} and {Xb(t)} are two distinct compo-

nents, and Iab = {1, · · · , K}\{a, b}. The conditional correlations can be

computed by determining the optimal linear filters for removing the linear

effect of {XIab(t)} from each of {Xa(t)} and {Xb(t)}. The optimal linear

filters for removing the linear effect of {XIab(t)} from {Xa(t)} minimize

E

[
Xa(t)−

∑
j∈Iab

∑
u∈Z

ga,j(u)Xj(t− u)

]2
.

Denote the optimal linear filters by ĝa,j(u) for j ∈ Iab and u ∈ Z, the re-

mainders after removing the linear effect of {XIab(t)} from {Xa(t)} and

{Xb(t)} are, respectively,

εa|Iab(t) = Xa(t)−
∑
j∈Iab

∑
u∈Z

ĝa,j(u)Xj(t− u) and

εb|Iab(t) = Xb(t)−
∑
j∈Iab

∑
u∈Z

ĝb,j(u)Xj(t− u).

(2.4)

Then the two processes, {Xa(t)} and {Xb(t)}, are conditionally uncorrelated

if and only if cov
(
εa|Iab(t), εb|Iab(t+ u)

)
= 0 for all t, u ∈ Z.

Consider a graph G = (V,E), where V denotes the set of vertices and

E ⊂ V × V is the set of edges. We also assume that for i, j ∈ V , (i, j) ∈ E

if (j, i) ∈ E, i.e., the graph is undirected. Then, the conditional correlation

graph of a weakly stationary multivariate process {X(t), t ∈ Z} is defined
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by

(i, j) /∈ E ⇔ {Xi(t)} ⊥⊥ {Xj(t)}|{XIij(t)}

⇔ cov
(
εi|Iij(t), εj|Iij(t+ u)

)
= 0 for all t, u ∈ Z.

The edges of the graph can be determined by two approaches, namely the

time domain approach and the frequency domain approach.

Time domain approach

The conditional correlation graph represents the linear association between

two component series after removing the linear effect of all other compo-

nents by two-sided filters. Similarly, we consider a bivariate VAR model to

estimate the cross-correlation of the residuals, εa|V \{a,b}(t) and εb|V \{a,b}(t),

following Hu et al. (2016). To illustrate the method, suppose XV (t) =

(X1(t), X2(t), X3(t), X4(t))
>, the VAR model to determine the partial cross-

correlations of X1 and X2 given X3 and X4 is

X1(t)

X2(t)

 =

µ1(t)

µ2(t)

+

q∑
u=0

Fu

X3(t− u)

X4(t− u)

+

q∑
u=1

Φu

X1(t− u)

X2(t− u)

+

e1|{3,4}(t)
e2|{3,4}(t)

 .

Then, the partial cross-correlations of X1 and X2 given the remaining pro-

cesses, denoted by ρ12|I12(u), are the cross-correlations of e1|{3,4}(t) and

e2|{3,4}(t), and other partial cross-correlations are computed similarly. The

lag order q is determined by choosing a model that possesses the minimum

BIC value among the bivariate models with various lag order over a pre-

specified range of q. The approximate 5% error bound of ±2/
√
T is adopted

for testing the partial cross-correlations. We note that the time domain ap-

proach filters out the linear effect of the remaining components by one-sided
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filters, which only consider the past and present observations in the filter-

ing. An alternative to determining conditional correlation graphs of time

series is the frequency domain method, which adopts two-sided filtering in

the identification.

Frequency domain approach

To determine whether the two residual processes in (2.4) are uncorrelated

at all lags, we can utilize the cross-spectral density of the two residuals

in the frequency domain. The remainders are, in particular, conditionally

uncorrelated at all lags if and only if the cross-spectral density of the two

remainders, denoted by fab|Iab(λ), is zero at all frequencies λ. This cross-

spectral density, also known as the partial spectral density of {Xa(t)} and

{Xb(t)} given {XIab(t)}, is defined by

fab|Iab(λ) =
1

2π

∑
u∈Z

γab|Iab(u)e−iλu, λ ∈ [−π, π] ,

where γab|Iab(u) is the cross-covariance function of the residual processes.

Knowing that the cross-spectral density measures the degree of linear asso-

ciation between two variables in the frequency domain, the partial spectral

density quantifies the degree of linear association between two components

after removing the linear influence of the remaining variables. Koopmans

(1995) and Brillinger (1981) mentioned that the computation of partial spec-

tral density fab|Iab(λ) could be formulated by

fab|Iab(λ) = fab(λ)− faIab(λ)fIabIab(λ)−1fIabb(λ)∗,

where A∗ is the conjugate transpose of the matrix A; faIab(λ), fIabIab(λ) and

fIabb(λ) are some partitioned matrices of the spectral density matrix. Hu
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et al. (2016) gave an example of this computation.

The cross-spectral density and partial spectral density are typically nor-

malized to spectral coherenceRab(λ) and partial spectral coherenceRab|Iab(λ)

for the analysis of conditional correlation structure. They are defined by

Rab(λ) =
fab(λ)√

faa(λ)fbb(λ)
and Rab|Iab(λ) =

fab|Iab(λ)√
faa|Iab(λ)fbb|Iab(λ)

,

respectively. Dahlhaus (2000) introduced an efficient method to compute

the partial spectral coherencies from the inverse of the spectral density ma-

trix. The partial spectral coherence can be evaluated by

Rab|Iab(λ) = − g−1ab (λ)√
g−1aa (λ)g−1bb (λ)

,

where g−1ab (λ) is the (a, b) -th element of the inverse spectral density matrix

at frequency λ. In practice, we need to estimate the spectral density and

infer whether the partial spectral coherence is zero from samples.

Suppose X(t) = (X1(t), · · · , XK(t))> , t ∈ Z is a multivariate weakly

stationary time series with spectral density matrix f(λ) = [fab(λ)]. As-

sume that there are T observations, we can estimate f(λ) by smoothing the

periodogram I(λ) = [Iab(λ)]. The cross-periodogram Iab(λ) is defined as

Iab(λ) = Wa(λ)Wb(λ),

where Wa(λ) = (h2)
−1/2∑T

t=1 h
(
t
T

)
Xa(t)e

−iλt, is the discrete Fourier trans-

form of {Xa(t)}, and h2 =
∑T

t=1 h
2
(
t
T

)
. Here, the function h(·) is the taper

for correcting bias in the estimation. We apply the cosine taper in the
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estimation, which is, for 0 ≤ a ≤ 1/2,

h(x) =



[1− cos(πx/a)] /2, 0 < x ≤ a,

1, a < x ≤ 1− a,

[1− cos(π(1− x)/a)] /2, 1− a < x ≤ 1,

0, elsewhere.

Other tapers can be found in Koopmans (1995, Chpater 9.2) and Brillinger

(1981, Chapter 3.3). Denote [x] be the largest integer less than or equal

to x. Let λj = 2πj
T
, j = −

[
T−1
2

]
, · · · ,−1, 0, 1, · · · ,

[
T
2

]
, be the j-th Fourier

frequency, the spectral density is consistently estimated by

f̂ab(λ) =

2π
∑
|k|≤mT

wk

−1 ∑
|k|≤mT

wkIab(λj+k),

where wk is a weight sequence, and mT is the bandwidth depending on T .

We implement the weight function wk = cos( kπ
mT

), for k = −mT , · · · ,mT ,

in the estimation. We refer readers to Brillinger (1981, Chapter 3.3) and

Wei (2006, Chapter 13.3) for alternative weight functions and their proper-

ties. The bandwidth mT is selected by minimizing the cross-validated log

likelihood,

CVLL(mT ) =
1

T

[T/2]∑
j=1

trace
[
I(λj)f̂

−1
−j (mT , λj)

]
+ log det

[
f̂−j(mT , λj)

]
,

where f̂ab,−j(m,λj) =

2π
∑
|k|≤m,
k 6=0

wk


−1 ∑
|k|≤m,
k 6=0

wkIab(λj+k). The bandwidth

selection by CVLL was studied by Beltrão & Bloomfield (1987) and Matsuda

& Yajima (2004).

With the estimated spectral density matrix, the spectral coherence R̂ab(λ)
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and partial spectral coherence R̂ab|Iab(λ) can be estimated. Under the hy-

pothesis of Rab|Iab(λ) = 0, the test statistic
(n−q)R̂2

ab|Iab
(λ)

1−R̂2
ab|Iab

(λ)
follows the F

distribution with 2 and 2(n − q) degrees of freedom at each frequency λ.

Here, n and q are the equivalent degrees of freedom and the number of com-

ponents other than components a and b, see Koopmans (1995, Chpater 8.3)

and Wei (2006, Chapter 13.3.4) for details. Similarly, the test statistic for

testing zero coherence is given by
(n−1)R̂2

ab(λ)

1−R̂2
ab(λ)

, which follows the F distribu-

tion with 2 and 2(n−1) degrees of freedom. Alternatively, Dahlhaus (2000)

proposed to use the supremum of the squared empirical partial spectral co-

herence, sup
λ
|R̂ab|Iab(λ)|2, as a test statistic for zero partial coherence, which

is asymptotically χ2
2 distributed. Thus, the zero conditional correlation can

be determined by the test statistic of partial spectral coherence because of

the equivalence between zero conditional correlations at all lags and zero

partial spectral coherencies at all frequencies.

We illustrate the conditional correlation graph by considering the follow-

ing example. Consider the following 3-dimensional VAR(1) process,


x1,t

x2,t

x3,t

 =


a11 0 0

a21 a22 0

a31 0 a33



x1,t−1

x2,t−1

x3,t−1

+


ε1,t

ε2,t

ε3,t

 ,

where εt = (ε1,t, ε2,t, ε3,t)
> ∼ N (0,Σu) with Σ−1u =

(
θ11 θ12 θ13
θ12 θ22 0
θ13 0 θ33

)
. Figure 2.1

illustrates the conditional correlation graph of this series, where components

X2 and X3 are conditionally uncorrelated.

Davis et al. (2016) proposed to impose zero constraints on the AR coef-

ficients when the two components are conditionally uncorrelated. That is,

(Al)ij = (Al)ji = 0 for i 6= j and l = 1, · · · , p when {Xi(t)} and {Xj(t)} are
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X1

X2 X3

Figure 2.1: A partial correlation graph represents a 3-dimensional VAR(1)
process, where components X2 and X3 are conditionally uncorrelated.

conditionally uncorrelated. We can determine from the conditional correla-

tion graph that two components are conditionally uncorrelated at all lags,

including lag zero. The corresponding elements of the inverse covariance

matrix Σ−1u seem to be insignificant. We, therefore, suggest implementing

sparsity constraints on Σ−1u in addition to the AR coefficients, based on

the inferred conditional correlation graph, to achieve parsimonious model.

These restrictions on both the AR coefficients and the inverse covariances

become essential when the Granger causality graph is constructed.

2.2.2 Granger Causality Graphs

Eichler (2012) applied mixed graphs to visualize the causal relationships

between the components of multivariate stationary time series. Similar to

the conditional correlation graphs, each vertex of the graph represents a

component series. The directed edges between vertices indicate the pres-

ence of Granger-causality (Granger, 1969), and the undirected edges en-

code the contemporaneous conditional correlation structure. The concept

of Granger-causality from a process {Xi(t)} to another process {Xj(t)}

is based on investigating whether the prediction of Xj(t + 1), at time

t, can be improved by using all relevant information up to time t apart

from {Xi(t)}. Consider {X(t), t ∈ Z} = {Xk(t), t ∈ Z and k = 1, · · · , K}

is a K-dimensional stationary process. By denoting V = {1, · · · , K},

XA(t) = {XA(s), s ≤ t} be the set of all past and present values of {XA(t)}
18



at time t for A ⊆ V . Then the formal definition of Granger-noncausality is

given by, for i, j ∈ V and i 6= j, {Xi(t)} is Granger-noncausal for {Xj(t)}

relative to {XV (t)} if

Xi(t+ 1) ⊥⊥Xj(t)|XV \{j}(t) for all t ∈ Z.

Similarly, {Xi(t)} and {Xj(t)} are contemporaneous conditionally uncorre-

lated with respect to {XV (t)} if

Xi(t+ 1) ⊥⊥Xj(t+ 1)|XV (t), XV \{i,j}(t+ 1) for all t ∈ Z.

Therefore, the Granger causality graph can be defined according to above

definitions. We consider a mixed graph G = (V,Eu, Ed), where V is the set

of vertices, Eu ⊂ V × V is the set of undirected edges, and Ed ⊂ V × V is

the set of directed edges. Then, the Granger causality graph is defined by

(i) (i, j) /∈ Ed ⇔Xi(t+ 1) ⊥⊥Xj(t)|XV \{j}(t) for all t ∈ Z;

(ii) (i, j) /∈ Eu ⇔Xi(t+ 1) ⊥⊥Xj(t+ 1)|XV (t), XV \{i,j}(t+ 1) for all t ∈

Z.

We consider a vector autoregressive process to illustrate the Granger

causality graph. Let {X(t), t ∈ Z} be a K-dimensional VAR(p) process,

X(t) =

p∑
l=1

AlX(t− l) + ε(t),

where A1, · · · ,Ap are the AR coefficients matrices and ε(t) are identically

and independently distributed with mean 0 and covariance Σ. We also

denote Θ = Σ−1 = (θij). Then, the Granger causality graph of this process

is characterized by
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(i)

(i, j) /∈ Ed ⇔Xi(t+ 1) ⊥⊥Xj(t)|XV \{j}(t) for all t ∈ Z

⇔ (Al)ji = 0 for all l ∈ {1, · · · , p},

(ii)

(i, j) /∈ Eu ⇔Xi(t+ 1) ⊥⊥Xj(t+ 1)|XV (t), XV \{i,j}(t+ 1) for all t ∈ Z

⇔ εi(t) ⊥⊥ εj(t)|εV \{i,j}(t) for all t ∈ Z

⇔ θij = θji = 0.

We consider the following VAR(1) process as an example,

X(t) = A1X(t− 1) + ε(t),

where A1 =



a1,11 0 a1,13 0

a1,21 a1,22 0 0

a1,31 0 a1,33 0

0 a1,42 0 a1,44


and Θ = Σ−1 =



θ11 θ12 θ13 0

θ21 θ22 0 θ24

θ31 0 θ33 0

0 θ42 0 θ44


.

X2 X3

X1

X4

Figure 2.2: An example of a Granger causality graph.

Figure 2.2 shows the Granger causality graph of this VAR(1) process. We

can observe from this graph that {X1(t)} causes {X4(t)} through {X2(t)},
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but not {X1(t)} causes {X4(t)} with respect to the whole process {X(t)}.

The Granger causality graphs reflect the dynamic interdependencies among

the components of multiple time series processes. In contrast, Oxley et al.

(2004) suggested the use of a directed acyclic graph (DAG) to describe a

structural vector autoregressive (SVAR) model. Such graph represents each

component at each time point by a vertex and encodes both the intra and

interdependencies among the variables of the process.

Both graphs show the contemporaneous conditional dependencies. The

Granger causality graph characterizes the undirected edges by the inverse

innovation covariance matrix which exhibits the contemporaneous condi-

tional dependence structure. The DAG, however, characterizes the directed

edges between current variables based on the corresponding autoregressive

coefficients of the current variables in the SVAR model. Indeed, both meth-

ods capture the contemporaneous conditional dependencies similarly. To

explain this point, we consider an SVAR model and its reduced form. For

more detailed exposition, see Tunnicliffe-Wilson et al. (2015). Consider an

SVAR model of the form,

Ψ0xt = Ψ1xt−1 + Ψ2xt−2 + · · ·+ Ψpxt−p + et,

where Ψ0 is non-singular, and the covariance matrix D of et is assumed to

be diagonal. This model can be transformed to a VAR model, i.e.,

xt = Ψ−10 Ψ1xt−1 + Ψ−10 Ψ2xt−2 + · · ·+ Ψ−10 Ψpxt−p + Ψ−10 et

= Φ1xt−1 + Φ2xt−2 + · · ·+ Φpxt−p + ut,

where Φi = Ψ−10 Ψi for i = 1, · · · , p, ut = Ψ−10 et, and the covariance matrix

of ut is Σu. Therefore, the relation between the residuals et of the SVAR
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and the innovations ut of the transformed model is

Σ−1u = Ψ>0D−1Ψ0.

Thus, the inverse of innovation covariance matrix of the VAR model re-

flects the conditional dependence between the current variables given the

past variables. The inclusion of Ψ0 in SVAR, however, provides an alter-

native way to capture the contemporaneous conditional dependences; see

Figure 2.3.

X1 X2

X3

(a) An example of a mixed graph describing
a VAR model.

X1,t X2,t X3,t

X1,t−1 X2,t−1 X3,t−1

(b) An example of a DAG describing a
SVAR model.

Figure 2.3: The graphical representation of VAR and SVAR models.

For the SVAR model, the covariance matrix D of et is assumed to be

diagonal so that the model is identifiable. The dependence between the

current variables is also assumed being recursive and not cyclical so that

the matrix Ψ0 is triangular with unit diagonal after reordering the variables.

Note that these restrictions are not required when building a VAR model

to study the dynamic interdependencies between variables of a multivariate

time series process.

2.3 Summary

In this chapter, we have reviewed the constrained maximum likelihood esti-

mation on vector autoregressive (VAR) models which is crucial when spar-

sity constraints on the autoregressive coefficients are pre-specified. The spar-

sity constraints can be identified by computing the partial cross-correlations
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or the partial spectral coherencies to determine the possible conditional cor-

relation structure. Such conditional correlation structure of a multiple time

series can be visualized by an undirected graph and called the conditional

correlation graph.

Apart from the conditional correlation graph, we have presented the

Granger causality graph which encodes the possible Granger-causality struc-

ture and the contemporaneous conditional correlation structure in a mixed

graph. We also illustrated the connection between the causality graph and

the VAR process by an example and compared the causality graph with

the directed acyclic graph (DAG) representing a structural vector autore-

gressive (SVAR) model. The next chapter will introduce an alternating

maximization method to estimate sparse VAR models, in which both the

autoregressive coefficients and the inverse covariance matrix are constrained.

The causality graph is utilized to visualize the estimated sparse VAR mod-

els.
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Chapter 3

Constrained Likelihood

Estimation Method

Graphical time series models express the dynamic interrelationships between

variables of multivariate time series in graphs. Researchers have attempted

to infer sparse graphical models to reduce the model complexity for better

interpretation. Oxley et al. (2004) endeavoured the use of a directed acyclic

graph to represent a sparse structural vector autoregressive (SVAR) model.

Such sparse SVAR model is constructed based on a conditional indepen-

dence graph, determined by the partial correlations of variables, to ensure

the spareness of the SVAR model. Songsiri et al. (2009) studied a convex re-

laxation method for the estimation on vector autoregressive (VAR) models

subject to conditional independencies constraints.

In the present chapter, we will introduce a constrained likelihood esti-

mation method for sparse VAR models. Sparsity constraints are imposed

on both the autoregressive (AR) coefficients and the inverse covariance ma-

trix. This method is crucial if the graphical VAR model is of interest.

We will formulate the model estimation problem as a “biconcave” problem
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(Gorski et al., 2007). The optimization problem is concave when either

the AR coefficients or the inverse noise covariance matrix is fixed. An al-

ternating maximization method will be presented to solve the “biconcave”

problem. We will study the estimation performance of the alternating max-

imization method by simulation experiments, assuming the sparsity struc-

ture is known, and compare with the interior point method and the direct

search method. We also compare the time domain and frequency domain

methods, discussed in Section 2.2.1, by simulation studies. The estimation

method is applied to real datasets for illustration.

3.1 Problem Description

3.1.1 Problem Formulation

Most studies of the estimation on sparse VAR models have been confined

to impose sparsity constraints on the AR coefficients, rather than on the

inverse noise covariance matrix. We propose an alternating maximization

method to impose sparseness on both the AR coefficients and the inverse of

innovation covariance matrix. Recall from Section 2.1 that the log-likelihood

function of the conditional maximum likelihood estimation, assuming the

VAR(p) model is Gaussian, is

l(B,Σu) = −KT
2

log 2π−T
2

log det Σu−
1

2
trace

[
(Y −BZ)>Σ−1u (Y −BZ)

]
.
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Using the notation in Chapter 2, we consider the following problem,

maximize
B,Σu

− KT

2
log 2π − T

2
log det Σu −

1

2
trace

[
(Y −BZ)>Σ−1u (Y −BZ)

]

subject to


(Al)ij = (Al)ji = 0, for l = 1, · · · , p and (i, j) ∈ S,(
Σ−1u

)
ij

= 0, (i, j) ∈ S,

Σ−1u � 0,

(3.1)

where p is a pre-determined lag order and S contains the indices of the pairs

of components that are conditionally uncorrelated, assuming that (i, j) ∈

S for i < j. This set is determined based on the identified partial correlation

graph mentioned in Section 2.2.1 and will be discussed in Section 3.1.2. We

rewrite the problem (3.1) as

maximize
B,Θ

− KT

2
log 2π +

T

2
log det Θ− 1

2
trace

[
(Y −BZ)>Θ (Y −BZ)

]

subject to


Cβ = 0,

θij = 0, (i, j) ∈ S,

Θ � 0,

(3.2)

where β = vec(B), C is a matrix of known constants with full row rank,

and 0 is a vector of zeros. Here, we utilize the relation − log det (Σu) =

log det (Σ−1u ), incorporate the zero constraints of the AR coefficients through

Cβ = 0, and denote Θ as Σ−1u .

Theorem 3.1. The optimization problem in (3.2) with respect to B and Θ

is biconcave.

Proof. See Appendix A.
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Theorem 3.1 shows that the optimization problem is “biconcave” indi-

cating that the problem is concave for either fixed B or Θ (Gorski et al.,

2007). Thus, we adopt an iterative algorithm, called the Alternate Con-

vex Search (ACS) algorithm (Gorski et al., 2007; Hastie et al., 2015), by

first estimating B followed by estimating Θ, until a stopping criterion is

satisfied. The objective function of the problem for fixed positive definite

Θ is strictly concave and is strictly concave on the set of positive definite

matrices for fixed B. Therefore, a unique maximizer in each subproblem is

obtained. Gorski et al. (2007) stated that each accumulation point gener-

ated by the ACS algorithm is a stationary point of the objective function

under an assumption. The assumption is that the set of all accumulation

points generated by the ACS algorithm form a connected, compact set. Note

that the solution obtained using the ACS algorithm is not guaranteed to be

the global optimum of the problem.

The solution of Θ for fixed B at each iteration guarantees the positive

definiteness of the inverse of innovation covariance matrix. This positive

definiteness is not ensured when the problem is solved by traditional iter-

ative numerical procedures like Newton-Raphson method. The suggested

iterative method does not require the computation of the Hessian or the

information matrix explicitly comparing to the Newton-Raphson method.

We note the zero constraints are chosen based on the identified condi-

tional correlation graph mentioned in Section 2.2.1. Before introducing the

proposed alternating maximization method, we discuss the possible methods

in identifying the constraint structure in the next section.
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3.1.2 Estimation of the Structure

To identify the constraint structure, we first determine the partial correla-

tion graph of a series by the frequency or time domain methods, introduced

in Section 2.2.1. Suppose a conditional correlation graph of Figure 2.1 is

identified, the constraint structure for model estimation is

θ23 = θ32 = 0 and (Al)23 = (Al)32 = 0, for l = 1, · · · , p.

The lag order p is determined by standard information criteria, such as

BIC or HQC (Hannan & Quinn, 1979), before applying the alternating

maximization method. In the calculation of the information criteria, we

count all the unconstrained autoregressive coefficients and the unconstrained

inverse noise covariances at the upper triangular part of the matrix as the

number of parameters m, i.e., m = K2p+ K(K+1)
2
− (2p+ 1)|S|.

In practice, some of the partial cross-correlations (partial spectral co-

herencies) are marginally significant at few lags (frequencies) leading to

some weak links in the estimated partial correlation graph. We can therefore

further reduce the number of parameters. For the marginal partial cross-

correlations, we rank them by their absolute values, max
u
|ρ̂ab|Iab(u)|, (or the

supremum of the test statistics of partial spectral coherencies, sup
λ

(n−q)R̂2
ab|Iab

(λ)

1−R̂2
ab|Iab

(λ)
),

in descending order. Then we can exclude some of the initially marginal par-

tial cross-correlations in a forward stepwise regression manner. We finally

select the model that possesses the minimum BIC value among the fitted

models. We next present the iterative estimation algorithm.

3.1.3 Proposed Iterative Method

The proposed alternating maximization procedure:
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(i) Initialization: Set the initial estimates using the unconstrained maxi-

mum likelihood estimators in (2.3),

B̂(0) = YZ>
(
ZZ>

)−1
and Θ̂(0) =

[
1

T

(
Y − B̂(0)Z

)(
Y − B̂(0)Z

)>]−1
.

Remark 3.1. Although the initial estimate is not in the feasible region,

we can consider the initialization as a warm start, since the solution

of next iteration is feasible.

(ii) B step: Given the estimate of Θ at the (k − 1)-th iteration, denoted

by Θ̂(k−1), the estimate of B at the k-th iteration is

β̂(k) = vec
(
B̂(k)

)
= β̃ −

(
(ZZ>)−1 ⊗ Θ̂−1(k−1)

)
C>
[
C
(

(ZZ>)−1 ⊗ Θ̂−1(k−1)

)
C>
]−1

Cβ̃,

(3.3)

where β̃ = vec
(
B̂(0)

)
=
[
(ZZ>)−1Z⊗ IK

]
y, which is computed in

the initialization stage. That means the components involving β̃ in

(3.3) need not be recalculated at each iteration.

(iii) Θ step: Given B̂(k), we solve for Θ using

Θ̂(k) = arg max
Θ�0

log det Θ− trace
(
S(k)Θ

)
subject to θij = 0, (i, j) ∈ S,

where S(k) = 1
T

(
Y − B̂(k)Z

)(
Y − B̂(k)Z

)>
.

(iv) Repeat step (ii) and (iii) until a stopping criterion is met, say

‖B̂(k+1) − B̂(k)‖F < ε and ‖Θ̂(k+1) − Θ̂(k)‖F < ε. Here, ‖·‖F denotes

the Frobenius norm, and ε is a small positive number, for example,

ε = 10−6.
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The Lagrange dual function of the covariance selection problem in step

(iii) is

g (ν) = inf
Θ�0

log det Θ− trace (ΘS)− 2
∑

(i,j)/∈S

νijθij


= − log det

S +
∑

(i,j)/∈S

νij
(
eie
>
j + eje

>
i

)−K,
where ei is an i-th unit vector of dimension K, and νij are the Lagrange

multipliers for the equality constraints. The dual problem is

minimize
Γ�0

− log det Γ

subject to γij = sij, (i, j) ∈ S,

where Γ = S +
∑

(i,j)/∈S
νij
(
eie
>
j + eje

>
i

)
, which is a determinant maximiza-

tion problem (Vandenberghe et al., 1998). Therefore, it can be solved by

semidefinite programming (SDP) solvers, such as SDPT3 (Tütüncü et al.,

2003) or SeDuMi (Sturm, 1999).

3.2 Numerical Results

3.2.1 Simulation

In the simulation study, we consider five different stable VAR models, in

which the autoregressive coefficient matrix Al and the inverse noise covari-

ance matrix Σ−1u have the same structure (i.e. (Al)ij = (Al)ji = (Σ−1u )ij =

(Σ−1u )ji = 0, 1 ≤ i < j ≤ K, l = 1, · · · , p), to measure the performance

of the estimation method. The inverses noise covariance matrices of each

model are positive definite. We perform the experiments using the following

models:
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Model 1. y
(1)
t = A

(1)
1 y

(1)
t−1 + u

(1)
t , u

(1)
t ∼ N (0,Σ1),

Model 2. y
(2)
t = A

(2)
1 y

(2)
t−1 + u

(2)
t , u

(2)
t ∼ N (0,Σ2),

Model 3. y
(3)
t = A

(3)
1 y

(3)
t−1 + u

(3)
t , u

(3)
t ∼ N (0,Σ3),

Model 4. y
(4)
t = A

(4)
1 y

(4)
t−1 + u

(4)
t , u

(4)
t ∼ N (0,Σ4),

Model 5. y
(5)
t = A

(5)
1 y

(5)
t−1 + A

(5)
2 y

(5)
t−2 + u

(5)
t , u

(5)
t ∼ N (0,Σ5),

where

A
(1)
1 =

( −0.7458 0.3938 −0.9575
−0.1824 −0.6798 0
−0.1779 0 0.4294

)
, Σ−11 =

(
1.3030 −1.0613 0.8662
−1.0613 1.4196 0
0.8662 0 2.6625

)
,

A
(2)
1 =

(
0.9508 0 0.4352 0

0 −0.8232 0.5138 0.0274
−0.8592 −0.8289 0.6247 0.5984

0 −0.4878 −0.1426 −0.6542

)
, Σ−12 =

(
1.7975 0 0.1025 0

0 3.1785 0.8908 0.5532
0.1025 0.8908 0.4838 0.0586

0 0.5532 0.0586 4.1300

)
,

A
(3)
1 =

 0.4352 −0.6552 0.4154 0.3930 −0.5200 0.2256
0.1478 −0.4932 0 0 0 0
−0.7940 0 −0.8933 0 0 0
0.5894 0 0 −0.1478 0 0
−0.8009 0 0 0 −0.4169 0
0.4197 0 0 0 0 −0.2439

, Σ−13 =

( 1 0.4 0.4 0.4 0.4 0.4
0.4 1 0 0 0 0
0.4 0 1 0 0 0
0.4 0 0 1 0 0
0.4 0 0 0 1 0
0.4 0 0 0 0 1

)
,

A
(4)
1 =

 0.2177 0.3066 0 0 0 0.3775
−0.6324 −0.6650 0.0214 0 0 0

0 −0.2749 −0.7509 0.4482 0 0
0 0 −0.3046 −0.8066 0.9940 0
0 0 0 −0.7313 0.5054 0.7959

−0.0587 0 0 0 −0.5140 −0.9470

, Σ−14 =

( 1 0.4 0 0 0 0.4
0.4 1 0.4 0 0 0
0 0.4 1 0.4 0 0
0 0 0.4 1 0.4 0
0 0 0 0.4 1 0.4
0.4 0 0 0 0.4 1

)
,

A
(5)
1 =

 −0.6 0.4 0 0 0 0.4
0.4 −0.6 0.4 0 0 0
0 0.4 −0.6 0.4 0 0
0 0 0.4 −0.6 0.4 0
0 0 0 0.4 −0.6 0.4
0.4 0 0 0 0.4 −0.6

, A
(5)
2 =

 −0.3 0.2 0 0 0 0.2
0.2 −0.3 0.2 0 0 0
0 0.2 −0.3 0.2 0 0
0 0 0.2 −0.3 0.2 0
0 0 0 0.2 −0.3 0.2
0.2 0 0 0 0.2 −0.3

 and

Σ−15 =

 1 −0.3 0 0 0 −0.3
−0.3 1 −0.3 0 0 0
0 −0.3 1 −0.3 0 0
0 0 −0.3 1 −0.3 0
0 0 0 −0.3 1 −0.3
−0.3 0 0 0 −0.3 1

.

Model 1 is a stable VAR(1) model of dimension three. The second and

the third components of the series are Granger non-causal and contem-

poraneously independent (i.e.
(
A

(4)
1

)
23

=
(
A

(4)
1

)
32

= 0 and
(
Σ−11

)
23

=(
Σ−11

)
32

= 0). Model 2 is a 4-dimensional VAR(1) model, where the first

and second; and the first and fourth components of the multivariate time

series are Granger non-causal and contemporaneous conditionally indepen-

dent. We further extend the investigation of the proposed method to some

higher dimension stable VAR models. Model 3 is a 6-dimensional stable
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VAR(1) model with every node connected to the first node in the mixed

graph. Model 4 is a stable VAR(1) model in which both the autoregressive

coefficient matrix and the inverse noise covariance matrix have a Toeplitz

structure. To explore the performance of the estimation method on VAR

model with higher lag order p, we consider a 6-dimensional VAR(2) model

with Toeplitz autoregressive coefficient matrices and Toeplitz inverse noise

covariance matrix.

The experiments are carried out with sample size T of 100, 200, 500,

1000 over 500 replications using MATLAB R2016b on a Linux based work-

station with two 2.1 GHz CPUs and 503 GB main memory. We use SDPT3

(Tütüncü et al., 2003) to estimate the inverse noise covariance matrix in

the experiments. SDPT3 is a MATLAB based convex optimization tool

for solving the semidefinite programming problem. As a comparison to the

alternating maximization method, we also solve the optimization problem,

assuming the true sparsity structure is known, by two widely used algo-

rithms in nonlinear optimization. They are the interior point algorithm and

the direct search method by the MATLAB command ‘fmincon’ and ‘pat-

ternsearch’, respectively. We impose the positive definiteness constraint, in

the two comparison methods, based on the fact that the leading principal

minors of the inverse covariance matrix are positive. The following metrics

are computed for comparisons: the bias of the AR coefficient estimates,

Bias =

p∑
l=1

K∑
i,j=1

∣∣∣∣E ((Âl

)
i,j

)
− (Al)ij

∣∣∣∣ ;
the variance of the AR coefficient estimates,

Variance =

p∑
l=1

K∑
i,j=1

Var

[(
Âl

)
ij

]
;
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and the mean squared error (MSE) of the AR coefficient estimates,

MSE =

p∑
l=1

K∑
i,j=1

{[
E

((
Âl

)
ij

)
− (Al)ij

]2
+ Var

[(
Âl

)
ij

]}
.

For the inverse noise covariance estimates, the upper triangular part of

the estimates is considered in the computation of three metrics since the

estimates are symmetric.

We also perform the simulation experiments with unknown structure

(including the lag order) and estimate the structure using the frequency

domain and time domain methods described in Section 3.1.2. The metrics

are modified to account for the error incurred in selecting a wrong lag order.

That is, the p in the above formulas are changed to be the maximum between

the determined lag order and the true lag order, and (Al)ij is defined to be

zero whenever l > p.

Simulation with known structure

Tables 3.1–3.5 document the bias, variance and mean squared error (MSE)

of the estimates using the three mentioned algorithms (the alternating maxi-

mization method, the interior-point method, and the direct search method)

for the five studied models. These three metrics are compiled using the

simulation results whenever the corresponding algorithm converges. The

columns ‘T ’, ‘Method’, ‘NC’, ‘Cputime’ and ‘Iterations’ are, respectively,

the sample size, the optimization method used, the number of incomplete

experiments, due to non-convergence, out of 500 replications, the average

CPU time consumed in seconds and the average number of iterations in-

volved in solving the problem. The value in parenthesis is the standard

deviation of the corresponding measurement. We consider completion of
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the B step followed by the Θ step as one iteration of the alternating maxi-

mization method.

Model 1

Table 3.1: Simulation results for Model 1 over 500 replications. The metrics
are compiled using the results whenever the corresponding algorithm converges.
NC indicates the number of incomplete experiments, Cputime is the average
CPU time consumed in seconds, and Iteration is the average number of iterations
involved. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method NC Cputime Iterations Bias Variance MSE Bias Variance MSE

100

ACS 0
2.3934
(0.8676)

4.1700
(0.6147) 0.0387 0.0280 0.0284 0.4284 0.3047 0.3498

fmincon 3
10.5573
(0.9191)

30.4064
(1.5358) 0.0392 0.0279 0.0283 0.4297 0.3046 0.3501

patternsearch 22
1598.7132
(686.5228)

9.0732
(0.2687) 0.0382 0.0280 0.0284 0.4055 0.2937 0.3346

200

ACS 0
2.1998
(0.7500)

3.7740
(0.5133) 0.0229 0.0141 0.0142 0.2831 0.1323 0.1520

fmincon 3
10.9860
(1.0686)

30.8008
(1.6346) 0.0223 0.0141 0.0142 0.2814 0.1325 0.1520

patternsearch 4
1555.4650
(518.1913)

9.0444
(0.2061) 0.0227 0.0141 0.0142 0.2812 0.1320 0.1516

500

ACS 0
2.3436
(1.0875)

3.3520
(0.4781) 0.0152 0.0055 0.0056 0.0944 0.0471 0.0494

fmincon 2
12.4463
(1.4386)

31.8514
(1.7028) 0.0151 0.0055 0.0055 0.0938 0.0472 0.0494

patternsearch 0
1681.1368
(456.9749)

9.0320
(0.1762) 0.0154 0.0055 0.0056 0.0948 0.0471 0.0494

1000

ACS 0
1.8870
(0.5567)

3.1000
(0.3003) 0.0060 0.0026 0.0026 0.0455 0.0258 0.0262

fmincon 6
12.9251
(1.5171)

32.6377
(1.9756) 0.0061 0.0026 0.0026 0.0443 0.0256 0.0260

patternsearch 0
1493.6605
(280.7624)

9.0240
(0.1532) 0.0060 0.0026 0.0026 0.0456 0.0258 0.0262

Table 3.1 is the simulation results for Model 1 using the three stud-

ied methods, namely the alternating maximization method (denoted by

‘ACS’), the interior-point algorithm (denoted by ‘fmincon’) and the direct

search method (denoted by ‘patternsearch’). Few simulation experiments

using the interior-point method do not converge successfully. The direct

search method terminates before obtaining a solution in some of the experi-

ments, especially when the sample size is low. The alternating maximization

method consumes less CPU time comparing to the two other methods, while

the direct search method spends the most. The average number of itera-

tions for the ACS and the direct search methods decreases as the sample

size increases. The three metrics (bias, variance, and MSE) for both the AR
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coefficient and the inverse covariance estimates drop steadily as the sample

size increases for the three studied methods. We also generate boxplots of

deviations of the estimates (i.e., θ̂ − θ) to gain a better insight into the

dispersion of the estimates for each method.
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Figure 3.1: Boxplot of deviations of the estimates for Model 1 when T = 100.

Figure 3.1 depicts boxplots of deviations of the AR coefficient (on the

upper panel), and the inverse covariance (on the lower panel) estimates for

Model 1 when T = 100. The deviations are computed whenever the cor-

responding algorithm converges. We can observe from the boxplots that

all algorithms restrict the corresponding AR coefficient and inverse covari-

ance estimates to zero. For the unconstrained estimates, both three algo-

rithms obtain estimates that possess similar dispersion. We next consider

the log-likelihood values to investigate the convergence properties of the

three studied algorithms.

Figure 3.2 shows boxplots of the log-likelihood values, computed using

the obtained AR coefficient and inverse noise covariance estimates, for the

three investigated methods with different sample sizes. It is observed that
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(d) T = 1000.

Figure 3.2: Boxplot of loglikelihood values for Model 1.

the three algorithms obtain similar log-likelihood values, and the average

log-likelihood values are less dispersed as the sample size increases. The

results indicate that the log-likelihood values obtained from these three

methods converge to some values that are close to each other, whenever

the methods converge.

Model 2

Table 3.2 is the simulation results for Model 2 using the methods men-

tioned above, namely the alternating maximization method (denoted by

‘ACS’), the interior-point algorithm (denoted by ‘fmincon’) and the direct

search method (denoted by ‘patternsearch’). Few simulation experiments

using the interior-point method do not converge successfully. The direct

search method can obtain a solution for all experiments. The alternating

maximization method consumes less CPU time comparing to the two other

methods, while the direct search method spends the most. The average num-

ber of iterations for the ACS method decreases as the sample size increases.

The three metrics (bias, variance, and MSE) for both the AR coefficient
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Table 3.2: Simulation results for Model 2 over 500 replications. The metrics
are compiled using the results whenever the corresponding algorithm converges.
NC indicates the number of incomplete experiments, Cputime is the average
CPU time consumed in seconds, and Iteration is the average number of iterations
involved. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method NC Cputime Iterations Bias Variance MSE Bias Variance MSE

100

ACS 0
2.0978
(0.2157)

4.5740
(0.6674) 0.0639 0.0420 0.0428 0.9019 1.0303 1.2401

fmincon 6
19.7053
(1.6192)

46.3907
(2.0270) 0.0646 0.0416 0.0424 0.8936 1.0316 1.2374

patternsearch 0
1157.4870
(464.8214)

8.8020
(0.3989) 0.0640 0.0419 0.0428 0.9081 1.0316 1.2443

200

ACS 0
2.1394
(0.1960)

4.0420
(0.4740) 0.0375 0.0184 0.0188 0.3747 0.4274 0.4644

fmincon 9
21.0697
(2.0892)

47.0428
(2.0633) 0.0382 0.0184 0.0188 0.3737 0.4277 0.4643

patternsearch 0
1108.8456
(370.5133)

8.8300
(0.3760) 0.0377 0.0185 0.0188 0.3788 0.4277 0.4655

500

ACS 0
1.9902
(0.1787)

3.6020
(0.4940) 0.0207 0.0086 0.0086 0.1515 0.1640 0.1706

fmincon 3
21.9270
(2.1989)

47.9779
(2.3473) 0.0209 0.0086 0.0087 0.1492 0.1633 0.1697

patternsearch 0
956.3934
(259.5371)

8.8280
(0.3778) 0.0208 0.0086 0.0086 0.1540 0.1641 0.1709

1000

ACS 0
1.8614
(0.1828)

3.2380
(0.4263) 0.0090 0.0037 0.0038 0.0651 0.0833 0.0843

fmincon 5
22.8292
(1.8971)

48.8465
(2.0980) 0.0091 0.0038 0.0038 0.0661 0.0836 0.0847

patternsearch 0
876.7742
(229.0570)

8.8040
(0.3974) 0.0091 0.0038 0.0038 0.0669 0.0833 0.0844

and the inverse covariance estimates decline gradually as the sample size

raises for the three studied methods. We plot boxplots of deviations of the

estimates to investigate the dispersion of the estimates for each method.
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Figure 3.3: Boxplot of deviations of the estimates for Model 2 when T = 100.
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Figure 3.3 depicts boxplots of deviations of the AR coefficient (on the

upper panel), and the inverse covariance (on the lower panel) estimates for

Model 2 when T = 100, respectively. We can observe from the boxplots

that all algorithms constrain the corresponding AR coefficients and inverse

covariance estimates to zero. For the unconstrained estimates, both three

methods obtain estimates that possess similar dispersion. We next consider

the log-likelihood values to explore the convergence properties of the three

studied algorithms.
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Figure 3.4: Boxplot of log-likelihood values for Model 2.

Figure 3.4 is boxplots of the log-likelihood values, computed using the

obtained AR coefficient and inverse noise covariance estimates, for the three

investigated methods. It is observed that the three methods obtain simi-

lar log-likelihood values, and the average log-likelihood values become less

disperse as the sample size raises. The results suggest that the three stud-

ied algorithms converge to some log-likelihood values that are close to each

other, whenever the methods converge.
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Model 3

Table 3.3: Simulation results for Model 3 over 500 replications. The metrics
are compiled using the results whenever the corresponding algorithm converges.
NC indicates the number of incomplete experiments, Cputime is the average
CPU time consumed in seconds, and Iteration is the average number of iterations
involved. Standard deviation are in the parentheses.

Â Σ̂−1
u

T Method NC Cputime Iterations Bias Variance MSE Bias Variance MSE

100

ACS 0
2.8861
(0.2478)

5.9700
(0.6588) 0.0654 0.0574 0.0578 0.5558 0.1676 0.2003

fmincon 108
48.7554
(6.3255)

62.6556
(2.0657) 0.0779 0.0576 0.0582 0.5717 0.1675 0.2022

patternsearch 58
5330.8996
(1468.9006)

8.8507
(0.3568) 0.0645 0.0580 0.0584 0.5552 0.1683 0.2009

200

ACS 0
2.5836
(0.2224)

5.0420
(0.4250) 0.0413 0.0268 0.0270 0.2798 0.0759 0.0843

fmincon 128
48.1210
(3.9664)

64.8763
(2.2798) 0.0511 0.0272 0.0275 0.2890 0.0779 0.0868

patternsearch 13
4744.7387
(1022.6095)

8.8665
(0.3404) 0.0462 0.0267 0.0270 0.2821 0.0756 0.0842

500

ACS 0
2.2662
(0.2193)

4.1800
(0.3846) 0.0276 0.0104 0.0104 0.1098 0.0293 0.0307

fmincon 160
50.8929
(3.7852)

66.6559
(2.4858) 0.0246 0.0106 0.0106 0.1193 0.0300 0.0314

patternsearch 0
4455.3172
(711.3365)

8.8740
(0.3322) 0.0287 0.0104 0.0105 0.1136 0.0294 0.0308

1000

ACS 0
2.3402
(0.3563)

3.9920
(0.1094) 0.0072 0.0053 0.0053 0.0516 0.0145 0.0148

fmincon 202
67.2302
(18.4431)

67.5201
(2.7392) 0.0104 0.0054 0.0054 0.0471 0.0147 0.0150

patternsearch 0
6027.8816
(2050.3609)

8.8940
(0.3081) 0.0082 0.0053 0.0053 0.0543 0.0146 0.0149

Table 3.3 is the simulation results for Model 3 using the three explored

methods, namely the alternating maximization method (denoted by ‘ACS’),

the interior-point algorithm (denoted by ‘fmincon’) and the direct search

method (denoted by ‘patternsearch’). Some simulation experiments us-

ing the interior-point method do not converge successfully, and more non-

convergence cases occur when the sample size raises. The direct search

method does not obtain a solution in some experiments, especially when the

sample size is low. This situation is alleviated as the sample size increases.

The alternating maximization method consumes less CPU time comparing

to the two other methods, while the direct search method spends the most.

The average number of iterations for the ACS method decreases as the sam-

ple size increases. The three metrics (bias, variance, and MSE) for both the

AR coefficient and the inverse covariance estimates decline gradually as the
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sample size raises for the three studied methods. We plot boxplots of de-

viations of the estimates to investigate the dispersion of the estimates for

each method.
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Figure 3.5: Boxplot of deviations of the estimates for Model 3 when T = 100.

Figure 3.5 shows boxplots of deviations of the AR coefficient (on the

upper panel) and the inverse covariance (on the lower panel) estimates for

Model 3 when T = 100. We can observe from the boxplots that all al-

gorithms restrict the corresponding AR coefficient and inverse covariance

estimates to zero. Both three methods obtain unconstrained estimates that

possess similar dispersion. Furthermore, the estimates with larger true pa-

rameter values are more dispersed. We next consider the log-likelihood val-

ues to explore the convergence properties of the three studied algorithms.

Figure 3.6 displays boxplots of the log-likelihood values, computed using

the obtained AR coefficient and inverse noise covariance estimates, for the

three investigated methods. We can observe from the boxplots that all three

methods obtain similar log-likelihood values, and the average log-likelihood

values are less dispersed as the sample size raises. The findings suggests
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Figure 3.6: Boxplot of the log-likelihood values for Model 3.

that the three algorithms converge to some log-likelihood values that are

close to each other, whenever the methods converge.

Model 4

Table 3.4: Simulation results for Model 4 over 500 replications. The metrics
are compiled using the results whenever the corresponding algorithm converges.
NC indicates the number of incomplete experiments, Cputime is the average
CPU time consumed in seconds, and Iteration is the average number of iterations
involved. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method NC Cputime Iterations Bias Variance MSE Bias Variance MSE

100

ACS 0
2.4622
(0.9674)

5.3380
(0.5517) 0.0569 0.0600 0.0603 0.6600 0.1999 0.2432

fmincon 167
59.1187
(18.9916)

68.5826
(2.2028) 0.0753 0.0627 0.0632 0.7176 0.2052 0.2561

patternsearch 3
3022.3045
(1159.8824)

8.0141
(0.1180) 0.0577 0.0602 0.0604 0.6658 0.2005 0.2445

200

ACS 0
2.3448
(0.8252)

4.6520
(0.5014) 0.0313 0.0297 0.0298 0.3118 0.0900 0.0997

fmincon 182
60.2929
(21.7626)

70.2987
(2.1597) 0.0418 0.0296 0.0298 0.3459 0.0881 0.1001

patternsearch 0
2862.6623
(881.2467)

8.0040
(0.0632) 0.0328 0.0297 0.0298 0.3201 0.0903 0.1006

500

ACS 0
2.0152
(0.5884)

4.0160
(0.1407) 0.0196 0.0124 0.0124 0.1207 0.0337 0.0352

fmincon 206
68.8011
(20.4213)

72.4048
(2.7407) 0.0198 0.0124 0.0124 0.1413 0.0337 0.0358

patternsearch 0
3026.0082
(1031.8243)

8.0000
(0.0000) 0.0207 0.0124 0.0124 0.1256 0.0338 0.0354

1000

ACS 0
1.9544
(0.6206)

3.9380
(0.2414) 0.0095 0.0059 0.0059 0.0514 0.0161 0.0163

fmincon 244
63.3283
(12.1464)

73.6055
(3.0196) 0.0117 0.0058 0.0058 0.0590 0.0162 0.0166

patternsearch 0
2554.6416
(650.7686)

8.0000
(0.0000) 0.0102 0.0059 0.0059 0.0542 0.0161 0.0164
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Table 3.4 is the simulation results for Model 4 using the three inves-

tigated methods, namely the alternating maximization method (denoted

by ‘ACS’), the interior-point algorithm (denoted by ‘fmincon’) and the di-

rect search method (denoted by ‘patternsearch’). Some simulation exper-

iments using the interior-point method do not converge successfully, and

more non-convergence cases occur when the sample size raises. Few simu-

lation experiments do not obtain a solution using the direct search method

before termination when the sample size is 100. The alternating maximiza-

tion method consumes less CPU time comparing to the two other methods,

while the direct search method spends the most. The average number of

iterations for the ACS method decreases as the sample size increases. The

three metrics (bias, variance, and MSE) for both the AR coefficient and the

inverse covariance estimates decline gradually as the sample size raises for

the three studied methods. We plot boxplots of deviations of the estimates

to investigate the dispersion of the estimates for each method.
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Figure 3.7: Boxplot of deviations of the AR coefficient estimates for Model 4
when T = 100.

Figure 3.7 shows boxplots of deviations of the AR coefficient (on the

upper panel) and the inverse covariance (on the lower panel) estimates for
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Model 4 when T = 100, respectively. We can observe from the boxplot that

all algorithms restrict the corresponding AR coefficient and inverse covari-

ance estimates to zero. For the unconstrained estimates, both three meth-

ods obtain estimates that carry similar dispersion. Besides, the estimates

with larger true parameter value are more disperse. We next consider the

log-likelihood values to investigate the convergence properties of the three

studied algorithms.
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Figure 3.8: Boxplot of the log-likelihood values for Model 4.

Figure 3.8 is boxplots of the log-likelihood values, computed using the

obtained AR coefficient and inverse noise covariance estimates, for the three

investigated methods. We can observe from the boxplots that the three al-

gorithms obtain similar log-likelihood values, and the average log-likelihood

values are less dispersed as the sample size increases. The results indicate

that the three algorithms converge to some log-likelihood values that are

close to each other, whenever the methods converge.
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Model 5

Table 3.5: Simulation results for Model 5 over 500 replications. The metrics
are compiled using the results whenever the corresponding algorithm converges.
NC indicates the number of incomplete experiments, Cputime is the average
CPU time consumed in seconds, and Iteration is the average number of iterations
involved. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method NC Cputime Iterations Bias Variance MSE Bias Variance MSE

100

ACS 0
2.8934
(0.2696)

6.2340
(0.6066)

0.2682 0.3019 0.3047 0.8525 0.2329 0.3094

fmincon 120
97.0799
(9.4558)

94.6684
(8.3720)

0.3044 0.3033 0.3068 0.8943 0.2338 0.3179

patternsearch 0
4851.2951
(268.9346)

8.0000
(0.0000)

0.2722 0.3019 0.3048 0.8653 0.2338 0.3126

200

ACS 0
2.6351
(0.2383)

5.1580
(0.4067)

0.1455 0.1461 0.1469 0.3766 0.0967 0.1122

fmincon 123
104.6940
(7.4198)

99.8806
(5.9679)

0.1694 0.1470 0.1481 0.3925 0.0982 0.1151

patternsearch 0
4616.1554
(340.5639)

8.0000
(0.0000)

0.1478 0.1462 0.1470 0.3850 0.0970 0.1131

500

ACS 0
2.3304
(0.2798)

4.2760
(0.4475)

0.0640 0.0585 0.0587 0.1597 0.0362 0.0389

fmincon 127
118.6068
(25.2486)

101.4236
(6.9447)

0.0732 0.0587 0.0590 0.1730 0.0359 0.0392

patternsearch 0
4859.9765
(1098.6708)

8.0000
(0.0000)

0.0662 0.0585 0.0587 0.1648 0.0362 0.0392

1000

ACS 0
2.2658
(0.1815)

4.0000
(0.0000)

0.0390 0.0291 0.0291 0.0699 0.0174 0.0179

fmincon 145
147.1842
(12.9014)

99.3380
(7.9624)

0.0355 0.0286 0.0286 0.0683 0.0173 0.0178

patternsearch 0
5945.0423
(250.1966)

8.0000
(0.0000)

0.0409 0.0291 0.0292 0.0737 0.0174 0.0180

Table 3.5 documents the simulation results for Model 5 using the three stud-

ied algorithms, namely the alternating maximization method (denoted by

‘ACS’), the interior-point algorithm (denoted by ‘fmincon’) and the direct

search method (denoted by ‘patternsearch’). Some simulation experiments

using the interior-point method do not converge successfully. The direct

search method obtains a solution in all simulation experiments. The alter-

nating maximization method consumes less CPU time comparing to the two

other methods, while the direct search method spends the most. The av-

erage computation time and the average number of iterations for the ACS

method decrease as the sample size increases. The three metrics (bias,

variance, and MSE) for both the AR coefficient and the inverse covariance

estimates decline gradually as the sample size raises for the three studied
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methods. We plot boxplots of deviations of the estimates to investigate the

dispersion of the estimates for each method.
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Figure 3.9: Boxplot of deviations of the estimates for Model 5 when T = 100.
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Figure 3.10: Boxplot of deviations of the inverse covariance estimates for
Model 5 when T = 100.

Figure 3.9 displays boxplots of deviations of the AR coefficient of lag

1 (on the upper panel), and the lag 2 AR coefficient (on the lower panel)

estimates for Model 5 when T = 100. Figure 3.10 is boxplots of deviations

of the inverse covariance estimates when T = 100. We can observe from the

two figures that all algorithms restrict the corresponding AR coefficient and

inverse covariance estimates to zero. For the unconstrained estimates, both

three methods obtain estimates that carry similar dispersion. Furthermore,

the estimates with larger true parameter values are more dispersed. We
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next explore the convergence properties of the three studied algorithms by

considering the log-likelihood values.
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Figure 3.11: Boxplot of the log-likelihood values for Model 5.

Figure 3.11 displays boxplots of the log-likelihood values, computed using

the obtained AR coefficient and inverse noise covariance estimates, for the

three investigated methods with various sample sizes. It is observed that

the ACS and the direct search methods obtain similar log-likelihood values,

while the interior point method is slightly different. This is because the

interior point method does not obtain a solution in many simulation exper-

iments. We can also see from the figure that the variability of the average

log-likelihood values decreases when the sample size raises. The results

suggest that the log-likelihood values obtained from these three methods

converge to some values that are close to each other, whenever the methods

converge.

In summary, the simulation results reflect that the alternating maxi-

mization method is more robust and is rare to obtain a solution that has

a significant deviation from the actual parameter. The other two methods,
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however, fail to converge in some cases, especially when the number of pa-

rameters is large. It seems that the alternating method has an advantage

that it always converges while the other two methods may not. The al-

ternating method consumes less CPU time to obtain a solution comparing

to the other two algorithms. The results obtained using the alternating

method are similar to that acquired by the other two methods whenever

these methods converge.

Simulation with unknown structure

Tables 3.6–3.10 document the bias, variance and mean squared error (MSE)

of the estimates using the frequency domain and the time domain methods

introduced in Section 3.1.2, assuming the lag order and sparsity structure

are unknown. These three metrics are compiled using all simulation results.

The columns ‘T ’, ‘Method’, ‘Cputime’ and ‘p̂’ are, respectively, the sample

size, the algorithm applied, the average CPU time consumed in seconds and

the average lag order determined. For the inverse noise covariance estimate,

the upper triangular part of the estimate is considered in computing the

three metrics (bias, variance, and MSE). The value in parenthesis is the

standard deviation of the corresponding measurement.
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Model 1

Table 3.6: Simulation results for Model 1 over 500 replications. p̂ is the
average lag order determined, and Cputime is the average CPU time consumed
in seconds. Standard deviations are in parenthesis.

Â Σ̂−1
u

T Method Cputime p̂ Bias Variance MSE Bias Variance MSE

100

Time
1.2625
(0.3147)

1.1140
(0.4398)

0.0799 0.0771 0.0776 0.4904 0.3221 0.3809

Frequency
2.5579
(0.1399)

1.1140
(0.4398)

0.0806 0.0775 0.0780 0.4903 0.3214 0.3804

200

Time
1.2214
(0.2728)

1.0200
(0.1538)

0.0260 0.0188 0.0189 0.2889 0.1334 0.1540

Frequency
2.6691
(0.1126)

1.0200
(0.1538)

0.0260 0.0188 0.0189 0.2889 0.1334 0.1540

500

Time
1.2549
(0.2333)

1.0140
(0.1176)

0.0166 0.0063 0.0063 0.0960 0.0471 0.0495

Frequency
3.1467
(0.1365)

1.0140
(0.1176)

0.0166 0.0063 0.0063 0.0960 0.0471 0.0495

1000

Time
1.8200
(0.6775)

1.0040
(0.0632)

0.0063 0.0030 0.0030 0.0458 0.0258 0.0263

Frequency
5.1397
(0.1897)

1.0040
(0.0632)

0.0063 0.0030 0.0030 0.0458 0.0258 0.0263

Table 3.6 is the simulation results for Model 1 using the methods as men-

tioned earlier, namely the frequency domain method (denoted by ‘Fre-

quency’) and the time domain approach (denoted by ‘Time’). The frequency

domain method consumes more CPU time comparing to the time domain

approach. Both methods select a lag order of 2 or above in few experiments

when the sample size is 100, and the over-selection of lag order is alleviated

as the sample size raises.

It is observed from the column Â of Table 3.6 that the frequency and

time domain methods perform similarly, concerning the three metrics, in the

estimation of AR coefficients. Figure 3.12 depicts the average AR estimates

using the Frequency method and the Time method when T = 100 and

T = 1000, together with the actual parameter value. From this figure,

both methods obtain similar estimates at the same sample size, and the AR

coefficient estimates at the positions (2,3) and (3,2) are, in particular, close

to zero. The AR coefficient estimates deviate less from the true parameter

value and possess less variability when the sample size increases.
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Figure 3.12: Average values of the AR coefficient estimates for Model 1, Â
(1)
1 .

Standard errors are in parentheses.
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Figure 3.13: Average values of the inverse covariance estimates for Model 1,
Σ̂−1

1 . Standard errors are in parentheses.

As shown in the column Σ̂−1u of Table 3.6 that the inverse covariance

estimates obtained by the frequency and time domain methods possess bias,

variance, and MSE that are close in value. Figure 3.13 plots the average

inverse covariance estimates using the two methods when T = 100 and

T = 1000. We can observe from the figure that both methods perform
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similarly in the estimation of inverse covariances at the same sample size,

and the inverse covariance estimates at the positions (2,3) and (3,2) are in

particular close to zero. The inverse covariance estimates deviate less from

the true parameter value and are less disperse when the sample size raises.

Model 2

Table 3.7: Simulation results for Model 2 over 500 replications. p̂ is the
average lag order determined, and Cputime is the average CPU time consumed
in seconds. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method Cputime p̂ Bias Variance MSE Bias Variance MSE

100

Time
8.7147
(6.8711)

1.0040
(0.0632)

2.1144 1.1408 1.6423 3.8628 4.5129 8.7474

Frequency
7.9339
(3.1356)

1.0040
(0.0632)

0.0880 0.0552 0.0564 0.9806 1.1169 1.3487

200

Time
8.8200
(6.4254)

1.0020
(0.0447)

1.7075 0.9154 1.2690 3.5558 3.7872 7.1700

Frequency
8.2784
(1.9389)

1.0020
(0.0447)

0.0555 0.0335 0.0340 0.4283 0.4656 0.5087

500

Time
9.1705
(5.2187)

1.0000
(0.0000)

1.0707 0.5684 0.7512 2.3826 2.1777 4.1644

Frequency
9.6923
(1.8836)

1.0000
(0.0000)

0.0247 0.0108 0.0109 0.1741 0.1779 0.1858

1000

Time
10.1260
(4.4215)

1.0000
(0.0000)

0.8777 0.2511 0.3856 1.5786 1.4830 2.8025

Frequency
12.4939
(1.3267)

1.0000
(0.0000)

0.0088 0.0049 0.0049 0.0790 0.0895 0.0909

Table 3.7 documents the simulation results for Model 2 using the frequency

domain method (denoted by ‘Frequency’) and the time domain approach

(denoted by ‘Time’). The frequency domain method, on average, consumes

less CPU time when the sample size is 200 or below and consumes more

when the sample size is 500 or above compared to the time domain approach.

Both the Frequency method and the Time method select a lag order of 2

in few experiments when the sample size is 200 or below and choose the

correct lag order in all experiments when the sample size is 500 or above.

We can observe from the column Â of Table 3.7 that the frequency do-

main method outperforms the time domain method, regarding the three

metrics, in the estimation of AR coefficients for experiments of all sample
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Figure 3.14: Average values of the AR coefficient estimates for Model 2, Â
(2)
1 .

Standard errors are in parentheses.

sizes. The performance of the two methods in the estimation of AR coeffi-

cients improves as the sample size raises. Figure 3.14 plots the average AR

estimates using the Frequency method and the Time method when T = 100

and T = 1000. It is observed from this figure that the AR estimates ob-

tained by the frequency domain method possess less bias from the actual

parameter values comparing to the time domain method. The bias of esti-

mates using the two methods reduces as the sample size increases to 1000.

For the zero AR coefficients, both methods obtain estimates that are close to

zero, and the frequency domain method performs better in the estimation.

The column Σ̂−1u of Table 3.7 that the Frequency method performs better

in the estimation of inverse covariances and the estimations improve as

the sample size raises. Figure 3.15 depicts the average inverse covariance

estimates using the two methods when T = 100 and T = 1000. We can

observe from the figure that the inverse covariances estimated by the Time

method deviate more from the true parameter value. As the sample size

increases to 1000, the inverse covariance estimates deviate less from the
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Figure 3.15: Average values of the inverse covariance estimates for Model 2,
Σ̂−1

2 . Standard errors are in parentheses.

actual parameter values for both methods.

Model 3

Table 3.8: Simulation results for Model 3 over 500 replications. p̂ is the
average lag order determined, and Cputime is the average CPU time consumed
in seconds. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method Cputime p̂ Bias Variance MSE Bias Variance MSE

100

Time
6.4409
(3.6570)

1.0000
(0.0000)

0.1107 0.1172 0.1180 0.5739 0.2386 0.2715

Frequency
23.2991
(9.3057)

1.0000
(0.0000)

0.2528 0.1388 0.1415 0.9130 0.2910 0.3648

200

Time
6.4688
(2.9980)

1.0000
(0.0000)

0.0428 0.0270 0.0272 0.2847 0.0771 0.0856

Frequency
21.7309
(3.1045)

1.0000
(0.0000)

0.1263 0.0535 0.0542 0.4157 0.1082 0.1235

500

Time
6.2184
(2.6422)

1.0000
(0.0000)

0.0276 0.0104 0.0104 0.1098 0.0293 0.0307

Frequency
21.2872
(1.9668)

1.0000
(0.0000)

0.0778 0.0228 0.0232 0.1657 0.0413 0.0438

1000

Time
7.9361
(2.8228)

1.0000
(0.0000)

0.0072 0.0053 0.0053 0.0516 0.0145 0.0148

Frequency
23.9288
(2.0373)

1.0000
(0.0000)

0.0286 0.0111 0.0112 0.0738 0.0201 0.0207

Table 3.8 documents the simulation results for Model 3 using the frequency

domain method (denoted by ‘Frequency’) and the time domain approach

(denoted by ‘Time’). The frequency domain method consumes more CPU
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time comparing to the time domain approach. Both methods select the lag

order correctly in all experiments.

It is observed from the column Â of Table 3.8 that the time domain

method performs better, regarding the three metrics, in the estimation of

AR coefficients, and both methods improve in the estimation as the sample

size raises. Figure 3.16 plots the average AR estimates using the frequency

and time domain methods when T = 100 and T = 1000. As shown in the

figure, both methods obtain estimates that are close to the true param-

eter values, especially for the non-zero AR coefficients. For the zero AR

coefficients, the time domain method performs better in the estimation.
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(a) Time (T = 100).

0.4325

(0.0037)

0.1482

(0.0022)

-0.7880

(0.0023)

0.5924

(0.0021)

-0.7946

(0.0022)

0.4164

(0.0030)

-0.6406

(0.0052)

-0.4813

(0.0038)

-0.0069

(0.0027)

-0.0094

(0.0030)

-0.0059

(0.0021)

-0.0210

(0.0029)

0.4011

(0.0031)

-0.0008

(0.0018)

-0.8774

(0.0025)

0.0116

(0.0017)

0.0062

(0.0023)

0.0106

(0.0014)

0.3808

(0.0044)

-0.0031

(0.0026)

0.0013

(0.0023)

-0.1377

(0.0031)

0.0033

(0.0016)

0.0074

(0.0021)

-0.5063

(0.0034)

-0.0024

(0.0015)

-0.0065

(0.0025)

-0.0063

(0.0013)

-0.4163

(0.0026)

-0.0072

(0.0017)

0.2186

(0.0047)

-0.0005

(0.0029)

0.0061

(0.0022)

0.0024

(0.0025)

0.0048

(0.0015)

-0.2366

(0.0035)

1 2 3 4 5 6

1

2

3

4

5

6

(b) Frequency (T = 100).
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Figure 3.16: Average values of the AR coefficient estimates for Model 3, Â
(3)
1 .

Standard errors are in parentheses.

The column Σ̂−1u of Table 3.8 shows that the time domain method ob-

tains inverse covariance estimates that possess less bias, variance, and MSE.

Both methods improve in the estimation performance when the sample size

increases. Figure 3.17 shows the average inverse covariance estimates using

the Frequency and the Time methods. The figure shows that both methods
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(b) Frequency (T = 100).
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Figure 3.17: Average values of the inverse covariance estimates for Model 3,
Σ̂−1

3 . Standard errors are in parentheses.

obtain estimates that are close to the actual parameter values and the time

domain method performs better in the estimation of inverse covariances.

Model 4

Table 3.9: Simulation results for Model 4 over 500 replications. p̂ is the
average lag order determined, and Cputime is the average CPU time consumed
in seconds. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method Cputime p̂ Bias Variance MSE Bias Variance MSE

100

Time
6.9903
(4.2977)

1.0000
(0.0000)

0.1455 0.1473 0.1485 0.5841 0.2848 0.3182

Frequency
13.6009
(9.0822)

1.0000
(0.0000)

0.2570 0.1319 0.1377 0.7447 0.3324 0.3900

200

Time
5.6492
(2.4335)

1.0000
(0.0000)

0.0363 0.0335 0.0336 0.3102 0.0943 0.1039

Frequency
18.5482
(9.0611)

1.0000
(0.0000)

0.1328 0.0591 0.0603 0.4007 0.1325 0.1477

500

Time
6.4786
(2.6200)

1.0000
(0.0000)

0.0196 0.0124 0.0124 0.1207 0.0337 0.0352

Frequency
21.1352
(5.5363)

1.0000
(0.0000)

0.0475 0.0184 0.0185 0.1722 0.0414 0.0441

1000

Time
8.5184
(2.6142)

1.0000
(0.0000)

0.0095 0.0059 0.0059 0.0514 0.0161 0.0163

Frequency
24.2196
(2.6749)

1.0000
(0.0000)

0.0272 0.0087 0.0088 0.0697 0.0193 0.0197

Table 3.9 documents the simulation results for Model 4 using the frequency

domain method (denoted by ‘Frequency’) and the time domain approach
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(denoted by ‘Time’). The frequency domain method consumes more CPU

time comparing to the time domain approach. Both the Frequency method

and the Time method select the lag order correctly in all experiments.
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(a) Time (T = 100).
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(b) Frequency (T = 100).
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(c) Time (T = 1000).
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(d) Frequency (T = 1000).
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(e) True.

Figure 3.18: Average values of the AR coefficient estimates for Model 4, Â
(4)
1 .

Standard errors are in parentheses.

The column Â of Table 3.9 shows that the time domain method performs

better, concerning the three metrics, in the estimation of AR coefficients

when the sample size is 200 or above. For the experiments with a sample

size of 100, the time domain method obtains AR estimates that possess lower

bias comparing to the frequency domain method, although the variance and

MSE of the estimates are slightly higher. Both methods improve in the

estimation performance for AR coefficients when the sample size increases.

Figure 3.18 depicts the average AR estimates using the two methods when

T = 100 and T = 1000. We can observe from the figure that both methods,

in general, obtain estimates that are close to the true parameter values, and

improvement in estimation is observed as the sample size increases to 1000.

As shown in the column Σ̂−1u of Table 3.9 that the inverse covariance

estimates obtained by the time domain method possess less bias, variance,
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and MSE. Improvement in the estimation is observed as the sample size

raises. Figure 3.19 displays the average inverse covariance estimates using

the Frequency and Time methods when T = 100 and T = 1000. This figure

shows that both methods perform similarly in the estimation and the time

domain method is better in the estimation of inverse covariances.
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(a) Time (T = 100).
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(b) Frequency (T = 100).
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(c) Time (T = 1000).
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(d) Frequency (T = 1000).
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(e) True.

Figure 3.19: Average values of the inverse covariance estimates for Model 4,
Σ̂−1

4 . Standard errors are in parentheses.

Model 5

Table 3.10: Simulation results for Model 5 over 500 replications. p̂ is the
average lag order determined, and Cputime is the average CPU time consumed
in seconds. Standard deviations are in the parentheses.

Â Σ̂−1
u

T Method Cputime p̂ Bias Variance MSE Bias Variance MSE

100

Time
5.6652
(3.5030)

2.0000
(0.0000)

1.8869 0.7734 0.8776 0.3095 0.4717 0.4786

Frequency
10.5889
(13.4758)

2.0000
(0.0000)

0.3906 0.3612 0.3658 0.8073 0.2689 0.3381

200

Time
4.4266
(2.0759)

2.0000
(0.0000)

0.2231 0.1816 0.1832 0.3374 0.1148 0.1276

Frequency
11.6884
(8.3678)

2.0000
(0.0000)

0.1517 0.1471 0.1479 0.3808 0.0971 0.1129

500

Time
4.5902
(1.9192)

2.0000
(0.0000)

0.0640 0.0585 0.0587 0.1597 0.0362 0.0389

Frequency
17.2995
(10.9602)

2.0000
(0.0000)

0.0640 0.0585 0.0587 0.1597 0.0362 0.0389

1000

Time
7.1894
(2.3372)

2.0000
(0.0000)

0.0390 0.0291 0.0291 0.0699 0.0174 0.0179

Frequency
21.9524
(3.7277)

2.0000
(0.0000)

0.0390 0.0291 0.0291 0.0699 0.0174 0.0179
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Table 3.10 reports the simulation results for Model 5 using the frequency

domain method (denoted by ‘Frequency’) and the time domain approach

(denoted by ‘Time’). The frequency domain method consumes more CPU

time comparing to the time domain approach. Both the methods choose

the lag order correctly in all experiments.

The column Â of Table 3.9 shows that the frequency domain method

performs better, regarding the three metrics, in the estimation of AR coeffi-

cients when the sample size is 200 or below. Both methods behave similarly

in the estimation of AR coefficients when the sample size is 500 or above.

Figure 3.20 (3.21) depicts the average AR estimates of lag 1 (lag 2) using

the two methods when T = 100 and T = 1000. As shown in the figures,

the AR estimates obtained using the Frequency method deviate less from

the actual value when the sample size is 100, especially for the non-zero AR

coefficients, comparing to the Time method. Both methods obtain similar

AR coefficient estimates when the sample size is larger (T = 1000).
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(a) Time (T = 100).
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(b) Frequency (T = 100).
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(c) Time (T = 1000).
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(d) Frequency (T = 1000).
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(e) True.

Figure 3.20: Average values of the AR coefficient of lag 1 estimates for Model

5, Â
(5)
1 . Standard errors are in parentheses.
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(a) Time (T = 100).
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(d) Frequency (T = 1000).
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(e) True.

Figure 3.21: Average values of the AR coefficient of lag 2 estimates for Model

5, Â
(5)
2 . Standard errors are in parentheses.

We can observe from the column Σ̂−1u of Table 3.10 that the frequency

domain method outperforms the time domain method, concerning the vari-

ance and MSE of the estimates, in the estimation of inverse covariances

when the sample size of 200 or below, although the bias of the estimates

is higher. The two methods perform similarly in the estimation when the

sample size is 500 or above. Figure 3.22 shows the average inverse covari-

ance estimates using the Frequency and Time methods when T = 100 and

T = 1000. From this figure, the inverse covariance estimates obtained by

the Frequency method deviate slightly higher form the actual values than

that obtained by the Time method when T = 100, especially for the non-

zero inverse covariances. Both methods obtain similar inverse covariance

estimates as the sample size raises to 1000.
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(b) Frequency (T = 100).
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(c) Time (T = 1000).
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(d) Frequency (T = 1000).
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(e) True.

Figure 3.22: Average values of the inverse covariance estimates for Model 5,
Σ̂−1

5 . Standard errors are in parentheses.

In summary, the frequency domain and the time domain methods per-

form similarly in the estimation of AR coefficients and inverse covariances,

especially when the sample size is large. Their estimates have similar biases

and sample variances. The time domain method consumes less CPU time in

the estimation comparing to the frequency domain method. This is natural

as the latter approach needs the evaluation of Fourier transforms.

3.2.2 Applications

Flour price indices

We employ the introduced method to a monthly flour price indices data

in Buffalo, Minneapolis, and Kansas City, over the period from August

1972 to November 1980, with a length of 100 months. This dataset has

been studied by Tunnicliffe-Wilson et al. (2015) to investigate the dynamic

interdependencies among the indices by fitting a parsimonious structural
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vector autoregressive model. We utilize the time domain and frequency

domain methods, described in Section 3.1.2, to identify partial correlation

graphs of the three price series. With the determined partial correlation

graph, we fit a sparse VAR model to the series using the alternating method

to explore the dynamic interdependencies between the flour price indices.

The 2-Stage approach (Davis et al., 2016) is also adopted as a comparison.
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prices data.

Figure 3.23: Partial cross-correlations and Test statistics of spectral and par-
tial spectral coherences for the flour prices data.

Figure 3.23(a) shows the cross-correlations (upper triangular part) and

partial cross-correlations (lower triangular part) for the flour prices data.

The blue dotted line represents an approximate 5% error bound of ±2/
√
T .

This figure suggests the partial cross-correlation of the Buffalo and the

Kansas City series is insignificant at all lags. Figure 3.23(b) depicts the

test statistics of spectral (upper triangular part) and partial spectral (lower

triangular part) coherencies for the flour prices data. The blue dotted line

in each subplot is the corresponding critical value of the F distribution at

5% level of significance. This figure shows all coherences are significant,

while the partial coherence of the Buffalo and the Kansas City series is in-

significant at all frequencies. Based on this result, both methods identify

the same partial correlation graph for the flour price indices (Figure 3.24).
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Buffalo Kansas city

Minneapolis

Figure 3.24: Partial correlations graph for the flour prices data.

With the identified partial correlation graph, we can determine the spar-

sity constraints, and estimate a VAR model using the alternating method.

A model of lag order 2 is identified, and both time and frequency domain

methods do not select more autoregressive coefficient pairs and inverse co-

variances to be zero (i.e. only the autoregressive coefficients and inverse

innovation covariance of the case: Buffalo / Kansas city are restricted to

zero). The heatmaps in Figure 3.25 visualize the estimated autoregressive

coefficients and partial correlations of innovations. Figure 3.26(a) renders

the determined VAR model by the mixed graph presented in Section 2.2.2.

Figure 3.26(b) plots the directed acyclic graph representing the structural

VAR model for the flour prices series suggested by Tunnicliffe-Wilson et al.

(2015). In Figure 3.26(b), X1,t, X2,t and X3,t represents the flour price

indices at time t at Buffalo, Minneapolis, and Kansas city, respectively.
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Figure 3.25: The autoregressive coefficient estimates and the estimated partial
correlations of innovations using the time and frequency domain methods for
the flour prices data (t-values are in parentheses).

As shown in Figure 3.25, some of the autoregressive coefficients are in-

significant, and all partial correlations of innovations are significant. We
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note that the estimate VAR model possesses similar dynamic inter-relation

structure comparing to the structural VAR model identified by Tunnicliffe-

Wilson et al. (2015). Both models suggest that the Buffalo and the Kansas

city flour price indices are contemporaneously conditionally independent.

We next consider the dependence between current and lagged variables. We

can observe from the DAG in Figure 3.26(b) that there are no links in the

directions X1,t−1 → X1,t, X3,t−1 → X2,t, X3,t−2 → X2,t, and X3,t−2 → X3,t.

The autoregressive coefficients, determined by the introduced method, of the

corresponding directions are also insignificant. For example, X3,t−1 → X2,t

corresponds to the autoregressive coefficient estimates with value−0.0021(−0.0413)

in the estimated VAR model (see Figure 3.25(a)).

Buffalo Kansas city

Minneapolis

(a) A mixed graph visualizing the esti-
mated VAR model for the flour prices
data.

X1,t X2,t X3,t

X1,t−1 X2,t−1 X3,t−1

X1,t−2 X2,t−2 X3,t−2

(b) A DAG representing the structural
VAR model identified by Tunnicliffe-
Wilson et al. (2015) for the flour prices
data.

Figure 3.26: Graphs for the flour prices data.

The 2-Stage method (Davis et al., 2016) obtains a sparse VAR model of

order 6. This perhaps is because the method over-selects the autoregres-

sive coefficients to be zero in the first stage of the 2-Stage approach. The

method, in particular, constrains the autoregressive coefficient matrices to

be diagonal for all lag order, leading to a less interpretable VAR model

regarding the dynamic interdependencies structure.
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Air pollution data in the Pearl River Delta region

We apply the proposed estimation method to an air pollution data in the

Pearl River Delta region (PRDR)1. The government authorities have pub-

lished the monthly time series data on few air pollutants in some air quality

monitoring stations across the PRDR on a quarterly basis. The pollutants

include sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and res-

pirable suspended particulates (RSP). Note that RSP is equivalent to par-

ticulate matter with a particle size less than 10 microns (PM10). During

the past decade, some of the monitoring stations in the region were under

maintenance for an extended period, and some were closed and replaced by

new ones. We thus select seven locations that have full data to study the

interaction of RSP between the stations.

The data from January 2006 to December 2015, with a length of 120

months, are analyzed. Box-Cox transformations on each RSP series are

first performed to stabilize the variance. Some of the transformed series

possess decreasing trend, and all series possess seasonal pattern. Therefore,

we detrend the transformed series that have a decreasing trend and then

deseasonalize all the RSP series after treatments using harmonic regression

described in McLeod & Gweon (2013). The time domain and frequency

domain methods are applied to determine partial correlation graphs of the

seven RSP series. We then determine sparse VAR models to investigate

the inter-relationship of the RSP between monitoring stations further. We

also implement the 2-Stage method (Davis et al., 2016) to the series as a

comparison.

Figure 3.27 plots the partial cross-correlations for the air pollution data.

The upper (lower) triangular part of the diagram shows the cross-correlations

1 http://www.epd.gov.hk/epd/english/resources_pub/publications/m_

report.html
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Figure 3.27: Partial cross-correlations for the PRDR air pollution data. The
blue dotted line represents an approximate 5% error bound of ±2/

√
T .

(partial cross-correlations) described in Section 2.2.1. The blue dotted line

in each subplot is the approximate 5% error bound of ±2/
√
T . Based on the

significance of the partial cross-correlations, the partial correlation graph is

identified and is shown in Figure 3.29(a). The nodes in the partial cor-

relation graph are connected if the corresponding partial cross-correlation

is significant. A blue dotted (bold red) line in the graph represents the

corresponding partial cross-correlation is significant at non-zero (zero) lags.

Figure 3.28 depicts the test statistics of spectral and partial spectral

coherencies. The upper (lower) triangular part of the plot shows the test

statistics of spectral (partial spectral) coherencies described in Section 2.2.1.

The blue dotted line in each subplot is the corresponding critical value of

the F distribution at 5% significance level. We then determine a partial

correlation graph based on the significance of the partial spectral coherencies

and the graph is displayed in Figure 3.29(b). The nodes in the identified

partial correlation graph are linked when the corresponding partial spectral

coherence is significant. A blue dotted (purple dashed, bold red) line in the
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Figure 3.28: Test statistics of spectral coherencies (above diagonal, the blue
dotted line represents a 95% quantile of the F (2, 20) distribution) and partial
spectral coherencies (below diagonal, the blue dotted line represents a 95%
quantile of the F (2, 12) distribution) for the PRDR air pollution data.
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(a) Time domain method. The
blue dotted (bold red) line indi-
cates that the corresponding par-
tial cross-correlation is significant
at non-zero (zero) lags.
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Figure 3.29: Partial correlation graph for the PRDR air pollution data. The
figure displays the approximate geographical location and is not drawn to scale.

graph represents the corresponding partial coherency is significant at low

(mid, high) frequencies.

As shown in Figure 3.29, the time domain and frequency domain meth-

ods identify similar, though not identical partial correlation graphs. The

two methods agree on 10 out of 14 edges. The nodes between the cases:
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Luhu / Tianhu, Chengzhong / Donghu, Donghu / Tanjia and Tanjia / Tap

Mun are, in particular, connected by red edges. These cases indicate the

corresponding partial cross-correlation is significant at zero lags or the cor-

responding partial spectral coherence is significant at high frequencies. Such

observations seem to echo with the flight distances between the monitoring

stations. For instance, the flight distances between the stations of the cases

Luhu / Tianhu, Donghu / Tianhu and Tanjia / Tap Mun are 67 km, 61

km, and 73 km, respectively. Some of the partial cross-correlations and the

partial spectral coherences are marginally significant at few lags or few fre-

quencies, such as the case Donghu / Tianhu. Both the time and frequency

domain methods in the estimation of a sparse VAR model on the RSP se-

ries identifies and restricts the corresponding autoregressive coefficients and

inverse covariances to be zero.

Both the time and frequency domain methods determine a model of or-

der 1. The heatmaps in Figure 3.30 visualize the autoregressive coefficient

and partial correlation of innovations estimates. Figure 3.31 depicts the es-

timated VAR models by the mixed graph presented in Section 2.2.2. Each

node represents the RSP series at a specific location among the seven mon-

itoring stations. The estimated autoregressive coefficients and the partial

correlation coefficients of the noise terms are printed next to the edges. The

value in parenthesis is the t-value of the estimate of autoregressive coeffi-

cient or partial correlation. Some of the partial correlation coefficients are

relatively small in magnitude, such as the partial correlation coefficient of

the case Tianhu / Tanjia using the frequency domain method.

Following Tunnicliffe-Wilson et al. (2015), we fit a structural VAR (SVAR)

model for the PRDR series. Figure 3.32 plots the directed acyclic graph

(DAG) representing the determined SVAR model for the PRDR series. In

Figure 3.32, X1,t represents the RSP series at time t at Chengzhong and
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(a) AR coefficients (Time method).
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(b) Partial correlations (Time method).
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(d) Partial correlations (Frequency
method).

Figure 3.30: The autoregressive coefficient estimates and the estimated partial
correlations of innovations for the PRDR air pollution data (t-values are in
parentheses).

others correspond to the labels at the bottom of the graph. We note that

the estimated VAR model by the time domain method possesses similar

dynamic inter-relation structure comparing to the SVAR model, especially

for the contemporaneous dependence part. For the nodes that are con-

nected by undirected edges in the mixed graph identified by the time do-

main method (Figure 3.31(a)), there are directed edges connecting the cor-

responding nodes of the current variables in the DAG (Figure 3.32). These

cases are Chengzhong (X1,t) / Donghu (X2,t), Luhu (X3,t) / Donghu (X2,t)

and Tap Mun (X6,t) / Tanjia (X5,t).
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Figure 3.31: A mixed graph visualizing the estimated VAR model for the
PRDR air pollution data (the bold blue line represents the undirected edge
determined by the inverse of noise covariance matrix, the black arrow is the
directed edge characterized by the AR coefficient, and t-values in parentheses).
The figure displays the approximate geographical location and is not drawn to
scale.
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Figure 3.32: The DAG representing a SVAR for the PRDR series.

Figure 3.33 plots the AR coefficient and the partial correlation of noise

estimates obtained by the 2-Stage method (Davis et al., 2016). Compar-

ing to the AR coefficient estimates obtained by the alternating method,

the 2-Stage approach achieves higher sparsity in the estimation of the AR

coefficients. For the insignificant AR coefficient estimates determined by

the alternating method, the 2-Stage approach shrinks most of these coef-

ficients to zero. For the partial correlations, the 2-Stage method does not

impose sparsity constraints on the inverse covariance matrix. Therefore,

the partial correlations estimated by the 2-Stage approach are all non-zero.
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(b) Partial correlations of innovations.

Figure 3.33: The autoregressive coefficient estimates and the estimated partial
correlations of innovations using the 2-Stage method for the PRDR air pollution
data (t-values are in parentheses).

We note that there are some partial correlations, obtained by the 2-Stage

method, are insignificant using a 5% level of significance; or critical value of

t0.025;ν=107 = −1.9824. These cases include Tanjia / Luhu, Tanjia / Tianhu,

Tap Mun / Luhu, Xiapu / Luhu, and Xiapu / Tanjia. The partial corre-

lations of innovations for these cases obtained by the time and frequency

domain methods are zero or insignificant.

3.3 Summary

The present chapter introduced a constrained likelihood estimation method

on sparse vector autoregressive (VAR) models, in which the autoregressive

(AR) coefficients and the inverse covariance matrix are both restricted to be

sparse. We have formulated the model estimation problem as a “biconcave”

problem. This optimization problem is, in particular, concave when either

the AR coefficients or the inverse noise covariance matrix is fixed. We have

proposed an alternating maximization algorithm to solve the “biconcave”

problem. The alternating method first estimates the AR coefficients with
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fixed inverse covariance matrix followed by the estimation of the inverse

covariance matrix with fixed AR coefficients alternately. We also studied

the estimation performance of the introduced method and illustrated the

method by real data examples.

In practice, we need to first determine the sparsity constraints before

applying the estimation method. We adopted the same sparsity structure,

determined by the conditional correlation graph, on both the AR coeffi-

cients and the inverse covariance in our implementation. The next chapter

will present a penalized likelihood estimation method on sparse VAR mod-

els. The shrinkages on the AR coefficients and the inverse covariance are

promoted by penalty terms. This means that the sparseness of the model

is achieved in the estimation procedure without explicitly identifying the

sparsity constraints.
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Chapter 4

Penalized Likelihood

Estimation Method

A fully parametrized vector autoregressive (VAR) model consists of a num-

ber of parameters which grows quadratically with the model dimension. Re-

searchers have explored various methods to solve the over-parametrization

problem. The methods include restricting the autoregressive (AR) coef-

ficients to be zero based on the conditional correlation structure and the

penalized likelihood estimation method by introducing penalty terms to the

parameters to achieve model sparsity. The penalized likelihood method does

not require the identification of the underlying conditional correlation struc-

ture from the sample before the estimation procedure. We, therefore, apply

the penalized likelihood method for sparse VAR model estimation.

The current chapter begins with a brief introduction to penalized like-

lihood estimation. The problem formulation for the penalized likelihood

estimation on VAR models is then presented. The AR coefficients and

the off-diagonal elements of the inverse covariance matrix are particularly
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penalized. The conditional maximum likelihood estimation on VAR mod-

els is equivalent to solve the multivariate regression problem. Researchers

have studied the penalized likelihood estimation for multivariate regression

(Rothman et al., 2008; Lee & Liu, 2012; Sofer et al., 2014). These work,

in particular, solve the penalized likelihood estimation through alternating

maximization. We present a different estimation method for the formulated

problem, which is based on the local linear approximation (LLA) proposed

by Zou & Li (2008). We carry out simulation experiments to investigate the

finite sample properties of the penalized likelihood estimator. This chapter

ends by applying the method to a real dataset for exemplification.

4.1 Problem Description

We adopt the penalized likelihood estimation on VAR models. The AR

coefficients and the off-diagonal elements of the inverse noise covariance

matrix are penalized for reducing model complexity. We first provide a

brief introduction to the penalized likelihood method as a prologue to the

discussion of the underlying problem. Suppose the penalized likelihood

function is

l(β)− n
p∑
j=1

pλ(|βj|), (4.1)

where l(β) is a likelihood function with a p-dimensional parameter β, n is

the sample size, and pλ(·) is a penalty function. L1 penalty (Tibshirani,

1996), smoothly clipped absolute deviation (SCAD) penalty (Fan & Li,

2001), and minimax concave penalty (MCP) (Zhang, 2010) are some of the

penalty functions. The L1 penalty is defined as pλ(|x|) = λ|x|, where λ > 0.

74



−4 −2 0 2 4

1

2

3

SCAD

MCP

L1

x

pλ(|x|)

Figure 4.1: Some commonly used penalty functions.

The SCAD penalty is defined as

pλ(|x|) = λ

∫ |x|
0

I (t ≤ λ) +
max (0, aλ− t)

(a− 1)λ
I (t > λ) dt, (4.2)

where λ > 0, a > 2, and I(·) is the indicator function. The MCP penalty is

defined as

pλ(|x|) = λ

∫ |x|
0

max

(
0, 1− t

γλ

)
dt, (4.3)

where λ > 0 and γ > 0. Figure 4.1 depicts these three penalty functions.

The L1 penalty function is a convex function while SCAD and MCP are

non-convex functions. These penalty functions also have a singularity at

the origin to ensure the penalized likelihood estimator possesses sparsity

property. That is, the estimator shrinks the small estimates to zero to

reduce model complexity. The penalized likelihood estimator with the L1

penalty, however, is biased as discussed in Fan & Li (2001). Researchers,

therefore, have adopted the non-convex penalties, such as SCAD and MCP,

to alleviate the statistical bias issue.

The singularity and non-convexity encumber the maximization of the

penalized likelihood function. Fan & Li (2001) proposed the local quadratic
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Figure 4.2: The local quadratic approximation (LQA) and local linear approx-
imation (LLA) of a SCAD penalty, pλ(x), with a = 3.7, λ = 1 and x(0) = 1.2.

approximation (LQA) for the penalty function by

pλ(|x|) ≈ pλ(|x(0)|) +
p′λ(|x(0)|)

(
x2 − (x(0))2

)
2|x(0)| , (4.4)

for x ≈ x(0). Figure 4.2 illustrates the LQA for a SCAD penalty function

with a = 3.7, λ = 1 and x(0) = 1.2. Having this local quadratic approx-

imation, we can adopt the Newton-Raphson algorithm to maximize the

penalized likelihood function. Specifically, we can solve the problem (4.1)

by the Newton-Raphson algorithm iteratively and update the LQA for the

penalty function at each iteration,

β(k+1) = arg max
β

{
l(β)− n

p∑
j=1

p′λ(|β(k)
j |)β2

j

2|β(k)
j |

}
. (4.5)

The quadratic function in (4.4), however, is not defined when x(0) = 0.

Fan & Li (2001) suggested to set the estimates to zero and exclude such

estimates from the estimation once the estimates are close to zero.

76



Hunter & Li (2005) introduced a perturbed version of the LQA for the

penalty function by,

Φx(0),λ,ε(x) = pλ,ε(|x(0)|) +
p′λ(|x(0)|)

(
x2 − (x(0))2

)
2(|x(0)|+ ε)

for ε > 0,

where pλ,ε(|x|) = pλ(|x|)−ε
∫ |x|
0

p′λ(t)

ε+t
dt. The perturbed LQA method atten-

uates the issue of the LQA when the estimate is close to zero. Thus, the

penalty part of the algorithm in (4.5) can be replaced and becomes

β(k+1) = arg max
β

l(β)− n
p∑
j=1

p′λ(|β(k)
j |)

(
β2
j − (β

(k)
j )2

)
2(|β(k)

j |+ ε)

 . (4.6)

Hunter & Li (2005) also showed the two algorithms (4.5) and (4.6) belong

to the minorization-maximization (MM) algorithm. The local quadratic ap-

proximation function, in particular, acts as a surrogate function to minorize

the objective function being maximized. We refer the reader to Lange (2013)

for more details.

Zou & Li (2008) proposed the local linear approximation (LLA) to the

penalty function by

pλ(|x|) ≈ pλ(|x(0)|) + p′λ(|x(0)|)(|x| − |x(0)|),

for x ≈ x(0). The LLA approach circumvents the difficulty in choosing an

appropriate perturbation ε in the perturbed LQA method. Therefore, the

algorithm is refined to be

β(k+1) = arg max
β

{
l(β)− n

p∑
j=1

p′λ(|β(k)
j |)|βj|

}
.
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4.1.1 Problem Formulation

Recall from the problem (3.2) in Section 3.1.1 that the log-likelihood func-

tion of interest is

l(B,Θ) = −KT
2

log 2π +
T

2
log det Θ− 1

2
trace

[
(Y −BZ)>Θ (Y −BZ)

]
.

(4.7)

Using the notation in Chapter 2, we consider the following penalized likeli-

hood estimation problem,

maximize
B,Θ

Q(B,Θ) = l(B,Θ)− T
∑
i,j

pλb,ij(|bij|)− T
∑
i 6=j

pλθ,ij(|θij|), (4.8)

where pλb,ij(·) and pλθ,ij(·) are some given penalty functions, and λb,ij, and

λθ,ij are the tuning parameters. Note that we do not penalize the intercept

terms.

Rothman et al. (2010) considered the penalized likelihood method for

the multivariate regression problem, with the L1 penalty, and called the

method multivariate regression with covariance estimation (MRCE). Lee &

Liu (2012) generalized the MRCE method by replacing the L1 penalty with

the weighted L1 penalty. The authors proved the asymptotic properties of

the proposed estimator. Sofer et al. (2014) introduced a two-stage procedure

for the penalized likelihood estimation for multivariate regression. These

work attempted to solve the estimation through alternating convex search

(ACS) method as discussed in Chapter 3. The ACS method maximizes

the penalized likelihood function for either fixed regression coefficients or

inverse covariance alternately. We, instead, estimates both the regression

coefficients and inverse covariance simultaneously.
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4.1.2 Estimation Method

Denote β = vec(B), θ = vech (Θ), and ω = (β>,θ>)>. With an initial

estimate ω(0), we approximate the log-likelihood function in (4.7) by

l̃(ω|ω(0)) = l(ω(0)) +∇l
(
ω(0)

)> (
ω − ω(0)

)
+

1

2

(
ω − ω(0)

)>∇2l(ω(0))
(
ω − ω(0)

)
,

where

∇l (ω) =

 vec
[
Θ(Y −BZ)Z>

]
1
2
D>K vec

[
TΘ−1 − (Y −BZ)(Y −BZ)>

]
 and

∇2l(ω) = −T

 ZZ>

T
⊗Θ −

[
2
T
Z(Y −BZ)> ⊗ IK

]
DK

−D>K
[
2
T

(Y −BZ)Z> ⊗ IK
]

1
2
D>K (Θ−1 ⊗Θ−1) DK

 ,

with DK is a K2×K(K + 1)/2 duplication matrix. Appendix A shows the

derivations. Define

Q̃(ω|ω(k)) = l̃(ω|ω(k))− T
∑
j

p′λj(|ω
(k)
j |)|ωj|. (4.9)

Here, we note that the off-diagonal elements of Θ are not penalized, and the

tuning parameters corresponding to the autoregressive coefficients may be

different from that of the inverse covariance. To maximize (4.9), we consider

the following sub-problem in each iteration,

∆(k) = arg max
ω

{
Q̃(ω|ω(k))

}
− ω(k). (4.10)

Then, we obtain the update

ω(k+1) = ω(k) + α(k)∆(k), (4.11)

79



where α(k) = max
{

2−v : Q̃(ω(k) + 2−v∆(v)|ω(k)) > Q̃(ω(k)|ω(k)), v ∈ N0

}
.

Therefore, the algorithm for the estimation is:

(1) Initialize the estimate ω(0) to be the maximum likelihood estimate in

(2.3).

(2) Solve the sub-problem in (4.10) by the alternating direction method

of multiplier (ADMM) algorithm; see Boyd et al. (2011) for a review

on the ADMM algorithm.

(3) Find the step size α(k) satisfying the specified condition.

(4) Repeat Step 2 and 3, until a convergence criterion is met, say

| Q̃(ω(k+1)|ω(k))−Q̃(ω(k)|ω(k))

Q̃(ω(k)|ω(k))
| < ε for some positive tolerance ε.

The Hessian matrix ∇2l(ω) may not be negative definite, we therefore re-

place it by T I(ω), where I(ω) is the Fisher information matrix, in the

algorithm.

Suppose the tuning parameters for the autoregressive coefficients part are

λb and that for the inverse covariance part are λθ. The tuning parameters

(λb, λθ) are chosen as described below. We first select a λb that minimizes

the Bayesian information criterion (BIC) among the estimated models with

various λb and without penalizing the inverse covariance. With the selected

λb, the penalizing parameter for the inverse covariance λθ is identified simi-

larly. We count all the non-zero autoregressive coefficients and the non-zero

inverse noise covariance at the upper triangular part of the matrix as the

number of parameters in the computation of the information criteria. We

next study the finite sample properties of the discussed method through

simulation experiments.
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4.2 Numerical Results

4.2.1 Simulation

We consider six stable VAR models in the simulation study. Three out

of the six models are selected from those studied in Section 3.2.1. The

structure of the AR coefficients matrix and that of the inverse covariance

matrix in each of these three models is the same. We are intrigued by the

estimation performance of the penalized likelihood estimation method when

such structure is not identical. We, therefore, consider three other models

in which the AR coefficients matrix Al and the inverse covariance matrix

Θ = Σ−1u have different structures. The inverse covariance matrices are

positive definite. We undergo the simulation experiments by considering

the following models:

Model 1. y
(1)
t = A

(1)
1 y

(1)
t−1 + u

(1)
t , u

(1)
t ∼ N (0,Σ1),

Model 2. y
(2)
t = A

(2)
1 y

(2)
t−1 + u

(2)
t , u

(2)
t ∼ N (0,Σ2),

Model 3. y
(3)
t = A

(3)
1 y

(3)
t−1 + u

(3)
t , u

(3)
t ∼ N (0,Σ3),

Model 4. y
(4)
t = A

(4)
1 y

(4)
t−1 + u

(4)
t , u

(4)
t ∼ N (0,Σ4),

Model 5. y
(5)
t = A

(5)
1 y

(5)
t−1 + A

(5)
2 y

(5)
t−2 + u

(5)
t , u

(5)
t ∼ N (0,Σ5),

Model 6. y
(6)
t = A

(5)
1 y

(6)
t−1 + A

(5)
2 y

(6)
t−2 + u

(6)
t , u

(6)
t ∼ N (0,Σ1),

where

A
(1)
1 =

 0.8 0 0 0 0 0
0 0 0 0.3 0 0
0 0 0 0 −0.3 0
0.6 0 0 0 0 0
0 0 0.6 0 0 0
0 0 0 0 0 0.8

, Σ−11 =

( 1 0.3 0.3 0.3 0.3 0.3
0.3 1 0 0 0 0
0.3 0 1 0 0 0
0.3 0 0 1 0 0
0.3 0 0 0 1 0
0.3 0 0 0 0 1

)
,

A
(2)
1 = A

(3)
1 =

 0.4352 −0.6552 0.4154 0.3930 −0.5200 0.2256
0.1478 −0.4932 0 0 0 0
−0.7940 0 −0.8933 0 0 0
0.5894 0 0 −0.1478 0 0
−0.8009 0 0 0 −0.4169 0
0.4197 0 0 0 0 −0.2439

, Σ−13 =

( 1 0.4 0.4 0.4 0.4 0.4
0.4 1 0 0 0 0
0.4 0 1 0 0 0
0.4 0 0 1 0 0
0.4 0 0 0 1 0
0.4 0 0 0 0 1

)
,
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A
(4)
1 =

 0.2177 0.3066 0 0 0 0.3775
−0.6324 −0.6650 0.0214 0 0 0

0 −0.2749 −0.7509 0.4482 0 0
0 0 −0.3046 −0.8066 0.9940 0
0 0 0 −0.7313 0.5054 0.7959

−0.0587 0 0 0 −0.5140 −0.9470

, Σ−12 = Σ−14 =

( 1 0.4 0 0 0 0.4
0.4 1 0.4 0 0 0
0 0.4 1 0.4 0 0
0 0 0.4 1 0.4 0
0 0 0 0.4 1 0.4
0.4 0 0 0 0.4 1

)
,

A
(5)
1 =

 −0.6 0.4 0 0 0 0.4
0.4 −0.6 0.4 0 0 0
0 0.4 −0.6 0.4 0 0
0 0 0.4 −0.6 0.4 0
0 0 0 0.4 −0.6 0.4
0.4 0 0 0 0.4 −0.6

, A
(5)
2 =

 −0.3 0.2 0 0 0 0.2
0.2 −0.3 0.2 0 0 0
0 0.2 −0.3 0.2 0 0
0 0 0.2 −0.3 0.2 0
0 0 0 0.2 −0.3 0.2
0.2 0 0 0 0.2 −0.3

 and

Σ−15 =

 1 −0.3 0 0 0 −0.3
−0.3 1 −0.3 0 0 0
0 −0.3 1 −0.3 0 0
0 0 −0.3 1 −0.3 0
0 0 0 −0.3 1 −0.3
−0.3 0 0 0 −0.3 1

.

Model 1 is a 6-dimensional VAR(1) model examined by Davis et al.

(2016), except that we impose the same structure on the inverse innovation

covariance matrix rather than the innovation covariance matrix. Model 2

is a 6-dimensional VAR(1) model with every node connected by directed

edges to the first node in the causality graph, and the inverse noise covari-

ance matrix has a Toeplitz structure. Models 3, 4 and 5 follow from three

of the investigated models in Section 3.2.1. Model 6 is a 6-dimensional

VAR model of lag 2 with Toeplitz AR coefficients matrices and an inverse

covariance matrix of another structure.

We perform the simulation study with sample size T of 100, 200, 500

and 1000 over 500 replications using R (R Core Team, 2017). As a compar-

ison to the estimation performance with various penalty functions, we carry

out the simulation experiments with three penalty functions, including L1,

SCAD, and MCP. The penalty functions are the same for penalizing the AR

coefficients and the inverse covariance matrix in each estimation procedure.

We fix the penalty parameter as follows, a = 3.7 in (4.2) when the SCAD

penalty is used or γ = 2 in (4.3) when the MCP is applied. The tuning pa-

rameters (λb, λθ) are chosen as described in Section 4.1.2. We also assume

the lag order p is known in advance throughout the simulation experiments.

As a comparison to the introduced estimation method, we adopt the mul-

tivariate regression with covariance estimation (MRCE) method, proposed
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by Rothman et al. (2010), in the simulation study. The MRCE method esti-

mates the regression coefficients and the inverse covariance matrix through

maximizing the L1 penalized likelihood. This method, in particular, finds a

solution by alternating maximization.

To compare the estimation performance, we compile the bias, variance

and mean squared error (MSE) of the estimates introduced in Section 3.2.1.

Besides these three metrics, we also compute the average number of co-

efficients that are set to zero correctly and incorrectly for both the AR

coefficients and the inverse noise covariance matrix. For the inverse noise

covariance matrix, only the upper triangular elements are considered in the

calculation because of symmetry.

We also compile the divergence of the estimated model spectrum f̂(λ)

from the true spectrum f(λ) for comparison. The divergence is defined as

1

2π

∫ π

0

trace
[
f(λ)f̂−1(λ)− IK

]
− log det

[
f(λ)f̂−1(λ)

]
dλ.

This quantity measures the discrepancy between the true spectrum and

the estimated model spectrum. It is positively valued unless the model

spectrum and the true spectrum are identical which gives a zero value. For

the computation of the spectrum, we refer the reader to Chapter 11 of

Brockwell & Davis (1991). We delineate the results for Model 3 and 6 in

this section, others are reported in Appendix B.

Tables 4.1 and 4.2 document the bias, variance and the mean squared

error (MSE) of the estimates using three different penalties and the MRCE

method. The column ‘Size’, ‘Penalty’, and ‘Divergence’ are, respectively, the

sample size, the penalty or method implemented, and the average divergence

value over 500 replications. Standard errors are in the parentheses.
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Model 3

Table 4.1: Simulation results for Model 3 over 500 replications. ZerosC
(ZerosI) is the average number of zero coefficients correctly (incorrectly) es-
timated to be zero. Standard errors are in the parentheses.

Â Σ̂−1
u

Size Penalty Divergence Bias Variance MSE ZerosC ZerosI Bias Variance MSE ZerosC ZerosI

100

L1
0.2544
(0.0033) 1.4898 0.1167 0.2433

11.8040
(0.1083)

0.6960
(0.0355) 0.7309 0.1873 0.2376

6.3240
(0.0830)

0
(0)

L1-MRCE
0.2511
(0.0030) 1.5320 0.1213 0.2480

11.4060
(0.1093)

0.6180
(0.0327) 0.7263 0.1890 0.2348

6.5340
(0.0815)

0
(0)

MCP
0.2260
(0.0030) 0.6057 0.1391 0.1772

16.4020
(0.0894)

1.1440
(0.0413) 0.6384 0.2583 0.2989

9.5000
(0.0375)

0.0040
(0.0028)

SCAD
0.2261
(0.0029) 0.8292 0.1433 0.1947

13.7260
(0.0979)

0.7600
(0.0351) 0.5846 0.2460 0.2820

9.5140
(0.0418)

0.0020
(0.0020)

200

L1
0.1278
(0.0015) 1.0271 0.0558 0.1151

11.6120
(0.1041)

0.1440
(0.0167) 0.7084 0.0859 0.1251

6.3860
(0.0803)

0
(0)

L1-MRCE
0.1277
(0.0015) 1.0517 0.0557 0.1164

11.5000
(0.1053)

0.1460
(0.0168) 0.6516 0.0915 0.1255

6.4500
(0.0825)

0
(0)

MCP
0.1026
(0.0014) 0.3571 0.0578 0.0742

17.2500
(0.0736)

0.4580
(0.0287) 0.2873 0.0977 0.1059

9.7260
(0.0258)

0
(0)

SCAD
0.1066
(0.0014) 0.5113 0.0587 0.0858

14.7720
(0.0927)

0.2540
(0.0214) 0.2391 0.0941 0.1001

9.8040
(0.0285)

0
(0)

500

L1
0.0531
(0.0006) 0.6554 0.0204 0.0448

12.1480
(0.1032)

0
(0) 0.5940 0.0336 0.0605

6.5100
(0.0757)

0
(0)

L1-MRCE
0.0516
(0.0006) 0.6493 0.0205 0.0437

11.9140
(0.1008)

0
(0) 0.5616 0.0346 0.0585

6.5900
(0.0744)

0
(0)

MCP
0.0329
(0.0004) 0.1114 0.0146 0.0159

18.4980
(0.0544)

0.0040
(0.0028) 0.1375 0.0337 0.0356

9.7860
(0.0212)

0
(0)

SCAD
0.0372
(0.0005) 0.2299 0.0181 0.0242

16.1540
(0.0759)

0.0080
(0.0040) 0.0907 0.0343 0.0352

9.8920
(0.0181)

0
(0)

1000

L1
0.0281
(0.0003) 0.4609 0.0099 0.0226

12.4120
(0.0996)

0
(0) 0.4726 0.0170 0.0343

6.6420
(0.0731)

0
(0)

L1-MRCE
0.0268
(0.0003) 0.4458 0.0099 0.0214

12.0460
(0.0984)

0
(0) 0.4454 0.0174 0.0326

6.7620
(0.0716)

0
(0)

MCP
0.0154
(0.0002) 0.0416 0.0063 0.0064

19.1200
(0.0402)

0
(0) 0.0613 0.0157 0.0161

9.8780
(0.0167)

0
(0)

SCAD
0.0172
(0.0002) 0.1325 0.0078 0.0097

17.3600
(0.0724)

0
(0) 0.0431 0.0157 0.0159

9.9560
(0.0100)

0
(0)

Table 4.1 is the simulation results for Model 3 using three different penal-

ties and the MRCE method. The models estimated using the two non-

convex penalties possess less discrepancy from the true spectrum comparing

with that using the L1 penalty. All methods improve in the estimation as

the sample size raises. The two non-convex penalties perform more satis-

factorily than the L1 penalty, concerning the bias of the estimates. This

is because of the statistical bias issue when using the L1 penalty and the

better ability in identifying the zero coefficients correctly. The two non-

convex penalties, however, set the non-zero coefficients to zero erroneously

in more experiments comparing to that using the L1 penalty. This leads

to a relatively higher variance of the estimates, especially when the sample

size is below 200. The rise of sample size mitigates the misidentification of

zero coefficients. Both the proposed method using the L1 penalty and the

MRCE method obtain estimates that are close to each other. The inverse
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covariance estimates obtained by the MRCE method possess less bias than

that using the proposed method with the L1 penalty.
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(a) L1 (T = 100).
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(b) L1-MRCE (T = 100).
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(c) SCAD (T = 100).
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(d) MCP (T = 100).

Figure 4.3: Average values of the AR coefficient estimates for Model 3. Stan-
dard errors are in parentheses.

Figure 4.3 depicts the average AR estimates using the four studied meth-

ods, with a sample size of 100, by dot plots. The average estimate value

characterizes the colour in the corresponding dot. The dot size is charac-

terized by the proportion of experiments, out of 500 replications, that the

corresponding estimate is not set to zero. According to Figure 4.3, the

average AR estimates using the L1 penalty deviate more from the true pa-

rameter values comparing to that using the two non-convex penalties. All

four studied methods set the non-zero coefficients to be zero incorrectly in
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some experiments, especially at the positions (1,6), (4,4), and (6,6). These

coefficients are of small magnitude comparing to others.
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(a) L1 (T = 100).
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(b) L1-MRCE (T = 100).
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Figure 4.4: Average values of the inverse covariance estimates for Model 3.
Standard errors are in parentheses.

Figure 4.4 visualize the average inverse covariance estimates using the

four investigated methods by dot plots. We can observe from Figure 4.4(a)

and Figure 4.4(b) that the inverse covariance estimates using the L1 penalty

possess higher bias relative to the estimates with the two non-convex penal-

ties. All methods shrink the zero coefficients in most experiments, and the

two non-convex penalties determine the zero coefficients in more replica-

tions.
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Model 6

Table 4.2: Simulation results for Model 6 over 500 replications. ZerosC
(ZerosI) is the average number of zero coefficients correctly (incorrectly) es-
timated to be zero. Standard errors are in the parentheses.

Â Σ̂−1
u

Size Penalty Divergence Bias Variance MSE ZerosC ZerosI Bias Variance MSE ZerosC ZerosI

100

L1
0.4464
(0.0059) 4.0268 0.4481 0.8063

19.6960
(0.1772)

2.1580
(0.0956) 0.6680 0.2245 0.2564

6.6040
(0.0897)

0
(0)

L1-MRCE
0.4480
(0.0061) 4.0448 0.4491 0.8069

19.9680
(0.1741)

2.2600
(0.1004) 0.6875 0.2491 0.2793

6.6220
(0.0933)

0
(0)

MCP
0.5030
(0.0055) 2.1281 0.9355 1.0493

29.2760
(0.1220)

5.5180
(0.1109) 0.9113 0.3525 0.4385

9.3340
(0.0448)

0.0280
(0.0074)

SCAD
0.4614
(0.0046) 2.2290 0.8470 0.9651

23.9380
(0.1542)

3.0660
(0.0840) 0.9558 0.3490 0.4443

9.3020
(0.0516)

0.0040
(0.0028)

200

L1
0.2140
(0.0019) 2.6637 0.2188 0.3723

19.4680
(0.1695)

0.3080
(0.0257) 0.6152 0.0876 0.1181

6.8420
(0.0785)

0
(0)

L1-MRCE
0.2122
(0.0018) 2.6704 0.2174 0.3701

19.4800
(0.1661)

0.3380
(0.0273) 0.5390 0.0921 0.1170

6.7880
(0.0831)

0
(0)

MCP
0.2050
(0.0022) 0.9213 0.3389 0.3645

31.4760
(0.1008)

1.8780
(0.0635) 0.4162 0.1131 0.1305

9.6020
(0.0326)

0
(0)

SCAD
0.2021
(0.0019) 1.1555 0.3232 0.3611

26.7840
(0.1339)

0.8760
(0.0389) 0.3622 0.1114 0.1251

9.7020
(0.0339)

0
(0)

500

L1
0.0888
(0.0009) 1.7505 0.0798 0.1471

20.2320
(0.1574)

0.0040
(0.0028) 0.5498 0.0346 0.0579

6.7520
(0.0694)

0
(0)

L1-MRCE
0.0877
(0.0008) 1.7400 0.0800 0.1463

20.3460
(0.1541)

0.0040
(0.0028) 0.5124 0.0354 0.0554

6.7520
(0.0720)

0
(0)

MCP
0.0627
(0.0007) 0.2676 0.0805 0.0836

33.7660
(0.0703)

0.2040
(0.0197) 0.1752 0.0348 0.0378

9.8100
(0.0211)

0
(0)

SCAD
0.0706
(0.0007) 0.5493 0.0952 0.1064

30.5340
(0.1011)

0.0780
(0.0127) 0.1232 0.0352 0.0368

9.8860
(0.0201)

0
(0)

1000

L1
0.0472
(0.0004) 1.2915 0.0382 0.0755

20.9220
(0.1503)

0
(0) 0.4646 0.0171 0.0342

6.9520
(0.0701)

0
(0)

L1-MRCE
0.0467
(0.0004) 1.2941 0.0382 0.0755

21.1860
(0.1552)

0
(0) 0.4294 0.0175 0.0318

6.9720
(0.0698)

0
(0)

MCP
0.0269
(0.0003) 0.0847 0.0288 0.0291

35.2560
(0.0422)

0.0020
(0.0020) 0.0840 0.0153 0.0160

9.9080
(0.0135)

0
(0)

SCAD
0.0310
(0.0003) 0.2691 0.0371 0.0398

32.5780
(0.0808)

0.0020
(0.0020) 0.0634 0.0155 0.0160

9.9500
(0.0120)

0
(0)

Table 4.2 reports the simulation results for Model 6 using three different

penalties and the MRCE method with the L1 penalty. The average di-

vergence of the estimates using the two non-convex penalties is lower than

that using the L1 penalty when the sample size is 200 or above. For the

experiments with a sample size of 100, the models estimated using the L1

penalty have less discrepancy from the actual model spectrum, comparing to

that using the two non-convex penalties. This difference is because the two

non-convex penalties identify the non-zero lag 2 AR coefficients to be zero

mistakenly in more experiments, comparing to that using the L1 penalty;

see Figure 4.6. The AR estimates that are penalized by the non-convex

penalties possess less bias than the estimates that are penalized by the L1

penalty. This is because of the unbiasedness property of the non-convex
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penalties and the better ability in determining the zero coefficients. The

two non-convex penalties, however, set the non-zero AR coefficients to zero

erroneously in more experiments with a sample size of 100. This is more

significant for the lag 2 AR coefficients, comparing to the estimates using

the L1 penalty; see Figure 4.6. Such misidentification leads to a higher

variance of the estimates, especially when the sample size is low. These

circumstances are alleviated as the sample size raises. Comparing the intro-

duced method using the L1 penalty with the MRCE method, both methods

obtain AR coefficient estimates that are close to each other, and the in-

verse covariance estimates obtained by the MRCE method possess less bias

with moderate to large sample size. The discussed method outperforms the

MRCE method when the sample size is 100.

Figure 4.5 (4.6) delineates the average lag 1 (lag 2) AR coefficient esti-

mates obtained by the four studied methods, when the sample size is 100,

by dot plots. The average estimate value characterizes the colour of the cor-

responding dot. The proportion of experiments that an estimate is non-zero

characterizes the corresponding dot size. According to Figures 4.5 and 4.6,

the average AR estimates using the two non-convex penalties deviate less

from the actual parameters, comparing to that using L1 penalty.

We can observe from Figure 4.6 that the discrepancy of the estimates

from the actual parameters is more significant for the lag 2 AR coefficients.

This is because the four studied methods misidentify the off-diagonal non-

zero coefficients to be zero in some simulation experiments, especially at the

positions (1,2) and (1,6). The two non-convex penalties shrink some of the

non-zero lag 2 AR coefficients erroneously in more experiments relative to

that using L1 penalty.

Figure 4.7 displays the average inverse covariance estimates using the
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(a) L1 (T = 100).
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(b) L1-MRCE (T = 100).
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(c) SCAD (T = 100).
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(d) MCP (T = 100).

Figure 4.5: Average values of the lag 1 AR coefficient estimates for Model 6.
Standard errors are in parentheses.

four investigated methods by dot plots. As shown in the figure, the non-zero

inverse covariance estimates using the non-convex penalties possess slightly

larger bias than that using the L1 penalty. The two non-convex penalties,

however, identify the zero inverse covariances correctly more often.

In summary, all methods improve in the estimation bias, variance, and

MSE when the sample size T increases. The penalized estimates using the

two non-convex penalties, in general, posses less bias and divergence than

the estimates penalized by the L1 penalty. This is because the estimation

using the two non-convex penalties identify zero coefficients correctly in

more cases. The non-zero estimates using the two non-convex penalties
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(a) L1 (T = 100).
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(b) L1-MRCE (T = 100).
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(c) SCAD (T = 100).
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(d) MCP (T = 100).

Figure 4.6: Average values of the lag 2 AR coefficient estimates for Model 6.
Standard errors are in parentheses.

have less bias comparing to the estimates penalized by the L1 penalty. These

circumstances are particularly more apparent with large sample size. The

results align with the statistical bias issue when using the L1 penalty.

A notable number of coefficients carrying marginally significant coeffi-

cients in few studied models are identified inaccurately to be zero. This

indicates the performance of the penalization method is weakened when

determining marginally significant coefficients, especially when the sample

size is small. We demonstrate the penalized estimation method by an ap-

plication in the next section.
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(c) SCAD (T = 100).
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(d) MCP (T = 100).

Figure 4.7: Average values of the inverse covariance estimates for Model 6.
Standard errors are in parentheses.

4.2.2 Application

Air pollution data in Hong Kong

We employ the penalized likelihood estimation method to an air pollution

data in Hong Kong. The data has been investigated by Hu et al. (2016) and

consists of the daily average concentration of four air pollutants recorded

at three air monitoring stations from September 2010 to September 2014.

These stations are located at Tsuen Wan (TW), Tung Chung (TC) and

Tap Mun (TM). The four air pollutants are sulphur dioxide (SO2), nitrogen

dioxide (NO2), ozone (O3) and respirable suspended particulates (RSP).
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The series has a length of 1491 days. We adopt the same data treatment

method suggested by the authors before applying the penalized likelihood

estimation. The authors, in particular, first stabilize the variance of each

series by Box-Cox transformation (Box & Cox, 1964) followed by deseason-

alizing the transformed series by harmonic regression (McLeod & Gweon,

2013). The data is preprocessed since the marginal variance of the series

changes over time and the series possesses seasonality with a period of about

365 days. The transformed SO2 series at TC is further first-order differenced

to achieve second-order stationarity.
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(b) Partial correlations of innovations.

Figure 4.8: The autoregressive coefficient estimates and the estimated partial
correlations of innovations using the penalized likelihood estimation method for
the PRDR air pollution data.

With the preprocessed data, we first determine the lag order p of the VAR

model by selecting a saturated VAR model that carries the minimum BIC

value among the models with different lag orders, for instance, p ranges from

1 to 6. We proceed to the penalized likelihood estimation on VAR models,

using the selected lag order, with SCAD penalties for both the AR coeffi-

cients and the inverse covariances. Similar to the procedure we implemented

in the simulation studies (Section 4.2.1), we fix the penalty parameters a
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to be 3.7 for all penalties. We pick the suitable tuning parameters (λb, λθ)

that carry the least BIC value among various models with different tuning

parameters.
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Figure 4.9: A mixed graph visualizing the estimated VAR model for the
Hong Kong air pollution data. The blue line represents the undirected edge
determined by the inverse of noise covariance matrix, the black arrow is the
directed edge characterized by the AR coefficient.

Figures 4.8(a) and 4.8(b) report, respectively, the penalized AR coef-

ficient estimates and the estimated partial correlation coefficients of the

noise terms obtained by normalizing the inverse covariances. Figure 4.9 de-

picts the estimated sparse VAR model by the causality graph introduced

in Section 2.2.2. Each node represents an air pollutant series at a particu-

lar station. The shape (colour) of a node is characterized by the location

(pollutant) of the corresponding series. The opacity of an edge reflects the

magnitude of the corresponding coefficient. Figure 4.9 is a complicated
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graph. We, therefore, consider its subgraphs for interpretations. We gen-

erate two types of subgraphs which are grouped by location (Figure 4.10)

and pollutant (Figure 4.11).
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Figure 4.10: A mixed graph visualizing the estimated VAR model for the
Hong Kong air pollution data grouped by location.

Figure 4.10 shows the interactions between pollutants at the same sta-

tion. For each of the three air monitoring stations, there is an undirected

edge connecting the nodes of NO2 and O3 with negative partial correla-

tion coefficient. This perhaps indicates the reaction between NO2 and O3

in ambient air. Figures 4.10(a), 4.10(b) and 4.10(c) show an undirected

edge links the vertices of NO2 (SO2) and RSP at each of the three loca-

tions. This probably reflects the formation of RSP from the atmospheric

oxidation of gaseous pollutants, like SO2 and NO2. We can observe from

Figures 4.10(b) and 4.10(c) that an undirected edge bridges the nodes of O3

and RSP at each of the two corresponding air monitoring stations. A possi-

ble reason for such observation is that RSP can be formed by photochemical

reactions, involving O3, under sunlight. The partial correlation coefficient

between the two pollutants at TW is less significant than that at the other

two locations which can be a result of the relatively lower concentration of

O3 at TW.

Figure 4.11 visualizes the interaction of a pollutant between the three

stations. The magnitudes of the partial correlation coefficients between
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Figure 4.11: A mixed graph visualizing the estimated VAR model for the
Hong Kong air pollution data grouped by pollutant.

locations of the same pollutant possibly parallel with the transmission dis-

tances between the stations, since the partial correlation coefficients reflect

the contemporaneous conditional interdependencies among the components.

For instance, the flight distances between TC–TW, TW–TM and TC–TM

are 25km, 33km, and 58km, respectively; and the partial correlation coef-

ficients of RSP between TC–TW, TW–TM, and TC–TM are, respectively,

0.57, 0.44 and 0.18. These observations are also evident for the pollutants

NO2 (Figure 4.11(b)) and O3 (Figure 4.11(c)). Figure 4.11(c) displays the

interaction of O3 between the three air monitoring stations, which consists

of a number of significant directed and undirected edges between the nodes.

This may indicate O3 is a regional air pollution problem in both short and

long terms.
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4.3 Summary

In the current chapter, we have discussed a penalized likelihood estimation

method on sparse vector autoregressive (VAR) models. The autoregressive

(AR) coefficients and the off-diagonal elements of the inverse covariance

matrix are penalized for achieving parsimonious models. We have applied

the local linear approximation (LLA) to the penalty function and obtained

the penalized estimates iteratively. Simulation studies were conducted to

investigate the finite sample properties of the penalized likelihood estima-

tor. The studies suggest that the penalization method work satisfactorily in

promoting model sparsity in the absence of prior information about the spar-

sity structure. We utilized the introduced penalized likelihood estimation

method to a real data for illustration. The real data application demon-

strates that the penalization method improves the model interpretability.
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Chapter 5

Conclusions

In summary, we discussed the estimation of graphical time series models

based on sparse Gaussian vector autoregressive (VAR) processes. Two es-

timation methods for the sparse VAR models are presented, namely the

constrained likelihood estimation method and the penalized likelihood esti-

mation method.

The constrained likelihood estimation method estimates sparse vector

autoregressive models by considering the maximum likelihood estimation

with sparsity constraints on both the autoregressive coefficients and the

inverse noise covariance matrix as a biconcave problem. An alternating

maximization method is utilized to solve the biconcave problem. Simu-

lation experiments study the estimation performance of this alternating

method and compare with other non-linear optimization methods. The sim-

ulation results reflect that the alternating method is more robust whereas

the compared methods failed to converge in some cases. We also introduce

a frequency domain method and a time domain method for identifying the
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sparsity structure. In the application section, the proposed method is com-

parable to another graphical time series model based on the parsimonious

structural vector autoregressive models.

The sparsity constraints in the constrained likelihood estimation method,

however, are required to be identified before the estimation procedure. A

penalized likelihood estimation of vector autoregressive models is proposed,

in Chapter 4, to achieve model sparsity in the estimation. This penaliza-

tion method implements penalty terms on the autoregressive coefficients and

the off-diagonal elements of the inverse covariance matrix to achieve par-

simonious model. The finite sample properties of the penalized likelihood

estimator are investigated by performing simulation experiments. The sim-

ulation studies suggest that the penalization method work satisfactorily in

achieving sparse VAR models without prior determination of the sparsity

constraint structure. The application section illustrates that the penaliza-

tion method augments the interpretability of high dimensional graphical

time series models by promoting model sparsity in the estimation.

We discuss some possible future research below. In the constrained like-

lihood estimation method, the frequency domain method sets an AR co-

efficient to zero when the corresponding partial spectral coherencies are

insignificant at all frequencies. Indeed, there are VAR models in which a

non-zero AR coefficient corresponds to zero partial spectral coherencies. We

consider the following three-dimensional VAR(1) process for illustration,


x1,t

x2,t

x3,t

 =


0.8 0.3 0.4

0 0.7 0.4

0 0.3 0.5



x1,t−1

x2,t−1

x3,t−1

+


ε1,t

ε2,t

ε3,t

 ,

where εt = (ε1,t, ε2,t, ε3,t)
> ∼ N (0,Σ) with Σ−1 =

(
1 0 −1
0 3 1
−1 1 2

)
. The partial
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spectral coherencies of x1,t and x2,t given x3,t are zero at all frequencies, while

the corresponding AR coefficient is non-zero. The partial spectral coherence

method in identifying the sparsity structure probably sets such non-zero

AR coefficient to zero erroneously. To mitigate such misidentification, we

may utilize the partial directed coherence (Baccalá & Sameshima, 2001)

by factorizing the inverse of the spectral density matrix (Amblard, 2015),

instead of the partial spectral coherence to identify the possible constraint

structure. The partial directed coherence is a frequency domain measure

for Granger causality. The factorization may also determine the possible

sparsity structures of the AR coefficients and the inverse covariance matrix

simultaneously.

In the penalized likelihood estimation method, we select the tuning pa-

rameters (λb, λθ) by BIC and is intriguing to study the selection method

using other metrics further, like the forecast error. We may determine the

lag order of the model by implementing the group lasso penalty (Yuan & Lin,

2006). That is, we can consider the following penalized likelihood function:

Q(B,Θ) = l(B,Θ)−T
∑
i,j

pλb(|bij|)−T
∑
i 6=j

pλθ(|θij|)−(1−α)
√
Kλb

p∑
l=1

‖Al‖F ,

where l(B,Θ) is in (4.7). A similar study has been investigated by Nichol-

son et al. (2017). We may also investigate the asymptotic properties of

the penalized likelihood estimator, including the rate of convergence, the

sparsistency, and the asymptotic normality of the estimator.
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Appendix A

Proofs

Lemma A.1. For any positive semidefinite matrices A and B and 0 <

α < 1, det [αA + (1− α)B] ≥ det(A)α det(B)1−α with equality if and only

if A = B or det [αA + (1− α)B] = 0.

Proof. See Magnus & Neudecker (1999, Chapter 11).

We recall Theorem 3.1 in Chapter 3:

Theorem. The optimization problem in (3.2) with respect to B and Θ is

biconcave.

Proof. To prove the problem in (3.2) is biconcave, we first show the feasible

set D is biconvex followed by showing the objective function of the prob-

lem is biconcave. Let S be the set of lower triangular positions of Θ that

are not constrained to be zero having q elements (i.e. S = {(i1, j1), · · · ,

(ik, jk), · · · , (iq, jq)} with 1 ≤ ik ≤ jk ≤ K for k = 1, · · · , q). Define two

K × q matrices

E1 =

(
ei1 ei2 · · · eiq

)
and E2 =

(
ej1 ej2 · · · ejq

)
,
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where eik is a vector of zeros except the ik-th entry being one for k =

1, · · · , q. We express the optimization problem (3.2) as an unconstrained

problem, following Dahl et al. (2005), with objective function l(β,ω) given

by

l(β,ω) =
T

2
log det Θ(ω)− 1

2
trace

[
(Y −BZ)>Θ(ω) (Y −BZ)

]
=
T

2
log det Θ(ω)− 1

2

[
y −

(
Z> ⊗ IK

)
β
]>

[IT ⊗Θ(ω)]
[
y −

(
Z> ⊗ IK

)
β
]
.

Here, the constant term is omitted and the inverse of innovation covariance

matrix Θ is parameterized as

Θ(ω) = E1diag (ω) E>2 + E2diag (ω) E>1 ,

where ω ∈ Rq contains the non-zero element in the strict lower triangular

part of Θ, and the non-zero elements on the diagonal are divided by 2, i.e.

ωk =


θikjk , ik 6= jk

1

2
θikjk , ik = jk

for k = 1, · · · , q.

We now prove that the feasible set D is biconvex based on the definition

in Gorski et al. (2007). Let B = {β ∈ RK(Kp+1) |Cβ = 0} ⊆ RK(Kp+1) and

W = {ω ∈ Rq |Θ(ω) � 0} ⊆ Rq which are non-empty and convex. Let

D = {(β,ω) ∈ RK(Kp+1) × Rq |Cβ = 0, Θ(ω) � 0} ⊆ B × W . Define

Dω = {β ∈ B | (β,ω) ∈ D} and Dβ = {ω ∈ W | (β,ω) ∈ D}.

For any β1,β2 ∈ Dω and λ ∈ [0, 1], λCβ1 + (1− λ)Cβ2 ∈ Dω for every

ω ∈ W , since

C [λβ1 + (1− λ)β2] = λCβ1 + (1− λ)Cβ2 = 0.

Therefore, Dω is convex for every ω ∈ W .
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For any ω1,ω2 ∈ Dβ and λ ∈ [0, 1], λω1 + (1 − λ)ω2 ∈ Dβ for every

β ∈ B, since

Θ [λω1 + (1− λ)ω2] = λΘ(ω1) + (1− λ)Θ(ω2) � 0.

Therefore, Dβ is convex for every β ∈ B. Hence, the set D ⊆ B × W is

biconvex.

We next show that the objective function is biconcave. Define lω(·) =

l(·,ω) : Dω → R and lβ(·) = f(β, ·) : Dβ → R. For every fixed ω ∈ W ,

lω(β) =
T

2
log det Θ(ω)− 1

2

[
y −

(
Z> ⊗ IK

)
β
]>

[IT ⊗Θ(ω)]
[
y −

(
Z> ⊗ IK

)
β
]

= −1

2
β>
[
ZZ> ⊗Θ(ω)

]
β + β> [Z⊗Θ(ω)] y − 1

2
y> [IT ⊗Θ(ω)] y

+
T

2
log det Θ(ω)

is a quadratic function of β and is strictly concave since ZZ> ⊗Θ(ω) � 0.

Therefore, lω(·) is a concave function on Dω for every fixed ω ∈ W .

Denote S = (Y −BZ) (Y −BZ)>. For all ω1,ω2 ∈ Dβ with ω1 6= ω2,

λ ∈ (0, 1) and for every fixed β ∈ B,

lβ(λω1 + (1− λ)ω2) =
T

2
log det Θ(λω1 + (1− λ)ω2)

− 1

2
trace [SΘ(λω1 + (1− λ)ω2)]

=
T

2
log det [λΘ(ω1) + (1− λ)Θ(ω2)]

− 1

2
{λ trace [SΘ(ω1)] + (1− λ) trace [SΘ(ω2)]}

>
T

2
log
{

[det Θ(ω1)]
λ [det Θ(ω2)]

1−λ
}

− 1

2
{λ trace [SΘ(ω1)] + (1− λ) trace [SΘ(ω2)]}

= λlβ(ω1) + (1− λ)lβ(ω2).
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Here, the inequality follows from Lemma A.1. Therefore, lβ(·) is a strictly

concave function on Dβ for every fixed β ∈ B. Hence, the optimization

problem in (3.2) is biconcave.

Recall the log-likelihood function (4.7) is

l(B,Θ) = −KT
2

log 2π +
T

2
log det Θ− 1

2
trace

[
(Y −BZ)>Θ (Y −BZ)

]
.

The gradient and the Hessian of the log-likelihood functions are

∇l (β,θ) =

 vec
[
Θ(Y −BZ)Z>

]
1
2
D>K vec

[
TΘ−1 − (Y −BZ)(Y −BZ)>

]
 and

∇2l(β,θ) =

 ZZ>

T
⊗Θ −

[
2
T
Z(Y −BZ)> ⊗ IK

]
DK

−D>K
[
2
T

(Y −BZ)Z> ⊗ IK
]

1
2
D>K (Θ−1 ⊗Θ−1) DK

 ,

respectively, where β = vec(B) and θ = vech (Θ).

Proof. By matrix calculus, using the notation in Magnus & Neudecker

(1999), we calculate the 1-st order differential of the log-likelihood func-

tion l(B,Θ):

dl(B,Θ) =
T

2
trace

(
Θ−1dΘ

)
− 1

2
trace (WdΘ)− 1

2
trace (ΘdW)

=
1

2
trace [(TΘ−W)dΘ]− 1

2
trace

[
Θ(−2(dB)Z(Y −BZ)>)

]
=

1

2
trace

[
(TΘ−1 −W)dΘ

]
+ trace

[
Z(Y −BZ)>ΘdB

]
,

(A.1)
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where W = (Y −BZ) (Y −BZ)>. By vectorization,

dl(β,θ) =
1

2

[
vec

(
TΘ−1 −W>)]> dvec (Θ) +

[
vec

(
Θ(Y −BZ)Z>

)]>
dβ

=
1

2

[
D>K vec

(
TΘ−1 −W>)]> dθ +

[
vec

(
Θ(Y −BZ)Z>

)]>
dβ,

(A.2)

where DK is a duplication matrix of dimension K. Therefore, the gradient

is

∇l (β,θ) =

 vec
[
Θ(Y −BZ)Z>

]
1
2
D>K vec

[
TΘ−1 − (Y −BZ)(Y −BZ)>

]
 . (A.3)

We then compute the 2-nd order differential of the log-likelihood function

l(B,Θ):

d2l(B,Θ) =
1

2
trace

[
(TdΘ−1 − dW)dΘ

]
+ trace

[
−ZZ>(dB)>ΘdB

]
+ trace

[
Z(Y −BZ)>(dΘ)dB

]
=

1

2
trace

[
−TΘ−1(dΘ)Θ−1dΘ + 2(dB)Z(Y −BZ)>dΘ

]
− trace

[
ZZ>(dB)>ΘdB

]
+ trace

[
(dB)Z(Y −BZ)>dΘ

]
= −T

2
trace

[
Θ−1(dΘ)Θ−1dΘ

]
+ 2 trace

[
IK(dB)Z(Y −BZ)>dΘ

]
− trace

[
ZZ>(dB)>ΘdB

]
.

(A.4)

Thus, the Hessian matrix is

∇2l(β,θ) = −T

 ZZ>

T
⊗Θ −

[
2
T
Z(Y −BZ)> ⊗ IK

]
DK

−D>K
[
2
T

(Y −BZ)Z> ⊗ IK
]

1
2
D>K (Θ−1 ⊗Θ−1) DK

 .

(A.5)
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Appendix B

Tables

Table B.1: Simulation results for Model 1 using the penalized likelihood es-
timation over 500 replications. ZerosC (ZerosI) is the average number of zero
coefficients correctly (incorrectly) estimated to be zero. Standard errors are in
the parentheses.

Â Σ̂−1
u

Size Penalty Divergence Bias Variance MSE ZerosC ZerosI Bias Variance MSE ZerosC ZerosI

100

L1
0.2243
(0.0038) 0.7113 0.0472 0.1299

26.4720
(0.1037)

0.0820
(0.0123) 0.8352 0.1782 0.2445

7.5680
(0.0816)

0.0500
(0.0102)

L1-MRCE
0.2225
(0.0037) 0.6592 0.0525 0.1158

24.7440
(0.1152)

0.0200
(0.0063) 0.7276 0.1830 0.2398

7.7140
(0.0754)

0.0540
(0.0109)

MCP
0.1706
(0.0036) 0.2336 0.0511 0.0668

28.3800
(0.0723)

0.1660
(0.0167) 0.4356 0.2788 0.3010

9.3720
(0.0373)

0.2860
(0.0253)

SCAD
0.1931
(0.0037) 0.4242 0.0527 0.0907

26.9780
(0.0910)

0.0920
(0.0129) 0.3396 0.2854 0.2982

8.9300
(0.0590)

0.0940
(0.0148)

200

L1
0.1078
(0.0017) 0.4936 0.0199 0.0597

26.9020
(0.0908)

0.0020
(0.0020) 0.7516 0.0840 0.1336

7.5740
(0.0772)

0
(0)

L1-MRCE
0.0988
(0.0014) 0.4338 0.0218 0.0478

24.6420
(0.0996)

0
(0) 0.6708 0.0848 0.1281

7.7860
(0.0732)

0
(0)

MCP
0.0609
(0.0011) 0.0916 0.0186 0.0212

28.9900
(0.0537)

0.0060
(0.0035) 0.2162 0.1001 0.1054

9.6900
(0.0263)

0.0140
(0.0053)

SCAD
0.0738
(0.0013) 0.2229 0.0214 0.0344

27.9180
(0.0727)

0.0020
(0.0020) 0.1511 0.1031 0.1060

9.5240
(0.0425)

0.0020
(0.0020)

500

L1
0.0449
(0.0006) 0.3227 0.0074 0.0255

27.3160
(0.0805)

0
(0) 0.5810 0.0338 0.0642

7.6620
(0.0674)

0
(0)

L1-MRCE
0.0392
(0.0005) 0.2754 0.0079 0.0189

24.9020
(0.0925)

0
(0) 0.5432 0.0341 0.0616

7.8640
(0.0657)

0
(0)

MCP
0.0205
(0.0004) 0.0233 0.0062 0.0064

29.5280
(0.0339)

0
(0) 0.0923 0.0365 0.0375

9.8260
(0.0188)

0
(0)

SCAD
0.0244
(0.0004) 0.1009 0.0072 0.0113

28.8940
(0.0484)

0
(0) 0.0729 0.0350 0.0357

9.8940
(0.0191)

0
(0)

1000

L1
0.0232
(0.0003) 0.2299 0.0036 0.0129

27.5160
(0.0765)

0
(0) 0.4360 0.0178 0.0349

7.6980
(0.0656)

0
(0)

L1-MRCE
0.0195
(0.0003) 0.1841 0.0041 0.0087

24.2700
(0.0953)

0
(0) 0.4255 0.0176 0.0344

8.0540
(0.0620)

0
(0)

MCP
0.0095
(0.0002) 0.0089 0.0027 0.0027

29.3420
(0.0384)

0
(0) 0.0456 0.0171 0.0173

9.8940
(0.0154)

0
(0)

SCAD
0.0105
(0.0002) 0.0450 0.0033 0.0040

29.2580
(0.0405)

0
(0) 0.0376 0.0167 0.0169

9.9620
(0.0090)

0
(0)
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Table B.2: Simulation results for Model 2 using the penalized likelihood es-
timation over 500 replications. ZerosC (ZerosI) is the average number of zero
coefficients correctly (incorrectly) estimated to be zero. Standard errors are in
the parentheses.

Â Σ̂−1
u

Size Penalty Divergence Bias Variance MSE ZerosC ZerosI Bias Variance MSE ZerosC ZerosI

100

L1
0.2475
(0.0028) 1.1222 0.1023 0.1865

13.4620
(0.1156)

0.7720
(0.0385) 0.5863 0.2148 0.2359

4.8560
(0.0748)

0
(0)

L1-MRCE
0.2460
(0.0027) 1.1057 0.1052 0.1853

13.2920
(0.1227)

0.7180
(0.0360) 0.4701 0.2304 0.2463

4.9420
(0.0740)

0
(0)

MCP
0.2338
(0.0029) 0.6881 0.1298 0.1790

16.4640
(0.0857)

1.4320
(0.0455) 0.7139 0.2732 0.3221

8.4620
(0.0384)

0.0220
(0.0066)

SCAD
0.2442
(0.0030) 0.8479 0.1300 0.1935

14.7100
(0.1014)

1.1140
(0.0421) 0.6147 0.2789 0.3161

7.9900
(0.0527)

0.0140
(0.0053)

200

L1
0.1299
(0.0016) 0.8309 0.0487 0.0951

13.8200
(0.1135)

0.1500
(0.0174) 0.6595 0.1017 0.1277

4.8580
(0.0777)

0
(0)

L1-MRCE
0.1260
(0.0015) 0.7952 0.0487 0.0908

13.6220
(0.1074)

0.1080
(0.0139) 0.5657 0.1032 0.1221

4.8420
(0.0757)

0
(0)

MCP
0.1064
(0.0015) 0.4097 0.0603 0.0802

17.0900
(0.0737)

0.6140
(0.0358) 0.3081 0.1081 0.1173

8.6560
(0.0322)

0
(0)

SCAD
0.1147
(0.0016) 0.5768 0.0583 0.0943

15.2640
(0.0933)

0.3880
(0.0278) 0.2360 0.1110 0.1168

8.5860
(0.0395)

0
(0)

500

L1
0.0530
(0.0006) 0.5298 0.0179 0.0368

14.2360
(0.1063)

0
(0) 0.5790 0.0371 0.0583

5.0440
(0.0651)

0
(0)

L1-MRCE
0.0513
(0.0005) 0.5085 0.0181 0.0355

14.1020
(0.1021)

0
(0) 0.5076 0.0385 0.0544

5.0960
(0.0642)

0
(0)

MCP
0.0354
(0.0005) 0.1371 0.0181 0.0201

18.2160
(0.0578)

0.0320
(0.0088) 0.1320 0.0376 0.0393

8.8660
(0.0168)

0
(0)

SCAD
0.0395
(0.0005) 0.2501 0.0214 0.0288

15.9700
(0.0815)

0.0260
(0.0071) 0.1129 0.0379 0.0392

8.9080
(0.0157)

0
(0)

1000

L1
0.0283
(0.0003) 0.3977 0.0086 0.0195

14.6520
(0.0967)

0
(0) 0.4737 0.0183 0.0330

5.0320
(0.0664)

0
(0)

L1-MRCE
0.0268
(0.0003) 0.3730 0.0086 0.0181

14.2720
(0.0944)

0
(0) 0.4326 0.0184 0.0305

5.1440
(0.0662)

0
(0)

MCP
0.0162
(0.0002) 0.0570 0.0071 0.0074

18.7220
(0.0484)

0
(0) 0.0541 0.0172 0.0176

8.8920
(0.0172)

0
(0)

SCAD
0.0181
(0.0002) 0.1439 0.0085 0.0106

17.1100
(0.0706)

0
(0) 0.0448 0.0175 0.0178

8.9660
(0.0086)

0
(0)

Table B.3: Simulation results for Model 4 using the penalized likelihood es-
timation over 500 replications. ZerosC (ZerosI) is the average number of zero
coefficients correctly (incorrectly) estimated to be zero. Standard errors are in
the parentheses.

Â Σ̂−1
u

Size Penalty Divergence Bias Variance MSE ZerosC ZerosI Bias Variance MSE ZerosC ZerosI

100

L1
0.2544
(0.0027) 1.6183 0.1029 0.2766

8.9060
(0.1047)

1.9120
(0.0413) 0.5356 0.2109 0.2298

4.9040
(0.0782)

0
(0)

L1-MRCE
0.2527
(0.0027) 1.6013 0.1014 0.2727

8.9280
(0.1090)

1.9040
(0.0412) 0.4596 0.2248 0.2401

4.9720
(0.0759)

0
(0)

MCP
0.2243
(0.0029) 0.7324 0.0858 0.1484

14.8200
(0.0753)

2.5440
(0.0353) 0.6894 0.2680 0.3160

8.4680
(0.0393)

0.0300
(0.0081)

SCAD
0.2329
(0.0028) 0.9085 0.0929 0.1699

12.0960
(0.0923)

2.2000
(0.0376) 0.6545 0.2820 0.3256

7.9700
(0.0549)

0.0040
(0.0028)

200

L1
0.1401
(0.0015) 1.2950 0.0506 0.1703

9.2500
(0.1049)

1.8740
(0.0417) 0.6354 0.0962 0.1213

5.1300
(0.0740)

0
(0)

L1-MRCE
0.1377
(0.0014) 1.2741 0.0503 0.1667

9.1780
(0.1056)

1.8520
(0.0407) 0.5381 0.1017 0.1193

5.1400
(0.0762)

0
(0)

MCP
0.1080
(0.0013) 0.5355 0.0425 0.0844

15.6240
(0.0684)

2.3500
(0.0338) 0.2948 0.1045 0.1131

8.7240
(0.0270)

0
(0)

SCAD
0.1164
(0.0014) 0.7156 0.0443 0.1033

13.4640
(0.0863)

2.2320
(0.0358) 0.2666 0.1086 0.1158

8.6260
(0.0369)

0
(0)

500

L1
0.0607
(0.0007) 0.8757 0.0241 0.0795

8.6480
(0.1004)

1.2700
(0.0382) 0.5393 0.0376 0.0568

5.1300
(0.0691)

0
(0)

L1-MRCE
0.0591
(0.0007) 0.8602 0.0240 0.0775

8.6400
(0.0998)

1.2580
(0.0377) 0.4660 0.0380 0.0519

5.1660
(0.0693)

0
(0)

MCP
0.0400
(0.0005) 0.3070 0.0176 0.0310

15.9760
(0.0651)

1.6140
(0.0312) 0.1247 0.0367 0.0382

8.8340
(0.0207)

0
(0)

SCAD
0.0451
(0.0007) 0.4138 0.0208 0.0439

14.2040
(0.0812)

1.5760
(0.0369) 0.1041 0.0363 0.0375

8.9020
(0.0182)

0
(0)

1000

L1
0.0307
(0.0003) 0.6139 0.0118 0.0397

8.4400
(0.0990)

0.8640
(0.0303) 0.4787 0.0174 0.0327

5.0860
(0.0647)

0
(0)

L1-MRCE
0.0302
(0.0003) 0.6153 0.0114 0.0396

8.5720
(0.0984)

0.8740
(0.0292) 0.4372 0.0179 0.0304

5.1920
(0.0646)

0
(0)

MCP
0.0186
(0.0002) 0.1973 0.0072 0.0128

16.2580
(0.0523)

1.1700
(0.0266) 0.0538 0.0166 0.0169

8.9080
(0.0162)

0
(0)

SCAD
0.0210
(0.0003) 0.2903 0.0083 0.0201

14.9520
(0.0711)

1.1460
(0.0272) 0.0370 0.0170 0.0172

8.9800
(0.0069)

0
(0)
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Table B.4: Simulation results for Model 5 using the penalized likelihood es-
timation over 500 replications. ZerosC (ZerosI) is the average number of zero
coefficients correctly (incorrectly) estimated to be zero. Standard errors are in
the parentheses.

Â Σ̂−1
u

Size Penalty Divergence Bias Variance MSE ZerosC ZerosI Bias Variance MSE ZerosC ZerosI

100

L1
0.6719
(0.0183) 4.6821 0.4800 1.0696

21.3420
(0.2521)

4.9060
(0.2168) 0.7824 0.3922 0.4465

4.2220
(0.1224)

0.6360
(0.0649)

L1-MRCE
0.6509
(0.0166) 4.6499 0.4786 1.0548

21.4520
(0.2553)

4.9740
(0.2169) 0.8348 0.3881 0.4419

4.2780
(0.1172)

0.5860
(0.0614)

MCP
0.5724
(0.0066) 2.5712 0.8554 1.0334

30.6000
(0.1215)

7.1600
(0.1367) 0.7134 0.4563 0.5177

8.0000
(0.0515)

0.8140
(0.0429)

SCAD
0.5425
(0.0081) 2.8450 0.7382 0.9530

24.7340
(0.1703)

4.3160
(0.1390) 0.7547 0.4685 0.5382

7.0580
(0.0753)

0.4880
(0.0376)

200

L1
0.2570
(0.0028) 2.8538 0.2217 0.4364

20.1120
(0.1951)

0.5960
(0.0414) 0.5534 0.1256 0.1493

4.4420
(0.1047)

0
(0)

L1-MRCE
0.2530
(0.0027) 2.8308 0.2201 0.4301

20.2640
(0.1920)

0.6020
(0.0420) 0.5074 0.1240 0.1455

4.5360
(0.1025)

0
(0)

MCP
0.2200
(0.0026) 1.1313 0.3476 0.3884

31.7260
(0.1018)

2.1000
(0.0843) 0.4002 0.1278 0.1446

8.5120
(0.0365)

0.0580
(0.0116)

SCAD
0.2205
(0.0022) 1.4357 0.3297 0.3887

26.4960
(0.1467)

0.9000
(0.0455) 0.3595 0.1360 0.1512

8.0900
(0.0542)

0.0200
(0.0063)

500

L1
0.1047
(0.0010) 1.8563 0.0819 0.1730

21.8260
(0.1907)

0.0020
(0.0020) 0.5340 0.0413 0.0600

5.2140
(0.0852)

0
(0)

L1-MRCE
0.1039
(0.0010) 1.8405 0.0819 0.1712

21.9300
(0.1870)

0.0040
(0.0028) 0.5096 0.0422 0.0593

5.3100
(0.0865)

0
(0)

MCP
0.0658
(0.0007) 0.3631 0.0926 0.0971

33.9960
(0.0719)

0.0820
(0.0129) 0.1737 0.0391 0.0421

8.8540
(0.0188)

0
(0)

SCAD
0.0745
(0.0007) 0.6760 0.1038 0.1192

29.9660
(0.1206)

0.0160
(0.0063) 0.1464 0.0410 0.0434

8.8640
(0.0197)

0.0020
(0.0020)

1000

L1
0.0562
(0.0006) 1.4074 0.0396 0.0923

23.1960
(0.1962)

0
(0) 0.4633 0.0198 0.0343

5.5600
(0.0794)

0
(0)

L1-MRCE
0.0551
(0.0006) 1.3890 0.0392 0.0905

23.2500
(0.1929)

0
(0) 0.4451 0.0196 0.0328

5.7180
(0.0772)

0
(0)

MCP
0.0278
(0.0003) 0.1118 0.0362 0.0366

35.4420
(0.0394)

0
(0) 0.0752 0.0182 0.0188

8.9120
(0.0133)

0
(0)

SCAD
0.0328
(0.0004) 0.3555 0.0442 0.0485

32.4480
(0.0905)

0
(0) 0.0684 0.0183 0.0189

8.9500
(0.0109)

0
(0)
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