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Abstract

Abstract of thesis entitled ‘Use of Knowledge Intensive CAD in Small Electrical Family

Appliance Industry”

Submitted by Law Man Chung

for the Degree of Master of Philosophy

at The Hong Kong Polytechnic University in June 2004

Many local small electrical family appliance manufacturing companies have tried to shift
their business from original equipment manufacturing (OEM) to original design
manufacturing (ODM) in order to get away from the price war that induced by the
neighborhood underdeveloping counties including Mainland, Thailand, Malaysia, and
even South America countries. However, such business migration has been largely
prohibited by their incompetency in product design and development. Futhermore, the
developed product knowledge is unable to retain and reuse due to the high mobility of
staffing. Through literatur;:, it was noticed that many giant and multi-national enterprises
are now going, or will go, through the deployment of knowledge management (KM)
technology, to enﬂmce their new product design and development processes and shorten
their new product’s time to market. It was also found that, as a common believe, the
development of a KM system has to involve a huge capital investment, and the process is
so demanding that almost all research studies done in the area were only confined to highly
complex/technology originated products including aircraft and automobile. Up to this
rmoment, literature on application of KM for the development of simple products likes
small electrical family appliance does not exist. In order to break such common believe, the
research study “Use of knowledge intensive CAD in small electrical family appliance
industry” that financed by the Teaching Company Scheme under the Industry Technology

Fund and a local manufacturing company “General Electrical Work Corporation Limited”

was set up.
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The project aims to: (i) investigate how the Knowledge Intensive CAD (KIC) technology
can be used as a vehicle to support the deployment of knowledge management to transfer
explicit knowledge (historical data) to tacit knowledge and form a knowledge database for
reuse, and (i) to evident that KM can also be deployed by less complicated product
manufacturers and used as a strategic tool to enhance their new product development
capability. The argument of the research project is that through the use of a proper selected
Artificial Intelligence (AI)/Artificial Neural Network (ANN) algorithm and the availability
of an appropriated amount of legacy data, a knowledge database can be crystallized to
predict the performance of a similar or even an entirely new design/style so that a lean and
agile new product development process can be obtained. The proposed KIC
methodology/roadmap composes of five phases: (i) Decision and selection of a KIC
application,  (ii)  Problem dissociation and identification of attribute
characteristics/properties, (iii) Selection of AVANN algorithms, (iv) Knowledge
capitalization, and (v) Knowledge deployment. Based upon the proposed KIC development
methodology/roadmap, a prototype KIC system for the design of a plastic toaster case
(heating test) was developed and evaluated. Two investigations that included: (i) prediction
of dedicated style with variable sizes, and (ii) prediction of an entirely new style from
existing styles with the whole and divided data set input approaches were made. It was
found that the temperature predictions made by the KIC prototyping system were well
within the +20°C and -10°C design error limits and the throughput of processing an enquiry
(prediction of a toaster case surface temperature and resultant thermal strain) could be done
within eight hours. It was also evidenced that the KIC prototyping system is both capable
the predictions of toaster case design of similar shape and entirely new style. The estimated
time for the development of an additional KIC module would be around three months with
an investment around HK$43,000 that is affordable by most manufacturing companies.

The results of the project study concluded that the use of KIC to aid the product
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development of the small electrical family appliance industry is feasible and efficient
whilst the missing gap in between the deployment of the entirely CAE approach and

traditional experience dependent method can be bridged.
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Chapter 1 - Introduction

1.1  Need of Knowledge Intensive CAD

According to the China’s Tenth Five-year Plan, a series of tax reduced plan and policies
had been put forward to promote her economics development in the passes three decades.
China had offerred investors great competitive advantages including low land cost, cheap
labour and thus the export of the Hong Kong family electrical appliance industry had
rided on its upward trend frﬁm 1980 to 1999 [CIEC, 2001] and pushed forward their
market segment from urban to international. However, due to the global compeition
induced by the information age, the industry is now so price sensitive and the
selling/exfactory price is getting lower and lower [Warwick J. McKibbin]. At the moment,
manufacturing' enterprises are not only facing pressure of lowering price but also the
challenges from other deyeloping countries including: Thailand, Malaysis, Brasil, South
America and Mainland. With the fade out of China’s open door policy and the above
issues, local small electrical family appliance industry has to manifests a completely
different pattern of competition. Global competition has leaded to the trunication of a new
product life cycle from several years to only one to two years. According to a survey
conducted by The Hong Kong Polytechnic University [Survey on Product Design in
Hong Kong 2003], manufacturers of small electrical family appliance mostly are small
and medium enterprise (SME) with 89% of its headoffice in Hong Kong and 85%
manufacturing plants in the Pearl River Delta. Most small electrical family appliance
manufacturer are still rely on experienced engineers, workers and technicans for their new
product development in China. Furthermore, the turnover rate of technical staff is very
high because the salary competition among manufacturing companies. Together with the
stringent customer demands in product function, quality, time to market and safety issues,

the pressure on their new product development process become harder and harder. It is



belivered that the only way to get out such difficulty is not just adopt and make use
advanced/state-of-the-art design technologies including C3P (CAD/CAM/CAE/PDM),
but also the need of knowledge management is essential so that their product
development capabilities can be enhanced to guarantee their success in business.

A survey done by the Hong Kong Productivity Council [Industry Study on Electrical
Household Appliances Industry 1998] revealed that 46% of the total sales of the industry
were generated from the original engineering manufacturing (OEM) business while 26%
were come from own branded product and 28% were come from original design
manufacturing (ODM) business. A survey cor;ducted by The Hong Kong Polytechnic
University [Survey on Product Design in Hong Kong 2003] also reported that the mode of
business nature of the industry has been changed. The 1998 business streams distribution
of OEM, ODM and original brand manufacturing (OBM) businesses were 36%, 37% and
27% respectively whilst forty-six percent of the surveyed companies had intentions to go

for a change in the nature of their business in the near future, 45 % would like to change

to ODM and 36% moved change to OBM (Fig. 1).

W 2002

Orignal Brand 11998
Manufacturing
Orginial Design
Manufacturing

Orignal Engineering
Manufacturing l
i J | I

T

0 i0 20 30 40 50

Fig. 1 Main Business Stream in the Hong Kong Industry (1998 and 2002)
(Source: Industry Study on Electrical Household Appliances Industry 1999 and Survey on

Product Design in Hong Kong 2003)



However, most of the transforming companies were not able to achieve their goal and
take the full advantages of such a business initiative because they are not competent
enough to take up the challenges of shifting from experience dependent to a new
paradigm of design and development. The Hong Kong Productivity Council [Industry
Study on Electrical Household Appliances Industry 1998] found that 50% of the total
output of the industry had fallen in the medium priced segment, 28% belonged to low end
whilst only 22% were classified as high value added (Fig. 2). This also evidenced that
there is still a big margin in the industry to move to the high end product market if the

industry can equip better capabilities on both product design and processing.

O High End
O Medium End
B Lower End

Fig. 2 Distribution of Product Nature in the Small Electrical Appliance Industry

(Source: Industry Study on Electrical Household Appliance Industry 1995)

Based on the above scenarios, the manufacturing companies in the small electrical family
appliance industry are facing a high-pressure environment that characterized by a number of
key challenges is the only key to maintain their competitiveness by reuse of knowledge to its
survival. Therefore, the project entitled “Use of Knowledge Intensive CAD (KIC)

Technology in Small Electrical Family Appliance Industry” was initiated in between the

LI



" GEW. Corporation Limited and The Hong Kong Polytechnic University. Since
traditional design process is largely depend on particular characteristic technique of
skillful engineers, the study of the KIC system is to create a design tool/modules that
would effectively make reuse of product information and capture and codified tacit
knowledge in order to design faster and better. It was believed that the incorporation of
the proposed KIC system would lead to cost and delay reduction, through the increased
reuse of knowledge, and make use of ANN technology to improve their design capability

and use it as a strategic weapon to aid their business transformation from OEM to ODM.

1.2 Backgrounds of the Partnered Company

General Electric Work (G.E.W.) Corporation Limited is-a local owned manufacturing
company of small electrical family appliances. The company was established in 1979.
Her head office is locateci in Hong Kong with over eighthly staff whilst manufacturing
plagts are located in Dongguan and Shanghai with two thousand workers. The company
designs and fabriéates small electrical appliances that include: toaster, jug, steam iron,
steam station, egg boiler, hair dryer and toaster oven (Fig. 3). The current manufacturing
capacity of the company is around 3,500,000 sets of toaster, 250,000 sets of oven and
30,000 sets of steam iron per year. The company owns an asset of over HK$55 millions
and it is the largest toaster supplier in the world in terms of quantity. The company has
tried to shift its OEM business to ODM several years ago and is now establishing her own
brand name “Welhome™ in the Mainland. However, the company is now suffering from
insufficient expertise in both product design and development. Even though the company
got twenty-five years experience in toaster design and development, her current toaster
development process still cannot guarantee a new product design to pass all the required

functional tests/safety standard. Due to the global manufacturing competition, the



development time of a new toaster design development time is trimmed down from nine
months to only four months. Furthermore, many projects were delayed due to poor design
experience and lack of manufacturing skills whilst staff turn over is so high in China that
the created tacit knowledge is difficult to sustain. Problems of design and development

have become the main burden that hinderes the company's business migration.

i L o

(d) Electric Iron ' {(e) Jug {f) Egg Boiler

Fig 3. Typical Products Produced by G.E.W

1.3  Objectives and Scopes of the Project

The aim of tile project was to demonstrate the application of knowledge intensive (KI)
CAD technology can enhance a company’s design competence and use as a strategic
weapon to facilitate the transformation from original equipment manufacturing (OEM) to
original design manufacturing (ODM). Through the acquisition of knowledge from
existing legacy data and extension of its reusability with neural network, it was believe
that the time to market of a new product development cycle could be largely reduced. The
objectives of the project include:

(i) To establish a methodology/roadmap for the development of a knowledge

intensive computer aided design (KIC) system.



(ii) To verify and evaluate the performance and feasibility of the proposed KIC
methodology for the improvement of a design task including the quality of
prediction and throughput.

In spite of numerous issues and areas that can be improved in a product development
process, the scope of investigation was only confined to those problematic areas that
experienced by the small electrical family appliance industry. Therefore, the emphasis of
the study would not be put on the whole new product development cycle from concept to
final design release but instead will be concentrated to the exploration of an appropriate
KIC development model/roadmap to solve the burning design issues such as drop test and

heating test in the industry.



Chapter 2 — Literature Review

2.1

Knowledge

2.1.1 Definitions of Knowledge

The definition of knowledge can be tracked back since the earliest civilizations.

Knowledge is a very complex matter and elusive concept. Definitions for knowledge vary

broadly and many famous writers had defined the knowledge in different ways and

aspects. The term “knowledge” defined in the Oxford Dictionary and by Thesaurus [1980]

is the awareness or familiarity gained by experience. The term “knowledge” has been

widely used in science, engineering, technology, account etc. The definitions of data,

information and knowledge had been summarized and listed in Table 1.

Table 1 Definitions of Data, Information and Knowledge (1990 -2000)

A set of discrete facts

change the receiver
perception

Year | Author Data Information Knowledge
1990 | Woolf Yo - Organized information
applicable to problem
solving
1991 | Nonaka - A flow of meaningful Commitments and beliefs
) message created from this message
1992 | Turban - - Organized and analyzed
to problem solving or
decision making
1993 | Wiig - Fact organized to Truth and beliefs,
describe a situation or perspectives and concept,
condition judgment
1997 | Tobin Fact and message Data vested with Justified, true beliefs
meaning
1997 | Beckman Data to actively enable Reasoning about
performance, problem- information
solving, decision-
making, iearning and
teaching
2000 | Davenport Davenport A message meant to Text that answers the

question why and how

To sum up, the common accepted definition for knowledge is a piece of organized

information that was important for an organization to solve a problem and make a

sensible decision. Tobin [1997] described the process of knowledge evolution consists of




six levels: (i) Data, (ii) Information, (iii) Explicit knowledge, (iv) Tacit knowledge, (v)
Insight and, (iv) Wisdom (Fig. 4), and the concept of knowledge could also be applied to
manage an organization. Knowledge becomes the most important intellectual asset of an
organization. Creation of knowledge and restoring wisdom of an organization has become

the new paradigm of modern management.

Wisdom

Meaning

Insight

/ Tacit knowledge \
Interpretation
/ Explicit knowledge \
Processing
/ Information
Aggregating

\
/ Data \

Fig. 4 The Six-Step Knowledge Evolution Process

Thinking

(Source: The Knowledge Enabled Organization AMACOM, New York, N. Y)

2.1.2 Classification of Knowledge

Table 2 summarizes all kinds of knowledge characteristics. From the table, knowledge
can be divided into two main types, one is tacit knowledge and the other is explicit
knowledge. Nonaka and Takeuchi [1995] pointed out that tacit knowledge is more
important than explicit knowledge because it usually has more value intellectually.
Nevertheless, 90% of the tacit knowledge is in the mind of the people in an organization.
This knowledge will be easily lost because of the leaving of a staff, downsizing of a
company or merging with other companies. On the other hand, new information will

always be conceptualized in the framework of old fashioned organizational routines. Tacit



knowledge and explicit knowledge were not totally separate, but mutually complementary
entities. Without experience, one cannot truly understand. But, unless one tries to convert
tacit knowledge to explicit knowledge, one cannot reflect upon it and share it in the whole
organizational except through mentoring situations.

Table 2 Perspectives and the Characteristics of the Knowledge

Year | Author Term of Perspectives Characteristics
knowledge
1994 | Nonaka Tacit Mental schemata, beliefs, images, | Personal, context specific,
knowledge personal points of view and subjective and experience
perspectives, concrete know-how | based knowledge, and
therefore, hard to formalize
and communicate
1994 | Nonaka Explicit Visible, formalized, coded in a Can be expressed in words,
knowledge language natural (French, English, | sentences, numbers or
etc.) or artificial (UML, formulas
mathematics, etc.) and can be
transmitted
1996 | Grunstein | Tangible Data, document, etc. while -
and knowledge intangible assets are abilities,
Barthés talents, personal experience
1996 T Grunstein | Intangible Elicitation to become tangible -
and knowledge befare they can participate to a
Barthés materialized corporate memory
1998 | Geoffrey | Episteme Book, paper Can be represented in the
Hinchliffe | knowledge forms of information or rules
1998 | Geoffrey | Techne Human experience Personal, hard to formalize
Hinchliffe [ knowledge '

2.1.3 Knowledge Related Product Design and Development

In this research study, the term of knowledge will.be defined as “the organized
information related to the product development process in order to capturing the expertise
experience and product life cycle knowledge”. Such knowledge will be classified into
three levels that include: (i) fundamental, (ii) design and (iii) product (Fig. 5).
Fundamental knowledge comprises the basic principles, geometry, equation, generic
objects, etc. Design-level knowledge represents the knowledge and experience of experts,
the heuristics used to evaluate various model attributes and behavior, technologies, and
abstract design process models. Product level knowledge represents product

specifications, constraints, tolerances, functions, etc. Various design alternatives can be




examined by using hypotheses and contexts, while the degree of completeness, precision,

and certainty.
Product Level
Product
Development Design Level
Knowledge
Fundamental Level

Fig. 5 Product Knowledge Classification

2.1.4 Significant of Knowledge in a Manufacturing Organization

Quinn [1996] mentioned that the success of an organization relies on the management of
professional intellect. Stewart [1998] stressed that the importance of creating and
managing intellectual capital to the success of an organization. Tobin [1998] claimed that
networking knowledge within a company and sharing of knowledge are important.
Drucker [1998] brought the important idea of knowledge worker as a measure to the
competence of a company. He also pointed out that those knowledge workers nowadays
are highly mobile and it can cause severe loss of knowledge if a company does not have
the proper system to keep knowledge. A survey conducted by KMPG [1998] showed that
40% of the cases had serious loss of incohe due to the departure of employees. Stewart
[2001] brought the fact that knowledge being the biggest export of the USA from 1999
and now the world is constantly make use buys and sells knowledge. To sum up all
authors perceptive, knowledge assets include talent, skills, know-how, know-what,

relationship and networks that embody them that can be used to create wealth, most asset
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depreciate from the day of acquisition and increasing their comparative advantage of a

company.

2.2 Knowledge Management

2.2.1 Definitions for Knowledge Management

There exist many knowledge management definitions proposed by different authors and
vary broadly. Wiig [1993] stated that a Anowledge management being a systematic,
explicit, and deliberate building, renewal, and application of knowledge to maximize an
enterprise s knowledge-related effectiveness and returns from its knowledge assets.
Petrash [1996] gave the definition of knowledge management as the right knowledge to
the right people at the right time so they can make the best decision. Beckman’s [1997]
view on the definition of knowledge management was knowledge management being the
SJormalization of and acce;ss fo experience, knowledge, and expertise that create new
capq_biliries, enable superior performance, encourage innovation, and enhance customer
value. O’Dell [1998] gave definition of knowledge management as applying systematic
approaches to find, understand, and use knowledge to create value. Tiwana [2001]
defined knowledge management as management of organizational knowledge for creating
business value and generating competitive advantage. To sum up, knowledge
management can be regarded as a set of processes from transferring intellectual capital
within an organization that lead to innovation, knowledge creation, and replenishment of

an organizations core competency.
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2.2.2 Evolution of Knowledge Management

KM emerges as K led
the unifying nowledge
corporate goal Management
1]
i
Learning, i
unlearning and Learning i
experience are "|  Organization i
taken into account I
i
Cultural Experience i
specificity is Curve !
recognized T lI
i i
Tacit knowiedge ! i
becomes a part Corporate ! i
of the picture Co Cullture : !
Focus shifts toward i i i :
distributed expertise —— i i i i
and knowledge o Centralization and i
Decentralization i
|
i
Program Evaluation ! ! !
, i i i i
and Review i i i
Technique (PERT) i : :
! ! i
! ! i
! ! :
i i I i
1950 - 1960 1970 1980 1990 2000
Year

Fig. 6 Milestones of Knowledge Management from 1950s to 2000s
The term “Knowledge r;lanagement” is relatively new and it is likely to become an
important management tool for the coming era, however, the concept behind of
knowledge manégement is nothing new. The major development and milestones in
knowledge management from 1950s to 2000s was summarized and shown in Fig. 6. In
1950s, it was the decade associated with quantitative management techniques such as
program evaluation and review techniques (PERT). In 1960s, main focus of study was on
different forms of organizational structure and the effects of centralization or
decentralization. In 1970s, emphasis of knowledge merge was started on the importance
of teamwork, portfolio management and the experience curve. The concept of sharing
knowledge within a team and understanding the cultural importance of a company was
brought into the 1980s. Knowledge Management, in the 1980s, took more interest in

corporate culture, learning organization, downsizing, and management by walking around

(MBWA) and total quality management (TQM). The leaming organization concept that
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emphasizes the learning and unlearning, laid the groundwork of early knowledge
management development of the 1990s, Knowledge Management that sprouted the
decade and it was the era for reengineering and information technologies. Furthermore,
evolvement of Internet/Web based information technologies enhanced the rapid
development of knowledge management. Up to now, there are two major roles accepted
as a most important management tool include: (i) creation an enterprise-wide integration
through a knowledge shaﬁhg culture, (ii) recognize the value of intellectual capital and
understand that competition depends not on the differential possession of physical assets,

or even of information, but on the ability to deploy knowledge.

2.2.3 Technological Development of Knowledge Management

Knowledge management is not just simply a develo;l)ment of information networking
system, such as Internet or Intranet, with databases. It actually covers multidisciplinary
technologies include cognitive science, expert systems and artificial intelligence,
computer support collaborative work (groupware), library and information science,
document management system, decision support system, relational and objects databases.
Dyer [2000] reported that the most famous knowledge management systems all used the
e-mail and message (Fig. 7). On the other spectrum, data warehouse that covered artificial
intelligence can be used for the development of a KM system. Hence, new insights into
the management of knowledge and the availability of new technology to capture and store

codified knowledge offer considerable promises.
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Web-based training [ 37 Yo
Workflow mangement [ 37 %o
Groupware (R 307
A data warehouse [ 4 1%
Enterprises information portal I 4 1%
Search Engines ) 51 %
Document mangement [ 53/
E-mail or message B s e S ] 54 %)

0% 10% 20% 30% 40% 50% 60% 70%

Fig. 7 Use of Tools/Technologies in KM Development in 2000’s

(Source Adapted from Dyer 2000)

2.2.4 Reasons for Implementing Knowledge Management

Manufacturing enterprises are now paying more attention to knowledge management
because of its competitive advantages. In a new product development process, a new
product design has to be lower in cost, better in quality and faster time to market. The
time to market of a new product development can reduced by not duplicating work that
has been done before and the avoidance of repetitive design mistakes. The reuse of
knowledge becomes the most critical success factor that can reduce expensive design re-
invention. Knowledge workers should spend their time on more value-added work.
Knowledge management can also improve the effectiveness of a decision-making as the
reuse of past knowledge will eliminate many flawed assumptions. Proper use of
knowledge management can promote systematic innovations and hence increases the
creativity within a company. Furthermore, knowledge retention within a company can
build up its own “knowledge base™ or “institutional memory”. Thus. a well-managed
knowledge management system has to be deployed in order to effectively maintain the

explicit and ideally the tacit knowledge generated from a project or problem. Such
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knowledge can then be reused and shared for other projects and finally becomes a

tangible asset of a company.

2.2.5 Models for Knowledge Management Devlelopment

Many authors contributed in the study of knowledge management and developed different
frameworks on modeling knowledge management. Fig. 8 shows the historical knowledge
management development rﬁode]s from 1990 to 2000. The focus of knowledge
management development in the early days of data storage has been evolved to the later
stage of creating and selling of knowledge. One of the important knowledge creation
concepts - “knowledge spiral” was introduced by Nonaka [1991]. His model of
socialization, -externalization, combination and internalization (SECI) shows the
knowledge transfer process within a company (Fig. 9).

()  Socialization: ‘ Sharing experience and creating tacit knowledge

(1)  Externdlization: Concept creation and triggered by dialogue or reflective

reflection, articulating tacit knowledge into explicit

knowledge
(iii) Combination: Categories and integrating explicit knowledge.
(iv) [Internalization: Embodying explicit knowledge into tacit knowledge.
Combination Internalization
Explicit .
Knowledge Transfer Knowledge Internalization
Externalization Socialization
Tacit
Knowledge Transfer Knowledge creation
EXP“CH Tacit

Fig. 9 Nonaka’s SECI Model
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To sum up, it is worthwhile to mention that most of these models have the similar concept for
knowledge management and their works were heavily concentrated on the information

networking, sharing and selling. There is no specific model that can be resume for NN

product design and development process.

2.3  Artificial Intelligence

2.3.1 Definitions of AI

“Artificial intelligence (Al)” stated that is the part of computer science concerned with
designing intelligent computer system [Barr and Feigenbaum 1981], that is, systems that
exhibit thé characteristics associated with intelligence in human behavior — understanding
language, learning, reasoning, solving problem and so on. In other words, Al is concerned
with programming computf;rs to perform tasks that are presenmone better by humans,
because it invdlves such higher mental processes such as perceptual learning, memory

organization and judgmental reasoning [Minsky, 1968]. One well-publicized definition of Al

is behavior by a machine that, if performed by a human being, would be called intelligent

[Rich and Knight, 1991].

2.3.2 Historical Development of Artificial Intelligence and Neural Network

In the past sixty years, Al had undergone substantial ups and downs. The birth of Al was in
the early 1940s whilst the central nervous system was regarded as the first work recognized
in the Al field [Warren McCulloch and Walter Pitts, 1940]. Johnson Neumann [1951]
introduced the first neural network computer and John McCarthy [1958] brought together

researchers interested in the study of machine intelligence, artificial neural nets and automata



theory to form the Dartmouth Conference Workshop that gave birth to coin artificial
intelligence. Al was considered as a valuable tool to support a decision making and regarded
as great ideas with great expectation in 1960s. Frank Rosenblatt [1962] proved the perception
convergence theorem and demonstrated that his learning algorithm could adjust the
connection strengths of a perception. In 1965, Loft Zadeh published his famous paper "Fuzzy
sets'. Bryson and Ho [1969] introduced a back-propagation learning algorithm. However, Al
was disillusioned and funding cutback in the early 1970s and the pace of Al was slow down.
Until the last two decades (1980s - 1990s), the development of preliminary binary model had
brought Al to a more mature expert technology and could be applied in different areas. In the
1980s, because of the need for brain-like information procegsing, as well as the advances in
computer technology and progress in neuroscience, the field of neural network experienced a
dramatic resurgence. Major‘contributions to both theory and design were made on several
fronts. Grossberg [1980] established a new principle of self-organization (adaptive resonance
theory), which prc‘)v%ded the basis for a new class of neural networks. In 1982, the Hopfield’s
theory introduced neural networks that attracted much attention in the 1980s. In addition,
Kohonen [1982] published a paper on self-organized map. Sutton and Anderson published
their work on reinforcement learning and its application in control. In 1986, Rumelhart and
McClelland in parallel Distributed processing: Explorations in the microstructures of
cognition. Paker and LuCun [1987] developed Back-propagation learning algorithm. Since
then back-propagation has become the mdst popular technique for training multilayer
perceptions. In 1988, Roomhead and Lowe found a procedure to design layered feedforward
network using radial basis functions, an alternative to multilayer percetron. In the meantime,

Tuevo and Kohonen introduced his Learning Vector Quantization (LVQ) at Helsinki



Technical University to give further motivation to the family of unsupervised neural network
and family of supervised models of the multi-layer percetron. A flexible form of non-linear
regression known as Generalized Regression Neural Network (GRNN) was developed by
Donald Specht [1991]. The concept of the network is to make use of the probability density
function of the data in order to eliminate the necessity of a functional form. Kandel and
Langholz [1992] had promoted a hybrid system. The integration of neural network with

knowledge based like expert system was presented by Gallant and Fu in 1993 and 1994

respectively.

2.3.3 Artificial Neural Network

Since the focus of this research study was to develop an Al application in studying a
multidiscipline/non-linear design problem and based on the characteristics, advantages and
disadvantage comparison, the use of the artificial neural network is the most appropriate Al
atgorithm for the system development. Therefore, an in-depth study of the neural network
algorithms had been carried out. An artificial neural network (ANN) is an information
processing paradigm inspired by the way biological nervou.\ksystems, such as the brain,
processing information. Each neurons is composed of three basic components: (i) the cell
body, (ii) the dendrites and (jii) the axon, ANN can be looked as ‘physical cellular system
which can acquire, store, and utilize experiential knowledge [Davis Garson, 1998]. ANN has
been applied to solve or define an increasing number of complex reasoning problems that is
too complex for conventional technologies-problem or do not have an al gorithmic solution or
for which an algorithmic solution is too complex to be found. In addition, nonlinear
programming methods (e.g. CAE) may need prohibitive amounts of CPU time for calculation

and ANN easily overcomes such a problem. The prediction of a complex problem can be
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acquired by an ANN through a learning process. The inter-neuron connection weights known

as synaptic weight are used to store the knowledge. Therefore, the ANN can be used for the

handling of a complicated problem and represent by the “black box knowledge”.

The development of an ANN system involves five stage: (i) Determination of the input and

output processing unit, (ii) Formulation of the activation function, (iii) Design for network

size and connectivity, (iv) Characteristic and application of the ANN algorithm, and (v) ANN

learning process hierarchy.

(i)

(1)

Input and output processing unit

The building block of a neural network is the processing unit, other terms called as a
perceptron, node, or unit. While some units (e.g. input énd output) do represent specific
constructs or variables others (hidden unit) do not have an assigned meaning. The

output function of a processing unit determines the signal that is to the passed to other

unit in the network. In some cases, the output function is the identify function and the

output of the unit at any time is equal to its activation at that time. In some cases, the
output function is binary, bipolar or, a nonlinear function similar to the activation

functions within nodes.

Formulation of the activation function

An activation function that combines the signais entering a unit with the current state of
that unit to produce a new level of activation for the unit. Then, the incoming signal is
evaluated by an activation function and tﬁe output of the activation function determines
the state of the activation of the processing unit at a specific time. Activation function
can take many forms. Four representation functions are shown in Fig. 10. The sigmoid

function acts as an output gate that can be opened (1) or closed {0). Since the function
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is continuous, it also possible for the gate to be partially opened (i.e. somewhere
between 0 and 1). Models incorporating sigmoid transfer functions often help
generalized learning characteristics and yield models with improved accuracy. Use of
sigmoid transfer functions can also lead to longer training times. The Gaussian transfer
function significantly alters the learning dynamics of a neural network model. Where
the sigmoid function acts as a gate (opened, closed or somewhere in-between) for a
node’s output response, the gaussian function acts like a probabilistic output controller.
Like the sigmoid function, the output response is normalized between 0 and 1, but the
Gaussian transfer function is more likely to produce the “in-between state”. It would be
far less likely, for example, for the node’s output gate to be fully opened (i.e. an output
of 1). Given a set of input to a node, the output will normally be some type of partial
response. That is the output gate will open partially. Gaussian based networks tend to
learn quicker than sigmoid counterparts, but can be prone to memorization. The
hyperbolic: function counterparts to the sigmoid and gaussian functions are the
hyperbolic tangent and hyperbolic secant functions. The hyperbolic tangent is similar to
the sigmoid but can exhibit different learning dynamics during training. It can
accelerate learning for some models and also have an impact on predictive accuracy.
Experimenting with transfer functions for each individual model is the only conclusive
method to determine if any of the non-sigmoid transfer functions will offer both good
learning and accuracy characteristics. For most modeling tasks, the sigmoid function
should at least be a baseline model to measure results. A general rule of thumb is that
the sigmoid will produce the most accurate model but the learning will be slower. If

one intends to frequently train similar models and training speed is critical, different
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combinations of transfer functions, including hybrid networks, are worth investigating
to find out the faster training models that exhibit acceptable accuracy.

Transfer Functions
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’ Fig. 10 Activation Function of the Neural Network

(iii) Design for ne.mOrk size and connectivity
The ANNs are made up of highly connected parallel processing units or nodes. These
nodes are generally arranged in layers in the network. Basically, an ANN must have a
minimum of two layers (input and output) but can have any number of hidden layers
that often becomes a source of confusion when defining the number of hidden layer in
a network. In this study, a network with an input and an output layer is referred to as a
single layer network. At first glanc;e this may appear counterintuitive, but the
convection is to only enumerate layers where processing occurs. Since the input layer
does not perform any processing, it is not counted in the number of layers in the

network.
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A Hidden layer is a layer of nodes located between the input and output layer. Units can
be connected either in a feedforward or feedback system. In a feedforward system,
units are only connected to unit lying in higher layers. Signals are transferred from the
input layer nodes to hidden layer nodes and from hidden layer nodes to output layer
nodes. A fully connected feedforward network is a special case of neural network that
is often used. In fully connected feedforward networks, each node is obtained to every
node in the next higher layer. A neural network can consist of multiple layers of
neurons interconnected with other neurons in the same or different layers. A neuron’s
connection topology with other neurons can be in the same or different layers. A
neuron’s connection topology with other neurons méy also vary from fully connected
to sparsely or even locaily connected. Each layer is referred to as an input layer, a
hidden layer, or an oﬁtput layer.
(iv) | Characteristic and application of the ANN algorithm

The ANN leéming procedures are usuaily divided into two categorizes: supervised and
unsupervised. In supervised learning, a target vector is available which defines the
desired output of the network for a given input vector. A learning algorithm is then used
to adapt the weight such that the desired outputs are reproduced when the input vector
is propagated through the network. Weights are adjusted iteratively according to the
network chosen learning rule as training data propagates through the network. Each
weight change is called an iteration and each pass through a training processing unit is
called an epoch. Unsupervised learning is performed in the absence of a desired or
target output vector. Only input value is supplied in the unsupervised training process.

Without target output values are provided, an ANN will undergo seif-organization
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without refereeing to the error of deviation from a desired value. Through repeated
training iterations, input nodes that are similar in activation form clusters in the output
nodes. For this reasons, ANNs that incorporated unsupervised learning are often called
self-organization systems. The network learns 10 respond to patterns or cluster in the
training data without any a priori specification of output classes or categories. There are
a variety of applications in a new product development process for both supervised and
unsuperv'ised learning paradigm. For example, unsupervised neural network could be
used to discover clusters of both independent and dependent variables as data reduction
techniques similar to exploratory factor analysis. Form these clusters, a supervised
neural network could be built to discover the relationships between the clusters of
independent (input) variables and dependent (output variables). Independent variables
factors that are thoﬁght to be related to successful development and dependent
variables-could be various measures of success or failure. To sum up, in supervised
learning, a 'cc‘urrect output/answer for each input pattern is supplied to the model. That is,
the desired target response for the vector of training cases is also presented to the
network, allowing network weight to be adjusted not only in response to the training
vector but also on the basis of an error signal defined by the target vector. The
Backpropagation, Multi-layer Percetron, Radial Basis Feedforward, Non-linear
Generalized Regression and Adaptive Resonance Theory (ART) neural network
algorithms are grouped into the supervised learning. Unsupervised learning is a process
which is automatic, with classification depending on induction from examples in the
training data set without reference to expected correct classification, i.e. network

trained by unsupervised learning cluster input examples according to similarity. The
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W)

self organizing map and the Hopfield network are grouped into the unsupervised
learning category.

ANN learning Process Hierarchy

The focus of this study is aimed to the development of ANN application that can be
apply to the new product development process, therefore, there exist many exotic and
unique leamning algorithms and learning paradigms that cannot be categorized within
the hierarchy. Most of the popular learning rules and learning paradigms have their
focus in this hierarchy. Numerous extension and adaptations to the basic architectures
exist and are still being developed. Hundreds of learning rules have been published in
relevant neural network journals in the past few years. Unfortunately, once they are
published, little work is done to benchmark each other to determine the specific

advantages and disadvantages of individual methods. Many of these algorithms are

developed either to solve a very specific application or to provide linkages between

artificial neural network and biological neural network. Since, an in-depth analysis of
the nuances associated with each of the numerous extensions in not the goal of the
study, only a limited number of well established and commonly used ANN methods

and structures will be incorporated into the application studied here.

2.3.4 Applications of the Artificial Neural Network

Over the years, this was grown and developed into a prominent philosophy in marketing and

engineering, where the customer is the key to success of an organization and its new product

development (NPD). The artificial neural network is a highly connected parallel structure that

is a new paradigm of computing. Based on the pre-defined instructions, information is
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processed in a sequential way traditionally. However, with the introduction of the artificial
neural network, information can be processed in a parallel way without the necessity of the
predefined instructions. As a result, artiﬁcial- neural network has a wide variety of
applications. In recent years, some researchers and the manufacturers are adopting a neural
network to tackle the non-linear design problem. Fred F. Farshad [2000] using artificial
neural network to predict the Vtemperature profiles in producing oil wells. Zamarreno [1998}
used artificial neural network to provide high quality control in the presence of non-linearity.
Up to this moment, the ANNs are useful in the application of prediction, classification, fault

detection, time series analysis, diagnosis, optimization, system identification, and exploratory

data analysis. .

2.4 Knowledge Intensive CAD

2.4.1 Originof KIC (Knowledge Intensive CAD)

In 1963, a paper p.resented by an MIT research group proposing a system that is now thought
as the origin of Computer Aided Design (CAD) system proliferated to a great number
afterwards [Sutherland]. This concept was revolutionary and stimulated many other
researchers to commence the studies on theories and methodologies for manipulating
geometrical shapes in computers. Therefore, from 1980's to 1990’s, computational geometry
is established on which many of the practical CAD systems are methodologically dependent.
In 1975, The first times when significance of Al for CAD was pointed out was at a
conference that was held in 1977 under the title of “Artificial intelligent and CAD” and this
could said to be point at which Al and CAD were first married [Lsatombe]. In 1984, the

International Federation for Information Processing (IFIP) Working Group 5.2 decided to



organize three successive workshops on “Intelligent CAD” and defined in three different
ways.
(i) CAD that assist designers through all stage of the design process (totally},
(i)  CAD that assists designers in the design process for any design object (flexibility),
(i) CAD that can be counted with any other information processing system, such as
CAM (integration).r
In 1985, a working conference on “Design Theory for CAD” was held by the IFIP WG5.2,
where it was concluded that design theory is a requisite for correct utilization of useful
results of Al researchers when developing new CAD systems and CAD should an assist
designer in the creative process of a design [Yoshikawa, H. and Warman, E A]. Such
proceeding was the result of the first workshop held at Cambridge, MA. U. S. A in October
1987 under the subtitle of “Implication of Al and CAD”. Three major topics were discussed
in this workshop that included: (i) Domain type mechanical, architectural and electrical
design, (ii) Artificial intelligence and (iii) computer science. The second workshop was held
in Cambridge UK in 1989 and the definition of Intelligent CAD (ICAD) is introduced by
Tony Holden. Tony concluded that the future ICAD system has desire to make CAD tools for
casier design within their own specialties. However, all have to solve common problems of
representation and reasoning and require a framework within which design descriptions can
be assembled and interpreted of both human designer and computer assistant. An ICAD
system should be very ‘open’ providing an environment within which a designer may rapidly
explore many possibilities but without the fear of becoming overwhelmed by a mass of
tedious detail or of coming up against hurdles imposed by the implementation technology. It

is often advocated that large scale knowledge bases are useful for engineering application
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including design, manufacturing, operation, and maintenance, because these activities require
an extremely huge amount of and various kinds of knowledge [Forbus]. Perhaps, a new
paradigm has to be looked at which is based on ‘Iess production with more added values
[Tomiyamal993]. This paradigm requests a new way generating added values. Since benefits
can be generated only from knowledge, and obviously more knowledge is needed in various
aspects of engineering. In 1950, Takeda built a CAD system that integrates and made flexible
use of various kinds of design knowledge and that intelligently assists the designer by giving
advises, suggestions, and checking error s based on design process knowledge. In 1995, the
first Knowledge Intensive CAD (KIC) workshop was held in the Helsinki University of
technology espo in Finland. The aim of the workshop was to clarify and elaborate the
concepts of knowledge intensive design and CAD by providing an intematiénal forum for
mutual discussions and exchange of opinions of experts in the field The concept focused on
exploring the. concept of knowledge intensive design as a part of knowledge intensive
engineering activities. The workshop discussed a variety of issues related to KIC; Knowledge
intensive CAD framework, produce and design process modeling and methodologies, tools
and techniques for knowledge intensive CAD. The second workshop was held at Carnegie
Mellon University, Pittsburgh, USA [1996] aimed to examine architectures, representation,
delivery system and methodologies for "knowledge intensive CAD" based on the results of
the first workshop. The third workshop was held at the University of Tokyo, Japan, [1998)]
that focused on the ontology (KIC), Knowledge Intensive Design (KID), knowledge
representation and applications of knowledge intensive CAD systems whilst the fourth KIC
workshop was held at the University of Parma, Italy [2000] that looked into the evolution of

knowledge intensive design for the life cycle, architectures, tool, methodology



implementation and application of KIC. The fifth workshop was hosted by the Department of
Manufacturing Engineering of the University of Malta in Malta [2002] that looked into tools
developed as a result of the previous workshops and extended its focus on the KICAD

architectures to provide support during different design stages.

2.4.2  Definitions of Knowledge Intensive CAD

The basis of knowledge Intensive CAD is that intensive life-cycle knowledge regarding
product and design processes must be incorporated in the center of a CAD architecture.
Many knowledge intensive CAD researchers define Knowledge is the set of all information,
which can be_ brought to bear on a problem and a KIC system consists of commonly
accessible knowledge sources, which can be applied to relevant problem, whére a knowledge
source consists of suitably structured knowledge to tackle a specific problem. A KIC system
consists therefore of rules of expertise, analysis processes, standard, regulation and such likes
[K.J.MacCallunr 1987]. Knowledge intensive engineering is a p)ew style of engineering based
on intensive use of various kinds of engineering knowledge in various produce life cycle
stages conducted with more knowledge in a flexible manner to create more added value.
Knowledge intensive design boils down to integration and management of various kinds of
models to synthesize an artifact, to analyze its properties, and to evaluate its performance
against requirement under certain circumstances”. The knowledge systemization consists of
the following processes via setting up a view, articulation, codification, crystallization,
verification, and reusing and sharing of knowledge [Tomiyama et al.1994]. The concept of
KIC advocates that intensive life-cycle knowledge regarding product and design processes

must be incorporated in the center of a CAD architecture. The KIC concept focuses on the
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systematization and sharing of knowledge across the life-cycle stage and organizational
boundaries. KIC is a field of study that focuses on developing computational techniques for
performing complex design tasks [Tomiyama 1998). The development of a KIC system is to
create a design tool that will effectively make reuse of product knowledge at many levels,
starting with the functional specification and overall design rationale and ending with

individual product modules, components, and their technical and geometric details.

2.4.3 Model for the Development a KIC System

The concept of knowledge intensiveness does not cover only the intelligence of a CAD

system but also the intelligence of a product designed on a CAD. Mantyla [1994] mentioned

that KIC has to be to address the issues of information exchange between various stages of
the core and support processes: the processes and their supporting tools are designed to
support and take advantage of knowledge flow. In addition, he also thought that the

deﬁe}opment of* a knowledge intensive CAD system, ‘1\%) main steps that include (i)

knowledge capitalization and (ii) knowledge deployment. Common criterion of the

establishment/construction of a KIC system include:

(1) Capture and reuse of existing information at many levels, starting from the functional
specifications and overall design rationale and ending with individual product
modules, components, and their technical and geometrical details.

(i) The intensive life-cycle knowledge regarding products and design processes must be

incorporated in the center of the CAD architecture.
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2.4.3.1 Knowledge Capitalization Process

The knowledge capitalization is a methods/process for collecting meaningful data and

converting into reusable knowledge database. When codified a set of reusable knowledge

through the capitalization process, four important factors should be taken into consideration,

()

(ii)

(iii)

(iv)

Format decision
Design information created and utilized must be captured in a computer intelligible

form. To make the codified knowledge reusable, it must first be abstracted and
generalized in a reusable format.

Selection of design information

Design history or design trace must be extracted during the execution of a design
process, resulting a design rationale representation that preserves the design intent,
reasoning and decisions of the designer.

Data preparation and purification

Before the capitalization process, data preparation and purification is needed to filter
out error/noise of a data set.

Graphical user interface
User interface of the KIC system has to be user friendly, designers should not be unduly
burdened by knowledge capitalization activities. In addition, knowledge representation

has to flexible enough to cater the inclusion of information in variable formats,

including text and image.



2.4.3.2 Knowledge Deployment Process

The other major process for the development of a KIC system is knowledge deployment. The

knowledge deployment is a system development for locating, accessing and applying codify

knowledge during the design, manufacturing, or other life-cycle stages of a product. A KIC

developer has to be based on a problem nature, its properties and requirements to deploy a

suitable knowledge databasé for a particular design tasks. Through the knowledge

deployment process, four important elements have to be taken into consideration:

(i)

()

Graphical User Interface

Throughout a product development cycle, locating and using reusable knowledge is
more difficuit than recreating the knowledge, therefore little reuse will take place. An
user friendly graphical user interfaces that can incorporate tools aﬁd concepts of
computer-supported co-operative systems and supporting various protocols for
negotiation, decision making, etc has to be developed.

Format of the codified knowledge

The codify knowledge format has to be modified easily and augmented to make it

useful in any detail context.

{1ii) Authorization and level of abstraction

(iv)

Since engineers’ disciplines need form various to assess product information at
different levels of abstraction and aggregation, a systematic way to distribute the
required knowledge to a user is a critical success factor.

Conceptual mapping
The concepts that used by various people can be genuinely different. The concepts to

describe a product from design viewpoint (functions, behaviors, structures) will be
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different from those used from analysis or manufacturing viewpoint (features geometry,
manufacturing processes). Therefore, a concept standardization mapping has to be

taken place.
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Chapter 3 Methodology

3.1 Model for the Development of a KIC System

Based on the literature review, observations from the new product development practices
of the partnered company and the knowledge intensive CAD principles, theories and the
general requirements of national standards, a KIC new product development process
model for the small electrical family appliance was developed and shown in Fig. 11. The
intension of the roadmap for development is. to provide a structured guideline/ best
practice that any interested parties can refer and follow to develop a KIC system to suit
their own new product development application(s), so that a design problem that involves
multi-discipline and non-linear characteristics can be solved in a much efficient and cost
effective.way. | |

The methodology/roadmap starts with the break down of a product’s customer
requirements (CRs) into its functional requirements (FRs), then decompose into their
corresponding’ design domains (DDs) and subsequent process domains (PDs) through the
use of the Axiomatic Design theory [Nam. P. Suh]. Through the use of the zigzag
mapping process, design parameters are mapped and transferred to functional requirement
tests such as drop test, heating test and so on for design validations. In this model,
attentions have to be paid on the success of mapping the design domain to the functional
requirement tests. Once all the tests for FRs have been identified, a decision matrix
should then be constructed to determine whether there exists any margin/opportunity for
the development of a KIC system for a particular design application. If the answer is no,
then conventional computer aided engineering (CAE) /finite element analysis and
physical prototyping techniques would become the more feasible/appropriate solution to

appraise the fulfillment of the functional requirements. If the decision is yes for the
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development of a KIC system, then the knowledge crystallization and knowledge

deployment processes can then be initialized to develop the required system.
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Fig. 11 Roadmap for the Development of a KIC System
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3.2 Matrix for the Decision to Set up a KIC System

Even through the use of a KIC system seems like a very attractive and beneficial solution
to handle a highly complex design problem, it is strongly not recommended to apply KIC
to solve every product design problem by such approach. The way to appraise a design
problem whether it is desirable optimized for an application, a decision matrix has be
constructed to aid the KIC decision so that the risk, cost and benefits for the application
can be compromised (Fig. .12 and 13). The technical complexity of a product design
problem can be classified into three types that include (i) product data filtering, (ii) data
enhancement and (iii) knowledge development. The data; availability for an application
can vary from complete to rare whilst the technical complexity of data handling also
increases from data fitting to design enhancement and then to knowledge development. If
data availability is rare and the technical complexity becomes much higher, under such
scenario, it is highly not recommended to use KIC approach to handle design problems of
such kind. Even though in some case that the complexity of a design problem is so highly,
insufficient data will lead to a much greater risk in development and the demand of
additional data requires excessive resources. Therefore, the availability of legacy data and
the complexity of a design problem will determine the development cost and the directly
influence the risk of a KIC system development. The most favorable scenario for the
application of KIC is a design problem with both high technical complexity and the
availability of data is plenty. In a nutshell, a balance among the technical complexity of a
design task, availability of the legacy data, development cost and risk of failure has to be

made.
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3.3 Workflow for the Development of a KIC System

The workflow for the development of a KIC system can be applied to any dedicated
product design problem that needs to confine to a specific requirements. A process-driven
approach was design to replace the experience deﬁendent/estimation approach to appraise
a new design alternative in a more effective way. The workflow for the development of a
KIC system is shown in Fig 14. Basically, the workflow composes of two main phases
that including knowledge crystallization and knowledge deployment. The knowledge
crystallization focuses on the development of a knowledge database. The workflow
guides a user to dissociate a problem into attributes of data type, nature of prediction and
characteristics in such away that can act as filtering criterion for the recognition of the
potential ANN ‘algorithms for a KIC application development. For those ANN algorithms
that process the required functionaries have been identified, all the ANN candidates have
to undergo a training to find out the best performer. After the knowledge database has
been crystallized from the legacy data sets, the knowledge deployment process that
focused on the reuse of knowledge from the establishment knowledge database can begin.
Through the development of a web-based graphical user interface, a user can deploy the
KIC system to solve a similar or entirely new design problem in a particular application
anywhere. Upon the completion of a new prediction is confirmed, the new data set result
can then be input to the KIC system for the enrichment of the knowledge database for

performance enhancement.

Once a decision of developing a KIC éystem has been made, the selection of the
appropriate Al algorithms will come to play. Through the consideration of Al algorithm’s
generalization, flexibility, need of expertise knowledge and capability in handling design
problem complexity, the potential candidates are sorted out. Generalization ability of a

knowledge generation algorithm refers to the capability to adopt a new prediction based
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on the past data. If an algorithm claims its generalization ability is very high that means
the tool will perform very well to predict/adapt to new situations. In case of a new
product development, high generalization is preferred as adoption to many new situations
is always required. On the other hand, if an algorithm with good generation capability but
can only handle a few parameters, then its flexible can be regarded as low and will give a
bias contribution towards the misfit. When the flexibility of an algorithm is high,
decreases the bias error accofdihgly. Expertise knowledge means the degree of expertise
that required for identify the problem definition and conducting the problem to the
appropriate tool for analysis. The characteristics/problem handling capabilities of the
most common used Al mechanisms for handling the above four area of concerns were

summarized and listed in Table 3.

Table 3 Characteristics of Al Mechanisms

echanism Neural Rule Based Expert Case Based Fuzzy Logic
Characteristics Network System System Reasoning
(Generalization High Low Low Medium Low
Flexibility Medium High High Medium Low
Need of Expertisé High Low High Medium High
Knowledge .
Capability in High Low Medium Medium Medium
Handling Complex
Design Problem
Performance 3 Highv 1 High/ 2 High/ 4 Medium ! High/
| Medium 3 Low 1 Medium/ 1 Medium/
1 Low 2 Low

3.3.1 The Knowledge Crystallization Process

3.3.1.1 Data Collection and Conversion

The first step of the knowledge crystallization process concerns with the collection of
legacy data sets and then the screening and purification processes. The third step is the
conversion of the legacy data into a suitable format that can be input to ANN algorithms.
Data will be classified into two types including: (i) structured (spreadsheets and report)
and (11) unstructured (image). For the preparation of the legacy data, usually

represented/stored in textural file can be extracted and converted through a small
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conversion program. Searching criteria including subject name, geometry attribute with

start indicator and end indicator can be input accordingly. Upon the completion of a

search, the identified data fields can be stored into a CSV formatted file and then export

for knowledge crystallization.

For a data set with unstructured format, data sets can only be extracted through the

creation of a special extraction program. Since a legacy data set usually contain errors or

incompleteness, therefore it is necessary to purify a data set by filtering out all these

incorrectness.

The following three ways are suggested for the purification of a data set:

(1) Normalization - Improves the accuracy and efficiently of a neural network
algorithm involving distance measurement.

(i)  Reduction - Data size can be reduced by aggregating, eliminating redundant
features, or clustering.

(i)  Integration - Data sets from multiple sources can be merged into a coherent data
store, such és a data warehouse or a data cube.

In addition, when data sets are insufficient, additional data sets have to supplement by

new experiments (Fig. 15). Through the use of above methods, data with error derivations

that greater than a particular tolerance can be eliminated whilst the possible errors

inducted by the raw data sets can also be minimized. Once a set of legacy data has been

purified and a number of potential ANN algorithms have been identified, the selection of

the best ANN candidate can then be started. The training will be stopped base upon the

result of converging process limits whilst the best ANN aigorithm can then be identified.
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Fig. 15 Capturing of Legacy Data

3.3.1.2 Selection of ANN Algorithm

Once the criticél concerns of a design problem, ité data and prediction natures have been
identified, the selection process of the ANN algorithm can be started. Each ANN
algorithm has its own prediction handling capability. Therefore, the primary ANN
algorithms candidates have to be sorted out through the mapping of problem nature, data
type, date property, study goal and the study requirements. For example, in a heating test,
attributes of data sets can be classified into nominal with continuous property, the
outcome requirement is predictive and then the goal of the study is supervised. Nominal
data type means the data is a numerical representation (e.g. spreadsheet data) while
ordinal data is classified as image, characters and etc. Descriptive means the use of data
mining is to discovering the patterns, associations and clusters of the information while
predictive is to make use of those patterns to predict future trends and behaviors.
Supervised means a design task consists of result data for the learning process while
unsupervised means the design task does not contain any result data for the learning
process. Once the nature of a design problem and its data type have been disassociated

into element of concerns, capable ANN algorithms can be identified through a simple
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mapping process. Problem nature of a heating test can be classified as a non-linear in
nature and its requirement predictive, whilst the expected thermal distribution as a
prediction within continuous behaviors with and an expected goal of supervised.

In most cases, there exist several ANN algorithms that can satisfy all the primary
requirements to solve a specific design problem. The most common available ANN
mechanisms including: Self-Organize Mapping (SOM), Backpropagation (BP), Adaline,
Perception, Kohonen. Radial Based Feedforward Neural Network (RBF). Madaline.
Learning Vector Quantization (LVQ), Adaptive Resonance Theory (ART) were list in Fig.
16. Each algorithm has its own characteristic. For example, SOM can handle problems of
non-linear type, both nominal and ordinal data sets, discrete data property, unsupervised

study goal and descriptive study requirement.

Selection of the appropriate ANN algorithm
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3.3.1.3 Setup of Training Schema and the Identification of the Best ANN Algorithm

After the recognition of these potential ANN algorithm candidates, it is necessary to let
then all go through the knowledge crystallization process before the best ANN algorithm
can be identified. The training of the data sets is of critical importance in a knowledge
crystallization process. The number of data sets that require for properly train a neural
network suggested by Barens [1998]). Through a series of training, errors and
convergences of each ANN algorithm are found and their performances compared. The
ANN algorithm with the smallest errors and quickest convergence will be the best and be
selected to solve the particular type design problem. Since each ANN algorithm has its
own network structure and typical requires different number of neurons with different
weightings to represent a design phenomenon, it is necessary to setup a proper training
schema to control the learning rate and obtain the performance indications. In case of the
selection of the activation function, if the complexity of the problem is high, just in case a
multi-discipline non-linear type, the time that requires for training will be a very
significant issue. The “Guassian” approach that process with the highest learning rate will
be selected. In the reverse case, if the training time is not a critical concern, “Sigmoid”
approach that gives the highest accuracy shall be used as the learning function. Therefore,
a compromise has to be made tn between both learning rate and network size in order to
develop an efficient and cost effective training scheme for a predefined requirement of
accuracy. As a trade off, based on the limitétion of computational time, amount of input
variables and their properties, a suitable training scheme has to be formulated before the
training of the selected neural network algorithms can be started.

The development of a neural network prediction consists of three phases that include: (i)
training, (i) verification and (i) testing phases. In the training phases, training

parameters including: learning rate, threshold value (weights of neurons) and parameters
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for the validation and testing of the network have to determine. A learning rate can be set
to high or low while the initial values of the threshold value should be set as random.

As the number of neurons and layers and the initial conditions will determine time of
training, the settings of these parameters are very important, however, there does not
exists any systematic way to set these values and normally, this process can only be done
in a trail and error base. According to the proposed model, training should be started with
lower learning rate and randomized weights. Several iterations will be required before an
increase of neuron number of the hidden layer. The input data that need to be distributed
to the training, verification and testing stages of a data set should be in a ratio of 2:1:1
[John Petkov].

Once training has been completed, the corresponding verification has to be taken place.
The output/prediction of the data set has to compare with the actual result with a test that
known as the “black-box testing”. In a normal case, the verification errors will drop
progressively as the training is carried on. In case, the verification error starts to rebound
during the venfication process, the ANN algorithm has over-learnt (i.e. the data is
overfitted). Under such circumstance, a system developer has to stop the training process
and restore the system back to the previous status with the least verification error.

After the completion of the verification, the testing phase can then be started to evaluate
the performance of the selected ANN algorithm through the use of derived weights. The
derived weights are obtained by measuring the ability of the ANN algorithm to predict.
The black box testing comparison of testing resuits to historical results is again applied to
appraise whether the system can produce. Even through the testing error can provide a
final check of the overall performance of an ANN algorithm, the deviation of the
verification and the testing errors also closed monitored. In case a neural network give a

significantly large testing error than its verification error, the neural network needs more
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cases (increase the training data set or increase the network complexity) because a very
low verification error might be obtained by chance. In contrast, if the value of the
verification and testing error are both very close together. the network system can be
regarded as learned to generalize reliably. The above procedures have to be repeated and
applied until the best ANN algorithms can be identified. At the end, the ANN algorithm
that can meet both the certainly level of accuracy with the lowest error in verification,
testing and the deviation between those errors will be the final ANN algorithm that fits
the design application. Before casting of a codified knowledge database into a multi-KIC
system, the storage and partitioning must be carefully considered and designed, because
these issues will affect the further development of further applications. The detail

workflow for the knowledge crystallization process is shown in Fig. 17.
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3.3.2 The Knowledge Deployment Process

Once the codified knowledge database has been established, it can then be used to
answer/entertain a new design enquiry through a knowledge deployment process. The
workflow of the knowledge deployment process is shown in Fig. 18. The process
composed of two steps: (i) the development of a graphical user interface for an user’s
inquiry and visualization of a KIC output/prediction, and (ii) the development of
knowledge application programs for data input, conversion, retrieval of codified

knowledge and the output of a KIC prediction system.
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Fig. 18 Workflow of the Knowledge Deployment Process

3.3.2.1 Developing of the Pre-Processing Application Programs for Inquiry
To start with a knowledge deployment process, a new enquiry has to be input in the first
placed through a web-centric graphical user interface. The raw data/design style has to be

input to the KIC system and an application program has to be developed for data

47



recognition. Input data after the recognition process needs to be converted to an

appropriate data format that can be recognized by the KIC system. For example, a user

can input a 3D model for inquiry. In order to permit such recognition, in ease of the

heating test, an automatic slicing system has to be developed to slicing the input 3D

geometry into nodes whilst the corresponding coordinates (x, y and z) can be detected.

3.3.2.2 Design of the KIC System Architecture

The design of the KIC system architecture depends upon development of the degrees of

service and automation intended for the service provided. The key issues of concern

including the creation and management of (i) the graphical user interface, (ii) the function

model, and (iii) the domain model. The levels of service and functionalities in the

application programs and program interface levels are shown in Fig. 19.

)

(i)

(iii)

The Domain Model Management

The domain model management relates to the performance of the execution or an

inquiry command activities. The domain management controls the activities that
include: (i) data extraction, (ii) knowledge deployment, (iii) data embedment
knowledge, and (iv) result displays.

The GUI Management

The GUI management concerns with the development of an interface for support
the input and output. GUI actuates opefation command (s) from a user and provides
functions including: opening, execution, delete, modify object data and display of
prediction of an enquiry.

The Function Model

The management of function model includes the execution of an inquiry and

provides the required functions for the knowledge deployment and tapping of
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knowledge from the knowledge database of the KIC system. Furthermore, the

system and the graphical user interface are suggested to build on Web so that a user

can assess the system through a Web-browser in any where with a plug-in program

to perform a request through the Internet.
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Fig. 19 The Architecture of the Proposed KIC System

3.3.2.3 Development of the Post-processing KIC Graphical User Interface

The last step in the KIC development process is to construct a post-processing application

program for the displacement of the intended result when the prediction of a KIC

application is transferred for further CAE analysis. For example, in the heating test, after

the prediction of the surface temperature of a new plastic toaster case design. the resultant

temperature/thermal strain that predicted is required to display for visualization.
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Chapter 4 Case Study — Application of KIC for the Prediction

of Thermal Displacement of a Plastic Toaster Case

4.1 Background of Study

[n the small electrical family appliance industry, housings of a toaster, iron, hair dryer,
water jug have a common design concern that is the thermal strain/displacement when
they are in operation. Such design problem has to be solved by multi-discipline theories
whilst the structural properties of the plastic casing materials are non-linear. For the
calculation of the thermal strain of a plastic toaster case, it involves five multi-discipline
and non-linear considerations (Fig. 20) that include (i) convection, (ii) conduction,
radiation (ii1) non-linear stress-strain. and (iv) air flow under operation.

f Air Flow
Toaster Case / \

— —
k A f\
Breads Eal
Heating \J
Chassis
Gap
Heating T
Elements
Heat flux
Bottom L | [ T
Cover z :
|00 1] 6 ) e

Q Openings w

Fig. 20 Schematic of a Toaster Heating Test
When a toaster case is in operation, the principle heating processing is done through the
convection and conduction whilst the secondary heating is through radiation. When the
air in between the openings is heated up, a stream of airflow will start to circulate that

will interrupt the heating flux. According to the final temperature gradient profile, a



plastic toaster case will be expanded according to its non-linear stress/strain behavior.
Such type of design problem is classified as non-linear and multi-discipline as nature by
Kristopher Seluga [1998]. At the moment, almost all companies in the industry are still
using physical prototypes and the trial and error approach to find solution or deal with

such problem.

4.2 Assessment/Justiﬁcation for the Set Up of KIC Heating Test

In the past two years, the partnered company G.E.W was forced to trim its product
introduction time for a new toaster model from six to twelve months down to three to four
months but over 60% toaster projects could not meet the deadline of schedules.
According to a Pareto analysis (Fig. 21) in the causes of delay in 2002, it was found that
three functional tests that including heating, drop and bread color were accounted for over
80% of failures and caused the delays. However, the company is still relying on her
individual designer’s capability and the trial and error approach. The worst case of delay
was up to nine months. From the pie chart shown in Fig. 22, one can find that, the toaster
business accounts for 60% of G.E.W’s business and the number of new toaster project
that requires to develop had been increased from 25% to 48% (approximately double) in
five years times (Fig. 23). Even through the development of toaster has been practiced for
many years, the successful rate of the products that can pass a new heating test had
suddenly decreased by 42% because of the increasing complexity of cosmetic or styling.
With the new requirements of the market,. the experience that cumulated from the past can
no more apply to solve such change in industrial designs. Huge amounts of physical
prototypes were built in the conceptual design phase to test the feasibility of the design
alternatives. The average fabrication time of a physical prototype by RP is around three

days for one new design, and normally one extra prototype will be needed for final
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confirmation. The cost of building the physical prototypes were over $2,400,000 ($25000

x 48 x 2} in the year whilst the time required for a complete heating test takes 24 days.

%
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20
10 ,
o LB : . e . 1

Heating Test Drop Test Bread Colour Abnormal Life Test No loading Cther Test
’ Test Test Test

Remark: Other tests including bread carriage test, impact test, screw test, pull test, pull test and creepage test

Fig. 21 Pareto Analysis of Toaster Functional Test
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Fig. 22 Business Distribution of G.E.W
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Fig. 23 Number of New Model Introduced
The company had tried to make use the entirely computer aided engineering approach.
However, at least three different CAE software packages have to be used to solve such
kind of multi-discipline/ non-linear case design problem (Fig. 24). As the general
confidence of a CAE software package prediction usually ranged from 60% to 90%, the
accumulated accuracy of the use of three consecutive CAE package, with an average 80%
accuracy, will drop to around 51% (0.8x0.8x0.8). Furthermore, the investment of
softwares, resource, staffing and time to run such virtual experiments would be
tremendously large and long. Therefore, before the entirely CAE/FEM/FEA approach

becomes practical, the use of KIC to address a design problem of multi-discipline/non-

linear with plenty of legacy data sets is desirable.
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Fig. 24 Accuracy of Using Convention CAE Approach and Proposed KIC Approach

4.3 The IEC Heating Test

According to IEC-CEI 335-3-9, the power setting of a toaster in a heat test has to be set
1.15 times of its maximum defined value. With bread(s) inside, the toaster is heated up
and set to normal operation. When the bread color becomes golden, the toaster is
deactivated and allowed to cool down for 30 seconds with a fan. The process is repeated
for a period of 20 minutes and the maximum toaster case temperature should not exceed
130°C. Other than the thermal effects of the heating, airflow in openings. non-linear
plastic behavior, the release of frozen in stress during the injection molding stage will

come to play and the plastic case dimensions will be variant.

4.4 Set Up of the KIC Investigations for the Heating Test
Two investigations had been formulated to evident of the effectiveness and suitability of

the proposed methodology. These included: (i) prediction of a dedicated model with



variable sizes, and (ii) prediction for an entirely new toaster case design from previous
design toaster cases. Six toaster’s designs with different shapes were selected for the
investigations (Fig. 25). Four toaster’s designs were chosen for data training set and each
case design with four lavers that included +0O(normal). +2mm. +4mm and -2mm while the

rest whilst the rest two for confirmation.

Fig. 25 Six Toaster Models are Selected for Investigation

As the toaster case is symmetry, therefore, only a half-model was used for the
investigations and each model were divided into eight regions by nine line segments
(Fig.26) with thirteen layers to intersect the nodes for temperature record and thermal
strain displacement. Therefore, each set of training data contained 9 x 13 x 4 = 468 nodes

and the total number of training data for the four models was 1,872 nodes.
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Fig. 26 Partitioning of the Toaster Case for Temperature Input

4.5 Disassociation of Problem Attributes and Properties

The first step to tackle the heating test problem was to examine the nature and
characteristic of its attributes/elements critically. The problem characteristic and data type
were dissociated and grouped into classes that required for mapping the appropriate ANN
algorithms in the following stage. Selection of the correct or the most preferable
algorithms for a design task is critical and will highly affect the knowledge crystallization
process and the subsequent building of the knowledge to database. The selection of the
possible ANN algorithms were done according to the decision table mentioned in the
previous chapter whilst the attributes were decomposed such as problem nature, data type,
data property, study goal, and task requirement (Fig. 27).

In the heating test, the prime input data was the geometry coordinates that represent a

specific shape and temperature in numerical format, therefore the use of ANN algorithm
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was sufficient to handle such continual data property and nominal data. All the available
or assessable ANN algorithms that process such capability of handling both the data and
problem property and the data type were listed out. Fig. 28 showed the decision matrix.
Through the mapping of the problem nature (PN), data property (DP), data type (DT),
study goal (SG), and task requirement (TR), to the handling capability of the ANN
algorithms, three ANN algorithms that included (i) backpropagation (BP), (ii) multi-layer
perceptron (MLP) and (iii) radial basis feedforward (RBF) were sorted out and would be
the potential candidates for final ANN selection. However, due to the resource and
availability limitation, only the MLP and RBF algorithms were selected to undergo the

knowledge crystallization process.
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Fig. 27 Decision Matrix of the Selection of ANN Algorithms
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4.6 Conversion of Legacy Data to the KIC System for Knowledge
Training

In order to sort out the best ANN algorithm for the KIC for heating test, all geometry
legacy data sets (the coordinate of case geometries) were input to the system through a
visual basic program into a pre-set format. The output format for the CAD system was
vda format that include curve, point attributes, user name, etc. For the ANN prediction, it
was required to collect the toaster case point sets that represent the geometry behaviors. A
visual basic system was built to filter out all the noise and error. Then, the data in vda
format was transformed and converted into a csv format (Fig. 29) for further ANN

analysis.
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4.7 . Data Analysis and Purification

Fig. 30 showed the legacy data sets of the temperature profile for different sizes and
styles of toasters. It was found that the different size of cases with the same shape gave a
similar profile of temperature distribution. When comparing the heating profiles of
different shapes of case, it was found that their profiles were quite similar. Any error (Fig.
31) appeared in the smopthing process was cleaned and purified so that noise and
inconsistency data set would not be existed. Fig. 32 shows a heating data set after the

process of purification.

4.8  Investigation I- Prediction of Dedicated Style with Variable Sizes

The first investigation was aimed to find out the capability of ANN in_.predicting the
temperature profile of a new toaster case with a dedicated geometry but with different
sizes. In this case, the data sets of four different sizes of a dedicated toaster case and their
temperature profiles were put into training. The sizes of the cases including one nominal
(+0mm), one under size (-2mm) and two oversizes (+2mm and +4mm) were input for the
training and the establishment of a knowledge database whilst the toaster case with size
+3mm over size was used for the knowledge prediction. The tolerance acceptance
(difference between the predicted temperature and the actual temperature) of a prediction

should not exceed +20 or -10°C.
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Fig. 32 Purified Data Set for the Toaster in Line 1 Location

62



4.8.1 Network Input Determination and Setup of Traiﬁing Schema

In this study, the coordinates of a geometry (X, Y, Z) were selected for the analysis and a
reinforced training parameter, the absolute distance D (distance between the chassis and the
toaster case outer surface) was also included. Therefore, there existed four training inputs and
one target output i.e. the temperature on the toaster surface. In order to avoiding over-training,
the input training data was divided into three sections, known as the training, verification and
testing data (Fig. 33). Two training schemas were set known as (i) the whole set approach,
and (ii) the divided approach. The detail training schema for the first study was shown in

Fig.34.
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Fig. 33 Screenshot of the Neural Network Training
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Fig. 34 The Training Schemas for the First Investigation

4.8.2 The Best ANN Algorithm Selection

The data sets were training in four different ways and their root-mean-square (RMS) errors
were used for monitoring. At predetermined intervals, the trainings were paused and the
current weights were measured. Before a training resumed, the pre-mature network was
presented with the verification data and its error was monitored. The verification errors of the
studies decreased steadily before they stabilized. However, the verification errors for the
studies might pass through a minimum and then rebound because of the over-training effect.
The previously stored set of weight would be closed to the optimum. Finally, the
performance of the ANN algorithm was evaluated. The training results of the ANNs were
shown in Tables 4 to Table 7. By comparisons of the testing errors, training errors and the
verification errors of all the studies, it was found that the RBF algorithm had the lowest error
in “schema 100" while “schema 29" was the lowest for the MLP algorithm. The best
performance for this investigation was schema 29 whilst the network weight distributions

were shown in the Fig. 35 and Fig 36.
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Table 4 Summary of the Network Setting and Training Results for RBF and MLP with

Divided Approach (Zone 1)

Training | Type | Error | Inputs Hidden | Training Verification | Testing
Scheme Error Error Error
3 MLP | 7.99 4.00 3.00 4.77 7.99 8.52
4 MLP | 7.39 4.00 4.00 1.84 7.39 8.45
3 MLP | 7.27 4.00 5.00 1.95 127 8.32
) MLP 7.24 4.00 7.00 1.27 1.24 8.21
11 MLP | 7.18 4.00 11.00 1.59 7.18 7.99
Training | Type | Error Inputs Hidden Training Verification | Testing
Scheme Error Error Error
36 RBF | 8.23 4,00 36.00 4,35 8.23 7.95
49 RBF 1ot 4.00 49.00 2.70 197 a3
52 RBF 7.54 4.00 52.00 2.29 7.54 7.24
S RBF 7.54 4,00 53.00 2.20 7.54 Tl
54 RBF | 7.52 4.00 54.00 2:13 7.52 134

Table 5 Summary of the Network Setting and Training Results for RBF and MLP with

Divided Approach (Zone 2)

Training | Type | Error | Inputs Hidden Training Verification | Testing
Scheme Error Error Error
4 MLP | 6.14 4.00 4,00 1.91 5.90 6.14
8 MLP | 5.81 4.00 8.00 6.36 5.48 11.43
9 MLP | 5.72 4.00 9.00 497 5.47 10.06
16 MLP | 5.64 4.00 16.00 3.01 5.44 7.03
25 MLP | 5.56 4.00 25.00 2.25 535 6.83
Training | Type | Error | Inputs Hidden Training Verification | Testing
Scheme Error Error Error
12 RBF | 6.68 4.00 12.00 4,52 7.93 6.54
19 RBF | 5.80 4.00 19.00 4,22 7.69 6.44
29 RBF | 5.77 4,00 29.00 3.16 7.56 5.65
45 RBF | 577 4.00 45.00 .21 5.53 6.06
68 RBF | 5.71 4.00 68.00 1.07 5.34 6.12
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Table 6 Summary of the Network Setting and Training Results for RBF and MLP with

Divided Approach (Zone 3)

Training | Type | Error | Inputs Hidden | Training Verification | Testing
Scheme Error Error Error
6 MLP | 3.04 4.00 6.00 4.26 3.04 8.22
8 MLP | 2.94 4.00 8.00 4.05 2.94 7.71
10 MLP | 2.69 4.00 10.00 4,717 2.69 8.74
13 MLP | 2.68 4.00 13.00 4.63 2.68 8.33
20 MLP | 2.63 4.00 20.00 3.73 2.63 7.65
Training | Type | Error | Inputs Hidden Training Verification | Testing
Scheme Error Error Error
12 RBF 6.61 4,00 12.00 5.17 6.61 6.82
13 RBF 5.81 4.00 13.00 432 5.81 5.99
14 RBF s 7 4.00 14.00 4,28 372 6.36
15 RBF 5.46 4.00 15.00 4.09 5.46 6.16
16 RBF | 494 4.00 16.00 3.36 4.94 5.62

Table 7 Summary of the Network Setting and Training Results for RBF and MLP with

Whole Set Approach

Training | Type | Error | Inputs Hidden Training Verification | Testing
Scheme Error Error Error
29 RBF | 16.55 4 29 15.90 16.55 16.45
45 RBF 14.97 4 45 .37 14.97 14.51
68 RBF | 9.68 4 68 7.11 9.68 8.70
79 RBF | 7.78 4 79 5.94 7.78 10.22
100 RBF | 6.67 4 100 495 6.67 9.23
Training | Type | Error Inputs No. of TError VError TeError
scheme neurons
o MLP | 5.29 4 2 3.64 5.29 6.35
5 MLP 5.47 4 5 4.85 5.47 7.69
6 MLP 320 4 6 3.62 5.20 6.49
7 MLP 523 4 7 3.93 5.23 7.00
29 MLP | 433 4 29 313 433 T AT
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4.9 Investigation 2 - Prediction of an Entirely New Toaster Case Design

from Existing Styles

The second investigation was aimed to test the capability of the KIC for the prediction of a
completely new toaster/design geometry. To start with the investigation, data sets of three
different toaster cases were used to build up tl}e knowledge database. Similarly to the
previous study, the data sets were trained properly to form a new knowledge database for the

prediction of toaster case temperature under the working condition for the fifth and sixth

models.

4.9.1 Training Schema for the Fifth Tbaster Case Temperature Prediction

Similarly, geometry data with x,y,z coordinates, a reinforced design parameter distance D
and case temperature were input to the training process. In the second study, two training
schemas were also assigned: the first schema is multi-style with single normal size (468 data)

and the second schema is multi-style with multi layers (1,872 data) input. The detail schema
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for the study was shown in Fig. 37.
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4.9.1.1 Investigation | with 468 Data Sets — Multi-Style/Single Layer

Fig. 37 Schema for the Setup of Investigation 2
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Having gone through the same training process mentioned in the first study, the training

results for each of the network topology were recorded and shown in Table 8.

By comparison with the test errors, training errors and the verification errors of all training

schemas, for the RBF algorithm, the lowest error was found in schema 112 while schema 28

gave the lowest error for the MLP algorithm. The best performance for this investigation was

given by schema 28 and the network weight distributions were shown in the Fig. 38.
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Table 8 Summary of the Network Setting for RBF and MLP with 468 Data Sets

Training | Type Error Inputs | Hidden | Training | Verification | Testing
Scheme Error Error Error
116 RBF 11.49 4 116 6.99 11.49 9.10
I8 RBF 11.47 4 117 6.92 11.47 8.98
118 RBF 10.91 4 118 6.77 10.91 9.32
120 RBF 10.74 4 120 6.73 10.74 8.71
121 RBF 10.61 4 121 6.67 10.61 8.84
Training | Type Error Inputs | Hidden Training | Verification | Testing
Scheme Error Error Error
6 MLP 9.27 4 6 13.36 9.27 13.41
18 MLP 8.81 4 18 10.11 8.81 12.81
19 MLP 8.78 4 19 9.97 8.78 12.92
26 MLP 8.77 4 26 12.63 8.77 1313
28 MLP 8.54 4 28 13.45 8.54 13.84
_! — — 1 . S —
Ej % 06 fg %06
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(a) MLP Algorithm with 468 Data Set

49.1.2

Weight of neurons in each intervals

(0.25 per interval)

Weight of neurons in each intervals

(0.25 per interval)

b) RBF Algorithm with 468 Data Set
Fig. 38 Final Weight Distribution for the MLP and RBF Algorithm with 468 Data Set

Investigation 2 with 1872 Data Sets — Multi-Style/Multi-Layers

Similar to the previous investigation, this investigation went through the same training

process and the training results for each of the network topology were recorded and shown in

Table 9.

Based on the comparison with the test errors, training errors and the verification errors of all

training schemas, for the RBF algorithm gave the lowest error in schema 58 while errors of
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schema 14 was the lowest for the MLP NN algorithm. The best performance for this
investigation was schema 14. Therefore, the choice of the best NN candidate was MLP in

this round. The network weight distributions were shown in the Fig. 39.

Table 9 Summary of the Network Setting for RBF and MLP with 1872 Data Sets

Training | Type | Error | Inputs | Hidden Training Verification Testing
Scheme Error Error Error
49 RBF 10.10 4 49 5.90 10.10 16.45
54 RBF 9.80 4 54 542 9.80 14.51
56 RBF 9.29 4 56 4.90 9.29 8.70
57 RBF 9.28 4 =17 4.86 928 10.22
58 RBF 927 4 58 4.85 9.27 9.23
Training | Type | Error | Inputs | Hidden Training Verification Testing
Scheme Error Error Error
| MLP 10.56 4 | 10.13 10.56 10.10
2 MLP 10.54 4 2 10.12 10.54 9.86
4 MLP 10.44 4 4 10.10 10.40 9.88
6 MLP 10.32 4 6 9.89 10.32 9.71
9 MLP 10.26 4 9 9.77 10.26 9.65
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(a) MLP Algorithm with 1872 Data Set b) RBF Algorithm with 1872 Data Set

Fig. 39 Final Weight Distribution for the MLP and RBF Algorithm with 1872 Data Set
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4.9.2 Setup of Training Schema of the Sixth Toaster Case Temperature

Prediction (Multi-Style/Multi-Layers)

This study was used to further confirm the establishment of a knowledge spiral in the study
that can refine and increase the ability/performance of the knowledge system (Fig. 40). Based
on the previous knowledge database establishment, another new toaster case was brought for

prediction for the performance confirmation of the KIC system. The number of training data

sets for the study was increased from 1,872 to 1,989 (1872 +117 with new predicted model).

Fig. 40 Generation of the Knowledge Spiral



4.9.2.1 Selection of the Best NN Algorithm

Table 10 Summary of the Network Setting for RBF and MLP

Training | Type | Error | Inputs | Hidden Training | Verification Testing
Scheme Error Error Error
118 RBF 8.95 4 118 7.88 8.95 9.30
120 RBF 8.95 4 120 7.88 8.95 9.30
121 RBF 8.94 4 121 7.87 8.94 9.30
123 RBF 8.93 4 123 7.87 8.93 9.29
124 RBF 8.93 4 124 7.87 8.93 9.29
Training | Type | Error | Inputs | Hidden Training | Verification Testing
Scheme Error Error Error
| MLP 8.68 4 | 7.74 8.68 7.69
3 MLP 8.64 4 3 5.57 8.64 6.35
6 MLP 8.52 4 6 3.75 8.52 7.00
8 MLP 8.47 4 8 6.39 8.47 6.49
14 MLP 8.39 4 14 5.85 8.39 b A i)

By comparison with the test errors, training errors and the verification errors of all training
schemas, for the RBF algorithm gave the lowest errors with schema 124 while schema 9 was
the lowest for the MLP algorithm. The best performance for appeared in schema 9 and the

best ANN candidate was MLP. The network weight distributions were shown in the Fig. 41.
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(a) MLP Algorithm with 1989 Data Set (b) RBF Algorithm with 1989 Data Set

Fig. 41 Final Weight Distribution for the MLP and RBF Algorithm
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4.10 Deployment of the KIC

After the establishment of the validation of the KIC knowledge database, the next step was o
deploy the system for regular usage. The deployment process consisted of the building up of
an automatic slicing program to determine the coordinates of toaster case design for
temperature inquiry. Furthermore, a web-centric graphical user interface for geometry input
and the displacement of temperature prediction were built.

A user can then be based on the temperature prediction to make a decision whether a design
can be acceptable or not and take any required remedial actions for a design modification.
From now on, the engineers in the company can make use the KIC system for the prediction
of temperature, and together with the use of CAE software to determine the thermal
displacement of a similar or entirely new toaster design. The results of temperature gradient
and thermal strain displacement of the case study were shown in Fig. 42 to Fig. 50.
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Chapter 5 Results and Discussions

5.1 Transformation of Explicit Knowledge to Tacit Knowledge

From the results of the two investigations, it was found that tactic knowledge of isolated
toaster cases could be transformed to explicit knowledge through the proposed
methodology and could be reused to predict surface temperature of similar or entirely
new case designs.

In the formulation of the tacit knowledge, the accuracy of raw data and the ANN training
were the utmost important issues because the prediction capability of a KIC system will
highly rely on the work done in these stages give ANN algorithms are inductive in nature,
their constructed knowledge is high dependent on the data presented. Therefore, the
accurach of tﬁe prediction of a KIC system will be cast in the data preparation and
training stages whilst an effective way for the screening of errors aﬁd noise and

recognition is the key of success.

5.2 Performance of the KIC System for the Heating Test

5.2.1 Prediction Accuracy of the First Investigation for a Dedicated Style and Variable
Sizes

In the first investigation, two issues were observed. Firstly, the performances of the two
selected ANN algorithms (MLP and RBF) were different but both within the temperature
tolerance variation that could be accepted. The deviations of the MLP and RBF
predictions to the actual toaster case temperature distributions from line 1 to line 9 are
shown in Fig. 51 to 54. In the figures, no upper limit was set become over prediction
could be tolerated, because it is iess risky than over prediction. The allowed/acceptable

tolerance zone of temperature estimation is shown in pink.
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The predictions of MLP algorithms with the divided approach failed at the toaster case
back (zone 1) and the front corners (zone 9). It was found that, the MLP algorithms with
the “whole set” #pproach and RBF with both approaches could both acceptable that
within the allowable zones. However, the predicﬁons were biased to the positive (higher)
limit and only a small amount of predictions were felt into the lower limit zone. The
results of the prediction, the sizes of data sets, the required NN training times and sizes of
the KIC database were surhmarized and tabulated with the divided and whole set
approach in Table 11. From the table, it was confirmed that: (i), the performance of MLP
was better than RBF in the whole set approach with a maximum temperature deviation of

12.26°C and a standard deviation of 2.74 whilst RBF gave a maximum temperature

deviation 17.86°C and a standard deviation 4.45 respectively. The average accuracy of
prediction made by MLP was 38.43% better than RBF and (ii) the “whole set approach”
should be used always in a knowledge crystallization process since the common believe

“the fewer the better in data fitting” did not apply in the study.

Table 11. Summary of All the Temperature Results from Line 1 to Line 9 (Investigation 1)

Max Terperaturs Difirence Maox Teaporaturs Difkmore
(Divided App roach ) (Whole Set Approach)
MLP Mo of paint out RBF Na ofpoint out MLP Na efpointout RBF Na af point out
(Maximam of Limit (Mardmum of Limit (Maximum of Limit Orlaximum of Limit
(Tenpenature (T*C=-10) (Temperature (T=C>-10) (Temperature (TC-- 1) Temporature (T°C=-10)
Difference) Difkrence) Difrence) Difbrence)
Line 1 1243 e ot 14.55 0 out of 13 6.95 0 out of 13 1136 0 out of 13
Line 2 147 l&’b%'”:“ 1341 0 ot of 13 1226 0 out of 13 13.67 0 outofl3
Ling 3 9.32 0 out of13 1.90 0 cutof 13 815 0 outof13 151 0 outofl3
Ling 4 432 0 out of 13 3.66 0 out of 13 152 0 outof13 511 D outafl3
Line 5 -4.06 0 outof 13 534 0 outof13 588 Doutofl3 594 0 outofl3
Line 6 4.87 0 ountol13 540 0 out of 13 514 0 outef13 6.78 0 out of 13
Line 7 5.69 0 outof13 841 0 out of13 5.62 ¢ outof 13 3.49 0 out 0f13
Line § 10.20 0 out of 13- T.40 0 outofl3 380 0 aut of 13 5.33 0 outaofl3
Line 9 7.19 0 outofl3 13.00 0 cutofl3 5.24 0 outof13 1393 0 out af 13
Total 2 pbs axrendl Total Spd xcomd Total 0 pt cxreed Totl A oxqmd
Total Failed prod et 100% Pass | winpwsists | ]00% Poss | “ihispredini 100% Pass | wifdnprus i
No ol
T 458 468 468 468
Data
Tralning
el el 466 430 442 402
Ske af
Datbase 1 1 1 1
(hiytza)
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Fig. 51 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(MLP with Divided Approach)

Fig. 52 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(RBF with Divided Approach)
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Fig. 53 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(MLP with Whole Set Approach)

Fig. 54 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(RBF with Whole Set Approach)
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5.2.2 Prediction Accuracy of the Second Investigation — New Style/Multi Model

In the second investigation, the prediction of an entirely new toaster case design, two
different knowledge databases has been developed (i) data from different toaster models
with only normal size, and (ii) data of toaster models with different sizes. The
temperature predictions of a toaster case design from both MLP and RBF are shown in
Figures 55 to 58 whilst the variation of the prediction temperature, the sizes of data sets,
the required NN training times and sizes of the KIC database were summarized and listed
in Table 12.

Similarly to the first investigation, any predicted results exceeded the preset limit (-10°C)
were rejected. It was found that only the MLP with 1,872 (multi models and sizes) data
sets could pass the criteria and no under prediction was occurred. The multi-model and
sizes KIC system gave a maximum deviation of 19.87°C and a standard dev.iation of 6.41.
It evidenced that the performance of the ANN with multi-model and siée can give a
satisfactory performance in predicting an entirely new style of toaster case. From literacy,
these amounts of data that required to training the MLP properly is around 2000-3000 and
the result could explains the amount of data input must large enough, so that the behavior
of a prediction can be represented. As a result, a predefined design type with all different
size of data included can predict different type of toaster design. Based upon the about
two issues, it was concluded that the temperature prediction made by the MLP was far
better than RBF in handling the heating test either in different size or in different

style/shape of a new toaster design.
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Table 12 Summary of the Temperature Results from Line 1 to Line 9 (Study 2)

a
8

Termparsture DM erenes (Des <) .

Max Temperature Difference Max Temperature Difference
(1872 data sets) (468 data sots)
MLP No of point RBF No of point MLP No of point RBF No of point
TM:::‘ out of Limit T(hhﬂmum out of Limit T&;‘fm::ln out of Limit Tahﬂmummn out of Limit
emperal - cperature - empera) - emperal -
pimem | T | Difirene) aoan | Tremes | qoa0 | PRI | TOA
Lins 1 1417 0 out of 13 -11.10 il oo -24.31 e ed by 15.41 0 outof 13
ImACropd e (b
Line 2 13.58 0 out of 13 1517 FT ek -14.75 Pl Fpolierd 11.61 0 out of 13
bt(nm U k. ( rapey
1358 14.75 Tra varpesied -1888 Ty vmrprdio -16.54 Tpsrpndiant
Line 3 0 out of 13 “h‘::-j’-;‘ o prms Sy
Lins 4 18.54 0 out of 13 1511 e e -4 0 out of13 1405 gt e
hc(nm T L reject)
Lmes | 1215 0 outof 13 0| modnes | LB | e B | D
e e L)
K _16. 11 aver prodiod 58 0. € pts vver prodicied
Lins 6 14.13 0 out of 13 16.15 e 4.5 0 out of13 20.91 e
Lins 7 12.04 0 out of 13 -22.92 '.Er-:;}'.'(':::‘ 1086 0 out 0f13 -19.9¢9 '.."::'z:;"*-‘
1%
Lino § 10.51 ¢ out of 13 2113 :llptnwr 1l 15.08 Ipu.-nnlhﬂ -26.40 lmmrd“t't‘d
'-"-("Lﬂ Iht(n;a,\ R (re]
Lina 9 19.87 0outofl3 -79.55 1o vwe preibmd BN 0 outof 13 -27.42 "TL%"E':'-’;'E:
Towl | 100% Pass | Bikcu, | Faled | omcu | Falled | ,RgiR. | Felled s
No of
Training 1872 1872 468 468
Data
Tralning 1320 1260 444 402
Timening
Size of
Datahase 25 25 1
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Fig. 55 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(MLP with Single Layer Approach)
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Fig. 56 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(RBF with Single Layer Approach)

Fig. 57 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(MLP with Multi-Layer Approach)
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Fig. 58 Deviation of the Predicted Temperature Result from Line 1 to Line 9

(RBF with Multi-Layer Approach)
For the knowledge database that created in the second study, the temperature predictions
for the second new toaster case with both MLP and RBF are shown in Fig. 59 to 60
respectively whilst Table 13 summarized their temperature prediction deviations. The
MLP gave a maximum temperature deviation of 19.88°C and a standard deviation of 5.22
and the prediction had been improved by 9% for maximum and 18.56% for standard
deviation (Fig. 61). The MLP with 1,989 data sets gave 7.17°C testing error (Table 11)
and the network’s performance improved as the number of data sets increased. When
developing a neural network. one crucial and difficult to determine parameter is the
number of neurons in the hidden layers. The hidden layer is responsible for internal
representation of the data and the information transformation input and output layers. If
the number of neuron is too few in a hidden layer, the network may not contain sufficient
degrees of freedom to form a representation. If the number of neuron is too many, the
network might get over-trained. Therefore, an optimum use for the number of neurons in

the hidden layer is critical. In the second investigation, three different number neurons
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were ‘used for training. Fig. 61 to 63 show the training results of the standard deviation,
testing error and normal distribution for the different model predictions by using MLP
and RBF algorithms. It was found that when the number of training data set increases up
to 2000 in MLP, then the accuracy of the prediétion will steadily increase that confirmed
the most desirable size for training MLP is around 2000 sets. Contradictory, when the
number of training data set increases, the accuracy of the RBF prediction also decreases.
Fig. 64 shows wﬁen the number of training data set increases, the spread of MLP
predictions becomes narrower and the confidence level increases. To sum up, the use of
MLP with the whole set approach and sufficient training data sets can handle a multi-
discipline/non-linear design problem that similar to the heat test. Also, if a company used
the ANN technology to tackle similar design problem, confidence level and the data set
availability are the critical factors in the selection of the appropriate ANN algorithm.

Table 13. Summary of the Temperature Predictions from Line 1 to Line 9 for the

. Confirmation Study

Max Temperature Difference
MLP No of point out of Limit . REBF No of point out of Limit
(Maximum Temperature (TC>10) - (Maximum Temperatury (T°C>10)
Difference) ' Difference)
Line 1 83s Qoutof13 1738 0 out ol 13
Line 2 15.7 Ooutof 13 - 21.20 0 out of 13
Line 3 6.30 0 out of 13 -14.84 1 pt overpredicied and exceed preset
limdt { mfect)
Line 4 14.66 Coutof 13 24.35 0 outol 13
Line § 18.11 Coutof13 2401 0 outof 13
Line 6 19.88 Oout of 13 25.11 0 out of 13
Line 7 1859 Ooutof 13 24.29 D outof 13
Line 8 1832 0 out of 13 2041 L ptoverpredleicd and exceed preset
Limdt { mfect)
Line9 | 18.89 Ooutof13 2748 0 outof13
Total 100 % Passed Tota) 0 pt exzeed within presetlimis Failed Total 2 pts over predicted and exceed
preset Bimit
Wo of
Training 1,989 1,989
Data !
Training
Thme (mins 1,402 , 1,325
Size of
Database 3.2 3.2
)
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Fig. 59 Deviation of the Predicted Temperature Result from Line 1 to Line 9 of

Confirmation Study (MLP)

Fig. 60 Deviation of the Predicted Temperature Result from Line 1 to Line 9 of

Confirmation Study (RBF)
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5.2.3 Prediction of Thermal Displacement

Apart from temperature distribution prediction, the output of proposed KIC system can
also be transferred as boundary conditions for the execution of a virtual experiment for
the prediction of thermal displacement. The prediction of thermal displacement of the
second toaster case design ranged from 0.6 mm to a maximum of 0.735 mm at the central
top portion as indicated in Fig. 65a. By means of a coordinate measuring machine (CMM),
nine points in the toaster case were measured and the thermal displacement ranged from
0.5mm to a maximum of 0.7mm (Fig. 65b). The thermal displacements between the
virtual validation and actual toaster case were listed in Table 14. The deviations of the
prediction and the actual thermal displacement were around 4% in average and 5%
maximum. To conclude, by making use the temperature prediction from the KIC system

as the boundary conditions for further validation, only a 5% maximum error was detected.
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Fig. 65 Thermal Displacement Measurement of a Toaster Case

(b) By CMM

Table 14 Thermal Displacement Comparison between Virtual Validation and Actual

Thermal Displacement Predicted by Actual Thermal Displacement
Virtual Validation (mm) Measured by CMM (mm)

Point 1 0.600 (Minimum) 0.580 (Minimum)
Point 2 0.665 0.638

Point 3 0.690 0.660

Point 4 0.715 0.685

Point 5 0.735 (Maximum) 0.700 (Maximum)
Point 6 0.720 0.688

Point 7 0.703 0.665

Point 8 0.674 0.650

Point 9 0.655 0.635
Point 10 0.631 0.620

Mean 0.6788 0.6521

5.3 Impact of the Proposed KIC System

The traditional toaster design process presents two interesting issues. Firstly, the new

toaster products often have a similar shape with complex relationship of multi-discipline

non-linear design behavior. Secondly, the design process is very time consuming and

fraught with uncertainty when it is based on iterative improvement. This trial and error

feedback loop in design needs to be eliminated by improving a structural analysis. The

current product design process is iterative where mock up or prototype must be built and




tested for their performance on applicable quality measures prior to final design. Since
product design quality is becoming a competitive edge for a company, it needs to
circumvent this trial and error process without sacrificing quality. For the current toaster
design and development process (Fig. 66) of the partnered company, verification always
takes place after the completion of a detail design. It is a normal practice that several
iterations are required to take in order to fine-tune a design to meet all the necessary
functional requirement tests. The time that required spending to confirm a new plastic
toaster design case usually takes thirty-six days minimum. The proposed KIC system was
brought to replace the traditional validation process and the time required to complete the
validation of a heating test alone only takes one working day. The total time that usually
requires to complete a new toaster case design, normally two trails have to be taken for
heating test that can be reduced from 36 days to 14 days (2 days for heating test and 12

days for other tests) (Fig. 67).

-2Dor 3D
wireframe - Build mechanical
sketch feature
Concept | - Detai‘l technical
Design 1 SHwing - Check the
Detail assembly
Design 1 interference

- Functional

Prototypes l verification
Verification —1 - make a mould
Tooling S—

[ Pilot Production

Run
|

Verification: 36days

42 days

Fig. 66 The Traditional Toaster Development Process
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Validation Time through the Traditional Product Development Process
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Fig. 67 The Validation Time between the Traditional Product Development Process and
Proposed KIC System

By comparison with the traditional development time and the proposed KIC system, the
total time compression for the toaster product validation was 61% ([(36-14)/36] *100%).
Since heating test is the first KIC modules to address the proposed methodology, and
similar validation modules such as drop test and bread color test can be applied to do so in

a way. Therefore, the total expected reduction of product development time could be up to
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89% ([(22+10)/36]*100%) after the completion of the drop test KIC module (bread colour

test will be performed concurrently).

The KIC development cost consists of four components that include: (i) acquisition cost of
an artificial neural network software, (ii) development cost of the graphical interfaces for
input and output, (iii) development cost of the application programs, and (iv) the
development cost of the data collection and conversion program. The price of a
commercial neural network software ranges from US$500 to US$3,000 (Fig. 68). In this
research, the investment of the ANN algorithm was only one thousand US dollars and the
total development cost was forty-three thousand Hong Kong dollars (Table 15). When
compare with the annual spend for a heating test (total expenditure 48 x HK$25000 x 2 =
HK$2,400,000), the total development cost of the KIC system only accounts less than 2%.
In comparison with the CAE software investment for solving multi-discipline non-linear
design problems, the saving will be more significant. In a nutshell, the use of KIC not only
speed up the design process but it also saves a lot of resources and enables the product
design and development process lean. Furthermore, the KIC system can entertain new

inquires and helping senior management to response quick/agile to its customer.

Neuroshell | |

Neuromodeller :
Qnet [FERRETH]

Pythia | ]

Neuro_solution | |

Statistica Neural Network | |

0 500 1000 1500 2000 2500 3000 3500

Price (US Dollars)
Fig. 68 The Price of the Commercial Neural Network Software Package



Table 15 The Investment Cost of the KIC Development

Item Cost (HK dollar)
Neural Network Software $US 1000 x 7.8 $7,800
User Interface Development 88 (hrs) x $100 $8,800
Cost

Application Program - 120 (hrs) x $100 $12,000
Interface Development Cost B

Data Extraction Program 144 (hrs) x $100 $14,400

Development Cost
Total Investment Cost for Developing of KIC System $43,000

5.4  Technical Barriers in the Developing a KIC System

Based on the research project, it was found that there existed three technical barriers in
developing a KIC system that include: (i) understanding/identification of the AI/ANN
algorithm characteristics, (ii) set up hypothesis/schema of training, and (iii) knowledge for
the development of interfacing programs.

There are many different ANN algorithms available in the market and very few literacy
talks about the applications of the ANN algorithms in any particular design problem. The
research student had to spend a huge effort to understand the ANN algorithms and select
the most appropriate ANN algorithms. )

As mentioned before, the performance of a KIC system relies on the quality of the training
data sets. Several reworks had been done in capturing accurate experimental data as some
of the uncertainties have not been notified that included placement of the thermal couple
and insertion depth, the joining of thermal couple and ventilation of the room. To solve
them, a fixture was made to ensure the thermal couple could reach to the right positions
and depths. In addition, as the connection of the thermal couple causing the different

sensation of the temperature, all connected regions of the thermal couples need to be cut

off and re-weld to ensure the best connection. Since the openings in a toaster case will
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affect. airflow that will influence the data accuracy, with the fixture, all readings can be

taken in the same locations.

As the development of the KIC system includes many interfaces between different
programs, programming skills included Java, C++ seem to be the prerequisite. It causes a

heavy workload in fulfill the programming needs.
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Chapter 6 Conclusion and Recommendations for Future

Development

6.1 Conclusion

Manufacturing companies in the Hong Kong electrical family appliance industry are now
facing a critical challenge to shift up their business mode from OEM to ODM in order to
continue their survival. Retain and deploy of knowledge are the most significant
successful factors in such migration. In this project, a KIC system was proposed and
illustrated to solve a particular design application for the development of a plastic new
toaster case. The missed gap in between the correctional sequential product development
and the use of fully computer aided product development is proved can be bridged with
the knowledge intensive CAD technology. Through the deployment of the KIC
technology, legacy data of a particular application can be crystallized to form a

knoWledge database, so that explicit knowledge can be transformed to tacit knowledge for
future application. The réadmap for the development of a KIC system had been
established by considering the small electrical “family appliance industry’s operating
environment as well as the available AI/ANN technology and resource of a
manufacturing company. This research had not only developed a structural methodology
for problem disassociation, but also has pfovided a mechanism for mapping the feature s
of a design problem to a suitable AI/ANN algorithm together with a monitoring
procedure for the ANN training process to avoid overfitting. The project did not just
demonstrate the feasibility of using KIC but also provide evidences, it is an affordable
solution for the small electrical family appliance industry for the enhancement of its
design competence and aids the product migration to middle and high-end consumer

market. Through the development of the KIC system prototype to solve the heating test
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problem, it was demonstrated that a multi-discipl_ine/non-lmea_r design problem could be
solved in such a way. With a perfofmance ‘comparison between the traditional validation
process and the KIC methodology, it was evidenced that accuracy; processing time and
costs reqmred for the KIC methodology/study gave very satisfactory results. Even
through there are still plenty of room for further development, it was very exciting to
learn that the paﬁnered company will continue the development of their KIC system and
expect to develop their knowledge intensive process design for the company’s injection’

molding operation.

6.2 Recommendations for Future Development

In fact, much further work can be done for improving the. effectiveness of the KIC system.

Further development recommend inelucle selection and'tl'aining of the ANN algorithm,

and determination of the optimum training data set. |

(1) I the.KIC development roa_dmap, the selection of the best ANN algorithm was
done byrcomparing all the predictions and-‘ based on the best results for the final
schema selection. Such trail and error approach is very time consuming and thus
further research should be correct onto develop a deductive ANN selection
mechanism so that the identification process should be improved and speeded up.
In addition, in the training process of the, ANN algorithm, the optimum hidden
layer and neuron weight were determined by the rebound of the verification errors.
Further investigation might include the study of a genetic algorithm to compare
the prediction performance.

(i1) In the second investigation, fhe optimum number of training data sets for a

particular design oroblem had been determined. Further research studies are
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. recommended to carry out to find out the amount of the optimumn data set that

required for a prediction for each ANN algorithm.

To fully develop a product design KIC system using the proposed methodology, it should
be constructed with a high ievel language (sucH as C or Java) to link up and automate the
process between the CAD system and AI/ANN technology during the crystallization and
deployment process. This research has only developed the structure of a KIC system for
the heating test. Iﬁ order to fully assess the contribution of the proposed methodology,

one can construct of the whole product development KIC system from design to process.
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Appendix I - Results of the First Investigation

Fig. 72 Deviation of the Predicted Temperature of Line 2 in the First Investigation
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Fig. 74 Deviation of the Predicted Temperature of Line 4 in the First Investigation
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Fig 76 Deviation of the Predicted Temperature of Line 6 in the First Investigation
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Fig. 78 Deviation of the Predicted Temperature of Line 8 in the First Investigation
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Fig. 79 Deviation of the Predicted Temperature of Line 9 in the First Investigation
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Appendix II - Predicted Results of the Second Investigation
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Fig. 80 Deviation of the Predicted Temperature of Line 1 in the Second Investigation
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Fig. 81 Deviation of the Predicted Temperature of Line 2 in the Second Investigation
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Fig. 83 Deviation of the Predicted Temperature of Line 4 in the Second Investigation
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Fig. 84 Deviation of the Predicted Temperature of Line 5 in the Second Investigation

Fig. 85 Deviation of the Predicted Temperature of Line 6 in the Second Investigation
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Fig. 87 Deviation of the Predicted Temperature of Line 8 in the Second Investigation
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Fig. 88 Deviation of the Predicted Temperature of Line 9 in the Second Investigation
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Appendix III - Predicted Results of the Confirmation

Investigation

Fig. 89 Deviation of the Predicted Temperature of Line 1 in the Confirmation

Investigation

Fig. 90 Deviation of the Predicted Temperature of Line 2 in the Confirmation

Investigation
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Fig. 91 Deviation of the Predicted Temperature of Line 3 in the Confirmation

Investigation

Fig. 92 Deviation of the Predicted Temperature of Line 4 in the Confirmation

Investigation
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Fig. 93 Deviation of the Predicted Temperature of Line 5 in the Confirmation

Investigation

Fig. 94 Deviation of the Predicted Temperature of Line 6 in the Confirmation

Investigation
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Fig. 95 Deviation of the Predicted Temperature of Line 7 in the Confirmation

Investigation

Fig. 96 Deviation of the Predicted Temperature of Line 8 in the Confirmation

Investigation
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Fig. 97 Deviation of the Predicted Temperature of Line 9 in the Confirmation

Investigation
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Appendix IV - Experiment Result of the Different Toaster
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Appendix V — The KIC System Configuration

Hardware

PC with Pentium 4 CPU or above

512 MB memory or above

360MB free hard disk space (60MB — system and software installation, 300 MB —
swapping space)

Network card aﬁd moderﬁ

CD-ROM drive

Software

Window 2000/ XP (1G Disk space Required)-

Web Browser — Netscape Navigator version 6.0 or higher (47MB disk space required)
Pro/Engineer 2001 and Pro/Mechanica with Pro/Weblink (1.5 G disk space)

Microsoft excel (250MB disk space)

Statistica neural network (100 Mb disk space)
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Appendix VI - List of the Published Papers

Two conference papers were produced and the second paper is now accepted to

publishing to KIC-5 Book - "Knowledge Intensive Design Tools"

Paper 1

Title of the paper: Use of Knowledge Intensive CAD in Small Electrical Household

Appliance Industry

Name of the conference: Annals of Int’l CORP Design Seminar, 19-18 May 2002 in

Hong Kong

Paper 2. _
Title of the paper: Use of Knowledge Intensive CAD (KIC) in Virtual Product Validaﬁon
Name of the conference:Knowledge Intensive Computer Aided Design-V, IFIP WG 5.2
Knowledge Intensive CAD Workshop, Malta 2002

Organizer. The University of Malta



