

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

MPC SYSTEM IDENTIFICATION METHOD

BASED ORACLE FOR CONTROL-CPS

SOFTWARE FAULT LOCALIZATION

ZHIJIAN HE

PhD

The Hong Kong Polytechnic University

2019

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

MPC System Identification Method based Oracle for

Control-CPS Software Fault Localization

ZHIJIAN HE

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

June 2018

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signature)

(Name of Student)

ii

HE ZHIJIAN

ABSTRACT

Control-CPS software fault localization (SFL, aka debugging) is of critical importance as

bugs may cause major mission failures, even injuries/deaths. To locate the bugs in control-

CPSs, SFL tools often demand many labeled (“correct”/“incorrect”) source code execution

traces as inputs. To label the correctness of these traces, we must judge the corresponding

control-CPS physical trajectories' correctness. However, unlike discrete outputs, the bound-

aries between correct and incorrect physical trajectories are often vague. The mechanism

(aka oracle) to judge the physical trajectories' correctness thus becomes a major challenge.

So far, the ad-hoc practice of “human oracles” are still widely used, whose qualities are

heavily dependent upon the human experts' expertise and availability. This thesis proposes

an oracle based on the system identification (SI) method used in the renowned model pre-

dictive control (MPC) technology. Originally designed for controlling black-box physical

systems, the MPC-SI is adapted by us to learn the buggy control-CPS as a black-box. We

use this learning result as an oracle to judge the control-CPS's behaviors, and propose a

framework of methodology to prepare traces for control-CPS debugging. Evaluation results

on classic control-CPSs with real-life and artificial bugs show that our proposed approach

significantly outperforms the human oracle approach in SFL accuracy, recall, and latency,

and in oracle false positive/negative rates.

iii

PUBLICATIONS

1. [InSubmission] ZHIJIAN HE, Yao Chen, Enyan Huang, Qixin Wang, “MPC System

Identification Method based Oracle for Control-CPS Software Fault Localization”, in

submission for conference publication.

2. [TECS18] ZHIJIAN HE, Yao Chen, Zhaoyan Shen, “Attitude Fusion of Inertial and

Magnetic Sensor under Different Magnetic Filed Distortions”, in ACM Transactions

on Embedded Computing Systems (TECS), Volume 17 Issue 2, April 2018, Article No.

48.

3. [TECS17] Zhaoyan Shen, Zhijian He, Shuai Li, Qixin Wang, Zili Shao, “A Multi-

Quadcopter Cooperative Cyber-Physical System for Timely Air Pollution Localiza-

tion”, in ACM Transactions on Embedded Computing Systems (TECS), Volume 16

Issue 3, July 2017, Article No. 70.

4. [MSN15] Zhijian He, Yanming Chen, Zhaoyan Shen, Enyan Huang, Shuai Li, Zili

Shao, Qixin Wang, “Ard-mu-copter: A Simple Open Source Quadcopter Platform”,

in Proceedings of the 11th International Conference on Mobile Ad-Hoc and Sensor

Networks (MSN), Dec. 16-18, 2015, Shenzhen, China.

5. [ICCPS15] Zhijian He, Shuai Li, Zhaoyan Shen, Muhammad Umer Khan, Zili Shao,

Qixin Wang, “WiP Abstract: A quadcopter swarm for active monitoring of smog prop-

agation”, in ACM/IEEE International Conference on Cyber-Physical Systems (ICCP-

S’15), Work-in-Progress Session, Seattle, USA, April, 2015.

iv

ACKNOWLEDGEMENTS

Firstly, I offer my sincerest gratitude to my wife, Rose, who gives me a harmonious fam-

ily during my Ph.D study. Without her tolerance and unquestioned supports, I would not

complete my thesis. I am peculiarly fortunate to have such a good wife.

Furthermore, profound gratitude goes to my dear supervisor, Dr. Qixin Wang. Learn-

ing under Dr. Wang's guidance has been an amazing experience for his systematic research

method and rigorous research attitude. I give my thank sincerely to him here, not only for

his tremendous academic support, but also for giving me enough time and financial support.

I am also hugely appreciative to Dr. Shuai Li and Dr. Max Pei, who provided me a

lot of guidance on software engineering and robotics, and who enlighten me the first glance

of deep learning research. Without their precious support it would not be possible to conduct

this thesis.

Finally, but by no means least, special mention goes to my colleagues, Enyan Huang,

Yao Chen and Zhaoyan Shen. Under their selfless support, I save a lot of time and avoid

many mistakes on my research. They often teach me what to program and how to program.

Also, I would like to thank my badminton friends, Minglei Li, Lily, Anu and Kaining Yan.

Via playing badminton together, I release my pressure and receive my friendship. They are

the most important people in my world and I dedicate this thesis to them.

v

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY . ii

ABSTRACT . iii

PUBLICATIONS . iv

ACKNOWLEDGEMENTS . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTER 1. INTRODUCTION. 1

1.1 Demand . 1

1.2 Contributions of the Thesis . 5

1.3 Thesis Outline . 6

CHAPTER 2. SYSTEM ARCHITECTURE AND CONTROL-CPS TESTBED 8

2.1 Control-CPS System Architecture . 8

2.2 An example of control-CPS testbed . 10

CHAPTER 3. ATTITUDE FUSION OF INERTIAL AND MAGNETIC SENSOR UN-
DER DIFFERENT MAGNETIC FILED DISTORTIONS 16

3.1 Demand . 17

3.2 Preliminaries . 20

3.3 Solution Overview . 21

3.3.1 Initial calibration step . 21

3.3.2 Run-time step . 23

3.4 Attitude Representation . 23

3.4.1 GD-based Algorithm . 24

3.4.2 Limitation of GD-based Algorithm . 27

3.4.3 Indoor environment affection . 29

3.5 Time-varying Magnetic Distortion Solution . 32

vi

3.5.1 EFK-based Algorithm . 33

3.5.2 Variance-based fusion . 36

3.6 Evaluation . 38

3.6.1 Equipment . 38

3.6.2 Attitude Estimation Using Gravity . 39

3.6.3 Attitude Estimation Using Gravity And Calibrated Compass 41

3.6.4 Attitude Estimation Under Different Magnetic Distortion 43

CHAPTER 4. MPC-SI SOLUTION FRAMEWORK . 47

4.1 Overview . 47

4.2 More on the Heuristics . 47

4.3 Proposed Oracle and Source Code Execution Trace Preparation Methodology 50

CHAPTER 5. EVALUATION AND RESULTS . 53

5.1 Evaluation Metrics and Research Questions . 53

5.2 Control-CPS Test-beds . 54

5.3 Evaluations with Real-life Bugs . 57

5.4 Evaluations with Artificial Bugs . 61

5.5 Discussions on Evaluation Results . 67

5.6 Threats to Validity . 72

CHAPTER 6. RELATE WORK . 77

6.1 Related Work in the Domain of Control . 77

6.2 Related Work in the Domain of Software Engineering . 78

6.2.1 Tarantula . 80

6.2.2 Crosstab . 80

6.2.3 BP Neural Network-based (BPNN) Approach . 83

CHAPTER 7. CONCLUSIONS AND FUTURE WORK . 86

7.1 Conclusion . 86

7.2 Future Work . 86

7.2.1 Golden Oracle Selection . 87

7.2.2 Target Systems Selection . 87

7.2.3 Empirical Study on MPC-SI Model . 88

vii

Appendix. .

.1 Appendix A: A Formal Description of MPC-SI . 90

.2 Details of quaternion computation . 93

.3 Details of EKF-based algorithm . 94

REFERENCES . 98

viii

LIST OF FIGURES

1.1 Ariane-5 explosion (quoted from [1]), which resulted in US$500 million
loss, is due to a bug in the cyber subsystem [84]. 2

1.2 Quadcopter propellors cause serious finger injuries [2]. 2

1.3 Typical work flow of (program spectrum, statistics, and machine learning
based) bug localization (aka software fault localization, simplified as “SFL”)
tools. 3

1.4 Control-CPS oracles are hard to design. Example application: quadcopter
autopilot. The oracle needs to tell which physical trajectories are correct. 5

2.1 A typical control-CPS architecture . 8

2.2 Three Angular Movement Dimensions and Propeller Motor Numbering of a
Quadcopter . 10

2.3 Location-Angular Nested Control Loops . 11

2.4 Two-Level PID Pitch Angular Control . 12

2.5 Two-Level PID Height Control . 13

3.1 Frame A rotates around a vector r with angle θ to achieve frame B. 20

3.2 Initial calibration step of our proposed approach . 22

3.3 Run-time step of our proposed approach . 22

3.4 Raw magnetic data in the calibration place . 29

3.5 Disruptive indoor environment . 31

3.6 Representative set of raw magnetic data in the same room of calibration. 31

3.7 Heading affection by indoor environment . 32

3.8 Arduino Mega 2560 platform integrated with MPU-6050 and HMC-5883 38

3.9 Dynamic results of measured angle and estimated angle in pitch axis. 40

3.10 Dynamic results of measured angle and estimated angle in roll axis 40

3.11 Dynamic results of measured angle and estimated angle in yaw axis 40

3.12 Raw data of compass in 3D space . 41

3.13 Approximated shape of compass data in 3D space . 42

3.14 Dynamic results of measured angle and estimated angle in yaw axis using
post-calibration data . 42

3.15 Predefined trajactory of IMU . 44

3.16 Comparison results of measured angle and GD-based angle in yaw axis 45

ix

3.17 Comparison results of measured angle and proposed algorithm angle in yaw
axis. 45

3.18 Calculation of angle errors from GD-based and proposed algorithm 46

4.1 Proposed oracle overview. 48

4.2 Distinguishing correct/incorrect trajectories via MPC-SI oracle example 50

4.3 Our proposed oracle and methodology to prepare source code execution
traces (this oracle and methodology are referred to as “our proposed ap-
proach”). 51

4.4 Human oracle and methodology to prepare source code execution traces (this
oracle and methodology are referred to as the “human oracle approach”). 52

5.1 Inverted pendulum and computer vision (IP+CV) control-CPS 56

5.2 Evaluation Results: ArduPilot with real-life bugs . 62

5.3 Evaluation Results: ArduPilot with artificial bugs . 65

5.4 Evaluation Results: IP+CV with artificial bugs . 68

6.1 Tarantula example . 81

6.2 BPNN test cases example . 84

6.3 BPNN constructure. 85

6.4 BPNN suspiciousness estimation . 85

1 MPC model prediction procedure. Note due to the causality of our emula-
tion, XN is still affected by U0, hence is included in the prediction compar-
ison. Meanwhile, X0 is included in the learning of the MPC model as it is
the initial state of the plant. 93

x

LIST OF TABLES

5.1 Real-life Bugs to be Injected into ArduPilot . 57

5.2 Common Bugs-in-the-Field (quoted from [101]) . 61

5.5 Quality of Fig. 5.2 Statistics . 69

5.6 Quality of Fig. 5.3 Statistics . 70

5.7 Quality of Fig. 5.4 Statistics . 71

5.3 Artificial Bugs to be Injected into ArduPilot . 75

5.4 Artificial Bugs to be Injected into IP+CV . 76

6.1 Notations in crosstab method . 82

xi

CHAPTER 1

INTRODUCTION

1.1 Demand

Control Cyber-Physical Systems (CPSs), aka control-CPSs, are growing rapidly due to the

inevitable convergence of computer (i.e. cyber) and physical systems [19, 114]. Typi-

cal control-CPSs include avionics, vehicles, robotics, power grid, medical equipment etc.

Many control CPSs are life/mission critical, and bugs in the cyber subsystem can cause ma-

jor mission failures, even injuries/deaths [1, 13, 20, 68, 84, 108, 109]. For example, in the

safety-critical applications such as “Ariane-5” (Figure 1.1), a subtle software defect inside

a seldom-appear branch of the control-CPS software cause a great loss. In the hobby-like

applications such as “quadcopter” (Figure 1.2), improper software design can cause dangers

and injuries. Thus, control-CPS debugging therefore is of high importance.

An indispensable step for debugging is to locate bugs in the source code, aka software

fault localization (SFL)1. As software complexity scales up, manual SFL no longer suffices.

Over the years, many automatic SFL tools are developed. According to a recent survey [132],

there are over 331 papers on SFL. The corresponding tools can be categorized into 8 families,

respectively based on program spectrum, statistics, machine learning, data mining, program

slice, program state, model, and others. Many main stream SFL tools and over 38% of all the

tools surveyed (particularly those belong to the program spectrum, statistics, and machine

learning tool families) need thousands of labeled (as “correct” or “incorrect”) source code

1 Though the formal name for “bugs” in the software engineering is “faults”, this thesis intends to use the

term “bug” and “buggy” instead of “fault” and “faulty”. This is because in control theories, “fault” has other

meanings.

1

Figure 1.1: Ariane-5 explosion (quoted from [1]), which resulted in US$500 million loss, is

due to a bug in the cyber subsystem [84].

Figure 1.2: Quadcopter propellors cause serious finger injuries [2].

2

execution traces as input (see Fig. 1.3). Manually labeling the correctness of so many source

code execution traces is impractical. Instead, we need an automatic judgement mechanism,

aka oracle, to do the labeling.

Figure 1.3: Typical work flow of (program spectrum, statistics, and machine learning based)

bug localization (aka software fault localization, simplified as “SFL”) tools.

However, how to design oracle and the corresponding source code execution trace

preparation methodology is a well-known hard problem: i.e. the so-called oracle prob-

lem [23, 59, 61, 136]. Solutions to the oracle problem are highly application domain depen-

dent [23,145]. For some application domains, the oracle problem is still open [23,36,72,126].

Control-CPS is one such domain, where the oracle problem faces unique challenges.

Unlike the clean-cut discrete output of pure cyber systems, control-CPS outputs are continu-

ous physical trajectories. At the first look, all or multiple physical trajectories in an envelope

can seem correct (see Fig. 1.4). To exactly decide which one is correct/incorrect, an ideal

black-box oracle (i.e. one without looking into the cyber source code) approach would need

3

a known a priori bug-free physical trajectory, i.e. the expected physical trajectory. To predict

the expected physical trajectory, however, the approach needs an emulation2 of the control-

CPS upon the bug-free cyber subsystem and a correctly simulated physical subsystem3. This

directly contradicts the fact that our cyber subsystem is yet to be debugged. Hence the ideal

black-box oracle approach cannot work.

Replacing the prerequisite of the bug-free cyber subsystem with a substitute cyber

subsystem implementation (e.g. those generated by model-driven development [46]) cannot

solve the problem. This is because a simplified substitute implementation would not catch all

the subtleties needed by debugging; while a comprehensive substitute implementation costs

too much human effort (hence contradicts our goal of SFL automation), and may itself needs

debugging.

Therefore the ideal black-box oracle approach is unlikely to work. Meanwhile,

building an oracle by analyzing the source code is neither likely to succeed. This is be-

cause the source code is yet to be debugged. Knowledge learnt from the buggy source

code can be misleading. For example, we cannot use invariants found by program analy-

sis [43, 44, 54, 102, 103] as oracles. This is because invariants must comply with all system

behaviors, including the buggy behaviors. Thus invariants found before debugging will take

buggy behaviors for granted as normal behaviors, hence fail as oracles.

Due to the above reality, human oracles are still widely used in control-CPS SFL [15,

23, 80, 86, 92, 96, 106]. Typically, a group of human experts are convened to discuss and

manually design a set of assertions to judge physical trajectory correctness with best-effort.

These assertions are the so-called human oracles. Apparently, the human oracle approach is

fundamentally ad-hoc: it heavily depends on the human experts’ expertise and availability.

To improve, this thesis aims to find another approach to deterministically and auto-

matically generate better oracles for control-CPS SFL. Particularly, we are interested in ex-

2 Emulation, aka half simulation, means part of the runtime system is simulated, while the other part is real.
3 Usually, the physical subsystem model is available and is much simpler than the cyber subsystem. Hence,

in this paper, we focus on control-CPSs whose physical subsystems can be correctly simulated.

4

(a) Is/are arc A→ B or

C→D correct?

(b) Is/are the dotted or

the dashed curve cor-

rect?

Figure 1.4: Control-CPS oracles are hard to design. Example application: quadcopter au-

topilot. The oracle needs to tell which physical trajectories are correct.

ploiting the system identification (SI) method used in model predictive control (MPC) [32].

MPC is an online control technology. It uses its SI method to learn the mathematical model

of a concerned control system as a black-box; and uses the learnt model to predict future and

make control decisions. MPC achieves great success in a broad range of control application-

s [47,53,74,81,113,124,138]. This empirically proves that the MPC-SI is highly capable of

predicting black-box control systems behaviors, a quality critical to oracles.

1.2 Contributions of the Thesis

Based on the above intuitions, our main idea is as follows. To prepare the many source

code execution traces for SFL, we emulate the control-CPS with the real cyber subsystem

and the simulated physical subsystem (using the accurate physical subsystem model). While

emulating a physical trajectory, we use MPC-SI to learn the control-CPS as a black-box

and predict the physical trajectory in the near (emulation) future. We speculate that when

all the easy-to-find bugs are removed (i.e. when automatic SFL tools are needed), physical

trajectories shall usually comply with the predictions made by MPC-SI. Mismatches can be

due to MPC-SI failures or bugs. But given the high empirical trustworthiness of MPC-SI,

bugs are more likely. We can therefore use MPC-SI predictions as an oracle to label the

5

outliers of physical trajectories as incorrect, and the others as correct; and then label the

corresponding source code execution traces accordingly. Guided by the above heuristics,

this thesis makes the following contributions.

1. We propose a MPC-SI based oracle for control-CPS SFL.

2. We propose a corresponding source code execution trace preparation methodology,

which can be carried out deterministically and automatically.

3. We compare the performance of our proposed approach (i.e. the above proposed oracle

and methodology) with the main stream practice of human oracle approach. Evaluation

results on classic control-CPS with real-life and artificial bugs show that our proposed

approach significantly outperforms the human oracle approach in SFL accuracy, recall,

and latency, and in oracle false positive/negative rates.

1.3 Thesis Outline

Based on the identified problems and objectives above, the thesis is organized as the follow-

ings:

Chapter 2 introduces background knowledge related to this thesis. We introduce a

typical system architecture of control-CPS in details, and illustrate a testbed as an example.

The contents of Chapter 2.2 is published in [MSN15]:

• Copyright ©2015 IEEE. Reprinted, with permission, from Zhijian He, Yanming Chen,

Zhaoyan Shen, Enyan Huang, Shuai Li, Zili Shao, Qixin Wang, “Ard-mu-copter: A

Simple Open Source Quadcopter Platform”, in Proceedings of the 11th Internation-

al Conference on Mobile Ad-Hoc and Sensor Networks (MSN), Dec. 16-18, 2015,

Shenzhen, China. DOI: 10.1109/MSN.2015.9.

Chapter 3 proposes an attitude fusion method of inertial and magnetic sensor. This

method exploits a new fusion algorithm using various kinds of IMU sensors source, namely

6

gyroscope, accelerometer, and magnetometer. Compared to state-of-the-art attitude fusion

approaches, this attitude fusion method addresses the indoor time-varying magnetic perturba-

tion problem in a geometric view, which can be deployed to alleviate the bottleneck problem

of acquiring precise heading in indoor attitude fusion. Through this method, we can be close

to our target of considering our physical subsystem as bug-free. The contents of Chapter 3

is published in [TECS18]:

• Copyright ©2018 ACM. Reprinted, with permission, from ZHIJIAN HE, Yao Chen,

Zhaoyan Shen, “Attitude Fusion of Inertial and Magnetic Sensor under Different Mag-

netic Filed Distortions”, in ACM Transactions on Embedded Computing Systems (TEC-

S), Volume 17 Issue 2, April 2018, Article No. 48. DOI:10.1145/3157668.

Chapter 4 proposes our source code execution trace preparation methodology. Partic-

ularly, we explain explicitly our proposed oracle which labels the correct/incorrect physical

control-CPS trajectories.

Chapter 5 evaluates our proposed oracle upon several representative control-CPSs.

We discuss deeply about our evaluation results and threats to our validity.

Chapter 6 discusses related work in both control-CPS and SFL domain. The contents

of Chapter 4, 5, 6 are under submission for publication:

• [InSubmission] ZHIJIAN HE, Yao Chen, Enyan Huang, Qixin Wang, “MPC System

Identification Method based Oracle for Control-CPS Software Fault Localization”, in

submission for conference publication.

Chapter 7 concludes the thesis and discuss the future work.

7

CHAPTER 2

SYSTEM ARCHITECTURE AND CONTROL-CPS TESTBED

In this chapter, we illustrate a typical control-CPS architecture and give an example to help

readers better understand this architecture.

2.1 Control-CPS System Architecture

Fig. 2.1 illustrates a typical control-CPS architecture.

U(t) is the user input to the control-CPS.

X(t) is the state of the physical plant.

In case of emulation, the physical subsystem is replaced by its simulator, and the human user

is often replaced by a human user mimicking program, aka “monkey”.

Figure 2.1: A typical control-CPS architecture

In this architecture, the control-CPS consists of a cyber subsystem and a physical

8

subsystem (see the gray area in Fig. 2.1). User input at time t ∈ [0,+∞) to the control-

CPS is U(t) ∈ Rq. Depending on the cyber subsystem design, U(t) can be an actuation

signal, or a target state (aka reference point) the user wants the physical subsystem to reach.

U(t) is sampled before it enters the cyber subsystem. The hth (h = 0, 1, · · ·) sample

happens at th = hT , where T is the user input sampling period. Correspondingly, we

denote Uh
def
= U(th). The cyber subsystem zero-order holds the sample Uh for the duration

[hT, (h+ 1)T). That is, during [hT, (h+ 1)T), the cyber subsystem takes constant Uh as the

user input.

Inside of the physical subsystem lies the physical object, aka plant, being controlled.

The state of the plant at time t ∈ [0,+∞) is denoted asX(t) ∈ Rn. As a closed-loop system,

X(t) is also sampled by the cyber subsystem periodically. The ith (i = 0, 1, · · ·) sample

happens at ti = i∆, where ∆ is the plant sampling period and

∆ = T/N,

where N ∈ Z>1 is a preconfigured constant. Correspondingly, we denote Xi
def
= X(ti).

The cyber subsystem also zero-order holds the sample Xi for the duration [i∆, (i + 1)∆).

To generate the many labeled source code execution traces for SFL, the user shall run the

control-CPS many times. Usually, the human user is replaced by an automatic human-user

mimicking program, aka “monkey”, and the physical subsystem is replaced by its simulator

(in this thesis, we assume the accurate model of the physical subsystem is known, hence the

physical subsystem simulator is trustworthy). The cyber subsystem is still the buggy real

implementation. Thus, the monkey, the buggy real cyber subsystem, and the trustworthy

physical subsystem simulator form an emulation platform (see Fig. 2.1). We can run the

emulated control-CPS millions of times without fatiguing any human user or real physical

hardware, and we can run the emulations on parallel computers in a much faster pace than in

real-time.

Each run of the emulated (or real) control-CPS generates a source code execution

trace and a corresponding physical trajectory. To label the correctness of the source code

9

execution trace, we need to judge the correctness of the physical trajectory. This leads to the

control-CPS oracle problem discussed in the next chapter.

2.2 An example of control-CPS testbed

Control-CPS links the physicals with cyber. In order to better understand a control-CPS, we

need to understand its physicals.

In this section, we study the physics of quadcopter, which is an important control-

CPS testbed used in our following chapters. Quadcopter is a helicopter with four equal

motors placed in four corners. By maneuvering the four motors, a quadcopter control-CPS

can fly to the intended location and height with intended attitudes.

The content of this section is published in [MSN15].

Location-Angular Control

The location control of a flying quadcopter is tightly coupled with the quadcopter’s

pitch, roll, yaw angular dynamics (sometimes the three angular dynamics are holistical-

ly called the “attitude” of the quadcopter) control [65]. As shown in Fig. 2.2, a quad-

copter moves forward/backward if its pitch angle is non-zero; a quadcopter moves left-

ward/rightward if its roll angle is non-zero.

Figure 2.2: Three Angular Movement Dimensions and Propeller Motor Numbering of a

Quadcopter

10

Therefore, the location-angular control takes a nested outer-inner control loop form,

as shown in Fig. 2.3. The outer control loop is the location control loop; and the inner control

loop is the angular control loop.

Figure 2.3: Location-Angular Nested Control Loops

The input to the location (i.e. outer) control loop is the desired location coordinates

(in terms of body-oriented (x, y)-coordinates) Xb
ref = (xbref , y

b
ref)

T. The control loop feed-

back Xb = (xb, yb)T is the current quadcopter location coordinates (again, in body-oriented

(x, y)-coordinates). The error (Xb
ref − Xb) is fed to a PID controller to derive a desired

attitude angle (θref , φref)
T, where θref is the desired pitch angle and φref is the desired roll

angle. The desired pitch and roll angles serve as the input to the angular (i.e. inner) con-

trol loop, which will tilt the quadcopter’s pitch angle θ and roll angle φ toward θref and φref

respectively.

Formally, the control output of the outer control loop is described as follows.

θref = kpx(xbref − xb) + kdx(ẋbref − ẋb)

+kix

∫ t

0

(xbref(τ)− xb(τ))dτ,

φref = kpy (ybref − yb) + kdy (ẏbref − ẏb)

+kiy

∫ t

0

(ybref(τ)− yb(τ))dτ,

where kpx (also kpy), kix (also kiy), and kdx (also kdy) are respectively the proportional, integral,

and derivative control coefficients; t is the current time.

11

Without loss of generality, the two-level PID pitch angular control diagram is shown

in Fig. 2.4 (the roll and yaw angular control follows the same principles). Again this consists

of an outer and an inner control loop. The outer control loop is the pitch angle control loop.

The input is the desired pitch θref , the feedback is the sensed current quadcopter pitch θ.

The error (θref − θ) is fed to a PID controller to generate a desired pitch angular velocity

ωref
θ . The desired pitch angular velocity ωref

θ serves as the input to the inner control loop:

the pitch angular velocity control loop. The feed back of the pitch angular velocity control

loop is the sensed pitch angular velocity ωθ (sensed by the gyro in the MPU-6050 IMU). The

error (ωref
θ − ωθ) is fed to a PID controller to generate the control signal u′θ to be applied to

quadcopter propeller motors (see Eq. (2.2) ∼ (2.5)). You can think of u′θ as the component

to adjust propeller motors to satisfy pitch angle control needs.

Figure 2.4: Two-Level PID Pitch Angular Control

Formally, we have

ωref
θ = kpθ (θref − θ) + kdθ (θ̇ref − θ̇)

+kiθ

∫ t

0

(θref(τ)− θ(τ))dτ,

u′θ = kpωθ(ω
ref
θ − ωθ) + kdωθ(ω̇

ref
θ − ω̇θ)

+kiωθ

∫ t

0

(ωref
θ (τ)− ωθ(τ))dτ,

where kpθ (also kpωθ), k
i
θ (also kiωθ), and kdθ (also kdωθ) are respectively the proportional, integral,

and derivative control coefficients.

Similarly, we can derive the control signal u′φ and u′ψ for roll and yaw angle control.

12

Height Control

The height control faces the similar challenge as angle control [65]. The quad-

copter height reading is provided by the barometer (MS5611) and/or sonar (XL-MaxSonar

EZ4). This reading is also unreliable. On the other hand, the vertical (i.e. height direction)

acceleration readings a (provided by the accelerometer inside of the MPU-6050 IMU) is ac-

curate. Therefore, the two-level PID angular control strategy of [65] also applies to height

control [65]. We re-state the strategy as follows.

Fig. 2.5 describes the two-level height control loop. The outer loop is the height

control loop. The input is the desired height href . The feedback is the sensed quadcopter

height h. The error (href−h) is fed to a PID controller to output a desired vertical acceleration

aref . This aref together with gravitational acceleration g constitute the input to the inner

control loop: the vertical acceleration control loop. The feedback of the vertical acceleration

control loop is the sensed quadcopter’s vertical acceleration a (sensed by the accelerometer

inside of the MPU-6050 IMU). The error (aref + g − a) is fed to a PID controller to create

a control signal ∆uf to adjust the quadcopter propeller motors’ throttle (see Eq. (2.1)(2.2)

∼ (2.5)). You can think of ∆uf as the component to adjust propeller motors to satisfy the

vertical acceleration needs.

Figure 2.5: Two-Level PID Height Control

13

Formally, we have

aref = kph(href − h) + kdh(ḣref − ḣ)

+kih

∫ t

0

(href(τ)− h(τ))dτ,

∆uf = kpa(aref + g − a) + kda(ȧref + ġ − ȧ)

+kia

∫ t

0

(aref(τ) + g(τ)− a(τ))dτ,

where kph (also kpa), kih (also kia), and kdh (also kda) are respectively the proportional, integral,

and derivative control coefficients.

Total Control Output

Finally, all the above control outputs converge to become the control output toward

quadcopter propeller motors.

The total control output consists of two high level components: throttle and angular

control adjustments. The throttle component uf is to control the vertical acceleration (ulti-

mately, height) of the quadcopter. It is the same to each of the four propeller motors (see

Fig. 2.2). The height control output ∆uf affects the throttle component: uf is updated as per

uf (t+ dt) = uf (t) + ∆uf (t). (2.1)

The angular control adjustments are different to each of the four propeller motors. Without

loss of generality, suppose we are adjusting the pitch. Suppose we want to increase the pitch

angle (see Fig. 2.2), then propeller 1 and 3’s motors should speed up, while propeller 2 and

4’s motors should slow down. Meanwhile, we cannot change the total throttle component.

Therefore, the pitch angle control signal u′θ should be applied positively to motor 1 and 3,

but negatively to motor 2 and 4.

Combining all the above considerations, suppose U1, U2, U3, and U4 respectively

represent the raw total control signal applied to propeller motor 1, 2, 3, and 4, then the

14

update rules are

U1(t+ dt) = uf (t+ dt) + u′θ(t) + u′φ(t)− u′ψ(t), (2.2)

U2(t+ dt) = uf (t+ dt)− u′θ(t) + u′φ(t) + u′ψ(t), (2.3)

U3(t+ dt) = uf (t+ dt) + u′θ(t)− u′φ(t) + u′ψ(t), (2.4)

U4(t+ dt) = uf (t+ dt)− u′θ(t)− u′φ(t)− u′ψ(t). (2.5)

The above raw control signals U1, U2, U3, U4 are then range constrained and then

normalized to create a PWM wave to drive the respective motors. A normalized value of

100% drives the motor to maximum speed, while 0% stops the motor.

Tuning PID Coefficients

PID controllers date back to 1890s. While proportional control provides fast response

to reference set point changes and small disturbances, it cannot fully eliminate the impacts of

steady disturbances, e.g. a stiff gale. To eliminate the steady disturbance impacts, we need

integral control. Finally, derivative control constrains overshoot, hence improves control

stability [11].

Generally, we first tune the proportional coefficients of the PID controllers to see if

the quadcopter can achieve fast enough response time and acceptable overshoot. Then we

increase the derivative coefficients to further reduce the overshoots. The integral control We

will show the experiment result in the next section to prove our solution.

15

CHAPTER 3

ATTITUDE FUSION OF INERTIAL AND MAGNETIC SENSOR UNDER

DIFFERENT MAGNETIC FILED DISTORTIONS

By virtue of gravity measurement from hand-held inertial measurement unit (IMU) sensor,

current indoor attitude estimation algorithms can provide accurate roll/pitch dimension an-

gles. Acquisition of precise heading is limited by the absence of accurate magnetic reference.

Consequently, initial stage magnetometer calibration is deployed to alleviate this bottleneck

in attitude fusion. However, available algorithms tackle magnetic distortion based on time-

invariant surroundings, casting the post-calibration magnetic data into unchanged ellipsoid

centered in the calibration place. Consequently, inaccurate fusion results are formulated in a

more common case of random walk in time-varying magnetic indoor environment.

In this chapter, we proposes a new fusion algorithm from various kinds of IMU sen-

sors source, namely, gyroscope, accelerometer and magnetometer. Compared to state-of-the-

art attitude fusion approaches, we addresses the indoor time-varying magnetic perturbation

problem in a geometric view. We propose an extend Kalman filter based (EKF-based) algo-

rithm based on this detailed geometric model to eliminate the position-dependent affection

of compass sensor. Experimental data demonstrate that, under different indoor magnetic dis-

tortion environment, our proposed attitude fusion algorithm has the maximum angle error of

2.02°, outperforming 7.17° of gradient-declining-based (GD-based) algorithm. Additional-

ly, this attitude fusion result is constructed in a low-cost hand-held arduino core based IMU

device, which can be widely applied to embedded systems. This attitude fusion method can

contribute to the target of considering the physical subsystem as bug-free in control-CPS.

The content of this chapter is published in in [TECS18].

16

3.1 Demand

Attitude and Heading Reference Systems (AHRS) hold key positions in vehicle, transporta-

tion, and unmanned aerial vehicle (UAV) designs [100], [66], [42], [31], [104]. Three-

dimensional (3D) Euler angles expressing AHRS are calculated by comparing the rotation

vector in a body frame with the corresponding vector represented in the earth frame. Com-

bining the information generated from an inertial measurement unit (IMU), a quaternion is

formulated from gyroscopes and accelerometers, to yield the rotation matrix which is the

resource of Euler angles. Accurate pitch, roll, yaw angles are supposed to be obtained with

correction from the gravity and the earth north magnetic field. However, suffering from bias

error in gyroscope measurement, fusion results are influenced by static and dynamic residual

errors from IMU [90]. Thus, advance calibration is performed to remove the static errors,

while absolute reference from the gravity and the Earth’s magnetic north direction [90] has

to be leveraged to eliminate the dynamic gyroscope bias. Due to the intricate hardware draw-

back, these two references are exposed to noise easily [37], [110]. Elimination of the noise

in absolute orientation reference, and the fusion of gyroscope, accelerometer, magnetometer

data are the main challenges in AHRS [24], [93].

Motivating by wild applications in vehicle, robot and automatic control, researchers

have spent a lot of effort to IMU-based devices [90], [142], [76], [91], [82]. Complemen-

tary filter algorithm proposed by [91] cast fusion problem into a weight formulation. With

an initial guess of angle fusion integrated by gyroscope, this formulation contains the other

guess from accelerometer, generating an optimization problem with total weight equivalent

to 1. However, this approach is primarily limited by the low accuracy of dynamic angular

fusion. Inspired by complementary filter, gradient declining-based (GD-based) method [90]

simplifies the adjustment of parameter and models the error originating from the gradient

direction of the change in quaternion. Through the correction using absolute reference from

gravity and magnetometer, this algorithm achieves less than 0.6° static root mean square

(RMS) error and 0.8° dynamic RMS error. The necessity of GD-based algorithm main-

ly comes from two aspects: (1) the post calibration magnetic field reference points to the

17

perfectly Earth’s north, (2) dynamic magnetic sensor measurement is constructed in an time-

invariant surrounding. Latter assumption easily encounters limitation because compass sen-

sor data present an intrinsic dependence on position especially in an indoor environment. To

adopt into the first-order approximation propagation error in GD-based algorithm, unscented

Kalman filter (UKF) [142] approach is proposed to minimize the covariance of the state vec-

tor. Better robustness is associated with higher order approximation propagation. However,

time-invariant compass north is still assumed on UKF fusion.

To avoid the hypothesis of magnetic measurement from time-invariant surrounding,

practical fault models of compass sensor data are exploited in [121], [122], [135], [62], [140],

[38]. These methods account for all parameters of magnetic distortion, namely, hard/soft

iron error, nonorthogonality error, scaling and bias error, as well as wideband noise error

[122]. In addition, they cast the real compass sensor data into a least square problem which

approximates the compass data into an ellipsoid manifold. Compared with classic calibration

approaches [27], [105], geometric approximation methods address the joint effect of all kinds

of perturbations not limited to the xy plane, facilitating the calculation of the yaw angle

without external reference. However, the fault model of the magnetic data is not clarified

when sensing distance exceeds a certain range with respect to the calibration place. This

phenomenon implies that the real-time magnetic distortion problem is not addressed.

In this chapter, we focus on exploiting the dynamic characters of compass measure-

ment in an indoor environment which obtains complex unpredictable perturbations in vicin-

ity of the sensor. Given that the non-observable state nature of yaw angle [76], an extended

Kalman filter-based (EFK-based) approximation algorithm is deployed to fuse the gyroscope

data and magnetic rotation data to eliminate position-dependent magnetic disturbances. An-

other category of navigation solution to conquer magnetic distortion is so-called biomechan-

ics approaches [111], [40], [56] , [64], [112]. These approaches utilize pedestrian dynamic

pattern, which includes walk stationary period or certain aiding events used in conjunction

with IMU algorithm fusion. The main limitation of these approaches lies on the position of

such portable device placed on the human body. Mounting on the foot [64] is almost compul-

sory for the accurate result although certain methods [49], [48] can alleviate this constraint.

18

However, more than 87% of intances [79], [17] the users commonly place the device in hand

or in bag instead, yielding unreliable additional physical measurements or specificities of the

human walk detection.

The Kalman filter has been widely accepted by the majority of fusion algorithms in

automatic control [141], [94], [78]. Characterized by irregular geometric shape, compass

data are not allowed to be substituted into classic Kalman filter regressions. Thus, our ap-

proach aims to present a non-linear model of dynamic fusion of accelerometer, gyroscope,

and magnetometer data under time-varying magnetic disturbance. Precise roll/pitch angles

are evaluated in the first step with the accurate measurement of the gravity, while a fault

model of the non-observable yaw angle is formulated in the second step. Based on the vari-

ance threshold of position-dependent compass data, our proposed attitude fusion algorithm

yields a set of EKF-based equations which improve the accuracy of yaw angle despite the

different magnetic field distortions.

In this chapter, we develop a practical indoor attitude fusion algorithm for IMU inde-

pendent of different magnetic distortion. To our best of knowledge, our geometric method is

the first time to be leveraged to construct a reliable EKF-based attitude fusion. Specifically,

the contributions of this work are listed as follows:

1. We deeply exploit the problem of GD-based attitude algorithm in the indoor environ-

ment. We discuss the premise of GD-based algorithm by analyzing the essentials of

this algorithm. Via studying the magnet field change in the geometric view, we figure

out that this premise is not reliable especially in the indoor environment.

2. We propose a robust EKF-based algorithm that eliminates complex indoor environ-

ment magnetic perturbation. Using the variance of magnetic sensor measurement, we

enhance our proposed EKF-based algorithm to eliminate the unpredictable distortion

of the heading.

3. We evaluate our approach on a widely used arduino core platform to verify the robust-

ness of our algorithm.

19

θ
YB

XB

YA

Ar
ZB ZA

XA

Figure 3.1: Frame A rotates around a vector r with angle θ to achieve frame B

3.2 Preliminaries

To express the rotation in 3D space (Figure 3.1), a unit quaternion is deployed to describe the

property that frame A rotates around a vector Ar with angle θ to achieve frame B as follows:

A
Bq =

[
cos θ

2
−rx sin θ

2
−ry sin θ

2
−rz sin θ

2

]
(3.1)

where [rx ry rz] is the rotation axis vector Ar value expressed in frame A. We express frame

A using the leading superscript denoting the frame with reference to. By contrast, frame B in

the leading subscript denotes the frame being described respectively. θ is the rotation angle

around the rotation axis vector Ar in the counter-clockwise direction.

Additionally, inverse rotation can be expressed by changing the script places of A

and B, denoting as BAq [90], which is equivalent to the quaternion conjugate A
Bq
∗:

A
Bq
∗ = B

Aq =
[
q1 −q2 −q3 −q4

]
(3.2)

Using the quaternion conjugate, ∗, and cross-product of quaternions, ⊗, the rotation oper-

ation in 3D space can be described: A vector Av, expressed in frame A, is represented in

frame B as Bv, using the property of conjugate and cross-product of quaternions:

Bv = A
Bq ⊗ Av ⊗ A

Bq
∗ (3.3)

20

The rotation angles are obtained from the alignment with frame A after a sequence of rotates.

The Euler angles of this respective rotate operations are defined as follows:

ψ = arctan(2q2q3 − 2q1q4, 2q
2
1 − 1 + 2q22) (3.4)

θ = − sin−1(2q2q4 + 2q1q3) (3.5)

φ = arctan(2q3q4 − 2q1q2, 2q
2
1 − 1 + 2q24) (3.6)

3.3 Solution Overview

In this section, an overview of our proposed attitude fusion algorithm is described, to abstract

the solution which contains complex quaternion transformation and geometric approxima-

tion. We separate our solution into two steps, namely, initial calibration step (Figure 3.2)

and run-time step (Figure 3.3). Initial calibration step provides an initial fault model with

respect to gyroscope, accelerometer and compass, while run-time step provides precise 3D

attitude fusion using these 3 kinds of data. Without loss of generality, no special platform

or sensor is previously selected, implying random bias error in the gyroscope or accelerom-

eter. These intrinsic manufacturing drawbacks are expected to be removed in the initial step.

In the run-time step, dynamic errors from both gyroscope and compass are estimated and

eliminated.

3.3.1 Initial calibration step

Step 1: Collected from gyroscope and accelerometer data via I2C bus [73], our proposed

algorithm provides a data check interface to check whether the data are within the range of

their physical constraint. Half a thousand of censored samples, stored in the buffer of mi-

croprogrammed control unit (MCU), are averaged to construct a basic estimation of sensor

bias. This statistical result provides an initial compensation for the static error of both sen-

sors, addressing the accurate measurement of the accelerometer. However, precise gyroscope

measurement still requires dynamic bias elimination in the run-time step.

Step 2: Contrary to statistical approach in gyroscope and accelerometer, an initial

21

Inertial

measurement

unit

Data Check

Interface

Initial Average

 Filter

Data Check

Interface

Initial Geometric

 Filter

Data Check

Interface

Initial Accel/Gyro

 Bias

Data Check

Interface

Initial Magnetic

 Fault Moel

Accel/Gyro

Data

Compass

Data

Bias Data

Bias Data

Figure 3.2: Initial calibration step of our proposed approach

Compass

Initial Magnetic

 Fault Model

GD-based

Algorithm

EKF-based

 Algorithm

Calibrated

Accel/Gyro

Data

Raw Compass

Data

Yaw

Estimation

Accel/Gyro

Calibrated

Compass Data
Yaw Angular

Rate

Roll/Pitch

Output

Yaw

Output

Yaw

Pitch

Roll

Figure 3.3: Run-time step of our proposed approach

magnetic fault model is derived geometrically due to the gauss measurement feature of a

compass sensor [122]. Evaluated by data check interface of a compass, magnetic measure-

ment is filtered if it exceeds certain range of compass sensitivity. The parameters of the initial

magnetic fault model, including hard/soft iron effects, nonorthogonality, scaling and bias and

wide-band noise, are calculated using maximum likelihood estimator (MLE) method [122]

after the first 1000 samples are collected. Recalibration command is sent to the IMU sensor

when the model construction fails.

22

3.3.2 Run-time step

Step 1: We input the post-calibration gyroscope and accelerometer data as the fusing re-

source of GD-based attitude algorithm [90]. A 3D attitude estimation is generated from the

GD-based attitude fusion module under the correction of gravity. In aspect of yaw direction,

raw data is derived from the compass sensor, corrected by the initial geometric fault model

formed in the initial calibration step [122]. Calibrated compass measurement serves as the

fusing source of GD-based attitude algorithm, forming the yaw estimation as the input of our

proposed EFK-based algorithm.

Step 2: Influenced by time-varying indoor magnetic distortion, yaw estimation from

GD-based algorithm obtains unpredictable error, which results in the deployment of our

proposed EKF-based algorithm. The practical details of indoor magnetic distortion will be

described in Section 3.4. Constrained by compass feature of measuring directional magnetic

strength in gauss, raw magnetic measurement is not allowed to use in yaw angle EKF equa-

tions. We propose a non-linear EKF-based algorithm which inputs the raw yaw angular rate

from IMU to construct the process function. Moreover, we derive the yaw estimation from

GD-based algorithm to establish the observation function. This yaw estimation aids yaw

angle correction via model predictor and data assimilation corrector. Roll/pitch angle results

are the output from GD-based algorithm after the correction using gravity, while yaw angle

is generated from EKF-based module with the correction of the Earth‘s north magnetic field.

Details of our proposed EKF-based algorithm will be described in Section 3.5.

3.4 Attitude Representation

In this section, we use the quaternion as the agent to represent the orientation of a hand-held

IMU. We list the quaternion form containing the compass, gyroscope and accelerometer data

required by GD-based algorithm. Limitations of GD-based algorithm are determined under

time-varying magnetic field distortion. Based on these limitations, we investigate deeply the

change in the raw magnetometer measurement and the variance of such data in the disruptive

23

indoor environment. The results show that the yaw angle correction is unreliable if the time-

invariant compass calibration is used.

3.4.1 GD-based Algorithm

Presented in quaternion form, GD-based algorithm [90] is an efficient attitude fusion al-

gorithm that combines gyroscope data and observation data. In this section, we describe

the representative parts of GD-based algorithm and formulate the hypothesis of this fusion

algorithm.

North East Down coordinate

Using the capability of pointing the Earth North direction via compass sensor, we make a

convention of utilizing the quaternion principles in north east down (NED) coordinate. NED

coordinate consists of three axes, namely: one axis points to the direction of Earth’s north,

one along the Earth’s eastern axis, and one points down as the same direction of gravity [127].

In this thesis, the Earth’s frame refers to the NED frame, while the sensor frame stands for

the frame attached at the center of the device mass.

Rotation Quaternion From A Gyroscope

Initially, the quaternion describing the orientation of a rigid body is integrated by its change

rate during every sample period:

S
Eqest,t = S

Eqest,t−1 + S
E q̇est,t∆t (3.7)

where ∆t is the sampling period, and S
Eqest,t−1 is the estimation of orientation at time t-1.

S
E q̇est,t denotes the change rate of the quaternion during the sample period t. This change

rate value can be considered as unchanged during each sample period if proper frequency is

chosen.

Given that the sample period is predefined according to particular IMU datasheet,

24

the initial estimated quaternion
S

E
˙̂qest,t, which describes the change rate of the Earth‘s frame

relative to the sensor frame, is computed as the cross-product between the orientation at time

t− 1, SEqest,t−1, and the turning rate of the IMU sensor, Sω [90] as follows:

S

E
˙̂qest,t =

1

2
S
Eqest,t−1 ⊗ Sω (3.8)

Due to the measurement of IMU gyroscope sensor works in 3D space only, the first

element is recast to 0 in quaternion in order to be adaptive for a unified expression:

Sω =
[
0 ωx ωy ωz

]
(3.9)

where ωx, ωy, and ωz indicate the ideal measurement of gyroscope in 3D space respectively.

However, two categories of bias errors are obtained in gyroscope, namely, static and dynamic

errors. In this paper, the terms ωx, ωy, ωz express the angular rates whose initial static errors

has been removed via calibration in the sensor frame. In eliminating the dynamic bias error,

GD-based method is deployed ,using the correction of absolute references from gravity and

the Earth‘s magnetic north direction, which will be explained in the following section.

Rotation Quaternion From Absolute Reference

Smooth and accurate attitude estimation trajectory should be generated with a precondition

that the accumulated dynamic gyroscope bias error is eliminated. Following the transfor-

mation result of Eq. (3.3), the gravity direction can be represented in the sensor frame if

no external force is added on the sensor, as the same to the Earth‘s north direction. This

principle formulates an optimization problem in terms of orientation quaternion:

f(SEq,
Ed, Ss) = S

Eq
∗ ⊗ Ed⊗ S

Eq − Ss (3.10)

where Ed indicates the absolution reference direction from both gravity and the Earth‘s north.

Ss represents the measurement in the sensor frame. S
Eq, which is the independent variable

of this function, is the quaternion expressing the current orientation. With the existent of

dynamic gyroscope bias error, the target of formulating Eq. (3.10) is to minimize the gap

between the estimated sensor measurement inferred by absolute reference Ed and actual

25

measured direction of the according field Ss in sensor frame. Thus, an accurate estimation

of IMU attitude is provided as follows:

min f(SEq,
Ed, Ss) (3.11)

With the independent variable S
Eq, the GD-based algorithm computes the gradient of

f(SEq,
Ed, Ss) in Eq. (3.11) as the direction of the estimated dynamic gyroscope bias error:

∇f(SEq,
Ed, Ss) = JT (SEq,

Ed)f(SEq,
Ed, Ss) (3.12)

S
E q̇ε,t =

∇f
‖∇f‖

(3.13)

Consequently, accurate gyroscope data can be accessed if the estimated quaternion

derivative
S

E
˙̂qest,t of Eq. (3.8) removes the residual in this estimated error direction:

S
E q̇est,t =

S

E
˙̂qest,t − βSE q̇ε,t (3.14)

S
Eqest,t = S

Eqest,t−1 + S
E q̇est,t∆t (3.15)

Eq. (15) computes the gradient of the optimising problem function f(SEq,
Ed, Ss), using S

E q̇ε,t

as the description of this normalized gradient. This gradient equates to function f(SEq,
Ed, Ss)

multiple by its Jacobian JT (SEq,
Ed). Inside the function f(SEq,

Ed, Ss), Ed refers to the

predefined absolute reference from both gravity and the Earth‘s north direction while Ss

means the real time data measured from the accelerometer and compass sensor in the sensor

frame accordingly. A proper filter gain β is chosen to satisfy the elimination of the dynamic

residual of gyroscope data, as shown in Eq. (14), which leads to the correct integration of

attitude from each sample period in Eq. (15). Ultimately, the quaternion result SEqest,t, which

is the attitude at time t, is substituted into the rotation matrix of Eq. (10) to calculate the

correct Euler angles.

26

3.4.2 Limitation of GD-based Algorithm

Accurate sensor measurement, Ss, as well as the correct reference, Ed, are necessary for the

correct fusion result of GD-based algorithm. An accelerometer, which measures the force

centered in IMU, fits this requirement after statistical calibration, while a magnetometer is

difficult to guarantee the indoor measurement. Exposed to distortions such as bias, hard iron,

soft iron, and nonorthogonality in the sensor frame [122],the measurement of the magnetic

field is subjected to inaccurate data collection, leading to unpredictable fault in GD-based

algorithm. In this section, we exploit the fault model of indoor magnetic data and prove its

dependence on position.

Magnetic Fault Model

A magnetometer is a sensor measures the strength and direction of the combined magnetic

fields of the Earth and objects nearby. Measurement of magnetic field is subjected to distor-

tion such as bias, hard iron, soft iron, and nonorthogonality in the vicinity of sensor [122].

The hard iron errors, expressed as bHI , refer to the presence of nearby object magnetic fields

around the sensor, producing magnetic measurement offset errors which are constant in the

sensor frame. The soft iron errors refer to the presence of ferromagnetic materials around

the sensor, which are related to scaling offset errors. We describe soft iron errors as fol-

lows [122]:

hSI = CSI
S
ER

Eh (3.16)

where hSI is the soft iron transformation matrix, CSI is the soft iron scaling error matrix, SER

is the rotation matrix from earth frames to sensor frame, Eh is the expected original earth

magnetic field data.

Nonorthogonality refers to the measurement misalignment angles between sensor

frame and respective output axis. The time-invariant magnetic fault model can be trans-

formed to a matrix [122]:

27

CNO =

 1 0 0
sin(ρ) cos(ρ) 0

sin(φ) cos(λ) sin(λ) cos(φ) cos(λ)

 (3.17)

where ρ, φ, λ are the misalignment angles between the y-sensor and the y-axis, z-sensor and

the x-z plane, z-sensor and the y-z plane, respectively.

In addition to the above distortion, the practical Earth‘s magnetic field data sample

includes wide-band noise and other sensor-specific characteristics. Thus, we can model the

magnetic data in a concise formula [122]:

hri = C
S
h̄i + b+ nmi (3.18)

where hri is the magnetic measurement in the sensor frame. b equates to the total bias error

containing soft/hard iron bias distortion under the effect of nonorthogonality. C refers to

the scaling offset errors caused by nonorthogonality and soft-iron. nmi can be considered as

wide-band noise and other sensor-specific characteristics.

Position-dependent Magnetometer Data

With the assumption of ideal compass measurement, h̄i, which fills the surface of a sphere,

the fault model of magnetic filed in Eq. (3.18) implies that the compass measurement, hri,

should be on the surface of an ellipsoid in the geometric view. This conclusion is validated

by Figure 3.4 which shows an ellipsoid centered at (202, 4,−108) except from certain noise

measurements.

This proof facilitates the approximation of all measurement data into a comprehen-

sive shape of an ellipsoid, to yield an ultimate purpose of getting the according sphere [52]:

(X − U)TRTDR(X − U) = 1 (3.19)

In Eq. (3.19), X is a real set of points in the sphere of an ellipsoid, U is the ellipsoid

center, R is the matrix representing the ellipsoid orientation, D is a diagonal matrix with

28

−500
0

500

0 −200 −400200400600800

−600

−400

−200

0

200

400

X[G]

Z[G]

Y[G]

Raw data in calibration place

Figure 3.4: Raw magnetic data in the calibration place

diagonal numbers representing the half-lengths of axes of the ellipsoid. For example, an axis-

aligned ellipsoid with the center at the origin has the equation representation as: (x/a)2 +

(y/b)2 + (z/c)2 = 1. As for this ellipsoid, U is (0, 0, 0), R is the identity matrix, and D

= diag(1/a2, 1/b2, 1/c2). However, under the perturbation of Gaussian noise, least squares

method is leveraged to achieve rational approximation as follows [52]:

E(U,R,D) =
m∑
i=1

(Li − r)2 (3.20)

where Li is the distance from measurement data to the ellipse center U, r is the distance of

respective point Xi to the center. The function E is minimized iteratively using Powell‘s

direction-set method to search for a minimum.

3.4.3 Indoor environment affection

Explicit constraint from the parameterized magnetic fault model, which is derived from Eq.

(3.20), is formed by the initial calibration only once at the beginning. With ferromagnetic

materials in the vicinity of IMU, time-varying magnetic field in the indoor environment cast

the measurement into inaccurate hri if the old fault model parameters are used. In this

part, we investigate the heading estimation using the Earth’s magnetic field in the complex

indoor environment. Affection of magnetic perturbation is deeply exploited in the aspect of

orientation accuracy.

29

Yaw Angle Calculation

With precise gravity correcting the pitch/roll angles, the bottleneck of AHRS casts caution

to the calculation of an accurate yaw angle. Conventionally, post-calibration magnetometer

data can provide the yaw angle information after it has been normalized as follows:

Eyaw = atan2(Emagy, Emagx) (3.21)

where Emagx, Emagy, Emagz denotes the 3 axis measurements from the magnetometer in

the earth frame. The yaw angle calculated by Eq. (3.21) describes the heading angle between

current sensor and the Earth’s north direction. To comply the principle of quaternion, we

convert the Earth‘s north direction into quaternion form as the absolute reference as follows:

E
b̂t =

[
0
√

Emagx2 + Emagy2 0 Emagz
]

(3.22)

E
b̂t indicates the Earth’s north direction reference, which serves as one of the components of

Ed in Eq. (3.11).

Disruptive indoor environment

Given the intrinsic characteristic of the magnetometer hardware, measurements from indoor

environment are severely contaminated by instrumentation and environmental issues, ren-

dering inaccurate fusion of the IMU sensors reading. In order to investigate deeply the effect

of magnetic perturbation inside buildings, we construct our experiment in a room full of fer-

romagnetic distortion. From Figure 3.5, the experiment room is crowded with computers,

ferromagnetic materials, such as electric wire and metallic boxes.

This environment is to guarantee that our portable device is surrounded by electro-

magnetic devices or magnetization of manmade structure in the presence of an external mag-

netic field. We evaluate the magnetic distortion effect in two aspects: magnetic data ellipsoid

center change and heading angle change.

30

Figure 3.5: Disruptive indoor environment

Change of magnetic model

We collect raw magnetic sensor measurement data within the same room in Figure 3.4 (the

calibration place), and select one representative set of data to demonstrate the position-

dependent nature: From Figure 3.6, the raw measurement indicates explicitly that this el-

Z[G

X[G]

Y[G]

Another raw data in the same room

800

600

400

200
] 0

-200

-400

-600

-800

500 0 -500

500

0

-500

Figure 3.6: Representative set of raw magnetic data in the same room of calibration

lipsoid has a similar shape of figure 3.4 but centered at (85, 8,−200). The comparison result

between Figure 3.6 and Figure 3.4 indicates the magnetic distortion should not be consid-

ered as time invariant especially in an indoor environment. All kinds of magnetic pertur-

31

bations, such as hard/soft iron error, nonorthogonality error, and noise affection should be

reappraised. If the data in Figure 3.6 uses the calibration result of Figure 3.4, GD-based

fusion algorithm is bound to output error angle for the reason of having different ellipsoid

centers. That is, GD-based fusion algorithm is not able to handle time-varying magnetic

perturbations.

Additionally, we walk down a straight line of 70 decimeters indoors while guaran-

teeing the device pointing to the same direction. Using Eq. (3.21), heading angles are

calculated under unpredictive magnetic affection. We demonstrate the magnetic distortion

between clean heading and contaminated heading from Figure 3.7. The calculated results

from measured data suffer severely by the ferromagnetic material distortion, and the effect

of inaccuracy is in direct proportion to the distance from calibration place. Random results

are included in the heading calculation, rendering the urgent need to rule out the magnetic

perturbations. The nature of indoor and outdoor affection on magnetometer is comprehen-

sively summarized in the survey of [16].

0 10 20 30 40 50 60 70
15

20

25

30

35

40

Length(dm)

de
gr

ee
s

Measured and clean yaw angle

Contaminated yaw

Clean yaw

Figure 3.7: Heading affection by indoor environment

3.5 Time-varying Magnetic Distortion Solution

Based on the demonstration of the position dependence of the compass sensor, we propose an

EKF-based approach to rule out unpredictable magnetic perturbation in this section. Exploit-

ing the principles of calculating the Earth’s magnetic north in both Eqs. (3.21) and (3.22),

32

the calculated quaternion of Earth’s north direction is generated. Substituting this calculated

Earth’s north into GD-based attitude fusion algorithm formulates the yaw angle observation.

This process facilitates the establishment of an EKF-based nonlinear system to eliminate the

time-varying magnetic perturbations via its model predictor and data assimilation correc-

tor. However, variance of magnetometer is unpredictable indoors, yielding a variance-based

design in section 3.5.2 to enhance the EFK-based attitude fusion.

3.5.1 EFK-based Algorithm

In this section, we detail the process and observation equations in our proposed EKF-based

approach. Additionally, a geometric approximation fault model is leveraged to solve the

conversion between the measurement of the compass sensor and yaw angle observation.

We consider the following target linear system:

Exk = Exk−1 + E
SRk−1

Sgyaw,k−1∆t+ wk−1 (3.23)

Ezk = Exk + vk−1 (3.24)

where state vector Exk is the yaw angle expressed in the earth frame at time k, ESRk−1 denotes

the rotation matrix described the earth frame refer to sensor frame at time k-1, Sgyaw,k−1 is

the gyroscope measurement in yaw direction at time k-1 in the sensor frame, ∆t is the time

step in this EKF equations, wk−1 is the process noise vector from gyroscopes, Ezk is the

observation vector which means magnetic measurement in the earth frame at time k, vk−1

is the measurement noise vector from compass. Basically, E
SRk−1

Sgyaw,k−1∆t means the

change in yaw angle integrated by angular rate in terms of the Earth‘s frame. The state

vector is corrected by the observation yaw angle Ezk.

No direct observation yaw angle is derived from compass sensor, hindering the for-

mulation of the linear relationship between state vector Exk and observation vector Ezk. To

obtain the observation yaw angle Ezk, a conversion between magnetic field measurement

from compass and the according yaw angle is necessary to be derived from the geometric

approximation and the quaternion to Euler angle mapping computation as follows:

33

S
h̄i = C−1(hri − b− nmi) (3.25)

[
0 Smagx Smagy Smagz

]
=

S
h̄i∥∥∥Sh̄i∥∥∥ (3.26)

We use the initial magnetic fault model of Eq. (3.18) to calculate the post-calibration

compass measurement Sh̄i in Eq. (3.25), to yield a unified measurement in the sensor frame

in Eq. (3.26), which construct the measurement quaternion in the sensor frame also:

Ss =
[
0 Smagx Smagy Smagz

]
(3.27)

Based on the Earth‘s magnetic north reference calculated in Eq. (3.22), both Ss and
E
b̂t are substituted in the following equations to generate the yaw observation:

∇f(SEq,
Ed, Ss) = JT (SEq,

Ed)f(SEq,
Ed, Ss) (3.28)

S
E q̇ε,t =

∇f
‖∇f‖

(3.29)

S
E q̇est,t =

S

E
˙̂qest,t − βSE q̇ε,t (3.30)

S
Eqest,t = S

Eqest,t−1 + S
E q̇est,t∆t (3.31)

ψ = arctan(2q2q3 − 2q1q4, 2q
2
1 − 1 + 2q22) (3.32)

The whole system can now use Kalman Filter iteration to get a smooth-change yaw

angle under the position-dependent magnetic distortion. The initial state Ex0 is a random

yaw angle in the starting calibration place with mean Eµ0 = E[Ex0] and covariance P0 =

E[(Ex0 − Eµ0)(
Ex0 − Eµ0)

T].

According to the law of EKF iteration [60], we have the optimal yaw estimation

through the following steps (Details are listed in the Appendix .3):

34

Initialization:

Eµ0 = E[Ex0] (3.33)

P0 = E[(Ex0 − Eµ0)(
Ex0 − Eµ0)

T] (3.34)

Model Predictor:

E
xfk ≈

Exak−1 (3.35)

P f
k = Pk−1 +Qk−1 (3.36)

Data assimilation corrector:

Exak ≈ Exfk +Kk(
Ezk − Exfk) (3.37)

Pk = (I −Kk)P
f
k (3.38)

Kk = P f
k (P f

k +Rk)
−1 (3.39)

The meanings of the variables are explained in the below:

Exak−1: estimated stated vector at time k-1;

Exak: estimated stated vector at time k;

Exfk : forecast value at time k;

Ezk: observation value at time k;

Pk: covariance of the state vector at time k;

Qk: covariance of the process noise at time k;

Rk: covariance of the observation noise at time k;

Kk: Extend Kalman Filter gain;

P f
k : forecast error covariance at time k.

35

3.5.2 Variance-based fusion

To enhance the accuracy of the EFK-based fusion on IMU, we propose a variance-based

fusion function to avoid contaminated magnetic data integration. Equation 2 shows that Ezk,

provides absolute correction of yaw angle, rendering the gyroscope data to eliminate the

severe degradations indoors. On the contrary, correction from magnetometer with random

variations incorrectly integrates the yaw angle fusion. Consequently, low variance of the

observation measurement is the cornerstone of correct heading.

We define an average function to detect the variance of the magnetometer sensor,

which requires the mean of the signal within a window size of N samples:

∥∥b̄∥∥ =
1

N

n+N−1∑
k=n

Ezk (3.40)

where
∥∥b̄∥∥ denotes the norm of averaged magnetometer observation from time step n to n+N-

1. The window size N depends on the accumulating rate of the dynamic gyroscope bias error.

Deviation of magnetic measurement under perturbation must be checked to guarantee low

covariance of the observation, leading a threshold function we designed:

Λ(Ezk) =

∥∥Ezk − ∥∥b̄∥∥∥∥
Pk

≤ λ (3.41)

where Λ(Ezk) serves as low variance measurement detector, while Pk indicates the covari-

ance of the state vector at time k. EKF-based fusion generates rational and accurate attitude

integration with the premise of threshold function, Λ(Ezk), below a statistical boundary val-

ue λ. With respect to outage of low Λ(Ezk) value, we utilize the dynamic bias calculated in

the last average function window as a conjecture of gyroscope error, based on the absence of

remarkable deviation within a short period in the physical system.

We formally specify the above heuristics into the following steps in our proposed

approach:

36

Step 1) Given the first window size set of data from gyroscope, accelerometer and magne-

tometer, the according quaternion change rate is calculated resorting Eq. (13) and stored in

the memory, denoted as SE q̇ε,1,
S
E q̇ε,2, ..., SE q̇ε,N .

Step 2) Using Eq. (3.40), the averaged state vector is generated at time step N, rendering

that the first assessment of dynamic quaternion bias is produced as S
E q̇ε,N . We save it as

S
Eerrorprevious,N .

Step 3) New raw IMU sample triggers new iteration of averaged function in Eq. (3.40)

updates, renewing the variance-based function of Eq. (3.41), and the dynamic quaternion

bias assessment SEerrorprevious,N . Serving as a variance detector, threshold function, Λ(Ezk)

of Eq. (3.41), evaluates the variance of the magnetometer observation at each new raw IMU

sample. If the value of Λ(Ezk) satisfies the constraint of λ, EKF-based attitude fusion is

allowed. That is, the controller runs the attitude fusion from Eq. (23) to Eq. (39).

Step 4) Once violation of threshold function of Λ(Ezk) appears, we stop the correction from

EKF-based attitude fusion which use observation data from magnetometer. Instead, we con-

sider the dynamic quaternion bias, SEerrorprevious,N , is the same during the period of vio-

lation. We continue the attitude fusion only through Eq. (14) and Eq. (15). We avoid

inaccurate integration of IMU via ruling out the the absolute magnetic correction of high

variance, rendering a conservative fusion via previous quaternion change rate.

Step 5) At the moment of Λ(Ezk) is satisfied, Step 3 is repeated as our normal attitude

fusion. Based on the clean measurement, the correction of absolute reference from magne-

tometer guarantees the accurate integration of EKF-based algorithm, significantly improving

the counter indoor perturbation effect.

Step 6) The end.

37

Figure 3.8: Arduino Mega 2560 platform integrated with MPU-6050 and HMC-5883

3.6 Evaluation

We construct a set of experiments to evaluate the angular accuracy in pitch, raw and yaw axis,

respectively,. We first list the details of our widely used arduino core platform. Second, we

compare the fusion angles using GD-based algorithm and measured angles to demonstrate

the importance of magnetic calibration. We discuss the yaw angle difference before and after

using our magnetic fault model in GD-based algorithm. Finally, we compare the measured

angles and GD-based algorithm angles to determine the affection of different magnetic dis-

tortions as mentioned in Section 3.4. We determine the assumptions of GD-based algorithm

and demonstrate that our algorithm encounters less limitation compared with the GD-based

algorithm in indoor environment.

3.6.1 Equipment

We perform our experiment on a widely used arduino-based platform as shown in Figure

3.8. We choose arduino mega 2560 as our core micro-controller unit (MCU) ,which con-

nects the IMU via SPI bus and compass via i2c bus, respectively. To avoid the turbulence

of low frequency fusion, we increase the sensor data capture frequency in MCU up to 200

Hz. In the aspect of IMU, we use MPU-6050 [73] which contains 16-bits analog-to-digital

conversion hardware and provides both accelerometer and gyroscope in three dimensions.

38

The MPU-6050 IMU provides raw information on roll and pitch angles if and only if fusion

algorithm is properly constructed. This process encounters correction limitation in providing

accurate yaw angle because of the absence of the indoor correction reference support. Inte-

grating HMC-5883 [69] component on the same board with mega 2560 provides the absolute

Earth‘s north as a corrector. The HMC5883L includes a 12-bit ADC which declares 1° to 2°

compass heading accuracy. Our experiment requires a digital angle measuring tool to serve

as an absolute comparison standard. Here, we choose an iphone 7 to transmit its angular

measurement to our laptop.

To avoid the constraint of communication cable, such as usb, we utilize a pair of

433 MHz radio frequency (RF) modules to transmit data described in Figure 3.8. We send

the real-time raw sensor data package back to the laptop and fuse 3D data at 200 Hz. Each

package of data contains 3D gyroscope, acceleration, and magnetic gauss measurement.

3.6.2 Attitude Estimation Using Gravity

In the first step, we evaluate the GD-based fusion algorithm only using gravity as absolute

reference. This step aims to discover the relationship between attitude fusion algorithm and

gravity reference. With the precise capture of the accelerometers in IMU, the estimated

pitch/roll angles inferred by quaternion are intended to converge to the same degree with the

measured angles. Given that gravity is always pointing at negative side of z axis in Earth’s

frame, the estimated pitch/roll angles are supposed to be accurate if the fusion algorithm can

remove the bias of gyroscopes data.

We collect raw measured data in gyroscope, accelerometer, and magnetometer from

IMU. These 3 kinds of data are sent back to our laptop to do real time attitude fusion using

GD-based algorithm in 200 Hz. As shown in Figure 3.9, the maximum pitch angular resid-

ual between the estimated angle of fusion algorithm and practical measured angle appears

at 0° in the measured angle, and -0.65° in estimated angle, correspondingly. The maximum

angular error is 0.65° which is less than 1° in dynamic error. In Figure 3.10, maximum roll

angular error appears at -0.82° for the measured angle and -0.07° for the estimated angle

39

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sample period

de
gr

ee
s

Estimated and measured pitch angle

Estimated pitch

Measured pitch

Figure 3.9: Dynamic results of measured angle and estimated angle in pitch axis

0 5 10 15 20 30 35 40 45 50
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

25

Sample period

de
gr

ee
s

Estimated and measured roll angle

Estimated roll

Measured roll

Figure 3.10: Dynamic results of measured angle and estimated angle in roll axis

0 5 10 15 20 25 30 35 40 45 50
−20

−10

0

10

20

30

40

Sample period

de
gr

ee
s

Estimated and measured roll angle

Measured yaw
Estimated yaw

Figure 3.11: Dynamic results of measured angle and estimated angle in yaw axis

40

correspondingly. This maximum error in roll dimension is 0.75°, which is less than 1° in dy-

namic error. Eliminating bias in each sample period in the roll/pitch dimension, we discover

that GD-based fusion algorithm can provide accurate angle estimations with the corrector of

the gravity. By contrast, from Figure 3.11, the gyroscope bias accumulates quickly because

no absolute reference serves as a corrector. Fusion angle in the yaw axis cannot predict

right direction and the change rate of orientation. This error implies GD-based fusion algo-

rithm relies heavily on the correction from absolute reference in every step of gyroscopes

integration. If the reference is not accurate, the GD-based fusion algorithm encounters poor

robustness. Hence, the hypothesis of GD-based fusion algorithm are both accurate gravity

and Earth’s north references.

3.6.3 Attitude Estimation Using Gravity And Calibrated Compass

−800 −600 −400 −200 0 200 400 600 800

−600
−400

−200
0

200
400

600
800

−800

−600

−400

−200

0

200

400

X[G]

Y[G]

Z
 [G

]

Raw magneitc data in 3D space

Figure 3.12: Raw data of compass in 3D space

To avoid the poor results in yaw dimension adjustment by gravity only, we combine

gravity and calibrated compass in attitude estimation in the second step. We collect mag-

netometer only via RF modules at 200 Hz and draw the raw measured data in a geometric

view. Using the model of Eq. (3.18), the raw measured compass data can be approximat-

ed as a shape of ellipsoid. This approximation is demonstrated as Figure 3.12 in an indoor

41

Approximated shape of compass data

Figure 3.13: Approximated shape of compass data in 3D space

environment. The range of this magnet raw data is within (-412G, 631G), (-373G, 809G),

(-761G, 247G) in the x,y,z dimensions, respectively. Presented as a ellipsoid-like shape,

all the measurement are approximated into an ellipsoid via 3D least squares method men-

tioned in Eqs. (3.21) and (3.20). The results of least squares method are shown in Figure

3.13. Viewing this least squares model geometrically, we discover the ellipsoid center at

(10.529G, 171.75G, -194.6G) with radius of (579.85, 548.64, 478.34).

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Sample period

de
gr

ee
s

Estimated and measured pitch angle

Estimated yaw
Measured yaw

Figure 3.14: Dynamic results of measured angle and estimated angle in yaw axis using post-

calibration data

Based on this accurate shape of magnetic measured data, requirements of GD-based

42

algorithm can be fulfilled if the accurate absolute Earth’s north reference is inferred. Con-

verting the ellipsoid into sphere geometrically, we map each measured compass informa-

tion to each point in the surface of a unit standard sphere via singular value decomposition

(SVD) [41] approach. Within the same place of calibration, attitude estimation shows the

maximum residual between measured angle and estimated angle locations in (-0.08°, 0.6°)

as shown in Figure 3.14. This error (0.68°) achieves the dynamic errors less than 1° in yaw

angle ,which also validates our ellipsoid geometric approximation.

3.6.4 Attitude Estimation Under Different Magnetic Distortion

Based on the analysis of the necessary requirements of GD-based fusion algorithm above,

we continue to exploit the nature of position-dependent magnetic affection on this fusion al-

gorithm in this part. We first discover the magnetic distortions on a predefined trajectory. We

try to establish the affection from compass is dependent on position. Then, we demonstrate

that our proposed EKF-based algorithm improves the poor robustness of attitude fusion algo-

rithm under dynamic unpredictable magnetic perturbations. We compare measured angles,

GD-based angles, and our proposed EKF-based angles results. The comparison validates

that, in an indoor environment, our proposed EKF-based attitude estimation algorithm has

advantages especially in case of compass measurement exceeding a certain range from the

calibration place.

To determine the the relationship between position and magnetic perturbations, we

set up a trajectory in the room of Figure 3.5. By choosing the calibration place as the starting

point (Figure 3.15), we predefine the trajectory which has a property of 7 meters in length and

3.5 meters in width. We rotate our IMU in hand while moving along the predefined indoor

rectangle trajectory in a counter-clockwise direction. With complex environment along the

trajectory, such as electricity wires or computers, unpredictable magnetic perturbations are

encountered. We transfer our IMU data back to the station fixed in the starting point via RF

modules at 200 Hz to view the yaw angle fusion.

We walk along the predefined trajectory for 1000 times to implement the variance-

43

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0.5

1 1 2 3 4 5 6 7 8

Predefined trajactory

Length (m)

Start point

Width

(m)
Walking direction

Figure 3.15: Predefined trajactory of IMU

based fusion in our proposed algorithm. Meanwhile, the sensor data, containing 3D gy-

roscope, accelerometer and magnetometer, is sent back to our laptop for real time angular

fusion. We compare the sets of magnetic observations each time and choose size N to be 9

in Eq. (3.40), threshold function value λ to be 5.37 in Eq. (3.41), respectively. We draw

the sets of results by repeating the predefined trajectory. Figure 3.16 and Figure 3.17 display

one representative set of yaw angle fusion comparison results between GD-based algorithm

and measured angles, the proposed EKF-based angle fusion algorithm and measured angles,

respectively. Figure 3.18 calculates the angle errors. The results demonstrate that, compared

to GD-based algorithm, our proposed EKF-based angle fusion algorithm has obvious advan-

tage under different magnetic perturbations. Figure 3.18 shows that the proposed EKF-based

angle fusion algorithm has maximum angle error of 2.02° while 7.17° in GD-based algorith-

m. Moreover, Figure 3.16 shows that the angle fusion errors can be divided into 3 stages:

(1) From sample 1 to 374, angle fusion error is within ±2.74°; (2) From sample 375 to 944,

angle fusion generates bigger error range of ±7.17°; (3) From sample 945 to 1500, angle

fusion error becomes relatively smaller with a range of ±1.57°. This phenomenon proves

magnetic distortion is dependent on position: (1) When our IMU goes along the trajectory

from starting point (0, 0) in Figure 3.15 to (3.2, 0), the GD-based algorithm enters the first

44

0 500 1000 1500
−40

−20

0

20

40

Sample period

de
gr

ee
s

GD−based and measured yaw angle

Measured yaw

GD−based yaw

Figure 3.16: Comparison results of measured angle and GD-based angle in yaw axis

0 500 1000 1500
−40

−30

−20

−10

0

10

20

30

Sample period

de
gr

ee
s

Proposed and measured yaw angle

Proposed yaw
Measured yaw

Figure 3.17: Comparison results of measured angle and proposed algorithm angle in yaw

axis

stage respectively. Given its proximity to the calibration place, the residual of angle fusion is

relatively small. (2) Beyond point (3.2, 0) in Figure 3.15, the GD-based algorithm enters the

second stage with obvious angle errors. (3) Until the IMU returns to point (2.6, 3.5) in Figure

3.15, the GD-based algorithm enters the third stage which outputs less angle error because

the place of angle fusion is close to the magnetic calibration place again. These stages of

attitude fusion in yaw axis also demonstrate that the accuracy of GD-based algorithm and

compass rely heavily on the position.

45

0 500 1000 1500

−6

−4

−2

0

2

4

6

Sample period

de
gr

ee
s

Calculation of angle errors from GD−based and proposed algorithm

−8

Proposed algorithm

GD−based algorithm

Figure 3.18: Calculation of angle errors from GD-based and proposed algorithm

46

CHAPTER 4

MPC-SI SOLUTION FRAMEWORK

4.1 Overview

An important component of control-CPS SFL is the oracle design which distinguishes the

correct source code execution traces from incorrect ones. As proposed in Chapter 1, we

import the physical trajectories and judge them using MPC-SI. MPC-SI method generates

estimated trajectories via approximating the real physical trajectories. We then look at the

gap between the real and estimated physical trajectories. If a gap is big, the corresponding

source code execution trace is labelled as incorrect. The labelled source code execution

traces are the input for SFL. Correspondingly, a suspect list of the possible buggy lines is

generated as the output. Figure 4.1 illustrates the above concepts.

In this chapter, we first introduce MPC-SI. By exploiting MPC-SI, we propose an or-

acle for control-CPS SFL. Based on this MPC-SI oracle, we propose a framework of method-

ology to prepare traces for control-CPS SFL.

4.2 More on the Heuristics

Chapter 1 points out that due to the empirically proven capability of MPC-SI in predicting

control systems’ behaviors, we shall exploit it as an oracle for control-CPS SFL.

MPC is an online control strategy for systems hard to model analytically. It regards

the control system as a black-box and focuses on learning the relationship between its sam-

pled input and output online using its SI method. The MPC-SI learning result is called the

identified model. Specifically, if we regard the the gray area of Fig. 2.1 as a black-box control

47

Figure 4.1: Proposed oracle overview

system, whose input is Uh ∈ Rq and output is plant state Xi ∈ Rn, then MPC-SI typically

models the relationship between Uh and Xi (∀i = p, p+ 1, · · ·) as

Xi = (

p∑
j=1

AjXi−j) +BUh + ξi, , (4.1)

where h = bi∆/T c = bi/Nc; p ∈ {1, . . . , N − 1} is a preconfigured constant; A1, A2, · · · ,

Ap ∈ Rn×n and B ∈ Rn×q are the model parameters to be learnt; and ξi ∈ Rn is the SI error.

Appendix A elaborates the details of the above MPC-SI technology.1

As mentioned in Chapter 2, during runtime, in each user input sampling period, the

user input sample Uh holds constant throughout [hT, (h+1)T). In such a user input sampling

period, once i + 1 (p 6 i < N) consecutive plant states (without loss of generality, denote

1 There are other forms of the identified model for MPC-SI, but the model of Exp. (4.1) is the most widely

used. In this thesis, unless otherwise denoted, MPC-SI identified model by default refers to the model described

by Exp. (4.1).

48

them as X0, . . ., Xi−(p−1), . . ., Xi−1, Xi) become available, the MPC-SI method optimizes

the values of A1, A2, . . ., Ap and B in Exp. (4.1), so that the runtime accumulated SI error

energy is minimized (interested readers can refer to the seminal textbook of Camacho et

al. [32] for the details of the algorithm). Suppose the optimal A1, A2, . . ., Ap, and B values

are A(∗,i)
1 , A(∗,i)

2 , . . ., A(∗,i)
p , and B(∗,i), then MPC-SI method predicts Xi+1 with X̂i+1:

X̂i+1
def
= (

p∑
j=1

A
(∗,i)
j Xi+1−j) +B(∗,i)Uh. (4.2)

When Xi+1 becomes available, we know the MPC-SI prediction error:

ei+1
def
= X̂i+1 −Xi+1. (4.3)

Usually the MPC-SI prediction error magnitude should be small. When it becomes

extremely large, something may be wrong: intuitively, the control system execution may

be incorrect. In this sense, we can use the MPC-SI method as an oracle. For example,

as Figure 4.2 shows, the estimated trajectory of control-CPS (dot line) approximates the

real trajectory (solid line) closely when the code is executed normally. Once a large gap

between these two appears, we suspect a bug takes effect. Thus, our MPC-SI oracle labels

the corresponding source code execution trace as “incorrect”.

The MPC-SI method has three advantages, which makes it an ideal oracle candidate

for control-CPS SFL:

First, the method procedure is deterministic, and is readily implementable as an au-

tomatic program.

Second, both the method procedure and the identified model are simple, and are

independent of the internal complexity of the control-CPS. Hence it is easy to implement

and use.

Third, though the method is simple, we have strong belief that it can effectively catch

subtleties of various control-CPS physical trajectories. This is empirically evidenced by

the success of MPC in broad variety of applications over the decades: industrial, chemical,

49

0 20 40 60 80 100 120

5
10
15
20
25
30
35

Unit: second

U
ni

t:
m

et
er

0

Real Trajectory

Estimated Trajectory

1
14
16
18
20

10

Suspicious
buggy code
behavior

Normal code
behavior

1 3 1 1 5 1 1 7

 8
 6 86 88 90

Figure 4.2: Distinguishing correct/incorrect trajectories via MPC-SI oracle example

vehicular, robotics, medical etc. [32,47,53,81,124]. In these MPC applications, the MPC-SI

method is actually used to control life/mission critical plants. Serious accidents would have

happened if it is untrustworthy.

4.3 Proposed Oracle and Source Code Execution Trace Preparation Methodology

Based on the heuristics of Section 4.2, we propose to use the MPC-SI method as our ora-

cle, and propose the corresponding source code execution trace preparation methodology for

control-CPS SFL. Our proposed oracle and source code execution trace preparation method-

ology (referred to as “our proposed approach” in the following) are summarized by Fig. 4.3

Note in Fig. 4.3-Step1, we leave the sampling strategy open. By default, we shall

randomly sample from the valid set of initial states as per uniform distribution(In Chapter 5,

to increase the number of test cases, after uniformly sampled n test cases’ initial states, we

add disturbances to these n initial states to create another n test cases initial states, and repeat

50

Step1 Sample a valid initial state X0 of the plant.

Step2

Task1 Emulate the control-CPS using the emulation platform of

Fig. 2.1 starting from X(0) := X0. Log the physical trajectory

{Xi}, user input trace {Uh}, and source code execution trace θ.

Task2 Run the MPC-SI method in parallel with the control-CPS em-

ulation. For each new physical trajectory sample Xi+1 from the

emulation, calculate the MPC-SI prediction error ei+1 via Ex-

p. (4.3) and log it.

Step3 When the emulation ends, check if the MPC-SI prediction error trace

{ei} contains outlier(s). If so, label θ as “incorrect”; otherwise label

θ as “correct”.

Step4 If enough source code execution traces are collected, terminate; oth-

erwise go to Step1.

Figure 4.3: Our proposed oracle and methodology to prepare source code execution traces

(this oracle and methodology are referred to as “our proposed approach”).

51

this until the total number of test cases is quadrupled: 4n.). Our proposed MPC-SI method

based oracle is embodied by Fig. 4.3-Step3, which labels the correctness of the source code

execution trace. Also in Fig. 4.3-Step3, note in statistics, currently there is no consensus on

the strict definition of an “outlier” [9]. In this thesis, we regard a data point outside of (mean

± 6std) of statistics as an outlier.

Compared to our proposed approach, the other approach is the so-called human ora-

cle approach depicted by Fig. 4.4.

Step1 Same as Fig. 4.3-Step1.

Step2 Same as Fig. 4.3-Step2-Task1.

Step3 Use human oracle to judge the correctness of physical trajectory

{Xi}, and label the corresponding source code execution trace θ.

Step4 Same as Fig. 4.3-Step4.

Figure 4.4: Human oracle and methodology to prepare source code execution traces (this

oracle and methodology are referred to as the “human oracle approach”).

52

CHAPTER 5

EVALUATION AND RESULTS

Next, we shall evaluate our proposed approach (see Fig. 4.3).

5.1 Evaluation Metrics and Research Questions

Our proposed approach (see Fig. 4.3) mainly serve three main stream families of SFL tools:

respectively based on program spectrum, statistics, and machine learning. As shown by

Fig. 1.3, an SFL tool of such types takes in a large number of labeled source code execution

traces, and outputs a suspect list. This list shows suspected buggy source code entities (such

as lines of source code, blocks of function definition, blocks of class definition, etc.) in

descending order of suspiciousness.

We have three metrics to measure the quality of the suspect list. Suppose the suspect

list is S = (s1, s2, · · · , sl), where si (i = 1, · · · , l) is the ith suspected (s1 is the most

suspected) source code entity. Suppose B is the set of truly buggy source code entities.

Then accuracy refers to |{si|si ∈ B}|/l, i.e. coverage of true bugs by S; recall refers to

|{si|si ∈ B}|/|B|, i.e. coverage of true bugs in B; latency refers to min{i|si ∈ B}, i.e.

starting from s1, the index of the first suspect in S that is truly buggy. In case none of

the items in S belong to B, we define latency as the length of suspect list S, i.e. l, as the

programmer needs to investigate all l items in the suspect list before s/he stops.

As the suspect list is the SFL result, the above suspect list quality metrics are hence-

forth also the SFL quality metrics. Our evaluation intend to clarify the following research

question.

53

Q1 How does our proposed approach impact SFL quality (measured by accuracy, recall, and

latency)?

Besides the above research questions, we also notice that oracles may have other

usage than SFL. Therefore, we are also interested in the raw quality of the oracle itself.

Specifically, suppose we have collected a set of source code execution traces Θ; let

P def
= {θ ∈ Θ|θ is labeled by the oracle as buggy (i.e. “incorrect”)},

PT
def
= {θ ∈ Θ|θ truly includes buggy entity of the source code},

N def
= Θ− P , and NT

def
= Θ− PT;

we can then define the false positive rate RFP and the false negative rate RFN of the oracle

as

RFP
def
= |P ∩ NT|/|NT|, and RFN

def
= |N ∩ PT|/|PT|. (5.1)

We intend to clarify the following research question.

Q2 How does our proposed approach impact raw oracle quality (measured by RFP, RFN)?

In the following, we shall carry out evaluations on two contro-CPS test-beds with

various bugs from real-life and/or artificial injection to answer the above research questions.

5.2 Control-CPS Test-beds

We carry out evaluations on two control-CPS test-beds.

The first test-bed is ArduPilot [5]. ArduPilot is a state-of-the-art open platform to

build consumer-product-grade unmanned aerial vehicles (UAVs) [3, 4]. The cyber subsys-

tem of ArduPilot is mostly written in C++. It consists of over 1.4 million lines of source

code from more than 9,600 files, with a total size of over 380MB. To debug the entirety of

54

ArduPilot contains too much work. In this thesis, we focus on debugging the application

layer of ArduPilot, which already consists of 27,000 lines of source code from 160 files,

with a total size of over 1.06MB.

Besides the practical value and size of ArduPilot, it also features a physical subsystem

simulator: the so-called software in the loop (SITL) simulator. As the UAV physical sub-

system model is simple and well established, the SITL simulator is relatively simple (only

consists of about 6 thousand lines of source code). Also, the SITL simulator is already wide-

ly used by the community, even for the development of consumer-grade-products [3, 4, 26].

Based on these, we reasonably regard the SITL simulator as bug-free.

By connecting a (possibly buggy) ArduPilot cyber subsystem with the SITL physical

subsystem simulator, we build the control-CPS emulation platform required by our proposed

approach and the human oracle approach (see Fig. 2.1, Fig. 4.3-Step2, and Fig. 4.4-Step2).

The monkey (see Fig. 2.1) we adopt is a program that steers the ArduPilot UAV from ran-

domly sampled initial conditions. The initial x, y, z location and pitch, roll, yaw of the UAV

are sampled uniformly from range [0, 111.3km], [0, 111.3km], [0.4km, 0.5km], [−20◦, 20◦],

[−20◦, 20◦], [0◦, 360◦) respectively. Each emulation spans an emulated time duration of 12

seconds. In the emulated time, the plant sampling period ∆ = 100ms, and the user input

sampling period T = 2s.

The second control-CPS test-bed is one that combines inverted pendulum and com-

puter vision (IP+CV). An inverted pendulum (IP) is a classic generic purpose test-bed for

control theories [29, 57, 115]. It consists of a cart moving along the x-axis and a metal rod

(i.e. the pendulum) with one end hinged on the cart (see Fig. 5.1(A)). The other end of the

metal rod is free to rotate. The IP’s on-cart controller carries out fine-grain control: it moves

the cart back and forth along the x-axis to keep the metal rod standing up-right still. In our

IP+CV control-CPS test-bed, the plant of the physical subsystem is an IP (see Fig. 5.1(B)).

The state of the IP is captured by a video camera. The video captured, i.e. a sequence of

pictures taken every 8s, is sent to the cyber subsystem. The cyber subsystem takes charge

of coarse-grain control. Using the pictures from the video camera, the cyber subsystem rec-

55

ognizes the current x-axis location of the IP via computer vision (CV), and then decides the

next target x-axis location (aka reference location) for the IP. The cyber subsystem of the

IP+CV control-CPS consists of about 4,000 lines of source code from 11 files, with a total

size of 161.9KB.

(A) an IP (B) The entire control-CPS with computer vi-

sion (CV) library in the cyber subsystem

Figure 5.1: Inverted pendulum and computer vision (IP+CV) control-CPS

To build the emulation platform of Fig. 2.1 for the IP+CV control-CPS test-bed, we

need a physical subsystem simulator. For analytical convenience, we consider the video

camera of Fig. 5.1(B) as part of the physical subsystem, i.e. the IP+CV control-CPS’s phys-

ical subsystem is the gray area of Fig. 5.1(B). We use a virtual reality software, Unity [14],

to simulate the gray area components of Fig. 5.1(B). The simulator consists of 1464 lines

of code. Due to its small scale, the simulator can be manually thoroughly debugged. We

therefore regard the simulator as bug-free.

By connecting a (possibly buggy) IP+CV cyber subsystem with the physical subsys-

tem simulator, we can build the control-CPS emulation platform required by our proposed

approach and the human oracle approach (see Fig. 2.1, Fig. 4.3-Step2, and Fig. 4.4-Step2).

The monkey (see Fig. 2.1) we adopt is a program that steers the IP from randomly sampled

initial conditions. The initial x-axis location of the IP cart is sampled uniformly from range

[−0.32, 0](m). Each emulation trial spans an emulated time duration of 280 seconds. In the

emulated time, the plant sampling period ∆ = 40ms, and the user input sampling period

T = 8s.

56

5.3 Evaluations with Real-life Bugs

ArduPilot maintains a released version log in GitHub [6]. From it we can find real-life bugs

appeared in earlier released versions. Of these bugs, 8 belong to the application layer source

code that we focus on. We inject these bugs back into our ArduPilot test-bed, as described

by Table 5.1.

Table 5.1: Real-life Bugs to be Injected into ArduPilot

File-Function-Line# Bug Description

mode steering.cpp-update-56 wrong stop throttle calculation

mode steering.cpp-update-6
wrong navigation throttle calculation when re-

versing

mode auto.cpp-update-56 wrong acceleration calculation when reversing

mode auto.cpp- enter-12 wrong initialization in auto mode

mode rtl.cpp- enter-56 wrong initialization in rtl mode

mode guided.cpp-update-28 wrong mavlink signal message

mode guided.cpp- enter-6 wrong initialization in guided mode

mode.cpp-calc throttle-79 wrong braking throttle value calculation

Guided by Table 5.1, we create 40 versions of buggy ArduPilot cyber subsystems,

each called a subject. Eight of the 40 subjects respectively contain one of the candidate real-

life bugs in Table 5.1. The other 32 subjects each contains 5 candidate real-life bugs selected

from Table 5.1.

For each buggy ArduPilot cyber subsystem subject, our emulation platform runs 3

trials. In each trial, the emulation platform generates 2665 source code execution traces

(and the corresponding physical trajectories, user input traces) by repeating Fig. 4.3-Step1

57

to Step2-Task1 2665 times. These source code execution traces are then labeled by our

MPC-SI oracle as described by Fig. 4.3-Step2-Task2 and Step3.

The 2665 labeled source code execution traces are then sent to three different SFL

tools to find bugs: Tarantula (TA) [77], Crosstab (CR) [130], and BP Neural Network (N-

N) [133]. These three tools are respectively the well-known representative from the program

spectrum based, statistics based, and machine learning based SFL tool families. As men-

tioned before, such tools respectively output a suspect list of l items (i.e. l possibly buggy

source code entities) in descending order of suspiciousness. We assume a human program-

mer’s effort is limited and can only investigate the top 10 items in a suspect list. Therefore,

our TA, CR, and NN SFL tools respectively output an l = 10 item suspect list.

In comparison, we also carry out the human oracle approach (see Fig. 4.4). Simply

put, in the human oracle approach evaluation, each buggy ArduPilot subject is also given 3

trials. In each trial, the emulation platform generates 2665 source code execution traces (and

the corresponding physical trajectories, user input traces)1. These source code execution

traces are then labeled by the human oracle, and then sent to TA, CR, and NN for SFL.

Specifically, the human oracle for ArduPilot runs as follows. A source code exe-

cution trace is labeled “correct” iff its corresponding physical trajectory obeys all the rules

H1.1∼H1.3 listed below; and labeled “incorrect” otherwise.

H1.1 The UAV velocity shall never exceed ±20m/s.

H1.2 The UAV velocity component along longitude, latitude, and altitude shall never exceed

±31.5m/s, ±28.16m/s, ±30m/s respectively.

1 Note for both our proposed approach and the human oracle approach, the emulation methods are the same

(see Fig. 4.3-Step1 to Step2-Task1, Fig. 4.4-Step1 to Step2). Therefore, in fact, the (unlabeled) source code

execution traces (and the corresponding physical trajectories, user input traces) generated for our proposed

approach evaluation are reused.

58

H1.3 The UAV angular velocity along pitch and roll shall never exceed ±3.5rad/s and

±3.6rad/s respectively.

Rules H1.1 ∼ H1.3 are given by a panel of four domain experts via thorough discus-

sions. Two of the four domain experts have PhD degrees, and respectively have over 15 and

9 years of experiences on control systems and CPS research and development. Three of the

four domain experts have over two years of ArduPilot development experiences.

The evaluation results2 are plotted in Fig. 5.2. In the figure:

X-axis for (a)∼(i): oracle approach + SFL tool. X-axis for (j)∼(l): oracle approach.

PA: our proposed approach; HA: human oracle approach. TA: Tarantula; CR: Crosstab; NN:

BP Neural Network. FP: oracle false positive rate; FN: oracle false negative rate.

Y-axis for (a)∼(i): statistics of per trial SFL quality metrics. Y-axis for (j)∼(l): s-

tatistics of per trial oracle false positive/negative rates.

For each given oracle approach and SFL tool, there are 8 × 3 = 24 one-bug subject

trials and 32×3 = 96 five-bug subject trials, hence a total of 120 trials. Each trial corresponds

to 2665 source code execution traces.

In each boxplot [7], the thick bar in each box is the median of the data, the box

bottom/top are the 1st and 3rd quartile of the data (see footnote 2 for some subtle details). In

(a)∼(i), the “+”s outside the boxes are data outside of the 1st and 3rd quartiles (as they have

relatively discrete values, we plot them individually instead of using whiskers to provide

more information).

2 The results include statistical medians and quartiles. Subtle details on how to calculate medians and

quartiles are elaborated in [7, 12]. Particularly, when there are 2n data points, median is the average of the nth

and the (n + 1)th data point values; when there are (4n + 1) (or, respectively, (4n + 3)) data points, then the

1st quartile is 25% (or, respectively, 75%) of the nth (or, respectively, (n + 1)th) data point value plus 75%

(or, respectively, 25%) of the (n + 1)th (or, respectively, (n + 2)th) data point value, while the 3rd quartile

is 75% (or, respectively, 25%) of the (3n + 1)th (or, respectively, (3n + 2)th) data point value plus 25% (or,

respectively, 75%) of the (3n+ 2)th (or, respectively, (3n+ 3)th) data point value [12].

59

This evaluation will be discussed in Section 5.5.

Ideally, we would also like to carry out real-life bug evaluation on the IP+CV control-

CPS test-bed. Unfortunately, this test-bed is a legacy of our lab. Its debugging history is not

well maintained. Meanwhile, its smaller size (compared to ArduPilot) and long usage history

make it unlikely to contain more bugs. Thererfore, we do not include the IP+CV test-bed in

the real-life bug evaluation.

60

5.4 Evaluations with Artificial Bugs

Besides the real-life bugs discovered in our control-CPS test-beds, there are other commonly

seen bugs. Natella et al. conducted a comprehensive survey, and publish a list of commonly

seen bugs-in-the-field as shown in Table 5.2 [101]. In our evaluation, we also inject such

bugs (referred to as “artificial bugs” in the following) into our test-beds, and evaluate our

proposed approach in the corresponding SFL.

Table 5.2: Common Bugs-in-the-Field (quoted from [101])

Type Description

WPFV Wrong Variable used in Parameter of Function call

WVAV Wrong Value Assigned to Variable

MVAE Missing Variable Assignment using Expression

MFC Missing Function Call

MIA Missing IF construct Around statements

MVIV Missing Variable Initialization using a Value

MVAV Missing Variable Assignment using a Value

MIFS Missing IF construct plus Statements

MIEB
Missing IF construct plus statements plus ELSE Before s-

tatements

MLC Missing a Logic Clause in branch condition

MLPA Missing small and Localized Part of the Algorithm

WAEP Wrong Arithmetic Expression in Parameter of function call

We run evaluations on both the ArduPilot and the IP+CV test-beds.

61

Accuracy (the higher the better)

(a) 1-bug subjects’ trials (b) 5-bug subjects’ trials (c) all subjects’ trials

Recall (the higher the better)

(d) 1-bug subjects’ trials (e) 5-bug subjects’ trials (f) all subjects’ trials

Latency (the shorter the better)

(g) 1-bug subjects’ trials (h) 5-bug subjects’ trials (i) all subjects’ trials

Oracle false positive rate (RFP) and false negative rate (RFN)

(j) 1-bug subjects’ trials (k) 5-bug subjects’ trials (l) all subjects’ trials

Figure 5.2: Evaluation Results: ArduPilot with real-life bugs

62

For the ArduPilot test-bed, guided by Table 5.2, we inject various artificial bugs into

the cyber subsystem source code. These candidate artificial bugs and injection locations

are listed in Table 5.3. We create 61 versions (i.e. 61 subjects) of buggy ArduPilot cyber

subsystems. 17 of the 61 subjects respectively contain one of the candidate artificial bugs

in Table 5.3. The other 44 subjects each contains 5 candidate artificial bugs selected from

Table 5.3.

For each buggy ArduPilot cyber subsystem subject, our emulation platform runs 3

trials. Each trial generates 2665 source code execution traces (and the corresponding phys-

ical trajectories and user input traces). These source code execution traces are then labeled

by our MPC-SI oracle as described by Fig. 4.3-Step2-Task2 and Step3.

The 2665 labeled source code execution traces are then sent to the TA, CR, and NN

SFL tools to find bugs. Same as Section 5.3, the SFL tools respectively output an l = 10

item suspect list.

In comparison, we also carry out the human oracle approach (see Fig. 4.4). Similarily,

in the human oracle approach evaluation, each buggy ArduPilot subject is also given 3 trials.

In each trial, the emulation plaform generates 2665 source code execution traces (and the

corresponding physical trajectories, user input traces)3. These source code execution traces

are then labeled by the human oracle (see Section 5.3 H1.1∼H1.3 for the details), and then

sent to TA, CR, and NN for SFL.

The evaluation results are plotted in Fig. 5.3. In the figure:

X-axis for (a)∼(i): oracle approach + SFL tool. X-axis for (j)∼(l): oracle approach.

PA: our proposed approach; HA: human oracle approach. TA: Tarantula; CR: Crosstab; NN:

BP Neural Network. FP: oracle false positive rate; FN: oracle false negative rate.

3 Due to the same reason as footnote 1, we actually reuse the emulated (unlabeled) source code execution

traces (and the corresponding physical trajectories, user input traces) generated in the comparison evaluation

for our proposed approach.

63

Y-axis for (a)∼(i): statistics of per trial SFL quality metrics. Y-axis for (j)∼(l): s-

tatistics of per trial oracle false positive/negative rates.

For each given oracle approach and SFL tool, there are 17× 3 = 51 one-bug subject

trials and 44 × 3 = 132 five-bug subjects trials, hence a total of 183 trials. Each trial

corresponds to 2665 source code execution traces.

In each boxplot [7], the thick bar in each box is the median of the data, the box

bottom/top are the 1st and 3rd quartile of the data (see footnote 2 for some subtle details). In

(a)∼(i), the “+”s outside the boxes are data outside of the 1st and 3rd quartiles (as they have

relatively discrete values, we plot them individually instead of using whiskers to provide

more information).

This evaluation results will be discussed in Section 5.5.

For the IP+CV test-bed, we do the same thing. Guided by Table 5.2, we inject various

artificial bugs into the cyber subsystem source code. These candidate artificial bugs and

injection locations are listed in Table 5.4. We create 12 versions (i.e. 12 subjects) of buggy

IP+CV cyber subsystems. 6 of the 12 subjects respectively contain one of the candidate

artificial bugs in Table 5.4. The other 6 subjects each contain 5 candidate artificial bugs

selected from Table 5.4.

For each buggy IP+CV cyber subsystem subject, our emulation platform runs 3 tri-

als. Each trial generates 65 source code execution traces (and the corresponding physical

trajectories and user input traces). These source code execution traces are then labeled by

our MPC-SI oracle as described by Fig. 4.3-Step2-Task2 and Step3.

The 65 labeled source code execution traces are then sent to the TA, CR, and NN

SFL tools to find bugs. Same as Section 5.3, the SFL tools respectively output an l = 10

item suspect list.

In comparison, we also carry out the human oracle approach (see Fig. 4.4). Simply

put, in the human oracle approach evaluation, each buggy IP+CV subject is also given 3

trials. In each trial, the emulation platform generates 65 source code execution traces (and

64

Accuracy (the higher the better)

(a) 1-bug subjects’ trials (b) 5-bug subjects’ trials (c) all subjects’ trials

Recall (the higher the better)

(d) 1-bug subjects’ trials (e) 5-bug subjects’ trials (f) all subjects’ trials

Latency (the shorter the better)

(g) 1-bug subjects’ trials (h) 5-bug subjects’ trials (i) all subjects’ trials

Oracle false positive rate (RFP) and false negative rate (RFN)

(j) 1-bug subjects’ trials (k) 5-bug subjects’ trials (l) all subjects’ trials

Figure 5.3: Evaluation Results: ArduPilot with artificial bugs

65

the corresponding physical trajectories, user input traces)4. These source code execution

traces are then labeled by the human oracle, and then sent to TA, CR, and NN for SFL.

Specifically, the human oracle for IP+CV runs as follows. A source code execu-

tion trace is labeled “correct” iff its corresponding physical trajectory obeys all the rules

H2.1∼H2.3 listed below; and labeled “incorrect” otherwise.

H2.1 When the IP velocity is within ±0.01837m/s, the IP angular velocity shall never ex-

ceed ±0.0731rad/s.

H2.2 The IP angular displacement shall never exceed ±0.09rad.

H2.3 The IP velocity shall never exceed ±0.4545m/s.

Rules H2.1 ∼ H2.3 are given by a panel of four domain experts via thorough dis-

cussions. two of the four domain experts have PhD degrees and respectively have over 15

and 9 years of experiences on control systems (including IP) and CPS research and devel-

opment. Two of the four domain experts have over three years of computer vision program

development experiences.

The evaluation results are plotted in Fig. 5.4. In the figure:

X-axis for (a)∼(i): oracle approach + SFL tool. X-axis for (j)∼(l): oracle approach.

PA: our proposed approach; HA: human oracle approach. TA: Tarantula; CR: Crosstab; NN:

BP Neural Network. FP: oracle false positive rate; FN: oracle false negative rate.

Y-axis for (a)∼(i): statistics of per trial SFL quality metrics. Y-axis for (j)∼(l): s-

tatistics of per trial oracle false positive/negative rates.

For each given oracle approach and SFL tool, there are 6 × 3 = 18 one-bug subject

trials and 6× 3 = 18 five-bug subject trials, hence a total of 32 trials. Each trial corresponds

to 65 source code execution traces.

4 Due to the same reason as footnote 1, we actually reuse the emulated (unlabeled) source code execution

traces (and the corresponding physical trajectories, user input traces) generated in the comparison evaluation

for our proposed approach.

66

In each boxplot [7], the thick bar in each box is the median of the data, the box

bottom/top are the 1st and 3rd quartile of the data (see footnote 2 for some subtle details). In

(a)∼(i), the “+”s outside the boxes are data outside of the 1st and 3rd quartiles (as they have

relatively discrete values, we plot them individually instead of using whiskers to provide

more information).

This evaluation results will be discussed in Section 5.5.

5.5 Discussions on Evaluation Results

In this section, we discuss the results of our evaluations, aiming to answer the research

questions Q1 and Q2 (see Section 5.1).

Corresponding to Q1, Fig. 5.2(a)∼(i), Fig. 5.3(a)∼(i), and Fig. 5.4(a)∼(i) all show

our proposed approach outperforms the human oracle approach in accuracy, recall, and la-

tency in the TA and CR SFL. The significance and magnitude of the improvement are respec-

tively quantified by the p-values [10,39] and effect size (ES) [8,129] values in Table ??. Note

p-values estimate the probabilities that the comparison differences are only by chance [39],

hence the smaller the more significant are the comparison differences. ES measures the mag-

nitude of the difference. Our ES are quantified by Cohen’s d [129]: a magnitude (i.e. the

absolute value of ES) of over 0.4 indicates the difference magnitude is at least medium.

As shown in Table 5.5, 5.6 and, 5.7, for accuracy, recall, and latency comparisons

related to the TA and CR SFL, the p-values are nearly5 always below 5%, hence the im-

provement of our proposed approach over the human oracle approach is significant. Besides,

the corresponding ES value magnitudes are nearly6 always above 0.4, and often exceed 0.8,

5 Except for 4 cases (out of the total 54 cases) slightly over 5%, respectively for the accuracy and recall of

1-bug CR SFL of ArduPilot artificial bugs (see Fig. 5.3), and for the accuracy and recall of 1-bug CR SFL of

IP+CV artificial bugs (see Fig. 5.4).
6 Except for 4 cases (out of the total 54 cases) slightly below 0.4, respectively for the accuracy and recall of

1-bug CR SFL of ArduPilot artificial bugs (see Fig. 5.3), and for the latency of 5-bug and all subjects TA SFL

67

Accuracy (the higher the better)

(a) 1-bug subjects’ trials (b) 5-bug subjects’ trials (c) all subjects’ trials

Recall (the higher the better)

(d) 1-bug subjects’ trials (e) 5-bug subjects’ trials (f) all subjects’ trials

Latency (the shorter the better)

(g) 1-bug subjects’ trials (h) 5-bug subjects’ trials (i) all subjects’ trials

Oracle false positive rate (RFP) and false negative rate (RFN)

(j) 1-bug subjects’ trials (k) 5-bug subjects’ trials (l) all subjects’ trials

Figure 5.4: Evaluation Results: IP+CV with artificial bugs

68

implying the magnitude of the improvement is medium to large.

Table 5.5: Quality of Fig. 5.2 Statistics

Fig. 5.2 PA vs HA Comparisons (on ArduPilot, with real-life bugs)

metric
1-bug sbj 5-bug sbj all sbj

p-value ES p-value ES p-value ES

accuracy

TA 2.9% 0.65 <1‰ 0.53 <1‰ 0.51

CR 0.7% 0.82 <1‰ 0.82 <1‰ 0.77

NN 15.5% - 36.4% - 24.0% -

recall

TA 2.9% 0.65 <1‰ 0.53 <1‰ 0.50

CR 0.7% 0.82 <1‰ 0.82 <1‰ 0.69

NN 15.5% - 36.4% - 9.5% -

latency

TA 1.4% -0.74 4.4% -0.32 0.5% -0.37

CR 0.9% -0.79 0.6% -0.43 <1‰ -0.47

NN 17.9% - 37.7% - 46.3% -

RFP <1‰ -4.9 <1‰ -4.5 <1‰ -4.6

RFN <1‰ -3.0 <1‰ -3.6 <1‰ -3.4

of ArduPilot real-life bugs (see Fig. 5.2).

69

Table 5.6: Quality of Fig. 5.3 Statistics

Fig. 5.3 PA vs HA Comparisons (on ArduPilot, with artificial bugs)

metric
1-bug sbj 5-bug sbj all sbj

p-value ES p-value ES p-value ES

accuracy

TA 3.3% 0.43 <1‰ 0.98 <1‰ 0.73

CR 5.5% 0.38 <1‰ 0.72 <1‰ 0.57

NN 65.0% - 54.7% - 46.3% -

recall

TA 3.3% 0.43 <1‰ 0.98 <1‰ 0.64

CR 5.5% 0.38 <1‰ 0.72 <1‰ 0.52

NN 65.0% - 54.7% - 50.8% -

latency

TA 0.4% -0.59 <1‰ -0.68 <1‰ -0.59

CR 3.4% -0.43 <1‰ -0.44 <1‰ -0.40

NN 14.0% - 30.8% - 11.3% -

RFP <1‰ -5.4 <1‰ -4.8 <1‰ -4.9

RFN <1‰ -5.2 <1‰ -5.9 <1‰ -5.6

70

Table 5.7: Quality of Fig. 5.4 Statistics

Fig. 5.4 PA vs HA Comparisons (on IP+CV, with artificial bugs)

metric
1-bug sbj 5-bug sbj all sbj

p-value ES p-value ES p-value ES

accuracy

TA 2.5% 0.78 1.2% 0.85 0.2% 0.75

CR 5.6% 0.66 2.2% 0.88 0.3% 0.72

NN 38.6% - 42.9% - 37.2% -

recall

TA 2.5% 0.78 1.2% 0.85 0.4% 0.70

CR 5.6% 0.66 2.2% 0.88 0.9% 0.63

NN 38.6% - 42.9% - 32.3% -

latency

TA 1.5% -0.86 2.3% -1.05 <1‰ -0.94

CR 1.4% -0.86 0.2% -1.24 <1‰ -1.03

NN 8.6% - 20.5% - 7.0% -

RFP <1‰ -6.1 <1‰ -7.4 <1‰ -6.6

RFN <1‰ -5.5 <1‰ -4.4 <1‰ -4.8

For the NN SFL, neither our proposed approach nor the human oracle approach work-

s well. This is possibly because NN, being a neural network solution, needs big data to really

work. As big data solutions may often need millions to trillions of items in the training set,

the tens or thousands of labeled source code execution traces that we generate for each trial

are probably too small.

Anyway, for NN, the lack of difference between our proposed approach and the hu-

man oracle approach is reflected in the corresponding p-values in Table 5.5, 5.6 and, 5.7.

For accuracy, recall, and latency comparisons related to the NN SFL, the p-values are big.

71

This also means that it is meaningless to evaluate the magnitude of improvement, i.e. the

corresponding ES values (which are hence omitted in the table).

Corresponding to Q2, Fig. 5.2(j)∼(l), Fig. 5.3(j)∼(l), and Fig. 5.4(j)∼(l) all show

our proposed approach outperforms the human oracle approach in RFP and RFN. The signif-

icance and magnitude of the improvement are respectively quantified by the p-values and ES

values in Table 5.5, 5.6 and, 5.7.

As shown in Table 5.5, 5.6 and, 5.7, for RFP and RFN comparisons, the p-values are

all much smaller than 5%, hence the improvement of our proposed approach over the human

oracle approach is significant. Besides, the corresponding ES value magnitudes are all over

0.8, indicating the magnitude of improvement is large.

In summary, we have the following answers to Q1 and Q2.

Answer to Q1: In our evaluation, compared to the human oracle approach, our proposed

approach significantly improves the quality of TA and CR SFL (in terms of accuracy,

recall, and latency). The magnitude of improvement is medium to large.

Answer to Q2: In our evaluation, compared to the human oracle approach, our proposed

approach significantly improves the raw quality of the oracle (in terms of false

positive/negative rates). The magnitude of improvement is large.

5.6 Threats to Validity

Construct validity: Threats to construct validity are mainly concerned with whether the

measurements used in the evaluation reflect real-world situations.

Human Oracle Validity. The main threat to construct validity lies in the way to con-

struct the human oracle. Individual experts can be biased due to his/her knowledge and skill

set differences. To mitigate the bias introduced by individuals, we form panels of at least

four domain experts to design the human oracle via thorough discussions.

Golden Oracle Validity. Another threat is in measuring the oracle false positive/negative

72

rates. To judge the raw correctness (in terms of oracle false positive/negative rates) of oracles,

we need a “golen oracle” that tells if the control-CPS behavior is truly buggy or not. Unfor-

tunately, for control-CPSs, what shall be the golden oracle is indeed also an open problem.

As shown by Fig. 1.4(b), a so-called “correct” physical trajectory may not be unique. We

cannot, for example, use the behavior of a specific implementation (e.g. ArduPilot without

bug injection) as the golden oracle, and deny the correctness of other behavioral possibilities.

Given this, we adopt a quasi-golden oracle. We conservatively classify a code trace

as truly buggy as long as it covers a buggy source code entity. Such approximation is ac-

ceptable considering that our ultimate goal is to locate the buggy source code entity instead

of detecting buggy behavior. For this ultimate goal, it makes sense that a code trace cov-

ering buggy entities is always reported to SFL tools, even if it may indeed cause no buggy

behaviors.

Also, note the golden oracle is not used to label code traces for SFL in our evalua-

tions. Those code traces are labeled by our MPC-SI oracle and/or human oracle. Hence the

golden oracle has nothing to do with TA, CR, and NN SFL evaluations.

SFL Tool Representativeness. SFL tools selected for the study may pose a third threat

to construct validity. To reduce this threat, we used three representatives from different fam-

ilies of SFL tools and compared their performance in terms of accuracy, recall, and latency

in the same evaluation settings. We also plan to conduct extensive evaluations on more SFL

tools to further substantiate our findings.

Better SI Methods. We choose the MPC-SI of Exp. (4.1) because it is deterministic,

automatic, simple, and empirically well tested by broad adoption in industry [75] [125].

However, MPC-SI of Exp. (4.1) is not the only system identification (SI) method. There

are many other SI methods. Nevertheless, the value of this thesis lies in that it reveals the

great potential of SI based oracles for control-CPS SFL [119]. Using MPC-SI oracle already

outperforms the mainstream human oracle approach significantly. Comprehensive survey of

other SI methods may find SI oracles that outperform human oracles even more.

73

Internal validity: Threats to internal validity are mainly concerned with uncon-

trolled or uncontrollable factors that may affect the evaluation results.

Evaluation Platform Implementation Correctness. In our evaluations, the main threat

to internal validity is the possible bugs in the implementation of the oracle approaches (our

proposed approach and the human oracle approach) and the reimplementation of existing

SFL tools. To address the threat, we review our code to ensure their correctness before

conducting the evaluations.

Setting of p. Another threat is the setting of the MPC model order: p (see Exp. (4.1),

(4.2)). In our evaluations, p is set to 7. This is an empirical setting made by our engineer-

s based on their experiences. How to optimize the setting of p is still an open problem.

Fortunately, our evaluations show that even with this empirical setting, our proposed ap-

proach already outperforms the human oracle approach. With an optimized p, our proposed

approach shall outperform the human oracle apporoach even more.

Bug Injection Locations and Combinations. The locations of injected real-life bugs

are determined by the public archives (see the File-Function-Line# columns of Table 5.1).

While the locations of injected artificial bugs are randomly selected (see the Function-Line#

columns of Table 5.3, 5.4). Due to combinatorial explosion and feasibility constraints,

we cannot try every possible injection location/combination. But we are tring our best to

randomize these selections.

External validity: Threats to external validity are mainly concerned with whether

the findings in our evaluations are generalizable to other situations.

Variety of Test-beds and Injected Bugs. The limited types of control-CPSs and bugs

used in our evaluations may threaten the external validity. To mitigate the problem, we

deploy two widely used control-CPSs as test-beds, and deploy real-life, as well as artificial

bugs reflecting commonly seen bugs in field. Such test-beds and bugs, however, may still be

unable to represent all control-CPSs and bugs. As future work, we plan to carry out more

evaluations on other test-beds and deploy more types of bugs.

74

Table 5.3: Artificial Bugs to be Injected into ArduPilot

Type Function-Line# Bug Description

WVAV pos to rate xy-845 mistake ”multiply” by ”divide”

MVAV calc leash length-999 an assignment deleted

WVAV pos to rate z-365 assigned value negated

MVAE pos to rate z-360 an assignment deleted

MVAE pos to rate xy-798 an assignment deleted

WPFV pos to rate z-378 swapped parameter x,y

MLPA get stopping point z-287 wrong expression used

MLPA get stopping point z-289 wrong expression used

MVAV advance wp target along track-610 an assignment deleted

MVAV calculate wp leash length-794 an assignment deleted

MFC set wp origin and destination-487 immediate function return

MVIV calc slow down distance-1232 initialization deleted

MIEB pos to accel z-410
missing if construct plus statements plus

else before ”! flags.freeze ff z”

MIA pos to rate xy-847 missing if construct

MIFS calc leash length-1000
missing if construct plus ”leash length ”

statements

WAEP get stopping point z-290 wrong arithmetic expression

MLC set alt target from climb rate ff-211 a logic clause in branch condition deleted

75

Table 5.4: Artificial Bugs to be Injected into IP+CV

Type Function-Line# Bug Description

WVAV
cvFindChessboardCorners-

260
assigned value negated

MVAE
cvFindChessboardCorners-

516
an assignment deleted

WVAV cvCreateMatHeader-130 assigned value negated

MVIV cvCreateMatHeader-137 initialization deleted

WVAV cvInitImageHeader-2973 mistake ”0” by ”-1”

WAEP cvInitImageHeader-2980 wrong arithmetic operation

76

CHAPTER 6

RELATE WORK

This thesis focuses on specialized oracles that exploit cross-domain knowledge (particularly

control theories) to judge control-CPS physical trajectory correctness. Hence the topic is

orthogonal to general-purpose oracle design for pure cyber systems [23, 59, 61, 136].

6.1 Related Work in the Domain of Control

The specific cross-domain tool used in this thesis is MPC-SI of Exp. (4.1). We choose

MPC-SI because it is deterministic, automatic, simple, and empirically well tested by broad

adoption in industry. However, MPC-SI of Exp. (4.1) is not the only system identification

(SI) method. In fact, SI is a vast research domain in control theories [120]. There are

many other SI methods. But to our best knowledge, our thesis is the first to apply SI in

control-CPS SFL oracle design, and reveals the great potential of using SI to build oracles

for control-CPS SFL. As our future work, we are interested in applying various other SI

methods to build control-CPS SFL oracles. One particular set of SI methods of interest

are those identify hybrid automata models [22, 97] from control-CPS behaviors. But to use

these SI methods, there are still open issues to be addressed. For example, the work of [22]

focuses on converging behaviors when mining hidden hybrid automata, which is not always

the case for generic control-CPS behaviors. The work of [97] needs domain knowledge of the

control-CPS (e.g. knowing the semantics of feature vectors), hence is not entirely black-box.

Because of the hardness of the oracle problem, people no longer insist on designing

a perfect oracle that identifies every correct and incorrect execution trace. Instead, people

77

now focus more on the so-called imperfect oracles, which identify wrong execution traces

as much as possible, and choose test cases accordingly. Metamorphic testing [34–36, 137]

is one such endeavor. It exploits necessary conditions governing outputs’ interrelationships

as imperfect oracles. Chen et al. [35] propose a metamorphic testing oracle for control-

CPS with PID controller software. Modern control-CPSs, however, are often more complex

than PID control. Recently, Goebel et al. [63] propose a set of hybrid systems [25, 51, 116,

118] stability theories for control-CPSs. The stability rules can be used as a metamorphic

testing oracle. However, Goebel et al.’s theories require the definition of a “Lyapunov”

function for the concerned hybrid system. For a given generic control-CPS, the existence

of a Lyapunov function is not guaranteed, neither is there a generic routine to decide its

existence. Even if the Lyapunov function exists, there is no generic mechanical routine to

find it. Therefore Goebel et al.’s hybrid systems stability theories are mainly for designing

new control-CPSs, instead of for designing imperfect oracles for existing and/or generic

control-CPSs. Nonetheless, the above endeavors inspire us to propose this paper’s MPC

based oracle, which is indeed an imperfect oracle in a general sense.

Generally speaking, control-CPS debugging is a relatively open area with huge prob-

lem space. Matinnejad et al. [95] discuss automated test case generation for control-CPS

debugging. The idea is to adjust test case inputs so as to maximally diverge control-CPS

physical trajectories’ shapes. Test case generation, however, is not the focus of this thesis.

Liu et al. [85] propose a SFL tool specialized for control-CPS whose cyber and physical

models are known accurately. However, this thesis focuses on control-CPSs whose accurate

cyber model is unavailable.

6.2 Related Work in the Domain of Software Engineering

A research area in software engineering that is closely related to SI is specification inference.

Various approaches combining static and dynamic analysis techniques have been developed

to infer specifications in the form of discrete automata [67, 98, 107] and behavioral model-

s [45]. Significant effort has also been invested in detecting invariants that govern program

78

variables and their interrelationships across different program executions. There are two big

families of invariant detection techniques, based on static and dynamic program analysis,

respectively. Static program analysis based invariant detectors have been successfully used

in Airbus avionics [43]. Dynamic trace analysis based invariant detectors can now discover

fairly complex math formulae upon program variables [44,54,102,103]. Others have devised

ways to construct assertions summarizing program behaviors [58]. The result specifications,

however, are derived from all the behaviors used for the inference, and naturally incorporate

also the incorrect one, if not pruned out. Such specifications can be used to help program-

mers understand program behaviors, but not as the oracle to decide whether a behavior is

correct or not. Recently, the division between specification inference and control system

SI starts to blur. Representative works crossing this division are the aforementioned hybrid

automata SI methods [22, 97].

Alippi et al. [18] designed an oracle for control-CPS fault detection. However their

focus is on control-CPS sensor faults instead of software faults.

There are other efforts to solve the oracle problem. Several modeling/programming

languages are developed to formally describe oracles [50, 107, 117, 128]; in addition, asser-

tions and contracts [99] are forms to describe oracles. But they do not answer the oracle

problem itself: what oracles to describe.

We can use N-version [89] or previous versions [139] to generate trajectories for

comparisons, but such methods are orthogonal to the oracle problem solutions for debugging

a single version of a control-CPS.

Software fault localization is a very important research topic. Due to the feature of

time-consuming and expensive of manual intervene, much effort has been spent on develop-

ing SFL tools. Major families of tools include program spectrum analysis [77] [70] [87] [55],

statistical analysis [21] [131], machine learning based analysis [134] [28] [30], program s-

licing [123] [88], data mining based analysis [33] [83], and program state based debug-

ging [143] [144]. The first three families of tools, which rely on large number of labeled

correct/incorrect traces as inputs, are leveraged to evaluate our proposed oracle. Thus, we

79

select one representative method in each of these three families to describe the principles of

SFL tools.

6.2.1 Tarantula

As a typical spectrum analysis software fault localization tool, Tarantula [77] analyzes the

program using the relationship between program execution results and code execution traces.

The intuition of Tarantula is that statements which are executed primarily by failed test cases

are highly suspicious of being faulty. Thus, Tarantula gathers large amounts of data about

a software system under test (by varying inputs). These data include each test result (suc-

cess/failure) and code execution log traces. Tarantula assigns “suspiciousness value” to each

coverage entity e of the program source code (a “coverage entity” can be a line of code, a

block of code, a function, etc.), using the following formula:

suspiciousness(e) =

failed(e)
totalfailed

passed(e)
totalpassed

+ failed(e)
totalfailed

(6.1)

where failed(e) is the number of failed test cases which execute entity e, totalfailed refers to

the number of all failed test cases, passed(e) means the number of passed test cases executing

e, and totalpassed is the number of all passed test cases.

After each entity gets its suspicious value, Tarantula will sort the score to form a

suspiciousness list. This list guides the programmer to search for the software fault one by

one from the top of suspicious list. This can be illustrated by an example from Fig. 6.1:

As we see, line 7, which has the suspiciousness value 0.83, is the first fault Tarantula

locates. Line 6 needs the second round check with a score of 0.71.

6.2.2 Crosstab

Besides spectrum-based SFL method, the Crosstab [131] fault localization tool is a repre-

sentative statistics-based SFL. Similar to Tarantula, Crosstab also utilizes the coverage infor-

80

Figure 6.1: Tarantula example

81

mation of each executable statement and the execution result (success or failure). Crosstab

analyzes that whether the positive execution result relates to the entity using Chi-square test.

Here we list the notations as table. 6.1 in the first part:

Table 6.1: Notations in crosstab method

N total number of test cases

NF total number of failed test cases

NS total number of passed cases

NC(e) number of test cases covering e

NCF (e) number of failed test cases covering e

NCS(e) number of passed test cases covering e

NU(e) number of test cases not covering e

NUF (e) number of failed test cases not covering e

NUS(e) number of passed test cases not covering e

Here, we assume the null hypothesis is:

H0: Program execution is independent of the coverage of e.

Using the chi-square value, we can point out this hypothesis can be rejected. The

following equation illustrate the chi-square statistic:

χ2(e) =

(
NCF (e)− ECF (e)

)2
ECF (e)

+

(
NCS(e)− ECS(e)

)2
ECS(e)

+

(
NUF (e)− EUF (e)

)2
EUF (e)

+

(
NUS(e)− EUS(e)

)2
EUS(e)

(6.2)

where

ECF (e) =
NC(e)×NF

N
(6.3)

ECS(e) =
NC(e)×NS

N
(6.4)

82

EUF (e) =
NU(e)×NF

N
(6.5)

EUS(e) =
NU(e)×NS

N
(6.6)

If χ2(e) is large, it means the entity e has some impact on the program execution result.

The question lies on whether executing e leads to passed program execution result or the fail

ones. Thus, statistic ϕ(e) is leveraged to analyze this question:

ϕ(e) =

NCF (e)
NF

NCS(e)
NS

(6.7)

If ϕ(e) ¿ 1, the coverage of e is more related to the failed result. If ϕ(e) ¡ 1, the coverage of e

is more related to the passed result. Finally the Crosstab method defines the suspiciousness

value ζ(e) as:

ζ(e) =



χ2(e)
NP

if ϕ(e) > 1

0 if ϕ(e) = 1

−χ2(e)
NS

if ϕ(e) < 1

(6.8)

Using this suspiciousness value, programmer can locate the fault from the code execution

log owning the highest score.

6.2.3 BP Neural Network-based (BPNN) Approach

A category of fault localization methods is using machine learning to locate the software

defects. Here we choose a representative method [134] based on a back-propagation (BP)

neural network. BPNN approach bridges the coverage information and program execution

result via neural network training, and locates the bugs by feeding “virtual test cases” into

the trained network.

83

BPNN first label all the coverage entities using s1, s2 as and so on. Each entity is

marked as either 0 (if si is not covered in the test case) or 1 (if si is covered in the test case).

For example, in the Fig. 6.2, there are 7 test cases. In each test case, 9 coverage entities are

included. If the program covers certain coverage entities, the according labels become 1 or

otherwise 0 instead. Let m be the number of coverage entities and n be the number of test

cases. Thus, n vectors serve as the input to a BP neural network. This BP neural network is

a typical neural network which has a three-layer network with 3 neurons in the hidden layer

and 1 neuron in the output layer. The according transfer function of each neuron is sigmoid

function y = 1
1+e−x

. After the preparation of the neural network, the BPNN approach use

these n vectors and n program execution results (0 if the test case is passed or 1 if the test

case is failed) as the material to train the neural network.

Figure 6.2: BPNN test cases example

The basic idea of BPNN is to use the constructed input and known output to fed into

the network. The error between the actual output and the expected output is calculated and

propagated back. Similar to back-propagation algorithm, the weights of connecting all the

neurons are adjusted in order to reduce the error. Bayesian regularization is leveraged to

84

prevent the overfitting problem in the training process. Fig. 6.3 explains the generation of

the estimated execution results.

Figure 6.3: BPNN constructure

After the network is trained, virtual test cases are constructed to serve as input of

the network (Fig. 6.4). In order to evaluate the weight of each coverage entity in the vector,

each input vector only covers one coverage entity (label as 1) and exclude others (label as 0).

Via feeding the input into this neural network, we can get the suspiciousness values of each

coverage entity in the output vectors. This process is explained in the Fig. 6.4.

Figure 6.4: BPNN suspiciousness estimation

85

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

Rapid convergence of computer and physical system results in increasing demand on control-

CPSs functionalities, which requires more and more software design transferring to cyber-

subsystem. Thus, the scale of control-CPSs software are inevitable to become huge, and

the complexity becomes high. Debugging of control-CPSs software is an important topic in

the rapidly growing scale and complexity of control-CPSs software. However, only a few

research has been focus on how to test control-CPSs or locate the defects of cybersystem

design. Currently, manual debugging is mainly leveraged to locate faults, which indicates

the fault localization process is still time consuming and expensive.

In this thesis, we adapted the MPC-SI method to oracle design, and proposed an

oracle and corresponding source code execution trace preparation methodology for control-

CPS SFL. Our proposed approach can be carried out deterministically and automatically.

We evaluated our proposal on classic control-CPS test-beds with real-life and artificial bug

SFL. The evaluation results show that our proposed approach significantly outperforms the

human oracle approach, achieving medium to large improvements on SFL accuracy, recall,

and latency, as well as oracle false positive/negative rates.

7.2 Future Work

In this thesis, the theory of MPC-SI is leveraged to evaluate the physical behaviors of control-

CPSs. This oracle serves as the labelling machine for SFL so that the software fault localiza-

86

tion can be generated automatically and systematically. We can improve this MPC-SI based

oracle approach in the following aspects.

7.2.1 Golden Oracle Selection

An important aspect of evaluating oracle is whether its judgements are correct. In this thesis,

we measure this performance using false positive/negative rates. The false positive/negative

rates consider an source code execution trace as truly buggy as long as it covers a buggy

entity. This statement can be improved because the influence of covering buggy entity on

physical behavior needs to be evaluated. The circumstance that buggy entity execution code

generates no consequence on control-CPSs behavior is rational in certain initial settings. As

a result, what type of buggy entity can generate turbulence on control-CPSs behavior and

how does it affect the behavior should be considered.

Another aspect of evaluating oracle is whether it approximates the “golden oracle”.

However, how to select a “golden oracle” in control-CPSs domain is still an open question.

Some research select a set of principles to work as a “god”. But the “god” judgement on

control-CPSs is difficult to be generalized due to specific features in different hardware.

Thus, what is the evaluating matrix on specific control-CPSs should be discussed in the

future.

7.2.2 Target Systems Selection

We build our experiment on both ArduPilot (commercial-grade control-CPSs), and IP+CV

(classical control-CPSs). In order to prove our MPC-SI oracle approach can be generalized,

more target systems should be selected. Via constructing more experiments on different CPS

platforms, we are able to point out what is the constraint on using MPC-SI theory to work

as an oracle. Also, more control-CPSs can improve the rationality of source code execution

trace preparation methodology, which can enhance the software fault localization ability of

MPC-SI oracle.

87

7.2.3 Empirical Study on MPC-SI Model

This thesis discuss the MPC-SI based oracle performance comparing to human oracle. Thus,

the target focus on whether our proposed oracle can outperform human in the aspects of

accuracy, recall, and latency. In the prospect of fetching the most rational MPC-SI model,

this thesis lacks the empirical optimization settings. In our evaluation, p is set to 7. But

whether this value can be changed to other value in order to get a better oracle performance

needs to be discuss in the future. A more rational MPC-SI model can help us improve the

accuracy of labelling physical trajectories.

88

Appendix

.1 Appendix A: A Formal Description of MPC-SI

The concept of MPC-SI is well-known in control-CPSs [32]. The following formulates the

classic MPC model prediction technology upon the control-CPS architecture of Fig. 2.1.

Without loss of generality, we only consider the model building process during [0, T).

Given U0 (which is constant throughout [0, T)), p, i ∈ Z>0 (where 0 < p 6 i < N), and Xj

(j = 0, 1, · · · , i), the ith p-order linear modelMi to predict Xi+1 has the following form.

∀k ∈ {p, p+ 1, · · · , i+ 1}, we have

Xk = (

p∑
j=1

AjXk−j) +BU0 + ξk, (1)

where ξk is the plant state prediction error. Note Xk, ξk ∈ Rn, U0 ∈ Rq. A1, A2, · · · ,

Ap ∈ Rn×n and B ∈ Rn×q are constant matrices to be determined. Indeed, the task of our

linear model prediction is to decide the value of A1, A2, · · · , Ap, and B. Specifically, the

values shall be set to minimize a cumulative metric on the plant state estimation errors. The

following elaborates this idea.

Denote

Ā
def
= (A1, A2, · · · , Ap, B) ∈ Rn×(np+q), (2)

Yk
def
= (XT

k−1, X
T
k−2, · · · , XT

k−p, U
T
0)T ∈ R(np+q)×1, (3)

then Exp. (1) becomes Xk = ĀYk + ξk. Let

X̂k
def
= ĀYk, (4)

be the prediction of plant state Xk. Then the plant state prediction error can be rewritten as

ξk = Xk − X̂k. (5)

We define the ith cumulative plant state prediction error as

90

Ji
def
=

i∑
k=p

λi−k||ξk||2 =
i∑

k=p

λi−kξTk ξk, (6)

where preconfigured constant λ ∈ (0, 1) is the forgetting factor. As Xk, Yk, λ (k = p, · · · ,

i) are given, Exp. (4)(5)(6) imply Ji is a function of Ā. That is, the objective of “model

building” is to find the optimal Ā to minimize Ji.

Suppose the optimal Ā that minimizes Ji is Ā∗i . Then Ā∗i can be obtained via the

following procedure.

∀k ∈ {p, p+ 1, · · · , i}, denote

ξ′i,k
def
=
√
λi−kξk, X ′i,k

def
=
√
λi−kXk, Y ′i,k

def
=
√
λi−kYk.

Thus Ji =
∑i

k=p(ξ
′T
i,kξ
′
i,k) and ξ′i,k = X ′i,k − ĀY ′i,k.

The latter implies that (ξ′i,i, ξ
′
i,i−1, · · · , ξ′i,p) = (X ′i,i, X

′
i,i−1, · · · , X ′i,p)− Ā(Y ′i,i, Y

′
i,i−1,

· · · , Y ′i,p).

Based on least-square approximation theories [71], we have

Ā∗i = X̄ ′iȲ
′T
i (Ȳ ′i Ȳ

′T
i)−1, (7)

where

X̄ ′i
def
= (X ′i,i, X

′
i,i−1, · · · , X ′i,p) ∈ Rn×(i−p+1),

Ȳ ′i
def
= (Y ′i,i, Y

′
i,i−1, · · · , Y ′i,p) ∈ R(np+q)×(i−p+1).

Note that computation of (Ȳ ′i Ȳ
′T
i)−1 in Exp. (7) is very time-consuming when np+ q

is large. A faster way is to calculate Ā∗i with an iterative formula. Details are as follows.

In case we have already built the linear model Mi−1, and have derived its corre-

91

sponding X̄ ′i−1, Ȳ
′
i−1. Then because

X̄ ′i = (X ′i,i,
√
λX̄ ′i−1) = (Xi,

√
λX̄ ′i−1)

and Ȳ ′i = (Y ′i,i,
√
λȲ ′i−1) = (Yi,

√
λȲ ′i−1),

we have Ψi
def
= X̄ ′iȲ

′T
i = λX̄ ′i−1Ȳ

′T
i−1 +XiY

T
i

and Φi
def
= Ȳ ′i Ȳ

′T
i = λȲ ′i−1Ȳ

′T
i−1 + YiY

T
i .

We have the following lemma [71].

Lemma .1.1 (Matrix Inverse Formula [71]). Given matrices A,B,C,D with appropriate

dimensions, if A = B + CDCT and A, B, D are invertible, then

A−1 = B−1 −B−1C(D−1 + CTB−1C)−1CTB−1.

Due to Lemma .1.1 and note Φi−1
def
= Ȳ ′i−1Ȳ

′T
i−1, we have

Φ−1i = λ−1Φ−1i−1 −

λ−2Φ−1i−1Yi(I + λ−1Y T
i Φ−1i−1Yi)

−1Y T
i Φ−1i−1.

Since Y T
i Φ−1i−1Yi ∈ R while Ȳ ′i Ȳ

′T
i ∈ R(np+q)×(np+q), when np+ q > 1, the computa-

tion of (I + λ−1Y T
i Φ−1i−1Yi)

−1 is much faster than (Ȳ ′i Ȳ
′T
i)−1 (see Exp. (7)).

Therefore, our iterative formulae for fast calculation of Ā∗i are

Ā∗i = ΨiΦ
−1
i , (8)

Ψi = λΨi−1 +XiY
T
i ,

Φi = λΦi−1 + YiY
T
i ,

Φ−1i = λ−1Φ−1i−1 −

λ−2Φ−1i−1Yi(I + λ−1Y T
i Φ−1i−1Yi)

−1Y T
i Φ−1i−1.

To summarize, during interval [0, T), given U0, and initial training data X0, X1, · · · ,

Xp, the MPC model prediction procedure is depicted by Fig. 1.

92

Step1 i := p (model prediction starts from Xp+1).

Step2 Use λ, U0, Xi, Xi−1, · · · , X0 to derive Ā∗i via Exp. (7).

Step3 Plug Ā∗i ’s evaluation of A1, A2, · · · , Ap, B into Exp. (1) to create

the the ith p-order linear model Mi. Use Mi to predict Xi+1 (i.e.

calculate X̂i+1) via Exp. (4).

Step4 When Xi+1 becomes available, use Exp. (5) to calculate plant state

prediction error ξi+1.

Step5 If i + 1 > N , i.e. the current user input sampling period ends,

terminate (to be restarted by the next user input sampling period);

otherwise, i := i+ 1 and go to Step2.

Figure 1: MPC model prediction procedure. Note due to the causality of our emulation, XN

is still affected by U0, hence is included in the prediction comparison. Meanwhile, X0 is

included in the learning of the MPC model as it is the initial state of the plant.

.2 Details of quaternion computation

For two quaternions a =
[
a1 a2 a3 a4

]
and b =

[
b1 b2 b3 b4

]
, their cross-product

a⊗ b is defined as:

a⊗ b =


a1b1 − a2b2 − a3b3 − a4b4
a1b2 + a2b1 + a3b4 − a4b3
a1b3 − a2b4 + a3b1 − a4b2
a1b4 + a2b3 − a3b2 + a4b1


T

(9)

To get the Euler angles ψ, θ and φ, one quaternion is used to map the respective

rotation matrix A
BR:

A
BR =

2q21 − 1 + 2q22 2(q2q3 + q1q4) 2(q2q4 − q1q3)
2(q2q3 − q1q4) 2q21 − 1 + 2q23 2(q3q4 + q1q2)
2(q2q4 + q1q3) 2(q3q4 − q1q2) 2q21 − 1 + 2q24

 (10)

93

.3 Details of EKF-based algorithm

We consider the following nonlinear system [60]:

Exk = f(Exk−1) + wk−1 (11)

Szk = h(Exk) + vk−1 (12)

where state vector Exk is yaw angle at time k, wk−1 is the process noise vector from gy-

roscopes, Szk is the observation vector which means magnetic measurement in the sensor

frame at time k, vk−1 is the measurement noise vector from compass.

From Eq. (11), we can substitute yaw direction gyroscopes into process function f(.)

to get the process equation:

Exk = Exk−1 + E
SRk−1

Sgyaw,k−1∆t+ wk−1 (13)

Variable E
SRk−1 denotes the rotation matrix described the earth frame refer to sensor frame at

time k-1, Sgyaw,k−1 is the gyroscope measurement in yaw direction at time k-1 in the sensor

frame, ∆t is the time step in this EKF equations. Basically, ESRk−1
Sgyaw,k−1∆t means the

change of yaw angle integrated by gyroscopes in terms of the earth frame. Obviously, Eq.

(13) is a linear description of state vector Exk.

In the sake of non-observable nature between the magnetic measurement in the sensor

frame Szk, and the state vector Exk, we choose the observation Szk convert to the yaw angle

calculated by post-calibration magnetic data:

∇f(SEq,
Ed, Ss) = JT (SEq,

Ed)f(SEq,
Ed, Ss) (14)

S
E q̇ε,t =

∇f
‖∇f‖

(15)

S
E q̇est,t =

S

E
˙̂qest,t − βSE q̇ε,t (16)

S
Eqest,t = S

Eqest,t−1 + S
E q̇est,t∆t (17)

ψ = arctan(2q2q3 − 2q1q4, 2q
2
1 − 1 + 2q22) (18)

94

As a result, nonlinear observation Eq. 47 can be converted to the following linear

equation:

Ezk = Exk + vk−1 (19)

The whole system now is able to use Kalman Filter iteration to get a smooth-change

yaw angle under the position-dependent magnetic distortion. The initial state Ex0 is a random

yaw angle in the starting calibration place with mean Eµ0 = E[Ex0] and covariance P0 =

E[(Ex0−Eµ0)(
Ex0−Eµ0)

T]. We assume the Gaussian noise in the process function wk, and

in the observation function vk are both random sequences data with zero-mean and known

covariances. Both of them are uncorrelated with the state vector Ex [60]:

E[wk] = 0;E[wkw
T
k] = Qk;E[ExwTk] = 0 (20)

E[vk] = 0;E[vkw
T
k] = Rk;E[ExvTk] = 0 (21)

According to the law of Kalman Filter iteration, we have the optimal estimate Exak−1

with Pk−1 covariance at time t-1 after the observation from compass measurement Ezk−1.

The next predictable state vector
E
xfk can be generated by Eq. (13):

Exfk = E[Exk|Ezk−1] (22)

Exfk = E[Exk−1 + E
SRk−1

Sgyaw,k−1∆t+ wk−1|Ezk−1] (23)

We simplify the component H.O.Tp = E
SRk−1

Sgyaw,k−1∆t + wk−1 and expand the

equation in Taylor Series at the point Exak−1 we get:

Exk−1 +H.O.Tp = Exak−1 + Exk−1 − Exak−1 +H.O.Tp (24)

95

Because the Eq. (24) is linear function related to Exk−1, Jacobian of the function

f(Exk−1) is equivalent to 1 respectively. The element Exk−1 − Exak−1 is the error between

estimate and real state vector value whose expectation is equivalent to 0. As a result, we can

get the forecast value
E
xfk is:

E
xfk ≈

Exak−1 (25)

The forecast error covariance is given by the Kalman Filter law:

P f
k = E[(Exk−1 − Exak−1)(

Exk−1 − Exak−1)
T] (26)

P f
k = Pk−1 +Qk−1 (27)

The next step is so-called data assimilation step. After getting forecast value Exfk

with the covariance P f
k and the measurement Ezk, the goal of this data assimilation step is to

approximate the unbiased estimation Exak of Exk. Using the prove in , we have:

Exak = Exfk +Kk(
Ezk − E[h(Exk)|Ezk]) (28)

Kk denotes the Kalman gain while Ezk is the yaw angle calculated from post-calibration

compass measurement at time k. Similar to the process function, we expand the observation

function in Taylor Series about Exfk because Jacobian of the function h(Exk) is equivalent to

1:

Exk +H.O.To = Exfk + Exk − Exfk +H.O.To (29)

In order to without loss of generality, we denote H.O.To = vk−1 where vk−1 means obser-

vation function Gaussian noise. Given E[h(Exk − Exfk)|Ezk]) = 0, the state estimate Exak

is:

96

Exak ≈ Exfk +Kk(
Ezk − Exfk) (30)

We denote the covariance of value Exak as Pk. Under the constrain of Kk minimizing

the trace of Pk as described in , Pk can be described as:

Pk = (I −Kk)P
f
k (31)

The summary of the above deduction theorem of Kalman Filter iteration can be ex-

pressed as:

Model and Observation:

Exk = Exk−1 + E
SRk−1

Sgyaw,k−1∆t+ wk−1 (32)

Initialization:

Eµ0 = E[Ex0] (33)

P0 = E[(Ex0 − Eµ0)(
Ex0 − Eµ0)

T] (34)

Model Predictor:
E
xfk ≈

Exak−1 (35)

P f
k = Pk−1 +Qk−1 (36)

Data assimilation Corrector:

Exak ≈ Exfk +Kk(
Ezk − Exfk) (37)

Pk = (I −Kk)P
f
k (38)

Kk = P f
k (P f

k +Rk)
−1 (39)

97

REFERENCES

[1] Longer video of ‘ariane 5’ rocket first launch failure/explosion. http://www.

youtube.com, September 2010. [Online: accessed Jan-2018].

[2] Drone dangers, risks and injuries. https://www.youtube.com/watch?v=

ch1SnP41tx0, November 2015. [Online: accessed Jan-2018].

[3] 3dr site scan. https://3dr.com, 2017. [Online; accessed Jan-2018].

[4] Aeromao. http://www.aeromao.com, January 2018. [Online: accessed Jan-

2018].

[5] ARDUPILOT. http://ardupilot.org/, 2018. [Online; accessed Jan-2018].

[6] Ardupilot github repository. https://github.com/ArduPilot/

ardupilot, January 2018. [Online: accessed Jan-2018].

[7] Box plot. https://en.wikipedia.org/wiki/Box_plot/, 2018. [Online;

accessed Jan-2018].

[8] Effect size. https://en.wikipedia.org/wiki/Effect_size, 2018.

[Online; accessed Jan-2018].

[9] Outlier. https://en.wikipedia.org/wiki/Outlier, January 2018. [On-

line; accessed 27-Jan-2018].

[10] p-value. https://en.wikipedia.org/wiki/P-value, January 2018. [On-

line; accessed 28-jan-2018].

98

[11] Pid controller wiki. https://en.wikipedia.org/wiki/PIDcontroller,

January 2018. [Online; accessed Jan-2018].

[12] Quartile. https://en.wikipedia.org/wiki/Quartile, January 2018.

[Online; accessed Jan-2018].

[13] Therac-25. https://en.wikipedia.org/wiki/Therac-25, January

2018. [Online; accessed Jan-2018].

[14] Unity - game engine. https://unity3d.com, 2018. [Online; accessed Jan-

2018].

[15] Sheeva Afshan, Phil McMinn, and Mark Stevenson. Evolving readable string test

inputs using a natural language model to reduce human oracle cost. Proc. of the

6th IEEE Intl. Conf. on Software Testing, Verification and Validation, pages 352–361,

2013.

[16] Muhammad Haris Afzal, Valérie Renaudin, and Gérard Lachapelle. Assessment of

indoor magnetic field anomalies using multiple magnetometers. In ION GNSS, vol-

ume 10, pages 21–24, 2010.

[17] Muhammad Haris Afzal, Valérie Renaudin, and Gérard Lachapelle. Use of earths

magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

Sensors, 11(12):11390–11414, 2011.

[18] Cesare Alippi, Stavros Ntalampiras, and Manuel Roveri. Model-free fault detection

and isolation in large-scale cyber-physical systems. IEEE Trans. on Emerging Topics

in Computational Intelligence, 1(1):61-71, February 2017.

[19] M. Anitha, R. Sanjai, W. Michael, and H. Mats PE. Design considerations for model-

ing modes in cyber–physical systems. IEEE Design & Test, 32(5):66–73, 2015.

[20] James Ayre. 16,000 fiat 500e electric cars recalled for software issue. Clean Technica,

June 6 2016.

99

[21] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank

based fault localization approach using likely invariants. In Proceedings of the 25th

International Symposium on Software Testing and Analysis, pages 177–188. ACM,

2016.

[22] Ayca Balkan, Paulo Tabuada, Jyotirmoy V. Deshmukh, Xiaqing Jin, and James Kap-

inski. Underminer: a framework for automatically identifying non-converging behav-

iors in black box system models. Proc. of EMSOFT’16, October 2016.

[23] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The

oracle problem in software testing: a survey. IEEE TSE, 41(5):507-525, May 2015.

[24] Pedro Batista, Carlos Silvestre, Paulo Oliveira, and Bruno Cardeira. Low-cost attitude

and heading reference system: Filter design and experimental evaluation. In Robotics

and Automation (ICRA), 2010 IEEE International Conference on, pages 2624–2629.

IEEE, 2010.

[25] Selcuk Bayraktar, Georgios E. Fainekos, and George J. Pappas. Hybrid modeling and

experimental cooperative control of multiple unmanned aerial vehicles. Tech. Rprt.

MS-CIS-04-32, Dept. of CIS, U. of Penn., December 2004.

[26] Darko Bozhinoski, Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione, and Mas-

simo Tivoli. FLYAQ: enabling non-expert users to specify and generate missions of

autonomous multicopters. Proc. of the 30th IEEE/ACM Intl. Conf. on Automated Soft-

ware Engineering, 2015.

[27] Brainybit. Build an electronic compass using the hm-

c5883l module. https://brainy-bits.com/tutorials/

find-your-way-using-the-hmc5883l, 2016.

[28] Lionel C Briand, Yvan Labiche, and Xuetao Liu. Using machine learning to support

debugging with tarantula. In Software Reliability, 2007. ISSRE’07. The 18th IEEE

International Symposium on, pages 137–146. IEEE, 2007.

100

[29] William L. Brogan. Modern control theory (3rd ed.). Pearson, 1990.

[30] Yuriy Brun and Michael D Ernst. Finding latent code errors via machine learning over

program executions. In Proceedings of the 26th International Conference on Software

Engineering, pages 480–490. IEEE Computer Society, 2004.

[31] Pasquale Buonocunto and Mauro Marinoni. Tracking limbs motion using a wireless

network of inertial measurement units. In Proceedings of the 9th IEEE International

Symposium on Industrial Embedded Systems (SIES 2014), pages 66–76. IEEE, 2014.

[32] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer

Science & Business Media, 2013.

[33] Peggy Cellier, Mireille Ducassé, Sébastien Ferré, and Olivier Ridoux. Formal con-

cept analysis enhances fault localization in software. In International Conference on

Formal Concept Analysis, pages 273–288. Springer, 2008.

[34] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing: a new approach for

generating next test cases. The HKUST CS Tech. Report HKUST-CS98-01, 1998.

[35] T. Y. Chen, F.-C Kuo, and W. K. Tam. Testing a software-based pid controller using

metamorphic testing. Proc. of the 1st Intl. Conf. on Pervasive and Embedded Com-

puting and Communication Systems, pages 387–396, 2011.

[36] Tsong Yueh Chen, T. H. Tse, and Zhi Quan Zhou. Semi-proving: an integrated

method for program proving, testing, and debugging. IEEE TSE, 37(1):109-125,

2011.

[37] Krishna Chintalapudi, Anand Padmanabha Iyer, and Venkata N. Padmanabhan. In-

door localization without the pain. In Proceedings of the sixteenth annual interna-

tional conference on Mobile computing and networking (MobiCom), pages 173–184.

ACM, 2010.

[38] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai, and

Micaela Wiseman. Indoor location sensing using geo-magnetism. In Proceedings of

101

the 9th international conference on Mobile systems, applications, and services (Mo-

biSys), pages 141–154. ACM, 2011.

[39] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge,

2013.

[40] Ionut Constandache, Romit Roy Choudhury, and Injong Rhee. Towards mobile phone

localization without war-driving. In Infocom, 2010 proceedings ieee, pages 1–9.

IEEE, 2010.

[41] Robert M Corless, Patrizia M Gianni, Barry M Trager, and Stephen M Watt. The

singular value decomposition for polynomial systems. In Proceedings of the 1995

international symposium on Symbolic and algebraic computation, pages 195–207.

ACM, 1995.

[42] Gustavo A. Peláez Coronado, Fernando Garcı́a, Arturo de la Escalera, and José Marı́a

Armingol. Driver monitoring based on low-cost 3-d sensors. IEEE Trans. Intelligent

Transportation Systems, 15(4):1855–1860, 2014.

[43] Patrick Cousot, Radhia Cousot, Jorome Feret, Laurent Mauborgne, Antoine Mine,

David Monniaux, and Xavier Rival. The astree analyzer. Proc. of ESOP, 2005.

[44] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. DySy: dynamic sym-

bolic execution for invariant inference. Proc. of ICSE, pages 281–290, 2008.

[45] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, and Andreas Zeller.

Mining object behavior with adabu. pages 17–24, 2006.

[46] Ewen Denney, Ganesh Pai, and Iain Whiteside. Model-driven development of safety

architectures. Proc. of ACM/IEEE 20th Intl. Conf. on Model Driven Engineering

Languages and Systems (MODELS), pages 156–166, 2017.

[47] Jan Dentler, Somasundar Kannan, Miguel Angel Olivares Mendez, and Holger Voos.

A tracking error control approach for model predictive position control of a quadrotor

102

with time varying reference. Proc. of the IEEE Intl. Conf. on Robotics and Biomimet-

ics, Dec. 3-7 2016.

[48] Estefania Munoz Diaz and Ana Luz Mendiguchia Gonzalez. Step detector and step

length estimator for an inertial pocket navigation system. In Indoor Positioning and

Indoor Navigation (IPIN), 2014 International Conference on, pages 105–110. IEEE,

2014.

[49] Estefania Munoz Diaz, Ana Luz Mendiguchia Gonzalez, and Fabian de Ponte Muller.

Standalone inertial pocket navigation system. In Position, Location and Navigation

Symposium-PLANS 2014, 2014 IEEE/ION, pages 241–251. IEEE, 2014.

[50] Roong-Ko Doong and Phyllis G. Frankl. The ASTOOT approach to testing object-

oriented programs. ACM TSEM, 3(2):101-130, April 1994.

[51] Parasara Sridhar Duggirala, Le Wang, Sayan Mitra, Mahesh Viswanathan, and Cesar

Munoz. Temporal precedence checking for switched models and its application to a

parallel landing protocol. Proc. of Formal Methods (FM), LNCS 8442:215-229, May

2014.

[52] D.A Eberly. Least squares fitting of data. In Magic Software, Inc, Chapel Hill, N.C.,

2001.

[53] U. Eren, A. Prach, B.B. Kocer, S.V. Rakovic, E. Kayacan, and B. Acikmese. Model

predictive control in aerospace systems: Current state and opportunities. AIAA Jour-

nal of Guidance, Control, and Dynamics, 2017.

[54] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynami-

cally discovering likely program invariants to support program evolution. IEEE TSE,

27(2):99-123, February 2001.

[55] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. Dynamical-

ly discovering likely program invariants to support program evolution. IEEE Trans-

actions on Software Engineering, 27(2):99–123, 2001.

103

[56] Raúl Feliz Alonso, Eduardo Zalama Casanova, and Jaime Gómez Garcı́a-Bermejo.

Pedestrian tracking using inertial sensors. 2009.

[57] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback control of

dynamic systems (7th ed.). Pearson, 2014.

[58] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation for

object-oriented software. Proceedings of the 19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations of Software Engineering (ESEC/FSC’11),

pages 416–419, 2011.

[59] Gordon Fraser and Andreas Zeller. Mutation-driven generation of unit tests and ora-

cles. IEEE Trans. on Software Engineering, 38(2):278-292, Mar/Apr 2012.

[60] Terejanu GA. Extended kalman filter tutorial. http://usersicesutexasedu/

˜terejanu/files/tutorialEKFpdf, 2008.

[61] Gregory Gay, Matt Staats, Michael Whalen, and Mats P.E. Heimdahl. Automated or-

acle data selection support. IEEE Trans. on Software Engineering, 41(11), November

2015.

[62] Demoz Gebre-Egziabher, GH Elkaim, J David Powell, and BW Parkinson. A non-

linear, two-step estimation algorithm for calibrating solid-state strapdown magne-

tometers. In 8th International St. Petersburg Conference on Navigation Systems

(IEEE/AIAA), 2001.

[63] Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. Hybrid dynamical systems:

modeling, stability, and robustness. Princeton University Press, 2012.

[64] H Guo, M Uradzinski, H Yin, and M Yu. Indoor positioning based on foot-mounted

imu. BULLETIN OF THE POLISH ACADEMY OF SCIENCES, 2015.

[65] Zhijian He, Yanming Chen, Zhaoyan Shen, Enyan Huang, Shuai Li, Zili Shao, and

Qixin Wang. Ard-mu-copter: A simple open source quadcopter platform. In Mobile

104

Ad-hoc and Sensor Networks (MSN), 2015 11th International Conference on, pages

158–164. IEEE, 2015.

[66] Zhijian He, Yanming Chen, Zhaoyan Shen, Enyan Huang, Shuai Li, Zili Shao, and

Qixin Wang. Ard-mu-copter: A simple open source quadcopter platform. In 11th

International Conference on Mobile Ad-hoc and Sensor Networks, MSN 2015, Shen-

zhen, China, December 16-18, 2015, pages 158–164, 2015.

[67] M. H. Heule and S. Verwer. Software model synthesis using satisfiability solvers.

Empirical Software Engineering, 13(4):825-856, August 2013.

[68] Jerry Hirsch and Ken Bensinger. Toyota settles acceleration lawsuit after $3-million

verdict. Los Angeles Times, Oct 25 2013.

[69] Honeywell. 3-axis digital compass ic hmc5883l. https://cdn-shop.

adafruit.com/datasheets/HMC5883L_3-Axis_Digital_Compass_

IC.pdf, 2013.

[70] Shin Hong, Byeongcheol Lee, Taehoon Kwak, Yiru Jeon, Bongsuk Ko, Yunho Kim,

and Moonzoo Kim. Mutation-based fault localization for real-world multilingual pro-

grams (t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-

tional Conference on, pages 464–475. IEEE, 2015.

[71] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ. Press, 2012.

[72] William E. Howden. Introduction to the theory of testing. Edward Miller and William

E. Howden, editors, Tutorial: Software Testing and Validation Techniques, pages 16–

19, 1978.

[73] InvenSense. Mpu-6000 and mpu-6050 product specification revision 3.4.

https://www.cdiweb.com/datasheets/invensense/MPU-6050_

DataSheet_V3, 2013.

[74] A. Jain, E. Biyik, and A. Chakrabortty. A model predictive control design for selective

modal damping in power systems. Proc. of American Control Conference, 2015.

105

[75] Abhishek Jain, Emrah Biyik, and Aranya Chakrabortty. A model predictive control

design for selective modal damping in power systems. In American Control Confer-

ence (ACC), 2015, pages 4314–4319. IEEE, 2015.

[76] Antonio Ramón Jiménez, Fernando Seco Granja, José Carlos Prieto, and Jorge I. Gue-

vara Rosas. Indoor pedestrian navigation using an INS/EKF framework for yaw drift

reduction and a foot-mounted IMU. In 7th Workshop on Positioning Navigation and

Communication, WPNC 2010, Dresden Germany, 11-12 March 2010, Proceedings,

pages 135–143, 2010.

[77] James A Jones and Mary Jean Harrold. Empirical evaluation of the tarantula automat-

ic fault-localization technique. In Proceedings of the 20th IEEE/ACM international

Conference on Automated Software Engineering, pages 273–282. ACM, 2005.

[78] Simon J. Julier and Joseph J. LaViola. On kalman filtering with nonlinear equality

constraints. IEEE Trans. Signal Processing, 55:2774–2784, 2007.

[79] Daisuke Kamisaka, Shigeki Muramatsu, Takeshi Iwamoto, and Hiroyuki Yokoyama.

Design and implementation of pedestrian dead reckoning system on a mobile phone.

IEICE transactions on information and systems, 94(6):1137–1146, 2011.

[80] Aaron Kane, Thomas Fuhrman, and Philip Koopman. Monitor based oracles for

cyber-physical system testing. Proc. of the 44th Annual IEEE/IFIP Intl. Conf. on

Dependable Systems and Networks (DSN), pages 148–155, 2014.

[81] Somasundar Kannan, Seyed Amin Sajadi Alamdari, Jan Dentler, Miguel A. Olivares-

Mendez, and Holger Voos. Model predictive control for cooperative control of space

robots. AIP Conf. Proc., 1798(1), January 2017.

[82] Fan Li, Chunshui Zhao, Guanzhong Ding, Jian Gong, Chenxing Liu, and Feng Zhao.

A reliable and accurate indoor localization method using phone inertial sensors. In

Proceedings of the 2012 ACM Conference on Ubiquitous Computing (UbiComp),

pages 421–430. ACM, 2012.

106

[83] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. Cp-miner: Finding

copy-paste and related bugs in large-scale software code. IEEE Transactions on soft-

ware Engineering, 32(3):176–192, 2006.

[84] J. L. Lions. Ariane 5 flight 501 failure: report by the inquiry board. Paris, July 19

1996.

[85] Bing Liu, Lucia, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. Simulink

fault localization: an iterative statistical debugging approach. Software Testing, Veri-

fication and Reliability, 26:431-459, May 11 2016.

[86] Pablo Loyola, Matt Staats, In-Young Ko, and Gregg Rothermel. Dodona: automated

oracle data set selection. Proc. of ISSTA’14, pages 193–203, 2014.

[87] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi. Extended comprehensive study

of association measures for fault localization. Journal of Software: Evolution and

Process, 26(2):172–219, 2014.

[88] James R Lyle. Automatic program bug location by program slicing. In The Second

International Conference on Computers and Applications, pages 877–883, 1987.

[89] Michael R. Lyu. Software fault tolerance. Wiley, 1995.

[90] Sebastian OH Madgwick, Andrew JL Harrison, and Ravi Vaidyanathan. Estimation

of imu and marg orientation using a gradient descent algorithm. In 2011 IEEE Inter-

national Conference on Rehabilitation Robotics, pages 1–7. IEEE, 2011.

[91] Robert E. Mahony, Tarek Hamel, and Jean Michel Pflimlin. Nonlinear complemen-

tary filters on the special orthogonal group. IEEE Trans. Automat. Contr., 53:1203–

1218, 2008.

[92] Haroon Malik, Hadi Hemmati, and Ahmed E. Hassan. Automatic detection of perfor-

mance deviations in the load testing of large scale systems. Proc. of ICSE’13, pages

1012–1021, 2013.

107

[93] Renato Mancuso, Or D Dantsker, Marco Caccamo, and Michael S Selig. A low-

power architecture for high frequency sensor acquisition in many-dof uavs. In Cyber-

Physical Systems (ICCPS), 2014 ACM/IEEE International Conference on, pages 103–

114. IEEE, 2014.

[94] Joao Luis Marins, Xiaoping Yun, Eric R. Bachmann, Robert B. McGhee, and Michael

Zyda. An extended kalman filter for quaternion-based orientation estimation using

MARG sensors. In IEEE/RSJ International Conference on Intelligent Robots and

Systems, IROS 2001: Expanding the Societal Role of Robotics in the the Next Millen-

nium, Maui, HI, USA, October 29 - November 3, 2001, pages 2003–2011, 2001.

[95] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. Auto-

mated test suite generation for time-continuous simulink models. Proc. of ICSE’16,

pages 595–606, May 14-22 2016.

[96] Phil McMinn, Mark Stevenson, and Mark Harman. Reducing qualitative human o-

racle costs associated with automatically generated test data. ACM ISSTA’10, July

12-16 2010.

[97] Ramy Medhat, S. Ramesh, Borzoo Bonakdarpour, and Sebastian Fischmeister. A

framework for mining hybrid automata from input/output traces. Proc. of the 12th

Intl. Conf. on Embedded Software (EMSOFT’15), pages 177–186, 2015.

[98] Maik Merten, Falk Howar, Bernhard Steffen, Patrizio Pellicione, and Massimo Tivoli.

Automated inference of models for black box systems based on interface descriptions.

Proc. of the 5th Intl. Conf. Leveraging Appl. of Formal Methods, Verification and

Validation: Tech. for Mastering Change, LNCS 7609:79-96, 2012.

[99] Bertrand Meyer. Eiffel: a language and environment for software engineering. J. of

Systems and Software, 8(3):199-246, June 1988.

[100] Bojan Milosevic, Roberto Naldi, Elisabetta Farella, Luca Benini, and Lorenzo Mar-

coni. Design and validation of an attitude and heading reference system for an aerial

108

robot prototype. In American Control Conference, ACC 2012, Montreal, QC, Cana-

da, June 27-29, 2012, pages 1720–1725, 2012.

[101] Roberto Natella, Domenico Cotroneo, Joao A Duraes, and Henrique S Madeira. On

fault representativeness of software fault injection. IEEE Transactions on Software

Engineering, 39(1):80–96, 2013.

[102] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephani Forrest. Using dy-

namic analysis to discover polynomial and array invariants. Proc. of ICSE, pages

683–693, 2012.

[103] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephani Forrest. Using dy-

namic analysis to generate disjunctive invariants. Proc. of ICSE, pages 608–619,

2014.

[104] Hyduke Noshadi, Foad Dabiri, Shaun Ahmadian, Navid Amini, and Majid Sarrafzade-

h. Hermes: mobile system for instability analysis and balance assessment. ACM

Transactions on Embedded Computing Systems (TECS), 12(1s):57, 2013.

[105] Anthony Odin. Arduino tutorial: Hmc5883l compass magnetometer i2c. https:

//www.youtube.com/watch?v=VVlwIRTiHTQ/, 2016.

[106] Fabrizio Pastore, Leonardo Mariani, and Gordon Fraser. CrowdOracle: can the crowd

solve the oracle problem? Proc. of Intl. Conf. on Software Testing, Verification, Vali-

dation, pages 342–351, 2013.

[107] Dennis K. Peters and David Lorge Parmas. Using test oracles generated from program

documentation. IEEE Trans. on Software Engineering, 24(3):161-173, March 1998.

[108] Kevin Poulsen. Software bug contributed to blackout. Securityfocus.com, Feb

11 2004. [Online; accessed Jan-2018].

[109] Kevin Poulsen. Tracking the blackout bug. Securityfocus.com, April 7 2004.

[Online; accessed Jan-2018].

109

[110] Anshul Rai, Krishna Kant Chintalapudi, Venkata N Padmanabhan, and Rijurekha Sen.

Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of the 18th

annual international conference on Mobile computing and networking (MobiCom),

pages 293–304. ACM, 2012.

[111] Valérie Renaudin, Bertrand Merminod, and Michel Kasser. Optimal data fusion for

pedestrian navigation based on uwb and mems. In Position, Location and Navigation

Symposium, 2008 IEEE/ION, pages 341–349. IEEE, 2008.

[112] Patrick Robertson, Michael Angermann, and Bernhard Krach. Simultaneous localiza-

tion and mapping for pedestrians using only foot-mounted inertial sensors. In Pro-

ceedings of the 11th international conference on Ubiquitous computing (UbiComp),

pages 93–96. ACM, 2009.

[113] L. Sebeke, Xi Luo, B. de Jager, W. P. M. H. Heemels, E. Heijman, and H. Gruell.

Model predictive control algorithm for large-area regional hyperthermia. Journal of

Therapeutic Ultrasound, 4:A173, 2016.

[114] Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang. Cyber-physical systems:

A new frontier. In Machine Learning in Cyber Trust, pages 3–13. Springer, 2009.

[115] Jean-Jacques E. Slotine and Weiping Li. Applied nonlinear control. Pearson, 1991.

[116] O. Sokolsky and H. S. Hong. Qualitative modeling of hybrid systems. Proc. of Work-

shop on Formal Models in Software Development, June 2001.

[117] J. M. Spivey. Z notation - a reference manual (2nd ed.). Westview, 2014.

[118] Paulo Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.

Springer, 2009.

[119] Arun K Tangirala. Principles of system identification: Theory and practice. Crc

Press, 2014.

110

[120] Arun K. Tangirala. Principles of System Identification: Theory and Practice. CRC

Press, 2015.

[121] JF Vasconcelos, G Elkaim, C Silvestre, P Oliveira, and B Cardeira. A geometric

approach to strapdown magnetometer calibration in sensor frame. volume 41, pages

172–177. Elsevier, 2008.

[122] JF Vasconcelos, G Elkaim, C Silvestre, P Oliveira, and B Cardeira. Geometric ap-

proach to strapdown magnetometer calibration in sensor frame. volume 47, pages

1293–1306. IEEE, 2011.

[123] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on

Software engineering, pages 439–449. IEEE Press, 1981.

[124] Avishai Weiss, Morgan Baldwin, Richard Scott Erwin, and Ilya Kolmanovsky. Model

predictive control for spacecraft rendezvous and docking: strategies for handling con-

straints and case studies. IEEE Trans. on Control Systems Tech., 23(4):1638-1647,

2015.

[125] Avishai Weiss, Morgan Baldwin, Richard Scott Erwin, and Ilya Kolmanovsky. Mod-

el predictive control for spacecraft rendezvous and docking: Strategies for handling

constraints and case studies. IEEE Transactions on Control Systems Technology,

23(4):1638–1647, 2015.

[126] Elaine J. Weyuker. On testing non-testable programs. The Computer J., 25(4):465-

470, 1982.

[127] Wikipedia. North east down. https://en.wikipedia.org/wiki/North_

east_down/, 2016.

[128] Jeannette M. Wing. A specifier’s introduction to formal methods. IEEE Computer,

23(9):8-24, September 1990.

111

[129] Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjoorn Regnell, and

Anders Wesslen. Experimentation in Software Engineering: An Introduction. Kluwer

Academic Publishers, 2000.

[130] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical method

for effective fault localization. In Software Testing, Verification, and Validation, 2008

1st International Conference on, pages 42–51. IEEE, 2008.

[131] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical method

for effective fault localization. In Software Testing, Verification, and Validation, 2008

1st International Conference on, pages 42–51. IEEE, 2008.

[132] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on

software fault localization. IEEE Trans. on Software Engineering, 42(8):707-740,

August 2016.

[133] W Eric Wong and Yu Qi. Bp neural network-based effective fault localization. Inter-

national Journal of Software Engineering and Knowledge Engineering, 19(04):573–

597, 2009.

[134] W Eric Wong and Yu Qi. Bp neural network-based effective fault localization. Inter-

national Journal of Software Engineering and Knowledge Engineering, 19(04):573–

597, 2009.

[135] Zhitian Wu, Yuanxin Wu, Xiaoping Hu, and Meiping Wu. Calibration of three-axis

strapdown magnetometers using particle swarm optimization algorithm. In Robotic

and Sensors Environments (ROSE), 2011 IEEE International Symposium on, pages

160–165. IEEE, 2011.

[136] Tao Xie. Augmenting automatically generated unit-test suits with regression oracle

checking. Proc. of the 20th European Conf. on Object-Oriented Programming (E-

COOP 2006), pages 380–403, July 2006.

112

[137] Xiaoyuan Xie, W. Eric Wong, Tsong Yueh Chen, and Baowen Xu. Metamorphic

slice: an application in spectrum-based fault localization. Info. & Software Tech.,

55:866-879, 2013.

[138] J. Yang, R. Grosu, S. A. Smolka, and A. Tiwari. Love thy neighbor: V-formation as

a problem of model predictive control. Proc. of the 27th Intl. Conf. on Concurrency

Theory (CONCUR), LIPICS 59:4:1-5, August 2016.

[139] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization:

a survey. J. of Software Testing, Verification & Reliability, 22(2):67-120, March 2012.

[140] Qiuyue Yu, Lei Cheng, Qinyan Zhang, Yang Chen, Huaiyu Wu, Quanmin Zhu, Y-

ongji Wang, and Nian Liu. Research on magnetic compass calibration for air-ground

amphibious robot system. In Control Conference (CCC), 2016 35th Chinese, pages

6172–6177. TCCT, 2016.

[141] Xiaoping Yun and Eric R. Bachmann. Design, implementation, and experimental

results of a quaternion-based kalman filter for human body motion tracking. IEEE

Trans. Robotics, 22:1216–1227, 2006.

[142] Francisco Zampella, Antonio Ramón Jiménez, Fernando Seco, José Carlos Prieto,

and Jorge Guevara. Simulation of foot-mounted IMU signals for the evaluation of

PDR algorithms. In 2011 International Conference on Indoor Positioning and Indoor

Navigation, IPIN 2011, Guimaraes, Portugal, September 21-23, 2011, pages 1–7,

2011.

[143] Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceed-

ings of the 10th ACM SIGSOFT symposium on Foundations of software engineering,

pages 1–10. ACM, 2002.

[144] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through automated

predicate switching. In Proceedings of the 28th international conference on Software

engineering, pages 272–281. ACM, 2006.

113

[145] Wujie Zheng, Hao Ma, Michael R. Lyu, Tao Xie, and Irwin King. Mining test ora-

cles of web search engines. Proc. of the 26th IEEE/ACM Intl. Conf. on Automated

Software Engineering, pages 408–411, November 2011.

114

