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Abstract

Software-defined networking (SDN) has introduced a more flexible way to manage

and control network traffic with high programmability by decoupling the control plane

from the data plane in traditional networks. The attributes of centralized control and

programmability in SDN can be exploited to enhance network security with a highly

reactive security system. However, the same centralized structure is also considered

vulnerable, which can cause severe network security problems.

In the thesis, the security in SDN is studied in both identifying vulnerabilities in

SDN and enhancing network security with SDN. For SDN vulnerability identification,

we study the DoS attacks aiming at OpenFlow networks, and propose FloodDefend-

er, a scalable, efficient and protocol-independent defense framework against the DoS

attacks. Furthermore, we identify new SDN-aimed DDoS attacks which could use

the communication bottleneck between the two planes to jam switch-controller links

and overload the control plane in proactive OpenFlow networks. To mitigate the new

DDoS attack, we propose FloodBarrier to reduce the communication and efficient-

ly handle attack traffic. For the SDN-enabled security, we propose software-defined

firewall (SDF) based on the architecture of SDN to enhance personal firewalls for

malware detection. SDF can detect the hidden traffic generated by malware and

enable programmable security policy control by abstracting the firewall architecture

i



into control and data planes. Experimental results show that the proposed FloodDe-

fender and FloodBarrier systems can efficiently protect OpenFlow networks against

the attacks with little overhead, and SDF can successfully monitor all network traffic

and improve the accuracy of malicious traffic identification.
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Chapter 1

Introduction

Software-defined networking (SDN) has enabled network innovations by separating

the legacy network architecture into control plane and data plane. The programma-

bility provided by the separated two planes introduces an easier and more flexible

way for researchers and practitioners to design innovative network functions and nov-

el network protocols. In SDN, the logically centralized control plane works as a brain

to dictate the behaviors of the whole network via a “southbound” protocol. Among

all the implementations of SDN, the OpenFlow framework McKeown et al. [2008] is

the leading embodiment of SDN concept and has brought SDN into reality. In recent

years, the techniques of SDN (OpenFlow networks) have been applied in today’s data

centers Jain et al. [2013], Internet service provider networks Poularakis et al. [2017]

and 5G networks Trivisonno et al. [2015]. By adopting the architecture of SDN, 5G

networks can be enhanced with programmability, flexibility, reliability, and scalability

to support a heterogeneous set of services Trivisonno et al. [2015].

In an OpenFlow network, the data plane communicates with the control plane to

manage network traffic. When OpenFlow switches receive some specific packets (e.g.

table-miss packets and packets belonging to some control plane protocols cp), they

1
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Host A

packet
(table-miss)

packet_in messages
packet_out messages
(responses to hosts)

OpenFlow switch

Controller

modify state messages
(install flow rules)

Host B

Control Plane

Data Plane

Fig. 1.1: The architecture of SDN.

encapsulate these packets into packet in messages and report them to the controller

for instructions. The controller then decides the actions to the packets, and could

further install flow rules on the switches to allow them to directly process the packets

of the same flow, as depicted in Figure 1.1.

1.1 Vulnerabilities in SDN

Though SDN brings many benefits to network management, unsolved security

issues become major obstacles to the popularization of SDN. Security problems must

be fully identified and solved before SDN can be broadly deployed on the Internet.

One of the most serious concerns of the SDN network is the centralized control plane,

which incurs significant communication overhead. Today’s commercial OpenFlow

switches xsw only support cable connection to the controller. The practical connection

bandwidth was tested to be less than 10Mbps Shin et al. [2013b], Wang et al. [2015].
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Previous approaches point out that in some reactive OpenFlow networks, an attacker

can generate a great amount of table-miss packets to launch DoS attacks (i.e. data-

to-control plane saturation attacks Shin et al. [2013b]). Specifically, the attacker

randomly forges some or all fields of a packet, making it hard to match with any

existing flow rules on a victim switch. Then, the attacker sends a large amount of

these table-miss packets to flood the network by SDN-aimed DoS attacks. These

table-miss packets will trigger massive packet in messages from the victim switch

to the controller, and consume their communication bandwidth, CPU computation,

memory in both control and data planes. Furthermore, the flow table can also be

overloaded with useless rules when the controller decides to install flow rules.

Previous solutions work in reactive OpenFlow networks to mitigate the data-

to-control plane saturation attacks in SDN Shin et al. [2013b], Wang et al. [2015].

AvantGuard Shin et al. [2013b] adopts a connection migration as an extension of

data plane to identify TCP-based attack traffic by verifying the TCP handshake of

each new SYN packet. For attack traffic based on other protocols, e.g. UDP and

ICMP, FloodGuard Wang et al. [2015] utilizes a proactive flow rule analyzer to pre-

install proactive flow rules, and forwards table-miss packets to a data plane cache.

However, both approaches need hardware modification (i.e. SYN proxy and data

plane cache), which will increase the cost of deploying defense systems. Besides, all

solutions focus on handling table-miss packets to mitigate the data-to-control plane

saturation attacks Shin et al. [2013b] and ignore security threats posed by other

packets. These mechanisms are not suitable for the mitigation of DoS attacks in

proactive networks since they focus on dealing with table-miss packets.

We face the following two challenges in protect OpenFlow networks against DDoS
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attacks:

• Can we reduce the cost of hardware modification in designing defense systems

against data-to-control plane saturation attacks?

• Is there other DoS attacks against proactive OpenFlow networks?

These two challenges are not easy to deal with. For the first challenge, we need to

only consider the build-in proprieties in SDN to design defense systems. Specifically,

we need to solve three problems: 1) How to deliver table-miss packets to the control

plane without sacrificing much switch-controller bandwidth? 2) How to identify and

filter out attack traffic without costing much computational resource? 3) How to

protect the flow table from being overloaded? For the second challenge, in a proactive

OpenFlow network, the controller pre-installs all flow rules to cover all possible traffic

(i.e. no table-miss packets). Therefore, we need to find other kinds of packets which

can trigger data-control plane communications.

1.2 SDN for Security

Different from the research in SDN vulnerabilities, the centralized control plane in

SDN is also regarded as promising design for traditional network security problems.

In this thesis, we also consider how to use SDN to enforce host security (i.e. malicious

traffic detection). Today’s malicious software (malware) needs network connections

to conduct malicious activities (e.g. flooding packets, leaking private data, and down-

loading malware updates). To detect these malicious activities, security companies

have proposed security solutions on both host side (personal firewalls such as Mi-

crosoft Windows firewall and anti-viruses) and network side (network firewalls such
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Fig. 1.2: Personal and network firewalls may both fail to identify malicious traffic
when malware uses a private TCP/IP stack.

as intrusion detection systems and ingress filtering). However, when malware lies in

a lower layer than the personal firewalls, this malicious traffic becomes invisible to

personal firewalls. Though network firewalls can capture all traffic, a lack of host

information can make them fail to differentiate malicious traffic from other benign

traffic. A typical example is the Rovnix bootkit ron that can bypass the monitoring

of a personal firewall via a private TCP/IP stack. Mixed with benign traffic, the net-

work firewall may also fail to identify its traffic when Rovnix does not have significant

features in the attack signature database, as depicted in Figure 5.1.

Many solutions have been proposed for malware pattern analysis and dynamic se-

curity policy update Hong et al. [2016], Hu et al. [2014], Perdisci et al. [2010]. Perdisci

et.al. present a network-level behavioral malware clustering system by analyzing the

structural similarities among malicious HTTP traffic traces generated by HTTP-

based malware Perdisci et al. [2010]. The high programmability in software-defined

networking (SDN) also introduces security innovations. FlowGuard Hu et al. [2014]

enables both accurate detection and effective resolution of firewall policy violations in

OpenFlow networks. Another approach, PBS Hong et al. [2016], evaluates the idea
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in SDN to enable fine-grained, application-level network security programmability

for mobile apps and devices. PBS introduces a more flexible way to enforce security

policies by applying the concept of SDN. However, these approaches may incur high

false-positive rate in attack traffic identification with no reference to host information

or can be bypassed when malware adopts mechanisms to avoid personal firewall check

(e.g., via a private TCP/IP stack).

1.3 Thesis Contributions

In this thesis, we first solve SDN problems, including identifying new SDN attacks

and designing countermeasures. Then, with a more secured SDN framework, we

use SDN technique to solve traditional network problems. Specifically, we first use

the build-in proprieties of SDN to design a defense system against data-to-control

plane saturation attacks without hardware modifications. Furthermore, we identify

some new vulnerabilities that can be exploited by attackers to launch new DDoS

attacks (SDN-aimed DDoS attacks) against any OpenFlow switch in both reactive

and proactive networks. To mitigate the new attacks, we introduce a scalable and

protocol-independent defense system for OpenFlow networks. Finally, to address the

problem of reliable malicious traffic detection, we propose a new architecture that

can prevent malicious traffic bypassing to enhance the security of host machines.

1.3.1 Countermeasures for Data-to-Control Plane Saturation
Attacks

Data-to-control plane saturation attacks is the most well-known SDN-aimed DoS

attacks. To address the hardware modifications in the previous design against the

saturation attacks, we propose FloodDefender, a scalable and protocol-independent
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defense system in OpenFlow networks in Chapter 3. FloodDefender stands between

the controller platform and other controller apps, and is protocol-independent against

all kinds of attack traffic (e.g. TCP-based attacks or UDP-based attacks). All designs

in FloodDefender conform to the OpenFlow policy and need no additional devices.

FloodDefender has two modules: detection module and mitigation module. The

detection module utilizes new frequency features for attack detection. Frequency

features can significantly reduce false-alerts in previous detection solutions. The mit-

igation module contains three components: table-miss engineering, packet filter, and

flow rule management. The table-miss engineering component detours table-miss

packets to neighbor switches with wildcard flow rules to protect the communica-

tion link between the control and data planes from being jammed; the packet filter

component filters out attack packets from the received packet in messages to save

computational resources of the controller; and the flow rule management component

constructs a robust flow table in the data plane by separating the flow table into “flow

table region” and “cache region” to save the Ternary Content Addressable Memory

(TCAM) of OpenFlow switches.

1.3.2 New Attacks in Proactive OpenFlow Networks and Coun-
termeasures

Currently, no DoS attacks against proactive OpenFlow networks has been pro-

posed. In Chapter 4, we analyze the data-control plane communication overhead

in SDN and identify some new vulnerabilities that can be exploited by attackers to

launch new DDoS attacks (SDN-aimed DDoS attacks) in both reactive and proactive

networks. In the new attacks, an attacker sends massive requests (e.g. SYNs, ICMP

echoes, and ARP requests) to a victim switch instead of blindly generating table-miss
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packets. When the victim switch receives these requests, it can only report the re-

quests to the controller for responses no matter in reactive or proactive approach1.

In this way, the bandwidth between the controller and victim switch will be exhaust-

ed. The new DDoS attacks have a more serious impact on OpenFlow networks since

they can target at any switch. Even worse, when the attacker uses multiple sources to

launch distributed attacks targeting at one switch, the data-control plane communica-

tion will be jammed quickly by the aggregated traffic. The attack traffic identification

will be much harder than that in the traditional saturation attacks (attackers can be

anywhere in the network and use forged addresses to bypass frequency-based filtering

in FloodDefender).

To mitigate the new SDN-aimed DDoS attacks, we present FloodBarrier, a scal-

able and protocol-independent defense system in OpenFlow networks. FloodBarrier

first saves data-control plane bandwidth by forwarding requests to a specific device.

Furthermore, it reduces the workload of control plane by responding to some simple

requests with the specific device. Finally, FloodBarrier identifies and blocks attacker

traffic based on traffic statistics information (including new features such as source

type and response type).

1.3.3 SDN-based Solutions for Malware Traffic Detection

To address the problem of reliable malicious traffic detection, we propose software-

defined firewall (SDF), a new architecture that can prevent malicious traffic bypassing

to enhance the security of host machines in Chapter 5. The new architecture of SDF

can be witnessed from its design of “control plane” and “data plane” as in SDN. The

1The action of “reporting to the control plane” is inevitable when switches exactly follow Open-
Flow specification, since OpenFlow includes no mechanism that would allow packet generation (or
automatic responses) in switches.
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“control plane” in SDF collects host information (e.g., task names, CPU and mem-

ory utilizations of tasks) to improve the accuracy of malicious traffic detection and

provides fine-grained flow management. The data plane monitors both incoming and

outgoing traffic in a network hardware. The two-layer design in SDF can successfully

avoid malware bypassing by integrating the host information. Another salient fea-

ture of SDF is its high programmability and application-level traffic control. Based

on Hong et al. [2016], we design a programmable language for SDF to allow users

to develop control apps, through which the control plane of SDF can install rules on

the data plane to manage network traffic. Thus, users can dynamically update host

machine security policies, and achieve timely and precise malicious traffic filtering.

SDF is also robust to different attacks against its control plane. We leverage an

audit server to avoid compromised control plane or malware installing illegal rules and

removing legal rules on the data plane. When attacks are detected, the audit server

will alert the network administrators about the abnormal events. With these alerts,

network administrators can further check the host machine to remove the malware.

SDF is easy to implement and can be deployed in either traditional or OpenFlow

networks without many changes of the existing network framework. With the assist

of SDF, many today’s security solutions can be simplified by applying different control

apps.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces the related

work. Chapter 3 proposes FloodDefender, a scalable and protocol-independent de-

fense system against data-to-control plane saturation attacks without any hardware
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modifications or additional devices. Chapter 4 introduces new SDN-aimed DDoS in

both reactive and proactive networks. To mitigate the new attacks, we also propose

FloodBarrier without violating OpenFlow specifications. Chapter 5 proposes SDF,

an SDN-based architecture that can prevent malicious traffic bypassing to enhance

the security of host machines. Finally, Chapter 6 concludes the thesis and indicates

future work.

The primary research outputs emerged from the thesis are as follows:

• Shang Gao, Zhe Peng, Bin Xiao, Aiqun Hu, and Kui Ren. FloodDefender:

Protecting Data and Control Plane Resources under SDN-aimed DoS Attacks,

in Proc. of the IEEE International Conference on Computer Communications

(INFOCOM), Atlanta GA, USA, 1-4 May 2017.

• Shang Gao, Zhe Peng, Bin Xiao, Aiqun Hu, Yubo Song, and Kui Ren. Detection

and Mitigation of DoS Attacks in Software Defined Networks, under review in

IEEE/ACM Transactions on Networking (TON).

• Shang Gao, Zecheng Li, Bin Xiao, and Guiyi Wei. Security Threats in the Data

Plane of Software-Defined Networks, accepted in IEEE Network, Dec. 2017.

• Shang Gao, Zecheng Li, Yuan Yao, Bin Xiao, Songtao Guo, and Yuanyuan

Yang, Software-Defined Firewall: Enabling Malware Traffic Detection and Pro-

grammable Security Control, in Proc. of the ACM Asia Conference on Com-

puter and Communications Security (ASIACCS), Songdo, Incheon, Korea, 4-8

June 2018.

• Shang Gao, Zecheng Li, and Bin Xiao, Penetrating into Proactive OpenFlow

Networks: Novel DDoS Attacks in SDN and Countermeasures, under review
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in Proc. of the ACM Conference on Computer and Communications Security

(CCS), 2018.
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Chapter 2

Literature Review

The security of SDN has become a hot research area ever since it was proposed. On

one hand, the centralized control plane is considered as a bottleneck of the network,

which can introduce new attacks Bu et al. [2016], Cui et al. [2016], Dhawan et al.

[2015], Hong et al. [2015], Jero et al. [2017], Lee et al., Pisharody et al. [2017], Porras

et al. [2015], Shin et al. [2013b], Wang et al. [2015], Wen et al. [2016], Xu et al. [2017].

On the other hand, the centralized control and high programmability in SDN have

been explored to solve the security problems in legacy networks, which has brought

insight to designing firewalls for DDoS detection and access control Afek et al. [2017],

Bonola et al. [2015], Hong et al. [2016], Hu et al. [2014], Jang et al. [2017], Shin et al.

[2013a, 2015], Sonchack et al. [2016a], Taylor et al. [2016], Xu and Liu [2016].

2.1 SDN-self Security

SDN-self security aims to identify new attacks against SDN and enhance the

security of SDN-enabled devices. The data-to-control plane saturation attacks Shin

et al. [2013b] utilize table-miss to flood both control and data planes. Specifically,

an attacker uses several compromised hosts (botnet) to send massive packets to an

13
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OpenFlow switch by randomly forging some fields. Since these packets have a very low

probability to match with existing flow rules, the switch will regard them as table-miss

packets and deliver to the controller in packet in messages. These packet in messages

will consume great switch-controller bandwidth and controller resources (e.g. CPU

and memory). Besides, the memory of the switch will also be exhausted by table-miss

packets, and when the controller decides to install flow rules to handle attack traffic,

the switch’s flow table will be overloaded. AvantGuard Shin et al. [2013b] is the

first defense system against data-to-control plane saturation attacks. It extends the

hardware of OpenFlow switches with a TCP proxy to mitigate TCP-based attacks.

The proxy responds with SYN-ACK packet and forwards SYN packet to check the

existence of the source and destination. AvantGuard will regard the connection as

legal only when both source and destination exist. The problem is that AvantGuard

can only deal with TCP-based attacks and introduces a long delay for legal SYN

packets. To mitigate other attack traffic (e.g. UDP and ICMP), FloodGuard Wang

et al. [2015] pre-installs possible flow rules (proactive flow rules) to handle as much

normal traffic as possible, and forwards attack traffic to an additional device (data

plane cache) to mitigate attacks. The data plane cache sorts incoming packets based

on protocol and reports the head of each protocol queue by round-robin scheduling

under a predefined rate. The problem of FloodGuard is a lack of packet filtering.

Therefore, it may introduce long delay and high packet loss rate for some packets

(e.g. UDP packets will be affected by UDP-based attacks Gao et al. [2017]).

Another attack is poisoning the network visibility of the control plane. An at-

tacker forges or relays some control packets (i.e. LLDP) in an OpenFlow network to
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poison the globe information collected by a controller Hong et al. [2015]. First, an at-

tacker monitors genuine LLDP packets and records the corresponding LLDP syntax.

Second, the attacker can either modify some specific contents of the LLDP packets

(e.g. port number) to forge a response to the controller or repeat them to other

compromised hosts to trigger the connected switches respond to the controller. As a

result, a nonexistent link between two disconnected switches is created. The attacker

can further launch DoS attacks (blocking some legal ports of the target switch) or

man-in-the-middle attacks (building an LLDP relay channel) based on the topology

poisoning attacks. To mitigate the poisoning attacks, TopoGuard Hong et al. [2015]

identifies the type of neighbor devices connected to OpenFlow switches. LLDP pack-

ets from a host connected port will be regarded as illegal and discarded. Specifically,

TopoGuard works on the control plane and tracks the type of neighbor devices con-

nected to switches’ ports. If a port firstly receives LLDP packets, TopoGuard will

regard the neighbor device as a switch. When packets from a first-hop host are firstly

received, the neighbor device is regarded as a host. Otherwise, TopoGuard contin-

ues monitoring incoming traffic. Based on the port property, TopoGuard can avoid

topology poisoning attacks by blocking LLDP packets from host connected ports. To

verify a topology update, TopoGuard also uses host probes to check the existence of

the host in the former location. Since TopoGuard enables a flexible way to identify

the type of connected device dynamically, it may allow attackers to forge a neighbor

device transfer from host to switch (firstly sending Port Down signals and then LLDP

packets).

Side-channel attacks utilize the processing time of a control plane to learn config-

urations of SDN Kloti et al. [2013], Leng et al. [2015], Shin and Gu [2013], Sonchack
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et al. [2016b]. In these attacks, an attacker specially crafts different kinds of timing

probes (e.g. ARP requests for MAC layer and low TTL packets for IP layer) and

sends a stream of probes (test stream) and some baseline packets with known effects

(e.g. should be reported to the controller before forwarding) to the OpenFlow net-

work. By comparing the responding times of the test stream and baseline packets,

the attacker can learn whether the network runs OpenFlow Shin and Gu [2013], the

size of switches’ flow table Leng et al. [2015], whether links contain aggregate flows

Kloti et al. [2013], host communication records Sonchack et al. [2016b], network ac-

cess control configurations Sonchack et al. [2016b], and network monitoring policies

Sonchack et al. [2016b]. For the mitigation of Side-channel attacks, Sonchack et al.

[2016b] introduces a timeout proxy on the data plane as an extension to normalize

control plane delay. When the control plane fails to respond within a fixed period of

time, the timeout proxy will send a default forwarding instruction to the request. The

timeout proxy reduces the responding time of some long delay packets to avoid side-

channel attacks, but can also reduce the network programmability (by changing the

processing strategies of these long delay packets into a proactive approach). Besides,

the predefined responding time should be adjusted dynamically with the workload of

the control plane.

2.2 SDN-supported Security

SDN-supported security uses new techniques in SDN to solve traditional network

security challenges. By leveraging the high programmability of SDN, FlowGuard

Hu et al. [2014] introduces a comprehensive framework to facilitate not only accu-

rate detection but also an effective resolution of firewall policy violations in dynamic
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OpenFlow-based networks. FlowGuard uses violation detection approach to examine

flow path spaces against the authorization space specified in the firewall to identify

illegal packets. It can also track flow paths in the whole network and identify rule

dependencies in flow tables and firewall policies. To enable a dynamic violation de-

tection, FlowGuard adopts violation resolution mechanism with different resolution

strategies (i.e. flow rejecting, dependency breaking, update rejecting, flow removing,

and packet blocking).

DDoS detection methods is another application of SDN. Xu et al. introduce new

DDoS detection methods based on the flow monitoring capability Xu and Liu [2016].

It monitors the flows between two domains, and can “zoom in” the monitoring spaces

to more precisely locate possible victims and attackers when an abnormal pattern is

detected. Furthermore, to save the space of flow table, it can also “zoom out” to

monitor larger domains by aggregating different flow rules. This approach balances

the monitoring coverage and granularity of SDN.

Besides network security, SDN also brings new insights into device security. PBS

is a new security solution to enable fine-grained, application-level network security

programmability for the purpose of network management and policy enforcement on

mobile devices Hong et al. [2016]. PBS abstracts mobile applications and network

interfaces into different devices, and adopts a soft switch which performs access con-

trol for applications’ requests. Besides, PBS introduce a high-level language which

encapsulates OpenFlow messages to provides network-wide, context-aware, and app-

specific policy enforcement at run-time.
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2.3 Malware Traffic Detection

Since most malware needs network connections to conduct malicious activities, the

detection of these malicious traffic attracts much attention of recent studies. Perdisci

et.al. present a network-level behavioral malware clustering system by analyzing the

structural similarities among malicious HTTP traffic traces generated by HTTP-based

malware Perdisci et al. [2010]. It defines similarity metrics in HTTP traffic traces and

introduces a clustering system that extracts network signatures with the HTTP traffic

generated by malware samples in the same cluster. To detect HTTP requests from

malware, it uses an intrusion detection system with such network signatures at the

edge of a network.

Jackstraws identifies command and control connections from bot traffic Jacob

et al. [2011]. It models the communication of botnet with behavior graphs (i.e. using

system calls as vertex and data flows as edges). Besides, the signature generation

systems in Jackstraws can only use C&C traffic as training data, which reduces irrel-

evant connections and make attackers much more difficult to affect the identification

with noise.

Another approach provides an Internet worm monitoring system based “detecting

the trend” with Kalman filter estimation Zou et al. [2005]. Based on the fact that a

worm propagates exponentially with a constant, positive exponential rate, the “trend

detection” system alerts when the network traffic has an exponential growth trend.

Furthermore, it models the worm’s vulnerable population size and predicts the size

when the worm is still at the early propagation stage.



Chapter 3

Detection and Mitigation of DoS
Attacks in SDN

Data-to-control plane saturation attacks is the most well-known SDN-aimed DoS

attacks Shin et al. [2013b]. To detect and mitigate data-to-control plane saturation

attacks, this chapter presents FloodDefender, an efficient and protocol-independent

defense framework for SDN/OpenFlow networks. FloodDefender stands between the

controller platform and other controller apps, and conforms to the OpenFlow policy

without additional devices. The detection module in FloodDefender utilizes new

frequency features to precisely identify SDN-aimed DoS attacks. The mitigation

module uses three new techniques to efficiently mitigate attack traffic: table-miss

engineering to prevent the communication bandwidth from being exhausted; packet

filter to filter out attack traffic and save computational resources of the control plane;

and flow rule management to eliminate most of useless flow entries in the switch flow

table. Our evaluation on a prototype implementation of FloodDefender shows that

the defense framework can precisely identify and efficiently mitigate the SDN-aimed

DoS attacks, incurring less than 0.5% CPU computation to handle attack traffic, only

18ms packet delay and 5% packet loss rate under attacks.

19
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3.1 Overview

Software-defined networking (SDN) has speeded up network innovations for the

ossified network infrastructure. By separating the traditional network architecture in-

to control and data planes, SDN introduces a more flexible way to manage and control

network traffic with high programmability McKeown et al. [2008]. This logical cen-

tralized control plane dictates the whole network behavior through a “southbound”

protocol. Among all implementations of SDN (the “southbound” protocol), the Open-

Flow ? framework is the leading embodiment of SDN concept. The control plane

installs flow rules on the data plane via OpenFlow protocol. The data plane then

follows these flow rules to handle network flows. When a packet that does not match

any existing flow rules (table-miss packet) comes, the data plane encapsulates this

packet into a packet in message and reports it to the control plane for instructions.

The communication between the control and data planes causes considerable over-

head, and could become a bottleneck of the whole network. Today’s commercial

OpenFlow switches xsw only support cable connection to the controller. The prac-

tical connection bandwidth was tested to be less than 10Mbps Shin et al. [2013b],

Wang et al. [2015]. This costly communication can be leveraged by an attacker to

launch SDN-aimed DoS attacks (e.g., data-to-control plane saturation attacks) Shin

et al. [2013b], ?. Specifically, the attacker randomly forges some or all fields of a pack-

et, making it hard to match with any existing flow rules on a victim switch. Then,

the attacker sends a large amount of these table-miss packets to flood the network

by SDN-aimed DoS attacks. These table-miss packets will trigger massive packet in

messages from the victim switch to the controller, and consume their communication

bandwidth, CPU computation, and memory in both control and data planes.
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We face the following three challenges to protect OpenFlow networks against the

SDN-aimed DoS attacks:

• How to precisely detect SDN-aimed attacks and timely notify the defense system

when attacks occur?

• How to efficiently handle table-miss packets while maintaining short delay, low

loss rate and forwarding operation for normal packets?

• How to precisely distinguish attack traffic from benign traffic without straining

computational resources?

These three challenges are not easy to solve. The attack detection requires a

low false-positive rate to respond timely to attacks. However, detection accuracy and

timely response are two factors that conflict with each other. For the second challenge

to handle table-miss packets, we cannot simply drop all table-miss packets, since the

new flows from benign hosts will be dropped as well. We should figure out a way

to let the control plane receive packet in messages (triggered by table-miss packets)

without consuming much bandwidth. Because some table-miss packets are generated

by benign hosts, we have the third challenge to precisely identify attack traffic and

filter them out accordingly. To deal with these three challenges, several solutions

have been proposed, such as AvantGuard Shin et al. [2013b] and FloodGuard Wang

et al. [2015]. However, both approaches focus on the mitigation of the SDN-aimed

DoS attacks. The attack detection, which is equally important to mitigation, is not

deeply discussed. Besides, additional devices are used in both approaches, which are

not compatible to the standard OpenFlow protocol.
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In this chapter, we study the SDN-aimed DoS attacks, and propose FloodDe-

fender, a scalable and protocol-independent defense system in OpenFlow networks.

FloodDefender stands between the controller platform and other controller apps, and

is protocol-independent against all kinds of attack traffic (e.g. TCP-based attacks or

UDP-based attacks). All designs in FloodDefender conform to the OpenFlow policy

and need no additional devices.

FloodDefender has two modules: detection module and mitigation module. The

detection module utilizes new frequency features for attack detection. Frequency

features can significantly reduce false-alerts in previous detection solutions. The mit-

igation module contains three components: table-miss engineering, packet filter, and

flow rule management. The table-miss engineering component detours table-miss

packets to neighbor switches with wildcard flow rules to protect the communica-

tion link between the control and data planes from being jammed; the packet filter

component filters out attack packets from the received packet in messages to save

computational resources of the controller; and the flow rule management component

constructs a robust flow table in the data plane by separating the flow table into “flow

table region” and “cache region” to save the Ternary Content Addressable Memory

(TCAM) of OpenFlow switches.

This chapter also theoretically analyzes the impact of neighbor switches in the

table-miss engineering by using an average queueing delay model. The analytical

result shows that FloodDefender can keep the average delay of communication links

within 0.3s by evenly distributing attack traffic to 3 neighbor switches.

Finally, we implement a prototype of FloodDefender and evaluate its performance
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in both software and hardware environments. Experimental results show that Flood-

Defender can reduce the false-alerts and ensure the accuracy in attack detection, save

more than 70% and 20% bandwidth in the software and hardware tests respectively,

and consume only 0.5% CPU computation to handle attack traffic. Meanwhile, it

precisely filters out more than 96% attack traffic, and incurs only 18ms delay and 5%

packet loss rate for benign traffic under attacks.

The rest of the chapter is organized as follows. Section 3.2 introduces some back-

ground knowledge and the security problem of SDN-aimed DoS attacks in OpenFlow

networks. In Section 3.3, we present the overview of FloodDefender system. Sec-

tion 3.4 and Section 3.5 show the detailed designs in both detection module and

mitigation module respectively. In Section 3.6, we theoretically analyze how many

neighbor switches should be involved in the table-miss engineering. The implementa-

tion and experimental evaluation of FloodDefender are shown in Section 3.7. Finally,

we conclude this chapter in Section 3.8.

3.2 Problem Formulation

3.2.1 SDN Workflow

In OpenFlow networks, the controller in the control plane dictates the behaviors

of the whole network by installing flow rules on the data plane via two approaches:

proactive flow installation and reactive flow installation. In the proactive approach,

the control plane pre-installs flow rules on the data plane to process network traffic.

The data plane then follows these rules to handle incoming packets. In the reactive

approach, when an OpenFlow switch receives several packets, it will queue them in

an input queue, and follow the following four steps to process each packet in a FIFO
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Fig. 3.1: SDN-aimed DoS attacks in OpenFlow networks.

(first input first output) manner.

3.2.2 Adversary Model

The reactive flow installation approach of OpenFlow networks could be leveraged

by an adversary. An attacker first randomly forges some or all fields of each packet,

making it hard to match any existing flow rules in a switch. Then, the attacker

sends massive table-miss traffic mixed with normal traffic to the OpenFlow switch

and launches SDN-aimed DoS attacks. To process each table-miss packet, the victim

switch has to buffer it and send out packet in message with its header, as depicted

in Figure 3.1. Even worse, the OpenFlow Specification v1.4 ? requires that the

packet in message should contain the whole packet when the memory of a switch is

full. This feature could be further exploited by the attacker to flood the network with

less resources.

The DoS attacks can jam the bandwidth between the controller and a switch

by generating massive table-miss packets, overload a switch’s flow table by installing
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Fig. 3.2: Bandwidth and computational resource consumption under SDN-aimed DoS
attacks. The data are collected from our experiments.

useless rules, and consume controller’s computational resources when processing pack-

et in messages, as depicted in Figure 3.2. The result is much worse when the memory

of the switch is full. For benign traffic, the throughput of both packet forwarding

and packet processing will be significantly degraded. For new flows (benign table-

miss traffic), since the switch-controller bandwidth is jammed and the controller is

overwhelmed, the switch can hardly receive the packet out message to handle the

table-miss traffic (these packets can hardly be processed). Besides, for matched pack-

ets (matching with existing rules in the flow table), since they are queued in the

switch due to the attack traffic, they have to wait for a long time before the switch

process all attacking packets in front of them1.

3.2.3 Problem and Challenge

The problem studied in this chapter is how to detect and mitigate the SDN-aimed

DoS attacks in OpenFlow networks. The attack detection should be fast without

1Processing table-miss packets also consumes a longer time than forwarding matched packets,
since processing table-miss packets requires encapsulation and output (to the controller) operations,
while forwarding matched packets only requires output (to an output port(s)) operation.
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causing many false-alerts. To protect the communication bandwidth between the con-

troller and victim switch, a good solution should be able to handle table-miss packets

efficiently and maintain the functionality of forwarding benign traffic. Meanwhile, it

should distinguish attack traffic from benign traffic both efficiently and precisely to

save computational resources of the control plane.

In the design of a defense system, we also face two challenges. First, we should

be able to handle all kinds of attack traffic (e.g. TCP-based attacks and UDP-based

attacks). Second, the defense system should be scalable and conform to the OpenFlow

policy without employing additional devices.

3.3 System Overview

We design a system named FloodDefender, which can precisely identify SDN-

aimed attacks, as well as save resources like bandwidth, computation and flow table

space when SDN-aimed DoS attacks occur. We describe the design of the FloodDe-

fender system, including its architecture and workflow below.

3.3.1 FloodDefender Architecture

FloodDefender stands between the controller platform and other controller apps,

as depicted in Figure 3.3. It consists of two functional modules: detection module

and mitigation module. The mitigation module is composed of three components

to protect OpenFlow networks against SDN-aimed attacks: table-miss engineering,

packet filter, and flow rule management.

FloodDefender works in three states: alert, active, and block, as depicted in Figure

3.4. When no attacks are detected, FloodDefender remains in the alert state to
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Fig. 3.3: The architecture of FloodDefender. Apps indicate the OpenFlow control
apps on the control plane for network traffic management (e.g. l2 forwarding and
firewall).

monitor network status for attack detection, and delivers the packet in messages,

action messages, and flow rules between the controller platform and controller apps.

When attacks are detected, FloodDefender switches to the active state to mitigate

attacks. It filters packet in messages and forwards them to control apps through the

packet filter component. It also manages the flow rule installation through the flow

rule management component. In some extreme cases, the network is under severe

attacks2, FloodDefender comes to the block state and blocks all table-miss packets

from the victim switch’s input port which has a high table-miss rate. When attacks

are detected to be terminated, FloodDefender switches back to the alert state again.

2The attack traffic could exhaust both the victim switch bandwidth and its neighbor switch
bandwidth.
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Fig. 3.4: States of FloodDefender

3.3.2 FloodDefender Workflow

Initially, the detection module monitors the network status and the mitigation

module remains idle. When the detection module detects SDN-aimed DoS attacks,

the mitigation module is activated for attack mitigation in the following six steps:

1. The detection module identifies victim’s neighbor switches that directly connect

to the controller. The flow rule management component logically separates the

flow table into flow table region and cache region;

2. The table-miss engineering component installs protecting rules on the victim

switch to detour some table-miss packets to neighbor switches. When neigh-

bor switches receive the detoured table-miss packets, they will send packet in

messages to the controller;

3. When the controller receives packet in messages, the packet filter stores them

and roughly filters out attack traffic from these messages. The filtered traffic

will then be delivered to the control apps;
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4. The control apps process these packets and then send out action messages and

flow rules. Action messages will be sent to the switch that reports packet in

messages. However, flow rules will be intercepted by the flow rule management

component;

5. The flow rule management component decides the monitoring rules based on

intercepted processing rules. Intercepted processing rules will be installed on

the cache region of the victim switch. Monitoring rules will be installed on the

flow table region instead;

6. The victim switch can move a rule from its cache region to the flow table region

if the rule is regarded as legal by the packet filter component. Cache region will

then be flushed to save the space of flow table.

3.4 Detection Module

The detection module continues monitoring the network status for attack detec-

tion. When attacks occur, it triggers the mitigation module to work and FloodDefend-

er enters the active state. The detection module also provides important information

to dynamically adjust protecting rules for evenly splitting table-miss traffic to neigh-

bor switches. When attacks are detected to be over, mitigation module stops working

and FloodDefender goes back to the alert state.

Though FloodGuard Wang et al. [2015] utilizes packet in message rate, buffer

memory, controller memory, and CPU to identify potential attacks, its detection

may cause false alerts. For instance, when an OpenFlow network adopts an reactive

approach, all switch flow tables are empty initially. Both packet in message rate and
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utilization of the infrastructure (buffer memory, controller memory, and CPU) are

high and false alerts may be triggered. This is more serious for large networks. Even

though FloodGuard can automatically switch to the idle state (similar to the alert

state of FloodDefender), false alerts can downgrade the network performance.

To precisely identify attack traffic, we introduce another feature: flow entry fre-

quency. The flow entry frequency describes the number of packets of each flow re-

ceived by the switch. For attack traffic, the frequency will be very low since the

attackers try to generate as much attack traffic as possible. The frequency of normal

flows will be much higher. Specifically, we separate flow entries into three part-

s: low-frequency flows (the frequency is lower than 10, first 4 flows in Figure 3.5),

mid-frequency flows (the frequency is between 10 and 100, 5th flow in Figure 3.5),

high-frequency flows (the frequency is higher than 100, 6th flow in Figure 3.5). For

each part, we calculate the number of flows, and the average frequency of these flows

(Total number of packets of flows in this part
Total number of flow entries in this part

).

The frequency of matched flows can be easily collected from the packet count field

of the flow rules. While for new flows (table-miss packets), their frequency cannot be

obtained directly. Here we use a heuristic method to calculate the new flow frequency.

Specifically, each table-miss packet of a new flow will be regarded as a 1-frequency
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flow and grouped based on the destination IP and MAC. Once the corresponding

flow rule is installed, all 1-frequency records in this group will be removed, and use

the frequency of this flow to calculate frequency features. Otherwise, when the rule

is not installed, frequency features are calculated based on the 1-frequency records.

For instance, in a layer 2 forwarding OpenFlow network with an existing host A

and a new host B (B just joins in). When A sends several packets to B (table-miss

packets since “to-B” rule is not installed), each A-to-B packet will be regarded as

a 1-frequent flow first and grouped in “to-B” group (“to-B” group just counts the

number of 1-frequency records). Then, after “to-B” rule is installed (the installation

can be triggered by table-miss packets generated by B), records in “to-B” group will

be removed. The frequency of the “to-B” flow will be collected from the packet count

field. When A sends packets to X or forges packets from Y to X (X and Y are non-

existing hosts), each packet will be regarded as a 1-frequent flow to calculate the

frequency features, since the “to-X” rule will not be installed3.

The values of frequency feature differ a lot under attacks and in network star-

tups scenarios, especially for low-frequency flows. When networks first start up, the

number of low-frequency flows increases slowly, and will drop down quickly due to

the increment of frequency (most low-frequency flows become mid-frequency or high-

frequency flows). Meanwhile, the average frequency of low-frequency flows will quick-

ly increase to the upper bound (10 in FloodDefender). On the other hand, when

networks suffer from SDN-aimed DoS attacks, the number of low-frequency flows

increases dramatically till the flow table of the victim switch is full. The average

3A benign host may keep sending packets to a non-existing host (e.g. a client may try to keep
connecting to a server until the server is online). which can result in low-frequency rate in our
mechanism. We regard such traffic legal as long as the rate is acceptable. To reduce the false-alerts
in such scenarios, we combine frequency features as well as other features for detection.
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frequency of low-frequency flows will remain in a very low value (1 in our experimen-

t). By employing the frequency features, the two scenarios can be easily identified.

Based on frequency features and other mentioned features (packet in message rate,

buffer memory, controller memory, and CPU), the attack detection module adopts a

certain anomaly threshold to monitor the network status and trigger state transitions

of FloodDefender.

Besides attack detection, the detection module also provides important informa-

tion to the table-miss engineering component in mitigation module when FloodDe-

fender is in active state. This information will help the table-miss engineering compo-

nent dynamically adjusts protecting rules to evenly split table-miss traffic to neighbor

switches. When the detection module finds that some links between the controller

and switches (including both victim switch and neighbor switches) are jammed, or

some links have more available bandwidth, the detection module send the information

of these switches to allow the table-miss engineering component offloads more/less

table-miss packets to them by adjusting protecting rules.

3.5 Mitigation Module

FloodDefender utilizes three components in the mitigation module to protect

OpenFlow networks against SDN-aimed DoS attacks: table-miss engineering, packet

filter, and flow rule management.
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3.5.1 Table-miss Engineering Component

The table-miss engineering component works when the SDN-aimed DoS attacks

are detected. In SDN-aimed DoS attacks, massive table-miss packets will be trig-

gered to exhaust the available bandwidth between the controller and a victim switch.

Therefore, the table-miss engineering component offloads some table-miss packets to

neighbor switches to save the bandwidth of the victim switch. Specifically, the table-

miss engineering component issues protecting rules to forward some table-miss traffic

to neighbor switches.

Protecting rules are wildcard flow entries with the lowest priority to split the

table-miss traffic into several parts to different neighbor switches. The match fields

of protecting rules are adjusted dynamically by a traffic balancer to ensure the load

balance of each neighbor switch. When neighbor switches are flooded by attack traffic,

table-miss engineering will use more protecting rules to involve more neighbor switch-

es. The maximum number of protecting rules depends on the number of neighbor

switches that directly connect to the controller, which is obtained from the network

topology at the first place. Protecting rules will not use much TCAM space in an

OpenFlow switch. Normally, the bandwidth can be saved with less than 5 protecting

rules (5 neighbor switches).

When two victims offload their traffic to one neighbor switch, additional infor-

mation should be added to identify each victim before the neighbor switch sends

packet in to the controller. Hence, in our design we only consider that each neighbor

switch is only responsible for one victim. Each victim switch maintains a different

set of neighbor switches.
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There are three challenges in the design of protecting rules: INPORT loss, de-

toured traffic identification, and packet bouncing problems.

INPORT loss problem: In OpenFlow specification, INPORT information indi-

cates the controller’s input port, and is contained in a packet in message. Therefore,

the packet in message generated by a neighbor switch will replace the original IN-

PORT information with its own. In the design of protecting rules, we should ensure

the original INPORT information not to be lost. To solve this problem, we utilize

some reserved fields in packet header (e.g. ToS field) to preserve the original INPORT

information and denote detoured traffic. Specifically, we encode the ToS field with the

INPORT information, and set “modify ToS field” in the protecting rules, as depicted

in Figure 3.6.

Detoured traffic identification problem: After receiving and processing the

detoured packet in messages, the controller will send actions to neighbor switches

and flow rules to victim switch respectively, which is different from the procedures in
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processing regular packet in messages (sending the actions and flow rules to the same

switch). Therefore, the controller should be able to identify these detoured packet in

messages. Our solution is to identify these detoured packet in messages based on the

encoded reserved fields, and associate detoured messages with the datapath of the

victim switch to install flow rules. For instance, suppose we use 2-bit reserved ToS

field, and the original value is “00”. After encoding, this value becomes either “01”,

“10”, or “11”. Therefore, the controller regard “00”-messages as regular messages,

and other messages as detoured messages. Clearly, we can identify at most 2n − 1

different INPORT values with n bits in the reserved field.

Packet bouncing problem: Since the neighbor switch may have some flow rules

to process the detoured table-miss traffic, some table-miss packet could bounce be-

tween the neighbor and victim switches. For instance, the victim switch in Figure

3.7 regards packet A as a table-miss, and forwards it to S1 based on the protecting

rule. S1 accidentally has a flow rule to process packet A, and the action is “to Victim

Switch”. Therefore, packet A will bounce between the two switches. To avoid this
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problem, we only apply the protecting rules on non-detoured traffic. Therefore, these

packets will bounce only once between the neighbor and victim switches. Specifi-

cally, the table-miss engineering adds “ToS is not encoded” into the match field of

the protecting rule, as depicted in Figure 3.6. When the victim switch receives the

bounced-back packets, it delivers them to the controller since these packets do not

match the protecting rules.

Based on the descriptions above, we present an example of generating protecting

rules. Suppose the victim switch has two neighbor switches (S1 and S2), the protect-

ing rules split table-miss packets based on the lowest 2 bits of source MAC address

(MAC lowest 2 bits = 00, to S1; MAC lowest 2 bits = 01, to S2), and we use the

reserved 2 bits in IP DSCP (6 bits in ToS field) to encode INPORT information, the

protecting rules can be created as follows:

# Install protecting rule (to S1)

actions = [dp.ofproto_parser.OFPActionSetField(ip_dscp=entos), dp.ofproto_parser.

OFPActionOutput (1)]

match = datapath.ofproto_parser.OFPMatch(

eth_dst =(’00:00:00:00:00:00 ’, ’00:00:00:00:00:03 ’),

ip_dscp =(’00’,’C0’))

inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS , actions)]

mod = parser.OFPFlowMod(datapath=victim_datapath , priority=0, match=match ,

instructions=inst)

# Install protecting rule (to S2)

actions = [dp.ofproto_parser.OFPActionSetField(ip_dscp=entos), dp.ofproto_parser.

OFPActionOutput (2)]

match = datapath.ofproto_parser.OFPMatch(

eth_dst =(’00:00:00:00:00:01 ’, ’00:00:00:00:00:03 ’),

ip_dscp =(’00’,’C0’))

inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS , actions)]

mod = parser.OFPFlowMod(datapath=victim_datapath , priority=0, match=match ,

instructions=inst)

3.5.2 Packet Filter Component

Packet filter component can identify attack traffic and filter them out to save the

computational resources of the control plane. It works as a low-level app between
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the controller and other apps to preprocess the packet in messages. It contains two

components, packet in buffer to store packet in messages, and two-phase filter to

identify attack traffic.

packet in buffer

packet in buffer classifies detoured packet in messages based on protocols, and

uses a B+ tree to efficiently store and index the packet in messages of each protocol.

The key of each node is the flow entry, and value of a leaf node is the packet in

message and frequency of this flow. For transport layer protocols (TCP and UDP),

the key is the combination of source and destination MAC, IP and port; for network

layer protocols (e.g. ICMP), the key is the combination of source and destination

MAC and IP addresses; and for other protocols (e.g. ARP and RARP), the key is

the combination of source and destination MAC addresses. Though SDN apps could

use different fields in packet header to define a flow, the most significant ones are

those mentioned source and destination fields. All B+ trees are connected by a root

pointer R, as depicted in Figure 3.8.

packet in buffer stores packet in messages in a time period, and flushes all B+
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trees after the two-phase filtering to save space. We allow users to set the time of

collecting packet in messages based on their demands. Generally speaking, a longer

period will save more computational resources, but will cause longer delay for new

benign flows, and will cost more memory of the controller. We also give a suggested

time of 5 seconds.

Two-phase filter

Two-phase filter applies two filtering functions to efficiently and precisely iden-

tify attack traffic. It first roughly filters out attack traffic based on the frequency

in packet in buffer, and then precisely filters them based on the monitored traffic

information, as depicted in Figure 3.9.

The frequency of new flows is the most significant feature of SDN-aimed DoS at-

tacks. Since the packets belonging to existing flows will not trigger packet in messages

in most cases, packets of the same flow will downgrade the performance of SDN-aimed

DoS attacks. Therefore, the attacker tries to generate massive new flows to flood the

network, and the frequency of attack flows will be very low.

At the first phase, frequency-based filter utilizes the frequency feature to efficiently
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filter out attack traffic. It will search the leaf nodes of each protocol’s tree, and get

the flow records whose frequency is higher than a threshold. This threshold changes

dynamically, and is initially set to 1. A bigger threshold will filter out more messages,

but may sacrifice some normal traffic. The threshold will be updated based on the

result of traffic-based filter. To reduce the false-positives, we adopt a smaller threshold

which only filters out a portion of attack traffic (the threshold ensures the recall rate

bigger than 60%, and is normally set to 1 or 2 in our experiment), the accuracy will

be improved by the traffic-based filtering. For instance, in Figure 3.9, the packet filter

component searches tcp 1 to tcp 8 in packet in buffer with threshold = 1, and gets

tcp 5 and tcp 6. These two messages will be forwarded to apps to generate processing

rules. Other TCP flows will be regarded as attack traffic.

At the second phase, traffic-based filter needs to precisely identify normal flows

from the filtered flows. It monitors the traffic of each flow with processing rules

and extracts features for classification. To precisely identify attack packets even

considering that attackers are smart enough to resend these packets to increase the

frequency of each flow, we use traffic rate asymmetry features in the classification.

Asymmetry features can be extracted by monitoring the traffic of “reverse flows”

(response packets of one flow). For example, in Figure 3.9, a layer 2 learning switch

has a processing flow entry “eth dst=00:00:00:00:00:01, action=outport:01” for tcp 5,

that forwards packets from port 01 when its destination MAC is 00:00:00:00:00:01.

The reverse flow is the packets with source MAC 00:00:00:00:00:01 and input port

01. If this flow entry is installed maliciously by an attacker with forged source MAC

address, there will not be much reverse traffic for tcp 5, since no one can establish a

connection with 00:00:00:00:00:01 on port 01. By adopting the asymmetry features
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(traff 5m), the traffic-based filter can precisely classify tcp 5 as attack traffic. We use

monitoring flow rules to monitor reverse traffic. In this case, the match field of the

monitoring rule is “eth src=00:00:00:00:00:01 && in port=01”.

Though asymmetric features can be applied to most flows, they can also lead to

incorrect results in some cases, and cause the asymmetric feature problem:

Asymmetric feature problem: Asymmetric features can lead to incorrect clas-

sification results for some asymmetric flows, such as flow entries with the “drop” ac-

tion or multi-path routing flows, since the reverse traffic of these flows can be hardly

observed on the victim switch. For instance, a firewall app blocks all packets with

source IP 0.0.0.2 and destination IP 0.0.0.1 (“ipv4 src=0.0.0.2 && ipv4 dst=0.0.0.1,

action=[]”). The monitoring flow rule of the blocked packets is “ipv4 src=0.0.0.1 &&

ipv4 dst=0.0.0.2”. Since the connection is not established, there will not be reverse

traffic for this flow. Using asymmetric features for these asymmetric flow rules could

lead to incorrect classification. To solve this problem, we will not use asymmetric

features for the classification of these asymmetric flows.

Specifically, we use the following features for traffic-based filtering classification:

1. Packet Count (P ): describe the total number of packets of one flow entry in an

interval;

2. Byte Count (B): describe the total number of bytes of one flow entry in an

interval;

3. Asymmetric Packet Count (AP ): describe the total number of packets of one

reverse flow entry in an interval;

4. Asymmetric Byte Count (AB): describe the total number of bytes of one reverse
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flow entry in an interval.

After extracting the features above, we employ Support Vector Machine (SVM)

Vapnik and Vapnik [1998], a supervised learning model as our classifier. This classi-

fication algorithm is robust even with noisy training data. The detailed implementa-

tion can be referred to Vapnik and Vapnik [1998], and we skip this part due to space

constraints.

We summarize frequency-based and traffic-based filtering algorithms in Algorithm

1 and Algorithm 2:

Algorithm 1: Frequency-based filtering (R, freq)

Input: R: set of leaf nodes; freq: frequency threshold
Output: F : set of filtered flows
1: F ← ∅
2: for each p ∈ R do
3: if p.freq > freq then
4: F.add(p)
5: end if
6: end for
7: return F

3.5.3 Flow Table Management Component

The flow table management component installs monitoring rules on the victim

switch’s flow table, and manages the flow rule installing on the victim switch. Mon-

itoring rules are generated to monitor the traffic of “reverse flows” to extract asym-

metric features. Since monitoring rules and useless rules (i.e. flow rules triggered by

attack traffic) cost space in the flow table, the flow table management component

enables a dynamic way to manage flow rules.
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Algorithm 2: Traffic-based filtering (s, F )

Input: s: switch; F : set of filtered flows
Output: freq: frequency threshold
1: N ← ∅, t ← ∅, freq = 1, rst = NORMAL
2: P = 0, B = 0, AP = 0, AB = 0
3: ASet = {DROP, MULTIPATH, ...} // asymmetric flow set
4: Forward To Apps(F ) // process messages
5: t = Get Monitored Traffic(s)
6: for each p ∈ F do
7: if p �∈ ASet then
8: (P,B,AP,AB)= Extract Feature(t.f low traff(p))
9: rst = Classifier(P,B,AP,AB)
10: else
11: (P,B) = Extract Feature(t.f low traff(p))
12: rst = Classifier(P,B)
13: end if
14: if rst = NORMAL then
15: N.add(p)
16: end if
17: P = 0, B = 0, AP = 0, AB = 0
18: end for
19: s.f lush cache region()
20: s.del monitor flow()
21: s.add flow(N)
22: freq = Calcuate New Frequency(N)
23: return freq

Monitoring rules are generated based on the logic of processing rules, as we dis-

cussed in Section III-D. They monitor reverse traffic and help the packet filter com-

ponent to generate asymmetric features. Each monitoring rule is assigned with an

expire time in its timeout field to save the space of flow table (the expire time should

be the same with the time of collecting packet in messages in the packet in buffer,

which is set to 5 seconds initially).

The management of flow table stems from the multiple flow tables in OpenFlow
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Specification v1.3 of1. Specifically, the flow table management uses the first k tables

(table 0 to k − 1) and the last table (table n) as “flow table region”, and other

tables (table k to n− 1) as “cache region”. Notice that OpenFlow Specification v1.3

indicates that a flow entry can only direct a packet to a flow table with a bigger flow

table number. Therefore, we install processing and monitoring flow rules (flow entries

to process normal traffic and monitor reverse traffic) in the first k tables of the flow

table region, intercepted processing rules in the cache region (newly generated flow

rules to process table-miss traffic), and protecting rules in the last table of the flow

table region, as depicted in Figure 3.10. The larger size of cache region (larger k) can

improve the efficiency of traffic-based filtering, but will use more space of the flow

table. The flow table management component sets the value of k based on the free

space of the flow table and adjusts it dynamically. Processing flow rules in the cache

region and will be flushed after traffic-based filtering to save the space of the flow

table.

The flow table management component ensures the timely responses of old benign
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flows when attacks occur. Since a packet can only be directed to a flow table with a

bigger flow table number, old flows will not index cache region, and will be processed

efficiently. To activate protecting rules in the last flow table, the default table-miss

instructions of all but the last flow table should be set to “Goto Table n”.

Though OpenFlow Specification v1.3 ? encourages multiple flow tables, an Open-

Flow switch with a single flow table is also allowed. In this scenario, the flow table

will not be separated into two regions, and all rules are mixed together in one flow ta-

ble. Though the efficiency of indexing is affected, flow table management component

can still protect the flow table by removing attack flow entries. Processing flow rules

which are regarded as normal flows will be kept in the flow table without flushing.

3.6 Neighbor Switch Analysis

The number of neighbor switches will greatly affect the performance of FloodDe-

fender. We first use an average queueing delay model to analyze how to distribute

attack traffic, and then analyze how many neighbor switches should be involved in

the table-miss engineering.

3.6.1 Traffic Distribution

We consider a set of switches S = {s1, s2, ..., sn} involved in the table-miss engi-

neering, and a set of attack traffic rates A = {a1, a2, ..., an} distributed to each switch

(
∑n

i=1 ai = a). For each si, let asi be its maximum ability to process attack messages

without buffering them. Let Lh be the payload of a header information, and Lp be

the average payload of an attack packet. For each link between si and the controller,

let Ri be its maximum bandwidth, and R̃i be the allocated bandwidth to process
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other packets.

We use average queueing delay (Di) to evaluate the performance on each link. It is

not easy to get the formula of Di, since the calculation is related to the distribution of

incoming packets, which is determined by the attacker. Therefore, we use an empirical

formula ? to roughly describe the relationship between Di and the utilization of this

link (ρi):

Di =
1

2μ
× ρi

1− ρi
. (3.1)

In Equation (3.1), μ is a coefficient of delay, and ρi describes link utilization

(ρi =
Total Payload

Transmission Ability
, and 0 � ρi < 1). The calculation of ρi could be separated into

two scenarios: when the incoming packets rate is within the processing ability of si

(ai � asi), si only sends the header of each attack packet to the controller; otherwise,

the buffer of si will be overloaded eventually, and si needs to send the whole packet.

Therefore, ρi can be calculated as follows:

ρi =

⎧⎨
⎩

˜Ri+ai×Lh

Ri
, ai � asi

˜Ri+asi×Lh+(ai−asi )×Lp

Ri
, else

. (3.2)

Figure 3.11-a shows that the average queueing delay goes up quickly when the dis-

tributed attack rate increases. The configuration adopts 20PPS (packet per second)

asi , 750bit Lh, 5Kb Lp, 2Mbps Ri, and 0 R̃ when μ = 1. In this scenario, we could

maintain the average queueing delay within 0.3s with less than 168.5PPS distributed

attack rate.

We further analyze the scenario with multiple switches. The traffic balancer will

distribute attack traffic to each switch. The optimal distributing strategy can be

obtained by minimizing the average queueing delays of all packets (D) based on
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Fig. 3.11: Average queueing delay of switches. When n = 1 (0 neighbor switch), the
victim switch is overloaded, and ρ > 1. The average queueing delay will be infinite

Equation (3.2):

D =

∑n
i=1(Di × ai)

a
=

1

2μa
×

n∑
i=1

ρi
1− ρi

ai,

s.t.
n∑

i=1

ai = a.

(3.3)

In Equation (3.3), ρi and ai could be roughly regard as a linear relationship

(ρi = uai+v), since the incoming packets rate is higher than the processing ability of

si (ai > asi) for most cases under SDN-aimed DoS attacks. The sum of ρi (normalized

attack traffic) could also be regarded as a constant C when n is given (
∑n

i=1 ρi =

ua + vn = C). Suppose each switch has the same processing ability (asi = as),

maximum bandwidth (Ri = R), and allocated bandwidth (R̃i = R̃), Equation (3.3)

could be further simplified as follows:

D =
1

2μa
×

n∑
i=1

ρi × ρi−v
u

1− ρi
= k ×

n∑
i=1

ρi(ρi + v)

1− ρi
,

s.t.
n∑

i=1

ρi = C.

(3.4)
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In Equation (3.4), the positive real number k represents the coefficient of the sys-

tem (k = 1
2μau

). We introduce the Lagrange multiplier λ, and the objective function of

Equation (3.4) can be constructed as a Lagrange function L(ρ, λ) (ρ = (ρ1, ρ2, ..., ρn)).

L(ρ, λ) = k ×
n∑

i=1

ρi(ρi + v)

1− ρi
+ λ(

n∑
i=1

ρi − C). (3.5)

It follows from the saddle point condition that the partial derivatives of L(ρ, λ)
with respect to the primal variables (ρ, λ) have to vanish for optimality.

∂ρiL(ρ, λ) = k
−ρ2i + 2ρi + v

(1− ρi)2
+ λ = 0 (3.6)

n∑
i=1

ρi = C. (3.7)

The minimized L(ρ, λ) will be obtained when:

ρ1 = ρ2 = ... = ρn = C/n. (3.8)

Therefore, the best strategy to minimize D for the whole system is to evenly

distribute the attack traffic (ρ1 = ρ2 = ... = ρn = C/n = ρ).

3.6.2 Number of Neighbor Switches

Suppose the traffic balancer could precisely follow the best strategy and distribute

attack traffic to each switch evenly. In this scenario, similar to Equation (3.2), the

calculation of R is also separated into two scenarios:

ρ =

⎧⎨
⎩

˜R+a×Lh

nR
, a � nas

˜R+nas×Lh+(a−nas)×Lp

nR
, else

. (3.9)

We could find out how many neighbor switches (n− 1) should be involved based

on Equation (3.1) and Equation (3.9). The result is depicted in Figure 3.11-b. The
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Fig. 3.12: Test network topology.

configuration adopts 20PPS as, 750bit Lh, 5Kb Lp, 2Mbps R, 500PPS a, and 0 R̃

when μ = 1. With 2 neighbor switches (n = 3), D can be less than 0.3s and ρ = 0.38.

D nearly decreases to 0.1s with 4 neighbor switches (ρ = 0.22). Generally speaking,

FloodDefender can preserve the major functionality with 4 or less neighbor switches.

3.7 Experiment

We first introduce our implementation of FloodDefender system, and then describe

the experiment setups in both software and hardware environments. Finally, we

discuss the experimental results.

3.7.1 Implementation

We implement FloodDefender system, including the detection module and miti-

gation module. All of them are implemented as applications on RYU controller ryu in

Python. Meanwhile, we install RYU controller on a computer equipped with i7 CPU

and 8GB memory. In the software environment, we use Mininet min to create virtual

OpenFlow switches, and in the hardware environment, we use commercial OpenFlow
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Fig. 3.13: Different features in attack detection.

switches, Polaris xSwitch X10-24S2Q xsw, to build the test environment. Each hard-

ware switch can store 2000 flow entries, and has 8MB buffer memory. We employ

three hosts (sender, receiver, and attacker) in our test environment, as depicted in

Figure 3.12.

To compare FloodDefender with previous work, we launch the SDN-aimed attacks

in three scenarios: (i) an OpenFlow network without protecting system, (ii) an Open-

Flow network with FloodGuard Wang et al. [2015], and (iii) an OpenFlow network

with our FloodDefender.

3.7.2 Setup

First, we show the importance of applying flow entry frequency in attack detection.

We design a software OpenFlow network with 50 hosts and 5 switches, and compare

the differences of six features (CPU, controller memory, switch memory, packet in

rate, number of flows in low-frequency flows, and average frequency in low-frequency

flows) in two scenarios: when SDN-aimed attacks occur and when the network starts

up. The attack will use scapy to keep flooding TCP packets with randomly forged



50

fields under 500PPS attack rate. We also use recall rate ( Identified Attacks
Total Attacks

) and false-

positive rate (Startups Regarded as Attacks
Total Startups

) to evaluate the performance of attack detection

in 10 times of attacks and 10 times of startups.

Second, we place the sender under the victim switch and test the available band-

width rate in both software environment (with 4 neighbor switches) and hardware

environment (with 1 neighbor switch). We install a layer 2 learning switch app

(l2 learning) on the network, which can discover the network topology and provide

basic forwarding service. The attacker will keep flooding UDP packets under differ-

ent rates. We use iperf to measure the available bandwidth between the sender and

receiver, and set the bandwidth threshold to 30% (ρ = 0.7) to ensure less than 1.2s

average queueing delay.

Third, we place the sender under the each neighbor switch and measure the avail-

able bandwidth rate in software environment. We test FloodDefender system under a

fully connected network with 5 switches, and FloodDefender will detour attack traffic

to 1 to 4 neighbor switches. The UDP attack rate will be 500PPS.

Fourth, we measure the CPU utilization of the controller under UDP-based attacks

to the computational resource consumption of the control plane.

Fifth, we compare the flow table utilization of the victim switch under OpenFlow,

FloodGuard Wang et al. [2015], and FloodDefender. We also use l2 learning as the

app in the experiment. The attacker generates TCP packets with randomly forged

sender IP to flood the network and overload the flow table.

Sixth, we evaluate the performance of attack identification. We use recall rate

( Identified Attack Packets
Total Attack Packets

) and false-positive rate (Normal Packets Regarded as Attack Packets
Total Normal Packets

) to mea-

sure the performance of two-phase filter under different attack rates.
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Seventh, we measure the time delay of normal traffic under OpenFlow, Flood-

Guard Wang et al. [2015], and FloodDefender. Here we measure the delay of all

kinds of protocols under UDP-based DoS attacks. Since FloodGuard utilizes rate

control to handle packet in messages, its performance can be greatly affected by the

attack rate. In this experiment, we use two different attack rate, 100PPS and 500PPS

to evaluate the time delay. The maximum time delay usually occurs when the first

packet in each flow arrives.

Finally, we compare the packet loss rate of new TCP flows in OpenFlow, Flood-

Guard Wang et al. [2015], and FloodDefender under TCP-based DoS attacks. To

generate new flows efficiently, we modify l2 learning app, and use eth src && tcp src

instead of eth src as the match field to generate flow rules. The first handshake

packet of a new TCP connection is regarded as a new flow (table-miss), and triggers

packet in message. The packet loss rate shows the effectiveness of each system in

processing new flows.

3.7.3 Experimental Result

Attack detection. The CPU and controller memory utilization rates under

attacks and network startups are depicted in Figure 3.13-a; and packet in rate and

switch memory utilization in Figure 3.13-b. The switch memory utilization rate may

be not very precise due to the communication delay between the switch and controller.

All of them in the two scenarios are very similar before the 1 seconds. Even though

they become much different afterwards, the attack detection may lead to false-alerts

by only considering these features (they can be more similar when measured in larger

scale networks). The number of flows and average frequency in low-frequency flows

are depicted in Figure 3.13-c. Though the communication delay may also affect the
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Table 3.1: Performance of Attack Detection

FloodGuard FloodDefender

Recall rate 100% (10/10) 100% (10/10)
False-positive rate 10% (1/10) 0% (0/10)

accuracy of these curves, we can find that there will be many differences after 0.4s

in the two scenarios. The attack detection can precisely identify SDN-aimed attacks

and reduce false-alerts by adopting these two features to increase sensitivity of the

defense system.

The performance of attack detection is presented in Table 3.1. Both FloodGuard

Wang et al. [2015] (4 features detection) and FloodDefender (6 features detection)

can precisely identify SDN-aimed DoS attacks. However, as we analyzed before,

FloodGuard can lead to some false-alerts in some cases due to the similarity in network

startups and under attacks. By employing flow entry frequency, these false-alerts can

be reduced in FloodDefender, and ensure the recall rate at the same time.

Victim switch bandwidth. The results in software and hardware environments

are depicted in Figure 3.14. In this test, we do not show the result from FloodGuard

Wang et al. [2015], because it takes a designated extra link to a specific device, the

data plane cache. The maximum bandwidth is 1.92Gbps in software environment,

and 9.3Mbps in hardware environment. On one hand, the bandwidth in OpenFlow

network without protecting systems is almost exhausted, only 3% left in software en-

vironment and 24% left in hardware environment. On the other hand, FloodDefender

maintains the major functionality of the network, and saves 70% software bandwidth

and nearly 20% hardware bandwidth (the performance can be improved by involving

more neighbor switches).
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(a) Victim-controller bandwidth in software environ-
ment.

0 50 100 150 200 250 300 350 400 450 500
Attack Rate (PPS)

10

20

30

40

50

60

70

80

90

100

A
va

ila
bl

e 
B

an
dw

id
th

 R
at

e 
(%

) FloodDefender
OpenFlow
Threshold

(b) Victim-controller bandwidth in hardware envi-
ronment.

Fig. 3.14: Victim-controller bandwidth.

Neighbor switch bandwidth. The attack traffic will affect the bandwidths

of neighbor switches in FloodDefender, as depicted in Figure 3.15. When only one

neighbor switch is involved, the available bandwidth rate is within 30% (FloodDe-

fender will avoid this scenario by involving more switches, but we block this function

in this experiment). The network becomes functional with more neighbor switches.

Specifically, the SDN-aimed DoS attacks can hardly affect the network when 4 neigh-

bor switches are involved. Besides, the result also shows that the traffic balancer

component can efficiently balance the traffic among neighbor switches.

Computational resource consumption. We can get the computational re-

source protection performance of FloodDefender in Figure 3.16. When attacks occur,

the CPU utilization quickly reaches a peak (around 14%) in less than 1.5s. Then

it goes down slowly because the table-miss engineering and packet in buffer start to

detour and store attack traffic. After about 1.5s, the CPU utilization remains steady.

At this stage, the packet in buffer efficiently stores the packet in messages, and only

consumes about 0.5% CPU utilization. In about 8s, there is a little spur: the CPU

utilization reaches about 3%, and quickly goes down in 1s. This is caused by the two-

phase filtering in packet filter. The result shows that FloodDefender can efficiently
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Fig. 3.15: Available bandwidth rates of neighbor switches.

Fig. 3.16: CPU utilization under UDP-based attacks.

save the computational resources of the control plane, and the overhead of the packet

filter is very little.

Flow table utilization. The flow table utilization rate in depicted in Table 3.2.

We can find that both FloodGuard Wang et al. [2015] and FloodDefender will not

incur overload into the network when there is no attack. Though FloodGuard uses

rate control to protect the victim switch when attacks occur, the attack traffic still

consumes about 30% flow table space. The flow table utilization rate fluctuates in

FloodDefender, since monitoring rules will be expired and the flow table management

component will flush cache region periodically. FloodDefender consumes less than
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Table 3.2: Flow Table Utilization under TCP-based Attacks

OpenFlow FloodGuard FloodDefender

No attack 4% 4% 4%
Under attacks 100% 34% 6% ∼ 19%
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Fig. 3.17: Attack detection performance: recall rate and false-positive rate.

15% flow table space. Its performance is much better than FloodGuard.

Attack identification. The attack detection performance of the two-phase filter

is depicted in Figure 3.17. We can find that the false-positive rate goes up with attack

rate. It is because in a time interval, the frequency of the same flow will be higher

with higher attack rate. Therefore, the frequency-based filtering will use a bigger

threshold to filter out attack traffic, and sacrifice some benign traffic. Though more

attack packets are classified as normal flow when attack rate increases, the percentage

of these packets remains the same, and the recall rate is more stable. Generally

speaking, the two-phase filtering can precisely identify more than 96% attack traffic

with less than 5% false-positive rate.

Time delay. The time delays of normal flows are depicted in Table 3.3 and Table
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Table 3.3: Time Delay of Normal Flows under 100PPS UDP-based Attacks

OpenFlow FloodGuard FloodDefender

Max Delay timeout timeout 4913ms
Min Delay 10.9ms 0.3ms 0.3ms
Average Delay 1843ms 15.1ms 17.5ms

Table 3.4: Time Delay of Normal Flows under 500PPS UDP-based Attacks

OpenFlow FloodGuard FloodDefender

Max Delay timeout timeout 4891ms
Min Delay 10.7ms 0.4ms 0.3ms
Average Delay 2038ms 29.2ms 18.7ms

3.4. Since FloodGuard Wang et al. [2015] utilizes rate control to save the computa-

tional resources, the delay of normal flows increases with the attack rate. When the

attack rate is low (100PPS), the average time delay of FloodGuard is better than that

of FloodDefender; but when the attack rate increases to 500PPS, FloodDefender has

shorter delay than FloodGuard. The maximum time delays in both FloodGuard and

OpenFlow become infinite (timeout), which is different from the results presented

in Wang et al. [2015]. Besides the attack rate, another reason is that Wang et al.

[2015] only measures the delay of TCP packets under UDP-based DoS attacks. In our

experiment, we also measure the delay of UDP packets, and find out many of them

are lost in FloodGuard. Though these UDP packets in FloodDefender suffer from

long time delay, they are processed and received eventually. Both FloodGuard and

FloodDefender are superior to OpenFlow in average and minimum time delays, and

the performance of FloodDefender is better than that of FloodGuard when attack

rate is high.

Packet loss rate. Finally, we compare the packet loss rate of new TCP flows

under TCP-based DoS attacks. The result is depicted in Figure 3.18. In this scenario,
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Fig. 3.18: Packet loss rate of new TCP flows under TCP-based DoS attacks.

both FloodGuard and OpenFlow do not filter out attack traffic, and inevitably sacri-

fice benign TCP packets. We can find that FloodGuard is even worse than OpenFlow.

It is because the round-robin scheduling in the data plane cache treats each protocol

evenly, and only picks the header packet of each protocol. Therefore, it has a very

low probability to pick the benign TCP packet (even lower than that of OpenFlow,

which treats each packet evenly). The performance of FloodDefender is much better,

the packet filter component can filter out attack traffic both efficiently and precisely,

and the packet loss rate of new TCP flows remains within 5%.

3.8 Chapter Summary

SDN-aimed DoS attacks can paralyze OpenFlow networks by exhausting the band-

width, computational resources, and flow table space. We propose FloodDefender,

a scalable and protocol-independent system to protect OpenFlow networks against

SDN-aimed DoS attacks based on new features in attack detection, and three novel
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techniques in attack mitigation: table-miss engineering, packet filter, and flow table

management. FloodDefender can precisely detect SDN-aimed attacks, efficiently pro-

cess table-miss packets, as well as precisely identify attack traffic. We use a queueing

delay model to analyze how many neighbor switches should be used in the table-miss

engineering, and implement a prototype to evaluate the performance of FloodDe-

fender in both software and hardware environments. Compared with previous work,

FloodDefender reduces the false-alerts in attack detection, significantly improves the

flow table utilization, time delay, and packet loss rate, and is more scalable and easier

to deploy without employing additional devices.



Chapter 4

Novel DDoS Attacks in Proactive
OpenFlow Networks and
Countermeasure

Previous studies show that the saturation attacks can successfully dysfunction

edge switches, but can hardly affect proactive networks and internal switches. In this

chapter, we introduce new SDN-aimed DDoS attacks that can penetrate into SDN to

dysfunction internal switches in both reactive and proactive networks. Moreover, the

new attacks can be distributed, which conceals the identity of attackers and makes

attack detection difficult. To address the challenge of SDN-aimed DDoS attacks, we

propose FloodBarrier, which can reduce the communication between the controller

and switches, and is able to efficiently handle attack traffic. We implement a prototype

of FloodBarrier against the new SDN-aimed DDoS attacks. Experimental results

show that the new attacks can affect edge and internal switches in both reactive and

proactive OpenFlow networks. While with FloodBarrier, more than 90% and 70%

data-control plane bandwidth can be saved in software and hardware environments

respectively. The attacks can no longer consume additional computational resources

of the control plane and more than 90% attackers can be identified.

59
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4.1 Overview

SDN has enabled network innovations by separating the legacy network archi-

tecture into control plane and data plane. The programmability provided by the

separated two planes introduces an easier and more flexible way for researchers and

practitioners to design innovative network functions and novel network protocols. In

SDN, the logically centralized control plane works as a brain to dictate the behaviors

of the whole network via a “southbound” protocol. Among all the implementations

of SDN, the OpenFlow framework McKeown et al. [2008] is the leading embodiment

of SDN concept and has brought SDN into reality. In recent years, the techniques

of SDN (OpenFlow networks) have been applied in today’s data centers Jain et al.

[2013], Internet service provider networks Poularakis et al. [2017] and 5G networks

Trivisonno et al. [2015]. By adopting the architecture of SDN, 5G networks can be

enhanced with programmability, flexibility, reliability, and scalability to support a

heterogeneous set of services Trivisonno et al. [2015].

In an OpenFlow network, the data plane communicates with the control plane to

manage network traffic. When OpenFlow switches receive some specific packets (e.g.

table-miss packets and packets belonging to some control plane protocols cp), they

encapsulate these packets into packet in messages and report them to the controller

for instructions. The controller then decides the actions to the packets, and could

further install flow rules on the switches to allow them to directly process the packets

of the same flow.

The data-control plane communication provides high programmability to the net-

works, but also incurs significant communication overhead. Previous approaches point

out that in some open OpenFlow networks, an attacker can generate a great amount
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of table-miss packets to launch data-to-control plane saturation attacks Shin et al.

[2013b]. The massive packet in messages triggered by these table-miss packets will

jam switch-controller communication, as well as exhaust the resources of both control

and data planes (e.g. CPU and memory).

Even though previous DoS attacks have the ability to paralyze OpenFlow net-

works, their attacking effects can be limited. First, the traditional saturation attacks

leverage the reactive flow installation approach (installing flow rules after receiving

table-miss packets) in SDN to flood the network with table-miss packets. When

OpenFlow networks adopt proactive approach (pre-installing all flow rules on switch-

es), the traditional attacks can hardly affect the networks since the flow rules cover

all network flows. Second, since the attackers use massive table-miss packets to flood

a network, the switches connected to the attackers (edge switches) will suffer. How-

ever, other internal switches (non-edge switches) will not be greatly affected, because

it is hard for attackers to anticipate the routing paths of these table-miss packets and

the attack traffic can hardly converge on internal switches. The biggest victims in

the saturation attacks are edge switches. Third, since an attacker can only jam the

directly connected switch, he can only use compromised hosts under the same switch

to launch distributed attacks against the victim switch. The identity of attackers can

be easily detected (the controller can narrow down the attackers to the hosts under

the victim switch), and the attacks can be prevented accordingly.

Previous solutions work in reactive OpenFlow networks to mitigate the traditional

DoS attacks in SDN Gao et al. [2017], Shin et al. [2013b], Wang et al. [2015]. Avant-

Guard Shin et al. [2013b] adopts a connection migration as an extension of data

plane to identify TCP-based attack traffic by verifying the TCP handshake of each
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new SYN packet. For attack traffic based on other protocols, e.g. UDP and ICMP,

FloodGuard Wang et al. [2015] utilizes a proactive flow rule analyzer to pre-install

proactive flow rules, and forwards table-miss packets to a data plane cache. To reduce

the cost of hardware modifications, FloodDefender Gao et al. [2017] leverages Open-

Flow protocol specification to detour attack traffic to neighbor switches and utilizes

a two-phase filtering mechanism to filter out attack traffic. However, all approaches

focus on handling table-miss packets to mitigate the traditional saturation attacks

Shin et al. [2013b] and ignore security threats posed by other packets. These mecha-

nisms are not suitable for the mitigation of DoS attacks in proactive networks since

they focus on dealing with table-miss packets.

In this chapter, we analyze the data-control plane communication overhead in SD-

N and identify some new vulnerabilities that can be exploited by attackers to launch

new DDoS attacks (SDN-aimed DDoS attacks) against any OpenFlow switch in both

reactive and proactive networks. In the new attacks, an attacker sends massive re-

quests (e.g. SYNs, ICMP echoes, and ARP requests) to a victim switch instead of

blindly generating table-miss packets. When the victim switch receives these request-

s, it can only report the requests to the controller for responses no matter in reactive

or proactive approach1. In this way, the bandwidth between the controller and victim

switch will be exhausted. The new DDoS attacks have a more serious impact on

OpenFlow networks since they can target at any switch. Even worse, when the at-

tacker uses multiple sources to launch distributed attacks targeting at one switch, the

data-control plane communication will be jammed quickly by the aggregated traffic.

1The action of “reporting to the control plane” is inevitable when switches exactly follow Open-
Flow specification, since OpenFlow includes no mechanism that would allow packet generation (or
automatic responses) in switches.
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The attack traffic identification will be much harder than that in the traditional sat-

uration attacks (attackers can be anywhere in the network and use forged addresses

to bypass frequency-based filtering Gao et al. [2017]).

There are two major challenges in designing defense frameworks to mitigate the

new SDN-aimed DDoS attacks. First, since the attack traffic can be mixed with

normal traffic, precisely filtering out attack traffic can be very difficult, especially

when attacks are distributed. We cannot simply drop all requests to switches, since

benign traffic will be dropped as well. Benign hosts can no longer test (e.g. using

ping ) or measure (e.g. using tracert) the network. Misclassifying benign packets can

also damage an OpenFlow network when attack traffic is based on switch protocols,

such as STP (Spanning Tree Protocol), LACP (Link Aggregation Control Protocol),

and LLDP (Link Layer Discovery Protocol). Second, designing data plane extensions

(e.g. the connection migration in AvantGuard Shin et al. [2013b] and local ARP tables

introduced by Big Switch Networks big) does not conform to OpenFlow protocol, and

will downgrade the interoperability with other OpenFlow-based products. We may

use some specific devices, but not modifying the OpenFlow protocol.

To deal with these two challenges, we present FloodBarrier, a scalable and protocol-

independent defense system in OpenFlow networks. FloodBarrier first saves data-

control plane bandwidth by forwarding requests to a specific device. Furthermore, it

reduces the workload of control plane by responding to some simple requests with the

specific device. Finally, FloodBarrier identifies and blocks attacker traffic based on

traffic statistics information (including new features such as source type and response

type).
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We implement FloodBarrier with two modules: mitigation agent and request a-

gent. Mitigation agent works on the control plane to migrate incoming requests to

the request agent and block/allow some requests with flow rules. Request agent s-

tands between the control and data planes. It autonomously responds to the received

requests and verifies the legitimacy of each host.

To sum up, we make the following contributions:

• We propose new DDoS attacks in SDN to exhaust switch-controller bandwidth

of any target switch in both reactive and proactive OpenFlow networks. By

generating massive requests to a victim switch, an attacker can bypass the

protections of existing defense systems (e.g. AvantGuard, FloodGuard, and

FloodDefender) and use distributed sources to jam the victim switch.

• We propose a defense framework named FloodBarrier to mitigate SDN-aimed

DDoS attacks. FloodBarrier is scalable, which conforms to the OpenFlow pro-

tocol and introduces no modifications on today’s data plane (i.e. OpenFlow

switches). Besides, FloodBarrier is protocol-independent to handle all kinds of

attack traffic and efficient to mitigate the DDoS attacks with little overhead.

• We implement FloodBarrier and evaluate its performance in both software and

hardware environments. Experimental results show that the new attacks con-

sume more than 85% bandwidth of both edge and internal switches, and nearly

100% CPU in both reactive and proactive OpenFlow networks. While with the

protection of FloodBarrier, more than 90% and 70% bandwidth can be saved

in software and hardware environments respectively. The attacks can hardly

consume the computational resources, and more than 90% attackers can be
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identified. Besides, FloodBarrier almost introduces no overhead into the net-

work. The response time to some host requests in FloodBarrier is even less than

that in OpenFlow networks.

The rest of the chapter is organized as follows. Section 4.2 introduces some back-

ground knowledge and the data-control plane communication vulnerability in Open-

Flow networks. In Section 4.3, we introduce the new SDN-aimed DDoS attacks. To

mitigate the attacks, we present FloodBarrier and its detailed designs in Section 4.4.

The implementation and experimental evaluation of FloodBarrier are shown in Sec-

tion 4.5. Section 4.6 discusses possible issues and limitations. Finally, we conclude

this chapter in Section 4.7.

4.2 Problem Statement

We first introduce the packet processing mechanisms in SDN. Then we show the

previous identified DoS attacks (data-to-control plane saturation attacks). Finally,

we present the data-control plane communication vulnerability.

4.2.1 Packet Processing Mechanism

In OpenFlow networks, the control plane uses flow rules to direct the behavior of

the whole network in two approaches: proactive flow installation and reactive flow

installation. In the proactive approach, the control plane pre-installs flow rules on

the data plane to process network traffic. The data plane then follows these rules

to handle incoming packets. In the reactive approach, the packets are processed in

the following four steps, as depicted in Figure 4.1. First, when a new packet comes,

the OpenFlow switch cannot match it with any flow rules in its flow table. This
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Fig. 4.1: The packet processing of reactive flow installation approach in OpenFlow
networks.

new packet will be regarded as a table-miss packet, and reported to the controller

encapsulated in a packet in message2. Second, the controller receives the packet in

message and decides the action based on the logic of control apps. The action will be

sent back to the switch in a packet out message. The switch then follows the action

field of the packet out message to process this packet. Third, the controller can further

adjust the flow rules with “modify state messages” (adding, removing, modifying, or

aggregating flow entries). The switch then updates its flow table accordingly. Finally,

when packets belonging to the same flow of the previous packet come, the switch

follows the flow rules in its flow table to process them directly.

In OpenFlow specifications, the actions in a packet out message could be (not lim-

ited to): (i) forwarding based on a specified output port; (ii) modifying some header

fields of the packet; (iii) dropping the packet; and (iv) reporting to the controller for

further analysis.

SDN also allows OpenFlow switches to support some control plane protocols cp,

or even provide some services (e.g. logging into a controller and managing the net-

work via a switch). In such scenarios, when an OpenFlow switch receives a request

2An OpenFlow switch can only report the header of a table-miss packet to the controller, but
will encapsulate the whole packet when its buffer is full.
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Fig. 4.2: A packet in message triggered by an SYN packet. No matter the port is
open or closed, the switch has to report it to the controller for response (SYN-ACK
or RST).

to it, it can only apply the report action to handle this packet regardless of reactive

or proactive approach, since the switch has no ability to generate the response (the

enabled fields in OpenFlow are not elaborated enough to allow modify action to craft

responses). An example in Figure 4.2 shows that a packet in message triggered by

an SYN packet. We use a host (192.168.1.5) to send an SYN packet to an OpenFlow

switch (192.168.1.10/192.168.1.23), and capture the packet in message on the con-

troller (192.168.1.111). Note that even though SDN architecture document sa shows

that the control plane may configure the data plane to respond autonomously to some

events, no current designs in OpenFlow or other SDN implementations support this

mechanism.

4.2.2 Previous DoS Attacks in SDN

Previous approaches Gao et al. [2017], Shin et al. [2013b], Wang et al. [2015] have

pointed out the data-control plane communication could be leveraged by an attacker

to launch data-to-control plane saturation attacks. Specifically, an attacker can use

massive table-miss packets (randomly forging some fields of each packet) to trigger

massive packet in packets to flood the data-control plane bandwidth and exhaust the
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resources of the control plane (CPU and memory). When the controller decides to

install flow rules for the forged table-miss packets, the useless flow rules can also

overload the switches’ flow tables.

Though the saturation attacks pose a great threat to SDN, their impacts can be

limited to network environments. First, the saturation attacks leverage the reactive

flow rule installation approach to trigger packet in messages. When the network

adopts the proactive approach, no packets will be regarded as table-miss packets

(the flow rules cover all kinds of packets). Therefore, the saturation attacks can

no longer affect proactive OpenFlow networks. Second, since it is difficult for an

attacker to anticipate the routing path of each table-miss packet, the attack traffic can

hardly converge on internal switches. Hence, the attacking efforts of the traditional

saturation attacks can be limited to internal switches, and attackers can only utilize

compromised hosts under the target edge switch to efficiently launch the attacks (i.e.

not fully distributed against switches). Finally, based on the current rule caching

mechanisms in SDN, rather than directly installing flow rules for the first-received

packets, it is more likely that the flow rule installation will be triggered when the flow

happens to be of the size large enough to merit a space at the flow table. As a result,

the low-frequency packets in the saturation attacks cannot overload a switch’s flow

table when the controller adopts some rule caching mechanisms.

4.2.3 Problem Definition

Previous approaches Gao et al. [2017], Shin et al. [2013b], Wang et al. [2015] have

pointed out the data-control plane communication vulnerability of “handling table-

miss packets” in SDN. However, OpenFlow networks have more serious problems

than that. In fact, since there is no mechanism in OpenFlow that would allow packet
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generation (or automatic responses) in switches, the controller has to deal with all

control plane protocols cp (e.g. ICMP, ARP, STP, and LLDP) in both reactive and

proactive networks. When a switch receives packets of these protocols, it has to

encapsulate the whole packets in packet in messages (instead of only containing the

header) and report to the control plane for responses. Therefore, the communication

overhead can be more significant than handling table-miss packets. Besides, since

these requests can be relayed in networks to reach the destination, all OpenFlow

switches will be exposed to attackers, and attackers could use many sources to jam a

switch with SDN-aimed DDoS attacks.

The problem studied in this chapter is how to reduce the data-control plane com-

munication overhead in SDN to prevent SDN-aimed DDoS attacks. Specifically, we

need to answer the following two questions.

• Is there an alternative action to handle the request packets other than “reporting

to the control plane”?

• How to precisely identify compromised hosts under distributed attacks?

In the design of a defense framework, we also face some challenges. First, we should

not introduce many changes into OpenFlow networks, such as modifying OpenFlow

protocol and designing data plane extensions. A good solution should be scalable

and compatible with existing OpenFlow networks. Second, the solution should be

protocol-independent to handle all kinds of attack traffic (e.g. TCP-based attacks,

UDP-based attacks, and ARP-based attacks). Finally, the solution should introduce

as less overhead into the network as possible.
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4.3 SDN-aimed DDoS Attacks

We propose new DDoS attacks in OpenFlow networks, which could exhaust the

bandwidth between the controller and any victim switch and consume the computa-

tional resources of the control plane in both reactive and proactive networks.

4.3.1 Threat Model

We assume an adversary maintains the information of target OpenFlow switches

of a network (e.g. MAC address and IP address) and possesses multiple compro-

mised hosts (botnets) directly or indirectly connected to the OpenFlow network. In

this chapter, we assume all SDN switches follow OpenFlow protocol (e.g. Pica8

pic and xSwitch xsw), and the controller is a standard OpenFlow controller such

as RYU, POX, NOX, OpenDayLight, Floodlight, or Beacon. The network adminis-

trators could use either reactive approach or proactive approach to process network

packets.

4.3.2 SDN-aimed DDoS Attacks

We propose an attacking strategy that can jam communication links between the

controller and any switch in an OpenFlow network based on the data-control plane

communication vulnerability described in Section II-C. Specifically, an attacker crafts

massive request packets to the target switch based on the MAC and/or IP addresses

of the target switch (e.g. SYN packets with dst ip = target’s IP, ARP requests with

target protocol address = target’s IP, and LCP3 configure-requests with dst mac =

target’s MAC). When the attacker sends these requests, other switches will regard

3LCP is Link Control Protocol.
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Fig. 4.3: SDN-aimed DDoS attacks in OpenFlow networks.

them as normal packets and forward to the target. Since the target OpenFlow switch

has no ability for packet generation, it can only encapsulate the whole packets and

report to the control plane for responses no matter in reactive or proactive approach.

The controller then responds with the whole responses. Therefore, the bandwidth be-

tween the control plane and target switch will be quickly exhausted. The attacker can

even use distributed sources to launch more serious distributed attacks, as depicted in

Figure 4.3. Similar to the traditional saturation attacks, the new SDN-aimed DDoS

attacks can also consume computational resources of the control plane, but it may

take more compromised hosts to drain the CPU of the control plane when multiple

controllers are applied to scale up the networks.

The consequences of the novel DDoS attacks are more serious than the tradi-

tional data-to-control plane saturation attacks Shin et al. [2013b]. First, the new

attacks can affect all kinds of OpenFlow networks, while the traditional saturation

attacks can only work in reactive OpenFlow networks. Besides, the new attacks are
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fully distributed against any OpenFlow switch, while the traditional saturation at-

tacks can only use compromised hosts under the target to dysfunction a target edge

switch. Even considering multiple controllers to avoid control plane saturation, the

new attacks can still exhaust switch-controller bandwidth to dysfunction any switch.

Table 4.1 lists possible protocols could be utilized to craft DDoS attack requests

(not limited to the listed ones). In fact, based on our experiments, most IP-based

protocols could be used by filling the destination MAC and IP fields with the target’s

MAC and IP. Note that some protocols in this list are from legacy networks (e.g. STP,

and LACP). In OpenFlow networks, the controller may configure the links based on

the topology view instead of these protocols. However, in hybrid networks (SDN

and legacy networks coexist) and the boundary of SDN (edge switches connect with

traditional switches), the controller has to support these protocols to be compatible

with traditional switches.

4.4 System Design

We design a system named FloodBarrier, which can save the bandwidth and com-

putational resources against SDN-aimed DDoS attacks. Our intention is to provide

an automatic tool that has a good balance between usability and security. We de-

scribe the detailed designs of the FloodBarrier system, including its architecture and

modules.

4.4.1 FloodBarrier Architecture

FloodBarrier is a scalable and protocol-independent defense system against SDN-

aimed DDoS attacks. Besides, it is compatible with OpenFlow protocol, and support
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Table 4.1: Possible Protocols Could be Used to Craft DDoS Attack Requests

Protocol Message
Type

Crafted
Field(s)

Target
Switch Info

Response
Type

Target
Switch Type

TCP SYN; SYN-
ACK; FIN

dst MAC,
dst IP

MAC, IP SYN-
ACK/RST;
RST; RST

managed
switch; router

UDP - dst MAC,
dst IP

MAC, IP -/ICMP un-
reachable

managed
switch; router

ICMP ICMP echo/-
timestamp
request

dst MAC,
dst IP/TTL

MAC, IP/hop
count

ICMP reply/-
timestamp re-
ply

managed
switch; router

ARP ARP re-
quest/ARP
response

TPA/dst MAC IP/MAC ARP
response/-

managed
switch; router

LCP Req dst MAC MAC Ack/Nak/Rej any
STP BPDU-TCN root ID priority, ID,

MAC
BPDU-TCA root bridge

LACP LACPDU partner port, MAC LACPDU edge switch
LLDP LLDPDU - - - 802.1D-

compliant
bridge

most of the today’s popular controller platforms. FloodBarrier consists of two func-

tional modules: mitigation agent and request agent, as depicted in Figure 4.4. Miti-

gation agent module is implemented as a control app on the controller platform. It

serves two roles: attack detection and flow rule management. Request agent module

stands between the control plane and data plane. It provides two major functions:

response generation and connection verification.

Initially, the mitigation agent monitors the network status for attack detection,

and the request agent remains idle. When DDoS attacks occur, the request agent is

activated and cooperates with mitigation agent to mitigate attacks in three steps.

1. The mitigation agent installs blocking rules on edge switches to block some illegal

requests and migration rules on victim switches to forward incoming requests to

the request agent. This forwarding action can greatly save data-control plane
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Fig. 4.4: The architecture of FloodBarrier.

bandwidth by reducing the communication between the two planes.

2. The request agent autonomously responds to these requests, and records some

statistic information of each connection to verify the legitimacy of hosts.

3. When some connections are regarded as legal, the request agent can send ALLOW

messages to the mitigation agent which will trigger the mitigation agent to install

flow rules on the victim switch to accept the requests. To handle illegal requests,

request agent can respond autonomously when its load is not heavy, or send DENY

messages to install blocking rules on the victim switches under severe attacks.

4.4.2 Mitigation Agent

The mitigation agent module consists of three components: attack detection, de-

vice identification, and flow rule manager, as depicted in Figure 4.5. Attack detection

monitors network status to detect potential attacks. Device identification identifies

the type of neighbor devices connected to edge switches (i.e. hosts or switches). Both

of the two components are always activated. Flow rule manager installs flow rules to

mitigate attacks based on the information provided by the device identification and
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Fig. 4.5: Mitigation agent module.

request agent, and is only activated under attacks.

Attack detection. Attack detection is the “beacon tower” of FloodBarrier. It

collects packet in rate, controller memory, and CPU utilization rate to alert the whole

defense system when attacks occur. Different from the detection of traditional satu-

ration attacks Gao et al. [2017], Wang et al. [2015], buffer memory will not be used

in the detection of the new DDoS attacks since the new attacks won’t affect switch

buffer (the whole requests are reported to the controller without buffering). We also

apply an anomaly-based flooding detection as discussed in Gao et al. [2017], Wang

et al. [2015]. The attack detection component will continue monitoring the network

status under attacks, and provide real-time network status information (i.e. network

topology and switch status) to the request agent. Switch status indicates which proto-

cols/ports that an OpenFlow switch allows/denies, and which mode it works in. This

could be obtained by applying the proactive flow rule analyzer presented in Wang

et al. [2015]. But here we simplify the implementation by using a static configuration

provided by network administrators since the status of each switch normally remains

unchanged after the network starts. The attack detection also stops the request agent

when attacks are detected to be over.
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Fig. 4.6: Verification of LLDP, STP, and LACP packets.

Device identification. Recall Table 4.1, it is noticeable that some protocols (e.g.

STP, LACP, and LLDP) are designed to cooperate between switches, and should only

traverse through internal link ports of switches. Therefore, our first attempt against

SDN-aimed DDoS attacks is to block packets of these protocols from host-connected

ports. However, identifying the type of connected devices is quite a challenging prob-

lem since the topology of the network can change dynamically. Motivated by Hong

et al. [2015], we first use the port property management technique to identify the type

of neighbor devices (i.e. hosts or switches) that an edge switch connects to. Then we

propose a probing scheme to verify whether STP and LACP are enabled on the other

side.

Device type identification is performed on each enabled port of OpenFlow switches

to identify the type of neighbor devices based on the type of received packets, as

depicted in Figure 4.6-a. Originally, an enabled port will be set to ANY type. When

a switch receives LLDP packets from an ANY-type port, the type of this port will be

changed to SWITCH, and the device connected to this port is regarded as a switch.

Then all LLDP packets from this port are regarded as legal packets4. When first-hop

host packets Hong et al. [2015] are received from an ANY-type port, the connected

device is regarded as a host, and the type of this port will be changed to HOST.

4Device identification can also regard first-hop host packets as illegal from SWITCH ports in a
pure OpenFlow network (the control plane controls all switches) to avoid a host forging a switch by
sending LLDP packets first.
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No LLDP, STP, or LACP packets are allowed then. SWITCH and HOST to ANY

transfers can also be triggered by receiving Port Down signals when topology changes

(a Port Down signal will be received before the host migration finishes).

When a connected device is regarded as a switch, we further test whether STP and

LACP are enabled on it to verify the legitimacy of incoming STP and LACP packets.

We first check the type of each received message passively. If STP/LACP packets

are received, we regard STP/LACP is enabled on the switch, and the subsequent

STP/LACP packets are legal. Otherwise, we use a probing scheme to check whether

STP and LACP are enabled.

The probing scheme is used to avoid a neighbor switch enables STP/LACP, but

works in passive mode. Originally, the STP and LACP properties of an enabled port

are set to STP UNTESTED and LACP UNTESTED. Then, the device identification

crafts BPDU-TCN frames as STP probes and LACPDU frames as LACP probes and

sends them to the tested switch. If BPDU-TCAs are received, we change the STP

property to STP ENABLE, and regard all STP packets from this port acceptable.

It is similar for LACP, which receiving response LACPDUs will make further LACP

packets acceptable. If no responses are received within a time period (2 second-

s), we regard STP/LACP is disabled on the tested switch, and change STP/LACP

property to STP/LACP DISABLE, as depicted in Figure 4.6-b and Figure 4.6-c. The

Port Down signals can also trigger ENABLE and DISABLE to UNTESTED transfers

to adjust topology changes.

Flow rule manager. Flow rule manager collects the information from the device

identification component and request agent module to install flow rules to migrate

requests and block attack traffic. Two major flow rules are used in the flow rule
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Fig. 4.7: Flow rule manager. Migration and blocking rules are used to forward and
drop requests.

manager: migration rules to forward requests to the request agent, and blocking rules

to drop illegal packets.

Migration rules are applied on victim switches to replace the original “report to

the controller” rules for incoming requests to save the communication bandwidth by

forwarding requests to the request agent. The match field of a migration rule is some

specific protocols (e.g. IP, ARP, or STP), and the action field is encoding the request

(avoid losing some information) and forwarding to the request agent, as depicted in

Figure 4.7.

In the design of migration rules, INPORT information (indicating the incoming

port of a switch) could be lost if we directly forward the requests Gao et al. [2017],

Wang et al. [2015]. Motivated by Gao et al. [2017], Wang et al. [2015], we also borrow

the reserved ToS fields (i.e. ip dscp and ip ecn) to tag the migrated packets and use

ToS fields to identify migrated packets. Besides INPORT loss problem, we add “ToS

�= encoded” in the match field to avoid the packet bouncing problem Gao et al. [2017]

(e.g. S2 can forward a migrated packet back to S1 based on other forwarding rules,
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which makes this packet bouncing between S1 and S2).

To ensure migrated packets can be forwarded to the request agent, we use another

forwarding rule to cooperate with the migration rules. These forwarding rules are

installed on all OpenFlow switches to deliver the migrated packets to the request agent,

as depicted in Figure 4.7. Note that the priority of these forwarding rules should be

the highest, which ensures the migrated packets are forwarded to the request agent

instead of other destinations by other forwarding rules (e.g. MAC-based forwarding

rules or IP-based forwarding rules).

Another important task of the flow rule manager is to install blocking rules to

drop illegal packets. Based on the information provided by the device identification,

flow rule manager installs some blocking rules on edge switches to drop unexpected

packets from some ports. For instance, the edge switch S1 in Figure 4.7 regards its

neighbor device connected to port 1 as a host. Therefore, all LLDP, STP, and LACP

packet will be regarded as illegal and dropped. In the blocking rules, we also added

‘ToS �= encoded” in the match field to avoid dropping a migrated packet. Note that

these blocking rules cannot eliminate all illegal requests. For instance, an attacker

can send STP packets through an STP-enabled switch to launch the attacks. The

flow rule manager will use additional information to block these packets.

Flow rule manager also utilizes the feedback from the request agent to install

blocking rules. For example, if the workload on the request agent is too heavy, and

the victim switch does not allow TCP connections, the flow rule manager can in-

stall a blocking rule (MATCH: ToS �= encoded, ipv4 dst = victim’s IP, tcp dst = *;

ACTION: Drop) to drop all TCP packets to the victim switch based on the DENY

message sent by the request agent. When this blocking rule is applied, there will be
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no responses to TCP requests (e.g. no RSTs for SYNs even the host exists).

Besides blocking rules, the flow rule manager also generates flow rules to allow

legal requests based on the ALLOW message sent by the request agent (e.g. allowing

the TCP requests to port 23 on S1 in Figure 4.7). When a host is regarded as legal,

the flow rule manager can also install flow rules to allow all packets from the host

(MATCH: ToS �= encoded, ipv4 src = host’s IP; ACTION: Report).

4.4.3 Request Agent

Request agent module is an additional device with some intelligence of responding

to some requests (it can also be regarded as a specific security server). It has two

components: response generator and request checker, as depicted in Figure 4.8. Re-

sponse generator works as an agent to autonomously respond to some simple events

and provides statistic information of the received requests. Based on the statistic

information, request checker verifies the legitimacy of the hosts and instructs the

request agent module to allow/block some flows.

Response generator. The main cause of SDN-aimed DDoS attacks is that

OpenFlow includes no packet generation mechanisms. Therefore, our attempt is to

introduce responding mechanisms into data plane with a specific device (i.e. request

agent). The response generator of request agent responds to each incoming request
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Key
Src MAC ProtocolTarget Src Type Packet Count Byte CountResponse

Value

H1 MAC S1 TCP PROCESS HOST 8 528
H1 MAC S1 ARP ALLOW HOST 100 4200
H2 MAC S1 ARP DENY SWITCH 553 23226
H3 MAC S2 LLDP ALLOW SWITCH 10 2680

Fig. 4.9: An example of packet statistics.

based on the network status information (i.e. network topology and switch status)

provided by the mitigation agent module. When a packet comes, the response gen-

erator decodes the packet, verifies its checksum, and attaches it to a corresponding

queue based on the protocol (i.e. TCP queue, UDP queue, etc). The response genera-

tor then processes the header of each queue based on round-robin scheduling. Packet

statistics are updated accordingly for the request checker to verify the legitimacy of

hosts. An example of packet statistics is depicted in Figure 4.9. Each statistic entry

contains seven fields: “Src MAC” to show the identity of the sender; “Target” to show

the identity of the target switch; “Protocol” to identify the protocol of the packet;

“Response” to indicate the processing result of the packet (i.e. ALLOW, DENY, or

PROCESS)5; “Src Type” to identify whether the sender is a host or a switch; and

“Packet Count” together with “Byte Count” to show the statistic information of this

entry. Packet statistics will be delivered to request checker and then flushed in every

10-second.

In the design of the response generator, we implement the simple response mecha-

nisms to TCP, UDP, ICMP, ARP, STP, LACP, and LLDP packets. In some complex

scenarios (e.g. open TCP and UDP ports), we introduce a logic separation method to

fill in the “Response” field of the requests. Packets of other protocols will be applied

5The “Response” field only indicates the type of response to the packet, not the legitimacy of
the packet.
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with a default action: recording the count of the packet and sending a copy of it to

the controller when receiving more than N times. N is a pre-defined threshold and

is set to 10 by default. Due to space constraints, we only describe the procedures

of processing TCP, ARP, and LLDP packets. (Processing ICMP is similar to ARP

and processing STP and LACP is similar to LLDP. Processing UDP on closed ports

is similar to closed TCP port scenario. In open UDP port case, response generator

adopts probing and statistic analyzing.)

The processing procedures of TCP packets are depicted in Figure 4.10. The basic

idea is to separate the logic of verifying received SYN packets and establishing con-

nections. Response generator responds SYN-ACKs to all SYNs on open ports. The

“Response” field of these SYNs will be set to PROCESS at this stage. When the

corresponding ACKs are received, response generator will regard the previous SYNs

as valid6 (increasing the count of ALLOW-TCP entries and decreasing PROCESS-

TCP entries accordingly), and report the valid SYNs (in packet in messages) to the

mitigate agent together with ALLOW messages. The mitigate agent will further raise

packet in events to hand over TCP connections to other control apps (the datapath

information is identified by the target switch address). In other cases (e.g. receiving

FINs, or the SEQs of ACKs are unmatched with those in SYN Cookie), the response

generator will regard them as invalid packets and change the count of DENY-TCP

entries accordingly. Note that the response generator will not establish TCP connec-

tions with hosts since it has no intelligence to provide services on some ports (i.e.

no TCP/IP stack or UDP/IP stack is implemented on the request agent module).

When the control app receives valid SYNs, it will resend SYN-ACKs to take over the

6Some “smart” attackers may be able to track SYN cookies and send suitable responses. We
discuss this concern in Appendix A.
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else 
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(SYN cookie)
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Closed
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SYN-ACK

SYN cookie

ACK

Matched

Unmatched

Report SYN
to controller

Fig. 4.10: Flowchart of processing TCP packets.

connections.

The flowchart of processing ARP packets is depicted in Figure 4.11. The re-

sponse generator can deal with all ARP packets and replace the ARP control app

on the control plane. An ARP packet can be regarded as valid in three cases: the

target exists and no topology update for an ARP request (topology update is iden-

tified based on the source address), no topology update for an ARP response, and

the topology update is legal for an ARP request/response. Invalid ARPs only occur

when the topology updates are illegal for ARP requests/responses. Since some clients

may continue establishing a connection before the server is online, we do not regard

nonexisting-target ARP requests as invalid. Instead, we set the “Response” of these

ARP requests to PROCESS. In the verification of topology updates, different tech-

niques can be applied (e.g. using a probing scheme to test the existence of the host).

Here we use a simple verification technique by checking whether the packets of a mi-

grated host can still be received from the previous port and whether the subsequent

packets of a new host can be received from the new port.

If LLDP packets are received, the response generator follows Figure 4.12 to handle

them. In the processing of LLDP packets, target switch will be identified based on
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Fig. 4.11: Flowchart of processing ARP packets.

the network topology (using source MAC and INPORT to find the adjacent switch),

rather than the destination MAC address (it is same for STP and LACP). An LLDP

packet will be regarded as valid in three cases: both TLV field and topology update

are legal; an old LLDP packet (the LLDP packet has been received before) with

legal TLV; and the target switch works in Tx/Disable mode. In other cases, the

LLDP packet will be regarded as invalid. Note that we only consider receiving LLDP

packets on the request agent. The role of LLDP packets generation (for Tx&Rx/Tx

mode switches) still remains in the realm of control apps. We could also take over

LLDP packets generation to replace LLDP control apps, but we do not design the

function here since we focus on the mitigation of SDN-aimed DDoS attacks.

Request checker. The “Response” field cannot precisely identify the legitimacy

of each flow. For instance, #2 entry in Figure 4.9 may be illegal since attacks can send

massive valid ARP responses to launch the attacks. Though the “Response” field of

#2 entry is set to ALLOW, it can still be illegal. Therefore, our attempt is to use

“Response” field as a new feature and enable all other fields in the packet statistics

as different features to verify the legitimacy of hosts. Specifically, the request checker

collects all records of the victim switch (e.g. when the victim switch is S1, #1, #2 and
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Fig. 4.12: Flowchart of processing LLDP packets.

#3 entries are collected in Figure 4.9), and then verify the legitimacy of each entry

based on a classification approach. When one entry of a host is identified as illegal,

this host will be regarded as illegal (hosts are identified based on MAC addresses).

Otherwise, the host is legal. The request checker can further send DENY messages

to the mitigation agent to block the attack traffic when the workload on the request

agent is heavy.

In the verification of each entry, we adopt Support Vector Machine (SVM) Vapnik

and Vapnik [1998], a supervised learning model as our classifier. SVM maximizes the

distance between the hyperplane and training samples. It is efficient for high dimen-

sional data and is robust even when the samples are small and noisy. We choose

Gaussian kernel as the kernel function in our classifier. Other detailed implementa-

tions can be referred to Vapnik and Vapnik [1998]. We skip this part due to space

constraints.
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Table 4.2: Packet in Handler and Listener Functions in Different Controller Planforms

Controller Plan-
form

Packet in Handler Function Listener Function

RYU packet in handler(self, ev) controller.ofp even-
t.EventOFPPacketIn

POX handle PacketIn(self, event) core.openflow
NOX packet in callback(self, dpid, in-

port, reason, len, bufid, packet)
core.register for packet in

OpenDayLight PacketResult receiveDataPack-
et(RawPacket inPkt)

sal.packet.IListenDataPacket

Floodlight Command receive(IOFSwitch
sw, OFMessage msg, Floodlight-
Context cntx)

core.IOFMessageListener

Beacon Command receive(IOFSwitch
sw, OFMessage msg)

beaconcontroller.core.IOFMessageListener

4.5 Evaluation

We first introduce the implementation of FloodBarrier system and the software

and hardware environments for evaluation. Then we demonstrate the impact of the

new SDN-aimed DDoS attacks as well as the performance of FloodBarrier.

4.5.1 Implementation

We implement FloodBarrier system, including the mitigation agent and request

agent modules. The mitigation agent module is implemented as a control app on

the control plane (i.e. RYU controller ryu) in Python. We apply Prim algorithm

Prim [1957] to find the shortest path of each OpenFlow switch to the request agent

by calculating the Minimum Spanning Tree (setting the request agent as the root).

To be applicable to different kinds of controller planforms, the mitigation agent also

supports different packet in handler functions (raising packet in events). We sum-

marize the handler functions of today’s popular controller planforms in Table 4.2.

The request agent module is implemented on an additional Linux host between the
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control plane and data plane in C++. We use libpcap lib [a] to capture and generate

ethernet packets, and SVM light svm as the SVM classifier.

We evaluate the new attacks and FloodBarrier system in both software and hard-

ware environments. Since the effects of the new attacks are similar on different

controllers presented in Table 4.2, we only use RYU controller to evaluate the per-

formances. The RYU controller is installed on a computer equipped with i7 CPU

and 8GB memory. In the software environment, we use Mininet min to create the

network with virtual OpenFlow switches; and in the hardware environment, we use

Polaris xSwitch X10-24S2Q xsw, a commercial OpenFlow switch to build the net-

work7. Hardware switches are connected to the controller via cable connections.

4.5.2 SDN-aimed DDoS Attacks

We first evaluate the impact of the new SDN-aimed DDoS attacks. Specifically,

we measure the bandwidth consumption (including the impacts on edge switches and

internal switches in both reactive and proactive approaches) and CPU consumption

(in both reactive and proactive approaches) of the new attacks. We also compare the

results with the traditional data-to-control plane saturation attacks and analyze the

differences of these two attacks.

Bandwidth consumption. We build the test environment in Figure 4.13 to

compare the bandwidth consumptions of the two attacks. In this experiment, we

adopt four hosts (i.e. two senders, one receiver, and one attacker) and two Open-

Flow switches. To simulate a real-world network, we set a 10.192.0.0/10 subnet on

sender-1 port, 10.128.0.0/10 on the attacker port, 10.64.0.0/10 on sender-2 port, and

7The attacks can also affect other commercial OpenFlow switches such as Pica8. We only find
switches from Big Switch Networks can resist ARP-based attacks with a local ARP table, but still
suffer from other attacks (e.g. TCP-based attacks).
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10.192.0.0/10 subnet
Sender 1: 10.192.0.2

10.64.0.0/10 subnet
Sender 2: 10.64.0.2

Sender 1

Attacker

l3 learning/
OSPF

ICMP 
responder

Receiver

requests

ICMP requests/
table-miss packets

RYU Controller

S1
(edge switch)

S2
(internal switch)

Sender 2

requests

Attacker: 10.128.0.2
10.128.0.0/10 subnet

Receiver: 10.0.0.2
10.0.0.0/10 subnet

S2: 11.0.0.2S1: 11.0.0.1

Fig. 4.13: Experiment environment to measure the bandwidth consumptions.

10.0.0.0/10 on the receiver port. The attacker will use scapy to flood ICMP echoes to

launch the new attacks, or table-miss TCP packets (randomly forging some fields) to

launch the traditional attacks under different attack rates. We use iperf to measure

the available bandwidth between the sender and receiver under attacks. Besides, we

also adopt three control apps (i.e. l3 learning, OSPF8, and ICMP responder) on the

control plane for reactive approach (l3 learning for dynamical flow rules) and proactive

approach (OSPF for static flow rules).

We first compare the effects of the two attacks on edge switches (i.e. S1 in Fig-

ure 4.13) in reactive approach. In the new attacks, we set the destination IP and

MAC addresses in each ICMP echo into S1’s IP and MAC. The bandwidth is mea-

sured between the receiver and sender 1. The results in the hardware and software

environments are depicted in Figure 4.14. Clearly, both the traditional and new

attacks have a great impact on the edge switch. In the software environment, the

bandwidth is almost exhausted under traditional attacks with 450PPS (packet per

8We modified l3 learning and OSPF apps by activating reactive/proactive flow installation to
each subnet based on ipv4 src instead of flooding.
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(a) Software environment.
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(b) Hardware environment.

Fig. 4.14: Available bandwidth of the edge switch in reactive approach.

second) attack rate, and new attacks with 400PPS attack rate (since the communi-

cation in Mininet is actually progress-to-progress communication, the bandwidth is

much higher in software environment than in hardware environment). The impact

in the hardware environment is less significant, but still nearly 75% bandwidth is

consumed under traditional attacks, and 85% bandwidth under new attacks (500PPS

attack rate). Generally speaking, the new attacks consume more bandwidth than

traditional attacks. It is because, in the new attacks, the packet in messages need to

contain the whole request rather than the header under the traditional attacks.

We further compare the attacking effects on internal switches (i.e. S2 in Figure

4.13) in reactive approach. We change the destination IP and MAC addresses in each

ICMP echo into S2’s IP and MAC. Generating table-miss packets in the traditional

attacks remains the same. The bandwidth is measured between the receiver and

sender 2. The results in the software environment and hardware environment are

depicted in Figure 4.15. We can infer that the traditional attacks have less impact

on internal switches. It is because we set four subnets in our experimental setup, and
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(a) Software environment.
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(b) Hardware environment.

Fig. 4.15: Available bandwidth of the internal switch in reactive approach.

the table-miss traffic will be distributed to each subnet. Therefore, only a portion

of attack traffic can affect the internal switch (S2). The impact of the traditional

attacks will be reduced when the number of switches increases. On the other hand,

all requests in new attacks will be delivered to the victim switch (S2) to consume its

bandwidth. The new attacks are able to jam any internal switch. The impacts of

new attacks are almost identical on edge switches and internal switches.

Finally, we compare the two attacks in an OpenFlow network with proactive ap-

proach. Since the performances of the two attacks are almost identical on the edge

and internal switches in a proactive network, we only present the results on an edge

switch. We set S1 as the target switch and measure the bandwidth between the

receiver and sender 1. The results are depicted in Figure 4.16. Clearly, the tradition-

al attacks can hardly affect the switch when the network adopts proactive approach.

The table-miss traffic can only consume about 10% switch-switch bandwidth, but not

switch-controller bandwidth. However, the new attack can still drain the bandwidth

of the victim switch since the requests will always trigger packet in messages in both
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(a) Software environment.
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Fig. 4.16: Available bandwidth of the victim switch in proactive approach.

approaches.

Computational resource consumption. We further compare the computa-

tional resource consumptions of the two attacks. The test environment is depicted in

Figure 4.17. We use ten hosts and five switches in the software environment, and five

hosts and two switches in the hardware environment. The botnet is constructed by all

hosts and will be controlled by an attacker to launch the new attacks (flooding SYN

packets) and traditional attacks (flooding table-miss UDP packets). We also adopt

an l3 learning/OSPF app for reactive/proactive approach, and a TCP responder ap-

p to generate TCP responses for TCP packets (No port is enabled on all switches.

SYN packets will be responded with RST packets). We measure the real-time CPU

utilization rate to show the computational resource consumption.

We first present the results in reactive approach scenario in Figure 4.18. Since

we only use a personal computer as the control plane, the computational resources

can be easily exhausted by the two attacks. The controller is more likely to be

overwhelmed in hardware environment than in software environment. We think the
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Fig. 4.17: Experiment environment to measure the computational resource consump-
tions.

main reason is that the hardware switches have a better forwarding ability than

software switches, which deliver more traffic to exhaust controller’s CPU quickly.

The traditional attacks have a more serious impact than the new attacks in the

software environment. We think the main reasons are the control apps may need to

traverse all their logic to handle table-miss packets, and one table-miss packet can be

delivered to the controller more than once by different switches. While the requests

of the new attacks are normally covered by the logic of control apps, and will only

be reported to the controller once by the target switch. However, the differences are

not significant, and the impacts of the two attacks become almost the same in the

hardware environment.

The results in proactive approach scenario are depicted in Figure 4.19. The tradi-

tional attacks can hardly affect the control plane when the network adopts proactive

approach. The CPU utilization rate remains 0% in both hardware and software en-

vironment since the switches follow the pre-installed flow rules to forward all packets

without reporting to the control plane. On the other hand, the impact of new attacks

in proactive approach is same as that in reactive approach. Generating responses to

requests still lies in the realm of the control plane.

Against previous solutions. We analyze the impact of new SDN-aimed DDoS
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(a) Software environment.
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(b) Hardware environment.

Fig. 4.18: CPU utilization rate in reactive approach.
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Fig. 4.19: CPU utilization rate in proactive approach.
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(a) Bandwidth consumption.
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(b) CPU consumption.

Fig. 4.20: Protective efforts of previous solutions against the new SDN-aimed DDoS
attacks.

attacks against an OpenFlow network with existing defense systems. We launch

the new attacks in three scenarios: (i) an OpenFlow network without protecting

systems, (ii) an OpenFlow network with FloodGuard Wang et al. [2015], and (ii)

an OpenFlow network with FloodDefender Gao et al. [2017]. Note that these two

solutions are aimed at the mitigation of the traditional attacks in reactive networks

and the results are very similar in software and hardware environments. Therefore,

we only compare the bandwidth and CPU consumption in a reactive network under

the software environment.

The results of bandwidth and CPU consumptions are depicted in Figure 4.20. S-

ince both of the solutions are designed against traditional attacks to handle table-miss

packets, they both fail to protect the bandwidth between the controller and victim

switch. It is because FloodGuard/FloodDefender only forwards table-miss packets to

the data plane cache/neighbor switches. While for handling requests, both of them

deliver requests to the controller as in a normal OpenFlow network. They have no

bandwidth protective effort under the new attacks, as depicted in Figure 4.20-a. The
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result of CPU consumption in Figure 4.20-b is interesting. FloodGuard will fail to

protect the CPU resource under the new attacks since the attack requests will not

pass any components in FloodGuard (these packets are processed as normal packets).

However, FloodDefender can filter out some attack traffic to reduce CPU consump-

tion. It is because the packet in buffer component in FloodDefender is designed to

buffer all packet in packets. The attack requests are buffered as well and will be

further dropped by the two-phase filtering component when the frequency of these

attack flows are low. However, this filtering technique may not be suitable against

the new attacks. FloodDefender utilizes source and destination addresses as key to

identify each flow. While the destination MAC addresses of STP, LACP, and LLDP

in the new attacks are fixed regardless of different targets. Therefore, attackers can

increase the frequency of attack flows to bypass the filtering.

4.5.3 FloodBarrier Evaluation

We evaluate the performances of our proposed FloodBarrier system against the

new SDN-aimed DDoS attacks, including the available bandwidth, CPU consump-

tion, attacker identification, and the overhead of the system. Specifically, we test the

performances in two scenarios: (i) an OpenFlow network without protecting systems,

and (ii) an OpenFlow network with FloodBarrier. The test environment is depicted

in Figure 4.21, which includes five and two switches in the software and hardware en-

vironments respectively, one sender, one receiver, and one botnet. Note that previous

solutions such as AvantGuard Shin et al. [2013b], FloodGuard Wang et al. [2015],

and FloodDefender Gao et al. [2017] are all aimed at the mitigation of the tradition-

al attacks, and are unsuitable against new attacks as we discussed in the previous

evaluation. Therefore, we will not compare FloodBarrier with them. Since the new
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Fig. 4.21: Experiment environment to measure the performance of FloodBarrier.

attacks have almost same impacts on proactive/reactive networks, and edge/internal

switches, we only launch the new attacks on an edge switch in a reactive network.

Bandwidth under attacks. We first evaluate how much bandwidth can be

saved by FloodBarrier under the ARP-based attacks. We construct the botnet by

only one compromised host to more precisely control the total attack rate. Besides,

we also use two control apps on the control plane: an l2 learning app to provide

MAC-based forwarding functions, and an ARP responder app which can respond to

ARP requests. The bandwidth is measured between the sender and receiver.

The results in software and hardware environments are depicted in Figure 4.22.

Comparing with an OpenFlow network without protecting systems, FloodBarrier

saves much bandwidth under the SDN-aimed DDoS attacks. In the software envi-

ronment, more than 98% bandwidth is consumed and the victim switch becomes

dysfunctional under 500PPS attack rate without FloodBarrier. Even though the net-

work can operate under 500PPS attack rate in the hardware environment, the attacks

still consume nearly 85% bandwidth. While with the protection of FloodBarrier, the

attacks only consume less than 10% and 20% bandwidth under 500PPS attack rate

in the software and hardware environments respectively. Since FloodBarrier does not
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(a) Software environment.
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(b) Hardware environment.

Fig. 4.22: Available bandwidth between the victim switch and controller.

report ARP packets to the control plane, we regard the new attacks can only consume

some switch-switch bandwidth.

Computational resource under attacks. We further measure the protective

effort of FloodBarrier on the control plane. The botnet is constructed by ten and

five hosts in the software and hardware environments respectively. We also adopt

the l2 learning app to provide basic forwarding functions and use LLDP packets to

launch the new attacks. The computational resource consumption is still represented

by the real-time CPU utilization rate.

The protective efforts of FloodBarrier are depicted in Figure 4.23. Similar to our

previous tests, the CPU utilization rate of the control plane quickly reaches 100%

without defense systems. With the protection of FloodBarrier, the CPU utilization

rate goes up quickly and reaches 18% within the first second in the software envi-

ronment. Then the mitigation agent starts to migrate requests to the request agent

to save the computational resources. Since these LLDP packets are handled by the
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(b) Hardware environment.

Fig. 4.23: CPU utilization rate.

request agent rather than the control plane, the CPU utilization rate goes down af-

ter 1s, and remains in around 1% after 1.6s. In hardware environment, the result is

similar. The CPU utilization rate goes all the way up to 100% without protecting.

While with FloodBarrier, the CPU utilization rate drops down at 0.8s and remains

1% after 1.6s. Both results show that FloodBarrier can protect the computational

resources of the control plane from being exhausted.

Attacker identification. We then evaluate the performance of the request

checker component. We only test the FloodBarrier in the software environmen-

t, because we can easily involve more compromised hosts to launch the attacks.

Specifically, we keep the total ARP attack rate fixed at 500PPS, and adopt dif-

ferent numbers of compromised hosts (i.e. 10, 30, 50, and 100 hosts) to build

the botnet. The number of benign hosts will be 50, and each benign host will

ping all other hosts to trigger benign ARP requests. We use the l2 learning and

ARP&ICMP responder apps to provide basic forwarding and responding function-

s, and true-positive rate (TPR = Identified compromised hosts
Total compromised hosts

) together with false-positive
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Fig. 4.24: Attack traffic identification.

rate (FPR = Benign hosts classified as compromised hosts
Total benign hosts

) to evaluate the performance of clas-

sification.

The performance of attack traffic identification is depicted in Figure 4.24. When

an attacker only controls a few compromised hosts (i.e. 10-host botnet scenario),

request checker can precisely identify all compromised hosts without misclassifying

any benign host. While when the botnet involves more hosts, the attack identification

becomes less precise, the TPR and FPR become 90% and 8% respectively in 100-

host botnet scenario. We think the main reason is that the average attack rate on

each compromised host becomes less in this scenario, making the behaviors of these

compromised hosts similar to those of benign ones. Besides, we also find that when

a benign host sets its default gateway to a non-existing device, this host has a high

probability to be classified as an attacker. It is because the host will keep sending

ARP requests to get the MAC of the gateway. Though these requests are not to

switches, the behavior of the host is different from the benign ones. The good thing

is that in real-world networks, the gateway normally exists. We can also notify a user

when he sets an incorrect default gateway.
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Overhead Analysis. Finally, we analyze the overhead of FloodBarrier. Since we

separate the logic of some protocols to handle incoming request, we think this may

trigger packets retransmission and introduce some overhead into the network. In this

experiment, we compare the response times of three different protocols (i.e. TCP,

ARP, and STP) in an OpenFlow network and an OpenFlow network with Flood-

Barrier. Specifically, we measure the time delays between (i) a host sending SYNs

and the control plane receiving ACKs (enabled port scenario); (ii) a host sending

SYNs and receiving RSTs (disabled port scenario); (iii) a host sending ARP requests

and receiving ARP responses; and (iv) a switch sending BPDU-TCNs and receiving

BPDU-TCAs. The control apps include an l2 learning app to provide basic forward-

ing functions; a TCP responder app to enable TCP on port 23 of the target switch (we

only support establishing and terminating connections on port 23 for demonstration);

an ARP responder app to respond to ARP requests; and an STP app to provide STP

services based on distributed STP computation (by BPDUs). We do not involve any

attackers in the network, and all modules in FloodBarrier are activated even without

attacks.

The result is depicted in Table 4.3. We can find that only in the enabled TCP port

scenario, FloodBarrier will introduce longer delay into OpenFlow networks. We think

the main reason is that FloodBarrier will deliver the connection to the control plane

in this scenario, which will cause retransmitting SYN-ACKs and ACKs. After setting

new rules, FloodBarrier incurs no overhead into the networks since legal requests will

be delivered directly to the control plane. In other scenarios, FloodBarrier actually

reduces the response time. It is because OpenFlow networks are not good at handling

control plane protocols (the data-control plane communication vulnerability). The
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Table 4.3: Average Delay of the Response Time

OpenFlow FloodBarrier

TCP (enabled port) 156ms 211ms
TCP (disabled port) 134ms 45ms
ARP 105ms 32ms
STP 212ms 138ms

request agent module of FloodBarrier introduces some intelligence of autonomously

responding to those events. We think FloodBarrier can also give new insights into

dealing with the data-control plane communication overhead in OpenFlow networks.

4.6 Limitation and Discussion

We now discuss the limitations of our FloodBarrier. The first issue is that since we

introduce an additional device, request agent module into the networks, it may raise

some scalability and security concerns. For the scalability concern, the request agent

is compatible with OpenFlow networks. Previous solutions Wang et al. [2015] have

already shown the feasibility of introducing an additional device. Besides, the request

agent can also be regarded as a network security component in OpenFlow networks

such as a firewall or a security agent to analyze suspicious traffic Shin et al. [2016].

For instance, switches can forward suspicious traffic to a security agent to analyze

the payload and attack pattern in an OpenFlow network. This firewall architecture

has been widely accepted in SDN security designs. For the security concern, the

request agent may become a target of potential attacks. Based on the fact that the

request agent is designed to facilitate the control plane to deal with simple requests of

some specific protocols, we can filter out packets of other protocols when received by

the request agent. Furthermore, we can extend TCP buffer and memory with more
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hardware resources to build a powerful request agent, and frequently shut down illegal

TCP connections (no ACKs are received) to avoid resource consumption. Besides,

we can also introduce more request agent modules (each one is in charge of a subset

of switches) to scale up the network.

Another concern is whether attackers can bypass FloodBarrier with “smarter”

attacking strategies. We discuss smart TCP flood attacks in Appendix-A. Here we

consider a host pretending to be a switch. In the mitigation agent, we enable a flexi-

ble way to identify the type of connected device dynamically (e.g. allowing transfers

between HOST and SWITCH). This may allow compromised hosts to forge a trans-

fer by first sending Port Down signals (triggering HOST to ANY transfer) and then

LLDP packets (triggering ANY to SWITCH transfer). This attack requires the com-

promised host generates no host traffic during the time period of sending Port Down

signals and LLDP packets (first-hop host traffic will change the device type to HOST

again). Therefore, the request agent can set a watching time (e.g. 10s) to monitor

the host traffic from shutdown-ports (we think this delay is affordable since replacing

a device needs manual operations). When considering a more powerful attacker that

could mute all host-generated traffic (in this case the attacker also expose himself to

the normal machine user since blocking all host-generated traffic will disrupt normal

networking activities), the request agent can deliver these HOST to SWITCH trans-

fers in a watch list to the mitigation agent for verification. If too many suspicious

packets are revived from a switch in the watch list, the mitigation agent can regard

the switch as a malicious device and block all traffic from this switch.

Finally, we consider how FloodBarrier can be deployed in hybrid networks since

traditional switch cannot follow the directions of the control plane to forward migrated
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traffic to the request agent. In this scenario, the control plane should first figure out

whether the network becomes disconnected by removing traditional switches (i.e.

traditional switches form a cut of the network topology). Then, we should use at

least one request agent for each component, and only involve OpenFlow switches

when calculating the paths to the request agent.

4.7 Chapter Summary

The costly data-control plane communication in SDN is a potential threat to

the security of the networks. By leveraging the communication overhead between

the two planes, we introduce new SDN-aimed DDoS attacks to exhaust data-control

plane bandwidth and control plane resources. Comparing with traditional saturation

attacks, the new attacks can target at any OpenFlow switch in both reactive and

proactive networks, and attackers can be fully distributed to launch the attacks. To

mitigate the new attacks, we introduce FloodBarrier to migrate traffic to the request

agent that can respond autonomously to some events, and manage the flow rules via

the mitigation agent to block attack traffic to the victim switch. Both hardware and

software experiments show that the new attacks can target at all kinds of switches in

both reactive and proactive OpenFlow networks, which have a more serious impact

on SDN than the traditional saturation attacks. While with the protection of Flood-

Barrier, the network can resist the attacks without consuming much bandwidth and

computational resources.
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Chapter 5

Enabling Malware Traffic
Detection and Programmable
Security Control with
Software-Defined Firewall

Previous chapters show the study of vulnerabilities in SDN. In this chapter, we

consider how to use the idea of SDN to enhance security (i.e. detecting malware

traffic). Network-based malware has posed serious threats to the security of host ma-

chines. When malware adopts a private TCP/IP stack for communications, personal

and network firewalls may fail to identify the generated malicious traffic. Current s-

tubborn firewall policies do not have a convenient update mechanism, which makes the

malicious traffic detection difficult. In this chapter, we propose Software-Defined Fire-

wall (SDF), a new security design to protect host machines and enable programmable

security policy control by abstracting the firewall architecture into control and data

planes. The control plane strengthens the easy security control policy update, as in

the SDN (Software-Defined Networking) architecture. The difference is that it further

collects host information to provide application-level traffic control and improve the

105
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malicious traffic detection accuracy. The data plane accommodates all incoming/out-

going network traffic in a network hardware to avoid malware bypassing it. The design

of SDF is easy to be implemented and deployed in today’s network. We implement

a prototype of SDF and evaluate its performance in real-world experiments. Exper-

imental results show that SDF can successfully monitor all network traffic (i.e., no

traffic bypassing) and improves the accuracy of malicious traffic identification. Two

examples of use cases indicate that SDF provides easier and more flexible solutions

to today’s host security problems than current firewalls.

5.1 Overview

Malicious software (malware) has become one of the most serious threats to host

machine security. Today’s malware needs network connections to conduct malicious

activities (e.g. flooding packets, leaking private data, and downloading malware up-

dates). To detect these malicious activities, security companies have proposed security

solutions on both host side (personal firewalls such as Microsoft Windows firewall and

anti-viruses) and network side (network firewalls such as intrusion detection systems

and ingress filtering). However, when malware lies in a lower layer than the per-

sonal firewalls, this malicious traffic becomes invisible to personal firewalls. Though

network firewalls can capture all traffic, a lack of host information can make them

fail to differentiate malicious traffic from other benign traffic. A typical example is

the Rovnix bootkit ron that can bypass the monitoring of a personal firewall via a

private TCP/IP stack. Mixed with benign traffic, the network firewall may also fail

to identify its traffic when Rovnix does not have significant features in the attack

signature database, as depicted in Figure 5.1.
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Fig. 5.1: Personal and network firewalls may fail to identify malicious traffic when
malware uses a private TCP/IP stack.

Many solutions have been proposed for malware pattern analysis and dynamic

security policy update Hong et al. [2016], Hu et al. [2012, 2014], Perdisci et al. [2010],

?. Perdisci et.al. present a network-level behavioral malware clustering system by

analyzing the structural similarities among malicious HTTP traffic traces generat-

ed by HTTP-based malware Perdisci et al. [2010]. Amann et.al. propose a novel

network control framework that provides passive network monitoring systems with

a flexible and unified interface for active response Amann and Sommer [2015]. The

high programmability in software-defined networking (SDN) also introduces security

innovations. FlowGuard Hu et al. [2014] enables both accurate detection and effec-

tive resolution of firewall policy violations in OpenFlow networks. Another approach,

PBS Hong et al. [2016], evaluates the idea in SDN to enable fine-grained, application-

level network security programmability for mobile apps and devices. PBS introduces

a more flexible way to enforce security policies by applying the concept of SDN.

However, these approaches may incur high false-positive rate in attack traffic identifi-

cation with no reference to host information or can be bypassed when malware adopts

mechanisms to avoid personal firewall check (e.g., via a private TCP/IP stack).
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To address the problem of reliable malicious traffic detection, we propose software-

defined firewall (SDF), a new architecture that can prevent malicious traffic bypassing

to enhance the security of host machines. The new architecture of SDF can be wit-

nessed from its design of “control plane” and “data plane” as in SDN. The “control

plane” in SDF collects host information (e.g., task names, CPU and memory utiliza-

tions of tasks) to improve the accuracy of malicious traffic detection and provides

fine-grained flow management. The data plane monitors both incoming and outgoing

traffic in a network hardware. The two-layer design in SDF can successfully avoid

malware bypassing by integrating the host information. Another salient feature of

SDF is its high programmability and application-level traffic control. Based on Hong

et al. [2016], we design a programmable language for SDF to allow users to develop

control apps, through which the control plane of SDF can install rules on the data

plane to manage network traffic. Thus, users can dynamically update host machine

security policies, and achieve timely and precise malicious traffic filtering.

SDF is also robust to different attacks against its control plane. We leverage an

audit server to avoid compromised control plane or malware installing illegal rules and

removing legal rules on the data plane. When attacks are detected, the audit server

will alert the network administrators about the abnormal events. With these alerts,

network administrators can further check the host machine to remove the malware.

SDF is easy to implement and can be deployed in either traditional or OpenFlow

networks without many changes of the existing network framework. With the assist

of SDF, many today’s security solutions can be simplified by applying different control

apps.
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Our main technical contributions on protecting host machine security are as fol-

lows:

• Novel Architecture. We propose a novel firewall architecture by abstracting the

control and data planes in SDN. The “data plane” monitors network traffic on

a network hardware and filters out illegal traffic based on security rules. The

“control plane” collects host information and dynamically updates security rules

in the “data plane”. Besides, an audit server is applied to detect attacks against

the control plane.

• New Mechanism. We introduce new mechanisms to protect host machine secu-

rity and provide high programmable application-level security control. Different

from existing firewall solutions, which adopt fixed classification algorithms and

features, our designs allow network administrators to set up security rules based

on user-defined algorithms or features. Furthermore, our design could detect

malware traffic even when the malware utilizes a private TCP/IP to bypass

traditional firewalls.

• Implementation and Evaluation. Based on the mentioned architecture and

mechanisms, we design and implement SDF, and evaluate its performance in

real-world experiments. Experimental results show that SDF can monitor all

network traffic and precisely identify malicious traffic. The audit server can

alert users when the control plane is poisoned or shut down. Furthermore, t-

wo use cases of SDF are presented to show that the network programmability

simplifies today’s security solutions.
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The rest of the chapter is organized as follows. Section 5.2 introduces the back-

ground knowledge of malware and SDN, as well as security problems in the host

machine. Section 5.3 presents the architecture and detailed design of SDF. The im-

plementation, experimental evaluation, and two use cases of SDF are shown in Section

5.4. In Section 5.5, we discuss the limitations of our work. Finally, we conclude this

paper in Section 5.6.

5.2 Background and Problem Statement

In this section, we first introduce the adversary model by presenting the limitations

of personal and network firewalls. Then, we briefly review the background of SDN.

Finally, we state the problem and challenges in protecting host machine security.

5.2.1 Adversary Model

Regular network applications (e.g. Chrome, and MSN) use the TCP/IP stack and

interfaces provided by the operating system (OS) for network communication. Specif-

ically, the traffic of these applications will pass through the TCP/IP protocol driver,

network driver interface specification (NDIS) intermediate driver, NDIS filter driver,

and NDIS miniport driver before reaching network interface card (NIC) hardware, as

depicted in Figure 5.2. The personal firewall lies in one of the four layers to analyze

both incoming and outgoing traffic. When malicious traffic is detected, the firewall

reports it to the user for decisions or drops it based on the security policies.

Some malware can use a private TCP/IP stack to bypass personal firewalls ron.

Specifically, the malware hooks NdisMRegisterMiniportDriver() and NdisMRegister-

Miniport() functions, and registers malware’s own miniport handler function before
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Fig. 5.2: Malware bypasses a personal firewall.

the network adapter driver registers to NDIS. With malware’s own miniport handler

function, the malware is able to send/receive packets through its private TCP/IP

stack and bypass the monitoring of personal firewalls, as depicted in Figure 5.2.

Malware also has the ability to poison personal firewalls, such as intercepting the

communication between firewall and OS or even shutting down the firewall. When

malware tries to damage a defense system, we should ensure that these malicious

operations are noticeable to users. Users can take a further step to scan the host to

remove the malware.

5.2.2 SDN Background

Software-defined networking (SDN) is a new network paradigm that separates the

control and data planes in a network McKeown et al. [2008]. The control plane of SDN

dictates the whole network behavior. This logical centralization introduces a simpler

but more flexible way to manage and control network traffic by a “southbound”

protocol (i.e. OpenFlow McKeown et al. [2008]).

The OpenFlow networks adopt flow rules to handle network traffic. When a packet
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comes, the OpenFlow switch searches its flow table to see whether this packet matches

any flow rules. If a match is found, the OpenFlow switch will follow the action field

of this flow rule to process the packet. The actions could be (not limited to): (i)

forward the packet; (ii) drop the packet; (iii) report the packet to the control plane.

If the packet does not match any flow entries (table-miss), the OpenFlow switch

normally sends a packet in message to the control plane for instruction. The control

plane then decides how to process the new packet based on the logic of the apps

and responds with action and flow rule(s). This reactive flow installation approach

enables an easier and more flexible way to manage and control network traffic, and

has been widely used in most OpenFlow applications.

5.2.3 Problem and Challenge

The problem studied in this chapter is how to detect malicious traffic of malware

on a host machine. To solve this problem, we face the following challenges.

How to avoid malicious traffic bypassing a personal firewall? As we

mentioned above, malware can use a private TCP/IP stack to bypass the detection of

personal firewalls. Therefore, a good solution should conduct the detection in network

hardware layer (lower than the layer that malware works on to avoid being bypassed).

Unfortunately, no existing personal firewall monitors traffic in NIC layer. Meanwhile,

when malware attacks the firewalls, how to ensure the system still functional or alert

users when attacks occur is also a challenging problem. Therefore, we need a new

security framework for malicious traffic detection.

How to precisely identify malicious traffic? Even though malware cannot

bypass network firewalls, a lack of host information on network firewalls may lead to

incorrect traffic classification. Personal firewalls can adopt TCP port to associate each
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packet with some host information (e.g. task name), and report to the user to update

blacklist/whitelist dynamically for more precise identification. However, the host

information, which is not contained in a packet, cannot be used in network firewalls

to identify attack traffic. For instance, the security database of a network firewall has

“server name = ‘evil.com’” in its blacklist to drop all traffic to “evil.com”. When the

malware server updates its hostname (e.g. from “evil.com” to “newevil.com”), the

network firewall may fail to identify these malicious packets without the information

provided by the host machine.

How to provide programmability of security services? Though firewalls

may automatically update security policies based on some specific features and al-

gorithms, malware can still bypass them when these features and algorithms (i.e.

classifiers) are revealed. The management of security policies still remains in the

realm of network administrators. Furthermore, we cannot directly apply SDN in-

to host machine security for programmability since no application-level controls are

enabled in OpenFlow specifications. Besides, the controller cannot control network

devices that do not support SDN functions. The programmability of the network

will be lost with existing commodity switches. Not many companies can afford the

expensive replacement of traditional network equipments. Therefore, a good solu-

tion should follow the mechanisms in SDN to enable a fine-grained flow management

on some controllable network devices (e.g. NIC). Companies can then replace their

network devices on some crucial servers to protect them.
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5.3 System Design

We design a system named SDF, which can conduct detection on network hard-

ware, precisely identify malicious traffic with host information, and provide pro-

grammable security services. We describe the design of the SDF system, including

its architecture and detailed designs.

5.3.1 System Model and Architecture

The design of SDF is based on the concept of SDN by utilizing the “southbound”

APIs (OpenFlow) to provide programmable and flexible security policy control. SDF

has a network hardware as its data plane for traffic monitoring. It processes each

packet based on the flow rules in its flow table to avoid malicious traffic bypassing

the detection and support programmable security control with OpenFlow interfaces

(similar to an OpenFlow switch). The implementation could be either on host side

(using NetFPGA or programmable NIC Tinnirello et al. [2012] to replace traditional

NIC), or on switch side (using an OpenFlow switch to replace the traditional switch1).

The control plane of SDF is built in a host machine to provide programmable and

flexible security policy control. This control plane is not centralized, which is different

from that of SDN. Besides, it also collects host information to enable fine-grained,

application-level traffic control. Based on traffic statistics from the data plane and

host information from the control plane, control apps (similar to the controller appli-

cations in SDN) could precisely identify malicious traffic.

The architecture of SDF consists of six functional modules: traffic monitor, host

status monitor, controller platform, control app abstraction, attack detection and

1The control applications in switch replacement scenarios should be carefully designed, since
multiple controllers are involved, and each controller should only control the traffic of its host.
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than OS layer.

audit server, as depicted in Figure 5.3:

• Traffic monitor module works as the data plane and runs on a network hard-

ware. It processes and monitors both incoming and outgoing traffic based on

the flow rules in its flow table.

• Host status monitor module is a monitor application on the host machine that

monitors host information. It provides host information to the control app

abstraction module to enable application-level management and a precise attack

detection.

• Controller platform operates much like existing SDN software controllers (e.g.

NOX, POX, and RYU). Since it could be implemented commonly by installing

software controllers, we skip its design description in this chapter.
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• Control app abstraction module is a middle layer between the controller plat-

form and the control applications. It collects host and traffic information and

associates each packet with host information. Besides, the control app abstrac-

tion module abstracts the controller implementation language to a high-level

language and provides user-friendly interfaces to dynamically update the net-

work security policies.

• Attack detection module is a pre-installed control app which identifies malicious

traffic based on the host and traffic information. We also allow users develop

their own attack detection module based on their own demand.

• Audit server is an additional device in the Intranet to detect whether the control

plane is poisoned by malware (e.g. the controller is shut down or the flow rules

are intercepted and replaced by malware). Audit server works in the Intranet to

verify the flow rules on the traffic monitor. It periodically collects the host and

traffic information and uses the same database and attack detection algorithm

(same classifier) to verify the legality of flow rules.

The workflow of SDF is as follows. Normally, the traffic monitor module checks

and forwards incoming/outgoing traffic between the Internet/Intranet and host ma-

chine based on the flow rule entries (security rules) in its flow table. When abnormal

traffic is detected by the traffic monitor, SDF will follow three steps to handle it.

First, the traffic monitor reports the abnormal traffic flows to the controller platform.

Second, the reported abnormal flows will be sent to the control app abstraction mod-

ule along with host information from the host status monitor. Flows will be tagged
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with host information and sent to the control app (attack detection) to precisely i-

dentify malicious traffic. Finally, the attack detection or other control apps decide

actions to the reported flows and update security rules on the network monitoring

module.

While other modules are activated, the audit server periodically collects flow en-

tries, host and traffic information to verify the legality of flow entries. The audit

server will also alert the network administrator once unexpected/missing flow rules

are detected.

5.3.2 Traffic Monitor

Traffic monitor is a forwarding fabric that processes each packet based on its

flow rules. It is specific network hardware which monitors network traffic at network

NIC layer to avoid malware to bypass SDF (e.g. via a private TCP/IP stack). The

functionality of the traffic monitor stems from the maintenance of flow rules in the flow

table (similar to the flow rules in an OpenFlow switch), which are used to enforce

security policies. Traffic monitor also provides southbound APIs (i.e. OpenFlow

interfaces) to support programmable security control. As we mentioned before, the

implementation could be either on the host or switch side. Here we describe a more

common scenario that the traffic monitor is a specific hardware.

Similar to an OpenFlow switch, traffic monitor decides the actions (e.g. forward-

ing, dropping, or reporting) of each incoming/outgoing flow based on flow rules in

its flow table stored in Ternary Content Addressable Memory (TCAM). It adopts

two ports (two virtual ports when implemented on the host side) to connect the host

machine and Internet/Intranet. This scheme allows us to distinguish between incom-

ing traffic and outgoing traffic by network port with great ease. The traffic monitor
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struct flow_entry {
    match;     /* match against packets based on header */
    priority;  /* matching precedence */

counter; /* received packets and bytes */
    action;     /* actions applied to matched flows */
    timeout;   /* maximum amount of time before expired */
}

(a) The structure of a flow entry.

struct header {
    IN_PORT;  /* input port (from host or internet) */
    ETH_SRC;  /* ethernet source address */
    ETH_DST;  /* ethernet destination address */
    ETH_TYPE;  /* ethernet frame type */
    VLAN_ID;  /* VLAN ID */
    VLAN_PCP;  /* VLAN priority */
    IP_SRC;  /* IP source address */
    IP_DST;  /* IP destination address */
    IP_PROTO;  /* IP protocol */
    IP_TOS;       /* IP type of service */
    PORT_SRC;  /* transport source port */
    PORT_DST;  /* transport destination port */
}

(b) The structure of a header.

Fig. 5.5: Structures in traffic monitor.

contains four major components: flow table, header parser, flow table lookup, and

action processor, as depicted in Figure 5.4. Though traffic monitor module could

be implemented by exactly following OpenFlow v1.3 of1 or higher versions, we de-

scribe minimum requirements in designing since the resources can be limited in some

scenarios.

Flow Table. Flow table component stores flow entries in TCAM. Besides match

and action fields, a flow entry also has priority, counter, and timeout fields, as depicted

in Figure 5.5-a.

In SDF, we only need to support three actions in the action filed: forward to

host/Internet, drop the packet, and report to controller. In the counter field, we only
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need to count matched packets and bytes of this flow entry.

To ensure malicious activities are noticeable when malware attacks the control

plane, the flow table component also provides read-only APIs for the audit server to

get the current flow entries from both Internet/Intranet and host sides. Therefore, the

audit server can find out whether the control plane is compromised (the verification

will be discussed later).

Header Parser. Header parser component extracts the header information of

each packet to identify each flow. Figure 5.5-b shows different fields in a header.

Most fields in SDF have the same meaning with those in OpenFlow protocol. The

IN PORT field is slightly different. Since the traffic monitor only has two data ports

in SDF (interfaces to Internet and host), IN PORT in SDF only denotes whether a

packet is an ingress packet (from the Internet to host) or an egress packet (from the

host to Internet).

Flow Table Lookup. After extracting header information, the flow table lookup

component conducts both exact and wildcard lookups to match flow entries in the

flow table. To ensure efficiency and reduce collisions, we apply two Hash functions on

the flow header in the exact lookup. Paralleled with the exact lookup, the wildcard

lookup uses a mask to check for any matches in the flow table. If any flow entries are

matched with the packet, the flow table lookup will deliver the results (all matched

flow entries) to the action processor. Otherwise, the lookup result will be null.

Action Processor. Action processor decides which action should be applied to

the packet. Specifically, the action(s) of a flow entry with the highest priority is

applied to the packet. The default action (report to the controller) is applied in the

null result scenario. Once an action is applied, the counter field of the applied flow
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entry is updated.

Though OpenFlow v1.3 of1 indicates that OpenFlow switches can preserve the

original packet and only encapsulate the header information into packet in mes-

sages, the traffic monitor delivers the whole packet to the controller by adopting

“encapsulate the whole packet to the controller” in the action filed of flow rules (in

switch replacement scenarios the action can be “mirror to controller”). It is because

the memory in NIC is always limited. Besides, encapsulating the whole packet also

allows the control app abstraction module to match the application layer payload

of a packet with attack signature database (e.g. malware server URL and private

information).

5.3.3 Host Status Monitor

Host status monitor works on the host machine. It provides APIs to get the

task name, CPU and memory utilizations of the task based on a specified port

(GetHostInfoByPort). The task name information (task) serves the purpose of i-

dentifying the application that generates the packet. CPU and memory information

(CPU and memory) indicates the current status of the task. With these features,

the accuracy of attack detection can be improved. The control apps can also provide

a fine-grained application-level flow management.

We use a port-host info table to associate host information with each port. The

host status monitor first queries all process id (pid) records on all enabled ports

(port − pid record). Then, it queries all task records based on the obtained pids,

CPU and memory utilizations of these tasks. Finally, it associates each port record

with task (even though multiple processes can listen on the same port, these processes

belong to the same task), CPU and memory. CPU and memory will be the same
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3200 chrome.exe 5.3

3201 msn.exe 00:05:55

New record insertion Record lookup

KEY VALUE
Port Task

3200 chrome.exe

3201 chrome.exe

3205 chrome.exe

3208 chrome.exe 6.3

(4) Expired, invalid record

(3) Not expired, valid record

 : update field  : valid record  : invalid record

(1)

(2)

CPU (%) Memory (MB) Time

57.55.7

6.3 60.8

4.3 52.4

00:05:40

00:05:45

00:00:00

60.8 00:05:45

66.1 00:05:55

2.3 46.1

Fig. 5.6: Port-host info table with two operations: insertion and lookup.

for different pid records with the same task. To ensure the efficiency of indexing, a

port field is used as a key for a hash table (port-host info table). time field is added

when inserting a new record. Each record will expire after texpire time (initially set

to 120 seconds). The port-host info table will be updated in every 5-second.

The port-host info table supports two functions, new record insertion and record

lookup, as depicted in Figure 5.6. When the host status monitor finds that the

port-host info table already has an existing record during insertion, the host status

monitor compares the task field between the existing and new records. If the task

is the same, the host status monitor only updates the CPU , memory, and time

fields, as shown in (1)-operation in Figure 5.6. Otherwise, the host status monitor

overwrites the whole record, as depicted in (2)-operation. When record lookup is

called, the host status monitor checks the time field of the matched record. If the

record is not expired, the host status monitor returns the matched record, as shown

in (3)-operation. Otherwise, the host status monitor returns EXPIRED, as depicted

in (4)-operation. Since new records can overwrite existing records, and time field is
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applied to identify expired records, the port-host info table does not need to support

deletion function in regular hash tables. The size of the port-host info table is set to

1000 entries initially. It also supports appending and compacting strategies to adjust

its size dynamically.

Host status monitor also calls the OS to get task, CPU , and memory based

on the port in real-time when no matched record is found or the record is expired

in the port-host info table. This operation is to avoid the 5-second delay in ta-

ble updating. It may seem that real-time calls would satisfy the requirement of

GetHostInfoByPort. However, the lookups in the port-host info table are much

more efficient than real-time calls. In some scenarios, when the connection is closed

before calling GetHostInfoByPort, the host status monitor cannot get any informa-

tion without previous records.

5.3.4 Control App Abstraction

Control app abstraction provides programmable interfaces to users to dynamically

update the network security rules. Based on the high-level language described in Hong

et al. [2016], we design a programmable language with new match fields (i.e. payload

and host information) for SDF. Designed upon the existing SDN controller platform,

the control app abstraction tags additional fields to flow rules to provide fine-grained

and application-level traffic control, and encapsulates the controller implementation

language to provide user-friendly APIs.

To enable application-level traffic management, the control app abstraction ap-

pends task, CPU , and memory fields to each incoming application-level packet

based on port. With PORT SRC or PORT DST, the control app abstraction us-

es GetHostInfoByPort to tag incoming packets, which allows control apps to process
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Match := TASK | CPU | MEMORY | HEADER | PAYLOAD | HEADERS | *
Event := (FORWARD | DROP | LOG | REPORT)
Rule := OFMatch | Action | Trigger
OFMatch := HEADER | *
Action := (FROWARD | DROP | REPORT)
Trigger := Begin | End
Begin := (IMMEDIATE | Time)
End := (NO_EXPIRE | Time)
Time := HH : MM : SS

Fig. 5.7: A high-level abstract language in the control app abstraction. The values
in the brackets enumerated values of this filed. “HEADER” in Match field means
the whole header of a packet (from MAC layer to transport layer if applicable), while
“HEADERS” represents the specific headers (e.g. ethernet type and source IP).

them based on task, CPU , memory, and other match fields (e.g. IP SRC). After de-

ciding the actions of these packets, the control apps can further install flow entries to

the traffic monitor (these flow entries should follow the flow entry structure described

in Section 5.3-B).

The control app abstraction also utilizes a high-level abstract language (via XML)

to encapsulate “northbound” APIs of the controller to provide convenient facilities for

control app development. This language simplifies controller APIs in SDF scenario

and enables a more convenient way to develop control apps even without knowing

much about OpenFlow and controller APIs (we also allow users to embed Python

script in XML). Three basic elements are included in this language: Match, Event,

and Rule, as depicted in Figure 5.7. Match defines a specific group of flows which

the policy targets. If “*” is specified, the policy will be applied on all received

packets. Event describes the action(s) to the matched flows, such as logging the

packet (LOG) and reporting to the user/apps (REPORT). Lastly, Rule specifies the

update of security rules. It will trigger the control app abstraction and controller

platform to generate a new flow rule and install it in the traffic monitor. Thereby,

users can utilize sophisticated techniques (e.g. machine learning) to create intricate
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<!--Example 1-->
<Policy PolicyID=Training_Classifier_Based_On_DB>
    <Match PAYLOAD=in_DB HEADER=in_DB>
    <Event>SVM_UPDATE</Event>
    <Rule></Rule>
</Policy>

<!--Example 2-->
<Policy PolicyID=Reporting_Suspicious_Flows_To_User>
    <Match CPU_More=20 SVM_CLASS=TRUE>
    <Event>REPORT</Event>
    <Rule></Rule>
</Policy>

<!--Example 3-->
<Policy PolicyID=Blocking_Hidden_Task_Flows>
    <Match TASK=null IN_PORT=host>
    <Event>DROP,LOG</Event>
    <Rule RuleID=Egress_Block>
        <OFMatch IN_PORT=host IP_DST=ip_dst>
        <Action>DROP</Action>
        <Trigger Begin=IMMEDIATE End=NO_EXPIRE>
    </Rule>
    <Rule RuleID=Ingress_Block>
        <OFMatch IN_PORT=internet IP_SRC=ip_dst>
        <Action>DROP</Action>
        <Trigger Begin=IMMEDIATE End=NO_EXPIRE>
    </Rule>
</Policy>

Fig. 5.8: Three examples of control apps.

and dynamic security policy control apps.

Figure 5.8 illustrates three examples of the control apps. Example 1 implies a

use case to update the parameters in attack detection. The user first updates the

attack signature database manually. Then, SDF trains the SVM classifier (traffic-

based classification in attack detection component) based on the results of database-

based classification. Another very useful example is to report suspicious traffic to

the user/apps, as depicted in Figure 5.8 (Example 2). Based on this policy, SDF

reports each packet to the user/apps when traffic-based classification identifies it as

illegal and its task consumes more than 20% CPU. The user/apps can then decide
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the action of these packets2. A more complex scenario is the application-level table-

miss management. In this scenario, the action of each table-miss packet is decided

by the task. For instance, the user may want to block the traffic of hidden tasks

(most malware conceals its task from the OS), and generate rules to block the traffic

from/to malware servers, as shown in Figure 5.8 (Example 3). Note that the policies

described here work on the host machine and could provide application-level traffic

management, which is different from the flow rules in the traffic monitor. Generally

speaking, policies could generate new flow rules based on the packets delivered to the

control plane, while flow rules ensure the efficiency of SDF and reduce the overhead.

The control app abstraction is designed to facilitate control apps to manage table-

miss packets. Therefore, a packet will be first processed based on flow rules, and then

handled based on control policies. The traffic monitor only delivers table-miss packets

and “report”-action packets to the controller, and the control apps apply the control

policies only on these reported packets. In this way, we reduce the response time

of non-table-miss packets (matched packets), since adding task, CPU , and memory

fields to each packet can be time-consuming. Furthermore, this mechanism also allows

application-level management for table-miss packets, as we discussed in example 3.

5.3.5 Attack Detection

Attack detection serves the role of identifying malicious traffic and marking each

reported packet to assist the easy management of control apps. We adopt a two-phase

matching technique to identify malicious traffic based on attack signatures, as depict-

ed in Figure 5.9. When a packet arrives, the flow pool will associate this packet with

2Though SDF can atomically drop these suspicious packets, we do not encourage this action since
some benign packets are dropped as well due to the false positives in traffic-based classification.
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Fig. 5.9: Two-phase matching in attack detection module.

host information, classify this packet to different flows based on header fields described

in header parser (in section 3.2), and store the packet in a queue of this flow. In the

first phase, attack detection module matches some fields of each packet with the attack

signatures in the database and associates with in DB (e.g. PAYLOAD=in DB); in

the second phase, attack detection module employs Support Vector Machine (SVM) to

identify malicious flows and tags SVM CLASS (e.g. SVM CLASS=TRUE. TRUE

represents the flow is classified as malicious traffic.). The control apps can further

decide the action of each packet.

In the first phase, the attack detection module adopts a packet-level classification

by checking whether some fields of a packet (the payload is the most significant field

since most signatures in attack signature database are in the payload of application

layer) are matched with signatures in the attack database. If a packet contains attack

signatures, it will be classified as malicious traffic, and associates with in DB (e.g.

PAYLOAD=in DB). Otherwise, the packet will not be associates with in DB (e.g.

PAYLOAD �=in DB). We also provide interfaces to update the attack database with

great ease. For instance, a user can download new attack signatures from the Internet

and update the database manually, or write a control app to update the database
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based on the attack patterns identified by the traffic-base classification.

In the second phase, the attack detection module adopts a flow-level classification

with SVM to precisely identify malicious traffic based on training data. SVM can

maximize the distance between training samples and hyperplane. This classification

algorithm is robust even with noisy training data. Besides CPU , memory, task, and

header, we also use frequency as a feature of each flow by counting “packets per flow”

and “bytes per flow”. For the training set, we use the traffic of two attacks (i.e. SYN

flood and leaking private information) and normal traffic as training data to build

the hyperplane f(x) with Gaussian kernel. The SVM classifier can further efficiently

classify each flow xs by judging the sign of f(xs). All packets in “illegal”-classified

flows will be tagged with SVM CLASS = TRUE, while packets in “legal”-classified

flows will be tagged with SVM CLASS = FALSE. To dynamically adjust the SVM

classifier, we also provide interfaces to update the training data. When new training

samples are added, the attack detection module can use the new training data to

train the classifier.

The overhead may be a concern when much traffic are processed by the attack

detection module. Since we can install flow rules in traffic monitoring to drop mali-

cious traffic and forward benign traffic, only some “suspicious” traffic are processed

by the attack detection. Furthermore, based on our experiments, the SVM classifier

is time-consuming when training, but efficient when classifying. Therefore, we think

the overhead of attack detection is acceptable.

5.3.6 Audit Server

The audit server is an additional device in the Intranet to verify the legality of

the flow entries on the traffic monitor. It can be centralized, which is able to support



128

several hosts with only one audit server. When some flow entries are identified as

illegal or some crucial flow entries are missing (the control plane is poisoned or shut

down by malware), the audit server alerts the network administrators for further

analysis on the host machine.

Audit server collects traffic information and host information (task, CPU ,memory,

and attack signature database) periodically, and applies the same classification algo-

rithms (classifiers) and security policies of the control apps to generate flow entries

for verification. Similar to the procedures on the host, the audit server first tags the

task, CPU , and memory to each packet, and then generate the flow entries based on

the security policies. These generated flow entries will be used to identify the unex-

pected and missing flow entries from the traffic monitor. The inconsistencies will be

reported to the network administrator to notify the network administrator when the

control plane is attacked (e.g. poisoned or shut down) by malware.

To understand how serious the misclassified/missing flow entries are to reduce

false alerts, we introduce “risk level” for the inconsistencies. Risk level is represented

by the normalized distance from the misclassified/missing sample (a tagged packet)

to the hyperplane in SVM. For instance, suppose the hyperplane is f(x) = ωTx+ b,

where ω is the normal vector of the hyperplane, and could be represented by m train-

ing samples (xi, yi) and Lagrange multipliers αi: ω =
∑m

i=1 αiyixi. The distance

between the hyperplane and one misclassified sample xs is Ds = |ωTxs + b|/||ω|| =
|∑m

i=1 αiyix
T
i xs+ b|/||ω||. When the kernel function κ is employed, Ds can be calcu-

lated by Ds = |∑m
i=1 αiyiκ(xi,xs)+ b|/||ω||. The risk level is represented by the nor-

malized distance (divided by the average distance of samples): Rs = mDs/
∑m

i=1 Di.

The risk levels of other inconsistent flow entries (e.g. flow entries triggered by the



129

exact matches in the attack signature database) will be set to 100 by default.

It may seem that the audit server can take over the role of the controller (simi-

lar to the centralized control plane in SDN) to avoid control plane attacks. However,

this design will inevitably consume much host-controller (or traffic monitor-controller)

bandwidth because of the communication between the controller and host status mon-

itor, especially when SDF provides application-level traffic management. Therefore,

we think designing the control plane on the host will reduce the communication over-

head and delay. Though in this design, the control plane may be a target of malware,

the audit server can alert the network administrator for the abnormality.

5.4 Experiment

In this section, we first introduce the implementation of SDF system and then

describe the experiment setups as well as the results. Finally, we discuss two use

cases of SDF.

5.4.1 Implementation

The prototype of traffic monitor in SDF is built on a specific OpenFlow-enabled

network hardware, Broadcom BCM56960 Series BCM, which supports the described

OpenFlow functions in Section III. We adopt RYU controller ryu as the controller

platform and install RYU controller on a PC equipped with i7 CPU and 8GB memory.

The host status monitor and control app abstraction are written in Python. We use

LIBSVM lib [b] as the SVM classifier to design the attack detection module. The

audit server is built on another Linux host in Python. It adopts the same classifier

and control apps on the host.
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Fig. 5.10: Topology in malware traffic detection experiment.

5.4.2 Setup

Bypassing Personal Firewalls. One of the most significant improvements in

SDF is avoiding malware bypassing personal firewalls. To evaluate malware traffic

monitoring performance of SDF, we install SDF and Rovnix bootkit on a tested host

(host 1) machine and apply the policy “Match: *; Event: LOG, FORWARD; Rule:

null” to log all captured traffic. Besides, two different personal firewalls (McAfee

McA and Norton Nor) and Rovnix bootkit are installed on another host (host 2) as a

control subject. A switch is used to connect to the Internet, traffic monitor module,

and the two hosts, and mirrors all traffic between the Internet and tested host to

the monitor host to record all traffic from/to the tested host, as depicted in Figure

5.10. In this way, the performance can be evaluated by comparing logged traffic with

mirrored traffic.

Classification with Host Information. We further study how host information

(task, CPU and memory features) affects the accuracy of malicious traffic identifica-

tion. Two programs are built to generate malicious traffic, SYN-flooder (generating

SYN packets with forged source IP) and privacy-leaker (regularly sending host in-

formation to a server, including MAC address, IP address, hostname, and running

tasks). We apply two policies “Match: (PAYLOAD=in DB or HEADER=in DB);

Event: LOG, DROP; Rule: null”, and log other suspicious traffic classified as illegal
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by SVM classifier. Furthermore, we disable the host status monitor by returning

task = null, CPU = 0, memory = 0 and for all requests to show the classification

without host information (the task, CPU and memory features in the training da-

ta are also set to null or 0). We collect our training data under different kinds of

attacks in three scenarios: website browsing, data downloading, and data uploading,

and generate new traffic (not from training data) to evaluate the performance of both

host-info-enabled and host-info-disabled classifications in different cases.

Attacks Against Control Plane. We test whether the audit server can alert the

network administrator when malware attacks against the control plane. Specifically,

we use (i) a malware (mal1.exe) to hook the “modify state” message (for installing/re-

moving flow entries to the traffic monitor) and add a flow entry to forward its traffic

(intercepting flow rule installation attacks); (ii) another malware (mal2.exe) to hook

the “FlowStatsReply” function triggered by

ofp event.EventOFPFlowStatsReply event and replace the packet count and byte

count of its flows by 3 and 198 respectively to lead incorrect classification (poisoning

traffic statistic attacks); and (iii) the third malware (mal3.exe) to shut down the con-

trol plane when it finds that the destination is unreachable, and install a flow rule to

forward its traffic (shutting down control plane attacks). All malware will flood SYN

packets to a server (20 packets per second). The security policies are set to block an

illegal packet identified by the SVM classifier, and only the task feature of mal1.exe

is in the attack signature database.

Packet Processing Overhead. The packet processing overhead is mainly in-

curred by the procedures of table-miss flows, including flow table lookup, packet in

request, appending features, classification, and flow rule installation. Thus, it is
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Table 5.1: Packet Capturing Rate

SDF McAfee Norton

Total traffic 100% 84% 87%
Rovnix traffic 100% 0% 0%

imperative to include all mentioned procedures in the evaluation of overhead (e.g.

Rule=null is not acceptable). We apply the policy “Match: (SVM CLASS=FALSE,

IN PORT=host); Event: FORWARD; Rule: (OFMatch:IN =host & IP DST=ip dst,

Action=FORWARD)” to allow the connections when identified as benign traffic by

the SVM classifier. We evaluate the packet processing overhead by measuring the

round trip time of 100 packets generated by two tested hosts (with and without

SDF).

5.4.3 Experimental Result

Malware Traffic Capturing. In this experiment, we use (Packets Captured

by Host)/(Packets Captured by Monitor Host) to calculate the packet capture rate.

The result is depicted in Table 5.1. In the control subject, even though McAfee and

Norton alert that malware is detected when Rovnix is copied to the host (the file of

Rovnix matches with the attack signature database), neither of them can capture the

traffic of Rovnix bootkit. On the other hand, SDF is able to capture all packets of

Rovnix bootkit. Since we can hardly control the number of generated packets, we

regard the performances of McAfee and Norton are the same.

Malicious Traffic Identification. First, we analyze how different features affect

the classification result. In our evaluation, we find all features presented in Section

3.5 contribute to the SVM classifier. While the weights of different features vary for
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different kinds of attacks. Specifically, task, frequency, CPU , and protocol field

in header are significant for ARP-attaacker and SYN-flooder, and task and protocol

field are significant for privacy-leaker (note that the traffic of privacy-leaker can al-

so be identified by the packet-level classification, but we only consider the affect on

SVM classifier here). Furthermore, we use true-positive rate TPR=(Detected mali-

cious packets)/(Malicious packets) and false-positive rate FPR=(Benign packets clas-

sified as malicious packets)/(Benign packets)to compare the performances between

host-info enabled and host-info disabled classifications in each scenario (browsing,

downloading, and uploading). The results are shown in Figure 5.11. Both of the clas-

sifications under SYN-flooder are more precise than those under privacy-leaker. It

is because the malicious packets generated by SYN-flooder are SYN packets. There-

fore, “TCP protocol” becomes a significant feature. On the other hand, the traffic

of privacy-leaker is hard to be detected especially in uploading scenario. It is be-

cause some private information (e.g. running tasks) is not included in the attack

signature database. Distinguish malicious traffic from regular updating traffic is diffi-

cult. The host-info enabled classification performances better than host-info disabled

classification in all scenarios. The results show that host features increase the TPR

by more than 15% and reduces the FPR by around 5% in identifying the traffic of

privacy-leaker.

Alerts for Control Plane Attacks. The audit server can identify the incon-

sistencies of flow entries and alert to different kinds of control plane attacks. The

notifications of intercepting flow rule installation attacks (mal1.exe) and poisoning

traffic statistic attacks (mal2.exe) are presented in Figure 5.12, and those of shutting

down control plane attacks are presented in Figure 5.13. In the intercepting flow rule
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Fig. 5.11: Comparisons between host-info enabled and host-info disabled classifica-
tions in SDF.

installation attacks, the risk level of its fraud flow entry (rule #1 in Figure 5.13) is

set to 100, because the task of mal1.exe is preserved in the attack signature database.

Since mal2.exe is not in contained in the attack signature database, the risk level of

poisoning traffic statistic attacks (fraud rule #2 in Figure 5.13) is 8.2 calculated by

the normalized distance to the hyperplane. When the controller suffers from shutting

down control plane attacks (mal3.exe), the audit server can also detect the incon-

sistency of flow entries. The risk level of the fraud rule is 6.4. Besides, when the

controller is shut down, we may find some low-risk alerts if the classifier has a high

false-positive rate (the flow rules to block some regular traffic will also cause inconsis-

tencies). Notice that the results of these attacks are almost the same (removing some

flow entries and installing fraud flow entries), the audit server cannot distinguish the

controller suffers from which kind of attacks. Network administrators can conduct a

further analysis based on the alerts from the audit server.

Packet Delay. Table 5.2 describes the packet processing overhead in SDF system.

The TCAM ensures very short delays for processing matched packets, incurring less

than 5ms average delay. However, the processing time of table-miss packets is much

longer. The average delay increases to 105ms because the traffic monitor needs to

send the packets to the controller, and the controller needs to decide and send the
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Fig. 5.12: Alerts to intercepting flow rule installation attacks and poisoning traffic
statistic attacks.

Fig. 5.13: Alerts to shutting down control plane attacks.

actions back to the traffic monitor. Fortunately, the table-miss packets are only

a small portion of the network traffic in most scenarios, since the controller can

update the flow rules on the traffic monitor to process the packet when received again.

Furthermore, we build the traffic monitor as a specific hardware in our prototype. The

link delay of table-miss packets can be reduced when the traffic monitor works on NIC

side.

Table 5.2: Time Delays

Max Min Avg

Regular packets (w/o SDF) 62ms 14ms 18ms
Matched packets (w/ SDF) 66ms 16ms 21ms
Table-miss packets (w/ SDF) 214ms 78ms 105ms
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5.4.4 Use Case

Use Case 1: Server Protection. Many servers (e.g. web servers) are accessible

for external users and become targets of various network attacks, such as DDoS

attacks and XSS attacks. To protect these servers, a more and more awared protection

method is only allowing specific ports of these services (e.g. 80 for HTTP and 443

for HTTPS). Other requests to unauthorized ports will be redirected to the security

agent for further analysis. Meanwhile, a traffic monitor agent is always applied to

detected malicious traffic during the communication (e.g. destination IPs are in the

blacklist, traffic follows WebShell models, and scripts are downloaded rather than

phrased). Originally, we need two agents (i.e. traffic monitor agent and security

agent) to protect the server and need to update the attack database in traffic monitor

agent manually based on the feedback from the security agent.

In this scenario, we can adopt SDF to update the security policies automatically

without introducing the two agents. To allow requests to port 80 and 443, and analyze

other requests, we first apply proactive flow rules (basic security policies) to forward

benign incoming packets (DST PORT=80 or 443) and report other incoming packets

to the controller. Second, we design a Security Analysis App which can figure out

new attack signatures of these malicious incoming packets, such as malicious servers’

IPs and WebShell models. Based on these new signatures, the Security Analysis App

dynamically updates the attack signature database. Finally, we build a security policy

control app to report suspicious traffic to the Security Analysis App and dynamically

update the security policies. A model to protect server security with SDF is depicted

in Figure 5.14 (the audit server is not presented to simplify the description).

In the test, we try to connect to an unauthorized port (8080), and upload malware
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Analyze attack 
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HEADER=in_DB DROP Drop based on signature
drop flows with attack signatures

Fig. 5.14: Use case 1: server protection.

through port 80. When SDF is activated, even port 8080 is open, we still cannot

establish a connection with the server through 8080. The upload is also failed, and

the client’s IP address is added to the attack signature database.

Use Case 2: Parental Network Controls on PC. Parental controls can man-

age the network accessibility of different users. Originally, parental controls associate

each account with a blacklist/whitelist. The PC simply denies/allows each request

based on the blacklist/whitelist, which makes the access control very inflexible. This

inflexible strategy may affect some websites with external links. For instance, if the

policy only allows connecting to “a.com”, other external links (e.g. the img tag “<img

src=‘b.com/1.png’>”) in “a.com” will also be blocked. We cannot view any the im-

ages which are not in the domain of “a.com”. Parental controls will also fail to block

online games when the games are not in the blacklist. If the policies change with

applications and time, we may need to use two accounts with different policies, and

set the active period of each account. Furthermore, since these policies are OS-level

filters, they can be bypassed by using a private TCP/IP stack.
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Internet

Traffic Monitor

IN_PORT=host REPORT

OFMATCH ACTION

EVENT

IN_PORT=host TASK=A

MATCH

IN_PORT=host & IP_DST=a’s IP FORWARD, REPORT

RULE

Priority

High

Low

REPORT null

Dst Analyzer
request packets

actions to 
these requests

PC

report to analyzer for action

IN_PORT=internet FORWARD

TIMEOUT
18:00

18:00
null

TRIGGER

08:00 to 18:00

Basic policies

If request is to a.com:
   Record external links
Else:
  If request not in external links:
     DROP
  Else:

  FORWARD

IN_PORT=host & CPU>50% & MEMORY>50% LOG 08:00 to 18:00 null
log CPU and memory 

consuming events

Fig. 5.15: Use case 2: parental network controls.

With the assist of SDF, we can enable a flexible management of network acces-

sibility with only one account, as depicted in Figure 5.15 (the audit server is not

presented). We first adopt three proactive flow rules to forward requests to “a.com”,

forward all responses, and report other requests to the controller. Second, we apply a

security rule to check whether the packet is triggered by applications which consume

more than 50% CPU or 50% memory. In such cases, it may be generated by some

online games. Third, we design a Dst Analyzer to check whether the current request is

in the external links of the previous request3, and decide the action of each request to

other domains. Finally, we adopt a security policy control app to deliver each received

request to the Dst Analyzer and set the trigger time to 08:00 to 18:00 (free network

accessibility during other time). Notice that in the design of Dst Analyzer, we do

not add new flow rules into the traffic monitor (e.g. IP DST=b’s IP, FORWARD).

This ensures the requests to “b.com” will also be dropped even when “b.com/1.jpg”

appears in the external links of “a.com”. In this way, we enable a flexible way for

parental network controls.

3The Dst Analyzer should also filter internal links to avoid flushing EL. We do not present the
detail of Dst Analyzer since we only show a simple example.
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In our test, we allow “google.com”, and then search “Facebook” in Google Image.

The result shows all images (the URLs of theses images belong to external links). We

also try to connect to “www.facebook.com” at 17:55, but blocked. The connection

request is allowed at 18:05. We use Warcraft to test our traffic, and find someWarcraft

traffic and software updating traffic can be logged.

5.5 Limitation and Discussion

Though SDF can successfully detect hidden traffic and provide flexible policy

control, there are still some limitations in our prototype implementation. In this

section, we discuss these limitations and our future work.

Traffic monitor on NIC. We have pointed out that the traffic monitor compo-

nent can be implemented on either switch side or NIC side, and we present a more

common scenario that the traffic monitor is a specific network hardware. Actually, the

NIC-side implementation is more convenient for common users. Besides, the switch-

side implementation is more complex with multiple hosts. The value of IN PORT field

should be more than two (to identify different hosts), and the control apps should be

separated into different groups to isolate the management of each host. We regard

the NIC-side implementation as a more promising solution, but the hardware resource

limitation can be an obstacle. Therefore, our intention is to implement and optimize

SDF on NIC side with limited hardware resources in the future.

Delay in application-level traffic control. Application-level traffic control

provides a more flexible way for traffic engineering. Even though SDF is able to

provide application-level table-miss control by associating the host information with

each packet on the host side, the traffic monitor cannot conduct this association
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without the port− host info table. It seems that regarding all packets as table-miss

packets (OFMatch:*, Action=REPORT) can be a simple solution, and the control

apps can then receive and identify the host information of each packet. However, this

naive solution incurs much overhead into the network (e.g. long delay and significant

bandwidth consumption) in switch-side traffic monitor implementation. Our intention

is to maintain the port − host info table on the traffic monitor side, and create

task, CPU , memory fields in the header. Though maintaining the table consumes

some bandwidth, the overhead is significantly less than the naive solution. Since

this solution modifies OpenFlow protocol by introducing additional fields and port−
host info table, it might be impractical in the switch-side implementation scenarios.

Evasion of SDF. SDF collects host information from the host status monitor

to identify illegal packets. However, malware can also hook the APIs of host status

monitor to provide fake host information for the attack detection and audit server.

In such scenarios, we suggest the network administrator train the classifier to get the

normal network behavior of each application with the application’s traffic. Consid-

ering a client application, it normally connects to a DNS server to get the server’s

IP and establishes a connection to the server. When the SDF detects TCP packets

before DNS queries, it can report these suspicious events to the network administra-

tor for further analysis. Besides, SDF can also use some “checkpoints” to verify the

host status. For instance, when several services are activated, the CPU and memory

utilization rate should be in a range.

SDN attacks on control and/or data plane. Since SDF is implemented fol-

lowing the mechanisms in SDN, it might suffer some specific attacks. We have shown

that the audit server can verify the flow entries on the traffic monitor and alert the
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network administrator when inconsistencies are found. However, identifying which

kind of attacks still lies in the realm of the network administrator. Besides, SDN-

aimed attacks such as data-to-control plane saturation attacks Shin et al. [2013b]

and network topology poisoning attacks Hong et al. [2015] (network topology poison-

ing attacks only work in switch-side implementation scenarios) can also be potential

threats to SDF. The user can limit some network traffic or deliver the attack traffic

to a specific device to mitigate data-to-control plane saturation attacks Gao et al.

[2018], Shin et al. [2013b], Wang et al. [2015], and use fixed topology or verify the

legality of link layer discovery protocol (LLDP) packets to avoid network topology

poisoning attacks Hong et al. [2015]. Furthermore, existing SDN security systems Lee

et al., Porras et al. [2015], Wen et al. [2016], can also facilitate users against these

attacks.

5.6 Chapter Summary

Personal firewalls always fail to detect malicious traffic when malware adopts a

private TCP/IP stack. Such traffic may also escape the detection from network fire-

walls. Motivated by the concept of SDN, we propose SDF, a programmable firewall

to detect malicious traffic by abstracting traditional firewall into control and data

planes. SDF monitors traffic on a network hardware to avoid being bypassed by mal-

ware, and collects host information to conduct a more precise classification to identify

malicious traffic and provide application-level traffic control. SDF also enables pro-

grammable security control, which allows control apps to dynamically update the

network security policies. Experimental results show that SDF can monitor all net-

work traffic and improve the accuracy of attack detection. Besides, it also alerts the
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network administrator about the inconsistencies of flow entries when malware attacks

the controller. We believe with the assist of SDF, many existing security solutions

could be solved in an easier and more flexible way.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have achieved the following results.

• We design a defense system against data-to- control plane saturation attacks

without hardware modifications or additional devices.

• We identify new DDoS attacks against proactive OpenFlow networks and in-

troduce a defense system to mitigate the new attacks.

• We propose a programmable firewall to detect malicious traffic motivated by

the architecture of SDN.

First, we analyze the data-to- control plane saturation attacks in reactive Open-

Flow networks, as well as the countermeasures. We focus on two state-of-art ap-

proaches, AvantGuard Shin et al. [2013b] and FlowGuard Wang et al. [2015], and

discuss the limitations of the two solutions: both of them need hardware modifica-

tions or additional devices. Furthermore, we propose three new techniques: table-miss

engineering, two-phase filtering, and flow table cache to use SDN build-in proprieties

143
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against the data-to- control plane saturation attacks. Based on the new techniques,

we introduce FloodDefender, a scalable and protocol independent defense system.

We show the detailed designs of FloodDefender and analyze how many neighbor

switches need to be involved in table-miss engineering theatrically. We implement

FloodDefender and conduct extensive simulations and experiments to evaluate the

performance of FloodDefender.

Second, we analyze the weaknesses of data-to- control plane saturation attacks

and introduce new SDN-aimed DDoS attacks against proactive OpenFlow networks

by sending massive control messages to target switches. The new attacks are ef-

fective for both edge and internal switches in both proactive and reactive OpenFlow

networks. To mitigate the new attacks, we introduce FloodBarrier. Firstly, FloodBar-

rier saves data-control plane bandwidth by forwarding requests to a specific device.

Secondly, FloodBarrier reduces the workload of control plane by responding to some

simple requests with the specific device. Lastly, FloodBarrier identifies and blocks

attacker traffic based on traffic statistics information. We also implement a proto-

type of FloodBarrier and evaluate its performances in both software and hardware

environments.

Third, we apply the architecture of SDN to avoid malware to bypass personal

firewalls and provide programmable traffic control in malware traffic detection. We

regard NICs as OpenFlow switches to monitor hidden traffic at NIC layer and in-

troduce a “control plane” on the host machine to process incoming and outgoing

packets. The “control plane” also collects host information to conduct a more precise

classification to identify malicious traffic and provide application-level traffic control.

We do extensive experiments to validate the effectiveness of our approach.
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6.2 Future Work

the introduction of SDN has brought both potential new attacks and new insight to

traditional network security problems. We proceed to outline future research direction

as follows.

New attacks and countermeasures. The centralized control plane of SDN

is a potential target of various new attacks since all unknown packets (i.e. table-

miss) need to be delivered to the controller by switches. Since the workflow of SDN

is much different from that of traditional networks, some attacks that do not exist

in traditional networks can be used against SDN. For instance, the communication

overhead could introduce new attacks like data-to- control plane saturation attacks

and control plane poisoning attacks. In designing countermeasures against different

attacks, we also need to consider whether we should use hardware modifications or

additional devices carefully, which may also incur new attacks against the defense

system. Therefore, we need to identify the vulnerabilities in SDN as well as the

feasible solutions against various of attacks.

SDN for security. SDN has been used for network security to solve traditional

network problems such as DDoS attack detection. However, the idea of SDN can also

be used in other areas like mobile security Hong et al. [2016], which has not been

fully discussed yet. It may need some creative thoughts to model the problems and

abstract architectures into SDN-like architectures. We will try to apply SDN in other

areas to enhance the security.
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