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Abstract  

The study of aerosol dynamics is of great importance to a variety of scientific 

and engineering fields including atmospheric science, air pollution control, 

industrial production, and combustion and chemical engineering sciences. A new 

differentially weighted operator splitting Monte Carlo (DWOSMC) method is first 

proposed and developed in the present study in which weighted simulated particles 

and operator splitting technique are coupled to improve the computational accuracy 

and efficiency of traditional Monte Carlo methods in simulating complex aerosol 

dynamics. 

This newly proposed and developed DWOSMC method is first verified in 

one-component aerosol systems by comparing its numerical simulation results with 

the corresponding analytical solutions for several typical cases and the sectional 

method for some complex cases in excellent agreement. The numerical simulation 

results demonstrate that this DWOSMC method has high computational efficiency 

and accuracy in solving complex aerosol dynamic problems where nucleation, 

coagulation and condensation processes simultaneously take place.  

This DWOSMC method is further extended to simulate multi-component 

aerosol systems. The results obtained from DWOSMC method are compared with a 

sectional method for various regimes of simultaneous coagulation and condensation 

processes in two-component aerosol systems. It is proved that this DWOSMC 

method is more computationally efficient than the sectional method in simulating 
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two-component aerosol systems. Furthermore, the DWOSMC method is able to 

predict the particle number density, total particle volume, particle number 

distribution and component-related particle volume density distributions as well as 

the bivariate compositional distribution. 

In order to solve multi-dimensional aerosol dynamics interacting with fluid 

phase, the Monte Carlo method for describing particle dynamics is coupled with 

computational fluid dynamics (CFD) under the Eulerian-Lagrangian reference frame. 

The formulated CFD-Monte Carlo method is firstly used to simulate a spatially 

inhomogeneous particle-laden turbulent flow. The effects of two-way coupling, 

turbulent dispersion model and Reynolds number based on a square rod obstacle on 

the particle dispersion pattern are fully studied for a wide range of particle Stokes 

number.  

Finally, the formulated CFD-Monte Carlo method is used to study aerosol 

dynamics in turbulent flows. The DWOSMC method is coupled with large eddy 

simulation (LES) to examine the evolution and growth of aerosol particles in       

a turbulent planar jet. Firstly, the newly developed LES-DWOSMC method is 

verified by the results obtained from a direct numerical simulation-sectional method 

(DNS-SM) for coagulation occurring in a turbulent planar jet from available 

literature. The fluid velocity field and the time-averaged particle diameter 

distribution obtained from LES-DWOSMC show good agreement with those 

obtained from DNS-SM. The coherent vortex structures of fluid gas have a 

significant impact on the aerosol particle dispersion patterns. Then the effects of jet 
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temperature and jet Reynolds number on the evolution of time-averaged mean 

particle diameter, normalized particle number concentration and particle size 

distribution (PSD) are fully investigated. The jet temperature and jet Reynolds 

number prove to be two important parameters that can be used to control the 

evolution and pattern of PSD in aerosol reactors. This developed LES-DWOSMC 

method proves to be able to predict and render a better understanding of the 

evolution and growth of the particle size distribution (PSD) of the aerosols in 

turbulent flow.  

In summary, this newly proposed and developed CFD-DWOSMC method in 

the present study has demonstrated high capability in the numerical simulation of 

complex aerosol dynamics in turbulent flows.
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I condensation kernel (m3/s) 

J nucleation kernel (/s) 

K coagulation kernel (m3/s) 

k turbulent energy (J) 
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kB boltzmann constant (J/K) 

Kn Knudsen number 

li the length of grid, i (m) 

L length (m) 

mi,mj particle mass (kg) 

mk moments of particles 

mr momentum vector (kg·m/s) 

M prescribed number of Monte Carlo loops 

M2 the second moment 

n number density of aerosol particles 

N particle number concentration during the simulation interval 

N0 initial particle number concentration 

Nc particle number concentration 

Nc,0 particle number concentration in the jet inlet 

Np number of simulated particles 

Nr number of real particles 

Ns number of simulated particles  

p pressure (Pa) 

P∞ vapor pressure far from the particle 

peq the equilibrium vapor pressure 

Pcol collision probability 

Pi probability of coagulation event taking place on particle, i 

q0,0 particle number distribution 

q1,0, q0,1 component-related particle volume density distribution 
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r1,r2 random number 
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ReD  Reynolds number based on the jet diameter, U1D/va   

St Stokes number, τP/τf 

t time (s) 

ts sampling time (s) 

t* normalized sampling time, t/ts  

Tj the temperature of the jet 

TK temperature (K) 

∆t time-step (s) 

δt time-step (s) 

u⃗  
velocity of the gas (m/s) 

U̅ average velocity of the fluid flow (m/s) 

u' fluctuating velocity of the fluid flow (m/s) 

ue main flow velocity (m/s) 

ui,uj velocity vector (m/s) 

up 

U1 

velocity of dispersed particle (m/s) 

velocity of planar jet exit (m/s) u* friction velocity (m/s) 

v particle volume (m3)  

v0 initial volume of particles (m3) 

V total particle volume during the simulation interval (m3) 

V0 initial total volume of the aerosol particles (m3) 

Vcell the volume of the computational cell 

wi weight of the simulated particle 
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α correction factor 

ε relative error 

ρ density (kg/m3) 

ρf   density of continuous gas flow (kg/m3) 

ρp  density of dispersed particle (kg/m3) 

τf flow response time (s) 

τij subgrid scale stress tensor 

τp particle relaxation time (s) 

σ standard deviation of the normal distribution 

λ a random number 

ζ correction factor 

δ boundary layer thickness (m) 

μa dynamic viscosity of air (kg/m∙s) 

νa kinematic viscosity of air (m2/s) 

x,y coordinate or position  

X the total process 

X1, X2 sub-processes 

Xd deterministic process 

Xs stochastic process 
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v
 volume fraction 

ф an arbitrary scalar 

ξ particle volume density (m3/m3) 
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CFD computational fluid dynamics 

CPU central processing unit 

DNS direct numerical simulation 

DQMOM direct quadrature method of moments 

DSMC direct simulation Monte Carlo method 

DWMC differentially weighted Monte Carlo method 

DWOSMC differentially weighted operator splitting Monte Carlo 

method 

DWTDMC differentially weighted time-driven MC method 

E-E Eulerian-Eulerian 

E-L Eulerian-Lagrangian 

GDE general dynamics equation 

LES large eddy simulation 

LPT Lagrangian particle tracking 

MC Monte Carlo 

MMC multi-Monte Carlo method 

MOM method of moment 

MOMIC method of moments with interpolative closure 

N-S Navier–Stokes 

OS operator splitting 

OSMC operator splitting Monte Carlo method 
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PDF probability density function 

PN particle number concentration 

PSD particle size distribution 

QMOM quadrature method of moments 

RANS Reynolds averaged Navier-Stokes equation 

RUD repeated upwind difference method 

SGS subgrid scale 

SI sequential iterative 

SM sectional method 

SNI sequential non-iterative 

SOA secondary organic aerosols 

SWPM stochastically weighted particle method 

SWOSMC stochastically weighted operator splitting Monte Carlo 

method 

TEMOM Taylor-series expansion method of moments 

TGFEM Taylor-Galerkin method 

TVOC total volatile organic compound 
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Chapter 1 Introduction 

 

1.1 Research Background and Scope  

Aerosols are very fine and ultrafine liquid or solid particles suspended in the 

gas. The size of the aerosol particles varies from several nanometers (nm) to 

micrometers (m) (Lu, 2005). For example, the fog, smoke, soot and the solid dust 

in the air are all related to aerosols. Thus, the dynamic behavior of aerosols is of 

great importance in our life, as well as in many different fields including atmospheric 

sciences, air pollution and control, industrial production, combustion and chemical 

science, etc. (Flagan and Seinfeld, 1988; Friedlander, 2000; Huang et al., 2014; 

Rodrigues et al., 2018). Atmospheric aerosols cause plenty of air pollution problems, 

and consequently impose influence badly on our lives, including contributing 

directly to our adverse health, visibility reduction that will cause traffic jams or 

traveling problems, and global climate change. Also, the source of nano- and fine 

particles of pollutants are related to human’s behaviors, i.e., the vehicle exhaust, 

biomass burning and industrial emission (Aubagnac-Karkar et al., 2018; Laskin et 

al., 2015; Liu et al., 2011).  

In order to understand the properties of the aerosols, more and more attention 

has been drawn to the fundamental study of the formation and evolution of aerosols 

in recent years. Distributed aerosol properties of interest include the number, volume 

and mass concentration, chemical composition, light scattering; the processes 

involved in the aerosol dynamics include nucleation, collision, coagulation, 

agglomeration, gas-to-particle conversion, sedimentation, condensation growth, 

evaporation, breakage, and deposition, etc. (Davari and Mukherjee, 2018;    
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Huang et al., 2014; Marchisio and Fox, 2005; Zhao et al., 2018). The typical 

formation and growth processes of aerosol particles are shown in Figure 1.1 (Raman 

and Fox, 2016), which demonstrates the flame synthesis of nanoparticles, where the 

aerosol particles are generated from individual/clustered precursor molecules 

through gas-phase chemical reactions as well as surface growth reactions. The 

formed and nucleated particles will then experience further surface growth and 

oxidation reaction, and coagulation processes. 

 

 

Figure 1.1   Aerosol particle formation and growth processes (Raman and Fox, 

2016). 

Due to the limitations of methods for measuring the full spectrum of aerosol 

inherent properties, it is almost impossible to identify and characterize all the 

atmospheric aerosols in a certain area (Almohammed, 2018; Balachandar and Eaton, 

2010; Gelbard, 1979). Besides conducting experiments for describing the aerosol 

dynamics and chemical reactions (Aardahl and Davis, 1996; Hess et al., 2016;  
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Raes et al., 1990; Zhao et al., 2018), numerical modelling and simulations become a 

very useful method nowadays to predict and describe the properties of aerosols. 

Different numerical modelling methods have been developed and introduced for 

different scientific and engineering applications (Chen et al., 2014; Davari and 

Mukherjee, 2018; Gelbard, 1979). The main analyzing process and measuring 

techniques summarized by Pöschl (2005) are shown in Figure 1.2. 

 

Figure 1.2  Main analyzing processes and measuring techniques for the 

characterization of aerosols (Pöschl, 2005). 

Besides nanoparticle synthesis, aerosols exist in many multiphase flow 

phenomena in our daily life, such natural phenomenon as rain, snow, air and water 



 

Chapter 1                                                 Introduction  

  4 

pollution, etc., as well as the industrial processes in power and manufacturing plants 

worldwide, vehicle and aircraft engines, oil and gas production, etc. All of these 

phenomena are related to multiphase flows. In the area of fluid mechanics, 

multiphase flow refers to those fluid flows having more than one phase or 

component (Brennen, 2005), including materials in different conditions or phases 

(i.e. solid, liquid or gas), materials with different chemical components but in the 

same phase (i.e. liquid-liquid systems: wine is alcohol in water). Typically, there are 

three main kinds of multiphase flows (i.e. gas-liquid, gas-solid, and liquid-liquid 

flows), and there are also multiphase flow systems including gas, liquid and solid 

simultaneously. A typical gas-liquid-particle multiphase flow system is shown in 

Figure 1.3.   

 

Figure 1.3   A schematic of gas-liquid-particle multiphase flow system  

(ANSYS, 2013). 

In a multiphase flow system, the continuous phase is referred to as the 

‘carrier’. The dispersed phase is used to describe the solid or fluid particles that are 

dispersed in the continuous phase. Each of these components is considered to have 
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its own volume fraction and velocity field. The properties of each phase are very 

significant to determine the properties of particles (ANSYS, 2013). 

In the research field of aerosol dynamic systems, the dynamic behaviors of 

the aerosol particles can be significantly influenced by the continuous phase. For 

example, in fuel combustion processes, a vehicle exhaust system or a chimney 

channel, the temperature gradients and the velocity fluctuations of the surrounding 

environment should be considered when studying the behaviors of particle formation, 

collision and surface growth etc. (Olin et al., 2015). Therefore, the solution of the 

general dynamic equation (GDE) usually involves complex fluid flows and 

computational fluid dynamics (CFD) which is needed to predict the flow field of 

aerosols (Mitrakos et al., 2007).  

Among the numerical methods developed by researchers, the most popular 

ones are sectional method (Dergaoui et al., 2013; Gelbard et al., 1998; Rodrigues et 

al., 2018), the method of moment (Chan et al., 2018b, 2010; Falola et al., 2013; 

McGraw, 1997; Passalacqua et al., 2018; Yu et al., 2008a), and Monte Carlo method 

(Fede et al., 2015; Liu and Chan, 2018a, 2017a; Maisels et al., 2004; Wei, 2013). 

Both sectional method (SM) and the method of moment (MOM) are deterministic 

methods and exert some merits in solving the GDE. However, compared with Monte 

Carlo method, both SM and MOM have their disadvantages and limitations when 

more information and properties of the particles (i.e. particle size distribution, 

trajectories, or compositional components) are needed. 

Nowadays, Monte Carlo (MC) method is widely used because of its 

advantages (Kruis et al., 2012; Lin et al., 2002; Sun et al., 2004). MC method is    
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a stochastic algorithm that is based on probabilities of different outcomes in a 

process that cannot be easily predicted because of its randomness. Instead of solving 

directly the general dynamic equation, MC method imitates the formation, 

movement and dynamic behaviors of simulated particles based on the probability of 

occurrence of these events (Bird, 1976; Efendiev, 2004; Liu and Chan, 2016, 2017a; 

Zhao et al., 2010). Figure 1.4 shows a typical flowchart of a traditional Monte Carlo 

method. 

 

Figure 1.4   A typical flowchart of Monte Carlo method (Efendiev, 2004).  
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For traditional MC methods, the defects lie in the computational accuracy 

and efficiency because of its stochastic and statistical characteristics. Both of the 

computational accuracy and efficiency are related to the number of simulated 

particles used in MC methods, and increasing the accuracy would result in more 

computational time consumption (Maisels et al., 2004). However, with the rapid 

development of computer technology, computers tend to have larger computational 

memory and faster speed in more economical ways, and the computational memory 

and time consumption of MC methods is no longer a big problem nowadays. 

Furthermore, “weighted simulated particles” (Patterson et al., 2011; Rjasanow, 1996) 

are widely used by MC methods due to the large number of real particles in the actual 

systems being simulated. 

In the previous studies, the same weight for different simulated particles was 

used (Fox, 2015; Liffman, 1992; Smith and Matsoukas, 1998). In order to reduce the 

statistical noise, Zhao et al. (2010) proposed a differentially weighted Monte Carlo 

(DWMC) method, which proved to be efficient and practical for simulating the 

coagulation process of aerosol particles. Since the deterministic method is more 

efficient for simulating the nucleation and condensation processes,            

Zhou et al. (2014) combined stochastic and deterministic methods by adopting the 

operator splitting (OS) technique in order to take advantage of both stochastic and 

deterministic methods. Recently, Liu and Chan (2017a) have also proposed and 

developed a stochastically weighted operator splitting Monte Carlo method.  

In the present study, a new differentially weighted operator splitting Monte 

Carlo (DWOSMC) method based on the idea of operator splitting and different 

weights for different computational particles is proposed and verified through 
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complex aerosol dynamic processes. The purpose of this new method aims to solve 

complex aerosol dynamic problems with high computational accuracy and 

efficiency, which will provide a better knowledge and insight of the evolution of the 

aerosol system.  

In many natural or engineering applications of aerosol particles, such as the 

natural phenomenon of acid rain formation and deposition (Fitzgerald et al., 1998; 

Kolb and Worsnop, 2012; Nah et al., 2018), combustion particulate emissions that 

can directly affect human health (Fino et al., 2016; Lu, 2005; Zhong et al., 2018), 

and silica and titania nanoparticles flame synthesis in pigments and catalysts    

(Fang et al., 2018; Jiang et al., 2007; Pratsinis and Spicer, 1998) and so on, particles 

often consist of multiple components where the particle size and compositional 

distributions affect the properties of particles. Many properties of the particles such 

as light scattering, radioactivity and capturing strategy are highly dependent on the 

particle size and compositional distributions. Therefore, the proposed DWOSMC 

method is further developed to study multi-component aerosol dynamics (Liu and 

Chan, 2018b). 

In natural reality or industrial applications, aerosols are usually dispersed in 

fluid flows. Thus, a better understanding of the population balance of aerosol 

particles dispersed in a continuous phase requires the solution of the transport 

problem which is in both the external and internal coordinates. Solving the 

governing equations of aerosols involve all the terms that exhibit the coupling 

between turbulent fluid flow and population balance equation (PBE) (i.e., velocity 

field of the dispersed phase, turbulent viscosity and the aerosol dynamic behaviors). 

These terms require the solution of a turbulent flow problem and cause the particle-
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fluid system to be coupled to the typical Navier-Stokes equations and a turbulence 

model. The complete numerical model with all external and internal couplings can 

be schematically given as in Figure 1.5. 

 

Figure 1.5  Sketch of the coupling effects inside the complete model  

(Bayraktar, 2014). 

Different numerical modelling codes have been developed in computational 

fluid dynamics (CFD) for coupling the aerosols and the fluid flow. There are 

typically two numerical modelling approaches for aerosol dynamics coupling in 

CFD. They are Eulerian (i.e., solution in fixed positions) and Lagrangian (i.e., 

solution along the streamline) models, respectively (He and Zhao, 2016). The 

Eulerian method can provide the dimensional information of the flow fields, and is 

usually used to examine the spatial distributions of particles (Olin et al., 2015; 

Rodrigues et al., 2018; Tsantilis et al., 2002). The Lagrangian model tracks the 

motion of each individual particle and can provide specific information about the 

particulate flow (Hu et al., 2001; Sweet et al., 2017; Veroli and Rigopoulos, 2010). 

Both of these two models have been developed and reported (Kruis et al., 2012;  

Liu and Chan, 2017b; Olin et al., 2015; Pyykönen and Jokiniemi, 2000). 

In the present study, the proposed DWOSMC method is also coupled into an 

Eulerian-Lagrangian model to investigate the dynamic behaviors and distributions 
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of nano- and ultrafine particles dispersed in turbulent flows. Firstly, solid particle-

laden flow in spatially inhomogeneous turbulent flows is presented where particles 

are injected downstream of a square-rod obstacle, and the effects of several factors 

(i.e., Stokes number, two-way coupling, turbulent dispersion model, and Reynolds 

number) on the particle dispersion pattern are studied. Further research is also 

conducted on the coupling of the DWOSMC method with a computational fluid 

dynamics (CFD) method to study the evolution and distributions of aerosol particles 

in a turbulent jet. Suitable CFD methods (e.g., Reynolds-Averaged Navier-Stokes 

(RANS) or large eddy simulation (LES)) are considered to couple with Lagrangian 

particles to precisely describe the behavior of particles suspended in turbulent flows. 
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1.2 Research Motivation and Objectives 

In the present study, a differentially weighted operator splitting Monte Carlo 

(DWOSMC) method is firstly proposed for simulating complex aerosol dynamics 

through coupling the stochastic Monte Carlo (MC) method and deterministic 

integration methods by the operator splitting (OS) technique. Then this Monte Carlo 

method is coupled into computational fluid dynamics (CFD) for describing particle-

laden multiphase flows. 

The objectives of the present study are as follows: 

1. To gain a better understanding of the behavior of aerosol particles, the 

particle distribution characteristics, as well as its applications in engineering 

and environmental sciences; 

2. To verify a newly proposed and developed differentially weighted operator 

splitting Monte Carlo (DWOSMC) method in both one component and 

multi-component aerosol systems; 

3. To develop a computational fluid dynamics (CFD) based Monte Carlo 

method in the coupling of fluid flow and particle dynamics in turbulent flows, 

taking into consideration the interaction between continuous and discrete 

phases in inhomogeneous systems; and 

4.    To evaluate the computational efficiency and accuracy of this newly proposed 

CFD-Monte Carlo method for simulating complex aerosol dynamics in 

turbulent particle-laden flows and provide a better insight into the interaction 

between turbulence and aerosol particles. 
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1.3 Outline of the Thesis 

 

Chapter 1 introduces an overview of the background and scope related to the 

present study, indicating the research gap of the numerical modelling and 

simulations of complex aerosol dynamics in turbulent flows. The objectives of the 

present study are intended to fill this research gap.  

 

Chapter 2 provides a more detailed literature review of aerosol dynamics and 

multiphase flows including the knowledge and information obtained from previous 

studies, indicating the development and state-of-the-art that the researchers have 

acquired, and the shortcomings of these research areas and where the research gap 

lies.  

 

Chapter 3 provides theoretical fundamentals of the present study, which 

contains the necessary mathematical and numerical models that will be used in   

Chapters 4 to 7.  

Chapter 4 provides a newly proposed and developed DWOSMC method with 

its verification and applications to simultaneous complex aerosol dynamics.  

 

Chapter 5 extends this newly developed DWOSMC method to simulate 

multi-component aerosol systems. 

 

Chapter 6 presents an Eulerian-Lagrangian Monte Carlo method with 

applications to the study of the interaction between turbulence and particles in 

inhomogeneous particle-laden turbulent flows.  
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Chapter 7 provides the extension of this newly proposed and developed     

CFD-Monte Carlo method to predict the evolution of aerosol particles in turbulent 

flows. 

 

Chapter 8 provides the conclusions and major scientific findings revealed by 

the present study and some recommendations for future work. 
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Chapter 2  Literature Review 

 

2.1  Aerosol Dynamics in Particle-Fluid Systems 

Aerosols are of great significance for atmospheric science, biosphere, 

climate change, public health, air pollution, etc. (Pöschl, 2005). There are 

multifarious phenomena concerning aerosol dynamics in nature as well as in human 

activities. The following sections review briefly some typical environmental and 

engineering aspects regarding aerosol dynamics in multi-phase systems.  

2.1.1  Atmospheric aerosols and formation  

Atmospheric aerosols refer to fine and ultrafine liquid or solid particles 

suspended in the atmosphere. Due to its optical properties, microphysical 

characteristics and absorbing or releasing radiation, atmospheric aerosols affect 

significantly on human health, the earth’s energy budget and climate change, as well 

as the precipitation efficiency (Huang et al., 2014; Pöschl, 2005).  

The atmosphere is inhomogeneous in different areas, so as the aerosols.   

Fig. 2.1 shows the one-day-time evolution of particle number concentrations (PNs), 

ozone (O3), sulfur dioxide (SO2) and total volatile organic compounds (TVOCs) in 

Hong Kong (Lyu et al., 2018). It can be observed that the particles and gases studied 

are distributed inhomogeneously even in two areas of the same city.  
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(a) (b) 

Figure 2.1  Average diurnal patterns of particle number concentrations (PNs), 

ozone (O3), sulfur dioxide (SO2) and TVOCs (total volatile organic compounds) 

at (a) southeastern and (b) southwestern Hong Kong (Lyu et al., 2018). 

The concentrations and sizes of aerosols can be highly variable from several 

nanometers (nm) to 100 micrometers (m) (Boucher, 2015). The statistics of mass 

concentrations and the average particle diameter of aerosol particles in different 

areas is shown in Table 2.1 (Kommalapati and Valsaraj, 2009;            

Valsaraj and Kommalapati, 2009).  

Table 2.1  Mass concentrations and average particle diameter of aerosols in 

different areas (Kommalapati and Valsaraj, 2009; Valsaraj and Kommalapati, 2009). 

Area Concentration (μg/m3) Diameter (μm) 

Urban >100 0.03 

Rural 30-50 0.07 

Marine >10 0.16 

The sources of atmospheric aerosols vary from a wide range of both natural 

and man-made behaviors. There are usually two kinds of ultrafine and fine particles 

in the atmosphere: primary and secondary particles. Primary particles are usually 

quite small in size and directly emitted as liquid droplets or solid particles from 
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natural sources such as spontaneous combustion, volcanic eruptions, and 

biomaterials (e.g., plant debris, microbial carcasses, pollen, etc.) or from 

anthropogenic sources such as vehicle exhaust systems, fuel combustion process, 

mineral dust, etc. On the other hand, the secondary particles mostly generate from 

certain gaseous precursors through chemical or physical processes (such as, 

nucleation, condensation) in the atmosphere (Sunol et al., 2018). Boucher (2015) has 

summarised the quantity of aerosols and corresponding precursors emitted from 

different sources for both the primary and secondary aerosols as shown in Table 2.2.  

Table 2.2  Emission fluxes from different sources for primary aerosols and 

secondary aerosols (Boucher, 2015) where Tg = 1012 g = 1 million of tons and    

Gg = 109 g = 1 thousand of tons.  

Aerosol type Emission flux (per year) 

Natural primary aerosols  

Desert dust 1000–3000 Tg 

Sea spray 1000–6000 Tg 

Biomass burning aerosols 20–35 Tg 

Terrestrial primary biogenic aerosols Order of 1000 Tg 

Including bacteria 40–1800 Gg 

Including spores 30 Tg 

Precursors of natural secondary aerosols  

Dimethylsulphide (DMS) 20–40 Tg Sulfur 

Volcanic sulfur dioxide (SO2) 6–20 Tg Sulfur 

Terpenes 40–400 Tg 

Anthropogenic primary aerosols  

Industrial dust 40–130 Tg 

Biomass burning aerosols 50–90 Tg 

Black carbon (from fossil fuel) 6–10 Tg 

Organic carbon (from fossil fuel) 20–30 Tg 
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Anthropogenic secondary aerosols  

Sulfur dioxide (SO2) 70–90 Tg Sulfur 

Volatile organic compounds (VOCs) 100–560 Tg Carbon 

Ammonia (NH3) 20–50 Tg Nitrogen 

nitrogen oxide (NOX) 30–40 Tg Nitrogen 

As the aerosol particles are exposed to an open atmosphere, they would 

undergo all kinds of chemical reactions and physical transformations. Therefore, the 

particles size distribution, chemical composition and structure will experience 

considerable variation over time. The main atmospheric cycling of aerosols 

including the whole process from being emitted to deposition is shown in Figure 2.2. 

 

Figure 2.2  Atmospheric cycling of aerosols (Pöschl, 2005) 

 

The growth of particle surface or volume of aerosols can be considered as a 

two-stage process. In the first stage, monomers or molecules of the condensable 

species are produced through gas-phase chemical reactions. In the second stage, 

these monomers or molecules collide and combine to clusters, which will grow 

further by condensation. Then these clusters nucleate into more stable aerosol 

particles, and aerosol particles subsequently grow by the processes of coagulation 

and condensation (Kalani and Christofides, 2002).  
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One main source that contributes to the considerable quantity of aerosol 

particles is the burn of biomass and fossil fuels, not only producing black carbon and 

organic carbon, but also sulphur dioxide that can convert into sulphate aerosols. The 

emission quantity from the combustion for a given species (Boucher, 2015):  

E=∑AiEFi(1-αi)

i

 (2-1) 

where Ai refers to the fuel consumption for activity i, EFi refers to the emission factor 

for activity i, and αi is the efficiency for emission reduction of the mitigation 

technology. 

In order to study the chemical structures of aerosols, besides the reactants 

and the products of the entire chemical reactions, the specific chemical mechanisms 

of the reactions are also needed. For example, the existence of nitrogen oxides (NOx) 

in the atmosphere has a negative effect on the conditions of human health and the 

climate change because of its influence on the concentration of ozone (O3) in the 

atmosphere. The formation and removal of tropospheric NOx are listed in Equations 

(2-2) to (2-11) (Dentener and Crutzen, 1993): 

(R1) NO2+OH+M→HNO3+M (2-2) 

(R2) HNO3+hν→NO2+OH (2-3) 

(R3) NO2+ O3→O2 +NO3 (2-4) 

(R4) NO3+NO2 +M→N2O5+M (2-5) 

(R5) N2O5+M→NO3+NO2 +M (2-6) 

(R6a) NO3+hν→NO+ O2 (2-7) 
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(R6b) NO3+hν→NO2+ O (2-8) 

(R7) N2O5+ hν→NO3+NO2 (2-9) 

(R8) N2O5+H2O
aerosol
→   2HNO3 (2-10) 

(R9) NO3

aerosol
→   products (2-11) 

In the past several decades, physical chemists have focused their attention on 

understanding the generation processes, chemical components, and dynamic 

behaviors of atmospheric aerosol particles and droplets. They have developed a 

foundation of experimental and theoretical investigation of the physical and 

chemical characteristics, mass and energy transport, and dynamics of processes 

occurring at nanoscale gas-liquid and gas-solid flows (Kolb and Worsnop, 2012). 

Ziemann et al. (2012) conducted the study of mechanisms, products, and dynamics 

of secondary organic aerosols (SOA) formation. Bzdek et al. (2012) summarized the 

methods that existed for particle chemical analysis of ambient ultrafine. Laskin et al. 

(2015) reported an overview of the chemical composition of SOA and the 

physicochemical characterization of the atmospheric brown carbon. Bressi et al. 

(2016) investigated the chemical composition of non-refractory PM using an aerosol 

chemical speciation monitor. Sunol et al. (2018) numerically studied the oxidation 

of volatile organic compounds (VOCs) to form secondary organic aerosols in a 

laboratory chamber over a range of physicochemical conditions. 

2.1.2  Multi-component properties of aerosols 

In the research field of air pollution and global climate change, the 

understanding of the atmospheric aerosol particles looping is significantly important. 

Figure 2.3 shows the interaction effect of aerosol chemical composition, particle 
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properties, climate and human health effects, and aerosol sources. The chemical 

structure and reactions of the particles are involved in almost all this atmospheric 

loop, and the particle size and compositional distributions of the aerosol particles 

can significantly affect the physical and chemical reactivity, capturing properties, 

and their effects on human’s health. Therefore, a complete and scientific 

understanding of particle component compositional transformation and distribution 

is essentially required for the effective control of aerosol effects on global climatic 

change and human health.  

 

Figure 2.3  Interaction effect between atmospheric aerosol compositions, 

properties, climate and health, and sources (Pöschl, 2005). 

Aerosols are essentially multivariate fine particulates with complicated 

chemical reactions and compositions. The dynamic behaviors of aerosol particles 

are related to many engineering and scientific applications and problems, such as 

acid rain formation and deposition (Fitzgerald et al., 1998; Kolb and Worsnop, 2012; 

Nah et al., 2018), combustion particulate emissions (Fino et al., 2016; Lu, 2005; 

Zhong et al., 2018), and silica and titania nanoparticles flame synthesis in pigments 

and catalysts (Fang et al., 2018; Jiang et al., 2007; Pratsinis and Spicer, 1998) and 
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so on. In these areas, particles often consist of multiple components and 

compositional inhomogeneity, and the particle size and compositional distributions 

affect the properties of particles. Figure 2.4 shows the particle number distribution 

of aerosol particles in a two-component system, from which it can be observed that 

the bivariate population balance modeling contains both particle size and 

composition information (Zhao et al., 2010). 

 

Figure 2.4   Schematic illustration of the particle number distribution in a two-

component system (Zhao et al., 2010). 

Over the past several decades, considerable efforts have been taken to 

numerically solve the general dynamic equation (GDE), most of these efforts are 

devoted to solving one-component aerosol processes (Liu and Chan, 2018a, 2017a; 

Maisels et al., 2004; Zhao et al., 2005a; Zhou et al., 2014). Other researchers have 

also focused on multi-component aerosol processes. Gelbard and Seinfeld (1980) 

developed a sectional method for simulating variations in aerosol particle size and 

compositional distributions for coagulation, chemical reaction and growth processes. 

Later on, Gelbard (1990) further presented a moving-sectional method for modeling 
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multi-component condensation. Kim and Seinfeld successively proposed a moving 

sectional method (Kim and Seinfeld, 1990), a numerical technique coupling repeated 

upwind difference method (RUD) and the Taylor-Galerkin method (TGFEM)  

(Kim, 1992) to obtain the multivariable size-composition distributions of aerosol 

systems based on simultaneously occurring coagulation and condensation processes. 

Katoshevski and Seinfeld (1997a) first developed an analytical solution for multi-

component aerosol dynamics based on particle condensation/evaporation. Based on 

this developed method, Katoshevski and Seinfeld (1997b) further proposed an 

analytical-numerical method for the solution of multi-component aerosol GDE 

accounting for growth, removal, particle sources, and coagulation. Sun et al. (2002; 

2004) sequentially used the sectional method and Monte Carlo method to simulate 

two-component aerosol dynamics including coagulation and condensation processes, 

respectively. Korhonen et al. (2004) introduced a size-segregated multi-component 

aerosol dynamics model for investigation of the tropospheric layer aerosol particles. 

Matsoukas et al. (2009), Efendiev (2004) and Zhao and Zheng (2011) simulated the 

two-component coagulation of different kernels using Monte Carlo method. 

Matsoukas et al. (2006) introduced the aggregative mixing degree, which can 

influence particle size and compositional distributions. Later, Lee et al. (2008) 

demonstrated that the steady-state mixing degree is the single parameter to 

determine the width of the compositional distribution in bicomponent aggregation 

systems. Zhao et al. (Zhao and Kruis, 2014; Zhao et al., 2011; Zhao et al., 2016) 

further studied the evolution of the aggregative mixing degree for different 

aggregation regimes and initial conditions for two-component aggregation. 

Palaniswaamy (2007) used the direct simulation Monte Carlo (DSMC) method to 

investigate multi-component aerosol dynamics of coagulation, deposition, growth, 
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and source reinforcement. Fu et al. (2015) developed a finite element method for 

solving multi-component aerosol dynamic equations based on processes of 

coagulation and condensation. Kaur et al. (2017) developed two discretization 

methods respectively based on number and mass forms to solve multivariate 

aggregation population balance equation, and particle moments and number 

distributions are observed and verified through analytical solutions for different 

aggregation kernels. Kaur et al. (2009) and Singh et al. (2018) compared two 

numerical methods (i.e., the cell average technique and the finite volume scheme) 

for solving aggregation and breakage processes, and bivariate aggregation process, 

respectively. They both found that the finite volume scheme is computationally more 

accurate and efficient.  

2.1.3  Aerosol dynamic processes  

When exposed to an open atmosphere or environment, aerosol particles 

experience a series of processes that can affect the particle number concentration, 

particle size distribution, mass loading and other properties of aerosols. Typically, 

the main processes are shown in Figure 2.5 (Lu, 2005), including advection, 

nucleation, coagulation, condensation, evaporation, emission and deposition. 

Advection refers to the spatial movement and dispersions of the particles due 

to the influence of the carrier flows. Aerosols can be carried from place to place 

because of the advection and diffusion effects of continuous gas phase. 

Nucleation refers to the formation of aerosol particles from the 

agglomeration of finer particles in gases; it is a process of conversion of gases to 

particles. 
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Coagulation refers to the process that particles collide with one another and 

stick together to form a new bigger particle (Lin et al., 2015). Coagulation process 

does not alter the mass loading of aerosol particles in gas but will result in the 

variation of particle number concentration and particle size distribution of aerosols. 

Condensation refers to the process that gas phase components condense onto 

the existing aerosol particles, and it is the reverse process of evaporation, which is 

the particle-to-gas mass transfer process and particle component will evaporate to 

gases. 

Emission refers to the process of particles released from different sources are 

added into the existing aerosol system. 

Deposition refers to the process of particles being captured by face and 

removed from the existing aerosol system, and it can be classified into dry or wet 

deposition. 

 

Figure 2.5  Typical aerosol dynamics processes in an aerosol system (Lu, 2005). 

2.2    Numerical methods for the simulation of aerosol dynamics 

Firstly, aerosol transport theory is based on Stokes’ law including semi-

empirical corrections made by Millikan in his measurements of the electronic charge. 
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Einstein’s theory of the Brownian motion plays a central role in aerosol diffusion 

(Friedlander, 2000). The Brownian motion resulting in coagulation was firstly 

explained theoretically by Smoluchowski (Liffman, 1992). Later, more and more 

researchers in aerosol science introduced all kinds of new ideas and concepts based 

on these theories to further describe the behavior of aerosol particles. The dynamic 

behaviors and number density evolution of aerosol particles are described by a 

population balance equation (PBE) or general dynamic equation (GDE)  

(Friedlander, 2000), which are described in Chapter 3. 

Since the GDE is a nonlinear and partial integro-differential equation 

(Prakash et al., 2003), only simple analytical and some approximate solutions are 

given for several cases in which two or more processes that modify the particle size 

distribution are occurring simultaneously. To get the solution for those cases in 

which several processes are occurring simultaneously, especially in the multi-

component and heterogeneous cases, numerical solutions are usually required. There 

are already a number of studies about the different numerical methods used to solve 

the GDE reported, and the most popular ones are the sectional method, the method 

of moment, and the Monte Carlo method. 

2.2.1  Sectional method 

  

Sectional method (SM) is a kind of discrete aerosol size distribution 

approach. In a sectional representation, the size of the particles is divided into a 

certain number of sections and all the particles in one section have the same 

component composition. The particle number distribution function is integrated in 

every section, and connections among sections are accomplished by the coagulation 

kernel. By classifying particles into different size bins, different compositions of 
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particles are allowed for different sizes of particles (Lu, 2005). Because the precision 

of the sectional method is mainly related to the number of sections, and more 

sections means requirements for higher computer configuration, computational 

constraints rely on the maximum number of sections.  

There are two kinds of sectional method. The first one is the fixed sectional 

method, the sectional size boundaries are fixed and particles in the same section have 

a uniform composition. The middle size of a bin is usually used to represent the size 

of all particles. The fixed sectional method has a very simple size structure, and it 

can cover a wide range of particle sizes if the sectional boundaries are set big enough. 

The second one is the moving sectional method where the boundaries of sections are 

no longer fixed. With the growth of particles, instead of moving particles from one 

section to another, the section itself moves. 

Based on the sectional method, Prakash et al. (2003) developed a model that 

described particles in discrete nodal form. Figure 2.6 shows a typical illustration of 

the nodes used in the sectional method and its algorithm (Prakash et al., 2003). It 

can be seen that the volume range of the aerosol system is divided into multiple 

nodes and particles only exist at these nodes. Nucleation occurs at a critical size of 

v* and coagulation can occur between different nodes. Kumar et al. (2006; 2008) 

investigated the particle size distributions related to aggregation, breakage, growth 

and nucleation problems using sectional method. Later on, Kumar et al. (2009) 

compared their proposed sectional method to a finite volume scheme (Filbet and 

Laurençot, 2004) for aerosol aggregation and breakage, and concluded that the 

sectional method is superior to the finite volume scheme in computational accuracy. 

Kochenburger et al. (2017) focused on a semi-implicit size-discrete method for 
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polydisperse aerosol coagulation and pointed out some modifications to reduce the 

errors of discretization. Recently, Aubagnac-Karkar et al. (2018) and Rodrigues et 

al. (2018) have applied the sectional method to predict the formation and growth of 

soot particles in laminar and turbulent flames, respectively, considering the 

processes of nucleation, condensation, surface growth and oxidation, and 

coagulation. 

 

Figure 2.6  Illustration of the algorithm of sectional method (Prakash et al., 2003). 

The sectional method usually can give a relatively accurate prediction of the 

particle size distribution, and takes moderate computational time (Chen et al., 2014). 

But it has its own disadvantage, its sectional representations often result in numerical 

diffusion or fairly complicated algorithms (Wei, 2013). 

2.2.2  Method of moments 

The moment method (MOM) is a quite different disposition of the GDE 

when compared with the sectional method. The coagulation process is expressed by 

the well-known Smoluchowski’s equation (Equation (2-12)), in MOM, it is 

transformed into a set of ordinary differential equations regarding the moments, 

which can be obtained by multiplying Equation (2-12) by vk and integrating it over 
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the whole particle size regime (Chen et al., 2014). Equation (2-12) can be further 

expressed as Equation (2-13),   

     [
∂n

∂t
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The moment of mk is defined by, 

mk=∫ vkn(v)dv

∞

0

 
(2-14) 

The moments set (often refer to the low order moments) represents the most 

significant and basic quantities about the particle size distribution, such as the 

particle number concentration, average diameter, average surface, volume fraction, 

and the mass flux, etc. Solving the moments set is far more computational time 

saving and simple in programming than directly solving the GDE. 

So the MOM has been widely used in aerosol dynamic simulations. Its 

primary advantage is that it needs low computational cost, because only several 

additional moments equations of the particle size distribution (PSD) need to be 

solved. But unfortunately, the MOM generally requires some kind of closure, which 

means that the initial form of the PSD should be assumed to obtain the closure of 

the moment’s equations. Moreover, in order to deal with the problem of closure, 

several moment methods have been developed. The quadrature method of moments 

(QMOM) proposed by McGraw (1997) has been widely used in many studies   

(Chan et al., 2010; Chen et al., 2014; Passalacqua et al., 2018; Yu et al., 2008a). 

Chan et al. (2010) used the direct quadrature method of moments (DQMOM) for 
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studying the exhaust particle formation and evolution in the wake of the studied 

ground vehicle. A method named MOMIC (the method of moments with 

interpolative closure) had been coupled with detailed chemistry to investigate the 

nanoparticle synthesis in turbulent reactive flows by Akroyd et al. (2011). Yu et al. 

(2008) developed a new method of moment (i.e., Taylor-series expansion method of 

moments (TEMOM)) for solving the GDE undergoing Brownian coagulation. In 

order to accomplish the closure of the moment equations, they adopted the Taylor-

series expansion technique through a set of three first-order ordinary differential 

equations, from which the information for describing aerosol dynamics is easily 

obtained. Based on MOMIC and TEMOM, Yu and Lin (2017) further proposed a 

hybrid method of moments with interpolation closure–Taylor-series expansion 

method of moments (MOMIC–TEMOM) method to solve the Smoluchowski 

coagulation equation. Recently, Chan et al. (2018) have coupled a developed 

bimodal TEMOM with large eddy simulation (LES) to study the formation and 

growth of aerosol particles in turbulent flows. Xie and Yu (2018) have proposed the 

thermodynamic constraints of Brownian coagulation based on TEMOM which 

proved to be useful for reducing atmospheric pollutants by changing the specific 

surface energy of aerosol particles. 

Deterministic methods (i.e., SM and MOM) are effective tools to describe or 

predict the evolution of aerosol particle size distribution, and technically easy to be 

coupled with Eulerian-Eulerian models of multiphase flows (Zhang and You, 2015). 

However, these two methods both possess their own advantages and disadvantages 

in computational accuracy and efficiency (Chen et al., 2014; Kotalczyk and Kruis, 

2018; Wei, 2013). For example, SM tends to be more accurate, however, the 
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sectional representations may lead to complicated algorithms; MOM is relatively 

computational time saving and simple, nevertheless, the initial form of the particle 

size distribution should be assumed to obtain the closure of the moment equations. 

Moreover, although the moment methods mentioned above tend to be quite efficient 

for computation, the problem of closure makes it rather difficult to deal with 

complicated aerosol-related problems or models in reality and it also lacks flexibility 

to some extent. 

In conclusion, although deterministic methods have their own advantages in 

solving the GDE, they both have the drawbacks as follows: 

1. The trajectories, history and internal structure of particles cannot be captured; 

2. When applying to multivariate aerosol systems, these methods will lose their 

simplicity and efficiency. 

2.2.3  Monte Carlo method 

Monte Carlo (MC) method is an excellent candidate for dealing with the 

complex aerosol system. The stochastic and discrete nature of MC method is the 

same with the Brownian motion of the particles. By using the stochastic process, 

large quantities of particles are used in the numerical calculations, and the 

coagulation behavior of the particles is the result of random Brownian motions 

(Maisels et al., 2004). In addition, the trajectory, evolution history and the 

composition of the particles can be obtained in MC method. It is especially preferred 

for solving polydispersed and multi-variant GDE even in cases that consider fractal 

coagulation, restructuring and chemical reactions (Zhao et al., 2005c). 
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Metropolis and Ulam (1949) first proposed MC method applying the laws of 

probability and statistics to the natural sciences. Bird (1994, 1976, 1963) developed 

the direct simulation Monte Carlo (DSMC) method for modeling rarefied gas flows. 

Later on, many types of MC methods have been proposed to study the aerosol 

dynamics, which can be generally classified into time-driven MC method  

(Liffman, 1992; Liu and Chan, 2017b) and event-driven MC method     

(Mendoza-Coto, et al., 2016; Zhao and Zheng, 2009) with respect to the 

advancement method of the algorithm; or constant-number MC method        

(Lin et al., 2002; Liu and Chan, 2018a; Zhao and Zheng, 2013) and constant-volume 

MC method (Yamakov, 2016; Zhao and Zheng, 2009) with respect to the variation 

of computational domain. Kostoglou and Konstandopoulos (2001) identified the 

characteristics of different MC approaches and classifications. Weighted MC 

methods (Boyd, 1996; Kotalczyk and Kruis, 2018; Liu and Chan, 2017b; Zhao et al., 

2010) have also been proposed to increase their computational resolution and 

efficiency. Researchers have also tried to increase the computational efficiency of 

MC methods by using parallel processing technology (Kotalczyk and Kruis, 2018; 

Wei and Kruis, 2013; Zhou et al., 2014). 

Among the MC methods developed in recent years, the stochastic weighted 

particle method (SWPM) (Deville et al., 2011; Patterson et al., 2011), multi-Monte 

Carlo (MMC) method (Haibo et al., 2005; Zhao et al., 2005c), differentially 

weighted time-driven MC (DWTDMC) method (Zhao et al., 2009; Zhao et al., 2010) 

and the Operator Splitting Monte Carlo (OSMC) (Liu and Chan, 2017; Zhou et al., 

2014) method are relatively more computationally efficient. 

DWTDMC method proposed by Zhao et al. (2009) could overcome the 
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drawbacks of the traditional MC methods. It can weaken the contradiction between 

the large number of real particles and the limitation of the central processing unit 

(CPU) speed and computer memory capacity by using different weights for different 

simulated particles. In the operator splitting Monte Carlo method (OSMC) proposed 

by Zhou et al. (2014), the operator splitting method is utilized to split the whole 

aerosol dynamic process into two types. One is the coagulation process which is 

stochastic and is simulated by the direct simulation MC algorithm. The other is the 

type of deterministic processes that include nucleation and condensation processes, 

which are solved by deterministic integration method. This is because, stochastic 

simulation of the coagulation process is computationally more efficient than directly 

solving the Smoluchowski equation; nevertheless, the deterministic method is more 

computationally efficient for simulating nucleation and surface growth        

(Zhou and Chan, 2016). The OSMC method proves to be rather flexible and efficient 

for simulating aerosol dynamics through the combination of stochastic and 

deterministic methods. Figure 2.7 shows the simplified flowchart of the 

implementation of OSMC method (Zhou et al., 2014b). 
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Figure 2.7   Flowchart of the OSMC (Zhou et al., 2014b). 
 

Recently, Liu and Chan (2017) have developed a new method named 

stochastically weighted operator splitting Monte Carlo (SWOSMC) which is based 

on the OSMC (Zhou et al., 2014b), and SWPM (stochastically weighted particle 

method) (Rjasanow, 1996). This new method has been proved to have good 

computational efficiency and accuracy in dealing with the problems of complex 

aerosol systems, especially for simultaneous aerosol dynamic processes. 

Among these methods (SM, MOM and MC) mentioned above, MC methods 

are becoming more and more preferred by researchers because of the following 

advantages (Wei and Kruis, 2013), 
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(a) The stochastic nature of MC makes it ideally suitable to deal with the 

stochastic event; 

(b) MC method can solve the closure problem of general dynamic equation 

(GDE); 

(c) Each simulated particle can have its unique size, composition and 

morphology, i.e., any information about the particles can be obtained; and 

(d) It is simple and robust to code numerically. 

2.3   Direct Simulation Monte Carlo method 

2.3.1  Overview 

Direct simulation Monte Carlo (DSMC) method utilizes the probabilistic 

simulation to solve the Boltzmann equation for fluid flows. It was firstly proposed 

by Bird (1976) for simulating rarefied gas flows where the Knudsen number, Kn is 

very large, as in such atmospheric environment, the assumption of continuous fluid 

is no longer appropriate, the stochastic method should be used.  

A remarkable advantage of DSMC method in simulating aerosol particles is 

that its statistical and stochastic nature is the same with the Brownian motion of the 

particles. It is a stochastic algorithm which is based on probabilities of different 

outcomes in a process which could not be easily predicted because of its randomness. 

By tracking representative particles through space and considering collisions 

between particles, the DSMC method can directly simulate the physics of aerosol 

dynamics.  
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2.3.2  Particle representation and the concept of “weight” 

In the numerical simulation process of DSMC, simulated particles are used 

to represent a certain amount of real physical particles in order to overcome the 

conflicts between the large number of real particles and the limitation of computer 

capabilities. Every simulated particle can be considered as a representative sample 

of real particles with the same associated properties (i.e., density, species, velocity, 

size, etc.). Each simulated particle is weighted by a proper number (Boyd, 1996).  

Figure 2.8 shows a schematic representation of the real particle and 

simulation (fictitious) particle systems (Zhao et al., 2005a). It vividly presents that 

particles with the same size and properties are simulated by smaller number of 

simulated particles that possess the same size and properties. 

 
Real particle system Simulated particle system 

Figure 2.8  Graphic illustration of the relation between real particle and 

simulated particle systems (Zhao et al., 2005a). 

Several different concepts exist on how to choose the weighting scheme and 

how to carry out the effect of weighting. Rjasanow (1996) and Liu and Chan (2017a) 

used simulated particles with varying mass weights, simulated particles are assigned 

with a certain mass of real particles. Deville et al. (2011) conducted the action on 

the simulated particles according to the probability, which scales inversely to the 
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weight of the simulated particles. While Zhao et al. (2010) used the concept of 

subsystem, every simulated particle represents a number of real particles (He and 

Zhao, 2016), i.e., every simulated particle has a number-“weight”. In the present 

study, weight wi is defined as the ratio of the number of real particles over the 

number of simulated particles, as shown in Equation (2-15) (Zhao et al., 2010): 

wi = 
Nr(v)

Ns(v)
 (2-15) 

where Nr(v) is the number of real particles of volume size v and Ns(v) is the 

number of simulated particles representing these real particles Nr(v). 

2.3.3  DSMC simulation procedure 

Due to its characteristics of probabilistic and discrete, DSMC method tends 

to acquire fluctuations and statistical errors. In order to reduce the noise of the 

simulation results, DSMC simulation is usually based on averaging on several MC 

loops. 

Typically, the simulation procedures of DSMC methods are as follows: 

Step 1:  Initialization; 

Step 2:  Assign a MC simulation loop number and a stop time period; 

Step 3:  Choose a time-step that is suitable for the simulation; 

Step 4:    Perform calculation on the possible events that may occur; 

Step 5:    Repeat Steps 3 and 4 until the simulation time reaches the stop time; 

Step 6:  Start a new MC loop until the loop number reaches the predetermined 

MC loop number; 

Step 7:  Obtain the averaged results of several MC simulations; 
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Figure 2.9 shows the flowchart of a MC simulation that is based on the fast 

DWMC method developed by Xu et al. (2014). 

 

Figure 2.9  Flowchart of the fast DWMC method (Xu et al., 2014). 

2.4    Operator Splitting Method 

Partial differential equations (PDE) have gained wide applications in various 

physical phenomena. As the physical phenomena become increasingly complicated, 
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it becomes more and more difficult to solve these equations. It is common that a 

model contains different terms (operators) reflecting different physical or chemical 

processes. A typical example of such PDEs is the reactive species transport equation 

in the following form (Carrayrou et al., 2004), 

∂ci

∂t
=L(ci,x,t)+f

i
(c1,…ci,…cNc

) i=1,…,Nc (2-16) 

where L refers to the transport operator including advection and diffusion processes, 

and fi refers to chemical reactions on the species.  

An applicable strategy to deal with such complicated problems is to “divide 

and conquer”. A rather successful approach in this spirit is an operator splitting 

technique. Operator splitting technique can separate the total process into multiple 

steps. It firstly solves different sub-processes and then combines the results 

(Carrayrou et al., 2004; Mclachlan and Quispel, 2002), respectively. 

Karlsen and Risebro (1997) used the operator splitting method to decouple 

the convective and diffusion parts of nonlinear convective-diffusion equations, and 

to reduce the m-dimensional convection problem to several one-dimensional 

problems. Carrayrou et al. (2004) compared the accuracy of several operator 

splitting methods (i.e., standard sequential non-iterative (SNI), Strang splitting SNI, 

standard sequential iterative (SI), extrapolating SI, and symmetric SI approaches) 

for solving the reactive species transport equations. They found that the symmetric 

SI scheme is the most computationally accurate and Strang splitting SNI is the 

second, other schemes have similar accuracy level. Celnik et al. (2007) and    

Menz et al. (2014) accomplished the full-coupling of soot particles with the gas 

phase using the operator splitting technique where the soot particles are simulated 
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using the Monte Carlo method and the gas phase is solved using an implicit ordinary 

differential equation (ODE) solution accordingly. Ganesan and Tobiska (2012) used 

an operator splitting finite element method to split the multidimensional population 

balance equations of crystals into spatial and internal coordinates. The splitting 

technique is also applied to the coupling of scalar energy and mass balance equations. 

Schiller (2014) adopted a unified operator splitting method in multi-scale particle-

fluid flows to couple the discrete solid or elastic objects to a lattice Boltzmann fluid. 

The transport of fluids is solved by the lattice Boltzmann method (LBM) and 

immersed objects are coupled to the flow field by interaction force. Zhou et al. (2014) 

and Liu and Chan (2017) also recently used the operator splitting technique to couple 

the stochastic Monte Carlo method with deterministic methods for aerosol dynamics. 

2.5   Coupled CFD-PBE Computation of Aerosol Dynamics 

2.5.1  Overview 

In many aerosol dynamic systems, the behavior of the bulk fluid may have a 

strong influence on the suspended particles owing to mass, momentum and energy 

transfer between the aerosols and the fluids. More knowledge of the complicated 

multi-phase fluid needs to be known if a deeper understanding is needed about the 

properties of the aerosol particles in the complex particle-fluid systems. The local 

velocity, temperature and pressure as well as the viscosity of the fluid, the chemical 

reaction and the mixing status between the particle and the fluid both can contribute 

to the mass, momentum and energy transfer, as well as the properties of the aerosol 

particles. These coupling phenomena which are shown in Figure 2.10 will have a 

significant influence on both the gas and particle phases, and ignoring these factors 



 

Chapter 2                                            Literature Review 

  40 

and the coupling of fluids and aerosols can give rise to significant errors     

(Brown et al., 2006). 

 

Figure 2.10   Gas-particle coupling phenomena (Crowe et al., 1977). 

2.5.2  Particle-fluid coupling strategies 

With regard to the coupling of the fluids and particles, computational fluid 

dynamics (CFD) offers a framework for simulating aerosol dynamics. The use of 

CFD for predicting gaseous and particulate emissions is becoming a powerful tool 

for the design, optimization and testing of low-emission and high-performance 

burners (Zucca et al., 2006).  

Different modelling codes have been developed in CFD for coupling the 

aerosols and the fluid flow. There are typically two modelling approaches for CFD. 

They are Eulerian (i.e., solution in fixed positions) and Lagrangian (i.e., solution 

along the streamline) models, respectively (He and Zhao, 2016). Correspondingly, 

with regard to the coupling of the fluids and particles, computational fluid dynamics 

(CFD) provides two kinds of framework: Eulerian-Eulerian (E-E) models     

(Chan et al., 2018; Patel et al., 2017) and Eulerian-Lagrangian (E-L) models 

(Sommerfeld, 2001; Vié et al., 2016; Zhao et al., 2018), referring to whether the 

dispersed phase is solved by Eulerian method or Lagrangian method. In Eulerian-

Eulerian (E-E) framework, the dispersed phase is considered to be continuous and 
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solved by transport equation (Hu and Celik, 2008). In Eulerian-Lagrangian (E-L) 

framework, the dispersed particle phase is simulated by large numbers of discrete 

particles and the motion and dynamic behaviors are governed by the forces exerted 

by the continuous phase. A simple illustration of E-L solution for gas-droplet flow 

system is shown in Figure 2.11. 

 

Figure 2.11   An Eulerian-Lagrangian solution of gas-droplet flow     

(Crowe et al., 1977). 

Chiesa et al. (2005) applied both E-E and E-L methods in the study of 

fluidized bed to predict the formation of bubbles in the bed and the numerical results 

were validated through experimental data. Zhang and Chen ( 2007) used both E-E 

and E-L methods in predicting the particle number density distributions in a 

ventilated chamber, both steady-state and transient flows are observed and compared. 
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It is found that the Lagrangian method is more computationally demanding, on the 

other hand, it performed better in unsteady state condition. Vie et al. (2016) assessed 

the ability of Eulerian moment methods in addressing two sources of errors (i.e., the 

statistical convergence and the numerical resolution) in E-E methods, and compared 

the results to the corresponding Lagrangian method in thermal particle-fluid 

turbulent flows. Patel et al. (2017) presented and compared three numerical methods 

in the simulation of two different particle-fluid flows, including a traditional two-

fluid model, a quadrature-based moment method and an E-L method. Kazemi et al. 

(2018) used E-L to study the effect of four dispersion models (i.e., ELT, 

Sommerfeld’s, MOB and PDF) on particle distributions and found that dispersion is 

the most important mechanism for particles migrating to the corner recirculation 

zone of the computational domain. 

Furthermore, the volume fraction of the dispersed particles and the coupling 

strategy between the carrier flows and the particles also have large effects on the 

particle concentration distribution (Yang and Shy, 2005). The particle volume 

fraction, φ
v

 is defined as the total volume of particles in unit volume 

(Almohammed, 2018). When φ
v
 is relatively small (i.e., φ

v
< 10−6), the particles do 

not affect the flow field structure of carrier gas remarkably and the effect of particles 

on the continuous phase can be ignored. Thus one-way coupling method is preferred, 

which means the continuous phase affects the motion of particles, while not the other 

way around. With the increasing of particle loading (i.e., 10−6< φ
v
 <10−3), the two-

way coupling method is recommended where the gas phase affects the motion and 

behavior of particles, and the particles also affect the structure of the fluid flow. 

When φ
v

 continues to increase, the four-way coupling method should be 
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considered and the interaction effect between particles (e.g., particle-particle 

collision ) should also be calculated (Battista et al., 2018; Elghobashi, 1994;     

He et al., 2015; Samuel et al., 2016). 

Strömgren et al. (2012) developed an Eulerian two-phase model to 

investigate the two-way coupling effects on particle preferential concentration in 

particle-gas turbulent flow, and concluded that two-way coupling effects should be 

considered at a volume fraction of 104. Horwitz and Mani (2016) developed a 

correction method to predict the undisturbed fluid flow velocity by adding an 

estimation of the velocity disturbance induced by particles in particle-fluid flows 

considering two-way coupling. Recently, Ireland and Desjardins (2017) have 

introduced a simple approach to predict the particle drags for two-way and four-way 

coupled particle-laden fluid flows, and first proposed the grid-independent 

predictions of the particle drag force in low Reynolds number flows. Li et al. (2018; 

2017) have used two-way coupled E-L method to study the solid particle statistics 

in a developing turbulent boundary layer of the particle-laden flow over a flat plate, 

and found that the levels of velocity fluctuations of particles in different directions 

(wall-normal, spanwise and streamwise directions) vary. Dizaji and Marshall (2017) 

have examined the two-way coupling effects on turbulent particle agglomeration and 

the attenuation effect of particles on the turbulent kinetic energy in a range of particle 

Stokes numbers. Battista et al. (2018) have studied the influence of particle Stokes 

number on the turbulence modulation induced by particles in two-way coupling 

regime. 
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2.5.3  Multiphase flow studies 

The phenomenon of particles dispersed in turbulent flows is quite common 

in a broad range of applications, including atmospheric dispersion of pollutants 

(Chan et al., 2010; Zhong et al., 2018), fluidized beds (Ayeni et al., 2016;      

Clarke et al., 2018; Xu et al., 2000), soot particles in combustion chambers  

(Lucchesi et al., 2017; Zhao et al., 2018; Zucca et al., 2006), indoor airborne particles 

emitted in cooking process (Lai and Chen, 2015; Wang et al., 2018) and so on. 

Because particles released from all kinds of sources (automobiles, chimneys, 

factories, etc.) will disperse in the air and severely affect the atmospheric 

environment and human health, particle-laden turbulent flow is a popular topic of 

interest. Figure 2.12 shows a contour plot of the time evolution of solid phase volume 

fraction in a two-dimensional gas-solid fluidized bed reactor (Taghipour et al., 2005). 

 

Figure 2.12  Solid phase volume fraction profiles of a 2D bed (U =0.38 m/s, i.e., 

∼ 6Umf , drag function: Syamlal–O’Brien, ess =0.9) (Taghipour et al., 2005).  

Many investigators have attempted to identify the factors influencing the 

dispersion patterns, dynamic behaviors and interaction effects of dispersed particles 
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in gas flows. Previous studies show that many factors may affect the dispersion 

pattern of particles in turbulent flows (Zhou et al., 2015), for example, the Reynolds 

number, Stokes number, the particle density and particle size, etc. especially the 

particle Stokes number, which describes the response of particles dispersed in fluid 

flows. Figure 2.13 shows the dynamic behavior of particles suspended in turbulent 

flows with different Stokes number (Almohammed, 2018; Crowe et al., 1988). 

Recently, Wang et al. (2017) have studied the influences of Stokes number on the 

distribution of solid particles in a plane turbulent wall jet using direct numerical 

simulation. Lau and Nathan (2014) experimentally examined the influence of Stokes 

number on the particle number density distribution and on the fluid flow velocity 

field at the exit of a pipe. Samuel et al. (2016) used the lattice-Boltzmann method to 

conduct simulations on particle-laden flows in a channel and found that particles 

with different Stokes numbers exhibit quite different behaviors. Lee and Lee (2015) 

investigated the influences of particle Stokes number on continuous flow field and 

the turbulence intensity. Hogan et al. (2010) and Yang and Shy (2005) investigated 

the dependence of particle preferential concentration on Stokes number and Taylor 

microscale Reynolds number in turbulent flows. Ouchene et al. (2015) explored the 

influence of particle Reynolds number on the drag coefficient of ellipsoidal solid 

particles. Mando and Rosendahl (2010) summarized the particle motion regimes in 

different particle Reynolds numbers. Ireland et al. (2016a and 2016b) studied the 

influences of both Stokes number and Taylor microscale Reynolds number on the 

statistical behaviors of inertial solid particles in isotropic and homogeneous 

turbulent flows for the conditions with or without gravitational effects. Recently,    

Li et al. (2017) have studied the Stokes number effect on the particle velocity 

fluctuations and found that the fluctuations decrease with particle Stokes number.   
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Li et al. (2018) have further studied the interactions between particles and fluid by 

solving the disturbance flow of particles using Stokes approximation or Oseen 

correction based on the particle Reynolds number. Dou et al. (2018, 2016) have 

experimentally studied the effect of Reynolds number and Stokes number on 

particle-pair relative velocity in homogeneous and isotropic turbulent flows for the 

first time. Zhao et al. (2018) have studied the influence of Reynolds number and 

Stokes number on particle resuspension in turbulent duct flow using a LES-

Lagrangian method. They have found that particle resuspension tends to occur 

nearby the centre or the sidewalls of the duct, and the particle resuspension rate and 

resuspension velocity increase with the Reynolds number. 

 

Figure 2.13  Effect of particle Stokes number on the dynamic behavior of 

particles suspended in turbulent flows (Crowe et al., 1988).  

Most of the previous studies focused on particle-laden flows in simplified 

configurations, such as channels (Klinkenberg et al., 2013; Kuerten, 2006), pipe jets 

(Lau and Nathan, 2014; Liu and Chan, 2017), or cubic ducts (He and Zhao, 2016; 

Winkler et al., 2004). However, in some realistic geometry, the irregular structure of 

the fluid flow channel may induce large inhomogeneity in the flow field, which will 

further affect the concentration distribution of the dispersed particles. Focusing on 

inhomogeneous flows, Vincont et al. (2000) conducted experiments in both water 
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channel and wind tunnel where particles are released from the line source slot into 

the near-wake flow behind a square rod obstacle, in order to observe the properties 

of the preferential concentration fields of particles. Based on their experimental 

study, Rossi and Iaccarino (2009) further studied the capabilities and limitations of 

standard gradient–diffusion hypothesis (SGDH) in predicting the atmospheric 

dispersion of the scalar flux for both air and water setup. Grigoriadis and Kassinos 

(2009) studied the effects of Stokes number on the dispersion characteristics and the 

preferential concentration effects of the particles in water flows with Stokes number 

in the range of 0~25 where one-way coupling is considered for the particle-fluid 

interactions. Huang and Chan (2012) and Huang et al. (2009) experimentally studied 

the exhaust scalar dispersion and distribution fields in the wake region of a vehicle. 

Njobuenwu et al. (2013) studied dilute particle-laden flow in square duct with a 90◦ 

bend in high Reynolds flows using Eulerian-Lagrangian method. Akbarzadeh and 

Hrymak (2016) studied the particle-laden flows in rectangular duct bend geometry 

with a moving wall in very low Reynolds flows using computational fluid dynamics 

based discrete element method (CFD-DEM). Liu et al. (2016) studied the 

hemispherical roughness elements on the wall in a developing turbulent boundary 

layer flow to observe the influence of wall roughness on the particle-induced 

turbulence modulation.  

2.5.4  Aerosol dynamic studies in turbulent flows  

Many aerosol simulation codes embedded in CFD have been reported by 

previous publications. Correspondingly, the mentioned sectional method, the 

moment method and the Monte Carlo method have been coupled with the kinetics 

and fluid dynamics computations through different methods, respectively   
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(Akroyd et al., 2011; Brown et al., 2006; Chan et al., 2018a; Gao et al., 2016; 

Pyykönen and Jokiniemi, 2000; Zhang and You, 2015).  

Since the modelling of the aerosol dynamics in the deterministic methods is 

to effectively and efficiently solve the differential equations describing the particle 

population balance, the aerosol dynamics can be included in the CFD as source terms, 

so both of the fluid flow and aerosol dynamics can be solved in an Eulerian approach. 

Miller and Garrick (2004) studied the coagulation behaviors of nanoparticles in a 

turbulent planar jet by coupling direct numerical simulation and a sectional method, 

and the effects of large vortices are considered. Marchisio et al. (2003) implemented 

the quadrature method of moments (QMOM) into commercial software FLUENT 

for studying particle aggregation and breakage processes. Nere and Ramkrishna 

(2006) investigated pure aggregation process in turbulent pipe flows and examined 

the particle size distribution in both axial and radial directions. Zou et al. (2010) 

developed a computational technique linking QMOM with Monte-Carlo for aerosol 

coagulation and sintering processes. Lin et al. (2016) used their proposed Taylor 

expansion method of moments (TEMOM) to study the nanoparticle coagulation in 

turbulent flows by considering the effects of convection, Brownian and turbulent 

diffusion, turbulent and fluctuating coagulation, and the numerical results proved to 

agree with the experimental results. Vlieghe et al. (2016) experimentally and 

numerically studied the agglomeration and breakage of particles in turbulent flows 

using a QMOM to predict the moments of particles by including the fractal 

dimension. Recently, Dizaji and Marshall (2017) have coupled the direct numerical 

computation and the discrete-element method to study the effect of particle 

agglomeration on the fluid turbulence and the structure of the flow field, and have 
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compared the difference between one-way and two-way couplings. Frederix et al. 

(2017) have developed a characteristics-based sectional method for describing 

aerosol formation and transportation in spatially varying flows. Zheng et al. (2018) 

have studied the impacts of different particle aggregation kernels on ash particle 

aggregation processes in turbulent flows based on a CFD-QMOM method and have 

also proposed a corrected turbulent aggregation model.  

However, as for the MC method, because the aerosol dynamics is modelled 

by Lagrangian method, which is different from the Eulerian method of fluid flow 

solution, so the coupling of MC method with CFD is relatively more complicated 

and difficult. Moreover, due to the large number of particles that is needed by MC 

method to provide the statistical information of the aerosols (Zhao and Zheng, 2013), 

the computational cost is too much. However, with the rapid development of 

computer technologies, computers with more memory space and that operate at 

faster speeds are being developed, and the computational costs (i.e., memory and 

time consumption) of MC methods are thus no longer a major issue.  

Rigopoulos (2007) solved the closure problem of the source term of 

population balance equation (PBE) by a Lagrangian particle method-based 

probability density function (PDF) approach. He applied this method in a partially 

stirred aerosol reactor to study the significance of the interactions of turbulence with 

chemistry-particle formation mechanisms. Garmory and Mastorakos (2008) used the 

stochastic fields method to study the aerosol nucleation and growth phenomenon in 

turbulent jets. Zhou et al. (2014) and (2016) investigated the formation and evolution 

of aerosol in turbulent mixing layer using both DNS and Monte Carlo method.   

Hao et al. (2013) simulated the process of titania nanoparticle synthesis by 
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considering the effects of nucleation, agglomeration, and sintering by a fast PBE-

Monte Carlo method. Recently, Pesmazoglou and Kempf (2017) and   

Pesmazoglou et al. (2016) have proposed a multi-collision Monte Carlo method in 

which one simulated particle may collide with several simulated particles 

simultaneously and successfully coupled this algorithm into gas flows, and have 

investigated the particle aggregation in turbulent jets by using large eddy simulation. 

Zhao and Zheng (2013) investigated the spatiotemporal evolution of particle size 

distribution using a coupled CFD and Monte Carlo method, which presented the 

advantages of Monte Carlo methods. The differentially weighted Monte Carlo was 

coupled into CFD to study the interactions of aerosol particles and hydrodynamics. 

However, only a limiting case had been studied for very high-inertia particles whose 

behaviors are not affected by surrounding fluids. Thus, this method needs further 

development for wider application.  

2.6   Summary of Literature Review 

As in many of industrial and engineering applications, the study of complex 

aerosol dynamics is essentially required and the development of numerical methods 

for complex particle-fluid systems is of importance. 

Among different numerical methods of simulating complex aerosol 

dynamics, the Monte Carlo method is more preferred by researchers. However, one 

disadvantage of traditional MC methods is related to the conflicts between the 

computational accuracy and efficiency due to their stochastic and statistical 

characteristics. Hence, the accuracy and efficiency of MC methods are needed to be 

improved significantly. The coupling between Monte Carlo method and turbulent 
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flow still encounters many technical difficulties. In addition, the relationship 

between turbulence, particle properties and collision kernels of aerosol dynamics is 

not yet well understood due to the theoretical limitations and experimental 

difficulties. Therefore, the present study is based on Monte Carlo method to improve 

its computational accuracy and efficiency in simulating complex aerosol dynamics. 

The fundamental concepts, knowledge and methods of aerosol dynamics in 

multiphase flows are reviewed in this chapter to shed light on the development and 

state-of-the-art that the researchers have acquired as well as the knowledge gap for 

this important research area. 

The literature review is summarized as follows: 

1. Aerosol dynamics are very important processes for atmospheric aerosols and 

aerosol-related reactors that are related to several natural and engineering 

applications, such as those of acid rain formation and precipitation, soot 

formation and growth in combustion chambers, nanoparticle synthesis in 

applications of drug delivery and ceramics, among others. It is of great 

importance to gain a better insight and more intrinsic understanding on 

aerosol particles including the generating and evolution mechanisms and 

other physiochemical properties. 

2. In many areas, particles often consist of multiple components, and the 

particle size and compositional distributions affect the properties of particles. 

Many properties of particles, such as light scattering, radioactivity and 

capturing strategies are highly dependent on the particle size and 
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compositional distributions. Therefore, it is very important to study the 

multi-component properties of aerosols. 

3. Numerical methods for aerosol dynamics can be divided into two categories 

(i.e., deterministic and stochastic methods). Deterministic methods provide 

an efficient and accurate approach for the numerical simulation of aerosol 

dynamics. However, the inherent limitations of deterministic methods are 

also very obvious and difficult to overcome, among which the inability to 

provide historical information of particles and difficulty to apply to multi-

component problems are fatal in the study of complex aerosol dynamics. 

Stochastic Monte Carlo methods have unique advantages in dealing with 

multi-component and multi-dimensional problems concerning aerosol 

dynamics and can provide the historical information and arbitrary number of 

variables.  

4. Various modifications have been made to increase the computational 

efficiency and guarantee the computational accuracy of Monte Carlo 

methods, such as weighted Monte Carlo methods and operator splitting 

Monte Carlo methods.  

5. Eulerian-Lagrangian simulation is also quite an efficient tool to study fluid- 

particle multiphase flows. Factors influencing the dispersion patterns, 

dynamic behaviors and interaction effects of particles dispersed in turbulent 

flows include the Stokes number, Reynolds number, particle volume fraction, 

etc. 
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6. In order to solve multi-dimensional problems involving aerosol dynamic 

processes, Monte Carlo method can be coupled to CFD involving aerosol 

dynamic processes.  
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Chapter 3 Theoretical Fundamentals of the Present Study 

3.1  Introduction   

This chapter briefly presents the theoretical fundamentals related to the 

present study including the population balance equation, Monte Carlo methods, and 

Navier–Stokes (N-S) equations for turbulent flows. 

3.2 Population Balance Equation  

3.2.1  Single-component general dynamic equation 

In the past several decades, many researchers in aerosol science have 

introduced all kinds of ideas and concepts to describe the behavior of aerosol 

particles. The dynamic behaviors and the properties of the aerosol particles are 

usually depicted by a population balance equation (PBE) (Housiadas and Drossinos, 

2005b), which is also known as the general dynamic equation (GDE)   

(Friedlander, 2000), as expressed in Equation (3-1), 

∂n

∂t
+∇∙nu⃗ =∇∙D∇n+ [

∂n

∂t
]

nuc1

+ [
∂n

∂t
]

coag

+ [
∂n

∂t
]

cond

 (3-1)  

where n is the particle number density function, u⃗  is the velocity of the gas, and  

D is the diffusion coefficient. 

The second term on the left side and the first term on the right side of 

Equation (3-1) describe the convection of aerosol in the flow field and the diffusion 

of the aerosol particles, respectively. The aerosol dynamic processes on the right 

side of Equation (3-1) refer to the interactions among molecules and particles, 

including nucleation, surface growth, and coagulation (Zhou et al., 2014b). 
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Nucleation is a new aerosol formation process, more specifically, means tens or 

hundreds of molecules forming a stable critical-size nucleus (Zhou and Chan, 2016). 

Surface growth usually means condensation that describes interactions between gas 

phase molecules and aerosol particles, is the reverse of evaporation. Coagulation is 

the process that two particles collide with one another and combine together to form 

a larger particle (Wexler et al., 1994; Zhou et al., 2014b). 

If the effects of convection and diffusion of the aerosols are not considered, 

Equation (3-1) becomes, 

∂n

∂t
=

1

2
∫ K

v

0

(v-ṽ,ṽ)n(ṽ)n(v-ṽ)dṽ∫ K

∞

0

(v,ṽ)n(v)n(ṽ)dṽ+
∂(I0n)

∂v
(v,t)+δ(v0,v)J0(t) 

(3-2) 

where J0(t), K(v, ṽ), andI0(v,t) are the nucleation, coagulation and condensation 

kernels, respectively (Debry et al., 2003), and δ(v0,v) is the standard Dirac function, 

δ(v0,v) = 0, (v ≠ v0). 

3.2.2  Two-component general dynamic equation 

In many areas of natural science and engineering applications, particles often 

consist of multiple components, and the particle size and compositional distributions 

affect the properties of particles. For atmospheric aerosols, coagulation and 

condensation are the most important processes. Many of the properties of aerosols 

(e.g., light scattering, radioactivity and capturing strategies) are dependent on the 

size and compositional distributions of particles. Furthermore, coagulation and 

condensation processes are very important phenomena to the evolution of particle 

sizes and compositional distributions (Fu et al., 2015; Ramabhadran et al., 1976; 

Singh et al., 2018; Zhao et al., 2005b). Therefore, these two processes have been 
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widely studied for the evolution of the particle size and compositional distributions. 

For a two-component aerosol system that only considers coagulation and 

condensation processes, the governing equation becomes (Gelbard and Seinfeld, 

1978; Zhao and Zheng, 2011),  

∂n(vA,vB,t)

∂t
= 

1

2
∫ ∫ K(vA − vA

' ,vB − vB
' ,vA

' ,vB
' , t)

vB

0

vA

0

n(vA − vA
' ,vB − vB

' , t)n(vA
' ,vB

' , t)dvA
' dvB

'  

     −n(vA,vB,t)∫ ∫ K(vA,vB,vA
' ,vB

' , t)𝑛(vA
' ,vB

' , t)dvA
' dvB

'
∞

0

∞

0

 

     −
∂(IAn)

∂vA

(vA,vB,t)−
∂(IBn)

∂vB

(vA,vB,t) 

(3-3) 

where vA  and vB  are the volume of A-component and B-component within      

a particle with a total volume of vA+vB , respectively;  n(vA,vB,t) is the number 

density function of particles with a volume of vA+vB  at time t such that 

n(vA,vB,t)dvAdvB denotes the number density of particles in the size range of A-

component vA  to vA+dvA , and the size range of B-component vB  to vB+dvB ; 

K(vA,vB,vA
' ,vB

' , t) is the coagulation kernel between one particle of volume (vA,vB) 

and another particle of volume (vA
' ,vB

' ). The coagulation of two particles results in 

the production of a new two-component particle with a volume of (vA+vA
' , vB+vB

' ) 

and the destruction of two previous particles. IA and IB are the condensation rate 

coefficients of the A-component and B-component, respectively. The occurrence of 

a condensation event either in the A-component or the B-component would vary 

(either increase or decrease depending on the derivative of the condensation rate 

with particle volume) the number density of particles of state (vA, vB) as expressed 

in Equation (3-3). 
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3.2.3  Aerosol dynamics kernels  

Nucleation process refers to the process that the saturated vapours convert 

into particles of a critical size, v0. The nucleation kernel, J0(t) describes the rate of 

formation of particles with volume, v0. Thus the number density of other particles 

(volume larger than v0) does not change due to the nucleation process.  

The homogeneous nucleation rate is typically written as (Seinfeld, 1998): 

J0(t)=Cexp(∆G*/kBT) (3-4) 

where C is a normalized constant that is connected with the vapor pressure, ∆G* is 

the Gibbs free energy in the equilibrium state that is needed to form a stable nucleus. 

Coagulation process refers to two particles collide and combine with each 

other to form a new larger particle, it is described by the famous Smoluchowski’s 

equation (Liffman, 1992), which includes the first two terms in right-hand side of 

Equation (3-2). The coagulation kernel, K(v, ṽ) describes the rate of particles with 

volume, v coagulating with particles with volume, ṽ. In different aerosol regimes, 

K(v, ṽ)  can be a constant value or a value that is dependent on the volume of 

particles.   

For the free molecule regime (where the diameter of particles is smaller than 

the mean free path of air), K(v, ṽ) is expressed as Equation (3-5), 

K(v,ṽ) = (
6

π
)2/3(

πkBT

2𝜌p

)

1/2

(
1

v
+

1

ṽ
)

1/2

(v1/3 + ṽ1/3)
2
 (3-5) 

In continuous regime, K(v, ṽ) can be expressed as, 
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     K(v, ṽ) = (
2kBT

3μ
)(2+(

v

ṽ
)
1/3

+ (
ṽ

v
)

1/3

) (3-6) 

where kB is the Boltzmann’s constant, 𝜌p is the density of particles and  is the 

viscosity of air (Grant et al., 2001). 

Condensation process is the reverse process of evaporation, and the 

condensation rate,  I0(v,t) is usually related to the surface area of the particles. 

Theoretically, the size of all of the particles will change due to condensation process. 

The occurrence of condensation or evaporation event depends on the vapor 

pressure far from the particle, p∞ and the equilibrium vapor pressure, peq. When 

Equation (3-7) is satisfied, an effective condensation event will occur and the 

condensation kernel in continuous regime can be described as Equation (3-8)  

(Debry et al., 2003). 

p∞≥ peq (3-7) 

I0(v,t) = CI exp(p∞peq)v1/3 (3-8) 

where CI is a constant that is connected with the diffusion process and material 

properties of species and temperature. 

3.3 Differentially Weighted Monte Carlo Methods 

The differentially weighted Monte Carlo (DWMC) method developed by 

Zhao et al. (2010) is used herein. In this method, every simulated particle for 

calculation is weighted differentially with a number of real particles, which is the 

weight of the simulated particle, wi (i = 0, 1, 2, 3 ... n), where n is the simulated 

particle number.  



 

Chapter 3                     Theoretical Fundamentals of the Present Study 

  59 

This DWMC method is prominent for managing the coagulation process. 

The occurrence probability of coagulation, Pi  on simulated particle, i within δt 

and Vs is, 

Pi = 1-exp(-VsCiδt/2) (3-9) 

where Vs is the volume of the simulation system, δt is one time-step, and Ci is the 

coagulation rate of simulated particle, i based on the probabilistic coagulation rule, 

and is described as,  

Ci = 
1

Vs
2
∑ Kij



N

j=1,j≠i

 

(3-10) 

where N is the total number of the simulated particles, and Kij
  is the normalized 

coagulation kernel for particle, i and particle, j ,  

Kij
  = 2Kijwjmax(wi,wj)/(wi+wj) (3-11) 

Coagulation event will take place on simulated particle, i if a generated 

random number from a uniform distribution between 0 and 1, r1 is less than Pi; the 

choice of its coagulation pair particle, j is based on the acceptance-rejection method. 

The coagulation partner particle, j is determined if the following condition is 

satisfied, 

r2 ≤ Kij

 /max(Kmn
 )|

∀m,∀n
 

(3-12) 

where r2 is a generated random number. Equation (3-12) is checked until a particle j 

is chosen. 

When two simulated particles, i and j, are selected to coagulate with each 

other, the previous particles are substituted by two new weighted simulated particles, 
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which are also denoted as i and j, while the properties of these particles are changed. 

The calculations are formulated as the following equations (Zhao et al., 2010;  

Zhao and Kruis, 2014): 

if wi = wj, {
wi

'  =  wi 2 ; vi
'  = vi + vj ;⁄

wj
'  =  wj 2 ;⁄  vj

'  = vi + vj ;
 (3-13a) 

if 

wi ≠ wj, {
wi

'  = max(wi,wj) - min(wi,wj) ;  vi
'  = vm|

wm = max(wi,wj) 
 ;

wj
'  = min(wi,wj) ;  vj

'  = vi + vj ;                                         
 

 

(3-13b) 

where wi
' ,  wj

' , vi
'  and vj

'  represent the weight or the volume of the newly created 

simulated particles, i and j after the coagulation event. 

3.4 Operator Splitting Technique 

3.4.1  Overview 

Considering the general dynamic equation (GDE) in Equation (3-1), this 

equation contains convective, diffusion, nucleation, growth and coagulation terms. 

These different terms reflect different physical and chemical aspects of the model 

which appear in the same equation, and make it rather difficult to analyze and solve 

both analytically and numerically.  

An applicable strategy to deal with such complicated problems is to “divide 

and conquer”. A rather successful approach in this spirit is an operator splitting 

technique. Operator splitting technique can separate the total process into multiple 

steps. It firstly solves different sub-processes and then combines the results 

(Carichino et al., 2018; Carrayrou et al., 2004; McLachlan and Quispel, 2002), 

respectively. 
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3.4.2  Implementation of operator splitting technique 

Splitting methods generally stand out when an operator or equation can be 

split into several parts that are much easier to solve, and then composed to form the 

integrator. Consider a simple time-dependent differential equation,  d /dx t X x , 

within phase space, M and X is a vector field on M. Three steps are involved to 

implement the splitting methods (Mclachlan and Quispel, 2002): 

(a) Selecting a set of vector fields iX such that   iX X ; 

(b) Integrating each iX ; and 

(c) Combining these solutions to yield an integrator for X. 

Then the operator splitting method can be described as,  

exp(△tX ) = exp(△tXd )exp(△tXs)+ 𝒪 (△t2) (3-14a) 

= exp(1/2△tXd )exp(△tXs) exp(1/2△tXd )+ 𝒪 (△t3) (3-14b) 

= exp(1/2△tXs )exp(△tXd) exp(1/2△tXs )+ 𝒪 (△t3) (3-14c) 

where X refers to the total process, Xd and Xs refer to two different sub-processes 

(i.e., deterministic and stochastic processes) respectively and △t refers to one time- 

step. 

Equation (3-14a) is of first-order accuracy while Equations (3-14b) and    

(3-14c) are of second-order accuracy (Liu and Chan, 2017a; Zhou et al., 2014b). The 

operator splitting schemes are shown as Figure 3.1. 
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Figure 3.1  Operator splitting schemes. (a) First order Lie scheme; (b) second 

order Strang scheme (Zhou et al., 2014b). 

Zhou et al. (2014) and Zhou and Chan (2016) used operator splitting 

technique to solve the GDE, and the flowchart of operator splitting Monte Carlo 

method for solving GDE is shown in Figure 2.7. By dealing with the split processes 

one by one and making further approximations which neglect the diffusion and 

convection terms under certain conditions, the GDE including deterministic 

processes (nucleation, surface growth) and stochastic process (coagulation) can be 

solved efficiently (Patterson et al., 2006). 

In the present study, the second-order Strang splitting method is used which 

is described by the Equation (3-14b). In the present study, X refers to the total aerosol 

dynamic process, Xs refers to coagulation process which is modelled by the 

stochastic method, Xd refers to nucleation and condensation processes which are 

solved by deterministic integration method. As Xd includes two processes        

(i.e., nucleation and condensation processes), Equation (3-14b) becomes, 
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exp(δtX) = exp (
1

2
δtXnucl)  exp (

1

2
δtXcond) exp(δtXcoag) exp (

1

2
δtXcond) exp (

1

2
δtXnucl) 

 + 𝒪(δt3) (3-15) 

3.5 Sectional Method 

In the present study, a sectional method (SM) is used to verify the proposed 

MC method, and the algorithm of SM is briefly described in the following. 

The sectional method used was developed by Prakash et al. (2003) based on 

the former sectional method developed by Gelbard et al. (1980) and the coagulation 

nodal method developed by Lehtinen and Zachariah (2001). In this sectional method, 

particles only exit at discretized nodes. By limiting the number of the particle 

parameters, this model makes the computational work quite simple and time-saving. 

Specifically, the GDE at node k is given by, 

∂nk

∂t
= [

∂nk

∂t
]

nuc1

+ [
∂nk

∂t
]

coag

+ [
∂nk

∂t
]

cond

 (3-16) 

The population change due to nucleation, coagulation and condensation are 

respectively given by, 

[
∂nk

∂t
]

nuc1

= ξkJk(t) (3-17) 

[
∂nk

∂t
]

coag

=
1

2
∑ χ

ijk

i=2
j=2

Ki,jninjnk∑Ki,k

i=2

ni (3-18) 

[
∂nk

∂t
]

cond

=
v1

vk − vk-1

K1,k-1(n1 − n1,k-1
s )nk-1 −

v1

vk+1 − vk

K1,k(n1 − n1,k
s )nk (3-19) 
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where ξk and χ
ijk

 are expressed as (Prakash et al., 2003; Shigeta and Watanabe, 

2010), 

ξk =

{
 
 

 
 

v0

vk

;            if  vk-1 ≤ v0 ≤ vk , 

v0

v2

;                 if  v0 ≤ v1,              

0;                     otherwise.              

 

χ
ijk
=

{
 
 

 
 

vk+1 − (vi + vj)

vk+1 − vk

;      if vk ≤ vi + vj ≤ vk+1 ,

(vi + vj) − vk-1

vk − vk-1

;      if vk-1 ≤ vi + vj ≤ vk ,

0;                otherwise.

 

More detailed information about this sectional method can be referred to 

Prakash et al. (2003). 

3.6 Computational Fluid Dynamics (CFD) 

3.6.1  Fluid and scalar equations 

                                                           

The fluid flows are governed by the laws of the physical conservation, and 

the basic conservation equations include conservation laws of mass, momentum and 

energy. Therefore, CFD is based on the solution of the continuity and Navier–Stokes 

(N-S) equations. The mass continuity, momentum and species equations can be 

expressed as (Chan et al., 2010):                                                                                          

∂𝜌

∂t
 +

∂(𝜌ui)

∂xi

= 0 
(3-20) 

∂𝜌ui

∂t
+

∂𝜌uiuj

∂xj

 = −
∂p

∂xi

+
∂

∂xj

[μ(
∂ui

∂xj

+
∂uj

∂xi

)] 
(3-21) 

∂𝜌ф

∂t
+

∂𝜌uiф

∂xj

=
∂

∂xj

(Ds

∂ф

∂xj

) + Sф 
(3-22) 
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where 𝜌  is the density, ui  is the velocity, p  is the pressure, μ  is the kinetic 

viscosity, ф is an arbitrary scalar (i.e., enthalpy, species mass concentration or any 

variable) governed by the transport equation, Ds is the diffusion coefficient, and 

Sф  is the source term, t and xj  is the time and the coordinate, respectively     

(Chan et al., 2010). 

3.6.2  Numerical simulation approaches 

To solve the turbulent N-S equation in Equation (3-21), there are three 

turbulence models: direct numerical simulation (DNS), large eddy simulation (LES) 

and Reynolds averaged Navier–Stokes (RANS) approach (Xu et al., 2003).  

3.6.2.1 Direct numerical simulation (DNS) 

 

a)  Navier-Stokes equations are solved numerically without adopting any 

turbulence model, so no assumptions or empirical constants are needed; 

b)  There will be no problem of closure; theoretically all of the turbulent flow 

problems can be solved by DNS; 

c)  DNS can give the evolution process (both in time and space) of any 

instantaneous quantity (e.g. velocity and pressure) in 3D flow fields; and 

d)  The clear flow structure of turbulence characteristics can be obtained. 

However, for practical engineering purposes, DNS is not only too 

computational costly, but also the details of the numerical simulation are usually not 

required. So two general engineering approaches to modelling turbulence (i.e., LES 

and RANS) are still widely used in many scientific and engineering problems. 
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3.6.2.2 Large eddy simulation (LES) 

In LES simulations, the turbulent flows are decomposed into two parts of 

large- and small-scale structures: the large eddies are directly computed on an 

Eulerian grid, while the small eddies are modelled (Chan et al., 2008; Luo et al., 

2004; Pesmazoglou and Kempf, 2017; Rodrigues et al., 2018). In LES, the Navier-

Stokes equation in Equation (3-21) becomes: 

∂ρui̅

∂t
+

∂ρui̅uj̅

∂xj

 = −
∂p̅

∂xi

+
∂

∂xj

[μ(
∂ui̅

∂xj

+
∂uj̅

∂xi

) − τij] 
(3-23) 

where τij refers to the subgrid scale (SGS) stress tensor, representing the motions 

at scales that are smaller than the filter width; τij is written as:
 

τij = ρ(uiuj̅̅ ̅̅ ̅ − ui̅uj̅) (3-24) 

where τij cannot be solved explicitly, therefore it requires to be modelled. The SGS 

model of Smagorinsky (1963) is often used in the research studies because of its 

simplicity and low consumption of time and computer memories. 

3.6.2.3 Reynolds averaged Navier–Stokes (RANS) 

In the RANS approach, the Navier–Stokes equation in Equation (3-21) 

becomes: 

  
∂ρui̅

∂t
+

∂ρui̅uj̅

∂xj

= −
∂p̅

∂xi

+
∂

∂xj

[μ(
∂ui̅

∂xj

+
∂uj̅

∂xi

)] +
∂

∂xj

(−ρui
' uj

'̅̅ ̅̅ ̅) (3-25) 

 

where the Reynolds stress −ρui
' uj

'̅̅ ̅̅ ̅ is introduced in Equation (3-25).  

Compared to DNS and LES, RANS requires lower computational accuracy 

in predicting the turbulent flows and is sensitive to the turbulence model used. 
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However, the substantially lower computational cost of RANS makes it still quite 

popular in many engineering applications today (Kardan et al., 2018).  

3.7 Summary 

The fundamental theories that are used to formulate the proposed CFD-

Monte Carlo method are briefly introduced to present a theoretical framework of the 

methodology in the present study. The basic concepts and assumptions as well as 

mathematical theories/governing equations i.e., PBE, Monte Carlo methods, 

operator splitting method, and CFD solutions of turbulent flows are presented so that 

the methodology used in the present study can be more easily reassembled. 
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Chapter 4   Monte Carlo Simulation of One-component Aerosol 

Dynamics 

 

4.1  Introduction  

The purpose of this chapter is to propose and develop a new differentially 

weighted operator splitting Monte Carlo (DWOSMC) method, and demonstrate the 

ability of describing complex aerosol dynamics of this DWOSMC method. 

By using the operator splitting (OS) technique, this DWOSMC method 

coupled the stochastic Monte Carlo method for calculating coagulation process, and 

deterministic integration method for calculating nucleation and condensation 

processes.  

In order to prove the computational accuracy and efficiency of this newly 

developed DWOSMC method, it is firstly verified by analytical solutions for typical 

cases of simultaneous coagulation and condensation processes, simultaneous 

nucleation and coagulation processes, and simultaneous nucleation, coagulation and 

condensation processes accordingly. It is further verified by comparing the 

simulation results with a sectional method of relatively complex cases of 

simultaneous coagulation and condensation processes, simultaneous nucleation and 

coagulation processes, and simultaneous nucleation, coagulation and condensation 

processes accordingly. 
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4.2  Numerical Methodology 

4.2.1  General dynamic equation 

 

The general dynamic equation that governs the evolution of aerosols is 

written as Equation (3-1). If the effects of convection and diffusion are not 

considered, Equation (3-1) becomes, 

∂n

∂t
= [

∂n

∂t
]

nuc1

+ [
∂n

∂t
]

coag

+ [
∂n

∂t
]

cond

 (4-1) 

The treatment of different processes is described in the following sections. 

4.2.1.1 Nucleation 

Nucleation process refers to the process that the saturated vapours convert 

into particles of a critical size, v0. Thus the number density of other particles (i.e., 

volume is larger than v0) does not change due to the nucleation process, and the 

nucleation process contributes to the variation of particle number concentration and 

the total particle volume fraction due to the production of new particles. The particle 

number concentration change due to nucleation is (Kalani and Christofides, 2002), 

[
∂n

∂t
]

nuc1

= 𝛿v0
(v)J

0
(t) (4-2) 

The nucleation kernel, J0(t) describes the rate of formation of particles with 

volume, v0. The 𝛿v0
(v) is the standard Dirac function, 𝛿v0

(v) = 0, (v ≠ v0). 

In the present study, the critical size of the nucleation process and the initial 

volume of the particles used is v0. The nucleated particles are sorted into the weight 

of the corresponding simulated particle, i which represents the real particles with 

volume, v0, 
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wi
'  = wi + J0(t)δt (4-3) 

where wi
'  and  wi  are the weight of simulated particle, i after and before the 

nucleation event, respectively, and δt is one time-step.   

4.2.1.2 Coagulation  

Coagulation process refers to two particles collide and combine with each 

other to form a new larger particle. It is described by the famous Smoluchowski’s 

equation including two terms and is expressed as Equation (4-4) (Seigneur et al., 

1986; Wei, 2016). The coagulation kernel, K(v, ṽ) describes the rate of particles 

with volume, v coagulating with particles with volume, ṽ . In different aerosol 

regimes, K(v, ṽ) can be a constant value or a value that depends on the volume of 

particles.   

     [
∂n

∂t
]

coag

=
1

2
∫ K

v

0

(v-ṽ,ṽ)n(ṽ)n(v-ṽ)dṽ∫ K

∞

0

(v,ṽ)n(v)n(ṽ)dṽ (4-4) 

The coagulation kernel for the free molecule regime and continuous regime 

are written as Equations (3-5) and (3-6), respectively. 

The treatment of coagulation event in the present study is according to the 

DWMC method described in Section 3.3. 

4.2.1.3 Condensation 

Condensation process is the reverse process of evaporation, and the 

condensation rate, I0(v,t) is usually related to the surface area of the particles. 

Theoretically, the total particle number does not change because of the condensation 
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process; however, the size of all of the particles will be larger. Therefore, the particle 

size distribution will change because of condensation process.  

The change in particle size distribution caused by condensation event 

(Ramabhadran et al., 1976) is, 

[
∂n(v,t)

∂t
]

cond

= −
∂(I0n)

∂v
(v,t) (4-5) 

In the treatment of condensation event in the present study, the weights of 

the simulated particles remain the same, which means that a condensation event does 

not change the total particle number, whereas the volume of simulated particle i 

changes accordingly as follows: 

dvi

dt
= I(v) (4-6) 

where vi is the volume of simulated particle, i. 

4.2.2  Differentially weighted operator splitting Monte Carlo method 

In the present study, a new differentially weighted operator splitting Monte 

Carlo (DWOSMC) method is proposed and developed by using operator splitting 

(OS) technique to combine stochastic and deterministic methods, which makes the 

calculation more flexible and efficient. In this new DWOSMC method, the 

stochastic Monte Carlo method is used for calculating the coagulation process, while 

the deterministic integration method is used for calculating deterministic processes 

(i.e., nucleation and condensation, etc.). 
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Figure 4.1   Flowchart of DWOSMC algorithm (Liu and Chan, 2016). 

Figure 4.1 shows the flowchart of the full algorithm of DWOSMC method. 

The second order operator splitting in Equation (3-15) is shown. Specifically, the 

full algorithm is described as follows: 

 
Step 1.  Initialization. At the very beginning of the numerical simulation, i.e., when 

the integration time t = 0, the properties (volume, diameter, weight, and number 

density etc.) of the simulated particles are initialized and stored in arrays.  

Step 2. Generating time-step, δt. In the simulation process, the choice of an 

appropriate time-step is vital. It is expected to be small enough to ensure that the 

successively happened coagulation events are uncoupled and that the integration of 

other physical processes is accurate. The time scale for different aerosol dynamic 

processes can be determined as follows:  
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 (i) Coagulation 

For all of the simulated particles in the system, the time-step for the 

coagulation event should be determined as (Zhao et al., 2010), 

∆tcoag= min|∀i(Vs/ ∑ Kij


N

j=1,j≠i

) (4-7) 

where Vs is the volume of simulation system, N is the total number of simulated 

particles, , and Kij
  is the normalized coagulation kernel for particle, i and particle, 

j, where Kij
  = 2Kijwjmax(wi,wj)/(wi+wj). 

(ii) Nucleation 

The time-step for the nucleation event should be determined by, 

∆tnucl = 1/(v0J
0
(t)) (4-8) 

where J0(t) is the nucleation kernel and v0 is the volume of the newly created 

particles. 

(iii) Condensation 

The time-step for the condensation event is determined by Debry et al. (2003) 

and Liu and Chan (2017a), 

∆tcond = vi/I0(v,t) (4-9) 

where vi is the volume of the particle, i and I0(v,t) is the condensation kernel. 

In order to ensure the accuracy of the numerical simulation, the adopted time-

step value, δt should be smaller than the minimum value of all the above-mentioned 

time scales (Debry et al., 2003). δt is calculated as follows: 
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δt = α min(∆tcoag, ∆tnucl, ∆tcond) (4-10) 

where α is a constant of 0.01(Xu et al., 2014; Zhao et al., 2009) during the calculation 

in order to ensure an accurate integration of all aerosol dynamic processes. 

Step 3.  Handling the aerosol dynamic processes. The second-order Strang splitting 

method is used herein. For nucleation and condensation processes, splitting the time-

step into two parts, the simulation for nucleation and condensation processes is 

firstly calculated within the first δt/2, and then the coagulation process is calculated 

for the time-step , δt . At last, nucleation and condensation processes are then 

calculated within the second δt/2. The integration procedure in Equation (3-15) 

from tm-1 to tm where t is the total calculation time, m is the step number and       

tm = tm−1+δt) as follows:  

(i) Integration of nucleation based on Equation (4-2) for a time period of δt/2; 

(ii) Integration of condensation based on Equation (4-6) for a time period of δt/2; 

(iii) Integration of coagulation based on Equations (3-9) to (3-13a) for a time 

period of δt; 

(iv) Integration of condensation based on Equation (4-6) for a time period of δt/2; 

and 

(v) Integration of nucleation based on Equation (4-2) for a time period of δt/2;  

Step 4. Updating the properties of the simulated particles and obtaining the 

information of the particles at time, tm. 

Step 5.  Repeating Steps 2 to 4 if the accumulated simulation time, tm is smaller than 

tstop, otherwise, the current Monte Carlo simulation is completed and the next Monte 
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Carlo simulation is then started. Eight Monte Carlo repetitions are used and the 

average results are obtained to reduce the stochastic errors. 

4.3   Numerical Setup and Verification 

4.3.1  Description of the studied cases  

This newly proposed and developed DWOSMC method is verified by both 

corresponding analytical solutions (Maisels et al., 2004; Palaniswaamy and Loyalka, 

2008; Ramabhadran et al., 1976) and a sectional method (Prakash et al., 2003), and 

three different test problems are considered in the present study, i.e., simultaneous 

coagulation and condensation processes, simultaneous nucleation and coagulation 

processes, and simultaneous nucleation, coagulation and condensation processes. 

For every test problem, the DWOSMC method is initially verified by the 

corresponding analytical solutions, and then the results obtained from DWOSMC 

method are compared with the sectional method for more complex studied cases. 

The studied cases are described in the following Sections 4.3.1.1 to 4.3.1.3. 

4.3.1.1 Validation of aerosol dynamic processes with analytical solutions 

For typical aerosol dynamics processes, the analytical solutions are available. 

To initially verify this DWOSMC method, five typical cases with analytical 

solutions are chosen, i.e. three simultaneous coagulation and condensation processes, 

one simultaneous nucleation and coagulation processes, and one simultaneous 

nucleation, coagulation and condensation processes. The parameters, initial 

conditions and analytical solutions for each studied case are given in Table 4.1. 
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Table 4.1  Parameters of initial conditions and analytical solutions used for 

validation cases I to V, where τ = t√2AJ0 ,  B = 1/N0√2J0/A ,  E  = DC0/AN0  and 

Coag: Coagulation, Cond: Condensation and Nucl: Nucleation (Liu and Chan, 

2018a). 

 
Process Case Parameter Analytical solution Initial conditions 

Coag+ 

Con 

I 
K = K0 

I = σ1v 

N(t) =
N0

1 + K0N0t/2
 

∅(t) = ∅0[exp(σ1t)] 

K0 = 5×10-6(m3s-1) 

σ1 = 2×10-2 (s-1) 

II 
K = K0 

I = σ0 

N(t) =
N0

1 + K0N0t/2
 

∅(t) = ∅0[1 +
2σ0

K0∅0
ln(

N0

N
)] 

K0 = 5×10-7(m3s-1) 

σ0 = 1×10-5(s-1) 

III 
K = K1(u+v) 

I = σ1v 

N(t) = N0exp [
K1∅0

σ1

(exp(σ1t)1)] 

∅(t) = ∅0[exp(σ1t)] 

K1 = 1×1017(s-1) 

σ1 = 0.5 (s-1) 

Nucl+ 

Coag 
IV 

K = A 

J = J0 

N

N0

 = B
1+B tan(τ 2⁄ )

tanh(τ 2⁄ )+B
 

V

V0

 = 1+
1

2
Bτ 

A = 4×10-28(m3s-1) 

J0 = 1.91×1028(s-1) 

Nucl+ 

Coag+ 

Cond 

V 

K = A 

J = J0 

I = D 

N

N0

 = B
1+B tan(τ 2⁄ )

tanh(τ 2⁄ )+B
 

V

V0 
= 1+(

1

2
B+E)τ+ 

2E ln(
1+exp(-τ)

2
+

1-exp(-τ)

2B
) 

A = 4×10-28(m3s-1) 

J0 = 1.91×1028(s-1) 

D = 2×10-28 (m3s-1) 

C0 = 1.91×1028(s-1) 

4.3.1.2 Validation of aerosol dynamic processes with a sectional method  

For more complicated aerosol dynamic processes, this DWOSMC method is 

verified through a sectional method (Prakash et al., 2003) for three additional cases 

including one free molecule regime rate coagulation and linear rate condensation 

case, one free molecule regime rate coagulation and constant rate nucleation case, 

and one constant rate nucleation, free molecule regime rate coagulation and linear 

rate condensation case. The parameters and initial conditions for each studied case 

are given in Table 4.2.  
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Table 4.2  Parameters and initial conditions used for three verification cases,      

VI to VIII (Liu and Chan, 2018a). 

Problem Case Parameters Initial conditions 

Coag+Cond VI 
K is given by Equation (3-5) 

I = σ1v 
σ1 = 10 (s-1) 

Nucl+Coag VII 
K is given by Equation (3-5) 

J = J0 
J0 = 1×1020(s-1) 

Nucl+Coag+Cond VIII 

K is given by Equation (3-5) 

I = σ1v 

J = J0 

σ1 = 0.5 (s-1) 

J0 = 1×1020(s-1) 

4.3.2  Assessment of the numerical simulation results 

To assess the accuracy of this newly proposed and developed DWOSMC 

method, the relative error, ε is utilized in the analysis of the numerical simulation 

results where ε is expressed as Equation (4-11): 

ε = |A(t)-A0(t)|/A0(t) (4-11) 

where A(t) and A0(t) are the values obtained via the DWOSMC method and 

corresponding reference method at time t, respectively. The maximum relative error, 

εmax  is calculated by taking the maximum value of the relative error in       

Equation (4-11). 

4.4   Results and Discussion 

4.4.1  Validation with analytical solutions 

4.4.1.1 Simultaneous coagulation and condensation processes 

For studied cases I to III, 100,000 real particles and the order of 10−17 m3 are 

used as the initial particle population, N0 and the initial volume of particles, V0, 
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respectively. A simulation period of 200 s is used for Cases I and II, and a simulation 

period of 3.5 s is used for Case III. An increasing number of simulated particles (i.e., 

Np = 100, 500, 1000 and 2000) is used for the calculation. 

Figure 4.2(a) to (f) show the variations of particle number concentration and 

total particle volume concentration as the function of time for Cases I to III. It can 

be seen that the particle number concentration decreases over time but the total 

particle volume concentration increases over time for simultaneous coagulation and 

condensation processes. From Table 4.1, the particle number concentration depends 

only on the coagulation rate for Cases I and II but not the condensation rate. While 

for Case III, both the coagulation and condensation rates affect the particle number 

concentration. For Cases I and III, the total particle volume concentration depends 

only on the condensation rate but not the coagulation rate. The results obtained from 

DWOSMC method agree well with the analytical solutions for Cases I to III 

(Palaniswaamy and Loyalka, 2008; Ramabhadran et al., 1976) as shown in    

Figure 4.2. 

  

(a) Case I (b) Case I 
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(c) Case II (d) Case II 

  

(e) Case III (f) Case III 

Figure 4.2   Evolutions of particle number concentration, N and total particle 

volume concentration, V as the function of time for different simultaneous 

coagulation and condensation processes in Cases I to III using both DWOSMC 

method (Liu and Chan, 2018a) and analytical solutions (Ramabhadran et al., 

1976). 

4.4.1.2 Simultaneous nucleation and coagulation processes 

For studied Case IV, the initial particle number concentration, N0 and initial 

total particle volume, V0 are 1.91×1023 and 10−4 m3, respectively. The simulation 

time, tstop for Case IV is 45 ms. The numerical simulation results of N/N0 and V/V0 

are shown in Figure 4.3(a) and (b), respectively.  
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a) (b) 

Figure 4.3   Evolutions of (a) N/N0 and (b) V/V0 obtained from DWOSMC 

method and analytical solutions (Maisels et al., 2004) for simultaneous constant 

rate nucleation and constant rate coagulation processes in Case IV (Liu and Chan, 

2018a). 

It can be found that the results show approximately linear relationship within 

a short period of time. The numerical simulation results obtained from DWOSMC 

method are consistent with the analytical solutions. When the simulated particle 

number reaches 500, both the evolutions for the particle number concentration and 

the total particle volume demonstrate very small fluctuations and relative errors. 

4.4.1.3 Simultaneous nucleation, coagulation and condensation processes 

For Case V, the initial particle number concentration, N0 and initial total 

particle volume, V0 are 1.91×1023 and 110−4 m3, respectively. The simulation time 

for Case V is 45 ms. The numerical simulation results of N/N0 and V/V0 are shown 

in Figure 4.4 (a) and (b), respectively. Similar to Case IV in Figure 4.3, both the 

evolutions of N/N0 and V/V0 exhibit nearly linear relationship within a very short 

period of time. Even when only 100 simulated particles are used, the numerical 

simulation results remain very high consistency with the analytical solutions for 

constant rate nucleation, coagulation and condensation processes. 
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(a) (b) 

Figure 4.4   Evolutions of (a) N/N0 and (b) V/V0 obtained from DWOSMC 

method and analytical solutions (Maisels et al., 2004) for simultaneous constant 

rate nucleation, constant rate coagulation and constant rate condensation processes 

in Case V (Liu and Chan, 2018a). 

4.4.2  Validation with a sectional method 

4.4.2.1 Simultaneous coagulation and condensation processes 

For Case VI, the initial particle number concentration, N0 and initial total 

particle volume, V0 are 1×1018 and 1.77×10−9 m3, respectively. The simulation time 

used is 10 ms. The evolutions of particle number concentration, N, particle average 

diameter, d, total particle volume concentration, V, and the second moment, M2, as 

a function of time for Case VI are shown in Figure 4.5(a) to (d) for simultaneous 

free molecule regime rate coagulation and linear rate condensation processes. The 

simulation results of a sectional method are used as a reference.  

In Figure 4.5(a), it can be found that the particle number concentration 

decreases over time because the coagulation reduces the number of particles, 

whereas the condensation process does not change the number of the particles. The 

numerical simulation results obtained from DWOSMC method agree well with the 

sectional method even when only 100 simulated particles are used. For the 
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evolutions of average particle diameter and the total particle volume, there is 

significant difference between the simulation results of DWOSMC and sectional 

method when only 100 simulated particles are used as shown in Figure 4.5(b) and 

(c), respectively.  

  

(a) (b) 

  

(c) (d) 

Figure 4.5   Evolutions of (a) the particle number concentration, N, (b) the average 

particle diameter, d, (c) the total particle volume concentration, V, and (d) the second 

moment, M2 obtained from DWOSMC method and sectional method (Prakash et al., 

2003) for simultaneous free molecule regime rate coagulation and linear rate 

condensation processes in Case VI (Liu and Chan, 2018a). 

When the simulated particle number reaches 500 or 1000, the simulation 

results of DWOSMC method are in good agreement with the sectional method. As 

the coagulation process does not change the total particle volume, the total particle 
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volume demonstrates an approximate linear relationship over time because the 

condensation kernel has a linear rate. As both the coagulation and condensation 

processes contribute to the increase of the particle diameter, the average particle 

diameter increases quite fast and nonlinearly over time. For the evolutions of the 

second moment, there are relatively larger errors than for other parameters. But it 

can be found that as the number of simulated particles increases, the relative error 

decreases. The relative error is rather small when 2000 simulated particles are used. 

4.4.2.2 Simultaneous nucleation and coagulation processes 

For Case VII, the initial particle number concentration, N0 and initial total 

particle volume, V0 are 1×1018 and 1.77×10−9 m3, respectively. The simulation time 

for Case VII is 4.5 ms. The evolutions of particle number concentration, N, particle 

average diameter, d, total particle volume concentration, V, and the second moment, 

M2, as a function of time for Case VII are shown in Figure 4.6(a) to (d) for 

simultaneous free molecule regime rate coagulation and constant rate nucleation 

processes.  

  

(a) (b) 
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(c) (d) 

Figure 4.6   Evolutions of (a) the particle number concentration, N, (b) the particle 

average diameter, d, (c) the total particle volume concentration, V, and (d) the second 

moment, M2 obtained from DWOSMC method and sectional method (Prakash et al., 

2003) for free molecule regime rate coagulation and constant rate nucleation 

processes in Case VII (Liu and Chan, 2018a). 

From Figure 4.6(a) and (b), it can be found that the coagulation process 

dominates the entire process, because the particle number concentration decreases 

and the average particle diameter increases over time. However, for the nucleation 

process, the particle number concentration increases and the average particle 

diameter decreases over time. Hence, the coagulation process completely eliminates 

the effect of the nucleation process. While from Figure 4.6(c) and (d), the effect of 

nucleation process can be clearly observed as the total particle volume and the 

second moment increase over time. In Figure 4.6, it can also be found that when 

1000 simulated particles are used, the numerical simulation results obtained from 

DWOSMC method agree well with the sectional method, with very small 

fluctuations and errors. 

4.4.2.3 Simultaneous nucleation, coagulation and condensation processes 

For Case VIII, the initial particle number concentration N0 and initial total 

particle volume V0 are 1×1018 and 1.77×10−9 m3, respectively. The simulation time 
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for Case VIII is 3 ms. The evolutions of the particle number concentration, N,     

the average particle diameter, d, the total particle volume concentration, V, and    

the second moment, M2, as a function of time for Case VIII are shown in       

Figure 4.7(a) to (d), respectively, for simultaneous constant rate nucleation, free 

molecule regime rate coagulation and linear rate condensation processes.  

  

(a) (b) 

  
(c) (d) 

Figure 4.7   Evolutions of (a) the particle number concentration, N, (b) the 

particle average diameter, d, (c) the total particle volume concentration, V, and   

(d) the second moment, M2, obtained from DWOSMC method and sectional 

method (Prakash et al., 2003) for simultaneous constant rate nucleation, free 

molecule regime rate coagulation and linear rate condensation processes in studied 

Case VIII (Liu and Chan, 2018a). 

Figure 4.7(a) to (d) show that for the particle number concentration, N,     

the average particle diameter, d, the total particle volume, V, and the second moment 
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of particles, M2, the numerical simulation results of DWOSMC method agree well 

with the sectional method when 1000 to 2000 simulated particles are used. 

4.4.3  Computational efficiency and accuracy analysis  

To further understand the computational efficiency and accuracy of this 

newly proposed and developed DWOSMC method, the maximum relative error for 

the particle number concentration and the total particle volume for the case studies 

are shown in Table 4.3 and Table 4.4. It is clearly shown that, for the same case, the 

maximum relative error decreases when the number of simulated particles increases. 

For different cases, the more complicated the case is, the higher the maximum 

relative error is. For constant rates in Cases IV and V, the maximum relative errors 

are within 1% when only 500 simulated particles are used, whereas for Cases VII 

and VIII, more simulated particles are needed to achieve the same accuracy. For 

Table 4.3 and Table 4.4, the numerical results show that the maximum relative errors 

obtained from the particle number concentration are commonly larger than those 

obtained from the total particle volume. For most of the cases, when the number of 

simulated particles reaches 2000, the maximum relative errors obtained from the 

particle number concentration are within 2%, whereas the maximum relative errors 

obtained from the total particle volume are within 1%. It is because the evolution of 

the particle number concentration is mainly due to the stochastic coagulation process, 

which is calculated by Monte Carlo method by introducing some statistical errors. 

The evolution of the total particle volume is mainly caused by the nucleation and 

condensation processes which are calculated by deterministic method with much 

smaller errors. This also indicates that for most of the classical and typical cases used 

in the present study, 2000 simulated particles are sufficiently good with small errors 
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which indicates that this newly proposed and developed DWOSMC method 

provides very high computational efficiency and accuracy. 

Table 4.3   The maximum relative error of N for different cases using DWOSMC 

method compared with the analytical solutions or the sectional method         

(Liu and Chan, 2018a). 

      εmax(%) for N 

 

Case 

Particle number, Np 

100 500 1000 2000 

I 5.51 2.22 1.71 0.80 

II 2.30 1.71 0.91 0.62 

III 4.01 3.52 2.82 1.79 

IV 2.31 0.15 0.16 0.03 

V 0.40 0.32 0.26 0.20 

VI 8.22 2.33 1.51 1.00 

VII 4.12 3.11 2.20 1.22 

VIII 5.53 3.22 2.21 2.00 

 

Table 4.4   The maximum relative error of V for different cases using DWOSMC 

method compared with the analytical solutions or the sectional method         

(Liu and Chan, 2018a). 

     εmax(%) for V 

 

Case 

Particle number Np 

100 500 1000 2000 

I 1.51 0.22 0.20 0.08 

II 2.71 0.58 0.31 0.20 

III 6.01 1.22 0.71 0.52 

IV 2.46 0.19 0.21 0.07 

V 0.63 0.50 0.41 0.32 

VI 1.20 0.27 0.15 0.10 

VII 3.01 0.82 0.61 0.50 

VIII 3.20 1.52 0.61 0.58 
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4.5    Summary  

A newly differentially weighted operator splitting Monte Carlo (DWOSMC) 

method is developed and verified by corresponding analytical solutions and        

a sectional method through classical and typical cases including four cases for 

simultaneous coagulation and condensation processes in different regimes, two 

cases for simultaneous nucleation and coagulation processes in different regimes, 

and two cases for different simultaneous nucleation, coagulation and condensation 

processes. For the relatively typical cases, the numerical simulation results of 

DWOSMC method demonstrates very good consistency with the analytical solutions. 

For the complex cases, the numerical simulation results of DWOSMC method are 

also consistent with the results obtained from the sectional method. In some cases, 

only 500 simulated particles are good enough for obtaining the maximum relative 

error within 1%. Even for the most complex case in the present study, 2000 

simulated particles are sufficient to simulate the particle number concentration, the 

total particle volume concentration, the average particle diameter and the second 

moment of particles. This newly proposed and developed DWOSMC method is 

proved to have very high computational efficiency and accuracy, and has a high 

potential for solving complex aerosol dynamic problems. 
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Chapter 5   Monte Carlo Simulation of two-component Aerosol 

Dynamics 

5.1 Introduction  

In natural or engineering applications, aerosol particles are essentially 

multivariate in compositions, such as acid rain formation and downfall, soot 

formation and growth in combustion chambers, nanoparticle synthesis in 

applications of ceramics and drug delivery, heterotypic processes of blood 

components etc. (Fang et al., 2018; Fino et al., 2016; Kolb and Worsnop, 2012).     

In these fields, particles often consist of multiple components, and the compositional 

distribution affects the properties of particles. Many properties of particles such as 

light scattering, radioactivity and capturing strategy are highly dependent on the 

particle size and compositional distributions. Therefore, in this chapter, the newly 

proposed and developed differentially weighted operator splitting Monte Carlo 

(DWOSMC) method is further developed to study multi-component properties of 

aerosol dynamics considering coagulation and condensation processes that are very 

important phenomena for having a better understanding of the evolution of particle 

size and compositional distributions. 

5.2 Numerical Methodology 

5.2.1  General dynamic equation 

According to Section 3.2.2, the governing equation for a two-component 

aerosol system that only considers coagulation and condensation processes becomes 

(Gelbard and Seinfeld, 1978; Zhao and Zheng, 2011),  
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∂n(vA,vB,t) 

∂t
= 

1

2
∫ ∫ K(vA − vA

' ,vB − vB
' ,vA

' ,vB
' , t)

vB

0

vA

0

n(vA − vA
' ,vB − vB

' , t)n(vA
' ,vB

' , t)dvA
' dvB

'  

     −n(vA,vB,t)∫ ∫ K(vA,vB,vA
' ,vB

' , t)𝑛(vA
' ,vB

' , t)dvA
' dvB

'
∞

0

∞

0

 

     −
∂(IAn)

∂vA

(vA,vB,t)−
∂(IBn)

∂vB

(vA,vB,t) 

(5-1) 

5.2.2  Extension of the DWOSMC to two-component systems 

In Chapter 4, a differentially weighted operator splitting Monte Carlo 

(DWOSMC) method is newly proposed and developed for one-component aerosol 

systems by using the operator splitting (OS) technique to combine stochastic MC 

and deterministic integration methods. In the present study, the DWOSMC method 

is further developed to simulate multi-component aerosol systems. A brief outline 

of the algorithm’s application to two-component systems for coagulation and 

condensation processes is given as follows: 

(a) Start the predetermined Monte Carlo loop number, M.  

(b) Initialization. The initial value of particle properties (e.g., size, weight, 

number concentration, component composition, etc.) is first assigned 

according to an initial compositional distribution. During the simulation of 

the DWOSMC method, the weights of different simulated particles can be 

different. For a two-component aerosol system, wi is defined as,  

wi = 
Nr(vA,vB)

Ns(vA,vB)
 (5-2) 
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where Nr(vA,vB) is the number of real particles of A-component volume size, vA 

and B-component volume size,  vB  and Ns(vA,vB)  is the number of simulated 

particles representing those real particles, Nr(vA,vB) . In the present study, the 

weights of all simulated particles are set to the same value, wi,0  at the time of 

initialization. The initial size, v0 and number density distributions, n(vA,vB,0) of the 

particles are set according to the initial particle distributions assigned. 

(c) Choose a time-step, δt. A variable time scale is determined by different 

aerosol dynamic processes. Specifically, the characteristic time scale used 

for coagulation events is written as Equation (4-7), For condensation events, 

the characteristic time scale is written as Equation (4-9). 

To guarantee the accuracy of this newly proposed method in simulating both 

condensation and coagulation processes, an appropriate time-step that is smaller than 

both characteristic time scales of the two events should be used. In the present study, 

the time-step is written as:  

δt = α min(∆tcoag, ∆tcond) (5-3) 

where α is an empirical parameter set as 0.01 (Xu et al., 2014; Zhao et al., 2009) 

during calculation to ensure that an accurate integration of aerosol dynamic 

processes is achieved. 

(d) Integration. Stochastic and deterministic aerosol dynamic processes are 

managed by applying the second-order Strang splitting method (Mclachlan 

and Quispel, 2002) which is expressed as: 

exp(δtX) = exp (
1

2
δtX2) exp(δtX1)exp (

1

2
δtX2)+𝒪(δt3) (5-4) 
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where X is the total process of two sub-processes, and X1 and X2 refer to the 

coagulation process and condensation process, respectively.  

Within the time-step, the condensation process is first calculated for the first 

half time-step, δt/2, and then the coagulation process is simulated for one time-step, 

δt. Finally, the condensation process is calculated for the last half time-step of δt/2. 

The integration procedure used for the total process of the two sub-processes for one 

time-step is described in steps (e) to (g). 

(e) Integration of condensation for a time-step of δt/2. 

The condensation event affects the particle size distribution of aerosols 

because it produces larger particles. In two-component systems, there are two 

condensation kernels (i.e., one for component A and one for component B) written 

as IA(vA) and IB(vB), respectively. In the present study, all particles are assumed to 

be spherical and that the volume of particles is the sum of their two components after 

the condensation event which is written as: 

dvi(vA,vB,t)

dt
= IA(vA)+IB(vB) 

  (5-5) 

Specifically, in the present study, the condensation event within a time-step 

of δt/2 is calculated as: 

vi
' = vi + (IA(vA)+IB(vB))δt/2 

(5-6) 

                              wi
' = wi (5-7) 

where wi  and vi  refer to the weight and volume of simulated particle, i, 

respectively, before the condensation event and wi
' , and vi

'  refer to the weight and 

volume of simulated particle i, respectively, after the condensation event. 
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(f) Integration of coagulation for a time-step of δt. 

The simulation of coagulation is based on the DWMC method proposed by 

Zhao et al. (Zhao et al., 2010, 2009). The occurrence of coagulation events between 

two particles, i and j is based on probability selections and is calculated according 

to Equations (3-9) to (3-12).  

After the coagulation event, the previous particles are replaced with two 

newly weighted simulated particles, and the conservation of volume is considered 

while the properties of these particles are changed. The coagulation process is 

described as: 

If     wi = wj, {
wi

' =wi/2; vi
' =vi+vj, vi,A

' =vi,A+vj,A, vi,B
' =vi,B+vj,B;

wj
' =wj/2; vj

' =vi+vj; vj,A
' =vi,A+vj,A, vj,B

' =vi,B+vj,B;
 

(5-8a) 

If   wi ≠ wj,

{
 
 

 
 

wi
' =max(wi,wj)-min(wi,wj);vi

' =vm|
wm=max(wi,wj) 

;

vi,A
' =vm,A|

wm=max(wi,wj) 
, vi,B

' =vm,B|
wm=max(wi,wj) 

 ;

wj
' =min(wi,wj);vj

' =vi+vj;                                  

 vj,A
' =vi,A+vj,A, vj,B

' =vi,B+vj,B;                            

 

(5-8b) 

where wi
' ,   wj

' , vi
'  and vj

'  represent the weight or volume of newly created 

simulated particles, i and j after the coagulation event. vi,A
' , vi,B

' ,  vj,A
'  and vj,B

'  are 

the volumes of components, A and B in newly created simulated particles, i and j 

after the coagulation event. In the present study, the density of particles is assumed 

to be constant, and so the conservation of particle volume in Equation (5-8) denotes 

the conservation of mass during the coagulation event.  

(g) Condensation is integrated for a time-step of δt/2. The calculation procedure 

is the same as that used in step (e). 
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(h) The properties of simulated particles are updated to obtain information (size, 

composition and number density, etc.) on the particles, as the particles are 

assumed to be spherical before and after coagulation and condensation 

events, and thus particle diameters can be easily obtained. 

(i) Repeat steps (c) to (h) until the predetermined stopping time, tstop is reached, 

and then exit the current Monte Carlo loop. 

(j) Start a new Monte Carlo loop if the calculated Monte Carlo loop number, R 

is smaller than the predetermined Monte Carlo loop number, M. Otherwise 

the averaged results are obtained to output the information of the aerosol 

system. In the present study, eight Monte Carlo loops are carried out. 

Figure 5.1 presents a flowchart of the full algorithm of the two-component 

DWOSMC method.  
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Figure 5.1 Flowchart of the two-component DWOSMC algorithm           

(Liu and Chan, 2018b). 

5.3   Results and Discussion 

In the present study, the performance of this newly proposed and developed 

multi-component DWOSMC method is evaluated using a sectional method  

(Prakash et al., 2003), which is also further developed according to the concept of 

Kim and Seinfeld (1990) on a moving sectional method that describes the two-

component system. First, the DWOSMC and sectional methods are evaluated in a 

simple one-component case for which analytical solutions exist. Then, two-
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component systems with different kernels and initial particle size distributions are 

examined to determine the capacity of the multi-component DWOSMC method to 

simulate aerosol dynamics. In the present study, different cases are successively 

investigated to study the simultaneous coagulation and condensation processes. For 

the sectional method, particles only exist at discretized nodes, and the aerosol size 

spectrum is divided into 50~70 sections. The same number of nodes is also used for 

the DWOSMC method to store the particle size and compositional distributions of 

aerosols. 

5.3.1  One-component coagulation and condensation case 

This developed multi-component DWOSMC method is firstly used to 

calculate a one-component aerosol system by setting the growth kernels of 

components A and B to be the same. The results are verified by analytical solutions, 

and compared with the sectional method (Kim and Seinfeld, 1990; Prakash et al., 

2003) and a non-weighted direct simulation Monte Carlo (DSMC) method  

(Liffman, 1992) to evaluate the computational efficiency and accuracy of this 

DWOSMC method. 

For a one-component aerosol system, a constant kernel coagulation and a 

linear kernel condensation are considered in Case I. The initial particle distribution 

and the coagulation and condensation kernels are the same with Case I in Section 

4.3. From Table 4.1, the analytical solutions for dimensionless particle number 

concentration N(t)/N0, and total particle volume concentration V(t)/V0 are given by, 

N(t)/N0 =
1

1 + K0N0t/2
 (5-9) 
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V(t)/V0 = exp(σ1t) (5-10) 

Figure 5.2(a) shows the time evolution of dimensionless particle number 

concentration N/N0 and total particle volume V/V0. For simultaneously occurring 

coagulation and condensation processes, the particle number density decreases over 

time due to the coagulation event, and the total particle volume increases over time 

due to the condensation process. As expected, excellent matches are found from the 

SM, DWOSMC and DSMC methods and from the analytical solutions, respectively.  

  

(a) (b) 

Figure 5.2  Time evolution of (a) dimensionless particle number concentration, N/N0 

and total particle volume, V/V0 ; and (b) the relative error,  (%) for N/N0 obtained from 

the SM, DWOSMC and DSMC methods, and the corresponding normalized 

computation time,  for Case I (Liu and Chan, 2018b). 

The computational accuracy and efficiency of the three methods are further 

examined. The relative error,  (%) of the particle number concentration and 

normalized computation time, τ are shown in Figure 5.2 (b). The relative error, ε is 

defined as Equation (4-11), and the normalized computation time, τ is defined by the 

following equations: 

τ = t/tSM (5-11) 
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where tSM is the computation time required for SM, and t is the amount of 

computation time required for corresponding SM, DWOSMC and DSMC methods, 

respectively. 

In Figure 5.2(b), the relative errors,  obtained from the three methods are 

quite small and are mostly less than 1%. On the other hand, it is observed that the 

relative error obtained from the DSMC method is greater than that obtained from the 

SM and DWOSMC methods. Furthermore, much less computational time is required 

for the DWOSMC method than for the DSMC method, proving that the DWOSMC 

method is much more computationally accurate and efficient than the DSMC method. 

Furthermore, the relative error obtained from the SM is extremely small at less than 

0.2% for the whole numerical simulation for Case I. As the SM closely reflects the 

analytical solution shown in Figure 5.2(a) and (b), it is then used to verify the 

proposed two-component DWOSMC method in the present study. 

The particle number distributions studied in Case I is shown in Figure 5.3, 

which shows that initially uniform distributed particles evolve into a normal 

distribution over time. Satisfactory agreement is also found between the SM and 

Monte Carlo methods. 
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Figure 5.3  Evolution of particle number distributions obtained from the 

sectional (solid line), DWOSMC (scattered solid points) and DSMC (scattered 

unshaded points) methods for Case I (Liu and Chan, 2018b). 

5.3.2  Two-component coagulation and condensation processes and constant 

coagulation kernel cases 

For a multi-component aerosol system, the component-related volume 

density of particles is of interest. The total volume density of a particle is defined as 

(Gelbard et al., 1980; Sandu, 2006),  

ξ(v,t) = vn(v,t) (5-12) 

The i-th component related volume density of particle of volume, v is: 

ξi(v,t) = vi(v,t)n(v,t) (5-13) 

Specifically, for a two-component system, ξA(v,t)  and ξB(v,t)  are the 

volume density values of the A-component and B-component, respectively, and then 

ξ(v,t)= ξA(v,t)+ ξB(v,t). 

When particles are divided into multiple sections by size, the component-

related volume density of vl,k < vk < vu,k in size in the k-th section is: 
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q
a,b
k (t) = ∫ vA

a (v,t)vB
b (v,t)n(v,t)dv

vu,k

vl,k

 (0 ≤ a,b ≤1) (5-14) 

where vl,k and vu,k are the lower and upper bounds of the volume of particles in 

the k-th section, respectively and v = vA+vB. Specifically, q
0,0
k  is the particle number 

concentration of the k-th section. q
1,0
k , and q

0,1
k  are the particle volume densities of 

components A and B in the k-th section, respectively.  

In the following studied cases, the component-related volume densities of 

particles are presented in all particle volume sections where the particle volume is 

converted into a particle diameter as an independent variable. Therefore, q0,0 is the 

particle number distribution, and q1,0 and q0,1 are the particle volume density 

distributions of components, A and B, respectively. 

5.3.2.1 Initially uniformly distributed and compositionally equal volume case 

The initial particle size distribution is considered to be uniform for Case II. 

The initial total particle number is N0 = 105/m3 and the initial average particle volume 

is v0 = 1×10-22 m3 where the particles consist of equal volumes of components A and 

B. The constant coagulation kernel is given by K0 = 5×10−6 m3/s, and linear 

condensation kernels for components, A and B are given by IA = σAvA , 

σA =1×10−3/s, and IB = σBvB,  σB =2×10−3/s, respectively. A numerical simulation 

time of 200 s is used. 

Figure 5.4 shows the time evolution of the dimensionless particle number 

concentration, N/N0 and total particle volume V/V0 as well as the particle number 

distribution for simulation times t of 20, 60, 100 and 200 s. In Figure 5.4(a),      

the particle number concentration and total particle volume obtained by using the 
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DWOSMC method are in excellent agreement with those obtained from the SM.     

In Figure 5.4(b), as the initial particle diameter is uniform and small, the particle 

number density of small diameters is quite large when the simulation time is 20 s.   

In addition, as simulation time advances, both coagulation and condensation events 

take place, and the particle number distribution evolves to a normal distribution after 

100 s and 200 s of simulation time. From Figure 5.4(a) and (b), the results of the 

DWOSMC method coincide with those obtained from the SM. 

  

(a) (b) 

Figure 5.4  Time evolutions of (a) N/N0 and V/V0 and (b) particle number 

distributions obtained from the SM (solid line) and DWOSMC method (scattered 

solid points) for Case II (Liu and Chan, 2018b). 

The time evolutions of particle volume density distributions of components 

A and B for Case II are shown in Figure 5.5(a) and (b), respectively. It is shown that 

the variation tendencies of particle volume density distributions for components A 

and B are quite similar over time while the peak value of q1,0, and q0,1 moves along 

the larger particle diameter, d. This occurs because both coagulation and 

condensation processes generate a larger average particle diameter. From Figure 

5.5(a) and (b), the results obtained from the DWOSMC method agree well with those 

of the SM. Hence, the DWOSMC method can predict two-component particle 
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volume distributions for constant coagulation kernels and linear condensation 

kernels. 

  

(a) (b) 

Figure 5.5  Time evolutions of particle volume density distributions of         

(a) A-component and (b) B-component obtained from the SM (solid line) and 

DWOSMC method (scattered solid points) for Case II (Liu and Chan, 2018b). 

5.3.2.2 Initially uniformly distributed and compositionally different volume case 

The initial particle size distribution is considered to be uniform while the 

compositions of components, A and B are different for Case III. The initial total 

particle number is N0 = 105/m3 and the initial average particle volume is v0 =  

1×1022 m3 while the volumes of components A and B are vA0 = v0/3 and vB0 = 2v0/3, 

respectively. Coagulation and condensation kernels are the same as those used for 

Case II. A simulation period of 200 s is used. 

The time evolution of dimensionless particle number density, N/N0 and total 

particle volume, V/V0, as well as the particle number distribution of, q0,0 for different 

simulation times (i.e., 60 and 200 s) for Case III are shown in Figure 5.6. For N/N0 

and V/V0, results obtained from the SM and DWOSMC method show excellent 

agreement with one another. For q0,0, the distribution of q0,0 suffers fluctuations when 

the simulation time is 60 s, and fluctuations resulting from the DWOSMC method 
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tend to be greater than those of the SM, but the distribution curve for these two 

methods share the similar patterns. The distribution of q0,0 is normal when the 

simulation time reaches 200 s, and results obtained from the DWOSMC method and 

SM agree well with one another. 

 

  

(a) (b) 

Figure 5.6  Time evolution of (a) N/N0 and V/V0 and (b) particle number 

distributions obtained from the SM (solid line) and DWOSMC method (scattered 

solid points) for Case III (Liu and Chan, 2018b). 

Figure 5.7 shows the particle volume density distributions of components, A 

and B for different simulation times (i.e., 60 s and 200 s). From Figure 5.7(a), while 

the distribution trends of these two methods are similar for a simulation time of    

60 s, but some fluctuations result from the DWOSMC method. While such 

fluctuations vanish when the simulation time reaches 200 s and while the 

distributions of q1,0, and q0,1 increase and broaden, results obtained from the 

DWOSMC method agree well with those obtained from SM. 
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(a) (b) 

Figure 5.7   Particle volume density distributions of q1,0 and q0,1 for simulation 

times (a) t = 60 s and (b) t = 200 s obtained from the SM (solid line) and DWOSMC 

method (scattered solid points) for Case III (Liu and Chan, 2018b). 

5.3.2.3 Initially non-uniformly distributed and compositionally different volume 

case 

The initial particles are exponentially distributed according to       

Equation (5-15) (Zhao et al., 2005b), and the compositions of components, A and B 

are different for Case IV. The initial total particle number is N0 =105/m3, and the 

initial average particle volume is v0 = 1×10-22 m3 while the volumes of components, 

A and B are vA0 = v0/3 and vB0 = 2v0/3, respectively. Coagulation and condensation 

kernels used are the same as those used for Case II. A simulation period of 200 s is 

used. 

n(v
A
,v

B
,0) = N

0
/v

0
×exp(−

v(v
A
,v

B
,0)

v
0

) (5-15) 

In Figure 5.8(a), it is remarkable that dimensionless particle number density, 

N/N0 and total particle volume, V/V0 values obtained from the SM and DWOSMC 

method are in excellent agreement with one another. The particle number 

distributions observed at simulation times, t = 20 s and 200 s are shown in      

Figure 5.8(b). It should be noted that for the initially exponentially distributed case, 
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the PSD for simulation time, t = 20 s more closely reflects a normal distribution than 

it does for initially uniformly distributed Case II. Particles are normally distributed 

when the simulation time reaches 200 s. The results obtained from the DWOSMC 

method are in excellent agreement with those obtained from SM. 

 

  

(a) (b) 

Figure 5.8  Time evolution of (a) N/N0 and V/V0 and (b) particle number 

distributions obtained from the SM (solid line) and DWOSMC method (scattered 

solid points) for Case IV (Liu and Chan, 2018b). 

The component related particle volume density distributions of q1,0, and q0,1 

obtained over simulation periods t = 20 s and 200 s are shown in Figure 5.9(a) and 

(b), respectively. It can be clearly observed that the particle volume density 

distributions of both components increase and grow broader, and that the difference 

between the particle volume density distributions of components A and B is 

pronounced. Particle volume density distributions obtained through the DWOSMC 

are consistent with those obtained from the SM. 
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(a) (b) 

Figure 5.9   Particle volume density distributions of q1,0 and q0,1 for simulation times 

(a) t = 20 s and (b) t = 200 s obtained from the SM (solid line) and DWOSMC method 

(scattered solid points) for Case IV (Liu and Chan, 2018b). 

5.3.3  Two-component coagulation and condensation processes and the sum 

coagulation kernel case 

The coagulation kernel is no longer constant and is written as K = K0(vi+vj) 

(Zhao et al., 2010) for Case V. The initial particle size distribution satisfies a normal 

distribution according to Equation (5-16), and the compositions of components A 

and B are different. The initial total particle number is N0 = 1011/m3 and the initial 

average particle volume is v0 = 5×10-19 m3 while the volumes of components, A and 

B are vA0 = v0/3, vB0 = 2v0/3, respectively. The standard deviation σ is 2×10-18 m3. 

The linear condensation kernels for components A and B are given by IA = σAvA, 

σA =1×10−3/s, IB = σBvB and σB =2×10−3/s, respectively. A simulation period of 

100 s is used. 

n(v
A
,v

B
,0) =

N0

√2πσ
×exp(−

(v(v
A
,v

B
,0)− v

0
)
2

2σ2
) (5-16) 

The time evolution of dimensionless particle number density N/N0 and total 

particle volume V/V0, and the particle number distribution of q0,0 for simulation times, 

10 s and 100 s are shown in Figure 5.10 for Case V. As expected, for N/N0 and V/V0, 
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results obtained from the DWOSMC and SM are in agreement with one another.   

For the particle size distribution shown in Figure 5.10(b), as particles are initially 

normally distributed, the distribution of q0,0 closely reflects a normal distribution 

when the simulation time reaches 10 s. In contrast to patterns found from the other 

cases, the peak diameter of particles almost remains at the same value for Case V. 

The results obtained from the DWOSMC method and SM are in excellent agreement 

with one another. 

  

(a) (b) 

Figure 5.10   Time evolution of (a) N/N0 and V/V0 and (b) particle number 

distributions obtained from the SM (solid line) and DWOSMC method (scattered 

solid points) for Case V (Liu and Chan, 2018b). 

Figure 5.11 shows the particle volume density distributions of components, 

A and B for the simulation times of 10 s and 100 s. The peak diameter of q1,0 and 

q0,1 tends to be larger while the peak diameter of q0,0 distribution does not change 

much as shown in Figure 5.10(b). As the time period reaches 100 s, the distributions 

of q1,0, and q0,1 become broader and more closely reflect normal distributions. The 

results obtained from the DWOSMC method are in excellent agreement with those 

obtained from the SM. 
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(a) (b) 

Figure 5.11   Particle volume density distributions of (a) q1,0 and (b) q0,1 for 

simulation times t =10 s and t =100 s obtained from the SM (solid line) and 

DWOSMC method (scattered solid points) for Case V (Liu and Chan, 2018b). 

5.3.4  Two-component coagulation and condensation processes and the free 

molecule regime case 

 

Coagulation and condensation processes are considered to occur in a free 

molecule regime (where the diameter of particles is smaller than the mean free path 

of air) for Case VI. In the free molecule regime, the coagulation kernel is determined 

as Equation (3-5). 

The initial particle size distribution satisfies a normal distribution in 

Equation (5-16), and the compositions of components, A and B are different. The 

initial total particle number is N0 = 1012/m3 and the initial average particle volume is 

v0 = 3×10−18 m3 while the volumes of components, A and B are vA0 = v0/3 and      

vB0 = 2v0/3, respectively. The standard deviation, σ is 1×10-18 m3. The linear 

condensation kernels of components, A and B are given by IA = σAvA , 

σA =1×10−3/s, IB = σBvB and σB = 2×10−3/s, respectively. A simulation period of 

100 s is used. 
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Figure 5.12 shows the time evolution of dimensionless particle number 

density, N/N0 and total particle volume, V/V0 as well as the particle number 

distribution of q0,0 for Case VI. For N/N0 and V/V0, the results obtained from the 

DWOSMC method and SM are in excellent agreement with one another as shown 

in Figure 5.12(a). In Figure 5.12(b), the distribution curve of q0,0 is steep and narrow 

for a simulation period of 10 s, and the distribution curve of q0,0 is broader and much 

more gradual as the simulation time reaches 100 s. At a simulation time of 10 s, 

some fluctuations are observed at the peak value of q0,0. However, when the 

simulation time reaches 100 s, the peak diameter of q0,0 is larger, the distribution of 

q0,0 is normal with slight fluctuations, and the results obtained from the DWOSMC 

method and SM agree well with one another. 

  

(a) (b) 

Figure 5.12   Time evolution of (a) N/N0 and V/V0 and (b) particle number 

distributions obtained from the SM (solid line) and DWOSMC method (scattered 

solid points) for Case VI (Liu and Chan, 2018b). 

Figure 5.13 shows the particle volume density distributions for components 

A and B for simulation times of 10 s and 100 s. Figure 5.13(a) shows that        

the distribution of q1,0 tends to be broader and that the peak diameter of q1,0 is larger. 

Similar variations are found for component B as shown in Figure 5.13(b), though 

the value of q0,1 is larger than q1,0 due to the use of different condensation kernels for 
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components A and B. The distributions of q1,0 and q0,1 obtained from the DWOSMC 

method and SM agree well with one another.  

 

  

(a) (b) 

Figure 5.13   Particle volume density distributions of (a) q1,0 and (b) q0,1 for 

simulation times t= 10 s and 100 s obtained from the SM (solid line) and DWOSMC 

method (scattered solid points) for Case VI (Liu and Chan, 2018b). 

The normalized combined number density distribution of A-component and 

B-component (i.e., the bivariate compositional distribution) is defined as follows: 

nd = 100n(v
A
,v

B
,t)/N0 (5-17) 

In Case VI, the bivariate compositional distributions for different simulation 

times, t are shown in Figure 5.14. The contour plot of the normalized bivariate 

compositional distribution function is mostly positioned in the diagonal area based 

on the dimensionless coordinates of vA/v0 and vB/v0. As simulation time increases 

from t = 20 s to t = 100 s, the normalized bivariate compositional distribution 

function tends to be smaller but distributes across a larger region with respect to 

compositional particle volumes. 
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(a) (b) 

  

(c) (d) 

Figure 5.14   Dimensionless bivariate compositional distributions at different 

simulation times, t obtained from the DWOSMC method for Case VI         

(Liu and Chan, 2018b). 

5.3.5  Computational accuracy and efficiency analysis 

To evaluate the computational accuracy and efficiency of the newly 

proposed and developed multi-component DWOSMC method in the present study, 

the calculated relative error,  (%) according to Equation (4-11) (here A0(t) is the 

value obtained from the sectional method) is shown in Figure 5.15. The normalized 

computation times, τ according to Equation (5-11) (i.e., the reference value is the 

computational time of Case I obtained from the SM) for the studied cases are listed 

in Table 5.1. In Figure 5.15, maximum relative errors range within 0.8% for Cases I 

to IV and 1.2% for Cases V and VI, respectively. The results show that this new 
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DWOSMC method is computationally accurate and the relative errors generated are 

very small even in complex two-component systems involving coagulation and 

condensation processes. In addition, the relative errors obtained from          

two-component Cases II to VI do not tend to be significantly larger than those of 

one-component Case I. Furthermore, it is well known that the SM is generally more 

computationally powerful than the MC method for one-component systems     

(e.g., for Case I). When the two methods are further extended to consider        

two-components, Table 5.1 shows that τ of the DWOSMC method generates much 

smaller values than the SM for most of the two-component cases. This is the case 

because when considering more component information, the programming 

algorithm for the SM correspondingly becomes more complex while the MC method 

does not. Hence, it is concluded that the newly proposed and developed        

multi-component DWOSMC method is superior to the SM in terms of its 

computational efficiency in addressing complex multi-component problems. 

 

Figure 5.15   Time evolution of the relative errors,  (%) for N/N0 obtained 

from the DWOSMC method for different cases (Liu and Chan, 2018b). 
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Table 5.1  Normalized computation times, τ obtained from different cases using 

the SM and DWOSMC method (Liu and Chan, 2018b). 

 

      τ  

 Case 

Methods  

SM DWOSMC 

I 1.0 5.4 

II 63.5 22.4 

III 101.0 24.2 

IV 115.1 24.4 

V 177.2 25.5 

VI 190.1 28.7 

5.4   Summary 

A differentially weighted operator splitting Monte Carlo (DWOSMC) 

method is further proposed and developed to simulate two-component aerosol 

dynamics in the present study. Compared to traditional Monte Carlo (MC) methods, 

the multi-component DWOSMC method proposed in the present study adopts 

“different weights” which is more suitable for obtaining the compositional 

distributions of particles, especially for multi-component systems. In addition, the 

operator splitting technique renders it applicable and more efficient method to 

couple the stochastic MC method with the deterministic integration method.  

Different initial size distribution functions and initial compositional 

distributions of particles are studied under various regimes of simultaneous aerosol 

coagulation and condensation that include three cases involving constant 

coagulation kernel, one case involving sum coagulation kernel and one case 

involving free molecule coagulation kernel, respectively. For all of these cases 

studied, the dimensionless particle number density, total particle volume, particle 



 

Chapter 5       Monte Carlo Simulation of two-component Aerosol Dynamics 

  114 

number distribution and component related particle volume density distributions are 

examined, and the results obtained from the DWOSMC method agree well with 

those obtained from the SM.  

The present results and findings show that the newly proposed and developed 

multi-component DWOSMC method is more computationally accurate and efficient 

than traditional non-weighted MC methods. Furthermore, the SM is more 

computationally efficient than the DWOSMC when applied to one-component 

aerosol simulation systems while the DWOSMC tends to be more computationally 

efficient when applied to two-component aerosol simulation systems. This is the 

case because considering more than one form of component information does not 

significantly increase the complexity of the MC algorithm while much higher levels 

of complexity are required to use the SM algorithm to simulate more than one 

component of aerosol dynamics. With such high levels of computational efficiency 

and accuracy based on the specific data and evidence obtained, the newly developed 

multi-component DWOSMC method can predict not only particle size distributions, 

but can also determine component-related particle volume density and bivariate 

compositional distributions. 
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Chapter 6   Simulation of a spatially inhomogeneous particle-

laden turbulent flow  

6.1  Introduction  

The phenomenon of particle-laden turbulent flows is quite common in     

a broad range of scientific and engineering applications including atmospheric 

dispersion of pollutants (Chan et al., 2018a, 2010, 2008; Zhong et al., 2018), 

fluidized beds (Ayeni et al., 2016; Clarke et al., 2018; Xu et al., 2000), soot particles 

in combustion chambers  (Lucchesi et al., 2017; Zhao et al., 2018; Zucca et al., 

2006), aerosol reactors (Chan et al., 2018b; Liu and Chan, 2017b; Yu et al., 2008b), 

indoor airborne particles emitted in cooking process (Lai and Chen, 2015;      

Wang et al., 2018) and so on.  

Most of the previous studies focused on particle-laden flows in simplified 

configurations. However, in some realistic geometry, the irregular flow structure of 

channels may induce a large inhomogeneous flow field, which further affects the 

concentration distribution of the dispersed particles. Focusing on inhomogeneous 

flows, Vincont et al. (2000) conducted experiments in both water channel and wind 

tunnel where the passive scalars were released from the line source slot into the near-

wake flow behind a square rod obstacle in order to obtain the properties of the 

preferential concentration fields of passive scalars. In the present study, the 

numerical simulation is based on the wind tunnel experiments (Vincont et al., 2000), 

and the significance of two-way coupling effect on particle-fluid interactions is 

examined for a wide range of particle Stokes numbers. 
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The flow structure of a turbulent particle-laden injection downstream of     

a square rod obstacle from the experimental study of Vincont et al. (2000) is 

simulated for the particle Stokes numbers ranging from 0~100. It is the first 

Eulerian-Lagrangian numerical simulation of the mentioned wind tunnel 

experiments by using two-way coupling method. Firstly the numerical results are 

validated and compared with available experimental results (Vincont et al., 2000). 

Then, the effects of two-way coupling method between the dispersed and continuous 

phases, turbulent dispersion and Reynolds number based on the characteristic length 

of a square rod obstacle on the particle preferential concentration distribution are 

examined for different particle Stokes number cases. 

6.2  Numerical Methodology 

6.2.1  Eulerian equations for the continuous gas phase 

The transport of the continuous fluid phase is governed by the well-known 

Navier-Stokes (N-S) equations that describe the conservation of mass, momentum 

and energy, and are presented by the following equations in incompressible fluid 

flows: 

∂ui

∂xi

+
∂uj

∂xj

= 0 (6-1) 

∂ui

∂t
+

∂uiuj

∂xj

= 
1

ρ

∂p

∂xi

+νf

∂
2
ui

∂xj∂xj

+ f
P
 (6-2) 

 

where ui is the velocity, p is the pressure, 𝜌 is the density and νf is the kinematic 

viscosity. f
P
 represents the force applied by the dispersed solid particles because of 

interphase coupling. If one-way coupling effect is considered, i.e., the influence of 

the dispersed phase on the carrier fluid phase is neglected, hence the value of f
p
 in 



 

Chapter 6 Simulation of a spatially inhomogeneous particle-laden turbulent flow 

  117 

Equation (6-2) should be zero. Otherwise, when two-way coupling is considered, f
p
 

is calculated according to Equation (6-3). 

 f
p
= 

1

mf

∑ f
pk

M

k=1

 

(6-3) 

where f
pk

 is the drag force acting on particle, k that is described in Equation (6-5), 

M is the number of particles that are tracked within the computational cell and mf 

is the mass of fluid within the computational cell. 

6.2.2  Lagrangian particle tracking 

The dispersed particle phase is described by a Lagrangian Monte Carlo 

method, and the governing equation of the position and velocity of a particle is given 

by Newton’s second law of motion which is written as (Fan et al., 1997;  

Sommerfeld, 2001): 

dxP,i

dt
 = uP,i (6-4) 

duP,i

dt
=

3

4

ρ

ρ
P
dP

cD (ui-uP,i)|u⃗ -uP⃗⃗⃗⃗ |+f
s
 (6-5) 

where xP is the position, uP is the velocity of the particles, u is the velocity of the 

continuous gas phase and dP is the diameter of the dispersed particles. The first 

term in the right-hand side of Equation (6-5) represents the drag force that the carrier 

flow imposes on the particles. The drag coefficient CD  is formulated by      

(Zhu et al., 2007), 

CD = 24(1+0.15ReP
0.687)/ReP   when ReP<1000   and 
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CD = 0.44 , ReP≥1000 (6-6) 

where ReP is the relative Reynolds number, 

ReP = 
dP|u⃗ -uP⃗⃗⃗⃗ |

νf

 
(6-7) 

In Equation (6-5), fs represents the contributions from forces other than drag force, 

for example, gravity, lift, Basset, etc. It is observed that the Stokes drag is the 

dominant force for a large scale of density ratios between the dispersed particles and 

the carrier gas flows, the effect of other forces imposed on particles is only about 1% 

(Armenio and Fiorotto, 2013). Therefore, the force considered in the present study 

is only the drag force. 

The corresponding Stokes number of particles is defined as,  

St = τP/τf (6-8) 

where τP = ρp
dp

2
/(18ρ

f
νf) is the particle relaxation time and τf = L/u is the flow 

response time where L is the characteristic length of the carrier gas flow and the 

characteristic length of the obstacle, h is used for the present study. The Stokes 

number has a significant influence on the interaction between the particles and the 

carrier flows. When the particle Stokes number is very low (e.g., smaller than 0.01), 

the dispersed particles follow perfectly the streamlines of fluid flow. However, when 

the particle Stokes number is high (e.g., larger than 10), the effect of fluid flow on 

particles becomes weaker, and particles tend to follow the trajectory of the original 

injection particles. From Equation (6-8), it can be seen that under the condition of 

predetermined flow structure and fluid material, the Stokes number is only a function 

of particle size and the density ratio of the particles to the gas. In the present study, 
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the two-way coupling effects on both the preferential concentrations of particles and 

the fluid flow field is studied in a wide range of Stokes numbers. 

Considering coupling the motion of dispersed particles and the fluid phase, 

many previous studies focused on one-way coupling effect, in such case, the 

influences of dispersed particles on the carrier flows are supposed to be negligible. 

Thus, the numerical simulation of the transport of particles can be calculated on the 

basis of pre-existing fluid flow fields which can save much computational time and 

computer memory. However, in many cases, especially in cases where the volume 

fraction of dispersed particles, φ
v
 is larger than 10

4
, the effects of particles on the 

continuous phase cannot be neglected. The interaction between these two phases 

may affect the preferential concentration of the particles. When the volume fraction, 

φ
v
 continues to increase, a four-way coupling method should be considered which 

implies the interaction effect between the particles (e.g., particle-particle collision) 

should also be calculated.  

6.2.3  Particle-particle collision simulation 

In the present study, four-way coupling (particle-particle collision) effect is 

observed in the validation case that is compared with the experimental results 

(Vincont et al., 2000). A Lagrangian Monte Carlo method is used to calculate the 

solid particles, because of its stochastic and statistical characteristics, more particles 

in the simulation system implies more computer memories and computational time 

consumption are needed. To overcome the conflicts of large number of real particles 

and the potential limitation of computer capacity with enhancing computational 

accuracy, the “weighted” simulated particles are used, i.e., one simulated particle 

represent wi (the weight) real particle, which is a quite popular concept of Monte 
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Carlo simulation to simulate complex particle-fluid systems to avoid the need for 

extremely high computer performance. 

Herein, the simulation of the particle-particle collisions is based on 

probabilistic rules. The occurrence probability of collision between two particles, i 

and j is calculated based on the theory of O’Rourke (1981), which is based on the 

relative velocity, sizes and the weights of the two collided particles, and is written 

as Equation (6-9), 

Pcol,ij = exp(Cij
'
) (6-9) 

where Cij
′
 is the normalized collision rate of the simulated particles. 

Cij
'  = wminCij (6-10) 

where wmin  is the smaller weight of the two collided particles and Cij  is the 

collision kernel as follows: 

Cij = 
π

4
(di+dj)

2
|uiuj|

δt

Vcel

 (6-11) 

where di, dj,  ui and uj are the diameter and the velocity of the collided particles, 

i and j, respectively. δt is the time-step, Vcel is the volume of the computational 

grid which contains those two particles. Herein, it is assumed that only particles in 

the same computational grid can collide with each other. 

A random number from a uniform distribution between zero and one，r1 is 

generated to evaluate the occurrence of collision event between particles, i and j.    

If Equation (6-12) is satisfied, then collision will take place. 

ri ≤ Pcol,ij (6-12) 
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If a successful collision is observed, the next step is to deal with the collision 

event of those two particles, i and j. 

In the O’Rourke’s collision model, the treatment of collision event between 

particles, i, and j is based on the conservation of momentum. The calculations are as 

follows: 

The total momentum of these two particles is,  

mr = miui+mjuj (6-13) 

where ui, uj, ui
'  and uj

'  are the velocity vector of particles, i and j before and after 

the collision event, respectively. 

After collision, the velocity vectors of these two collided particles are 

calculated as (O’Rourke, 1981), 

ui
' = [mr+mj(uiuj)gf

]/(mi+mj) (6-14) 

ui
' = [mr+mj(uiuj)gf

]/(mi+mj) (6-15) 

where gf is the collision restitution coefficient and is related to the diameter of 

particles and the impact parameter. For a perfectly elastic collision event, gf is equal 

to 1, for a perfectly inelastic collision event, gf is equal to 0 where the detailed 

information can be referred to O’Rourke (1981). In the present study, gf is randomly 

generated between 0 and 1. 

6.2.4  Turbulent dispersion model 

Turbulent flows are unsteady and chaotic, the velocity of gas varies 

significantly and irregularly both spatially and temporally. In consequence, particles 
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suspended in turbulent flow would also have random motions because of being 

perturbed. 

In the present study, the average velocity of the continuous fluid flow is 

solved by Reynolds-Averaged Navier-Stokes Equations (RANS) equations. In order 

to take the turbulence effect into consideration, a stochastic fluctuation should be 

added into the calculation of the fluid flow velocity.  

The real velocity of the fluid flow is described as, 

u = U̅+u' (6-16) 

where u is the transient velocity of the fluid, U̅ is the mean velocity which can be 

calculated by RANS turbulence model and u' is the fluctuation velocity.    

The velocity fluctuation of fluid flow is described by the discrete random 

walk (DRW) model (Ghahramani et al., 2014; Katz et al., 1999) and is calculated as, 

u' = λσi (6-17) 

where λ is a number with Gaussian distribution with zero mean and unit variance.  

In isotropic flows,  

σi = (
2

3
k)1/2 (6-18) 

where k is the time-averaged turbulent energy. 

In the present study, the flow is anisotropic where σi is described as follows,  

σ1 = 
0.40y+

1+0.0239(y
+
)
1.496

u* (6-19) 
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σ2 = 
0.0116(y

+
)
2

1+0.203y++0.00140(y
+
)
2.421

u* (6-20) 

σ3 = 
0.19y+

1+0.0361(y
+
)
1.322

u* (6-21) 

where u* is the friction velocity of fluid flow. 

In anisotropic and inhomogeneous flows, a preferred method of modeling 

the particle dispersion in turbulent flows is the continuous random walk (CRW) 

model that can use a discrete Markov chain to correlate the velocity fluctuation of 

fluid flow with that of the previous time-step along the path of particles    

(Bocksell and Loth, 2006; Iliopoulos and Hanratty, 1999; MacInnes and Bracco, 

1992; Rybalko et al., 2012). The discrete Markov chain for the velocity fluctuation 

is written as (Bocksell and Loth, 2006; Rybalko et al., 2012), 

u'(t+∆t) = exp(
−∆t

τL

)u'(t) +√1-exp(
−2∆t

τL

)σiλ(t) + δu' (6-22) 

where τL is the Lagrangian time scale, δui = ∆t(uj
∂ui

∂xj

̅̅ ̅̅ ̅̅
) is the drift correction for 

inhomogeneous turbulence (Bocksell and Loth, 2006, 2001). 

In the CRW model, the term on the left hand of Equation (6-22) is the 

instantaneous fluid velocity perturbation at time of t+∆t; the first term on the right 

hand of Equation (6-22) is the damping term that is related to the fluid velocity 

perturbation at the previous time-step where τL is the Lagrangian time scale; the 

second term on the right hand of Equation (6-22) is the stochastic term where λ(t) 

is a continuous random variable that can be specified to have a Gaussian distribution 

with a variance of unity and σi  is the root mean square velocity described by 
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Equations (6-19) to (6-21) for different directions in anisotropic flows; and the third 

term on the right hand of Equation (6-22), δu'  is the drift correction for 

inhomogeneous turbulence, and can be described as (Bocksell and Loth, 2006; 2001), 

δui
' =∆t(uj

' ∂ui
'

∂xj

̅̅ ̅̅ ̅̅
).  

In the present study, the CRW model described by Equation (6-22) is used for 

calculating the fluctuating velocity component. 

6.3  Numerical Simulation Setup 

The Lagrangian particle tracking codes (Fan et al., 1997; Sommerfeld, 2001) 

are coupled into the Reynolds Averaged Navier-Stokes (RANS) based          

k-ε turbulence model (Ghahramani et al., 2014; Rossi and Iaccarino, 2009) to 

simulate the motion of dispersed particles, and the steady and transient states of the 

flow field. The convergence criterion for the relative residual of the velocity and 

continuity and other variables is set as 106 (Chan et al., 2018b). 

6.4  Results and Discussion 

The numerical validation and implementation of the developed and coupled 

codes are carried out on the same geometry and experimental data from the previous 

experimental study by Vincont et al. (2000), and the wind tunnel case is selected as 

the initial conditions of numerical validation. 

6.4.1  Configuration and model description 

The numerical simulation is conducted on a wind tunnel case where there is 

a long horizontal square rod mounted on the flat plate that significantly affects the 
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flow field and the preferential concentration of dispersed particles behind the 

obstacle. A two-dimensional square rod is fully immersed in a turbulent-boundary 

layer. The main flow is air from the ambient atmosphere, and incense smoke with 

particles is seeped into the downstream of the obstacle. The configuration of the 

experimental setup inside wind tunnel is shown in Figure 6.1 where the particles are 

released from the line source slot into the near-wake flow behind a square rod 

obstacle on the flat plate.  

 

Figure 6.1   A sketch map of the wind tunnel with a mounted horizontal square 

rod obstacle and of the computational domain. 

According to the experimental setup of Vincont et al. (2000), a horizontal 

square rod obstacle has a cross-section of 0.01 m × 0.01 m with an aspect ratio of 

50, the main flow is a free-stream flow with a speed of ue = 2.3 m/s with a cross-

section area of 0.5 m × 0.5 m which is equivalent to the Reynolds number of the 

square rod obstacle, Reh (which is Reh = uh/v)  1500. The boundary layer thickness, 

δ in this case studied is about 0.07 m, the square rod obstacle is mounted at L1 = 7δ 

downstream of the air inlet flow, and the free surface is 3.5δ above the flat plate, in 

order to guarantee a stabilized boundary layer in the laminar-turbulent transitional 

flow condition. The smoke flow with particles is released from the line source slot 

with a speed of up/ue  0.04 through a slot width of 0.002 m at 1h downstream of the 

square rod obstacle. 
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6.4.2  Numerical validation 

6.4.2.1 Grid independence and gas flow field validations 

As the distributions and dynamic behaviors of particles are to a great extent 

affected by the gas flows, one critical factor that determines the accuracy of 

numerical simulation of fluid flow is the grid density. In the present study, three 

different grid densities (coarse meshes: 49975 cells, medium meshes: 112000 cells, 

and fine meshes: 199900 cells) are used to verify the grid independence. The velocity 

distribution profiles at upstream, x/h = 4 and downstream, x/h = 4 of the square rod 

obstacle for different grid density cases are shown in Figure 6.2, where x/h = 0 

locates at the rear end of the square obstacle. It could be well observed that the 

velocity distribution profile calculated from the coarse mesh case deviates slightly 

from those medium and fine mesh cases, and no obvious differences can be seen 

from the results obtained between medium and fine mesh cases. Therefore, the grid 

density with 112000 cells is selected to perform the numerical simulations in 

consideration of both computational accuracy and efficiency. 

  

(a) (b) 

Figure 6.2  Effect of grid densities on velocity distribution profiles at (a) x/h = 4 

and (b) x/h = 4. 
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(a) (b) 

Figure 6.3  Normalized velocity distribution profiles at (a) x/h = 4 and (b) x/h = 6. 

In Figure 6.3, the normalized velocity distribution profiles in the streamwise 

direction, u/ue, and wall-normal direction, v/ue, are shown both at the position of x/h 

= 4 and x/h = 6. The numerical simulation results are compared with the 

experimental results available from Vincont et al. (2000). Considering the 

measurement errors and fluctuations, the numerical results coincide with the 

experimental results with some deviations 

6.4.2.2 Particle concentration distribution validation 

Particles are released from the line source slot at time, t0 = 0 when the gas 

flow field is already calculated to reach a steady state. In order to ensure the 

similarity with experiments, the Lagrangian particle injection is set to be the same 

with Vincont et al. (2000). The released smoke is carrying particles with mean 

diameter of 0.9 μm and mass flux of 7.8×106 kg∙s1m1, in which case, the initial 

particle number concentration is C0 ~ 𝒪 (1016 m-3) and the initial particle volume 

fraction is φ
v
~ 𝒪 (104) at the inlet. In this numerical validation case, the particle 

Stokes number is around 0.0004, the sampling period is ts ~ 200h/Ue. Three different 
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coupling methods (i.e., one-way coupling, two-way coupling and four-way coupling 

methods) are studied and compared with the experimental results of Vincont et al. 

(2000). 

The normalized mean particle concentration along lines of x/h = 4 and     

x/h = 6 are shown in Figure 6.4(a) and (b), respectively. It can be observed that the 

particles mostly locate inside the region of y/h = 3, and particle accumulation reaches 

maximum at y/h  1 at both the positions of x/h = 4 and x/h = 6. The tendency of 

particle concentration distribution of the numerical simulation results agrees with 

the experimental results, and it is apparent that when only one-way coupling is 

considered, the particle concentration distribution curve obtained from numerical 

simulation is far from the experimental results, and when two-way or four-way 

coupling is considered, the numerical simulation results coincide with the 

experimental results. Therefore, considering only one-way coupling between the 

continuous fluid phase and the dispersed particles will result in large errors, and 

four-way coupling seems not quite necessary in this case. 

  

(a) (b) 

Figure 6.4  Normalized particle concentration distribution profiles at (a) x/h = 4 

and (b) x/h = 6. 
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6.4.3  Particle field distribution analysis and two-way coupling effect  

For a deeper understanding of the difference observed from Figure 6.4 

between the one-way coupling and two-way coupling effects, the transient particle 

field distributions are shown in Figure 6.5(a) and (b).  

 
(a) 

 
(b) 

Figure 6.5  Transient particle field distribution at t*= 1 (a) one-way coupling 

case and (b) two-way coupling case. 

In Figure 6.5, for one-way coupling case, the particles distribute mostly 

within the region of y/h = 1.5, and then distribute evenly along the streamline 

direction. While for two-way coupling case, as shown in Figure 6.5(b), there is a 

peak at the position of about x/h = 4, which implies that the dispersion characteristics 

of the particles become stronger, thus the particle number concentration becomes 

smaller than one-coupling case, which can explain the phenomenon observed in 

Figure 6.4. Since the effect of turbulent dispersion is considered in those two cases, 

particles tend to locate everywhere in the wake region randomly behind the square 

rod obstacle, and the particle dispersion pattern is not distinct. Therefore, in order to 

further investigate the difference between one-way and two-way coupling cases, the 

stochastic dispersion model is then turned off for both cases, and the transient 
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particle field distribution at time period of t* = t/ts = 0.1, 0.2, 0.3, 0.4, ,0.6, 0.8 and 

1 are given in Figure 6.6 for both cases.  

One-way coupling case Two-way coupling case 

  

(a) t* = 0.1 (b) t* = 0.1 

  

(c) t* = 0.2 (d) t* = 0.2 

  

(e) t* = 0.3 (f) t* = 0.3 

  

(g) t* = 0.4 (h) t* = 0.4 

  

(i) t* = 0.6 (j) t* = 0.6 
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(k) t* = 0.8 (l) t* = 0.8 

  

(m) t* = 1 (n) t* = 1 

Figure 6.6   Transient particle distributions at different time periods for one-way and 

two-way coupling cases. 

From Figure 6.6(a) and (b), the particle distributions at time t* = 0.1 for   

one-way and two-way coupling cases do not have much difference. From Figure 

6.6(c) and (d), the particles distribution at time t* = 0.2 in one-way coupling case 

shows good consistency with the fluid flow, and particles move in the fluid flow 

direction. However, the particles in two-way coupling case distribute in two 

semicircular shapes: the first main semicircular shape at marked ①  in Figure 6.6(d) 

is the same with the main fluid flow direction, which shows the particles that follow 

the flow streamline, similar to the semicircular shape in Figure 6.6(c). The second 

small semicircular shape at marked ② .  In Figure 6.6(d) indicates that some of the 

particles do not perfectly follow the fluid flow direction of the continuous phase and 

are split away from the main flow streamline because of the two-way coupling effect. 

From Figure 6.6(e) and (f), the particles distribution at time t* = 0.3 in one-

way coupling case does not change much. While for two-way coupling case, the 

semicircular shape at ①  evolves into an approximately round circle, and the 
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particles in semicircular shape at ②  tend to deposit close to the walls of the square 

obstacle. 

For one-way coupling case, from time t* = 0.4 to 1, it can be observed that 

the farthest position in the x-direction that the particles reach is around x/h = 7, after 

which the particles will change their directions, and move backward and form a 

vortex in the region between x/h = 0~7. For two-way coupling case, it can be 

observed that most particles move towards circular flow direction and fade away 

gradually, after which a new vortex comes into being as shown in Figure 6.6(n).  

Furthermore, in the two-way coupling case, the effects of preferential 

particle concentration are obvious in both near- (i.e., corner) and far-wake regions 

of the square rod obstacle, while no particles can be found in both of these two 

regions in one-way coupling case.  

The different particle distributions are because of different coupling methods 

which result in different flow structures and further affect the particle dispersion 

patterns. The flow fields of the continuous gas phase at different time periods are 

shown in Figure 6.7.  
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(a) t*= 0 

 

(b) t*= 0.4 

 

(c) t*= 0.8 

 

(d) t* = 1 

 

Figure 6.7  Transient flow fields at different time periods for two-way coupling 

case. 

For one-way coupling case, the effect of particles on the continuous phase is 

ignored, so the flow field would stay the same when time advances as shown as 

Figure 6.7(a). It can be observed that there is a vortex behind the obstacle, and the 

flow streamline passing through x/h = 1 is the same with the particle field 

distributions as shown in Figure 6.6(m), which proves that in the one-way coupling 

case, the particles perfectly follow the motion of the carrier flow. While in the two-

way coupling case, the fluid flow field is affected by the particles and the evolution 
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of flow field is shown in Figure 6.7(a) to (d). The vortex flow becomes larger and 

moves towards the main flow direction. The center of the vortex flow and the 

streamlines in regions, A, and B are significantly influenced by the particles, 

especially in B region, and small vortices are generated because of the wall 

deposition effect of the particles. 

6.4.4  Particle Stokes number (St) effect 

6.4.4.1 Instantaneous particle distribution 

From Section 6.3, when the particle volume fraction, φ
v
 is approximately 

equal to 10−4 with the particle Stokes number at around 0.0004, the effect of solid 

particles on the continuous fluid flow field is obvious. In this section, the effect of 

particle Stokes number on the dispersion characteristics as well as two-way coupling 

effect are studied and the transient particle distributions at time, ts for different 

Stokes numbers are shown in Figure 6.8.  

From Figure 6.8(a) to (d), when the particle Stokes number is smaller than 

or equal to 0.01, the differences between the results of one-way and two-way 

coupling cases are shown clearly. In one-way coupling cases, particles only exist in 

the vortex flow and form a circular flow in the wake of the square rod obstacle. In 

two-way coupling cases, particles can be found in the far-field wake flow of square 

obstacle as well as in the near-wake flow (i.e., corner) behind the square obstacle in 

addition to the vortex region behind the square obstacle. This phenomenon is quite 

similar to what is observed in Figure 6.6(k) and (l). From Figure 6.8(e) to (l), when 

the Stokes number is higher than or equal to 0.1, the difference between one-way 

and two-way coupling cases on the particle distribution is not distinct. 
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One-way coupling cases Two-way coupling cases 

  

  

(a) St = 0.001 (b) St = 0.001 

  

(c) St = 0.01 (d) St = 0.01 

 

 

 
 

(e) St = 0.1 (f) St = 0.1 

  

(g) St = 1 (h) St = 1 

  

(i) St= 10 (j) St = 10 

  

(k) St = 50 (l) St = 50 

  

(m) St = 100 (n) St = 100 

Figure 6.8  Effect of particle Stokes number on the instantaneous particle 

distribution for one-way and two-way coupling cases. 

For the one-way coupling cases, when the particle Stokes number is smaller 

than or equal to 0.01 as shown in Figure 6.8(a), (c), (e), (g), (i) and (k), the particles 

completely follow the fluid flow direction of the continuous phase and only locate 
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in the vortex generated by the main fluid flow, and spread over the upper wall of the 

obstacle. When the particle Stoke number is 0.1, the particles start to split away at 

the end of the vortex, some particles move along the downstream direction while 

other particles continue to follow the vortex flow and change their velocity direction. 

When the particle Stokes number is higher than or equal to 1, the particles 

completely escape from the main vortex flow behind the obstacle. When the particle 

Stokes number continues to increase, the preferential concentration of particles 

changes significantly. There is no particle located in the upper wall of the obstacle 

when the particle Stokes number reaches 50. The trajectory of particles is nearly 

parallel to the lower wall of the square obstacle wake and the particles behind the 

injection region (x/h > 2) do not change their direction. This is because, when the 

particle Stokes number becomes higher, the inertia of the particles also becomes 

larger, thus they prefer to follow the moving flow trajectory of their originally 

injection direction. 

6.4.4.2 Turbulent dispersion effect 

In this section, the turbulent dispersion model is considered on the particles, 

the turbulent dispersion effect on the particles with different particle Stokes numbers 

for two-way coupling cases is shown in Figure 6.9. 

No turbulent dispersion model cases Turbulent dispersion model cases 

  

  
(a) St = 0.001 (b) St = 0.001 
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(c) St = 0.01 (d) St = 0.01 

  
(e) St = 0.1 (f) St = 0.1 

  
(g) St = 1 (h) St = 1 

  
(i) St = 10 (j) St =10 

  
(k) St = 50 (l) St = 50 

  
(m) St = 100 (n) St = 100 

Figure 6.9   Effect of particle Stokes number and turbulent dispersion model on 

the instantaneous particle distribution. 

 

It can be observed that when the particle Stokes number is smaller than 1, 

the behavior of the particles is significantly affected by the turbulent dispersion 

model. In those cases of not considering turbulent dispersion model effect, particles 

mainly distribute along the main flow streamline, and in those cases of considering 

turbulent dispersion model effect, particles almost occupy the whole area behind the 



 

Chapter 6 Simulation of a spatially inhomogeneous particle-laden turbulent flow 

  138 

obstacle. With the increasing of particle Stokes number, the inertia of the particles 

becomes larger; the turbulent dispersion effect tends to become weaker. When the 

particle Stokes number reaches 50, the stochastic turbulent dispersion model tend to 

have little influence on the motion of particles, and the difference between the results 

obtained from different cases with and without taking into account the turbulent 

dispersion model is not significant. 

Compared Figure 6.8 to Figure 6.9, it can be concluded that, the influence 

factors of turbulent dispersion model and two-way coupling effect on the particle 

distributions are quite similar. With the increase of the particle Stokes number, the 

effect of these two influence factors (both become weaker when the particle Stokes 

number reaches 10 or higher) are both not obvious. 

6.4.4.3 Preferential particle concentration distributions  

The normalized particle concentration distributions along different lines of x/h 

= 2, 4, 6 and 8 using the two-way coupling method are shown in Figure 6.10. It is 

observed that particles with different particle Stokes numbers have different particle 

concentration profile tendencies. When the particle Stokes number is smaller than 

or equal to 1, the maximum value of particle concentration is found at position of 

y/h  1. The peak value of particle concentration stays approximately at the same 

position when the particle Stokes number is smaller than or equal to 1. Along the 

same line when the particle Stokes number is higher than 1, the maximum particle 

concentration increases with the increasing of particle Stokes number. It is also 

observed that when the particle Stokes number is higher than 1, with the increasing 

of the particle Stokes number, the particle number concentration distribution profile 

becomes narrower and the position of its peak value moves to further direction away 
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from the lower wall of the flat plate. This is because when the particle Stokes number 

becomes higher, the particle inertia also increases so that the turbulent dispersion 

effect and the wake effect of the obstacle on the particles become weaker, and the 

moving direction of particles tends to follow their initial velocity. 

  

(a) x/h = 2 (b) x/h = 4 

  

(c) x/h = 6 (d) x/h = 8 

Figure 6.10   Effect of the particle Stokes number, St on the normalized particle 

number concentration distributions at different positions, x/h. 

6.4.5  Reynolds number (Reh) effect 

The effect of Reynolds numbers based on the characteristic length of       

the square rod obstacle, Reh = uh/v on the normalized particle number concentration 

distribution profiles for the two-way coupling cases is shown in Figure 6.11.      

In Figure 6.11(a), when the particle Stokes number is 0.001, the profile of the particle 



 

Chapter 6 Simulation of a spatially inhomogeneous particle-laden turbulent flow 

  140 

number concentration distribution does not change significantly with the increase of 

Reynolds number. The peak value of the particle concentration firstly increases and 

then decreases, and this variation tendency of the particle concentration distribution 

also applies to other cases when the particle Stokes number is 100, except that the 

particle concentration distribution profile becomes narrower and the position of the 

peak value moves to further downstream away from the lower wall of the obstacle. 

Furthermore, from Figure 6.11(a) to (d), the variation tendency of the normalized 

particle concentration profiles are almost the same at different positions (i.e., x/h = 

2 to 8) and particle Stokes numbers (i.e., St = 0.001 and 100). 

 

  
(a) x/h = 2 (b) x/h = 4 

  

(c) x/h = 6 (d) x/h = 8 

Figure 6.11   Effect of Reynolds numbers based on the square rod obstacle, Reh on 

the normalized particle number concentration distribution profiles at different 

positions, x/h. 
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It is concluded that when the particle Stokes number does not change, the 

Reynolds number based on the obstacle has small effect on the distribution of 

normalized particle number concentration in the cases studied. When compared with 

the effect of particle Stokes number, the effect of Reynolds number on the particle 

distribution is relatively weak. 

6.5  Summary 

An Eulerian-Lagrangian model is used to simulate a spatially 

inhomogeneous particle-laden turbulent flow. Particles are released from the line 

source slot into the near-wake flow behind a square rod obstacle. The particles in 

turbulent flow are simulated by a coupled computational fluid dynamics (CFD)-

Lagrangian Monte Carlo method. The turbulent fluctuation effects on the particle 

dispersion are studied using a stochastic dispersion model. The transient particle 

distribution and the preferential particle concentration distribution are observed for 

the particles released from the line source slot behind the wake flow of a square rod 

obstacle. The effects of particle Stokes number, two-way coupling, turbulent 

dispersion model, and Reynolds number based on the obstacle on the particle 

dispersion pattern are fully studied with the particle volume fraction, 𝒪 (×10−4). The 

results show that two-way coupling method is required other than one-way coupling 

method because the influence of dispersed particles on the flow field is significant 

based on the conditions provided from the experiments of Vincont el al. (2000) that 

cannot be neglected. The results also reveal a significant impact of particle Stokes 

number on the transient particle distribution as well as the preferential particle 

concentration distribution. When the particle Stokes number is smaller than 1, the 

effects of turbulent dispersion model and two-way coupling are both important. 
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When increasing the particle Stokes number, the effect of two-way coupling and 

turbulent dispersion model are less significant and even negligible when the particle 

Stokes number reaches 100. Compared to the effects of two-way coupling and 

particle Stokes number, the effect of Reynolds number based on the obstacle on the 

particle number concentration distribution is not significant. With the increase of 

Reynolds number, the peak value of the particle concentration firstly increases and 

then decreases slightly.
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Chapter 7   LES-DWOSMC method for simulating aerosol 

dynamics in turbulent flows  

7.1  Introduction  

In the present study, the newly developed differentially weighted operator 

splitting Monte Carlo (DWOSMC) method is further coupled with large eddy 

simulation (LES) to simulate the evolution of particle size distribution (PSD) 

accounting for aerosol coagulation and surface growth processes in turbulent flows. 

LES is used to calculate the fluid flow field, the vortex structures are captured which 

have significant effects on the particle dispersion pattern. The effect of the jet 

temperature and jet Reynolds number of the injected flows on the evolution of the 

PSD is also investigated.  

Firstly, the newly developed LES-DWOSMC method is verified by a DNS-

SM method (Miller and Garrick, 2004) for coagulation occurring in the turbulent 

planar jet. The time-averaged flow velocity field and mean particle diameter 

distributions obtained from LES-DWOSMC method show good agreement with 

those obtained from DNS-SM. Then the effect of jet temperature on aerosol 

dynamics is fully investigated for coagulation and surface growth occurring in the 

turbulent jet. The effect of jet Reynolds number on aerosol dynamics in the turbulent 

jet is also investigated for the studied cases. The evolution of time-averaged mean 

particle diameter, normalized particle number concentration and the particle size 

distribution (PSD) are studied in each case. 
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7.2  Numerical Methodology 

Large eddy simulation (LES) for solving the Navier-Stokes N-S equations 

provides a good compromise between the computational accuracy and efficiency.   

In LES, the turbulent flows are decomposed into two parts of large- and small-scale 

structures: the large eddies are directly computed on an Eulerian grid, while the small 

eddies are modelled (Chan et al., 2008; Luo et al., 2004; Pesmazoglou and Kempf, 

2017; Rodrigues et al., 2018).  

In the present study, the proposed DWOSMC method is coupled with LES 

to study aerosol dynamics in turbulent flows. The governing equations for solving 

the fluid flows by LES are given in Section 3.6.2.2. The Smagorinsky subgrid-scale 

eddy viscosity model is used. This adopted model has widely been used and 

extensively validated for many research studies over the years. It assumes the 

equilibrium between the rates of turbulent kinetic energy production and dissipation 

in order to obtain a relation between the characteristic velocity and the resolved 

strain rate. The governing equations of the spatial position and velocity field for 

aerosol particles are given by Newton’s second law of motion which is written as 

Equations (6-4) and (6-5). 

The specific calculation procedure steps of this coupled LES-DWOSMC 

method is given as follows: 

(a) Initialization. The boundary conditions and initial value of both the gas and 

particle phases are assigned. For the gas phase, the initial thermal and flow fields 

(e.g., temperature, pressure, velocity, etc.) are characterized; for the particle 

phase, the particle properties (e.g., weight, number concentration, size 
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distribution, etc.) are characterized.  

(b) Start M Monte Carlo loops. 

(c) Choose a time-step, δt. The choice of a suitable time-step should be small enough 

to ensure that the two-phase flows and particle dynamics are uncoupled, and 

different aerosol dynamic behaviors are also uncoupled. 

First of all, the time step is limited by the gas phase flow. It is supposed that 

coagulation only occurs between particles inside one computational grid. 

Therefore, the displacement of the fluid element in one time-step should not be 

larger than the length of a computational grid. This time scale is written as,  

τf = min(li/ui) (7-1) 

where li and ui are the length of grid, i and the fluid average velocity inside the 

grid, i, respectively.  

Then, the time-step should also be smaller than the particle relaxation time scale 

(Zhao and Zheng, 2013), which is written as, 

τp = ρ
p
dp

2
/(18ρ

f
ν) (7-2) 

Furthermore, the time scale should also be smaller than the characteristic time 

scales for different aerosol dynamic processes.  

The characteristic time scale used for coagulation events is written as      

Equation (4-7). For surface growth events, the characteristic time scale is written 

as Equation (4-9). 
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To guarantee the accuracy of the newly proposed LES-DWOSMC method, an 

appropriate time-step that is smaller than all of those mentioned characteristic 

time scales should be used. In the present study, the time-step is written as: 

δt ≤ min(τf, τp, ∆tcoag, ∆tcond) (7-3) 

 

(d) Solving the gas flow fields. The physical conservation equations (i.e., mass, 

momentum and energy) of the continuous gas phase are solved, the flow field 

properties (i.e., velocity, pressure, temperature, etc.) are obtained. 

(e) Updating the spatial position and velocity field of the particles. The motion of 

particles is governed by Equations (6-3) and (6-4), and thus the particle field can 

be solved by the Lagrangian particle tracking (LPT) method. 

(f) Treatment of aerosol dynamic processes. Aerosol dynamic processes are handled 

by the developed DWOSMC method. 

Within the time-step, the surface growth process is first calculated for the first 

half time-step of δt/2, and then the coagulation process is simulated for one 

time-step, δt. Finally, the surface growth process is calculated for the last half 

time-step of δt/2. 

After the coagulation event, the previous particles are replaced with two newly 

weighted simulated particles, and the conservation of volume is considered 

while the properties of these particles are changed. The treatment of coagulation 

process considering the spatial position and the velocity field of the particles is 

described as Zhao and Zheng (2011): 
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If  

wi = wj, {
wi

' =wi/2; vi
' =vi+vj; xp,i

' =xp,i; up,i
' =(viup,i+vjup,j)/(vi+vj);

wj
' =wj/2; vj

' =vi+vj; xp,j
' =xp,j;  up,j

' =(viup,i+vjup,j)/(vi+vj);
 (7-4) 

  

If   
 

 

 

wi ≠ wj,

{
 
 

 
 

wi
' =max(wi,wj)-min(wi,wj);vi

' =vm|
wm=max(wi,wj) 

;

xp,i
' =xp,m|

wm=max(wi,wj) 
; up,i

' =up,m|
wm=max(wi,wj) 

 ;

wj
' =min(wi,wj);vj

' =vi+vj;                                  

xp,j
' =xp,m|

wm=min(wi,wj) 
; up,j

' =(viup,i+vjup,j)/(vi+vj);          

 (7-5) 

 

where wi
' ,  wj

' , vi
' , vj

' , xi
' ,  xj

' , ui
'  and uj

'  are the weight, volume, spatial position 

and velocity of newly created simulated particles, i and j after the coagulation 

event. In the present study, the density of particles is assumed to be constant, 

and so the conservation of particle volume in Equations (7-4) and (7-5) denotes 

the conservation of mass during the coagulation event, and therefore the velocity 

calculation of the particles can be based on the volume of particles. 

The change in particle size distribution due to surface growth is written as 

Equation (4-6), and the position and velocity of particles do not change. 

(g) The properties of simulated particles are updated to obtain information on the 

particles, as the particles are assumed to be spherical before and after coagulation 

and surface growth events, and thus particle diameters can be easily derived. 

(h) Repeat steps (c) to (g) until the predetermined stopping time, tstop is reached, and 

then exit the current Monte Carlo loop. 

(i) Start a new Monte Carlo loop if the calculated Monte Carlo loop number, R is 

smaller than the predetermined Monte Carlo loop number, M. Otherwise the 
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averaged results are obtained to output the information of two-phase flow fields 

and particle distributions.  

Figure 7.1 presents a flowchart of the full algorithm of the newly developed 

LES-DWOSMC method. 

 

Figure 7.1   Flowchart of the newly developed LES-DWOSMC algorithm. 
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7.3  Numerical Simulation Setup 

The developed DWOSMC is coupled into the LES turbulence model to 

simulate the dynamic behaviors of dispersed particles. In the present study, the 

Smagorinsky eddy-viscosity model is used to solve the unknown sub-grid stresses 

of the fluid flow field (Pesmazoglou and Kempf, 2017; Smagorinsky, 1963). 

Transient computing scheme is used and the convergence criterion for the relative 

residual of the velocity, continuity and other variables is set as 106               

(Chan et al., 2018b). 

7.4  Results and Discussion 

Firstly, the numerical verification and implementation of the newly 

developed and coupled LES-DWOSMC method are examined on the numerical 

model used by Miller and Garrick (2004) by calculating aerosol coagulation in an 

incompressible and isothermal turbulent planar jet, the results are verified and 

compared with the direct numerical simulation-sectional method (DNS-SM)  

(Miller and Garrick, 2004). After the initial verification, the developed LES-

DWOSMC method is used to study the effects of Reynolds number and temperature 

of the turbulent planar jet on the evolution of aerosol particles under the coagulation 

and surface growth processes. 

7.4.1  Configuration and model description 

Figure 7.2 shows a planar jet flow configuration examined by Miller and 

Garrick (2004) and also used in the present study, where the spatial coordinates, x 

and y are the streamwise and cross-stream directions, respectively. The diameter of 

the planar jet, D is 1mm, and the computational domain in x and y directions is 
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127D. The co-flow velocity is U2 = 0.55U1. The Reynolds number of the jet flow 

based on the jet diameter is, ReD = U1D/v  4000 (Miller and Garrick, 2004).  

 

 

Figure 7.2   A sketch map of a planar jet flow (Miller and Garrick, 2004). 

Three different grid densities (coarse meshes: 33600 cells, medium meshes: 

70200 cells, and fine meshes: 279600 cells) are used to verify the grid independence. 

The velocity distribution profiles at x/D=6 for different grid density cases are shown 

in Figure 7.3(a). It can be well observed that the velocity distribution profiles 

calculated from the three studied meshes do not tend to have obvious difference. 

Furthermore, the transient distributions of the vorticity in z-direction ( 𝛺𝑧 =

∂v/∂x∂u/∂y) calculated from the three studied meshes are shown in Figures 7.3(b) 

to (d). It is shown that the vortex shedding starts at around x/D = 6 in Figure 7.3(b) 

and at around x/D = 3.5 in both Figures 7.3(c) to (d) which are consistent with the 

conclusions of Miller and Garrick (2004). Since the coherent vortex structure of fluid 

gas has a large effect on the particle dispersion patterns, the grid density with 70200 

cells proved to be sufficient to describe the gas flow and is selected to perform the 

numerical simulations of the present study in consideration of both computational 

accuracy and efficiency. 
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(a) (b) 

  

  

(c) (d) 

Figure 7.3  Effect of different grid densities on (a) the velocity distribution profiles, 

and the transient vorticity distributions by three grid densities of (b) coarse meshes: 

33600 cells, (c) medium meshes: 70200 cells, and (d) fine meshes: 279600 cells. 

Since the aerosol dynamics are affected by the coherent vortex structure of 

fluid gas, it is essential to examine the vorticity field. Figure 7.4 shows the transient 

evolution of the vorticity in z-direction at four non-dimensional times (t* = tU1/D). 

The choice of different times t* is according to the time for the streamwise flows to 

reach x/D = 2, x/D = 6, x/D = 10, and after the flow is stable. It can be observed that 

the computational cells used are sufficient enough to capture the vortex structure of 

the flow field. Vorticity is generated at the interface of two parallel streams where 

the jet and the co-flow mix together. Vortex shedding starts at around x/D = 3.5, and 
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the peak value of vorticity magnitude becomes smaller along the streamwise 

direction, which is in accordance with the findings of Miller and Garrick (2004). 

 

  
(a) (b) 

  
(c) (d) 

Figure 7.4  Contours of the transient evolution of vorticity at times of (a) t* = 

3.8, (b) t* = 9.5, (c) t* = 15.2 and (d) t* = 28.5 at ReD = 4000 and Tj = 300 K.  

To verify the flow field in the present study, the results of time-averaged 

streamwise velocity of the gas phase flow at four different axial positions (x/D = 2, 

6, 10, 11.5) simulated by LES are compared with the results obtained from direct 

numerical simulation (DNS) (Miller and Garrick, 2004). The velocity distribution 

profiles are shown in Figure 7.5. It can be seen that the mean velocity distributions 

obtained from LES agree with those obtained from DNS, and the chosen 

computational grid density is deemed adequate. 
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(a) (b) 

  

(c) (d) 

Figure 7.5  The planar jet velocity distribution profiles obtained from the present 

study of LES and DNS (Miller and Garrick, 2004) at (a) x/D = 2, (b) x/D = 6,       

(c) x/D = 10 and (d) x/D = 11.5 at ReD = 4000 and Tj =300 K. 

7.4.2  Coagulation in the turbulent planar jet 

7.4.2.1 Numerical verification 

In the first case studied in the present study, the flow is incompressible and 

isothermal with a temperature of 300K. Particles are initially uniformly distributed 

with a diameter of 1 nm and injected with a volume fraction of φ
v
~ 𝒪 (10-7) as 

similarly used by Miller and Garrick (2004). The coagulation rate under free 

molecule regime given by Equation (3-5) is considered. 
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The time-averaged mean particle diameters at four different axial positions 

obtained from the LES-DWOSMC method are compared with the DNS-SM  

(Miller and Garrick, 2004), and the results are shown in Figure 7.6.  

 

  

(a) (b) 

  

(c) (d) 

Figure 7.6 Time-averaged mean particle diameter obtained from the present study of 

LES-DWOSMC method and DNS-SM (Miller and Garrick, 2004) at four axial 

positions of (a) x/D =2, (b) x/D = 6, (c) x/D = 10 and (d) x/D = 11.5 at ReD = 4000 

and Tj =300K. 

It can be seen that the time-averaged mean diameter of the particles becomes 

larger and the region filled with particles become wider along the streamwise 

direction. The results obtained from the LES-DWOSMC method are consistent with 

the results obtained from DNS-SM (Miller and Garrick, 2004). It can also be seen 

that both results show that in the interface region of the two parallel streams, the 
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particle diameter tends to be larger than in the jet centerline. It is because in the 

interface region, particles are affected by the vortex structure and acquire longer 

residence time to coagulate and form larger particles (Miller and Garrick, 2004; 

Pesmazoglou and Kempf, 2017). It can be concluded that this LES-DWOSMC 

method proves to be able to simulate aerosol coagulations in turbulent flows. 

One advantage of MC method over deterministic methods is that the 

properties (e.g. diameter, volume, location, velocity, etc.) of each simulated particle 

can be obtained. In the present study, the transient states and dispersion 

characteristics of the particle field presented by the discrete simulated particles are 

shown in Figure 7.7.  

 

  
(a) (b) 

  
(c) (d) 

Figure 7.7  Transient particle field distribution coloured by the diameter of 

particles at times of (a) t* = 3.8, (b) t* = 9.5, (c) t* = 15.2 and (d) t* = 28.5 at    

ReD = 4000 and Tj =300 K.  

It can be observed that the transient dispersion pattern of the particles is 

affected by the vortex structure of the fluid flows and the transient distribution of 

the particles is quite similar to the contours of vorticity shown in Figure 7.4. It can 
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also be seen that the diameters of particles increase along the stream-wise direction 

because coagulation process makes the diameter of particles larger. 

In the present study, the size of the aerosol particles is ~ 𝒪 (10−9 m), which 

is much smaller than the size of turbulent eddy (whose the smallest length scale is 

10−6 m). The particle Stokes number is also much smaller than 1. So the transport 

behavior of the particles is perfectly affected by the turbulence vortices, which can 

be seen from Figs. 7.4 and 7.7, and the particles will perfectly follow the streamlines 

in turbulent flows. 

In this developed LES-DWOSMC method, each simulated particle may have 

different weights. From Equations (7-4) and (7-5), it can be seen that the weights of 

the simulated particles become smaller after the coagulation events. The transient 

dispersion pattern of the particles colored by their weights at time of t* = 28.5 is 

shown in Figure 7.8. The particles are injected with weights of 𝒪 (107), with the 

development of the jet flow, coagulation occurs, the weights of simulated particles 

become smaller along the streamwise direction, x. In the outlet of the jet, the weights 

of simulated particles are 𝒪 (104). Since the number of the simulated particles is 

assumed to be constant in the newly proposed LES-DWOSMC method, the 

reduction of weights implies the reduction of the number of real physical particles 

in the turbulent aerosol systems. 
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Figure 7.8   A typical transient particle field distribution coloured by the weights 

of simulated particles at time of t* = 28.5 at ReD = 4000 and Tj = 300 K. 

7.4.2.2 The effect of temperature on turbulent coagulation 

In the processes of soot formation and nanoparticle synthesis, aerosol 

particles are usually exposed in an environment with very high temperature, which 

will affect the aerosol dynamics processes. In the cases studied in the present study, 

particles are injected with three different jet temperatures, Tj of 300K, 1300K and 

2300K, respectively. Other initial conditions of the particles are set up to be the same 

as those mentioned in Section 7.4.2.1. 

 

 

  

(a) Tj  = 300K, t* = 9.5 (b) Tj = 300K, t* = 28.5 

  

(c) Tj  = 1300K, t* = 9.5 (d) Tj = 1300K, t* = 28.5 



 

Chapter 7    LES-MC method for simulating aerosol dynamics in turbulent flows 

  158 

  

(e) Tj  = 2300K, t* = 9.5 (f) Tj  = 2300K, t* = 28.5 

Figure 7.9  Transient particle field distributions at ReD = 4000 for different Tj at 

times of t* = 9.5 and t* = 28.5. 

The transient particle dispersion patterns of the three cases (i.e., Tj = 300K, 

1300K and 2300K) are shown in Figure 7.9. It can be seen that with the increase of 

the jet temperature, the particle dispersion pattern does not change, but it is clearly 

noticed that particles tend to have a larger diameter at the end of the jet flow when 

the jet temperature is higher. It is because with higher temperature, particles become 

more active, which will result in more effective coagulation events, thus the particle 

diameter becomes larger. 

The evolution of the time-averaged mean particle diameters, dave and the 

normalized particle number concentration, Nc/Nc,0 (where Nc is the particle number 

concentration, and Nc,0 is the particle number concentration in the jet inlet) at the 

position of y = 0 of the studied cases with different jet temperatures are shown in 

Figure 7.10. It is clearly shown that for each case, the time-averaged mean particle 

diameter increases and the normalized particle number concentration decreases 

along the streamwise direction because the coagulation event occurs. With the 

increase of jet temperature, the mean particle diameter also shows an observable 

increase and the reduction of particle number concentration becomes faster because 

the higher temperature can cause more frequent collisions between particles and 

strengthen the coagulation effects. 
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(a) (b) 

Figure 7.10  The spatial evolutions of the time-averaged (a) mean particle 

diameter and (b) normalized particle number concentration profiles at y/D = 0 and 

ReD = 4000 for different Tj. 

The normalized particle size distributions (PSDs) of the studied cases for 

three different jet temperatures, Tj are shown in Figure 7.11, respectively. It is shown 

in Figure 7.11 that the peak value of the PSD curve moves towards the larger end of 

the particle size range and the curve of PSD becomes wider when the axial position, 

x/D moves along the streamwise direction. For different cases, when the temperature 

of the jet increases at the same position, the peak value of the PSD curve also moves 

towards the larger end of the particle size range. The curve of PSD also becomes 

wider which implies that the coagulation effect is enhanced with the increase of jet 

temperature. Therefore, it can be concluded that the PSD of aerosol particles or the 

coagulation effect of the particles can be properly controlled by introducing different 

ranges of temperature of the environment that the particles are exposed in.  
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(a) (b) 

  
(c) (d) 

Figure 7.11  PSD profiles at positions of (a) x/D = 2, (b) x/D = 6, (c) x/D = 10 

and (d) x/D = 11.5 at y/D = 0 and ReD = 4000 for different jet temperatures, Tj. 

7.4.2.3 The effect of jet Reynolds number on turbulent coagulation 

The effect of jet Reynolds number, ReD on aerosol coagulation process in the 

turbulent planar jet is then studied. Four corresponding ReD = 2000, 4000, 6000, and 

8000 are used for different jet temperature cases. The evolution of the time-averaged 

mean particle diameters, dave and the normalized particle number concentration, 

Nc/Nc,0 at the position of y/D = 0 for the studied cases are shown in Figures 7.12 to 

7.14.  



 

Chapter 7    LES-MC method for simulating aerosol dynamics in turbulent flows 

  161 

  
(a) (b) 

Figure 7.12  The spatial evolutions of the time-averaged (a) mean particle diameter, 

dave and (b) normalized particle number concentration, Nc/Nc,0 profiles at y/D = 0 and 

Tj=300K for different ReD. 

  
(a) (b) 

Figure 7.13  The spatial evolutions of the time-averaged (a) mean particle diameter, 

dave and (b) normalized particle number concentration, Nc/Nc,0 profiles at y/D = 0 and 

Tj=1300K for different ReD. 

  
(a) (b) 

Figure 7.14  The spatial evolutions of the time-averaged (a) mean particle diameter, 

dave and (b) normalized particle number concentration, Nc/Nc,0 profiles at y/D = 0 and 

Tj=2300K for different ReD. 
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In Figure 7.12, it can be observed that with the increase of ReD, the mean 

particle diameter, dave decreases and the particle number concentration increases, 

which implies that the coagulation process is reduced with the increase of ReD. It is 

because with the increase of the velocity of the fluid flow and particles, the residence 

time of the particles in the flow region decreases, which results in smaller time for 

the particles to coagulate to form larger particles. 

Compared Figure 7.12 with Figures 7.13 and 7.14, it can be seen that when 

Tj = 300K, the dave at the jet outlet region increases from 2.5 to 5.5 nm when ReD 

decreases from 8000 to 2000. When Tj = 2300K, the dave at the jet outlet region 

increases from 3 nm to 8.5 nm when ReD decreases from 8000 to 2000. The change 

rate of particle diameter with the increase of ReD increases with the increase of Tj, 

which shows both the effects of Tj and ReD on the aerosol coagulation process.  

The normalized particle size distributions (PSDs) of different ReD and Tj 

cases are shown in Figures 7.15 to 7.17. It can be seen that, at both positions of   

x/h = 2 and x/h = 10, the PSD becomes higher and narrower with the increase of ReD. 

When the ReD reaches 8000, although the velocity of the particles is fast and 

coagulation happens at very low probabilities, the PSD still evolves observable 

change from x/D = 2 to x/D = 10. It can be seen that when Tj = 1300K and ReD is 

8000, the PSD at x/D = 2 is a drastically decreasing curve at almost the same rate in 

the whole particle size range; while the PSD at x/D = 10 has an interval (from      

d = 2.5 to 4.5 nm) where the curve decreases very slowly as shown in Figure 7.16.  

It can also be observed that at the position of x/D = 10, when ReD = 6000, 

there are two peaks of the PSD. For example, when Tj =1300K, the two peaks are at 
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d = 1 nm and around 4 nm, respectively; while when ReD = 2000, 4000 and 8000, 

there is only one peak for the PSD. Furthermore, when ReD  6000 (i.e., ReD = 2000 

and 4000), the PSD at x/D = 10 firstly increases and then decreases, while when ReD 

 6000 (i.e., ReD = 8000), the PSD at x/D = 10 monotonically decreases. Therefore, 

the shape and magnitude (i.e., height, width, and the number of peaks) of the PSD 

can be fully controlled by adjusting the parameters of Tj and ReD for the studied 

cases where coagulation process occurs in the turbulent planar jet. 

  
(a) (b) 

Figure 7.15  PSD profiles at axial positions of (a) x/D = 2 and (b) x/D = 10 at     

y/D = 0 and Tj = 300K for different ReD. 

  
(a) (b) 

Figure 7.16  PSD profiles at axial positions of (a) x/D = 2 and (b) x/D = 10 at     

y/D = 0 and Tj = 1300K for different ReD. 
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(a) (b) 

Figure 7.17  PSD profiles at axial positions of (a) x/D = 2 and (b) x/D = 10 at     

y/D = 0 and Tj = 2300K for different ReD. 

7.4.3  Coagulation and surface growth in the turbulent planar jet  

7.4.3.1 The effect of jet temperature on turbulent coagulation and surface growth 

The effect of jet temperature, Tj on two simultaneous aerosol dynamic 

processes (i.e., coagulation and surface growth) is studied in the turbulent planar jet. 

The initial conditions and Tj studied are the same as previous cases mentioned in 

Section 7.4.2. The coagulation kernel in free molecule regime is also used, and the 

adopted surface growth rate is written as, 

I(v) = 𝜎v (7-6) 

where 𝜎 is 5×103/s. 

 

 

  
(a) Tj =300K, t* = 9.5 (b) Tj =300K, t* = 28.5 



 

Chapter 7    LES-MC method for simulating aerosol dynamics in turbulent flows 

  165 

  
(c) Tj =1300K, t* = 9.5 (d) Tj =1300K, t* = 28.5 

  
(e) Tj =2300K, t* = 9.5 (f) Tj =2300K, t* = 28.5 

Figure 7.18  Transient particle field distribution of simultaneous coagulation and 

surface growth cases with ReD = 4000 for different Tj and t*. 

The transient particle distributions of the three jet temperature cases      

(i.e., Tj = 300K, 1300K and 2300K) are shown in Figure 7.18. The dispersion pattern 

of the particles does not change while the diameter becomes larger remarkably than 

the cases shown in Figure 7.9 because the surface growth process is a particle 

growing process but does not change the particle number concentration distribution. 

Because the choice of the calculation time-step is small enough to ensure that the 

two-phase flows and particle dynamics are uncoupled, it can be seen that the particle 

dispersion pattern is mostly determined by the gas flow and the vortex structures in 

all cases. 

The evolution of the time-averaged mean particle diameters, dave and the 

normalized particle number concentration, Nc/Nc,0 at y/D = 0 for different Tj are 

shown in Figure 7.19. Compared Figure 7.19 with Figure 7.10, it can be seen that 

when coagulation and surface growth simultaneously occur, for the same Tj cases, 

the growth of mean particle diameter is much faster than those cases where only 

coagulation occurs. The reduction rate of particle number concentration does not 
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significantly change because the occurrence of surface growth events does not 

change the particle number. 

 

  
(a) (b) 

Figure 7.19  The spatial evolutions of (a) the mean particle diameter and (b) the 

normalized particle number concentration profiles of simultaneous coagulation 

and surface growth cases at y/D = 0 and ReD =4000 for different x/D and Tj. 

 

The normalized particle size distributions (PSDs) for different Tj are shown 

in Figure 7.20. Compare Figure 7.20 with Figure 7.11, the shape of the PSD curves  

and the evolution of PSD do not significantly change, while the PSD curve tends to 

be much wider and the peak value of the PSD curve moves towards the larger end 

of the particle size range at the same position of x/D of each case. This is because 

the surface growth events will result in larger size of particles and therefore influence 

the PSD. With the increase of Tj, the PSD at the same position of x/D becomes lower 

and wider, which is the same as the conclusion from the cases studied where only 

coagulation takes place. 
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(a) (b) 

  
(c) (d) 

Figure 7.20  PSD profiles of simultaneous coagulation and surface growth cases 

at positions of (a) x/D = 2, (b) x/D = 6, (c) x/D = 10 and (d) x/D = 11.5 at y/D = 0 

and ReD = 4000 for different Tj. 

7.4.3.2 The effect of jet Reynolds number on turbulent coagulation and surface 

growth 

The effect of jet Reynolds number, ReD on two simultaneous aerosol 

dynamic processes (i.e., coagulation and surface growth) is studied in the turbulent 

planar jet. The initial conditions, ReD and Tj studied are the same as previous cases 

mentioned in Section 7.4.2.  

Four corresponding ReD = 2000, 4000, 6000 and 8000 are used for different 

Tj cases. The evolution of the time-averaged mean particle diameters, dave and the 

normalized particle number concentration, Nc/Nc,0 at y/D = 0 of the studied cases are 

shown in Figures 7.21 to 7.23.  
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(a) (b) 

Figure 7.21  The spatial evolutions of the time-averaged (a) mean particle diameter 

and (b) normalized particle number concentration profiles at y/D = 0 and Tj = 300K 

for different ReD. 

  
(a) (b) 

Figure 7.22  The spatial evolutions of the time-averaged (a) mean particle diameter 

and (b) normalized particle number concentration profiles at y/D = 0 and Tj = 1300K 

for different ReD. 

  
(a) (b)  

Figure 7.23  The spatial evolutions of the time-averaged (a) mean particle diameter 

and (b) normalized particle number concentration profiles at y/D = 0 and Tj = 2300K 

for different ReD. 
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In Figures 7.21 to 7.23, it can be seen that for cases where both coagulation 

and surface growth simultaneously occur at the same jet temperature cases, the mean 

particle diameter decreases and the particle number concentration increases with the 

increase of ReD, which is similar to the cases studied where only coagulation occurs. 

Compared Figures 7.21 with 7.23, the effect of jet flow temperature on the evolution 

of dave and Nc/Nc,0 are also remarkable. The maximum particle diameter increases 

from around 9.5 to 14 nm when Tj increases from 300 K to 2300 K with ReD = 2000. 

The particle number concentration also decreases significantly with the increase of 

Tj for all cases studied. 

The normalized particle size distributions (PSDs) for different ReD and Tj 

cases are shown in Figures 7.24 to 7.26. 

  
(a) (b) 

Figure 7.24  PSD profiles at positions of (a) x/D = 2, and (b) x/D = 10 at y/D = 0 

and Tj = 300K for different ReD. 
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(a) (b) 

Figure 7.25  PSD profiles at positions of (a) x/D = 2, and (b) x/D = 10 at y/D = 0 

and Tj = 1300K for different ReD. 

  
(a) (b) 

Figure 7.26  PSD profiles at positions of (a) x/D = 2, and (b) x/D = 10 at y/D = 0 

and Tj = 2300K for different ReD. 

Similar to the cases studied when only coagulation is considered, the PSD at 

the same position, x/D becomes higher and narrower with the increase of ReD when 

both coagulation and surface growth are simultaneously considered. It can also be 

found that the shape of PSD does not change much and becomes lower and wider 

with the increase of Tj. The maximum particle diameter reaches larger than 25 nm 

and the PSD curve becomes relatively flat when Tj = 2300K with ReD = 2000. When 

Tj =300K with ReD = 8000, the maximum particle diameter is only 8 nm, and the 
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PSD curve decreases quite rapidly. Therefore, when coagulation and surface growth 

simultaneously occur, the PSD can also be fully controlled by adjusting Tj and ReD. 

From Figures 7.24(b), 7.25(b) and 7.26(b), with the increasing of ReD, the 

evolution of PSD at the position of x/D = 10 is basically the same with the cases 

studied when only coagulation is considered. When ReD = 6000, there are two peaks 

of the PSD observed. When ReD = 2000, 4000 and 8000, there is only one peak for 

the PSD observed. The reason is, with the increase of ReD, coagulation becomes 

weaker. When ReD = 2000 and 4000, the coagulation effect is relatively strong, so 

the peak value of PSD at x/D = 10 has larger diameter; but when ReD = 8000, the 

coagulation effect is relatively weak, so the peak value of PSD at x/D = 10 has a 

diameter of 1 nm; ReD = 6000 is a transition value, so there are two peaks at both d 

= 1 nm and a larger value. It can also be seen that the particle diameter of the second 

peak moves towards the larger end of the particle size range and the PSD curve 

becomes wider with the increase of Tj. When ReD = 8000, the PSD also 

monotonically decreases. Therefore, the newly proposed and developed LES-

DWOSMC method proves capable of predicting the PSD when coagulation and 

surface growth simultaneously occur in a turbulent planar jet. 

7.5  Summary 

A LES-DWOSMC method is newly proposed and developed to study aerosol 

systems in turbulent flows. The large eddy simulation (LES) method is used to 

compute the continuous gas flow fields and the differentially weighted operator 

splitting Monte Carlo (DWOSMC) method is used to simulate the simultaneous 

aerosol dynamic processes (i.e., coagulation and surface growth processes). In this 
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developed LES-DWOSMC method, both the transient particle dispersion pattern 

and the time-averaged properties of particles can be obtained. The evolution of time-

averaged mean particle diameter, normalized particle number concentration and the 

particle size distribution (PSD) are observed for the studied cases. The effects of jet 

temperature, Tj and Reynolds number, ReD on the evolution of particle size 

distribution (PSD) are fully investigated.  

The results show that the particle dispersion pattern is significantly affected 

by the vortex structure. It is also concluded that both coagulation and surface growth 

processes will result in larger particle diameter and wider PSD. The high temperature 

will greatly enhance the coagulation rate and change the PSD in all of the studied 

cases. The increase of ReD decreases the residence time of particles and results in 

lower occurrence of simultaneous coagulation and surface growth processes, which 

will further affect the PSD of the particles. The ReD does not only affect the height 

and width of the PSD, but also affect the number of peaks of the PSD. The ReD and 

Tj prove to be two important parameters that can be used to control the evolution of 

PSD in aerosol reactors. The developed LES-DWOSMC method proves to be a 

computationally efficient method to deal with aerosol dynamics in turbulent flows 

that can be very useful in many natural and engineering applications and problems.
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Chapter 8   Conclusions and Recommendations for Future Work 

8.1  Review of the Present Research Study 

The present study mainly focused on the numerical simulation of aerosol 

dynamics as well as the interaction between particles and turbulent flows with the 

newly proposed and developed computational fluid dynamics (CFD) based Monte 

Carlo method. The research work in this thesis can be divided into four major parts. 

In the first part of the present research, a newly proposed and developed 

differentially weighted operator splitting Monte Carlo (DWOSMC) method is used 

for the simulation of one-component aerosol dynamics. Differentially weighted 

Monte Carlo method is coupled with deterministic integration method to formulate 

the DWOSMC method for the numerical simulation of aerosol systems undergoing 

the complex simultaneous aerosol dynamic processes. The studied cases cover all 

the typical aerosol dynamic processes including coagulation, nucleation, and 

condensation. This developed DWOSMC method is verified by both analytical 

solutions and a sectional method by comparing its numerical simulation results for 

different studied cases (i.e., simultaneous coagulation and condensation cases, 

simultaneous coagulation and nucleation cases, and simultaneous coagulation, 

nucleation and condensation cases). The results obtained from DWOSMC method 

show excellent agreement with both the analytical solution and the sectional method 

with high computational accuracy and efficiency. 

The second part of the present research is the further extension of the 

developed DWOSMC method to simulate multi-component aerosol systems.   
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Two-component aerosol systems considering coagulation and condensation 

processes in different regimes are studied, and the particle number distribution, 

component-related particle volume density distributions and bivariate compositional 

distribution are obtained. This further developed DWOSMC method proves to be 

more computationally efficient than the sectional method for simulating two-

component aerosol systems. 

The third part of the present research is the further development of a CFD-

Monte Carlo method for simulating turbulent gas-particle flow. The verified 

Lagrangian MC method in Chapters 4 and 5 is further coupled with CFD method for 

studying the behaviors of dispersed particles in continuous gas flows. The 

formulated CFD-Monte Carlo method allows investigating the interaction between 

particles and the carrier fluid. The effects of particle Stokes number, two-way 

coupling, turbulent dispersion model, and Reynolds number based on the obstacle 

on the particle dispersion pattern are fully studied in a spatially inhomogeneous 

particle-laden turbulent flow. 

The fourth part of the present research is the application of the newly 

developed CFD-Lagrangian MC method for the aerosol dynamics in turbulent flows. 

Firstly, it is verified by a direct numerical simulation-sectional method (DNS-SM) 

method (Miller and Garrick, 2004) for coagulation occurring in a turbulent planar 

jet. Then the effects of jet temperature and Reynolds number on aerosol dynamics 

(i.e., coagulation and surface growth processes) and the evolution of the particle size 

distribution (PSD) are fully studied.   
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8.2   Main Conclusions of the Thesis 

8.2.1  Conclusions of the Monte Carlo simulation of one-component aerosol 

dynamics 

The simulation results of this newly proposed and developed differentially 

weighted operator splitting Monte Carlo (DWOSMC) method are fully verified with 

corresponding analytical solutions (Ramabhadran et al., 1976; Maisels et al., 2004) 

and the sectional method (Prakash et al., 2003) for various simultaneous  aerosol 

dynamic processes (i.e., coagulation, condensation and nucleation) in different 

regimes.  

The time evolution of the particle number concentration, the total particle 

volume concentration, the average particle diameter and the second moment of 

particles are observed, excellent agreements are obtained from this DWOSMC 

method with corresponding analytical solutions and the sectional method. It is 

concluded that for the same studied case, the maximum relative error decreases when 

the number of simulated particles increases. For different studied cases, the more 

complicated the case is, the higher the maximum relative error is. In the present 

study, when the number of simulated particles reaches 2000, the maximum relative 

error for the most complex case is within 2%. This developed DWOSMC method 

has been proven to have a high potential for solving complex one-component aerosol 

dynamic problems.  
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8.2.2  Conclusions of the Monte Carlo simulation of two-component aerosol 

dynamics 

The newly developed DWOSMC method is further extended to simulate 

two-component aerosol systems and the results are verified by a sectional method 

(Prakash et al., 2003). Different initial size distribution functions and initial 

compositional distributions of aerosol particles are studied under various regimes of 

simultaneous aerosol coagulation and condensation processes. For all of these cases 

studied, dimensionless particle number density, total particle volume, particle 

number distribution and component related particle volume density distributions are 

obtained. The results obtained from the DWOSMC method agree well with those 

derived from the SM. 

 It is concluded that when DWOSMC method is applied to simulate the one-

component aerosol system, it is much more computationally accurate and efficient 

than the traditional non-weighted MC method, which proves the advantage of the 

developed DWOSMC method than traditional MC methods. Furthermore, the SM is 

more computationally efficient than the DWOSMC method when it is applied to 

simulate one-component aerosol systems while the DWOSMC tends to be more 

computationally efficient when it is applied to simulate two-component aerosol 

systems because the DWOSMC method takes shorter time in the numerical 

calculation. 

With such high levels of computational efficiency and accuracy based on the 

specific data and evidence obtained, the newly developed multi-component 

DWOSMC method can predict not only particle size distributions, but can also 
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determine component-related particle volume density and bivariate compositional 

distributions. 

8.2.3  Conclusions of simulation of a spatially inhomogeneous particle-laden 

turbulent flow  

Particles released from the line source slot into the near-wake flow behind  

a square rod obstacle are simulated by the coupled CFD-Lagrangian Monte Carlo 

(MC) method. The transient particle distribution and the preferential particle 

concentration distribution are obtained, and the effect of particle Stokes number, 

two-way coupling, turbulent dispersion model, and Reynolds number based on the 

obstacle on the particle dispersion pattern are fully studied with the particle volume 

fraction, 𝒪 (×10−4). 

The CFD-Lagrangian MC method is first validated by the experimental 

results of Vincont et al. (2000), and it is found that two-way coupling method is 

essentially required rather than one-way coupling method because the influence of 

dispersed particles on the flow field is significant which cannot be neglected.  

The results also reveal a significant impact of particle Stokes number, St on 

the transient particle distribution as well as the preferential particle concentration 

distribution. When St is lower than 1, the effects of turbulent dispersion model and 

two-way coupling are both important. When increasing St, the effect of two-way 

coupling and turbulent dispersion model are less significant and even negligible 

when St reaches 100. Furthermore, with the increase of Reynolds number (Reh based 

on the square rod obstacle, h) from 1500 to 13600, the peak value of the particle 

number concentration firstly increases and then decreases slightly. 
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8.2.4  Conclusions of LES-DWOSMC method for simulating aerosol dynamics 

in turbulent flows  

The newly developed differentially weighted operator splitting Monte Carlo 

(DWOSMC) method is further coupled with large eddy simulation (LES) to simulate 

the evolution of particle size distribution (PSD) accounting for aerosol coagulation 

and surface growth processes in turbulent flows. 

The newly proposed and developed LES-DWOSMC method is first verified 

by a DNS-SM method for coagulation occurring in a turbulent planar jet (Miller and 

Garrick, 2004). The flow velocity field and the time-averaged particle diameter 

distributions obtained from the coupled LES-DWOSMC show good agreement with 

those obtained from DNS-SM. Then the effects of jet temperature, Tj and jet 

Reynolds number, ReD on aerosol dynamics are fully investigated for coagulation 

and surface growth occurring in the turbulent planar jet. The coherent vortex 

structures of fluid gas have significant impact on the aerosol particle dispersion 

patterns. 

It is found that high temperature will greatly enhance the coagulation effect 

and change the PSD in all of the studied cases. The increase of ReD from 2000 to 

8000 decreases the residence time of particles and result in lower occurrence of 

coagulation and surface growth processes, which will further affect the PSD of the 

particles. With the increase of Tj from 300 to 2300 K, the shape of PSD curve 

becomes lower and wider while with the increase of ReD, the shape of PSD curve 

becomes higher and narrower. Furthermore, ReD does not only affect the height and 

width of the PSD curve, but also affects the number of peaks of the PSD.  
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The effects of Tj and ReD on single aerosol process (i.e., coagulation) and 

simultaneous coagulation and surface growth processes are proved to be quite 

similar. And the newly developed LES-DWOSMC method proves to be          

a computationally efficient method to deal with aerosol dynamics in turbulent flows 

which can be very useful in many natural and engineering applications and problems. 

8.3    Recommendations for Future Work 

The thesis presents the numerical simulation of typical and complex aerosol 

dynamic processes in both one-component and two-component aerosol systems. The 

interaction of turbulent flows and particles, and aerosol dynamics in turbulent gas-

particle flows are also studied by the developed computational fluid dynamics-

Monte Carlo (CFD-MC) method. Based on the differentially weighted Monte Carlo 

(DWMC) method and the operator splitting (OS) technique, the aim of the thesis is 

achieved for developing a robust and highly efficient CFD-Monte Carlo method for 

solving complex simultaneous aerosol dynamics in turbulent flows.  

However, further research work is still recommended to overcome the 

limitations of these developed numerical methods and optimizations are also needed 

to make the methods more robust and powerful. 

8.3.1  Limitations of the present research study 

The limitations of this newly proposed and developed DWOSMC and CFD-

Monte Caro methods are as follows: 
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1. In the present study, the developed CFD-Monte Carlo method is used to 

investigate particle-fluid systems in typical two-dimensional systems for 

numerical verifications and validations purpose. However, in practical 

applications, three-dimensional aerosol reactors are also widely encountered. 

Therefore, the application of the developed CFD-MC method can be 

extended to aerosols related particle-fluid systems in three-dimensional 

simulation if such experimental conditions and datasets are available in the 

literature for numerical validation purpose. 

2. In many aerosols related applications, such as combustion nanoparticle 

synthesis and soot formation, the aerosol systems can be encountered with 

complex chemical reactions. Thus, a comprehensive modeling of detailed 

chemistry should also be included in the study of turbulent reactive flows. 

While in the present study, the combustion mechanism and chemical 

reactions are not considered yet. 

3. Due to the fact that very few analytical solutions and experimental data are 

available for complex aerosol dynamics in literature, especially for aerosol 

dynamic processes in turbulent flows, the validation of the developed 

DWOSMC and CFD-MC methods is only limited to comparing with 

analytical solutions in simple simultaneous aerosol processes cases and 

comparing with other numerical methods in relatively complex simultaneous 

aerosol processes cases or aerosol systems in turbulent flows. 
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8.3.2  Recommendations for future work 

Considering the above-mentioned limitations on the present study, 

recommendations are made as follows: 

1. Three-dimensional simulation. The codes of the developed CFD-MC method 

can be further extended to three-dimensional simulations of complex aerosol 

dynamics in aerosol reactors or other particle-fluid systems with arbitrary 

configurations for numerical validation.   

2. Application in turbulent reactive flows. In order to further evaluate the 

capability of the developed CFD-MC method in simulating complex aerosol 

systems, a comprehensive modeling of detailed chemistry can be included in 

the study of turbulent reactive flows. A more specific application in soot 

formation or nanoparticle synthesis cases can be investigated.        

3. Experimental validation. Experimental validation is needed if the developed 

CFD-MC method is to be used in real scientific and engineering applications. 

Therefore, experiments designed individually will be conducted to acquire 

first-hand reliable experimental datasets and conditions to further validate 

this CFD-MC numerical method which is highly desired.
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