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Abstract 

Obstructive sleep apnea (OSA) is a common disorder characterized by partial or 

complete narrowing of the pharyngeal airway during sleep. The pathogenesis of this 

disorder is not, however, fully understood yet, and a better understanding of OSA 

pathophysiology is required in order to guide treatment planning.!Widening upper 

airway is a common surgery to treat severe OSA, but the success rate is quite low.!To 

understand the pathogenesis of OSA from fluid mechanics point of view, we carried 

out both numerical and experimental investigations in this study.  

 

First of all, as Computational Fluid Dynamics (CFD) is a potential non-invasive tool 

for investigating the pathophysiology of OSA, we carried out CFD for numerical 

simulation for both normal and OSA subjects.  To build the idealized model for CFD 

simulation, the medical imaging technique is used to generate the upper airway model. 

 

Secondly, because the flow in the upper airway region is expected to be turbulent, 

different turbulence models including Unsteady Average Navier-Stokes (URANS), 

two-equation turbulent models (unsteady k-ε, standard k-ω, and k-ω Shear Stress 

Transport) and Large Eddy Simulation (LES) model were compared in CFD 

numerical simulation. It is concluded that the LES model should be the most 

appropriate model for this CFD simulation of OSA. 
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To validate the suitability of CFD modeling methods, we carried out Laser Doppler 

measurement in 3D-printing OSA upper airway models, and found excellent 

agreement between the measured and calculated velocity profiles in two upper airway 

models for the first time. Then four pairs of OSA upper airway subjects with 8 

different apnea-hypopnea index(AHI) values are investigated with LES model. It is 

found that a dominant recirculation downstream of the minimum cross-section should 

be a main feature of a successful surgery, and the strength of 3-5 Hz signal induced 

by flow separation in the upper airway plays an important role in appraising breathing 

quality. This provides a new guideline for surgery planning. 

 

Finally, the stochastic resonance(SR) phenomenon was investigated in both normal 

and OSA subjects. We found that the SR phenomenon is existed in both subjects. The 

strong correlation between the signal-to-noise ratio (SNR) and AHI indicates that SR 

may play an important role in the respiratory system as periodic oscillating signals are 

enhanced significantly by noise. It seems that the quality of the oscillating signal can 

serve as a quantitative measure to quantify the breathing quality of OSA subject. 

 

Keywords: OSA, Upper airway, CFD, LES, SR phenomenon. 
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Chapter 1 Introduction!

1.1! Significance+

The upper respiratory tract, or upper airway (UA) is a complex and highly variegated 

ensemble of soft tissues, muscles and bony structures which, by modulating its 

patency, plays a crucial role in respiration, speech and alimentary functions. The UA 

proceeds from the mouth, nose, sinuses and throat, down to and merging with the 

lower respiratory tract, which latter consists of the trachea together with the bronchial 

tubes that terminate at the innermost structures of the lungs (Ballentine et al., 1998). 

The main region of the UA in which an obstruction may occur is the pharynx, this 

usually divided anatomically into three parts, as shown in Fig. 1.1: the nasopharynx 

(NP, from the end of the nasal septum to the free margin of the soft palate or uvula), 

the oropharynx (OP, from the margin of the soft palate to the tip of the epiglottis), and 

the hypopharynx, also called the laryngopharynx (LP, from the tip of the epiglottis to 

the vocal cords) (Xu et al., 2006). 

 

Obstructive sleep apnea (OSA), or obstructive sleep apnea syndrome (OSAS), is the 

most common type of sleep disorder. It is characterized by abnormal, repetitive pauses 

in breathing, or instances of abnormally low breathing, during sleep (Gleadhill, et al., 

1991; De Backer, 2006). There is partial or complete narrowing of the UA, leading to 

a reduction in blood oxygen saturation which culminates in sleep disruption. OSA 

affects about 20% of the adult population and 2% of children. The disorder is 
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increasingly recognized as an independent risk factor for a range of conditions 

including diabetes, hypertension and stroke (McCabe & Hardinge, 2011).  

!

Fig. 1.1 Major structure of upper airway. 

 

The short-term consequences of sleep apnea include sleep fragmentation, loud snoring, 

daytime sleepiness, and fatigue-related accidents. Without prompt treatment in these 

early stages, adverse effects on neurocognitive and cardiovascular functions may in 

the long-term develop, exerting negative impacts on multiple organs and systems 

(Lipton & Gozal, 2003). Among the possible anatomical factors, upper airway 

narrowing has been reported in both child and adult subjects with OSA, a structural 

change which may predispose an airway to collapse (Miyazaki, et al., 1989).  
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A better understanding of the unsteady flow field inside the airway will facilitate the 

characterization of airflow and pressure forces associated with airway narrowing in 

OSA patients. Due to the non-invasive characteristics of the UA, as well as its complex 

geometry, it is difficult and expensive to conduct experimental measurements on an 

OSA patient, whether in-vitro or in-vivo. Here we expect to use the computational 

fluid dynamics (CFD) technique, which has better non-invasive features. Investigating 

the UA within the context of OSA will contribute to the understanding of the 

mechanism of UA flow characteristics. 

 

1.2! Background+and+Literature+Review+

1.2.1$Sleep$disorder$and$Obstructive$Sleep$Anpea$

Sleep occupies one third of human life, and is related to the cardiovascular system, 

along with the regulation of brain glucose metabolism. Sleep is not, however, a steady 

state of unconsciousness, but a periodic process. In order to classify sleep, 

Rechtschaffen and Kales (1968) introduced discrete sleep stages based on waves and 

patterns measured by electroencephalography (EEG) and electrooculography (EOG), 

as well as mental or sub-mental muscle tone as measured by electromyography (EMG) 

(Table 1.1). The Second International Classification of Sleep Disorders (ICSD  ) 

lists many disorders, such as insomnias, hypersomnias, parasomnias, sleep-related 

breathing disorders (SRBD), sleep-related movement disorders, and circadian 
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disorders (Levy, et al., 2006), all of which, taken cumulatively, are emerging as a 

substantial public health issue.  

 

Obstructive sleep apnea is a common SRBD. As noted above, OSA induces a 

reduction in, or complete cessation of, airflow in the ongoing respiratory effort. 

 

Table 1. 1. The sleep stages and their characteristic features follow by Rechtschaffen and Kales, 

1968 

   Sleep Stages         Features 

Wake 
Beta, alpha >50% /epoch; rapid eye movements; muscle tone 

highest 

REM Theta, some alpha; rapid phasic eye movements; muscle tone lowest 

NREM1 
Theta, alpha<50% /epoch; slow eye movements; muscle tone 

reduced 

NREM2 Theta, spindles. K-complex; no eye movements; muscle tone low 

NREM3 Theta, delta >50%/epoch; no eye movements; muscle tone very low 

 

1.2.2$Symptoms$of$OSA$

The most direct symptoms of OSA are witnessed apneas. The apnea-hypopnea index 

(AHI) represents the number of apneas and hypopneas per hour, a number used to 
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define and characterize the severity of the sleep apnea syndrome. A patient with apnea 

experiences a cessation of airflow of at least 10s in duration, and an AHI of >5-10 

events per hour. With a rise in AHI come two main consequences. The first is that 

patients undergo an increased number of sleep arousals, disruptions in sleep 

architecture which result in non-restorative sleep and are experienced as daytime 

somnolence. The second consequence is impaired cardiovascular function. Repetitive 

hypoxemia can cause tissue damage, and may play a role in the development of 

cardiovascular disease (Yim S., 2006).  

Table 1.2. Severity indices of OSA 

     AHI, events/h         O2 saturation, % 

Normal <5 >95 

Mild 5-19 >85 

Moderate 20-39 >65 

Severe >40 <65 

 

Snoring is one of the most common symptoms of OSA, occurring in 70-95% of 

patients (Whyte et al., 1989). Although severity of snoring is not an indicator of sleep 

apnea, only 3-6% of non-habitual snorers have OSA (Young et al., 1993).  
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Like snoring, daytime sleepiness is relative common: approximately 20-30% of the 

general population suffers from it (Duran et al., 2001). Of those who suffer from it 

enough to visit a sleep clinic, 80-90% are subsequently diagnosed with sleep disorder 

(App et al., 1990). 

 

Symptoms for children may differ from those observed in or reported by adults. For 

instance, children so affected may sleep longer than usual, an occurrence more 

frequent among obese children, or those with severe apnea. There may be more effort 

in breathing, the chest displaying an inward motion during sleep. Growth failure (apart 

from weight gain) may result, and the child may exhibit behavioral problems for 

which there is no obvious cause. 

1.2.3$Pathogenesis$of$OSA$

It is widely known that UA collapse is governed by a complex interplay of mechanical 

and neuromuscular factors, including abnormal anatomy of the upper airway, 

pathological and insufficient reflex activation of the upper airway dilator muscles, and 

increased collapsibility of the passive upper airway. However, the pathogenesis of 

OSA is not yet clearly understood. It was originally believed that upper airway 

patency is determined by the balance of pressures between the intraluminal and 

extraluminal space (Remmers, et al., 1978). When intraluminal suction pressure 

(negative pressure) overcomes the dilating force, the pharynx will (or so it was thought) 

collapse during sleep. But later studies have found that the upper airway can occlude 

spontaneously, even when intraluminal pressure is positive (Schneider, et al., 2002), 
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a finding that minimizes the role of intraluminal suction pressures in the pathogenesis 

of upper airway obstruction. What these studies demonstrate is that the negative 

intraluminal pressures generated during upper airway obstruction are the consequence, 

rather than the cause, of upper airway occlusion (Kirkness, et al., 2006). 

 

Starling Resistor Model for Upper Airway Obstruction 

As seen in Fig. 2, the upper airway can be represented as a mechanical analogue of 

the Starling resistor model, consisting of a rigid tube with a collapsible segment. 

Upper (upstream, nasal) and lower (downstream, hypopharyngeal) segments have 

fixed diameters and defined resistances. Pressures in these segments are represented 

by Pus and Pds, respectively. The collapsible segment has no resistance, but is subject 

to the surrounding pressure Pcrit. Airway flow limitation is induced when downstream 

pressure falls below Pcrit during inspiration (Pride, et al., 1967). For airway flow 

limitation, the airflow will rise to a maximal level (VImax) despite further increase in 

inspiratory effort (Schwartz, et al., 1989). 

!!!!!!!!!!!!!!!!! uscritusax RPPV /)(Im −= !!!!!!!!!!!!!!!!!!!!!!!!!!!!!(1.1)!

Under flow limitation, the level of maximal inspiratory airflow is determined by the 

upper airway and critical pressures together with upstream nasal resistance, as 

described in the equation (1.1). As VImax falls, obstructive hypopneas, snoring, and 

URAS will result. However, according to the Starling resistors prediction, decreasing 

downstream pressure will not cause the flow-limited airway to occlude (Schwartz, et 

al., 1988; Whyte K.F., 1989).  
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Complete airway occlusion occurs only when Pcrit exceeds both the upstream and 

downstream pressure (lower panel), as demonstrated experimentally in normal 

sleeping individuals by Schwartz, et al. (1988). The Starling resistor model was able 

to predict the effects of pressure on airflow dynamics, as well as the severity of UA 

obstruction during sleep. 

!

Fig.1.2. The relationship between pressure and flow in the upper airway segment. 

In further study, the critical pressures were measured based on manipulation the 

upstream nasal pressure for groups of individuals with different degrees of UA 

obstruction during sleep by Schwartz et al. (1988) as shown in Fig. 1.3. They found 
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that critical pressures were markedly negative in normal individuals, indicating that 

both upstream and downstream pressures were larger than critical pressures and that 

breathing was completely unobstructed. While critical pressures were positive in 

obstructive hypopnea or apnea patients with complete upper airway collapse and 

finally occlude. For apneic patients with complete UA occlusion, the critical pressures 

were positive. For patients with partial UA obstruction with (snoring or UA resistance 

syndrome and obstructive hypopnea) critical pressures were between these two ranges 

during sleep. 

 

!

Fig.1.3.!Upper airway critical extra-luminal pressures and clinical express.!

!
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Abnormal Anatomy of the UA 

Abnormal anatomy of the UA includes tonsillar hypertrophy, retrognathia, and 

variations in craniofacial structure, all of which contribute to increased risk of OSA. 

(Miyazaki, et al., 1989) Computed tomography (CT) and magnetic resonance imaging 

studies both provide evidence that fatty tissue deposits in the lateral pharyngeal walls 

result in narrowing and collapse of the UA during sleep. Suratt et al. (1983) have used 

lateral fluoroscopy and CT scans to study the anatomical structure of the UA in both 

normal and OSA subjects. Their studies found that obstructions always begin during 

inspiration, when the tongue comes into contact with the soft palate and posterior 

pharyngeal wall during sleep, and that the narrowest section of airway in OSA patients 

and in normal subjects was the region posterior to the soft palate. The cross-sectional 

area near the retro-palate was quite narrower in OSA patients during inspiration 

compared to normal subjects. The researchers concluded that abnormally narrow 

airway is an important factor in the pathogenesis of OSA. 

 

Insufficient Reflex Activation of UA Dilator Muscles 

The imaging studies show that UA dilator muscle activation in OSA patients is quite 

adequate, and even intensified, during wakefulness (Fogel, et al., 2000). This 

activation is mainly induced by the negative intra-luminal pressures due to the narrow 

airway in OSA patients. However, dilator muscle activation in OSA patients decreases 

significantly during sleep, especially during NREM sleep, at which time it is 

suspended completely (De Backer, 1993). Due to the loss of this reflex activation of 
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UA dilator muscles during sleep, the UA of OSA patients may be narrower during 

inspiration than in normal subjects. 

 

Increased UA Collapsibility 

Because the increased level of UA collapsibility would lead to greater degree of 

airflow obstruction, increased airway collapsibility contributes significantly to UA 

collapse in with OSA patients. UA collapsibility is defined by the critical pressure 

(Pcrit) determined by the relationship between maximal inspiratory airflow and nasal 

pressure (Gleadhill, et al., 1991). It has been shown that, during inspiration, the Pcrit 

is determined by the anatomy of the UA, especially the cross-sectional area of the UA. 

1.2.4$Diagnosis$and$Treatments$

Diagnosis 

Polysomnography (PSG) is the standard method for diagnosing OSA during sleep, at 

which time decreased blood oxygen and increased blood carbon dioxide emerge with 

repetitive apneas. Cessation of breathing is not, however, accompanied by an absence 

of inhalatory chest movement; rather, the chest movements become more notable. 

PSG allows many characteristics to be monitored, including brain waves, eye 

movements, heart rate and rhythm, blood pressure, blood oxygen levels, breathing 

patterns, body position, limb movement, snoring and other noises. Small sensors 

(electrodes) monitor brain waves, while elastic belts around the chest and stomach 

track breathing patterns. A small finger clip records blood oxygen levels. All of the 
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data is entered into a computer. AHI and oxygen saturation are indices used to 

diagnose the severity of OSA (Table 1.2). 

 

Treatments 

There are various treatment options for OSA, which mostly depend on the sites of 

obstruction or collapse, symptom severity, and the extent of clinical complications. 

The selection of these treatments should balance the consider multiple factors and the 

effectiveness of the treatment. 

 

Behavioral and Medical Treatments: The airway of a sleeper who has adopted a supine 

position may collapse due to gravitationally induced relaxation of the pharyngeal 

tissues. To counter the effects of gravity, sleep at a 30 degree, or a lateral position 

(sleeping on a side), are recommended treatments for sleep apnea (Szollosi, et al., 

2006). Either position can easily be used in combination with other treatments, and 

may be particularly effective in morbidly obese patients. Overweight patients with 

OSA may find that weight loss leads to reductions in snoring and hypopnea/apnea. 

Habits such as smoking, alcohol and drugs are best quit. There remains, however, little 

evidence of supporting the medical treatment of OSA. 

 

Continuous positive airway pressure (CPAP) is considered the best treatment for OSA 

on account of its safety and effectiveness for people of all ages, including children. 

The treatment is conducted by use of a mask to supply a continuous stream of 

compressed air into the airway, increasing nasal pressure (upstream pressure) to 
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prevent UA collapse. It is suitable for patients with mild to severe OSA. However, 

compliance with CPAP is a problem for some patients. A newer form of treatment - 

automatic positive airway pressure (APAP), or Auto CPAP - has been approved by 

the U.S. Food and Drug Administration (FDA). APAP treatment integrates pressure 

sensors with a computer that continuously monitors a patient's breathing performance, 

adjusting airway pressure as needed (Whitelaw, et al., 2005) 

 

A more expensive treatment is variable positive airway pressure (VPAP), which uses 

an electronic circuit to monitor breathing performance, providing higher pressure 

during inhalation and lower pressure during exhalation. This method is used to treat 

patients who have additional, coexisting respiratory problems, and/or who find the 

increased pressure of CPAP to be uncomfortable or disruptive to their sleep. However, 

some OSA patients feel that VPAP, too, is uncomfortable. 

 

Although CPAP is a very effective treatment for OSA, acceptance and adherence have 

been a challenge. Dental devices may then present an alternative treatment option for 

patients who cannot tolerate CPAP. The American Academy of Sleep Medicine 

(AASM) recommends dental devices for patients with mild to moderate OSA who are 

not compliant for CPAP or who have not been helped by it. The most widely used 

dental device for treatment of OSA is the mandibular advancement device (MAD), 

which moves the lower jaw forward and down slightly in order to maintain UA 

patency. The MAD can significantly reduce apneas, especially for those who sleep on 

their backs or stomachs, and can reduce the frequency of snoring in most patients. 
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However, this treatment is not as effective as CPAP, and the devices are expensive. 

Long term complications, such as nighttime pain, dry lips and tooth discomfort, may 

cause nearly half of patients to stop using dental devices. In some cases, the treatment 

may worsen the apnea. 

 

Surgery then becomes an option for patients, particularly those with severe OSA, who 

are not compliant with CPAP and for whom other treatments have also failed. Surgical 

treatment of OSA aims to improve the size or tone of a patient’s UA. For decades, 

tracheostomy was the only effective treatment for sleep apnea, but several more recent 

surgical techniques have been employed (Boudewyns & Van de Heyning, 2006), 

including: 

1) Nasal surgery: Turbinectomy, in which removes or reduces some or all of the 

nasal turbinate attached to mucous membranes in the nasal airway in order to decrease 

the nasal obstruction and increase the nasal pressure. However it may result in empty 

nose syndrome. 

2) Tonsillectomy or adenoidectomy: Uvulopalatopharyngoplasty (UPPP) 

attempts to increase the size of the airway, via removal or reduction of parts of the 

soft palate and some or all of the uvula (Fig. 1.4). While UPPP is the most commonly 

performed surgical procedure for OSA, it is not always the sole procedure; it may, in 

some cases, be coordinated with other treatment methods. One of the challenges for 

UPPP is how much tissue should be cut: too little excision may fail to obtain the 

surgical target, while excess tissue reduction may ‘tighten’ the airway and so worsen 

the disease. Another adenoidectomy is laser-assisted uvulopalatoplasty (LAUP), 
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which removes less tissue at the back of the throat than does UPPP, the specific goal 

being reduction of snoring. 

3) Reduction of the tongue base, by use of either laser excision or radiofrequency 

ablation. 

4) Reduction of the tongue base, by use of either laser excision or radiofrequency 

ablation. Hyoid suspension, which moves the hyoid bone in the neck forward to the 

front of the larynx. 

5) Maxillomandibular advancement (MMA) is the most effective sleep apnea 

surgical procedure currently available, with reduction of the AHI to less than 15 in 

over 90% of patients, and reduction of AHI to <5 in over 45% of patients(Li, et al., 

2000). 

 

Although the majority of medical practitioners suggest CPAP as being suitable for 

most patients, followed by dental splints and weight loss, with surgical intervention 

representing a treatment of last resort, it is evident that surgery may obtain the same 

treatment outcomes as CPAP. Nevertheless, the success rates of the various surgical 

treatments are still not entirely satisfactory, their efficacy being directly proportional 

to the accuracy of the initial diagnosis of site of obstruction. Therefore, accurate 

prediction of the obstruction site together with optimal tissue reduction, are urgent 

treatment goals. 
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Fig.1.4.  Appearance of throat pre- and post- UPPP surgery. Reprinted from 
http://en.wikipedia.org/ 

!

1.2.5$Computational$Fluid$Dynamics$Simulation$for$the$OSA$models$

In order to predict treatment outcomes with accuracy, it is essential to establish the 

flow characteristics of the UA in cases of OSA. Recently, due to its non-invasive 

nature, Computational Fluid Dynamics (CFD) software has been used to analyze fluid 

flow characteristics in human UA simulation models, especially in cases of OSA. The 

complexity of the UA demands accurate models in the investigation of OSA 

mechanisms. Initial studies used simplified geometry models. Malhotra et al. (2002) 

created simple, 2D male and female upper airways based on the data from 10 subjects, 

and demonstrated that the male airway is substantially more collapsible than the 

female airway. They suggested that an increased length of vulnerable airway, as well 
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as increased soft palate size, resulted in the male predisposition to pharyngeal collapse. 

Martonen et al. (2002) generated a 3D upper airway model based on a medical school 

teaching model. Their results suggest that airflow patterns are mainly dependent on 

flow rate values for a prescribed phase of breathing (i.e., inspiration or expiration). 

 

Thanks to the development of computer imaging techniques, more accurate UA 

simulation models have been used in CFD studies. Nithiarasu et al. (2008) carried out 

numerical simulation using the Reynolds-Averaged Navier-Stokes (RANS) method 

based on a CT-scanned upper airway model. Their numerical technique was validated 

against measurements of an idealized oropharynx from Heenan et al. (2003). Further 

studies by Jeong et al. (2007) analyzed numerically the flow in a CT-scanned upper 

airway using a low Reynolds number k–ɛ model. They found that the turbulent jet 

formed at the velopharynx due to area restriction was the most noteworthy feature in 

the pharyngeal airway of patients with OSA.  Cheng et al. (2013) also studied the flow 

in a realistic upper airway using an extended k–ε turbulence model. 

 

In real life situations, the airflow in a human UA is unsteady. Time-averaged 

turbulence models (Zhao & Lieber, 1994; Nithiarasu, et al., 2008; Jeong, et al., 2007; 

Cheng, et al., 2013) are unable to capture the characteristics in the anisotropic flow, 

such as adverse pressure gradients or turbulent velocity fluctuations, generated in 

these irregular upper airway models (Wilcox, 1998). Direct numerical simulation 

(DNS) is the best way to capture airway flow characteristics, because it solves the 

Navier-Stokes and continuity equation directly, and no reductions or assumptions are 
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required in the solving process. Theoretically, the data from DNS can be considered 

equivalent to the data obtained experimentally (Sodja, 2007). However, DNS is 

computationally expensive and infeasible for the flow of high Reynolds numbers. 

Hence, a compromise model between RANS and DNS is the Large Eddy Simulation 

(LES), which is far more economical than DNS in terms of computational power 

required, and can resolve the most energetic flow scales (entering into the inertial sub-

range) while modeling only the smallest dissipative scales (Pope, 2003). More and 

more CFD computations on upper airways with OSA are using LES, which is a proven 

tool for capturing relevant flow features, such as the separation flow downstream of 

the minimum cross-sectional area(Luo, et al., 2004; Mihaescu, et al., 2008; Mihaescu, 

et al., 2011; Liu, et al., 2012).  

 

To validate the stability of CFD modeling methods, experimental or clinical data 

should be collected for comparison. Owing to the development of rapid prototyping 

technology, the anatomical in vitro airway model of subjects with OSA can be 

fabricated according to numerical geometry models. Xu et al., (2006) studied the 

effects of airway geometry on internal pressure in the upper airway of children with 

OSA, by using a two-equation low-Reynolds number turbulence model with steady 

flow boundary conditions in inspiration and expiration. To validate their CFD 

methods, they conducted a physical test with an 85% scale airway model. Wall 

pressure at each pressure tap location was measured for comparison with the CFD 

model and clinical studies of nasal resistance in normal children. They found their in-

vitro measurements were consistent with the CFD method and the clinical 
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measurements. Mylavarapu et al. (2009) investigated an anatomically accurate human 

upper airway model which was constructed from MRI scans during expiration. They 

used unsteady LES, steady RANS with two-equation turbulence models (k-ε, standard 

k-ω, and k-ω Shear Stress Transport (SST)), and a one-equation Spalart-Allmaras 

model. To validate their CFD results, they fabricated a 2:1 scale mechanical airway 

model by SLA, with which they measured wall pressure and mean velocity of the inlet. 

They found a high correlation between the computations and the experimental results, 

which suggests that CFD can be used to accurately investigate the aerodynamic flow 

characteristics of the upper airway. Zhao et al. (2013) used CFD to study the upper 

airway response to treatment involving mandibular advancement splints (MAS). The 

physical airway of a patient was fabricated, and the CFD method was validated against 

the pressure profile of the physical model. The conclusions provide further support 

for CFD as a potential tool for prediction of the treatment outcomes of MAS in OSA 

patients without requiring patients’ specific flow rates. 

 

1.3+Stochastic+Resonance+

The addition of noise in a nonlinear system can amplify a weak input so as to increase 

the output signal-to-noise ratio (SNR), which would improve the ability to transmit 

signals reliably (Wiesenfeld and Moss 1995). The broadband noise can be either 

intrinsic to the signal itself, or applied extrinsically to improve performance. This 

signal enhanced phenomenon is called stochastic resonance (SR), and has been found 
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to exist in many physical and biological systems (Benzi et al. 1981, Bulsara and 

Gammaitoni 1996, Collins et al. 1995, Suki et al. 1998).  

 

Russell et al. (1999) found that stochastic resonance enhances the normal feeding 

behavior of paddlefish, which use passive electroreceptors to detect electrical signals 

from planktonic prey. Bahar and Moss 2003 studied the effects of stochastic resonance 

on the nonlinear dynamics of the crayfish mechanoreceptor system. They found that 

the crayfish can detect water motions of as little as 20 nm and quit sensitivity for the 

light. The SNR was found to be at maximum when the light intensity optimized. 

Stochastic resonance has also been found in human perception. Hagan et al. (1977) 

discovered that the vibratory stimuli applied to the chest wall of preterm infants can 

cause significant changes in breathing patterns. Bloch-Salisbury et al. (2009) used 

stochastic vibrotactile stimulation to evaluate the hypothesis that low-level noise 

somatosensory stimulation can stabilize breathing in preterm infants. Their findings 

suggest that nonlinear properties of the immature respiratory control system can be 

harnessed using afferent stimuli to stabilize eupneic breathing, thereby potentially 

reducing the incidence of apnea and hypoxia. 

1.4+Structure+and+Contribution+of+This+Thesis+

Chapter 1 describes the extent to which OSA in adults has been shown to be associated 

with structurally narrow upper airways by comparing OSA patients with normal adults 

though medical imaging techniques such as CT and MRI, which can quantify and 

visualize anatomical abnormalities associated with OSA. Uvulopalatopharyngoplasty 
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(UPPP) is currently the most common surgical procedure used for adults with OSA. 

However, the success rate of this procedure is limited due to an incomplete 

understanding of the pathogenesis of OSA. It is therefore necessary to further the 

understanding of OSA pathophysiology in order to achieve better treatment planning 

as well as better prediction of surgical outcomes. 

Chapter 2 introduces the research methods employed. The governing equation and 

various turbulence models, including unsteady LES as well as unsteady RANS with 

two-equation turbulence models (k-ε, standard k-ω, and k-ω Shear Stress Transport 

(SST)), are presented first. Apart from the numerical methods, the experimental 

methods, including the experimental methods used to validate the numerical results, 

together with the experimental methods employed in investigation of the SR 

phenomenon in OSA patients, are also presented. 

 

Chapter 3: CFD technology with variegated turbulence models (large eddy simulation 

(LES) and unsteady Average Navier-Stokes (URANS), including unsteady k-ε, 

unsteady standard k-ω, and unsteady k-ω Shear Stress Transport (SST) models) are 

applied to investigate airflow in the UA models of two pairs of OSA patients 

successfully treated with UPPP surgery. The computational fluid dynamics models 

were constructed from the computed tomography (CT) images of OSA patients. 

Results indicate that all turbulence models attempted are able to produce the same 

pressure drop across airway, and that a strong flow jet near the minimum cross section 

can be found in all models prior to surgery. LES is better able to capture the flow 

oscillation downstream of the minimum cross section near the retro-palate than is 
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URANS. URANS models cannot replace LES models for accurate prediction of 

surgical outcomes.    

 

Chapter 4: in order to validate the CFD results, two 1:1 scaled in vitro airway physical 

models are fabricated. Earlier studies experimentally validated CFD results by 

focusing mainly on UA wall pressure via the setting of pressure taps. Our work 

experimentally validates the inner velocity distributions with LES. The experimental 

models are fabricated by means of a rapid prototyping method - 3D printing 

technology - and internal velocity is measured by the Laser Doppler Anemometer 

system. There is strong evidence that axial velocity from LES well agrees with the 

experiment results, and that LES is the better method for investigating flow features 

in the UA as well as for predicting surgical outcomes for patients with OSA. 

 

Chapter 5 presents a study of four OSA patients, three of whom experienced 

successful UPPP surgery and one of whom did not (assessed by the apnea-hypopnea 

index (AHI)). The aim is to reveal flow variation between successful and unsuccessful 

OSA patients. Results indicate that there is still negative pressure in the minimum 

cross section of the unsuccessfully treated patient. This persistent negative pressure is 

considered the most important feature of upper airway collapse. Another factor may 

be a shift in location of the minimum cross section from the retro-palate to the 

oropharynx. It was also found that AHI and the area ratio of the minimum cross section 

plane near the retro-palate and the maximum cross section plane in the oropharynx are 
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related (r = -0.868, p = 0.005), whereas there is no relationship between AHI and the 

area of minimum cross section.  

 

Chapter 6 features the results of another experiment on stochastic resonance (SR) and 

signal-noise-ratio (SNR), conducted in order to study flow oscillation, which, by 

activating the dilator muscles through mechanoreceptor stimulation, may represent an 

additional key factor in UA occlusion. Six normal subjects and 15 OSA subjects were 

measured. It was found that the SR phenomenon is manifested not only in normal 

subjects but also in OSA subjects, and that SNR correlates with AHI. The correlation 

between SNR and AHI supports the hypothesis that flow oscillation is the afferent 

stimulus which activates the mechanoreceptors, this activation being a key factor in 

UA patency regulation.  

 

The final chapter offers a brief summary of the research undertaken, together with a 

discussion of some possible shortfalls, and their potential remediation in future 

research. 
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Chapter 2 Methodology 

The thesis employs computation fluid dynamics (CFD) in order to calculate airflow 

in the human UA, the results subsequently validated by experiment using fabricated 

physical models. Further, experimental technique on the SR phenomenon in normal 

and OSA subjects is discussed. 

 

2.1! CT+date+acquisition+

X-ray computed tomography (x-ray CT) is a common, non-invasive diagnostic 

method that can produce detailed 2D images of scanned objects. Radiologists using 

CT images can easily diagnose many diseases, such as cancer, cardiovascular disease, 

infectious disease, trauma and musculoskeletal disorders. There are also studies 

conducted using CT or MRI to diagnose medical images of the UA structures of OSA 

patients, yielding data as to anatomy and pathophysiology. Although neither CT nor 

MRI imagery alone can accurately predict surgical outcomes, some studies have 

demonstrated that a mandibular-hyoid distance of <20mm and the absence of 

retrognathia could be signs of improvement following UPPP surgery for patients with 

moderate OSA. 

 

The CT scan measures the pharynx through axial slices at several levels for accurate 

assessment of UA area, and volumetric evaluation of the pharynx can be provided by 
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3D reconstruction of axial CT images. Ultrafast CT allows for higher spatial and 

temporal resolution with the possibility of dynamic imaging (Fig. 2.1).  

 

!

Fig.2.1. A: Coronal reconstructed view. B: Sagittal reconstructed view C Axial view. 

CT scanning technology was developed on the basis of conventional x-ray 

examinations, by which a type of radiation penetrates the body. Since absorption 

coefficients vary with tissue type, conventional x-ray detectors can record an image 

of attenuation profiles on photographic film or a special image recording plate. For a 

CT scan, a number of x-ray fan beams together with a set of electronic x-ray detectors 

rotate around a patient. The width of the image slice accords with the selected 

thickness of the x-ray fan beams. Once the x-ray data has been digitized, CT 
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reconstruction algorithms calculate the attenuated values and transfer them to a matrix 

of pixels (the picture element) with variegated gray values reflected in 2-dimensional 

cross-sections. The Hounsfield unit (HU) or CT number is a standardized and accepted 

unit for reporting and displaying reconstructed x-ray CT values. 

                                  
airwater

waterXHU
µµ

µµ
−

−
×= 1000 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!     (2.1.1) 

�water, µair, and µX are the linear attenuation coefficients of water, air and a substance 

of interest. Since the liner attenuation coefficient of air is nearly zero, a change of 0.1% 

of the attenuation coefficient of water could represent a change of one Hounsfield unit 

(HU). Thus the calibration of CT scanners is made in reference to water. The substance 

densities in HU are shown in Table 2.1. 

Table 2.1. Substance densities in Hounsfield Units (Radiodensity). 

   Substance HU 

Air -1000 

Lung -700 

Soft Tissue -300 to -100 

Fat -50 

Water 0 

Blood +30 to + 45 

Muscle +40 

Calculus +100 to +400 

Bone +1000 (up to +3000 for dense bone) 
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The HU is the relative density of a substance (amount of X-ray radiation absorbed by 

each element in tissue). The gray value of each pixel in the CT image represents 

various densities of air and of tissue types - bone, fat, muscle, etc. For example, high 

density tissue such as bone and even blood appear white on the image; soft tissue 

shows up in shades of gray and low density air appears black. First, the scanned 

substance is reconstructed, with each image added in sequence until finally the whole 

three-dimensional UA has been built, resembling a loaf of bread cut into many slices. 

When the image slices are exported to processing software such as MIMICS, the UA 

can be reassembled as a very detailed 3D model. 

!

Fig.2.2. Different tissues in the CT scan image. 

 

Due to the noise and partial volume effect within the image, it is impossible to use a 

simple threshold to identify all airway pixels. (Reinhardt et al., 1997) First, the gray 

values (HU) would show interpolation when a pixel is located at the intersection of 
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different tissues (Choi et al., 1991; Soltanian-Zadeh et al., 1993; Tardif, 2001). For 

example, the HU of air is generally -1000, however, the pixels across the air and 

airway walls typically have values well above -1,000 HU. Secondly, due to the size 

of the pixel and the thinness of airway, it is difficult to identify the airway wall, which 

may moreover appear broken or discontinuous. Finally, the image reconstruction 

algorithm can itself contribute to the appearance of a discontinuous airway (Kalender, 

2000). All these discontinuities may result in both under-and over-segmentation errors 

during the extraction 

2.1.1$Segmentation$of$CT$image$

To segment CT images correctly, the segmentation algorithm is defined to collect 

correlative pixels with homogenous characteristics. All segmentation methods are 

based on one theory of the approximately same gray value for one apparatus. Then the 

shape of an apparatus can be separated from the specific gray value in the region it 

occupies. Many segmentation techniques have been developed in the literature (Sonka 

et al., 1996; Mori et al., 1996; Schlatholter et al., 2002), but there is no single method 

which can be considered adequate for all images, nor can all methods be perfectly 

applied in a particular type of image due to noise in real circumstances. Moreover, 

algorithms developed for one type of image may not always be applicable to other 

types of image. This is particularly true when the algorithm is developed for a specific 

image formation model. Fortunately, most segmentation methods developed for one 

type of image can in fact be easily applied extended to others. Usually, to segment the 
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CT correctly and accurately, two or more methods are combined to segment a 

successful apparatus. 

 

The two most commonly used segmentation methods - thresholding and region 

growing - are described in the following paragraphs. 

 

Thresholding is a simple and effective method for images (Cheng et al., 2002). The 

purpose of this method is to separate objects and background into non-overlapping 

sets. Firstly, the critical HU value can be selected along a user defined line through 

one tissue. Then the pixels can be classified by assigning the value: pixels above this 

critical value are set as one category, and the rest are set to another. Obviously this 

method is quite efficient when critical peak value can be found. However, when peak 

value is not distinct, such as for air and the bronchi wall, it is difficult to select the 

critical value, which will put some pixels into the wrong set. Therefore this method is 

usually employed as the first coarse filter. 

 

Region growing is a method used to identify apparatus regions occupied. This method 

is able to segment an apparatus based on the connectivity of gray value in a certain 

gray value range (Schlatholter et al., 2002; Roerdink & Meijster, 2001). It is especially 

suitable for segmentation of blood vessels and bronchi. For this method, the center of 

an area of interest should first be selected. Next to be selected are some nearby seeds 

from which to start growing the region selected. The method begins at each ‘starting’ 

pixel, and the neighboring pixels of seeds are examined and added to the region class 
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if no edges are detected. For two-dimensional images, the starting pixel scans the 

neighboring 4/8 pixels in a circular fashion (Fig. 2.3 and 2.4). For three-dimensions, 

6/26 pixels are scanned (Fig. 2.5 and 2.6). Comparing gray values, pixels with gray 

values that obey the following rules will be added to the seed group. 

!! dII <−* !!!!!!!!!!!!!!!!!!!!!!!(2.1.2)!

where I* is the average gray value, I is the new gray value, and d is the deviation. 

 

The method repeats with the newly detected pixels as the new center seed till the edge 

is found and, finally, the region is constructed. This method is quite suitable for UA 

segmentation, due to its advantages over other segmentation techniques. Firstly, for 

recognition of thin airway walls, the region growing method can perfectly determine 

region borders, since each time only one pixel is added to the exterior of the air region. 

Secondly, the method is very stable with respect to noise. Lastly, the region will never 

contain too much of the background, so long as the deviations are defined correctly. 

 

Although region growing is extremely fast and accurate, it is difficult to be certain of 

the deviation, especially for 3D region growing. If the deviation is too small, some 

pixels belonging to an air region cannot be selected. If the deviation is too large, the 

edge of the area is difficult to identify and is included in the area as seeds. The result 

of the misleading seeds is region leakage (“explosion”) to other tissues. Therefore, 

only the 2D region growing method is selected in our work. 
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Fig 2.3. Two dimension 4 connectivity. 

!

Fig.2.4. Two dimension 8 connectivity. 
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Fig.2.5. Three dimension 6 connectivity. 

 

Fig.2.6. Three dimension 26 connectivity. 
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It should be noted that our research investigation has been approved by the local ethics 

committee, and is performed in accordance with the Declaration of Helsinki. The 

subjects were provided with written informed consent forms. 

 

In total, four pairs of OSA patients were selected for investigation. All subjects were 

adult male, aged no more than 40. The treatment method was UPPP surgery. Thoracic 

computed tomography (CT) imaging using a single-slice helical CT scanner (Phillips, 

Brilliance 64) was performed in the affiliated Beijing Tongren Hospital, Capital 

Medical University. CT images were acquired when the patient was in supine position. 

The patients were awake during the entire scan process, and were instructed not to 

move their neck position. The table was first passed through the gantry quickly in 

order to find the correct starting table position for subsequent scans. The images were 

obtained in the axial plane with a resolution of 0.7×0.7 mm2, and slice thickness was 

2 mm. 

 

Airway extraction was performed using a combination of thresholding and region 

growing as discussed above. The image was first thresholded as an initial 

segmentation filter, that is, to clarify airway pixels from surrounding noise. After 

deleting noise in the images, region growing was then performed as outlined in the 

previous section (Fig. 2.7 and 2.8). For the region growing method, the first step is to 

select a serial of CT images which contain airways of interest for UA geometry 

extraction. When the first image is selected it is possible to zoom in on the area of 
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interest and scale it to provide a better view of the airways. The next step is to extract 

airway geometry from the loaded scan images. 

!

Fig.2.7 Unfiltered image. 
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Fig.2.8. Filtered image. 

In order to designate the seed in region growing, some prior experience should be 

gained about airway regions to decide which region is the area of interest. This 

algorithm uses the concept of 8-connectedness to perform region growing. 

2.1.2$Volume$Reconstruction$from$2D$Pixel$Data$

�

Fig.2.9. Contour oriented method. 
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There are many methods for volume reconstruction using 2D slice data. Our work 

features a simple contour-oriented method, which attempts to find the corresponding 

contour region in each slice, and connect the consistently oriented contour lines 

between adjacent slices with triangular meshes (Fig. 2.9). The advantages of this 

method are simplicity and high speed. The disadvantage is that if the distance between 

two successive slices is too large, there may be discontinuous areas from one slice to 

the next. In our study, due to the very small distances between slices, this disadvantage 

is negligible. Using this method, all the selected regions in each slice are added 

together so as to construct an entire UA. 

 

Three-dimensional (3D) anatomically accurate patient models were reconstructed 

from CT images using the medical imaging software MIMICS (Materialise, Belgium). 

The entire series was loaded into MIMICS and the airway was identified in each of 

the axial images based on a pre-defined thresholding relative to the surrounding tissue. 

3D raw models were reconstructed from the surface triangulation and then exported 

to REMESHER, another MIMICS module, so as to: (1) demarcate individual faces of 

inlet, outlet, and wall from the 3D surface model, and (2) improve the surface mesh 

quality by smoothing and re-meshing, in order to control maximum cell edge length 

and grid density. This re-meshed surface was used to generate numerical and 

experimental 3D volume models (Fig. 2.10). 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  (a)                                                      (b) 

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  (c)                                                    (d) 
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!!!!!!!!!!!!!!!!!!!                  (e)                                             (f) 

!

!!!!!!!!!!!!!!!      (g)                            (h) 

Fig. 2.10. The upper airway models for four subjects: subject #1-before (a) and after 
surgery (b); subject #2-before (c) and after surgery (d); subject #3-before (e) and after surgery 

(f); subject #4-before (g) and after surgery (h). 



39!

!

2.2! Numerical+approaches+

2.2.1$The$governing$equations$of$air$flow$

In the present study, the working fluid is air and the airway is assumed to be rigid 

because it is not time-dependent. Patient-specific airway geometry is generated based 

on the CT data in the time of UA patency. Due to the very low Mach number (<<0.3), 

the airflow in the upper airway could be considered as the incompressible flow and 

the continuity equation and momentum equation for the unsteady flow can be written 

as: 

upuu
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Where u is the velocity vector, ρ is the density, p is the static pressure and υ is the 

kinematic viscosity. The Reynolds number is defined as: 
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Where (Deq) is the equivalent diameter of the cross-sectional area, U is the flow 

velocity computed from the bulk flow rate and υ is the kinematic viscosity of the air. 
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2.2.2$Numerical$methods$

The governing equations are non-linear partial differential equations, analytic 

solutions for which are very difficult to obtain. Therefore, a numerical technique for 

solving these differential equations is necessary. There are mainly three numerical 

methods for approximating the solutions to differential equations: the finite difference 

method (FDM), the finite element method (FEM), and the finite volume method 

(FVM). 

 

The finite difference method (FDM) uses finite difference equations to substitute 

approximately for a derivative obtained by way of a Taylor polynomial, and was 

widely used in the early stages of computational fluid dynamics (CFD). FDM is 

intuitional and easily understandable mathematically. However, the disadvantage of 

FDM is that it is not suitable for an unstructured mesh or for fluid flow in complex 

geometries.  

 

The finite element method (FEM) divides the continuous medium (such as 

components, structure, etc.) into several small pieces of elements. These small 

elements are reconnected by nodes, which results in a set of simultaneous algebraic 

equations. Approximate solutions are obtained via computation of simultaneous 

equations, the results sufficiently accurate for small elements when enough of them 

are analyzed, the disadvantage being expensive computational time.  
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The numerical solver employed in our study is FLUENT (ANSYS 14.5), which is 

based on the finite volume method (FVM). Unlike the finite difference method (FDM), 

the finite volume method (FVM) is based on the integral form of partial differential 

equations (PDE). First, the computational domain must be discretized into a series of 

control volumes. Then the governing equations are integrated on each control volume 

in order to construct a number of algebraic equations for the discrete dependent 

variables (velocities, pressure). Subsequently, the discrete equations are linearized to 

form a system of linear equations. Finally, the linear equation system is solved to 

obtain the updated values of the dependent variables.   The continuity and momentum 

equations should be solved simultaneously due to the flow being depicted by these 

equations together. However, this coupled procedure generally requires large 

computational resources and it is certainly time-consuming. Since the air flow in the 

UA is relatively low-speed incompressible flow in which the coupling degree of 

velocity, pressure and density is not high, we decided to use a segregated procedure 

in which the governing equations are solved sequentially. 

 

The first step in the finite volume method is obtaining equivalent integral equations to 

partial differential equations. Generally the N-S equations have a derivative term with 

respect to time in addition to the space-derivative terms, but the terms are dealt with 

separately using different methods. The time term is widely discretized by a method 

similar to FDM and the space times may be via FVM. So for a typical quantity, the 

integral form of the governing equation for a control volume V without time term can 

be written as 
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∫∫∫ +⋅∇Γ=⋅
VSS
dVqdSdSv φφρφ nn

                    (2.2.3) 

where ρ is the density,  v is the velocity vector, S is the surface area, Γ is the diffusion 

coefficient for φ , φ∇  is the gradient of φ  and φq is the source of φ  per unit volume. 

On the left is the convectional term, and on the right the dissipative term followed by 

the source term. 

 

The space in FVM is divided into several small control volumes (CVs), on which the 

equation (2.2.3) is discretized into an algebraic equation. There are two methods for 

storing data define the CV: the cell-centered scheme, in which the flow quantity is 

stored at the centroids of the grid cells which serve as CVs, and the cell-vortex scheme, 

in which the data is stored at the points of the grid cells, and the CVs are either a 

combination of the grid cells sharing the same point or the volume whose centroid is 

the point. We focus on the cell-centered scheme, more widely used in CFD. 

Discretization of the equation (2.2.3) on a given cell is as follows: 

                              
∑∑ +•∇Γ=•
SS N

S
Sn

N

S
SSSS VqAAv φφφρ )(

                   (2.2.4) 

where NS is the number of faces close the cell, Sφ is the value of φ  convected through 

face S , AS is the area of face S, the multiplying term SSS vφρ  represents the mass flux 

through the face. n)( φ∇ is the magnitude of φ∇  normal to face, and V is the cell 

volume. The discrete value of φ  is stored at the cell centers. The face value Sφ should 

be interpolated from the cell center values by the upwind scheme, which means that 

the face value Sφ is derived from quantities in the upstream cell, or "upwind,'' relative 
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to the direction of the normal velocity nv in Equation (2.2.4). There are four upwind 

schemes for selecting: first-order upwind, second-order upwind, power law, and 

QUICK. When the flow is aligned with the grid, the first-order upwind discretization 

may be selected. When the flow is not aligned with the grid, the first-order upwind 

discretization increases the numerical discretization error (numerical diffusion). For 

triangular (2D) and tetrahedral grids (3D), since the flow is not aligned with the grid, 

the second-order discretization should be more accurate than the first-order 

discretization. Even for quad/hex grids, second-order discretization means second-

order accuracy and will obtain better results especially for complex flows such as the 

flow in the UA. 

 

Even the QUICK discretization scheme is quite suitable for rotating or swirling flows 

in which it may provide slightly better accuracy than the second-order scheme on the 

same mesh structure. As for the power law scheme, it generally has the same accuracy 

as the first-order scheme, and so in this study we select the second-order upwind 

scheme. The diffusion term in equation (2.2.4) is discretized by a central-differencing 

scheme which also is second-order accurate. Following discretization, the discrete 

equations should be linearized to a set of algebraic equations and then calculated 

numerically. 
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2.3! Turbulence+model++

Because the airflow characteristics in the OSA UA are highly complex, a different 

turbulence model will be adopted so as to balance accuracy and time consumption. At 

present, there are two methods of numerical simulation, namely direct numerical 

simulation (DNS) and non-direct numerical simulation. 

 

DNS means numerical solving of N-S and continuity equations directly, with no   

reductions or assumptions required in the solving process. Theoretically, the data from 

DNS can be considered equivalent to data gained experimentally. However, when 

dealing with turbulent flow, in order to resolve all turbulent phenomena at all length 

and time scales by DNS, the smallest length, time and velocity scales need to be 

simulated. The size of calculation region should be capable of holding the large eddy. 

A huge number of grid nodes is thus required, a limiting factor on current computer 

technology. So only a low flow field with low Reynolds number can be simulated, 

which means DNS is hard to utilize for UA simulation.  

 

The non-direct numerical simulation includes Reynolds-Averaged Navier-Stokes 

Simulation (RANS) and Large-Eddy Simulation (LES). 

 

For RANS models, in which the Reynolds equation are solved for the mean velocity 

field. The Reynolds stresses which are unknown in the Reynolds equations, are 

determined by the turbulence model, either through the turbulent viscosity hypothesis 

(standard k-ε model, the k-ω model and the SST k-ω model) or directly from modelled 
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Reynolds-stress transport equations. However, these turbulence models are not 

adequate for predicting anisotropic flows, flows with high streamline curvature, or 

flows where separation occurs.  

 

LES is a computation whereby large eddies are calculated directly, while small scale 

eddies are modeled. The space grid and time steps of LES are much longer than those 

in DNS. Hence LES is much more economical in terms of computational power 

required than is DNS, and is able to resolve the most energetic flow scales (entering 

into the inertial sub-range) and models of only the smallest dissipative scales. In 

human upper airway simulation, LES is a proven method for accurately capturing 

transitional/turbulent unsteady, separated or vortical flows (Pope 2000), and is used 

to reveal such relevant flow features in the flow separation region located near the 

minimum cross-sectional area of the airway and downstream of it (Luo et al., 2004; 

Mihaescu et al., 2008; Xu et al., 2006). 

 

In the LES modeling, the filtering operation for a variable (x) is provided by: 

( ) ( ) ( ) xdxxGx
V

x
V

!!!= ∫ ,1
φφ

                                    (2.3.1)      

where V is the volume of a computational cell, and the filter function ( )xxG !,  is 

defined as: 
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!
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,
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                                           (2.3.2)                                                              
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The filtering process effectively filters out eddies whose scales are smaller than the 

filter width or grid spacing. Thus the filtered Navier-Stokes equations are:  

                                                       0u =⋅∇                                                    (2.3.3)                                           

                                         
2u u u ueffP

t
ρ ρ µ
∂

+ ⋅∇ = −∇ + ∇
∂                          (2.3.4)              

where u  is the filtered velocity, P  is the filtered pressure, t is time, and ρ is the fluid 

density. The effµ  is the effective viscosity which is unknown and will be modeled by 

sub-grid scale (SGS) model.  

 

Since the real airflow in the upper airway with OSA is transient, the results of URANS 

should be more accurate than the steady RANS model; therefore we compare the 

unsteady RANS (k-ε, standard k-ω, and k-ω Shear Stress Transport (SST)) and LES 

results with four anatomically accurate upper airway models of two OSA patients 

before and after surgery. 

In URANS, the velocity is defined as  

∫−=
T

T
dttU

T
U )(

2
1

                                                             (2.3.5)    

''uUU +=                                               

where the velocity U is consisted of the mean component (U ) and the fluctuating 

component ( ''u ). The URANS equations in incompressible form are (Lars, 2014): 
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                                (2.3.6)     

where the mean dependent variables in (2.3.6) are not only a function of space, but a 

function of time.  

),,,,( tzyxUU ii =  ),,,( txyxPP =  and ),,,('''''''' txyxuuuu jiji = .               (2.3.7)                    

From the equation 2.3.7, we can find the averaged components are still a function of 

time; therefore the results from URANS are unsteady. 

 

2.4! Gradient+Evaluation+

Gradients are needed not only for constructing values of a scalar at the cell faces, but 

also for computing secondary diffusion terms and velocity derivatives. The gradient 

�φ of a given variable φ is used to discretize the convection and diffusion terms in 

the flow conservation equations. Most of the methods for gradient are based on the 

Green-Gauss theorem: 

When the Green-Gauss theorem is used to compute the gradient of the scalar φ  at the 

cell center c0, the following discrete form is written as 

                 
∑=∇
f

ffc Aφ
υ

φ
1)( 0

                                                                     (2.4.1) 

where fφ is the value of φ  at the cell face centroid, computed as shown in the sections 

below. The summation is over all the faces enclosing the cell. 
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2.4.1$GreenKGauss$CellKBased$Gradient$Evaluation$

In this method, the face value fφ  in equation 2.4.1 is taken from the arithmetic 

average of the values at the neighboring cell centers, ie., 

                        2
10 cc

f
φφ

φ
+

=
                                                                     (2.4.2) 

2.4.2$GreenKGauss$NodeKBased$Gradient$Evaluation$

Alternatively, fφ  can be computed by the arithmetic average of the nodal values on 

the face. 

                            
∑=

fN

n
n

f
f N

φφ
1

                                                                  (2.4.3) 

where Nf is the number of nodes on the face. 

The nodal values nφ  in Equation 2.4.3, are constructed from the weighted average of 

the cell values surrounding the nodes. This scheme reconstructs exact values of a liner 

function at a node from surrounding cell-centered values on arbitrary unstructured 

meshes by solving a constrained minimization problem, preserving a second order 

spatial accuracy.  

The node-based gradient is known to be more accurate than the cell-based gradient, 

particularly on irregular unstructured meshes (skewed and distorted elements); 
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however, it is relatively more expensive to compute than the cell-based gradient 

scheme and not applicable to polyhedral meshes. 

2.4.3$Least$Squares$CellKBased$Gradient$Evaluation 

In this method (Fig. 2.11) the solution is assumed to vary linearly. The change in cell 

values between cell c0 and ci along the vector ri from the centroid of cell c0 to cell ci, 

can be expressed as  

                    )()( 00 cciic r φφφ −=Δ⋅∇                                                           (2.4.4) 

 

Fig.2.11.  Cell centroid evaluation. 

The similar equations for each cell surrounding, the cell c0 can be written as: 

                      [ ] φφ Δ=∇ 0)( cJ                                                                              (2.4.5) 

Where [J] is the coefficient matrix, a purely geometric function. 
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The objective here is to determine the cell gradient 
^^^

0 KJI zyx φφφφ ++=∇ ) by 

solving the minimization problem for the system of the non-square coefficient matrix 

in a least-squares sense. 

 

The above system of linear equations is over-determined and can be solved by 

decomposing the coefficient matrix using the Gram-Schmidt process. This 

decomposition yields a matrix of weights for each cell. Thus for our cell-centered 

scheme this means that the three components of the weight (
x
iW 0 ,

y
iW 0 ,

z
iW 0 ) are 

produced for each of the faces of cell c0. 

It is therefore possible to compute the gradient at the cell center by multiplying the 

weight factors by the difference vector: �� �� �� φφφ −=Δ , 
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On irregular unstructured meshes, the accuracy of the least-squares gradient method 

is comparable to that of the node-based gradient (and both are much more superior 

compared to the cell-based gradient). However, it is less expensive to compute the 

least-squares gradient than the node-based gradient, though still more expensive than 

the cell-based gradient. 
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2.5! Boundary+Conditions++

!For this complex unsteady flow, the User-Defined inlet velocity is specified normal 

to the boundary plane (nostril), according to the tidal volume of 700ml and the inlet 

nasal area. The outlet boundary condition is static pressure, which is set to zero. The 

outlet boundary condition is static pressure which is set to be zero. No-Slip boundary 

condition is imposed on all the solid walls.  

 

The flow governing equations are discretized on the computational domain using 

second-order finite-volume schemes, and a second-order implicit scheme is employed 

for the time integration. Coupling between pressure and velocity is achieved using the 

SIMPLE scheme. The Wall-Adaption Local Eddy-Viscosity (WALE) model is 

selected as the Subgrid-Scale model for returning the correct wall asymptotic (y3) 

behavior for wall bounded flows. 

 

2.6! Experiment+approaches+

$2.6.1$Physical$model$method$

Rapid prototyping (RP) is a group of techniques which use three-dimensional 

computer aided design (CAD) data to quickly fabricate part or assembly physical 

models. RP is also known as: digital fabrication, 3D printing, solid imaging, solid free 

form fabrication, layer based manufacturing, laser prototyping, free form fabrication, 

and additive manufacturing. RP has been widely used in key medical specialty areas, 
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such as orthopedic and spinal surgery, maxillofacial and dental surgeries, ancology 

and reconstruction surgeries, customized joint replacement prostheses, patient specific 

instrumentation, patient specific orthoses, implant design testing and validation and 

teaching tools (Bagaria et al., 2011).  

 

In this study we choose 3D printing to generate a physical model for our experiment. 

3D printing is a process which consists of making a three-dimensional physical model 

from a 3D printable file (STL file). Layers of materials (liquid, powder, paper or sheet 

material) are laid down successively in order to build the physical model from a 

number of cross sections under computer control (Fig. 2.12).  

!

Fig. 2.12.  3D model slicing. (reprinted from wikipedia.org/wiki/3D_printing) 
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2.6.2$Inner$velocity$measurement$

Two 1:1 scaled in vitro airway physical models were fabricated by a rapid prototyping 

method 3D printing technology (3500 HD Max-3D System, USA) which uses an 

engineered plastic material that provides a true look and feel for a vast array of 

prototyping applications. The thickness of the airway wall was a uniform 0.5 mm. 

Transition extension parts were added both at the inlet and outlet of the airway models 

to provide uniform flow outside the models.  

 

A Laser Doppler Anemometer (LDA) system (Dantec Dynamics, Denmark) was 

utilized to measure the internal flow velocity of the physical airway model. Since the 

laser beam diameter is 2.2 mm, the velocity near the wall (about 3mm distance) could 

not be captured. The seeding particles were smoke generated by the Atomizer Aerosol 

Generator (TSI 3079) using DEHS oil and inhaled through two soft tubes into inlets 

(nostrils) of the airway models. Air was supplied by a pump connected to the airway 

outlet at the tracheal side. A flow valve was used to control the flow rate, this measured 

by a flow meter with a range of 0 to 30 L/min. 

 

The selected region (orophyarnx) was cut and covered with high light transmittance 

plastic film to facilitate laser beam penetration while acquiring inner velocity. 

Experiments were performed with an inspiratory flow rate of 700mm/s (16.8L/min) 

followed by the numerical flow. Five start points with 1mm distance for each point 

were located along the posterior side of the airway wall prior to surgery. Similarly, 

three groups each of which included five start points were located along the posterior 
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side of the wall after surgery. The measurement extended horizontally from a start 

point in the posterior side of the wall to the anterior side of the wall. The horizontal 

distance between points was 1.5mm and the sample time for each point was 60s. 

2.7+SR+phenomenon+experiment+

Stochastic resonance is a phenomenon whereby an optimal amount of added noise 

results in maximum enhancement, with further increases in noise intensity resulting 

only in degraded signal quality (Moss et al. 2004). This is the signature of stochastic 

resonance. The most common way to quantify stochastic resonance is through signal-

to-noise ratio (SNR). This is readily obtained from the output by forming a power 

spectrum which measures the frequency content of a time series (Wiesenfeld and 

Moss 1995). The power spectral density (PSD) exhibits the power at a certain 

frequency but cannot indicate quality of signal. The signal quality can be evaluated by 

SNR, which is a measure that compares the level of a desired signal to the level of 

background noise.  As shown in Fig. 2.13�the SNR is defined in decibels (dB) 
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10 log
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! "
= # $

% &                                       (2.6.1) 

where S is the area enclosed above the noise background (the pink area) and N0 is the 

average intensity of noise background at the signal frequency (Wiesenfeld and Moss 

1995). Because we have found that the volitional breathing has a much higher level 

of PSD over a wider frequency range, while the PSD of spontaneous breathing peaks 

is around 5 Hz (Liu et al. 2012), we here select identifiable peaks around 5 Hz to 

compute the SNR value for each subject. 
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Fig. 2.13. The diagram of SNR calculation with power spectrum, the pink area is the area 

enclosed above the noise background and N0 (blue solid line) means the average intensity of 

noise (two blue dotted line) background at the signal frequency. 

. 
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Chapter 3 The effect of turbulent models 

on flow simulation in upper airway models 

with obstructive sleep apnea 

Due to the complex morphology of the upper airway region, the flow is expected to 

be turbulent in the model. There are three approaches for simulation of turbulent flows, 

i.e., direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds-

averaged Navier-Stokes (RANS) models. DNS is the most accurate technique and 

resolves turbulent eddies at all scales (Pope, 2003), but it is too expensive to simulate 

the upper airway turbulent flows. RANS does not resolve any turbulent eddy 

structures and uses a turbulence model to predict the dynamics of these eddies. It is 

based on a time averaging of the flow field, and cannot capture the flow field 

unsteadiness that is particularly important in case of internal flow separation in 

complex regions (Wilcox, 1998). LES divides the flow field into large and small scales 

by a filtering procedure. It can directly solve the equations that describe the evolution 

of a large range of turbulence scales, only the smallest scales are modeled by LES 

using Sub-Grid-Scale (SGS) models.  

 

Several researchers studied the flow in human upper airway and lung airways (Ball, 

et al., 2008; Freitas & Schröder, 2008; Luo & Liu, 2008; Luo, et al., 2007; Große, et 
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al., 2007; Lin, et al., 2007). Nithiarasu et al. (2008) studied the steady flow through a 

realistic upper airway and found large shear and pressure forces in the oropharynx and 

laryngopharynx. They suggested that these locations should be the focus of any study 

aimed at understanding human upper airway collapse in a patient-specific manner. Xu 

et al. (2006) carried out CFD simulation of the upper airway of children with OSA in 

steady flow. Model geometry was reconstructed from magnetic resonance images 

(MRI) obtained during quiet tidal breathing, and the unsteady Reynolds-averaged 

Navier-Stokes equations were solved with steady flow boundary conditions in 

inspiration and expiration, using a two-equation low-Reynolds number turbulence 

model. The results suggested that pharynx pressure drop strongly correlated to airway 

area restriction, and that pharyngeal airway shape in children with OSA significantly 

affected internal pressure distribution compared to nasal resistance. Sung et al. (2006) 

and Jeong et al. (2007) conducted numerical investigation on the flow characteristics 

and aerodynamic force of the upper airway of patients with OSA using CFD. To 

produce the important transition from laminar to turbulent flow in the pharyngeal 

airway, they adopted the low Reynolds number k- ω model, and found the flow 

comprised a turbulent jet formed by area restriction at the velopharynx. This turbulent 

jet caused higher shear and pressure forces in the vicinity of the velopharynx. They 

deduced that the most collapsible area in the pharyngeal airway of OSA patients is the 

velopharynx, where exist minimum intraluminal pressure and maximum aerodynamic 

force. 
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Mandibular advancement devices (MADs) bring the mandibula forward in order to 

increase upper airway volume and prevent total upper airway collapse during sleep. 

Recently, De Backer et al. (2007) examined whether an upper airway model that 

combines imaging techniques and CFD allows for a prediction of the treatment 

outcome with MADs. In a sample of 10 patients the change in upper airway volume 

was investigated by means of computed tomography (CT) scans. CFD simulation was 

based on a patient specific geometry and patient specific boundary conditions. The 

results indicated that a decrease in upper airway resistance and an increase in upper 

airway volume correlate with both a clinical and an objective improvement. They 

concluded that the outcome of MADs treatment can be predicted using CFD 

simulation.  

 

Mihaescu et al. (2008a) used CFD to study the effect of an adenotonsillectomy on the 

flow behavior in the upper airway of a 15-year-old obese girl. They performed both 

pre- and post-surgical analyses to assess the influence of the alterations in upper 

airway morphology. They found that the resolution of OSA after adenotonsillectomy 

is associated with changes in flow characteristics that result in decreased pressure 

differentials across the airway walls and thus lower compressive forces that predispose 

to airway collapse. The researchers concluded that patient specific functional imaging 

using CFD could lead to a useful clinical tool in pre-operative planning procedure.  

 

Yu et al. (2009) numerically simulated the flow fields of narrowed upper airways of 

two patients with OSA treated with maxillomandibular advancement. The geometry 
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of the upper airway was reconstructed from CT scan images taken before and after 

surgery. The simulated results showed a less constricted upper airway, with less 

velocity change and a decreased pressure gradient across the whole conduit during 

passage of air. Less breathing effort is therefore expected to achieve equivalent 

ventilation with the postoperative airway. They concluded that CFD is capable of 

providing information for understanding the pathogenesis of OSA and the effects of 

its treatment. There are different views on RANS and LES for the flow simulation in 

human airways. Several researchers carried out CFD studies to analyze the flow in 

MRI/CT based upper airway models of patients with OSA (Xu, et al., 2006; Sung, et 

al., 2006; Jeong, et al., 2007; De Backer, et al., 2007; Vos, et al., 2007). In all these 

studies the CFD analyses were mostly based on RANS solvers using two-equation 

turbulence models. De Backer et al. (2007) explained that the low Reynolds number 

(LRN) k-ω model could accurately predict pressure drops and velocity profiles in the 

upper airway; in particular, the model is able to obtain an accurate laminar solution 

when turbulent viscosity approaches zero (Wilcox, 1998). Mihaescu et al. (2008b) 

compared the LES and RANS simulation of flow in a realistic pharyngeal airway, and 

gave a contrary conclusion. In their study, both the k-ε and k-ω two equation models 

were used in the steady RANS model, and they concluded that steady RANS may not 

be the proper tool to investigate flow in human airways. They further commented that, 

in contrast with steady RANS, LES can provide an increased level of detail and 

accuracy for unsteady, separated, or vortical turbulent flow situations, and that LES 

should be the preferred tool for capturing relevant flow features in the flow separation 

region located near the minimum cross-sectional area of the airway and downstream 
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of it. In our previous study (Liu, et al., 2012), we found that the flow oscillation 

induced by flow separation at the larynx plays an important role in activating the 

mechanoreceptors in the upper airway, which is crucial for OSA subjects. We 

compared the flow patterns using both LES and URANS models in four OSA upper 

airway models for both pre- and post-surgery treatment. The results would provide 

useful guidance for OSA upper airway simulation and have significant influence on 

surgery planning.   

3.1! Numerical+models+

Since real airflow in the upper airway with OSA is transient, the results of URANS 

should be more accurate than with the steady RANS model; therefore we compare the 

unsteady RANS (k-ε, standard k-ω, and k-ω Shear Stress Transport (SST)) and LES 

results with four anatomically accurate upper airway models of two OSA patients 

before and after surgery. The details of URANS and LES models have been discussed 

in chapter 2. 

 

In this study, four upper airway models of two severe OSA subjects (Fig. 3.1) for both 

pre- and post- surgery are reconstructed using the MimicsTM based on CT images 

(Figure 3.1) (Luo & Liu, 2008; Liu, et al., 2012). Severity of OSA is defined by the 

apnea-hypopnea index (AHI), which indicates the number of apneas and hypopneas 

per hour. The AHI for the four OSA models is tabulated in Table 3.1. Prior to surgery, 

both subjects suffered from severe OSA; after treatment, the AHI decreased 

significantly to 15.8 (Mild) for subject #1 and 23.9 (Moderate) for subject #2. 
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Table 3.1. AHI measurement of OSA subjects. 

Samples Before surgery After surgery 

Subject #1 69 15.8 

Subject #2 60.7 23.9 

 

The simulations were carried out with Fluent (ANSYS 14.5). We attempt to study the 

inspiratory process with a tidal volume of 700 ml and a breathing frequency of 12 

cycles per minute following a sinusoid. Airflow is assumed as incompressible flow 

due to the very low Mach number. Second-order finite-volume schemes were 

employed for discretization of the flow governing equations in the computational 

domain. While time-integration was performed using second-order implicit 

discretization, coupling between the pressure and the velocity field was implemented 

through the SIMPLE algorithm. Initial velocity was calculated according to nostril 

area. The pressure boundary condition in the outlet was set at zero. No-slip boundary 

condition was applied on the surface of the whole airway and the time step was set at 

0.001s. The WALE sub-grid scale (SGS) model was employed in the LES calculations. 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(a)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(b)!

!

                                          (c)                                                          (d)  

Fig.3.1. The upper airway models: (a) subject #1-before surgery; (b) subject #1-after surgery; (c) 

subject #2-before surgery; (d) subject #2-after surgery. 
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3.2! Mesh+convergency+

The mesh was generated using ICEM (ANASYS 14.5). The meshes are hybrid 

hexahedral/tetrahedral elements and a refined mesh was employed near the wall (Fig. 

3.2). Mesh convergency was tested by use of three different mesh sizes for the model 

of subject #2 after surgery.  Cell quantity was about 840,000, 2,600,000 and 3,800,000 

respectively for grid 1, grid 2 and grid 3. Fig. 3.3 shows the axial velocity time series 

at a point near the oropharynx, and the discrepancy between grid 2 and grid 3 is quite 

small. Therefore a cell quantity of ~ 2,600,000 was selected for this study. 

!

Fig.3.2. Side view details of the different refined computational grids at the region of the 

minimum cross-sectional area from the coarsest mesh (Grid 1), intermediate mesh (Grid 2) and 

the finest mesh (Grid 3). 
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Fig.3.3. Grid sensitivity of the axial velocity in the detected point at the minimum cross-
sectional area for a period. 

$

$
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3.3+++++++Flow+patterns+

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!  (a)                              (b)                              (c)                                    (d) 

!

!!!!!!!!!!!!!!!!!!!!!!!!!!  (e)                             (f)                              (g)                                      (h) 

Fig.3.4. Axial velocity distribution (m/s) in the sagittal plane: (a) RANS (k-ε) solution before 
treatment; (b) RANS (standard k-ω) solution before treatment; (c) RANS (k-ω SST) solution 

before treatment; (d) LES solution before treatment; (e) RANS (k-ε) solution after treatment; (f) 
RANS (standard k-ω) solution after treatment; (g) RANS (k-ω SST) solution after treatment; (h) 

LES solution after treatment. 



66!

!

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!     (a)                       (b)                                (c)                               (d) 

 

!!!!!!!!!!!!!!!!    (e)                                (f)                                  (g)                                           (h) 

Fig.3.5. Axial velocity streamlines distribution (m/s) in the sagittal: (a) RANS (k-ε) solution 
before treatment; (b) RANS (standard k-ω) solution before treatment; (c) RANS (k-ω SST) 
solution before treatment; (d) LES solution before treatment; (e) RANS (k-ε) solution after 

treatment; (f) RANS (standard k-ω) solution after treatment; (g) RANS (k-ω SST) solution after 
treatment; (h) LES solution after treatment. 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  (a)                              (b)                             (c)                               (d) 

!!!
(e)                            (f)                                   (g)                             (h) 

Fig.3.6. Axial velocity distribution (m/s) in the sagittal plane: (a) RANS (k-ε) solution before 
treatment; (b) RANS (standard k-ω) solution before treatment; (c) RANS (k-ω SST) solution 

before treatment; (d) LES solution before treatment; (e) RANS (k-ε) solution after treatment; (f) 
RANS (standard k-ω) solution after treatment; (g) RANS (k-ω SST) solution after treatment; (h) 

LES solution after treatment. 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  (a)                              (b)                                 (c)                          (d) 

!

(e)                                (f)                                  (g)                              (h) 

Fig.3.7. Axial velocity streamlines distribution (m/s) in the sagittal: (a) RANS (k-ε) solution 
before treatment; (b) RANS (standard k-ω) solution before treatment; (c) RANS (k-ω SST) 
solution before treatment; (d) LES solution before treatment; (e) RANS (k-ε) solution after 

treatment; (f) RANS (standard k-ω) solution after treatment; (g) RANS (k-ω SST) solution after 
treatment; (h) LES solution after treatment. 
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Fig.3.8. Axial velocity distribution (m/s) of the minimum cross-sectional plane (higher) and its 
downstream cross-sectional plane (below): (a) RANS (k-ε) solution before treatment; (b) RANS 

(standard k-ω) solution before treatment; (c) RANS (k-ω SST) solution before treatment; (d) 
LES solution before treatment; (e) RANS (k-ε) solution after treatment; (f) RANS (standard k-ω) 

solution after treatment; (g) RANS (k-ω SST) solution after treatment; (h) LES solution after 
treatment. 

!
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!!!!!!!!!!!!!!!!!!!!! (a)                                                                      (b) 

!

(c)                                                                    (d) 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!    (e)                                              (f) 

!

!!!!!!!!!!!!      (g)                           (h) 

Fig.3.9. Axial velocity distribution (m/s) of the minimum cross-sectional plane (higher) and its 
downstream cross-sectional plane (below) subject #2: (a) RANS (k-ε) solution before treatment; 

(b) RANS (standard k-ω) solution before treatment; (c) RANS (k-ω SST) solution before 
treatment; (d) LES solution before treatment; (e) RANS (k-ε) solution after treatment; (f) RANS 
(standard k-ω) solution after treatment; (g) RANS (k-ω SST) solution after treatment; (h) LES 

solution after treatment. 



72!

!

 

(a) 

!
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(b) 
Fig.3.10. LES and URANS comparisons of cross-sectional area and mean static pressure 
distribution from nasopharynx to epiglottis for subject #1: (a) before surgery and (b) after 

surgery. 
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(a) 
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(b) 

Fig.3.11. LES and URANS comparisons of cross-sectional area and mean static pressure 
distribution from nasopharynx to epiglottis for subject #2: (a) before surgery and (b) after 

surgery. 



76!

!

 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!     (a) 

!

                                                                     (b) 

Fig.3.12. LES and URANS comparisons of wall shear stress in a point located on the anterior 
side downstream of the minimum cross-sectional area in: (a) subject #1-before surgery; (b) 

subject #1-after surgery. 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!     (a) 

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!         (b) 

Fig.3.13. LES and URANS comparisons of wall shear stress in a point located on the anterior 
side downstream of the minimum cross-sectional area in: (a) subject #2-before surgery; (b) 

subject #2-after surgery. 
!
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The axial velocity distribution during inspiration along a sagittal-plane (Fig. 3.4 and 

Fig. 3.6) indicated that all turbulence models are able to capture a jet-like axial 

velocity, which increased from the minimum cross-sectional area due to the 

anatomically narrowed airway near the soft-palate before surgery. The discrepancies 

were mainly found in the axial velocity distributions downstream of the minimum 

cross-sectional area: before surgery, LES was able to capture more than two vortexes 

(Fig. 3.5d and Fig. 3.7d), which are considered an important factor in airway occlusion 

in the anterior side (Liu, et al., 2012). However, only two vortexes could be found for 

the k-ω results (Fig. 3.5b-c) and just one for the k-ε results (Fig. 3.5a) in subject #1. 

For subject #2, all three URANS models were able to get two large vortexes near the 

downstream of the minimum cross-section area and epiglottis (Fig. 3.7a-c), while the 

results using LES illustrated more small random vortexes and a longer axial velocity 

increasing region along the posterior side of the sagittal plane (Fig. 3.5d and Fig. 3.7d). 

After surgery, due to changes in airway morphology, the differences emerged in the 

anterior side: all four models were able to capture a large vortex downstream of the 

minimum cross-sectional area as illustrated in Figure 3.5e-h and Figure 3.7e-g, but an 

additional vortex was found near the epiglottis (Fig. 3.7h). 

 

Fig. 3.8 and 3.9 show the axial velocity contour at two cross-sectional planes in the 

whole airway. The maximum axial velocity can be observed by all four turbulence 

models at the minimum cross-sectional area (near the retro-palatal pharynx), and the 

patterns in this plane seem similar for all four models. For the downstream plane, it is 

found that the patterns obtained by the URANS models, especially for the subject 
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before surgery, are quite different in the location of the flow separation region from 

that by LES (Fig. 3.8a-d and Fig. 3.9a-d). However, for the results after surgery, 

though the k-ε results still differ in flow separation region from those by LES, the 

patterns shaped by the k-ω appear to be close to the results of LES simulation (Fig. 

3.8e-h and Fig. 3.9e-h). 

 

Changes in cross-sectional area and mean static pressure distribution from 

nasopharynx to epiglottis for both subjects are shown in Fig. 3.10 and 3.11. For subject 

#1 (Fig. 3.10), surgery led to significant change in upper airway morphology: the 

minimum cross-sectional area in the retro-palatal (collapse region for OSA) was 

widened from 50 mm2 to 250 mm2, but the reconstructed narrowest cross-sectional 

area moved upward and became 100 mm2 after reconstruction of airway. The 

minimum cross-sectional area in the retro-palatal was enlarged by a factor of two (50 

mm2 to 100 mm2). Pressure drop from the nasopharynx to the minimum cross-

sectional area was reduced significantly from about 40 Pa to about 5 Pa for all four 

turbulence models. This indicates that all the turbulence models are able to capture 

the pressure drop, this considered an important factor in evaluation of upper airway 

collapse. For subject #2, before treatment, the pressure drop in the area from the 

nasopharynx to the minimum cross-sectional area was quite large (about 60 Pa) due 

to the large negative pressure induced by high speed jet flow. After treatment, the 

pressure drop reduced significantly, to less than 1 Pa, which may be because the 

minimum cross-sectional area was surgically widened by a factor of six (from 47 mm2 

to 300 mm2) (Fig. 3.11). It can be clearly observed that, even though the pressure 
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value differs with turbulence model, the pressure profile along the airway is nearly the 

same for all four turbulence models, leading to a similar pressure drop across the 

airway.   

 

It is known that the central respiratory pattern generator requires an external stimulus 

to activate respiratory events (Taylor, et al., 1999), and that input signals emanate not 

only from chemoreceptors but also from mechanoreceptors in the upper airway (Miller, 

2014). Oscillating pressure may trigger reflex in the respiratory muscles (Henke & 

Sullivan, 1993). In our previous work, we have found that there exists a flow 

oscillation in the upper airway which is induced by flow separation downstream of the 

minimum cross-sectional area, this oscillation being stronger in normal subjects and 

OSA subjects with successful treatment, but weak in OSA subjects prior to treatment 

(Liu, et al., 2012). This oscillating signal may be an external stimulus to the 

mechanoreceptors or a reflection of the upper airway dilator muscles in the upper 

airway. Fig. 3.12 and Fig. 3.13 compare the time history of wall shear stress at one 

point located in the anterior side downstream of the minimum cross-sectional area. It 

is clear that LES is well able to capture flow oscillation, while the URANS model 

captures comparatively little wall shear stress oscillation (flow oscillation). This may 

be due to the mean component of the velocity in the URANS models in chapter 2. 

 

3.3! Conclusions+

In the past years, many researchers have used CFD to understand airflow features in 

the upper airway with OSA. However, the complexity of the geometrical models 
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makes accurate prediction, and so too application, a challenge. Since upper airway 

flow is unsteady and turbulent, proper selection of turbulence model is crucial to 

obtain with accuracy a sufficient number of flow features in order better to predict 

surgery outcome and so facilitate surgery planning. In this study, we numerically 

simulated the turbulent flows in four different OSA upper airway models with three 

URANS two-equation turbulent models (unsteady k-ε, standard k-ω, and k-ω Shear 

Stress Transport) and one LES model. The simulation results suggest the following 

conclusions: 

(1) For all four OSA upper airway models, the URANS models and the LES model 

are able to obtain the same pressure drop across the airway, proving that the URANS 

models have the same capacity for mean pressure simulation compared with the LES 

model. 

(2) Due to the anatomical narrowing of the OSA upper airway model before surgery, 

a strong jet flow was induced, resulting in several complex recirculation zones 

downstream of the minimum cross-sectional area. The LES model is able to capture 

much more of these recirculation zones, while unsteady standard k-ω and k-ω SST 

can usually capture two recirculation zones, and the unsteady k-ε model can capture 

only one.  

(3 For OSA upper airway models after surgery, the airway is widened and jet flow is 

attenuated; consequently, the separation induces a main recirculation flow 

downstream of the minimum cross-sectional area. All four turbulence models are able 

to capture this main recirculation zone. 
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(4) Flow oscillation may play an important role in evaluation of OSA severity. An 

LES model can well simulate flow oscillation, while only a little flow oscillation can 

be captured by the URANS models.     

(5) The purpose of CFD simulation in an OSA upper airway is to predict surgery 

outcome and help with surgery planning based on the correct and accurate flow 

features obtained. An LES model is capable of capturing flow patterns and flow 

oscillation, and is good for prediction of OSA surgery. Even URANS can attain the 

correct pressure distribution along an airway, though it may not be appropriate for use 

in prediction of surgery outcome. 
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Chapter 4 Comparison between 

experimental measurement and CFD 

simulation 

Obstructive sleep apnea (OSA) is a common disorder characterized by partial or 

complete narrowing of the pharyngeal airway during sleep, (Mihaescu et al., 2011), 

affecting up to 20% of adults and recognized as an independent risk factor for a range 

of conditions including diabetes, hypertension and stroke. (McCabe and Hardinge, 

2011). The pathogenesis of this disorder is not, however, as yet fully understood, and 

a better understanding of OSA pathophysiology is required in order to guide treatment 

planning. 

 

Accurate models of the upper airway are crucial for understanding the mechanisms of 

OSA, but due to the complex geometry of the upper airway, it is expensive and 

difficult to study experimentally, be it in vivo or in vitro. Recently, due to its non-

invasive nature, Computational Fluid Dynamics (CFD) analysis has been utilized to 

characterize flow features in human upper airway models. Malhotra et al. (2002) 

created simple 2D male and female upper airway models and suggested that an 

increased length of vulnerable airway, together with increased soft palate size, results 

in a male predisposition to pharyngeal collapse. Martonen et al. (2002) generated a 
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3D upper airway model based on the medical school teaching model, and suggested 

that airflow patterns were mainly dependent on flow rate values for a prescribed phase 

of breathing. Nithiarasu et al. (2008) carried out numerical simulation using the 

Reynolds-Averaged Navier-Stokes (RANS) method based on a CT-scanned upper 

airway model, and their numerical technique was validated against the measurement 

in an idealized oropharynx from Heenan et al. (2003). Jeong et al. (2007) studied 

numerically the flow in a CT-scanned upper airway using a low Reynolds number k–

ɛ model, and found the turbulent jet which formed at the velopharynx due to area 

restriction to be the most noteworthy feature in the pharyngeal airway of patients with 

OSA. In real situations, flow in the human upper airway is unsteady, and time-

averaged turbulence models (Nithiarasu et al., 2008; Jeong et al., 2007; Cheng et al., 

2013) are unable to capture characteristics of anisotropic flow, such as the adverse 

pressure gradients or turbulent velocity fluctuations generated in these irregular upper 

airway models. (Wilcox, 1998). Direct numerical simulation (DNS) is the best way to 

compute flow characteristics in the upper airway, but it is too expensive for upper 

airway flow at high Reynolds numbers. Hence, Large Eddy Simulation (LES), a 

compromise model between RANS and DNS, is much more feasible in terms of 

computational power required than DNS, and can resolve the most energetic flow 

scales (entering into the inertial sub-range) while modelling only the smallest 

dissipative scales. More and more CFD computations on upper airways with OSA are 

using LES, which has become the preferred tool for capturing relevant flow features. 

(Luo et al., 2004; Mihaescu et al., 2008; Mihaescu et al., 2011; Liu et al., 2012).  
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To validate the suitability of CFD modeling methods, several experiments were 

carried out under various conditions. Due to advancements in rapid prototyping 

technology, the anatomical in vitro airway model of subjects with OSA can be 

fabricated according to numerical geometry models. Kim et al. (2009) investigated 

respiratory airflow in the human airway by use of PIV, providing quantitative results 

for the full airway model under physiological flow conditions. Xu et al. (2006) studied 

the effect of airway geometry on internal pressure in the upper airways of children 

with OSA by using a two-equation low-Reynolds number turbulence model with 

steady flow boundary conditions in inspiration and expiration. To validate their CFD 

results, the researchers fabricated a physical airway model at 85% scale, measured the 

pressure at several locations, and found a good agreement between pressure 

measurements and CFD calculations. Mylavarapu et al. (2009) investigated the 

expiratory flow in a realistic human upper airway model constructed from MRI scans. 

They used LES, steady RANS with two-equation turbulence models (k-ε, standard k-

ω, and k-ω Shear Stress Transport (SST)) and a Spalart-Allmaras one-equation 

turbulence model. To validate their CFD results, they fabricated a 2:1 scale 

mechanical airway model and measured wall pressure and mean velocity at inlet. They 

found a good agreement between computation and measurement, and suggested that 

CFD could be used to investigate flow characteristics of the upper airway with 

accuracy. Zhao et al. (2013) studied both numerically and experimentally the effect of 

mandibular advancement splints (MAS) treatment on flow in an upper airway model 

with OSA. They used the k-ω SST turbulence model, and validated the numerical 
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method against the pressure measured on a 1:1 flexible upper airway model fabricated 

using 3D stereolithography. 

 

All of the in vitro experiments conducted above were focused on pressure 

measurements by means of pressure taps located along the airway walls, and velocity 

profile, though important, was typically ignored due to the difficulty and complexity 

of such measurements. On the basis of our preliminary study (Lu et al., 2014), both 

the RANS and LES models are able to capture similar pressure distribution along the 

upper airway, but there is significant discrepancy in velocity profile among different 

turbulence models. It is therefore necessary to evaluate the accuracy of turbulence 

models in simulations of velocity profile in OSA upper airways. Since flow features 

such as flow separation downstream of the minimum cross-sectional area are key 

factors in the upper airway occlusion of OSA subjects, accurate prediction of velocity 

distribution is of significant interest if we wish thoroughly to understand the 

pathogenesis and treatment of OSA. In this study, we carried out experimental 

measurements using laser Doppler anemometry (LDA), as well as numerical 

simulation using an LES model in the upper airway model of an OSA subject before 

and after surgery, and found excellent agreement between the measured and calculated 

velocity profiles in both upper airway models. 
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4.1! Method+

4.1.1$Construction$of$upper$airway$model$

A male OSA patient (38 years old, BMI 25.7, 76 kg) who experienced a successful 

uvulopalatopharyngoplasty (UPPP) surgery was selected. Surgery had enlarged the 

area of minimum cross section near the soft palate from 47.4 mm² to 226.7 mm², a 

fourfold increase. The apnea-hypopnea index (AHI) fell from 60.7 before to 23.9 after 

surgery. The 3-D anatomically accurate upper airway models were reconstructed from 

CT-scan images obtained six months following surgery using the image processing 

software Mimics. The CT images feature an axial plane with a resolution of 0.7×0.7 

mm², and a slice thickness of 0.625 mm (Fig. 4.1). Airway extraction was performed 

using a combination of thresholding and region growing segmentation criteria. 

!

Fig.4.1. Some of the CT scan images after surgery. 
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4.1.2$Experimental$model$

!Two 1:1 scaled upper airway models were produced by way of a 3-D printing 

technique (3500 HD Max-3D System, USA) with uniform wall thickness (0.5 mm), 

as shown in Fig. 4.2. The material used in the models is VisiJet® M3 Crystal, which is 

USP Class VI certified for approved medical applications. The inlet and outlet were 

extended to minimize the velocity boundary effect. The LDA system (Dantec 

Dynamics, Denmark), with its ˂1% uncertainty, was utilized to measure the velocity 

profile inside the model. Since the laser beam diameter is 2.2 mm, the velocity within 

3 mm of the wall cannot be captured. The seeding particles were smoke, generated by 

the Atomizer Aerosol Generator (TSI 3079) using DEHS oil and inhaled through two 

soft tubes into the inlet (nostril) of the airway models. The air pump as the air supply 

was connected with the airway outlet from the tracheal side. Flow rate was controlled 

by a valve, and measured by a flow meter (DryCal DC-2) ranging from 0 to 30 L/min, 

with an allowable deviation of 1% (Fig. 4.3). Experiments were conducted at a flow 

rate of 16.8L/min according to bodyweight (5-10 ml/kg) (Gregory and Andropoulos, 

2012). 

 

A transparent window was made in the orophyarnx wall to measure velocity profiles 

before surgery (15×15 mm) and after surgery (20×20 mm) (Fig. 4.2) at the region 

where the reversed flow most likely existed. After cutting, the window was covered 

with a very thin transparent film (thickness< 0.01mm) so that there would be minimal 

effect on flow. For the model before surgery, five cross sections with 1 mm spacing 

were chosen, and at each cross-section only one measuring line could be selected due 
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to the narrowed airway (BC1-BC5), as shown in Fig. 4.2a. For the model after surgery, 

we similarly chose five cross-sections with 1 mm spacing (Fig. 4.2b). Since the 

morphology changed, and the transparent window could be enlarged, at each cross-

section three measuring lines were chosen with spacing of 1.5 mm. The measurement 

was made from the posterior side to the anterior side of the airway with horizontal 

movement, with a sampling time of 60s for each point. 

4.1.3$Numerical$method$

The flow field was resolved by CFD solver Fluent (ANSYS 14.5) and the mesh 

convergence has been discussed in chapter 3. The time-integration was performed 

using second-order implicit discretization and the coupling between the pressure and 

the velocity field was implemented through the SIMPLE algorithm. The inlet velocity 

is 0.8 m/s which is calculated based on the flow rate and the nostril cross-sectional 

area. The pressure boundary condition in the outlet is set as zero. No-slip boundary 

condition is applied at the wall of airway and the time step is 0.001 s. The LES 

turbulent model is employed with WALE sub-grid scale (SGS). 
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!!!!!!!!!!!!!!!! (a)                                                                   (b) 

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!   (c)                                                               (d) 

Fig.4.2. Upper airway models. (a) before surgery, where B indicating before surgery and C 
center, the dash line is the transparent window- 15×15 mm. (b) after surgery, where A indicating 

after surgery, L left, and R right, the dash line is the transparent window-20×20 mm. (c) 
experimental model before surgery. (d) experimental model after surgery. 
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Fig.4.3. The experimental setup for LDA velocity measurement: (a) zoom of the inlet; (b) 
experiment setup for the whole system (c) zoom of the transparent window; (d) the schema of 

the experiment. 

 

d!
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4.2! Results+

4.2.1$Simulation$results$

Fig. 4.4 shows the calculated pressure distribution along the walls of the pre- and post-

surgery models. For the model before surgery, a large negative pressure (-7.1 Pa), 

which is considered the main feature for airway collapse, existed near the retro-palate; 

for the model after surgery, this negative pressure disappeared and the pressure across 

the minimum cross-section area decreased significantly from 30 to 4.5 Pa, indicating 

a significant reduction in flow resistance. 

The axial velocity (z direction) contours at different cross sections along the upper 

airway are shown in Fig. 4.5. For the model before surgery, axial velocity at the 

minimum cross section was very large due to narrowing of the airway, resulting in a 

"pharyngeal jet" flow that skewed towards the posterior wall downstream of the 

minimum cross section. For the model after surgery, due to widening of the upper 

airway, pressure increased, flow velocity became low and uniform (Bernoulli 

equation), and a weak "pharyngeal jet" formed downstream of the minimum cross 

section. 

The axial velocity pattern can more clearly be seen from the sagittal plane along the 

upper airway, as shown in Fig.4.6. For the model before surgery, the flow path line 

shows that there exist several small recirculations near the oropharynx downstream of 

the minimum cross section, the patterns being irregular; for the model after surgery, a 

strong dominant recirculation stands, and flow pattern is regular.  
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!

Fig.4.4. The wall pressure distribution for both models: (a) before surgery and (b) after surgery. 
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Fig.4.5. The axial velocity contours for both models: (a) before surgery and (b) after surgery. 
The dash line is the location of LDA measurement. 

b!

a!
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Fig.4.6. The axial flow pattern in the sagittal plane and cross section for both models: (a) before 
surgery and (b) after surgery. The cross-line between sagittal plane and cross section is the 

location of LDA measurement. 

b!

a!
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
Fig.4.7. (a) The measured axial velocity profiles in five cross-sections for model before surgery; 

(b-f) The comparison between measured and calculated velocity profile (BC1-BC5); l is the 
length of the measured and simulated line, * denotes normalization of the length for 

experimental and computational lines into the same interval (0~1). 
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(a) 

 

(b) 



100!

!

 

(c) 

 

(d) 
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(e) 

 

(f) 
Fig.4.8. (a) Measured axial velocity profiles at left measuring line in five cross-sections; (b-f) 

comparison between measurement and calculation at five left measuring line (AL1-AL5). 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
Fig.4.9. (a) Measured axial velocity profiles at central measuring line in five cross-sections; (b-f) 

comparison between measurement and calculation at five left measuring line (AC1-AC5). 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
Fig.4.10. (a) Measured axial velocity profiles at right measuring line in five cross-sections; (b-f) 

comparison between measurement and calculation at five left measuring line (AR1-AR5). 
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4.2.2$Comparison$between$calculated$and$measured$results!

Velocity profiles were measured by LDA, and measurement locations are indicated in 

Figs. 4.5 and 4.6. Fig. 4.7a shows the measured velocity profiles in the model before 

surgery. The axial velocity distributions at five cross-sections illustrate a similar 

profile: it is higher near the posterior side due to the strong "pharyngeal jet" effect, 

and becomes weak and negative near the anterior wall induced by the reversed flow. 

Peak velocity was 5.8 m/s. Figs.9b-f compare experimental and simulated results in 

the five cross sections where radial distance has been normalized. Agreement of 

velocity profiles was in general excellent. The comparison of BC2 (Fig. 4.7c) shows 

the largest discrepancy near the interface of the main stream velocity and the reverse 

velocity, the most complex region. Due to the limitations of the technique, LDA 

measurements cannot capture velocity in close proximity to the wall, but show the 

same profile and value as calculated over the entire measurable region. LDA 

measurement is particularly able to capture reversed flow near the anterior wall as 

indicated by the weak and negative velocity, even though the discrepancy between 

calculation and measurement is large when very low velocity increases uncertainty of 

measurement. 

 

For the model after surgery, there are five cross-sections, with three measuring lines 

at each cross-section. Figs. 4.8a, 4.9a and 4.10a show the measured velocity profiles 

along the measuring lines. At each cross-section, the velocity distributions along the 

left measuring lines show the same profile, as plotted in Fig. 4.8a. The highest velocity 

is about 1.4 m/s, and the profile exhibits a plateau indicating a uniform and weak 
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"pharyngeal jet" flow. An inspection of Figs. 4.8b-f shows excellent agreement 

between measurement and simulation along the left measuring lines. The 

discrepancies are mainly in two regions: the first is found near the interface of the 

main stream velocity and the reverse velocity, the second discrepancy is at the 

reversed flow region due to the uncertainty of LDA measurement at very low velocity 

range. At the center and right measuring lines in each cross-section, as shown in Figs. 

4.9b-f and Figs. 4.10b-f, the measured velocity profiles exhibit a similar trend, and the 

calculated velocity profile is quite consistent with that of LDA measurement. Most of 

the discrepancies are the same as in the left lines, except for the discrepancy at AC1 

(Fig. 4.9b), in which the maximum velocity measured from the experiment is much 

higher than that from the simulation. 

  

4.3! Discussion+

The upper airway is very complex, and it is difficult to conduct in vivo measurements 

in the upper airway of OSA subjects. Even for in vitro measurements, there are many 

constraints when measuring the detailed velocity field, and most of the in vitro 

measurements have had to focus solely on pressure measurements. CFD is therefore 

a feasible method for studying the mechanism of OSA due to its non-invasive 

characteristics. Earlier work on CFD simulation in OSA upper airways used simplified 

geometry models and 1D/2D analysis, which could not predict flow features 

accurately. In the past years, simulations in realistic upper airway models based on 

CT/MRI scans have shown the potential of CFD in gaining a better understanding of 
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flow characteristics and the pathogenesis of OSA. Many of the simulations used 

different turbulence models, including RANS and LES, to investigate airflow in OSA 

upper airways. The key barriers to simulation results are accuracy and reliability. Very 

few studies have managed to validate their simulation results against the measured 

pressure distribution, and velocity comparisons were not conducted owing to the 

difficulty of measuring velocity profiles in the upper airway. It was found that 

different turbulence models would produce a similar pressure distribution but totally 

different velocity fields (Lu et al., 2014). The current study is the first comparison of 

velocity profile between simulation and measurement in realistic upper airways with 

OSA. We have compared velocity profiles at different locations and cross-sections in 

OSA upper airway models for both before and after surgery. For the model before 

surgery, the simulation shows a strong "pharyngeal jet" flow downstream of the 

minimum cross section, and the LDA measurement captures the same velocity jump 

along the same measuring line. For the model after surgery, the "pharyngeal jet" flow 

becomes weak and uniform due to the widened airway, and LDA obtains the same 

velocity plateau along the same measuring line. The agreement in velocity profile 

between simulation and measurement is excellent, and gives us confidence in the CFD 

simulation in the upper airway, though the work still has some limitations. One 

potential limitation is the inability to capture flow near the wall (about 3mm), due to 

the intrinsic features of LDA analysis, and another is the discrepancy between 

measurement and simulation at reversed flow region, which is most likely caused by 

the uncertainty of LDA at low velocity range. 
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4.4Conclusion0

This study simulated flow using LES in OSA upper airway models for before and after 

surgery, and measured velocity profiles at different locations and cross-sections using 

LDA in the same 3-D printed upper airway models. The simulation and measurement 

have led to the following conclusions: 

1.! In the OSA upper airway model before surgery, there is a strong "pharyngeal 

jet" flow downstream of the minimum cross section. The LES simulation and 

LDA measurement can capture the same velocity jump along the same 

measuring line, even though there are discrepancies in value between 

simulation and measurement in the interface of the main stream velocity and 

the reverse velocity, which may be due to flow complexity, and in reversed 

flow region, which may be caused by uncertainty of LDA analysis at low 

velocity range. 

2.! In the model after surgery, the "pharyngeal jet" flow becomes weak and 

uniform, and simulation and measurement can produce the same velocity 

plateau in the same measuring line, even though there are some discrepancies 

in the reversed flow region and in the interface of the main stream velocity and 

the reverse velocity. 

3.! The LES simulation is consistent with the experimental measurement, and can 

be a reliable method for predicting the flow characteristics associated with 

OSA upper airways. 

!
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Chapter 5 Comparison of flow patterns 

between successful and failed surgeries  

In this chapter, we have carried out CFD simulation using LES model in upper airway 

models of one normal subject and four OSA subjects in which three of them had 

successful surgery and one was failed in UPPP surgery. The objective is to investigate 

the reason of surgery failure in fluid mechanics point of view, further understand the 

mechanism of OSA, and provide useful guideline for surgical treatment planning.   

!

5.1! Method+

The investigation has been approved by the local ethics committee and is performed 

in accordance with the Declaration of Helsinki, and the subjects are provided with 

written informed consent forms.  

 

Four severe OSA subjects were selected to carry out the study, among them three had 

successful UPPP surgery and one had failed surgery. The variation of AHI of each 

subject before and after surgery are tabulated in Table 5.1, where Subject #4 had failed 

surgery whose AHI increased from 46.1 to 81.7.   
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5.1.1$Construction$of$upper$airway$model$

All the four OSA subjects were adult males who were suffered severe OSA before 

treatment, and whose parts of soft palate or uvula were removed by UPPP surgery. 

CT-scan was performed using a single-slice helical CT scanner (Phillips, Brilliance 

64) in the affiliated Beijing Tongren Hospital, Capital Medical University. The images 

were obtained in the axial plane with a resolution of 0.7×0.7 mm2, and slice thickness 

was 0.625 mm. The three-dimensional point cloud data of upper airway models were 

reconstructed using the image processing software Mimics from nasal cavity to the 

laryngopharynx .  

5.1.2$Numerical$Method$

!The flow field is solved by a CFD solver Fluent (ANSYS 14.5) with LES model. The 

air flow is assumed as incompressible flow due to the very low Mach number (Mach 

< 0.3). Only inspiratory process with tidal volume measured with spriometry is studied 

and the breathing frequency is 12 cycles per minute following a sinusoid. Six periods 

(about 15 seconds) was simulated and flow pattern analysis was conducted by 

selecting the data in the time of peak flow (5.5s). The inlet and outlet were extended 

to minimize the velocity boundary effect, the inlet velocity profile is fitted from the 

real inhaled data and the outlet pressure boundary condition is set as zero. No-slip 

boundary condition is applied on the wall of airway and the time step is 0.001s. 

Second-order finite-volume schemes were employed for discretizing the flow 

government equations on the computational domain. The time-integration was 
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performed using second-order implicit discretization, the coupling between the 

pressure and the velocity field was implemented through the SIMPLE algorithm.  

 

The local Reynolds number (Re=UDeq/υ) ranged from 900 to 3200 according to the 

equivalent diameter (Deq) of the cross-sectional area, the flow velocity (U) computed 

from the bulk flow rate and the kinematic viscosity of the air (υ). The Reynolds 

number represents that the flow is from laminar to turbulent. Therefore, the WALE 

sub-grid scale (SGS) model is employed in the LES modeling because of its better 

ability for predicting the transition from laminar to turbulent regimes (Weichert et al. 

2010). 

 

The mesh was generated using ICEM (ANASYS 14.5). The meshes are hybrid 

hexahedral/tetrahedral elements and refined mesh has been employed near the 

oropharynx and the numerical results of velocity are mesh-convergent to within a 

prescribed tolerance (~0.2%). The number of mesh element is around 3.0 million 

depending on the size of each upper airway. 
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5.2! Results+

!

$

Fig.5.1. The wall pressure distribution in the four models before surgery. 
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Fig.5.2. The wall pressure distribution in normal subject and four OSA subjects after surgery, 
the last two patterns represent two different views of subject #4. 
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Fig.5.3. The axial velocity distribution and path-line along the sagittal plane and the axial 
velocity pattern of a cross section plane marked in the sagittal plane for all subjects before 

surgery. 

!

�b� �c� �d� �a� 
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Fig.5.4. The axial velocity distribution and path-line along the sagittal plane and the axial 
velocity pattern of a cross section plane marked in the sagittal plane for all subjects after surgery. 

!
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Fig.5.5. Comparison of wall shear stress time series at the oropharynx for all the subjects. 
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Fig.5.6. Wavelet analysis of wall shear stress time series at oropharynx for all the subjects, pre- 
and post- treatment. 

!

!
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Table 5.1 AHI measurement of OSA subjects 

$ Before surgery After surgery 

Subject #1 64.8 15.8 

Subject #2 60.7 23.9 

Subject #3 41.1 2.9 

Subject #4 46.1 81.7 

!

!

Table 5.2 AHI, minimum cross-section area near the retro-palate, maximum cross-section area 

in the oropharynx, area ratio (AR) (min/max) and the AR change (after/before). 

 AHI    Min Area 
(mm2) 

Max Area 
(mm2) 

Area-Ratio 
(AR=Min/Max) 

AR Change 

(After/Before) 

Subject #1 
64.8 53.2 256.4 0.21 

2.00 
15.8 111.1 264.1 0.42 

Subject #2 

60.7 46.1 241.8 0.19 
2.58 

23.9 318.1 645.0 0.49 

Subject #3 

41.1 66.7 149.2 0.45 
1.67 

2.9 250.7 336.3 0.75 

Subject #4 

 

46.1 49.5 191.7 0.26 
0.96 

81.7 92.6 370.9 0.25 

 

In upper airway with OSA, the most apparent feature for collapsing is a large negative 

pressure occurs in the minimum cross-section near the retro-palate. Fig. 5.1 shows 

that there exists a large negative pressure in the anterior side of the wall in the models 
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before surgery for all subjects. The maximum pressure drop from choanae to the 

minimum cross-section is 680 Pa, 980Pa, 790 Pa and 320 Pa for subject #1 to #4, 

respectively, indicating a high flow resistance. 

 

After the surgical treatment, it is shown in Fig. 5.2 that the large negative pressure is 

changed to positive near the retro-palate in the models of subject #1 - #3 who had 

successful surgery which is similar to the normal subject. However, for the model of 

subject #4 who had failed surgery, the negative pressure still exists near the retro-

palate and extended to the wall of oropharynx for both the anterior and posterior side. 

This would cause two collapse regions: one is near the retro-palate, and the other could 

be found in the oropharynx. The failed elimination of the negative pressure near the 

retro-palate should cause the failure of surgery while the additional negative pressure 

in the oropharynx would make it worse. The maximum pressure drop from choanae 

to the cross-section near the retro-palate is 47 Pa, 100Pa, 120 Pa and 140 Pa 

respectively for subject #1 to #4 (Fig. 5.2). To quantified the results, the Pearson's 

correlation analysis was conducted, and a statistically significant  correlation (Altman, 

1991) was found ( r = -0.723, p = 0.043 < 0.05) between AHI and the maximum 

pressure drop from choanae to the cross-section near the retro-palate.  

 

Fig. 5.3 shows the axial velocity distribution at the sagittal-plane  and cross-section at 

downstream of minimum area for OSA upper airway models before surgery. A strong 

jet-like axial velocity represented by dark blue color develops  behind the soft-palate 

for all subjects due to the anatomical narrowing of the upper airway. According to the 
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Bernoulli equation, this high momentum axial velocity would result in a!low pressure 

when the pressure reach to a critical value, it will below zero and change into a 

negative pressure as is shown in Fig. 5.1.  From contours at cross-sections, the high 

momentum flow occupies only small portion of the airway, and the induced reversed 

flow occupies most of the airway.  

 

After surgical treatment, the jet flow in subject #1 - #3 has been weakened 

significantly as a result of widening airway as shown in Fig. 5.4. From contours at 

cross-sections, the jet flow occupies most of the airway, and there is a single main 

reversed flow region which occupies less than half of the airway.  However, the jet 

flow is still strong for subject #4 even it becomes weaker than that before surgery, and 

there are two main reversed flow regions due to the morphological change. For four 

upper airway models before surgery, the flow path-lines show that the high 

momentum jet flow induces several small recirculations and circulation patterns are 

irregular. For subject #1 - #3 after surgery, a single dominant recirculation stands near 

the wall and the pattern is regular. It is indicated that the successful surgery would 

change the morphology of upper airway to result in a single dominant recirculation. 

For subject #4 after surgery, there are two dominant recircualtions even the patterns 

are regular. 

 

The wall shear stress time series is shown in Fig. 5.5, with the monitor point at the 

anterior side of cross-section in the oropharynx. For subject #1 - #3, before surgery, 

the wall shear stress time series does not follow the breathing pattern and exhibits 
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irregular behavior; after surgery, the time series follows closely the breathing curve 

and exhibits regular pattern. For subject #4, the time series of both before and after 

surgery does not follow the breathing curve and exhibits irregularly. It is found that 

for subjects before surgery, the flow separation before the larynx induced several 

small reverse flows, every of which is quite weak, consequently results a lower wall 

shear stress.  For successful surgery, a single dominant reverse flow becomes quite 

strong results a higher wall shear stress. .   

 

Because characteristics of air flow signals change continuously, it is better to perform 

spectral analysis using the wavelet transform. A wavelet is a function with zero mean 

and that is localized in both time and frequency domain (Torrence C, 1998). This 

feature allows us to determine both the dominant modes of BFO and how those modes 

vary in time. Wavelet transform of a signal yields a three-dimensional structure above 

the time-frequency plane. Usually, the wavelet amplitude and power spectrum can be 

defined as the absolute values of the wavelet transform and their squares, respectively 

(Torrence C, 1998). For upper airway air flow signals, Morlet wavelet is a good choice, 

since it provides a good balance between time and frequency localization.  

 

As In the windowed Fourier transform, one begins with a window function, which 

called a mother wavelet Ѱ(u). This function introduces a scale (its width) into the 

analysis. Commitment to any particular scale is avoided by using not only ѱ(u), but 

all possible scaling of ѱ(u). The mother wavelet is also translated along the signal to 

achieve time localization. Thus, a family of generally nonorthogonal basis functions: 
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The wavelet transform ����
�

��  is a wavelet coefficient and t is time, s is the scale 

related to the frequency f as f = f0/s, and f0 determines the current frequency resolution. 

By choosing f0 =1, we obtain the simple relation f =1/s. The continuous wavelet 

transform is a mapping of the function g(u) onto the time frequency plane. By 

adjusting the window used in wavelet transform, slower and faster events can be 

categorized accordingly (Kvenmo et.al, 1999). This method breaks down the steady 

fluctuating time series into its frequency elements and computes the power of signal 

components in predetermined frequency bands, allowing to measure the amplitude of 

different flow motion waves in PU/Hz. 

 

In previous study, we have found the PSD peaks around 3~5 HZ in all subjects with 

and without OSA (Liu et al. 2012). This peak PSD phenomenon is found in the 

wavelet transform figures as is shown in figure 5.6. All these peak frequencies were 

selected to analyse the vary of PSD along time. As is shown in figure 5.6 that, after 

the successful OSA surgery displayed higher PSD value in these peak frequencies 

than before surgery. 
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The AHI is correlated to the flow pattern that in turn is strongly dependent on the 

morphological change. To compare easily the effect of cross sectional area change on 

AHI, we summarize  the AHI, minimum cross-section area near the retro-palate, 

maximum cross-section area in the oropharynx, theirs area ratio and AR changes in 

Table 5.2. It is worthy to note that there were no correlations between the increase in  

minimum cross-section area and AHI change, which is different from the correlation 

analysis in Mandibular advancement (MMA) (Zhao et al. 2013b). 

 

5.3! Discussion++

UPPP is a common method for OSA treatment in which the morphology change is 

crucial for surgery success. The prediction of the flow pattern in upper airway is 

crucial for improving the success rate of upper airway surgery. Invasive method to 

study the upper airway flow characteristics of OSA subjects is generally not applicable 

in the clinical practice. CFD is the best tool for prediction of  flow pattern in upper 

airway and surgical treatment planning. 

 

Many researchers studied the flow in upper airway of OSA patients with CFD 

simulation, however, no one compared the difference between successful and failed 

surgery models (Luo et al. 2004; Mylavarapu et al. 2009; Powell et al. 2011; Mihaescu 

et al. 2008). LES has been validated for being a good method to predict flow features 

in the upper airway (Lu et al. 2014). Therefore, in this study we have simulated using 
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LES and compared flow features in different upper airway models for both before and 

after surgery and for both successful and failed surgery.  For models before surgery, 

the flow pattern is irregular, there are several recirculations in the reverse flow region, 

and the oscillation of the wall shear stress time series is strong but irregular and does 

not follow the breathing curve, indicating that the oscillation of time series is strongly 

influenced by the multiple recircualtions in reverse flow region.  For models  after 

successful surgery, the flow pattern is regular, and a single dominant recirculation is 

induced at the downstream of the minimum cross-section, and the oscillation profile 

of the wall shear stress time series is regular and follows the breathing curve closely, 

indicating that the regular oscillation profile is induced by the dominant recirculation. 

For the model after failed surgery, there are two main recirculations due to the 

morphological change, the oscillation of wall shear stress time series is strong but does 

not follow the breathing curve. From the comparison of the flow patterns, we can find 

that upper airway surgery has improved the regularity of flow pattern of the reversed 

flow, i.e., in the model with lower AHI, the reversed flow pattern is more regular and 

there exists a single dominant recirculation at oropharynx.  

 

We found experimentally an intrinsic peak frequency (3~5 Hz) for the normal subject 

resulted from the flow separation downstream the minimum cross-sectional area (Liu 

et al. 2012). The current CFD simulation can capture the similar peak frequency in 

most of the models, but for the subject #4 model after failed surgery, the peak 

frequency is 31.6 Hz and the component in the range of 3 ~ 5 Hz is quite weak.   
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The flow resistance or pressure drop has a significant effect on OSA. Wootton et al. 

(2014) analysed numerically 15 pairs of obese OSA children, they found that the flow 

resistance in the pharynx and pressure drop from choanae to a minimum cross- section 

significantly correlated to the AHI, airway minimum cross-sectional correlation to 

AHI was weaker and the airway wall minimum pressure was not significantly 

correlated to AHI. Their conclusion is consistent with our result in this study. Different 

from the correlation analysis in MMA by Zhao et al., 2013b, for UPPP surgery, we 

did not observe a significant correlation between the increase of the minimum cross-

section area and the change of AHI.  

 

5.4+Conclusion+

CFD has been considered as a useful tool for predicting the outcome of OSA treatment 

of the patients who were received the UPPP surgery. Compared the flow pattern in 

upper airway between successful and failed subjects by using LES model of CFD, the 

following results can be concluded: 

1.! All upper airway model of  four OSA subjects exist a large negative pressure 

in the anterior side of the wall, which indicating a high flow resistance. For 

successful surgical treatment, the large negative pressure has changed to 

positive near the retro-palate. However, for the failed surgery treatment, the 

negative pressure still exists near the retro-palate and even extended to the wall 

of oropharynx for both the anterior and posterior side. The failed elimination 

of the negative pressure near the retro-palate should cause the failure of 
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surgery while the additional negative pressure in the oropharynx would make 

it worse. 

2.! In terms of the axial velocity distribution, for the successful subjects, a single 

dominant recirculation stands near the wall and the pattern is regular. For the 

failed subject, there are two dominant recircualtions even though the patterns 

are regular indicating that one dominant recirculation should be a feature of a 

successful surgery. 

3.! The wall shear stress time series also shows apparent different patterns 

between successful and failed surgery outcomes and the wavelet analysis  of 

the wall shear stress time series consistent with our research before(Liu et al. 

2012) and after the successful OSA surgery the PSD displayed higher value in 

these peak frequencies than before surgery.  

4.! The statistically significant  correlation (Altman, 1991) was found ( r = -0.723, 

p = 0.043 < 0.05) between AHI and the maximum pressure drop from choanae 

to the cross-section near the retro-palate. However in our study we did not 

found the correlations between the increase in  minimum cross-section area 

and AHI change, which is different from the correlation analysis in 

Mandibular advancement (MMA) (Zhao et al. 2013b). 
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Chapter 6 Stochastic resonance in 

spontaneous breathing 

The stochastic resonance (SR) is a phenomenon that addition of noise in a nonlinear 

system can enhance the response of weak signal transmission significantly. Strategies 

of perioperative airway management of patients with OSA should be based on 

understanding of pathophysiology of upper airway obstruction. According to the 

Starling resistor model, the airway would occlude whenever pressures both upstream 

and downstream fall below a critical pressure. In another word, the breathing is 

unobstructed when the pressures both upstream and downstream is higher than that 

around the tissue of the oropharynx. We found inspiratory flow oscillates due to flow 

separation near the larynx in normal and OSA subjects, but the oscillation is weak in 

OSA subjects (Liu et al. 2012). In this chapter we assume the flow turbulent 

fluctuation as the input noise signal, the various intensities of this intrinsic noise 

generation could perform the SR phenomenon. If it is the case, the SR may play a role 

in enhancing the periodic flow oscillation due to the flow separation for controlling 

the spontaneous breathing. In this study, firstly, we have selected six adult normal 

subjects to investigate the possible SR phenomenon in spontaneous breathing of adults 

experimentally in a standard anechoic chamber. Then one of the typical normal subject 

and three OSA subjects are measured in the hospital accurately to compare the 

different SR pattern between normal and OSA subjects. Among them, two OSA 
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subjects were conducted successful uvulopalatopharyngoplasty (UPPP) surgery and 

one is suffering severe OSA. The correlation between apnea-hypopnea index (AHI), 

the OSA severity, and flow oscillating signal SNR is evaluated experimentally. This 

will help to gain new insights into the mechanism of OSA and provide quantitative 

basis for evaluating the quality of spontaneous breathing control. 

6.1! Method+

The investigation has been approved by the local ethics committee and is performed 

in accordance with the Declaration of Helsinki, and the subjects are provided with 

written informed consent forms.  

 

There were two experiments. In the first experiment, six normal subjects were selected 

to carry out the pressure measurement in mouth by microphone in a standard anechoic 

chamber for investigating the possible SR phenomenon for adult in spontaneous 

breathing. A sampling rate of 25 kHz was used, and the measuring time was 20 

seconds. In the second experiment, a awaken normal subject and three asleep OSA 

subjects were selected to carry out accurate pressure measurement in the hypopharynx 

using pressure catheter sensor in the hospital. The sampling frequency was 128 Hz. 

The detailed experimental method and procedure were described in our previous paper 

(Liu et al. 2012). 

The measured time series are analyzed by Fast Fourier Transformation (FFT). For a 

real signal f(t), if we regard it as an ergodic process, its autocorrelation is defined by 

(Papoulis and Pillai 2002): 
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The power spectral density (PSD) can be obtained by imposing Fourier transform (FT) 

on R(τ) (Narasimhan and Veena 2005), 
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where )(ωδ  is Dirac function. Therefore, if 0≠ω  , )(ωs  and )(ωS  have only 

difference of a coefficient and consequently could be considered as the same one for 

analysis though )0(s  and )0(S  are very different. Thus, in this study we also call 

)(ωs  as PSD. 
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6.2! Results+

$

$

Fig.6.1. Time series of measured pressure variation for spontaneous (left) and volitional (right) 

breathing measure by microphone in anechoic chamber. 
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(a) 
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(b) 
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(c) 
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(d) 
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(e) 
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(f) 

Fig.6.2. SNR distribution with noise intensity for both spontaneous and volitional breathing of 
six normal subjects. (a) Subject 1; (b) Subject 2; (c) Subject 3 (d) Subject 4; (e) Subject 5; (f) 

Subject 6. 
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(a) 

!

(b) 

Fig.6.3. (a) SNR distribution with noise intensity measured by catheter for normal and OSA 
subjects. (b) Regression fit between peak of the SNR and AHI. 
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6.2.1$The$stochastic$resonance$in$spontaneous$breathing$of$adult$

To investigate the role of stochastic resonance in spontaneous breathing control, we 

measured the pressure variation in the upper airway of six normal adults in an anechoic 

chamber. We distinguished the spontaneous and volitional breathing by breathing 

frequency: 12-15 cycles per minute for spontaneous and ~20 cycles per minute for 

volitional breathing. Fig. 6.1 shows the pressure signal of one subject for both 

spontaneous and volitional breathing. The pressure waveform of spontaneous 

breathing is continuous but that of volitional breathing performs "impulsive" pattern 

clearly. After carting out autocorrelation for the pressure of spontaneous breathing, 

we found that the respiratory flow fluctuation of spontaneous breathing is not random 

but has periodic signal imbedded in, and the dominant frequency is around ~5 Hz (Liu 

et al. 2012). 

 

All the six subjects are Asian, subject 1 is a male about 50 years old, subject 2-5 are 

males around 25 years old and subject 6 is a female of 30 years old. It is shown in Fig. 

6.2 that the SNR increases initially with increasing noise level; after the peak, it 

decreases with further increasing noise level for both spontaneous and volitional 

breathing. The existence of such a peak is the principal signature of stochastic 

resonance and this is the evidence of SR phenomenon in adults. From each sub-figure, 

it clearly shows that the peak of SNR in spontaneous breathing is higher than that of 

volitional breathing. This SR phenomenon may play an important role in the 

respiratory system as periodic signals are enhanced significantly by noise. The SNR 

values in most of the subjects are above zero with fewer negative values. 
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6.2.2$The$correlation$between$SNR$and$AHI$for$OSA$subjects$

In our previous work (Liu et al. 2012), we demonstrated that flow oscillation is the 

intrinsic characteristics of upper airway, and the flow oscillation would be suppressed 

for obstructed sleep apnea subjects. Here we investigate the SNR variation for OSA 

subjects. AHI is an index used to assess the severity of OSA based on the total number 

of apnea and hypopnea of breathing occurring per hour of sleep. For these three OSA 

subjects, the AHI is 39.8, 12.7 and 15.8, respectively. According to the severity 

indices of OSA by Yim et al. (2006), Subject #1 is suffering a severe OSA while after 

UPPP surgery Subject #2 and Subject #3 recovered at an acceptable level. Fig. 6.3a 

shows the variation of SNR with noise level for normal and OSA subjects. For normal 

subject, the SNR is much higher than those of OSA subjects and exhibits clearly the 

signature of SR. For Subject #3 and Subject #2 whose AHI is 15.8 and 12.7 

respectively, the SNR is higher than that of Subject #1 OSA subject (AHI=39.8), and 

the distributions look like the signature of SR. For #1 OSA subject, the AHI is 39.8, 

which is much higher than those of #2 and #3 OSA subjects, and the SNR is much 

lower than those of normal and other OSA subjects and even lower than zero. It is 

clearly shown that the SNR is correlated to AHI (Fig. 6.3b), i.e., the quality of 

oscillating signal is strongly correlated to OSA symptom. OSA is a disorder 

characterized by partial or complete pharyngeal airway closure during sleep; one of 

the main reasons of OSA is the loss of the reflex response, and during sleep the upper 

airway tissues are more relaxed which alters the fluid-solid coupling especially in 

OSA subjects. Our analyses support the hypothesis that the stochastic resonance can 

enhance periodic oscillating signal which is the stimulus to the mechanoreceptors and 
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modulate the upper airway patency. It seems that the quality of the oscillating signal 

can serve as a quantitative measure to quantify the breathing quality of OSA subject.!

 

6.3! Discussion+

From the experimental and numerical study (Liu et al. 2012), we found that there exist 

flow oscillations in upper airway. It is known that oscillating pressure is the stimulus 

to trigger the reflex in the respiratory muscles (Henke and Sullivan 1993). Human 

upper airway is a very complicated system, which results in the highly turbulent and 

fluctuating respiratory flow due to the narrowness of upper airway. This turbulent flow 

is nonlinear and the flow separation is found to exist near larynx. The separation gives 

rise to flow oscillation with frequency of 3 ~ 5 Hz in spontaneous breathing (Liu et al. 

2012). This periodic signal is buried under a broad range of noise. In a nonlinear 

system, the addition of noise can amplify the weak input signal so as to increase the 

output SNR, which would enhance the periodic signal transmission significantly. This 

phenomenon is called stochastic resonance. This phenomenon does not occur in linear 

system in which the noise only degrades the signal quality. Since the turbulent flow 

fluctuation in upper airway is nonlinear, the oscillating signal induced by the flow 

separation near larynx could be enhanced through stochastic resonance mechanism by 

considering the turbulent fluctuation as the input noise signal. According to the 

starling resistor model, the pressure surrounding the tissue of the oropharynx will 

contribute to airway collapse if it is larger than the pressure at upper (upstream, nasal) 

and lower (downstream, hypopharyngeal) segments (Gleadhill et al. 1991, Stalford et 
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al. 2004). While when the muscular tone is sufficiently activated in tissues 

surrounding the collapsible tube, the pressure surrounding the tissue away from the 

collapsible element will become very low and the pressure both upstream and 

downstream would be larger than it; then the breathing is unobstructed (Schwartz et 

al. 1988, Stalford et al. 2004). For spontaneous breathing, it is believed that the 

enhanced periodic oscillation activates the mechanoreceptors (Miller 2014; Henke 

and Sullivan 1993), and this sensory input is transmitted to the central respiratory 

control system, which regulates effectively the diaphragm and lung movements. The 

breathing is controlled by various afferent stimuli simultaneously. For volitional 

breathing, the key efferent stimulus should be from motor cortex, therefore the signal 

from mechanoreceptor is weak, and the stochastic resonance phenomenon is not as 

strong as that of spontaneous breathing. The upper airway is in motion when breathing, 

therefore the morphology of upper airway would be different for spontaneous and 

volitional breathing. The morphology determines the pattern of flow separation, and 

it would affect the frequency and amplitude of flow oscillation accordingly, 

consequently it will influence the SNR of oscillating signal.        

 

There are several factors that influence the patency of the upper airway, such as the 

negative pressure. Here we just consider one of the factors - flow oscillation due to 

the flow separation that may be an afferent stimulus to activate the mechanoreceptors. 

For the OSA subject, the narrowing upper airway suppresses the flow separation that 

results in the decline of flow oscillation, and consequently lowers the SNR. The SNR 

is closely correlated to AHI. For lower AHI, i.e. for normal subject or mild OSA 
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subject, the SNR is quite high; for higher AHI, i.e., for severe OSA subject, the SNR 

is very low, and even below zero. The correlation between SNR and AHI supports the 

idea that the flow oscillation is the afferent stimulus to activate the mechanoreceptors 

which is one of the factors to regulate the patency of the upper airway.!

!

6.4! Conclusion+

The stochastic resonance (SR) is a phenomenon that addition of noise in a nonlinear 

system can enhance the response of weak signal transmission significantly. We 

investigate the SR phenomenon in the respiratory especially in OSA subjects and 

found that: 

1.! It is shown that the SNR increases initially with increasing noise level; after the 

peak, it decreases with further increasing noise level for both spontaneous and 

volitional breathing, which means there is a SR phenomenon in adults . 

2.! The peak of SNR in spontaneous breathing is higher than that of volitional 

breathing. The SR phenomenon may play an important role in the respiratory 

system as periodic signals are enhanced significantly by noise.  

3.! SNR is correlated to AHI,!one of the main reasons of OSA is the loss of the reflex 

response, and during sleep the upper airway tissues are more relaxed which alters 

the fluid-solid coupling especially in OSA subjects. Our analyses support the 

hypothesis that the stochastic resonance can enhance periodic oscillating signal 

which is the stimulus to the mechanoreceptors and modulate the upper airway 

patency. It seems that the quality of the oscillating signal can serve as a 

quantitative measure to quantify the breathing quality of OSA subject. 
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Chapter 7 Conclusions and Suggestions for 

Future Research 

7.1! Conclusions+

Obstructive sleep apnea (OSA) is a common disorder characterized by partial or 

complete narrowing of the pharyngeal airway during sleep and widening the upper 

airway is often used in clinical practice. However, its success rate is unsatisfactory 

and the failure of the surgery would only exacerbate the symptom. This indicates that 

the widened airway is not the only criterion to appraise the breathing quality. Many 

researchers studied the flow in upper airway of OSA patients with CFD simulation; 

however, none of them has compared the difference between successful and failed 

surgery models or reported the importance of 3-5 Hz oscillation signal (Luo et.al, 2004; 

Mihaescu et.al, 2008; Mylavarapu et.al, 2009; Powell et.al, 2011). In this study, we 

use both numerical and experiments to investigate properly the pathogenesis of this 

disorder. 

 

In a previous study (Liu et.al, 2012), we found in experiments that an intrinsic peak 

frequency (3~5 Hz) for the normal subjects which resulted from the flow separation 

downstream of the minimum cross-sectional area. In this study, both the experimental 

and numerical studies showed that the SNR at 3-5 Hz signal inversely correlates with 

AHI severity. This indicates that the 3-5 Hz oscillation signal induced by flow 
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separation may play an important role in breathing control, as the oscillating pressure 

is the stimulus to trigger the reflex in the respiratory muscles (Henke et.al, 1993). For 

most of the OSA subjects, whereas the upper airway is narrowed increasing the flow 

resistance; the widening airway may decrease the flow resistance but it is not 

guaranteed to enhance the 3-5 Hz oscillation signal. This may be one of  the reasons 

of surgery failure for OSA subject.   

 

For models before surgery, there are several recirculations in the reverse flow region 

with irregular flow patterns; for models after successful surgery, the flow pattern 

appears to be regular, and a single dominant recirculation is observed at the 

downstream of the minimum cross-section, meanwhile the oscillation profile of the 

wall shear stress time series is regular and follows the breathing curve closely, 

indicating that the regular oscillation profile may be induced by this dominant 

recirculation. For the model after failed surgery, there is more than one recirculation 

due to the morphological changes, the oscillation of wall shear stress time series is 

strong but it does not follow the breathing curve. Comparing of the flow patterns, we 

found that upper airway surgery has improved the regularity of flow pattern of the 

reversed flow. In other words, in the model with a lower AHI, the reversed flow 

pattern is more regular and there exists a single dominant recirculation at oropharynx.  

 

The flow resistance, or pressure drop, has a significant effect on OSA. Wootton et al., 

(2013) analysed numerically 15 pairs of obese OSA children and found that (1) the 

flow resistance in the pharynx and pressure drop from choanae to a minimum cross- 
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section significantly correlates with the AHI, (2) that the correlation between airway 

minimum cross-sectional and AHI was weaker and, (3) that the airway wall minimum 

pressure was not significantly correlated to AHI. Our results in the current thesis is 

consistent with their conclusions. In contrast to the correlation analysis in MMA by 

Zhao et al.,(2013) for UPPP surgery, we did not observe a significant correlation 

between the increase in minimum cross-section area and the change of AHI.  

 
In the present thesis we also found the SR phenomenon in both normal and OSA 

subjects. The peak of SNR in spontaneous breathing is higher than that of volitional 

breathing. The SR phenomenon may play a crucial part in the respiratory system as 

periodic signals are enhanced significantly by noise. Our analyses support the 

hypothesis that the SR can enhance periodic oscillating signal which works as a  

stimulus to the mechanoreceptors and modulates the upper airway patency. It seems 

that the quality of the oscillating signal can serve as a quantitative measure to quantify 

the breathing quality of OSA. 

7.2! Suggestions+for+future+research+

7.2.1!Experimental+study+in+upper+airway+

As we discussed in Chapter 4, two 1:1 scaled upper airway models were produced 

using the 3-D printing technique (3500 HD Max-3D System, USA) with uniform wall 

thickness (0.5 mm) by rigid material. Due to the non-transparency of the 3-D printing 

material, the transparent window need to be incision in the orophyarnx wall to 

measure velocity profiles, which would cause measuring error.  
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To solve the limitations above, further exploration is needed. For increasing the 

experimental accuracy, the transparent material should be used to build the model 

which will decrease the measuring error significantly, and in that case, the velocity 

profiles of the whole UA can be measured accurately. 

 

In addition, we suggest that flexible material can be used to build the UA models to 

assess its circumstance in reality.  

 

7.2.2!SR+phenomenon+in+OSA+

In this thesis, SR phenomenon has been found in both normal and OSA subjects. 

Because the periodic signalbe are enhanced significantly by noise, the SR 

phenomenon may play an vital role in the respiratory system.  

 

In this research, our analyses support the hypothesis that the stochastic resonance can 

enhance periodic oscillating signal which is the stimulus to the mechanoreceptors 

while modulating the upper airway patency. It seems that the quality of the oscillating 

signal can serve as a quantitative measure to quantify the breathing quality of OSA 

subject. 

 

We suggest that oscillating signal should be the focus of the studies that are interested 

in quantifying the breathing quality of OSA subjects. 
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