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Abstract 
Object detection remains a challenging task in computer vision, not only because an 

object may appear at different scales with different non-rigid transformations, but also 

because of the intra-class variations and the variations caused by different viewpoints 

and illumination. Furthermore, some objects may be deformable, and the pose of an 

object appears differently in different scenarios. Object detection based on 

handcrafted features and conventional machine-learning methods has been researched 

for decades and has a proven performance with real-world applications. 

With the rise of deep learning, many classification problems have received a radical 

enhancement, in terms of accuracy, by using convolutional neural network (CNN), 

and this has inspired the use of CNN for detecting objects. In this thesis, we will first 

review some conventional object-detection approaches which use handcraft features 

and classical machine-learning algorithm, and then will conduct a survey on several 

CNN-based object-detection approaches. The region-based approaches use a coarsely 

trained CNN to extract class-agnostic region proposals, and then feed these proposals 

into a deep CNN for further classification and localization refinement. Proposal-free 

approaches have also been proposed, in which the CNN is used for both classification 

and localization. In our experiments, we find that different convolutional layers have 

different semantic meanings. A good localization requires feature with fine-grained 

details and high semantic features are better for classification. Therefore, we decouple 

the classification and localization from a single layer as majority of detector does. As 

a result, we proposed a fast vehicle detector, with a novel lateral convolutional 

network, which engages residual learning to enhance the localization but retains a high 

recall rate. The proposed detector can achieve relatively high accuracy and real-time 

detection for video surveillance. We have also designed an efficient traffic-sign 



classifier for an IEEE competition. Recently, we have also explored 3D object 

detection based on point clouds. A point cloud, unlike an image, has irregular data 

structure, which allows to give the same geometric representation with different 

permutation of the data. Unlike most of the literature, which projects the point cloud 

data into a Bird’s eye view map, and applies a common image-based model, we have 

proposed a positional imbedded voxel feature encoding layer, which can learn the 

voxel representation by applying a simple convolutional layer. Experiments have 

shown that our proposed architecture has great potential for 3D object detection, with 

purely point cloud data. 
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Chapter 1. Introduction 

 

Object detection is one of the hot computer-vision tasks and has been widely used in 

many applications, such as Driver Assistance Systems (DAS) and traffic surveillance 

systems. In this research, we have studied different algorithms for object detection, 

and also investigated efficient algorithms for traffic-object detection. A traffic-object 

detection system requires that there is a camera in a vehicle to capture the traffic 

scenes, and identifies and locates the positions of traffic objects using computer-vision 

techniques. An intelligent traffic-object detection system can assist automatic driving, 

collect traffic statistics, and perform traffic scene analysis.  

However, traffic-object detection remains a challenging task, because the traffic 

objects often appear with severe occlusion and can vary rapidly in type, size, and 

viewpoint. In addition, they are often perceived under bad visual conditions, such as 

rain, haze, snow, etc., and sometimes suffer from poor camera resolution. This is often 

considered as a real-world problem, so it is undesirable to use handcrafted features to 

perform detection. In the past few years, with the development of deep learning 

technology and big data, the features learned from the data are more robust to various 

challenging conditions. In this thesis, we apply deep-learning methods to perform 

traffic-object detection. The first part is on 2D detection, which takes an RGB image 

as an input and applies a deep neural network to extract hierarchical features. In our 

research, we have analyzed the semantics meaning from different layers of the 

network. We hypothesize that deep features have strong semantics, which are good to 

define the objectness but poor to localize the object. Furthermore, the earlier features 



contain much more fine-grained details, which can be utilized to achieve good 

localization. We have developed a real-time traffic-object detector, which can be used 

in video surveillance for vehicle detection, and a traffic-sign detector, which can 

perform fine-grained recognition on traffic signs. Then, in the second part of this thesis, 

we focus on more advanced 3D object detection using point cloud data. This area of 

research has been widely applied in many computer vision applications, such as 

autonomous driving, indoor navigation, and augmented reality. The reasons for this 

are that point clouds contain rich geometric information in the 3D space, which is 

good to characterize the shape of objects and can be efficiently collected by a 

commercial acquisition device, such as the laser scanner, LiDAR, as well as binocular 

cameras. However, it is difficult to adopt a conventional image-based model directly 

on the point cloud data, due to its irregular data structure and sparsity. To this end, 

many approaches have dealt with point clouds by first projecting them into a regular 

2D domain, and then performing image-based learning techniques. More recent 

approaches perform the end-to-end learning on the point clouds, by applying a 

symmetric function to explore its global representation. These approaches show its 

potential power for handling the point cloud data by learning discriminative features 

with a moderate amount of model parameters.  

This thesis is organized into 6 chapters. In Chapter 2, we will review different object-

detection approaches proposed in the past decades. We start with those early 

approaches, which are based on sliding-window and template-matching methods. 

Then, we move to those more advanced, selective search approaches. Finally, we 

introduce recently proposed detection methods based on deep convolutional neural 

networks.  



In Chapter 3, we present our research on fast vehicle detection. In our proposed 

method, we first explore using different feature layers from a deep residual network 

to perform vehicle detection. Experiment results show that the high-resolution features 

from earlier feature layers contain more structural information, which is good to 

achieve fine-grained localization but yields low recall rates. The low-resolution 

features in the deep layers contain semantically strong information, which is good for 

representing the objectness, but too coarse to achieve accurate localization. Therefore, 

we decouple the localization and objectness prediction from a single layer. Instead, 

we employ a lateral network that takes the features from earlier layers as its input, and 

outputs the localization residual. Our proposed detector can achieve fast detection at 

a rate of 28 frames/s, and a mean average precision (mAP) of 67.25% in the DETRAC 

vehicle detection benchmark. 

In Chapter 4, we address a common issue in detection systems, which is that a poor 

detector cannot localize objects very well. In this case, the detected object may not be 

located at the center and may become partially seen in its bounding box. This will 

decrease the classification rate. To deal with this issue, we present a spatial invariant 

traffic-sign classifier by utilizing the idea from a spatial transformer network [21].  

In Chapter 5, we explore more advanced 3D object-detection methods based on point 

cloud data collected from a LiDAR scanner. We review some previous approaches, 

which are based on view-projection, and have implemented the recently proposed 

VoxelNet [37] method, which can directly learn the voxel-wise feature from point 

clouds. We further improve VoxelNet by proposing a position embedded voxel feature 

encoding module and using multi-scale feature learning. The proposed method 

demonstrates its great potential for real-time 3D object detection. 



Finally, in Chapter 6, we will conclude our work and show the plan for our future 

research. 

  



 

Chapter 2. Literature reviews 

 

Object detection has been researched for decades. In the early days, people used 

handcrafted features to build detection templates, then applied ensemble methods to 

form cascaded detectors, up until the use of presently emerged deep-learning methods 

to learn discriminative features for detection. The performance of the detection 

algorithms has been improving with time. In this chapter, we review these typical 

object-detection approaches in chronological order. 

2.1 Template-based detector 

The early object detector is based on exhaustive window-searching and model-

matching methods. One typical work is by Dalal and Triggs, where they proposed 

using the histogram of oriented gradients (HOG) feature to detect pedestrians. The 

work was further enhanced by Wang [2], by combining the local binary pattern (LBP) 

and HOG feature into a single feature set, and developing a detector that can detect 

humans with partial occlusion. The object under consideration can be posed with non-

rigid transformation. Felzenszwalb et al. [3] proposed a discriminatively trained part-

based model (DPM), which uses a HOG detector as the root filter to capture the coarse 

information from the main body of the object and captures the finer details of other 

deformable parts with a quadratic model to describe the deformation cost. 

 



Ensemble-based detector 

This template-matching approach has limited performance as objects may vary in 

terms of scale and aspect ratio. To address these issues, the image pyramid, or 

ensemble multiple instance templates, has been developed. The Viola-Jones object 

detector [4] is one of the detection methods based on ensembling multiple templates, 

and has shown an impressive performance in face detection. In this method, the 

rectangular Haar features are used to describe different parts of a human face. These 

features are simple and easy to implement, but they are weak for classification, so the 

feature pool used is large when performing the sliding window search for an object 

with different scales. To select effective features, an adaptive boosting algorithm is 

employed to construct a strong classifier, based on an ensemble of multiple weak 

classifiers. These strong classifiers are then stacked in a cascaded manner. This 

strategy is also utilized in [5], where the regionlet descriptor was proposed to capture 

low-level features in a small region, and these regionlets are organized into small 

groups with different scales and aspect ratios. Each group of regionlets is viewed as a 

weak classifier. After sampling millions of weak classifiers, thousands of strong 

classifiers are built using real boosting, and are arranged in a cascaded manner, such 

that the all the information collected from the output from a given classifier are used 

as additional information for the next classifier in the cascade.  

The regionlet-based model is normalized to fit the candidate bounding boxes varied 

in scale and aspect ratio. Those regionlets having greater relatedness are grouped 

together to describe the possible distribution of the object’s grains. To detect a person, 

regionlets will localize the hand, which is the most informative part of a human body, 

at various possible locations where it may appear in a specific region. 

 



2.2 Sliding window detector 

Since AlexNet [6] won the ILSVRC 2012 Challenge, CNN has then become the major 

approach used for classification. One method of object detection is to perform an 

exhaustive sliding window search in an image, as shown in Figure 1, where the 

window moves from left to right, and then from top to bottom. To detect different 

object types at different viewing distances, windows of different sizes and aspect 

ratios are to be used. The cropped image patches from the sliding window are warped 

into a fixed size to fit the CNN, which can extract robust high dimensional features 

from the transformed images. Finally, the CNN-based features are fed to an SVM 

classifier or a regressor to predict the class probability of the corresponding regions.  

 

 

Figure 1. The sliding window approach: Search windows with different scales and 

aspect ratios are used to explore the entire image. 

 

2.3 Selective search  

The above approaches can achieve remarkable results, but one deficiency is that they 

are suffering from an exhaustive window search which is computationally intensive. 

To address this issue, some research focusing on generic object detection based on 



objectness measure [7] and selective search [8] is proposed. In [7], researchers argue 

that an object should have at least one of the following distinctive characteristics, the 

closed boundary in space, a different appearance from its surrounding and uniqueness. 

To standardize these characteristics, different image cues are proposed, 1) a Multi-

scale Saliency (MS) cue to measure the uniqueness characteristic of objects in 

different scales, 2) a Color Contrast (CC) cue to measure the color discrepancy of a 

window to its encompassing region, 3) an Edge density (ED) cue to measure the edge 

compactness near the window borders, 4) a Super-pixels Straddling (SS) cue to 

measure the close boundary characteristic of objects by taking into account the 

entireness of super-pixels that lies inside the window and a complementary cue, 5) 

Location and Size (LS), to evaluate how likely an image window cover an object based 

on its location and size. These cues are then combined with a Naïve Bayes model so 

that the posterior of the image window objectness conditioned these cues can be 

estimated. 

In [8], a selective window is searched to extract a subset of possible regions. These 

regions are supposed to find a blob-like thing by covering an object to their best. They 

search the object using region merging. As shown in Figure 2, they initially over-

segment the image into many regions and aggregating the adjacent similar regions 

based on their texture information. Each aggregating blob is considered to be a 

possible object region. The aggregation is performed following a bottom-up scheme 

so that different scales of region proposals can be extracted 



 

Figure 2. Left: The super-pixel segmentation. Right: The selective window extracted 

by each aggregation.    

2.4 Region-based detector 

In [9]–[11], a region proposal based detection paradigm is developed. In [9], known 

as a region-based convolutional neural network (R-CNN), they addressed the object 

detection as a classification problem. Given an image, they first extract around 2000 

class-independent region proposals by using selective search. Each region is then 

warped to feed a fix-sized CNN input and produces a fixed-length feature vector from 

the CNN output. Based on these feature vectors, they train a linear SVM to classify 

each region into different object classes. The overview of R-CNN detection pipeline 

is illustrated in Figure 3. 

 

Figure 3. The pipeline of R-CNN detector. 

The R-CNN has a multi-stage structure. To train the linear SVMs and bounding 

regressor in R-CNN, the features extracted from CNN are stored in a disk which is 

space demanding. In detection time, one proposal is fed into the pipeline at a time and 



the computation could not share among proposals. In [10], the authors propose a fast 

RCNN framework which outperforms than R-CNN in both time and accuracy. As 

shown in Figure 4, Fast R-CNN first extracts the feature map of the image by passing 

it through a series of convolutional and pooling layers. Given the feature map of the 

entire image, a fixed length feature for each proposal is then extracted with an ROI 

pooling layers. The ROI pooling can calculate the feature for each proposal in a fixed 

length. The proposal region is first projected to the convolutional feature map so that 

the feature within that particular region is captured. Then the region feature is sliced 

into a fixed grid. Within each grid cell, a max-pooling operation is applied to all the 

feature values in that cell. As the result, for each proposal, a fixed size ROI feature is 

extracted. The SVMS classifiers in fast RCNN is replaced by two sibling fully 

connected layers, one for generating classification distribution over a softmax function, 

one for regressing the bounding box coordinates. In this way, the training is performed 

in a single stage so that all layers’ parameters are updated at a time. The computation 

among proposal can be shared and no more feature caching is needed in Fast R-CNN. 

The Fast R-CNN is 10 times faster than R-CNN in training time and 150 times faster 

for the inference. 

 

Figure 4. The pipeline of Fast R-CNN detector. 

In Faster R-CNN[11], as shown in Figure 5, this framework is further enhanced in 

terms of both speed and accuracy, the author used a tiny neural network named region 

proposal network (RPN) to replace the proposal generation module, which can share 



the same convolutional feature in Fast R-CNN. They slide the RPN on the feature map 

and predicts K (number of anchors) region proposals at each position. RPN is an 

anchor-based detector and its loss is jointly trained with Fast R-CNN. For more details 

of RPN, we leave it to the section 4.3 since anchor-based methods is another detection 

paradigm that we want to separately discuss. 

 

 

Figure 5. The pipeline of the Faster R-CNN detector. 

 

2.5 Single-shot detector 

Region-based detectors are accurate but at an extreme cost. Faster R-CNN processes 

7 frames per second (7 FPS) on the PASCAL VOC 2007 test set. The major time-

consuming part is the ROI pooling which processes the region candidate one at a time. 

Let’s take another look at the sliding window detector which use different windows 

with different scale and aspect ratio to detect the objects with different types. The fatal 

weakness of the sliding window approach is to use the window as the final bounding 

box, which required a very large number of windows to cover most of the objects. A 

more efficient method is to use the predefined prior boxes as initial guesses so that the 

detector can predict the bounding box refer to these prior boxes, as shown in Figure 

6. 



 

Figure 6. Instead of searching each position of the image, one-shot detector 

discretize the image into a grid of cells and perform regression for each cell (left). 

Using pre-defined anchor boxes with different scales and aspect-ratios to increase 

the recall rate (right). 

This strategy also adopted in Faster R-CNN, where the region proposal network 

predicts the class-agnostic bounding boxes in terms of anchor offsets. However, a 

single-shot detector predicts both the bounding box and the probability of categories. 

One typical one-shot detector is YOLOs [12,13], which treat object detection tasks as 

a regression problem. By using a neural network, the coordinates of the bounding box, 

the confidence of the object contained in the box, and the probabilities of the object 

are directly predicted from an entire image. YOLO(v1) uses a fully connected layer 

to directly predict bounding boxes refer to each grid cell. In YOLO(v2), the author 

removed YOLO(v1)’s fully connected layer and used self-clustered anchor boxes to 

perform regression. In YOLO(v2), pooling layer is removed to increase the resolution 

of the convolutional output. The network has changed the input size from 448×448 to 

416x416 so that the feature map has only one center. Considering most of the items, 

especially large ones are more likely to appear in the center of the image, YOLO(v2) 



uses a convolutional layer with the down-sampling rate of 32 so that the output size is 

13 x 13 where the output feature map can encode most of the objects efficiently. 

YOLO(v2) uses the anchor boxes to increase the accuracy. If considering only grid 

cells, the model predicts 98 boxes per image, this is how does in YOLO(V1), but with 

anchor boxes, each image can have more than 1000 boxes predications. The accuracy 

of YOLO(V2) is 69.5mAP and the recall is 81%. After the anchor boxes encoding 

method, the result is 69.2mAP and the recall is 88%, the high recall allows more room 

for the model to improve. The use of anchor boxes on the YOLO’s model starts from 

the consideration that if the anchor’s dimension is manually selected, the model will 

learn to adapt these anchors. Thus, they use the K-means clustering method to 

automatically select the best initial anchors to increase IOU scores.  

 

 

Figure 7. YOLO perform prediction on both coordinates and categories for each 

cell. 

  



YOLO can simultaneously perform a single shot prediction on categories and 

locations. However, convolutional layers reduce the spatial dimension and resolution. 

Therefore, the above model can only detect larger targets. To solve the problem, we 

perform independent target detection from multiple feature maps. 

The SSD [12] is another single-shot detector that uses the VGG19 network as a feature 

extractor (as does CNN used in Faster R-CNN). It uses multiple layers in the 

convolutional network to detect the objects in multi-scales. In SSD, multiple default 

boxes (similar to the anchor boxes) with different scales and aspect ratios are selected 

to generate a series of predictions. There will be some predicted boxes that match the 

ground truth box (with IOU bigger than 0.5), but at the same time, there are many 

boxes are not, and the negative boxes are far more than the positive boxes. This can 

cause imbalances between negative boxes and positive boxes which is difficult to 

converge during training. Therefore, in this paper, the non-matched boxes are first 

sorted according to their confidence of matching the default boxes, and then the 

highest ones are selected as the negative boxes, the number of selection must ensure 

that the proportion of negatives and positives is 3:1, this also known as hard-negative 

mining. 

 

 

Figure 8. Up: YOLO perform prediction on the last layer. Bottom: SSD performs 

detection on multi-layer so more robust to handle objects with various scales. 



2.6 Feature pyramid network 

Detecting targets at different scales is challenging, especially the detection of small 

targets. The SSD completes the detection through multiple feature maps. However, 

the bottom layer will not be selected to perform target detection since their high-

resolution feature contains insufficient semantic information which leads to a 

significant drop in recall. The SSD only uses the upper layer to perform target 

detection, and therefore has poor detection performance for small objects. 

Feature Pyramid Network (FPN) [13], Figure 9, is a feature extractor designed to 

improve accuracy and speed. It replaces feature extractors in detectors such as Faster 

R-CNN and SSD to generate higher quality feature pyramids. The FPN consists of 

bottom-up and top-down paths. The bottom-up path is a common convolutional 

network for feature extraction and the top-down is for feature reconstruction. The 

spatial resolution decrease from the bottom-up. The semantic meaning in the 

corresponding reconstruction layer increases. Although the semantics of the 

reconstruction layer is strong, the position of the target is inaccurate after all up-

sampling and down-sampling. Thus, adding a lateral connection between the 

reconstruction layer and the corresponding feature map can make position detection 

more accurate. Figure 9 details the bottom-up and top-down paths. Where P2, P3, P4, 

and P5 are feature map pyramids for target detection. 



 

Figure 9. The features from FPN has a better tradeoff between high semantics and 

fine-grained details. 

 

2.7 Focal loss and Non-maximum suppression 

For most detection algorithms such as SSD and YOLO, the predicted bounding boxes 

can be divided into positive and negative. When the IOU between the bounding box 

(obtained from the anchor plus the offset) and the ground truth is greater than a 

threshold (usually 0.5), the bounding box is a positive sample. If the IOU is less than 

the lower threshold, the bounding box is a negative sample. In an input image, the 

proportion of the target is generally much smaller than the proportion of the 

background, so the predicted boxes are dominated by negative samples, which raises 

two problems. First, too much negative samples cause too much negative loss, so that 

the positive loss is submerged, which is not conducive to the goal of convergence. 

Second, most negative samples are not in the transition area of the foreground and 

background, the classification is very clear (this easy-to-classify negative is called 



easy negative), the background class tends to achieve higher confidence value during 

the training. From another point of view, if the loss of a single sample is small, the 

corresponding gradient in the back-propagation is also small. Thus, the easy negative 

sample will have a limited effect on the convergence of the model parameters. One 

required is the sample that has a large loss, which has a greater impact on the 

convergence of the parameters, which is a hard positive/negative sample.  

 

 

Figure 10. Different sample contributes different loss during the training. 

As mentioned previously, SSD uses online hard negative mining (OHEM), which is a 

method of screening easy samples. It sorts the loss and selects the largest loss example 

to train. This method ensures that the training areas are all hard examples and removes 

all the easy examples, which is unable to further improve the training accuracy from 

easy examples. In [14], the author proposes a focal loss, that reframes the stand cross 

entropy loss function in another formula:  

FL(𝑝௧)  =  −𝛼(1 − 𝑝௧)ఊ𝑙𝑜𝑔(𝑝௧) (2.1) 

where p୲ is the classification probability of different categories, 𝛾 is a value greater 

than 0, 𝛼  is a decimal between [0,1], 𝛼  and 𝛾  are at fixed values and do not 

participate in training. From the expression one can determine whether it is a 



foreground class or a background class, the larger p୲  is, the smaller the weight 

(1 − 𝑝௧)ఊ is. That is, easy example can be suppressed by a small weight.  𝛼 is a 

scaling factor that used to adjust the contribution of positive and negative examples.  

Typically, the detector will make repeated detections for the same target, we use non-

maximal suppression (NMS) to removes duplicated detections with lower confidence. 

Formally, we first rank the detections in a descending sequence according to its 

confidence. Then, in the first iteration, we select the one with the highest confidence 

and calculate its intersection over union (IoU) with the others. If any other predictions 

have the IoU greater than a specific threshold, we remove it from the sequence In the 

second iteration, we select the prediction with the second highest confidence and apply 

the removal as does in the first times. We keep this procedure until no predictions can 

be removed. 

2.8 Conclusion 

This chapter serves as a review of object detection, in which we first introduced the 

early object detection approaches that use handcraft feature as region descriptor, and 

some well-known machine learning techniques to classify these regions based on the 

handcraft features. Later, we reviewed the approaches that apply deep learning, in 

which two detection paradigms, the region based detector and single shot detector 

have been introduced. The drawbacks of them are also discussed. In the following 

chapters, the proposed methods based on the convolutional neural network will be 

presented. 

  



 

Chapter 3. Fast vehicle detector 

 

Vehicle detection is one of the hot computer-vision tasks and has been widely used in 

many applications, such as Driver Assistance Systems (DAS) and traffic surveillance 

systems. An intelligent vehicle detection system can assist in automatic driving, 

collect traffic statistics, and perform traffic scene analysis. However, vehicle detection 

still remains a challenging task, because vehicles often appear with severe occlusion 

and are varied in type, size, and viewpoint. In addition, they are often perceived under 

bad scene conditions, such as rain, haze, snow, etc., and low-light conditions. In this 

chapter, we introduce our proposed vehicle detector for traffic surveillance.  

3.1 Overall detection pipeline 

The proposed LateralCNN is shown in Figure 11, where a deep residual network [15] 

is used to extract rich feature representations from a given image. Two convolutional 

layers are employed to the last feature layer to generate 6 feature maps (4 localization 

maps and 2 objectness maps), which are used to coarsely regress the bounding-box 

coordinates and the corresponding objectness scores. The features from earlier layers 

are passed through a lateral network with 1x1 reduction. The lateral network can 

produce highly resolved feature residuals on the localization maps (red) The final 

output bounding box is determined by applying non-maximum suppression. 



 

 

Figure 11. The upper network performs the coarse detection, while the lower is the 

lateral network, which generates the fine-grained localization residuals. 

 

3.2 Objectness vs. localization 

Features in different scales have different semantical meanings in object detection. To 

explore which feature layer is efficient for detecting vehicles at a particular size, we 

use the different residual blocks from a pre-trained 101-layer ResNet to perform 

detection. We refer to these blocks as res2, res3, and res4 features, and conduct 

exploratory experiments on the DETRAC [16] dataset. We evaluate the detection 

performance in terms of the average precision (AP) and the average recall (AR), with 

IoU threshold of 0.5. From Table 1, we observe that the AP increases from res4 to 

res3, but drops from res3 to res2, and res2 yields an extremely low recall rate. Based 

on this, we infer that the high-resolution features from early layers, which contain 

low-level structural information, is less sensitive to semantics. In contrast, the low-

resolution deep layers provide a more high-level abstraction of the object, which is 

semantically strong to represent the objectness but too coarse to give accurate 

localization, especially for small objects. We argue that there should exist a trade-off 

between a better localization and a higher recall, so we decouple the objectness and 

localization prediction from a single layer. As a result, we select the semantically 

strong res4 feature and employed two convolutional layers to regress the object. This 



fully convolutional structure maintains relatively higher recall, which allows more 

room for our model to achieve better accuracy. In the later section 3.4, we will show 

how to utilize the early layers to enhance the localization accuracy. 

 

Table 1. Average precision (AP) and average recall (AR) are evaluated when using 

different feature layers to perform detection. The resolution of the input image is 

480x640. 

 

3.3 Multi-cell prediction 

Similar to YOLO, we sample the image space into a grid, and for each grid cell, the 

height, width, center offsets relative to the cell, and objectness scores of the bounding 

box are predicted. However, instead of focusing on only one grid cell where the center 

of the object lies, as it does in YOLO, we encode the object's bounding-box 

information into multiple grid cells that overlap with this object. If multiple objects 

are overlapped with one cell, the object with the highest overlapping area is predicted 

by that cell. Using multiple cells to perform prediction can largely increase the 

robustness to object occlusions. Figure 12 illustrates a case where the two objects are 

highly overlapped so that their bounding-box centers lie in the same cell. In this case, 

using the single-cell prediction can detect one object only, while the multi-cell 

prediction can detect the occluded object by another cell where the object partially 

lies. 



 

Figure 12. Two target encoding methods, the colored cells are responsible for 

predicting the same colored bounding-box during the inference. 

 

3.4 Lateral residual network 

Semantically strong features from the deep layers can achieve relatively higher recall, 

but they are too coarse to detect an object at a small scale. Compared to the deep layers, 

the high-resolution features from earlier layers can provide much more detailed 

information about tiny objects and fine-grained representations. Thus, we incorporate 

these features into our model by passing it through a lateral network. In the lateral 

network, 1x1 reduction layer is first applied, then a re-organizing layer, which can 

transform the tensor with the shape of (ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ, 𝑑𝑒𝑝𝑡ℎ) into the tensor with 

the shape of (height/scale, width/scale, depth × scale × 𝑠𝑐𝑎𝑙𝑒)is employed. The 

transformed high-resolution features have the equal scale of the low-resolution 

features, Thus, we can concatenate these features and apply two fully connected layers 

to predict the localization residual efficiently. With the help of the lateral network, the 

model can finely resolve the localization map efficiently. 

The localization predictions in each cell contain the information of the bounding box 

coordinates, in terms of the center offset relative to the grid cell, its height, and width. 



For simplicity, we use 𝑝௜
௟௢௖ to denote the 4-d localization prediction in each grid cell, 

where 𝑖 = 1 … 𝑁 is the index of the grid cell. The objectness prediction in each cell 

is represented by a 2-d foreground-background probability distribution, which is 

simply denoted by 𝑝௜
௢௕௝. Following the multi-cell encoding scheme, we can calculate 

the localization ground truth, which is denoted by 𝑡௜
௟௢௖ . We use 𝑐௜  to indicate the 

class encoded by each grid cell, which is set to 1 if the cell is assigned to detect the 

object and set to 0 if the background. For the lateral network, we denote its output by 

δp୧
୪୭ୡ, which represents the localization residual.  

Thus, the network can be trained in two stages. The first stage is to train the coarse 

detector, with the following loss function: 

ℒଵ = 𝐿௟௢௖(𝑝, 𝑡) + 𝛼𝐿௢௕௝(𝑝, 𝑐). (3.1) 

The second stage is to train the lateral network to predict the localization residual, 

with the following loss function: 

ℒଶ = 𝐿௟௢௖(𝑝 + 𝛿𝑝, 𝑡). (3.2) 

Following Faster RCNN [11], we efficiently implement the two-staged alternative 

training with an approximate joint training, so that the network can be trained in an 

end-to-end manner, with the total loss as follows, 

ℒ = ℒଵ + βℒଶ. (3.3) 

𝐿௟௢௖ is an ℓଵ loss, which is defined as: 

𝐿୪୭ୡ(p, t) =
1

𝑁
෍ 𝑐௜

ே

௜ୀଵ

|𝑝௜
௟௢௖ − 𝑡௜

௟௢௖|. (3.4) 



To solve the foreground-background class-imbalance issue in our detector, a more 

dedicated focal loss [14] is used with Sigmoid normalization σ. Following [14], 𝐿௢௕௝ 

can be defined as: 

𝐿௢௕௝(𝑝, 𝑐) = −
1

𝑁
෍ 𝜔 (1 − 𝑝௜

∗)ఊ𝑙𝑜𝑔(𝑝௜
∗)

ே

௜ୀଵ

, (3.5) 

Where 

𝑝௜
∗ =   ቊ

𝜎 (𝑝௜
௢௕௝

) 𝑖𝑓 𝑐௜ = 1

1 − 𝜎 (𝑝௜
௢௕௝

) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  (3.6) 

α is set to 0.1, which is for balancing the loss contribution between the localization 

and objectness predictions. We carefully select this hyper-parameter following the 

inverse-of-gradient rule in multi-task learning.β is set to 0.05, which is determined 

by cross-validation. ω and γ are the hyper-parameters in the focal loss equation. 

We empirically set them to 0.5 and 2, respectively, which are the optimized values 

mentioned in [14]. 

3.5 Experiments 

We evaluated the proposed LateralCNN on DETRAC [16], which is a traffic vehicle 

detection benchmark with 140K captured frames from traffic surveillance. The 

numbers of training and testing samples are 84K and 56K, respectively, and each 

sample has a resolution of 960x540. The test set is categorized into different challenge 

levels, which consider different object sizes and degrees of occlusion, and different 

scene conditions, such as sunny, cloudy, rainy and night. To train our detector, we 

resized the training images into the resolution of 640x480 and added jitter to the 

images. We initialized the feature extractor with a pre-trained 101-layer residual 

network and initialized the other parts of the network with a zero-mean uniform 



distribution. Batch normalization is applied to all the convolutional layers. The initial 

learning rate is 0.001 for the first 100K iterations and then dropped by 50% after every 

30K iterations. The network was totally trained for 200K iterations with a mini-batch 

size of 16, using stochastic gradient descent. 

We split the samples into two subsets, 75% for training and 25% for validation. Then, 

we performed the ablation experiments to evaluate the effectiveness of different 

components. The first three entries in Table 2 show the results of the coarse detector, 

with and without batch normalization (BN), and with either cross-entropy loss (CE) 

or focal loss (FL). The last two entries show the results of using the lateral network to 

perform fine-grained detection with different early layers. We found that using batch 

normalization and focal loss can improve the detection accuracy by 1%~2%, and with 

the lateral network, the detector can achieve nearly 9% improvement. Although the 

lateral network introduces the additional runtime, the detection can still achieve 28 

frames/s with a moderated GPU. 

 

Table 2. Ablation experiments using different configurations, with the mean average 

precisions (mAP) and frames-per-second (FPS) reported. 

We also compare LateralCNN with other state-of-the-art methods on the DETRAC 

test set. We use the precision-recall evaluation protocol to evaluate the performance 

in terms of average precision, and detection speed, in terms of frames-per-second 

(FPS). More specifically, we generate different pairs of precision and recall value by 



changing the score threshold of our detector and plot a Precision-recall (PR) curve. 

The average precision can then be derived by calculating the area under this PR curve. 

As shown in Table 3, our detector thoroughly outperforms most of the state-of-the-

art approaches, like Faster RCNN [11], CompACT [17] and achieves similar accuracy 

to EB [18] but with a lesser inference time. The reason behind this is that our detector 

does not rely on the proposal generation. We directly regress the object bounding box 

from the output.  

 

Table 3. The detection performances on DETRAC, under different challenges and 

weather conditions. 

Figure 13 shows the precision-recall curves of our method and the other methods. 

Note that our detector can achieve better localization accuracy, but a lower recall rate 

compared to EB. This is because our detector has a regression-based architecture.  

 

Figure 13. The precision-recall curves of our proposed method and different state-

of-the-art methods tested on the DETRAC test set. 



Figure 14 shows the qualitative results of our method on the DETRAC test set. Most 

of the vehicles are at different sizes and viewpoints, and under severe occlusion, but 

our method can detect them successfully. 

  

  

  

  

Figure 14. Qualitative results of the proposed method on the DETRAC test set. 

 



3.6 Conclusion 

In this chapter, we have presented a fast vehicle detection approach, which detects 

objects from coarse to fine. Our coarse detector can achieve relatively high recall, by 

using semantically strong features. A lateral network is employed to fuse the high-

resolution features from earlier layers to achieve fine-grained localization. In our 

experiments, we show that, with this lateral network, our detector can achieve better 

detection performance, with an average precision of 67.25% on the DETRAC 

benchmark. Furthermore, the detector is suitable for real-time applications, which 

achieves a detection rate of 28 frames/s. 

 

 

 

 

 

 

 

 

 

  



 

Chapter 4. Traffic-sign Recognizer 

 

As a common symbol in our daily life, traffic signs provide drivers with the necessary 

traffic guidance information. Traffic signs are often placed on the top and sides of the 

road, requiring the driver to shift his gaze to search and identify, which easily distracts 

the driver. The driver who is unfamiliar with the road conditions will easily lead to 

traffic accidents, when suddenly seeing a decelerating sign during driving. The 

effective extraction and identification of road signs can help drivers to obtain the road 

information on time, which can prevent from accidents. In this chapter, we introduce 

a robust traffic-sign recognizer, which can be used to classify those badly localized 

traffic signs. 

Badly localized object means that the predicted bounding box is not able to encircle 

the object tightly or only part of the object appears in the bounding box. In this case, 

as shown in Figure 15, we typically enlarge the detected region with some margin, 

and then perform classification. Since the traffic sign is not placed well in a search 

region, which dramatically decreases the detection and classification rate.  



 

Figure 15. The effect of a badly located road sign: Green: the bounding box 

predicted by a poor detector. Red: the enlarged region to be fed into a classifier. 

 

Using a single convolutional neural network (CNN) to locate road signs may not be a 

good idea, because the network is insensitive to color and spatial variations. Typically, 

using image pre-processing techniques, like histogram equalization, whitening, and 

data augmentation (e.g. flipping, rotation, sheering, etc.), can alleviate the harm, but 

this is still not enough to achieve human-level accuracy. Furthermore, this will 

increase the cost for training and introduce extra processing before feeding data to the 

network. In our proposed algorithm, we have created a translated traffic classification 

dataset, using the ground-truth bounding-box coordinates in GTSDB [19]. Unlike the 

normal traffic-sign classification datasets, this dataset is more challenging as the 

traffic signs are in random positions and some unwanted objects may also appear to 

intervene them. Figure 16 shows some traffic-sign images from the database. In our 

method, we use a color attention module and a constraint spatial transformer layer to 

help our deep neural network to learn color and spatial variations. We demonstrate in 

our experiments that using this layer, the classifier can achieve better performance 

without performing any data augmentation. 



 

Figure 16. The translated traffic-sign dataset. Each traffic sign is placed in a 

random position in each region, and unwanted traffic signs are also involved. 

4.1 Model 

In [20], it was shown that CNN can achieve different classification results when 

different color spaces are used. In order to find the optimized color space, we use a 

channel attention module to impose different weights on different color channels. 

Meanwhile, we use a spatial transformer network [21] to justify the target location by 

constraining its learnable affine transformation matrix. We build our classifier with a 

convolutional neural network, whose configuration is illustrated in Table 4. 

Layer Kernel Size No. of Channels 
Channel attention - 10 
Spatial transform - 10 
Convolution 3x3 16 
Max Pooling - 16 
Convolution 3x3 64 
Max Pooling - 64 
Convolution 3x3 128 
Convolution 3x3 64 
Max Pooling - 64 
Fully Conn  - 1024 
Fully Conn  - 1024 
Fully Conn - 43 

Table 4. The network configuration of a 43-class traffic-sign classifier. 



4.2 Channel attention module 

Channel information exhibits more discriminative power in traffic-sign recognition. 

We first apply a 1x1 convolutional kernel to enrich the features by extending a 3-

channel RGB image to a multi-channel feature representation. Then, we apply a global 

pooling to extract the channel-wise feature from these features. After that, a fully 

connected layer is employed to extract the attention weight from the channel-wise 

features. The weight will be imposed on the different channels, so that some feature 

channels will be further activated. For example, the red channel of the “stop” sign and 

the blue channel of the “speed limit” sign should be paid more attention with. The 

attention module is differentiable, so it can be inserted into anywhere of the network. 

We use it as the first layer, because the RGB channels from the input image contain 

rich information for us to determine the channel weights. 

 

Figure 17. The channel attention module. 

 

4.3 Spatial transformer layer 

The spatial transformer layer [20] can be used to improve the classification accuracy 

and locate the traffic-sign objects with no supervision. The spatial transformer layer 

can perform a geometric transformation on the input coordinates by applying a 

learnable affine transformation matrix. Figure 18 shows the layer, where 𝛵ఏ(𝐺) 



represents the transformation matrix. The spatial transformer layer has been proven to 

be differentiable. It can be inserted into any position in the network. 

 

 

Figure 18. The spatial Transformer Unit. 

 

The input feature map U is fed into a localization network and the transformation 

parameters 𝜃 is predicted. A transformed grid 𝛵ఏ(𝐺) is generated to sample the 

pixels from U. V is the output feature map sampled from 𝛵ఏ(𝐺)  using bilinear 

interpolation. Table 5 shows the structure of the localization network. 

Layer Kernel Size No. Channels 
Convolution 7x7 16 
Max Pooling - 16 
Convolution 5x5 32 
Max Pooling - 32 
Convolution 3x3 64 
Max Pooling - 64 
Fully Conn + ReLu - 128 
Fully Conn + ReLu - 64 
Fully Conn - 3 

Table 5. The layer information of the localization network. 



The last layer of the localization network produces a 3-D vector 𝜃 = (𝜃ଵ, 𝜃ଶ, 𝜃ଷ). 

Then, the following affine transformation matrix is constructed. 

𝐴ఏ = ൤
𝜃ଵ 0 𝜃ଶ

0 𝜃ଵ 𝜃ଷ
൨ (4.1) 

𝐴ఏ  is a constraint affine transformation matrix parameterized by 𝜃 , which only 

allows isotropic scaling and translation. 𝜃ଵ controls the scaling and (𝜃ଶ, 𝜃ଷ) control 

the translation. The affine transformation matrix is applied to the coordinates of the 

output grid, producing the transformed grid’s coordinates.  

൬
𝑥௜௡

𝑦௜௡
൰ = Τఏ(𝐺) = 𝐴 ቆ

𝑥௢௨௧

𝑦௢௨௧

1
ቇ = ൤

𝜃ଵ 0 𝜃ଶ

0 𝜃ଵ 𝜃ଷ
൨ ቆ

𝑥௢௨௧

𝑦௢௨௧

1
ቇ (4.2) 

where (𝑥௜௡, 𝑦௜௡)் is the input coordinates, which represent the sample points of the 

input feature map, and (𝑥௢௨௧, 𝑦௢௨௧)் is the output coordinates, which holds the pixel 

position of output feature map. The output coordinates are used to sample the pixel 

from the input feature map 𝐼௜௡ using bilinear interpolation, to generate the output 

feature map 𝐼௢௨௧, as follows: 

𝐼௢௨௧ = ෍ ෍ 𝐼௜௡(𝑥, 𝑦) × max(1 − |𝑥௜௡ − 𝑥|, 0) × max(1 − |𝑦௜௡ − 𝑦|, 0)

௒

௬ୀ଴

௑

௫ୀ଴

 (4.3) 

Note that, spatial transformer module is differentiable and can be inserted into 

anywhere of the network due to the differentiability of the bilinear interpolation, the 

gradients for each inputs of the spatial transformer module can be derived as the 

following equations: 

𝜕𝐼௢௨௧

𝜕𝑥௜௡
= ෍ ෍ 𝐼௜௡(𝑥, 𝑦) × max(1 − |𝑦௜௡ − 𝑦|, 0) ቐ

1               𝑖𝑓 𝑥 ≥ 𝑥௜௡

0   if  |𝑥 − 𝑥௜௡| ≥ 1
−1             𝑖𝑓 𝑥 < 𝑥௜௡

௒

௬ୀ଴

௑

௫ୀ଴

 (4.4) 



 

𝜕𝐼௢௨௧

𝜕𝐼௜௡(𝑥, 𝑦)
= ෍ ෍ max(1 − |𝑥௜௡ − 𝑥|, 0) × max(1 − |𝑦௜௡ − 𝑦|, 0)

௒

௬ୀ଴

௑

௫ୀ଴

 (4.6) 

 

 

4.4 Model analysis 

We conducted control experiments by switching off the spatial transform module on 

the translated dataset, with a enlarging factor of 1.5. We visualize the feature map 

before the second convolutional layer. As shown in Figure 19, the spatial transformer 

unit can accurately locate the wanted object very well. We have also evaluated the 

classification accuracy by training our classifier for 2000 epochs. The classification 

accuracy over the epochs is shown in Figure 20.  

𝜕𝐼௢௨௧

𝜕𝑦௜௡
= ෍ ෍ 𝐼௜௡(𝑥, 𝑦) × max(1 − |𝑥௜௡ − 𝑥|, 0) ቐ

1               𝑖𝑓 𝑦 ≥ 𝑦௜௡

0   𝑖𝑓  |𝑦 − 𝑦௜௡| ≥ 1
−1             𝑖𝑓 𝑦 < 𝑦௜௡

௒

௬ୀ଴

௑

௫ୀ଴

 (4.5) 



 

Figure 19. Up: The feature maps without using the spatial transformer layer. 

Bottom: The feature maps using the spatial transformer layer. 

 

 

Figure 20. The classification accuracy on the translated GTSRB. 



We also perform the ablation study by switching off the channel attention module and 

the spatial transformer unit separately and together. Table 6 shows how the different 

modules impact the overall performance on the translated GTSDB dataset.  

Channel Attention Spatial Transformer Accuracy 

✘ ✘ 92.53% 

✘ ✔ 98.72% 

✔ ✔ 99.21% 

Table 6. Evaluation of the spatial transformer (ST) layer and channel attention 

module in terms of classification accuracy on translated GTSDB. 

 

4.5 VIP Cup Competition 

We formed a team to participate in the IEEE SPS Video and Image Processing (VIP) 

Cup competition last year. The team was composed of two undergraduates from our 

Department, and the other two undergraduates from UTS, and one postgraduate. I was 

the postgraduate member. My responsibility was to guide and instruct the 

undergraduate team members to develop algorithms for the competition. The VIP Cup 

competition was organized by IEEE Signal Processing Society, and the challenging 

topic was traffic-sign detection, under bad weather conditions. In the competition, we 

were required to detect and recognize traffic signs from video sequences, under 

different severe conditions, such as rain, haze, snow, blur, and darkness. We tackled 

this challenge, by proposing a two-stage detector. In the first stage, we applied a 

single-shot network to detect class-agnostic traffic signs’ region, which was fast and 

able to achieve high recall. The network is a variant of YOLO detector which output 

layer is modified to generate two-class (foreground and background) probability. 



In the second stage, we applied our proposed traffic-sign recognizer to classify and 

re-localize these candidate regions. Considering the traffic signs’ classes are highly 

imbalanced across the dataset, we train our region detector and classifier separately to 

ensure the system achieves high recall. Figures 21 shows the precision-recall curves 

of the class-agnostic region detector and the final classifier on the VIP Cup’s 

benchmark. 

  

Figure 21. The precision-recall curves of class-agnostic and class-specific detection 
tasks. 

Our proposed model won the first runner-up in the final competition. There were more 

than 250 teams from 28 countries participated in the competition. For more details, 

please refer to https://ghassanalregib.com/vip-cup/. 

 

4.6 Conclusion 

In this chapter, we have introduced a robust traffic-sign classifier based on a 

convolutional neural network. The proposed classifier contains a spatial transformer 

module, which can adjust the position of those badly located traffic signs, and a 

channel-attention module, which can boost the performance in recognizing traffic-

sign objects with salient colors. The proposed classifier shows its effectiveness in real-

world environments. 



 

Chapter 5. 3D Object Detector  

 

Existing object detection frameworks, such as Faster-RCNN, SSD, YOLO, etc., have 

demonstrated remarkable performance in 2D object detection. However, in many 

applications like robotics, autonomous driving system, 2D bounding-box is 

insufficient and provides ambiguities when reasoning about 3D pose of an object, 

occlusion and depth. Therefore high-quality 3D bounding box is required. In 3D 

object detection, it is necessary to estimate the 3D statistics for each object, by 

leveraging different sensor modalities. Apart from RGB camera, some stereo devices 

like structured light sensors, LiDAR and binocular camera are typically used. 

In this chapter, we will first present a 3D object detection approach based on point 

cloud data. Point cloud data is a set of points that carry the rich amount of information. 

Each point is presented as a 4D vector in terms of the X, Y, and Z coordinates and the 

intensity value (reflectance of the light). We first describe the coordinate system and 

the bounding box parameters used in the representation. A point cloud is captured by 

using a LiDAR device, which is mounted on the top of a vehicle. The X, Y, and Z 

coordinates are shown in Figure 22, where the X, Y, and Z axes are spanned along 

the distance, breadth, and height, respectively, of the searching space of the LiDAR 

sensor. Usually, (x, y, z, h, w, l, θ) is used to define a 3D object bounding box, where 

h, w, and l are the size of the bounding box along Z, Y, and X axes to represent the 

height, width, and length, respectively, of the bounding box; (x, y, z) is the location 

of the centroid of the bottom plane; and θ ∈ [−180∘, 180∘] is the yaw angle defined 

on the X-Y plane, which represents the pose of the bounding box. 



 

Figure 22. The coordinate system from the camera’s and lidar's perspectives. 

However, it is hard to apply a deep neural network to learn and analyze geometric 

data, like point clouds. The reasons for this are, first, a point cloud is typically sparse. 

Second, the point cloud data is a set of point coordinates, which has irregular data 

structure. The geometry representation of point cloud data is invariant to its data 

permutations. As shown in Figure 23, the geometry representation is unchanged after 

re-arranging the order of its data entries. In the past few years, methods based on 2D 

projection and voxel-wise feature learning have been proposed. 

 

Figure 23. The point cloud data has geometry representation that is invariant to the 
data permutations. 



5.1 Image-based 3D detection 

Similar to the models used for 2D object detection, the methods in [22]–[25], based 

on monocular images, have employed deep neural networks to extract features with 

more semantics. [20] proposed a cascaded framework to simultaneously predict the 

bounding box, part localization, and part visibility of vehicles. Sochor et al. [21] 

applied the auxiliary rasterized bounding box as a geometry prior and combined the 

encoded view-points to achieve fine-grained 3D localization on vehicles. Mousavian 

et al. [22] harnessed the geometric constraints to estimate the orientation of the 3D 

bounding box detected. However, these methods are not straightforward and are less 

accurate, because of their lack of depth information. Works [26]–[28], based on RGB-

D images, have shown their potential and superiority over those methods based on 2D 

models. [26] exploited stereo imaging to estimate the depth-encoded features, such as 

object size priors and ground planes, and generated high-quality 3D bounding box 

proposals. [27] proposed a 3D Region Proposal Network, which directly acts on the 

3D scene. Similar to Faster RCNN, it performs a 3D sliding window search at two 

scales to generate anchor-related 3D object proposals. 

5.2 Point-cloud-based 3D detection 

Recently, with the remarkable progress of sensing technology, how machines are 

seeing the world has evolved from 2D optical imaging to 3D scanning methods. The 

3D point cloud data, obtained by a visible light scanner (LiDAR), has shown its great 

advantages in 3D object detection, because point cloud data is convenient to obtain, 

and is robust to the changes of light and occlusion, as well as being less sensitive to 

textures. However, processing the point cloud data is challenging, due to its large data 

volume, irregular structure, and vulnerability to noise. In addition, point cloud data is 

sparse and unevenly distributed, which makes it easy to miss the object in detection. 



How to represent the point cloud data and what kind of in-depth network structure 

should be used to detect 3D objects is still an open issue. 

Currently, most of the existing methods project a 3D point cloud into a 2D image or 

convert it to a volumetric mesh by quantization before applying the data to a 

convolutional neural network (CNN). Li et al. [29] are the first to propose 

transforming point cloud data into Bird’s-eye-view (BEV) images, where each pixel 

represents a grid cell of the horizontal plane. Each pixel is intentionally encoded into 

different channels in terms of the height, intensity, and density of the points. The same 

strategy has also applied in [30], where a much simpler conversion from point cloud 

data to Bird’s-eye-viewed RGB map is explored. The Bird's-eye view projection 

transforms the irregular point cloud data into the Cartesian space. Such transformation 

allows the use of conventional well-designed and pre-trained 2D CNN models to 

extract rich representations, and has shown a significant performance improvement 

over the previous image-based detection approaches, especially for occluded objects. 

However, point cloud data still suffer from poor resolution, and the sparse input 

provides less information about the objects’ shapes. Consequently, it is hard to 

generate object proposals, especially for those far away from the sensors. As a result, 

some works [31]–[33] explored to combine the high-resolution image source and the 

corresponding point cloud to perform the detection. Chen at al. [31] proposed a multi-

view three-dimensional (MV3D) framework by encoding the point cloud in compact 

multi-view representations, Bird’s-eye view, and frontal view, as shown in Figure 24. 

The network consists of two sub-networks, one is an object proposal network, which 

generates a 3D candidate box for each object from the Bird's-eye view representation, 

while the other one is a fusion network, which combines the regional features from 

the different views and the RGB image. In [33], RGB images are used to generate 2D 



proposals, which are then lifted to a 3D frustum proposal. The point clouds within the 

frustum are then fed into a PointNet [34]-based network for further regression and 

classification. One drawback of [33] is the missing of 2D proposal generation. This 

will result in the missed detection of some 3D objects. This issue is addressed and 

resolved in [32], where a multimodal fusion region proposal network was developed, 

which fuses the high-density image input and the occlusion-free Bird’s-eye view input 

to generate the region proposals. 

 

Figure 24. (a) Point cloud data, (b) the Bird’s-eye view map, and (c) the frontal view 

map which includes the 'depth', 'height', and 'intensity' channels. 

5.3 End-to-end learning on Point Cloud 

Data representation based on point cloud projection tends to weaken the pattern and 

affect the invariability of the point cloud data. Recently, some papers have proposed 

to operate directly on the point cloud, instead of transforming the data into other 



formats. Wang and Posner [35] presented a novel point-centric voting scheme, which 

exploit the sparsity of point cloud data to achieve efficient sliding window search. 

Another important work is VoxelNet [36], which performs feature extraction and 

bounding-box prediction into a unified framework. VoxelNet first slices the point 

cloud into equally spaced 3D sub-regions, known as voxels, and converts a set of 

points within each voxel into a single feature via a voxel feature encoding (VFE) layer. 

This layer extract a fix-sized feature for each voxel which is invariant to the point 

permutation. The point cloud is hence transformed to a volumetric representation. 

After that, a convolutional middle layer (CML) is applied to perform dimension 

reduction and outputs a 2D representation which encodes the feature representation in 

Bird’s-eye view. Finally, a region proposal network (RPN) is adapted to perform 

bounding-box prediction. This work abandons the traditional feature engineering 

process and multi-view projection, which provides a generic end-to-end learning 

paradigm on point clouds and achieves higher recall and state-of-the-art performance 

in the KITTI [37] benchmark. However, VoxelNet is a memory-consuming model. 

The voxel feature encoding (VFE) module is a stack of sequential vanilla PointNet’s 

layers. Each layer will first transform each point into a high-dimensional feature by a 

sharable multi-layer perceptron, and then applies a symmetric function, such as max 

pooling to all the features. The pooled feature of each point is concatenated back to 

each points and fed to the next layer. We follow the VoxelNet structure, and have 

proposed a more efficient network, namely VoxelCNN.  

5.4 VoxelCNN (proposed) 

The overall framework is shown in Figure 25, which consists of three modules: 1) a 

voxel feature extraction module, 2) a feature pyramid network, which can leverage 

the voxel features from multiple scales to perform detection from coarse to fine, and 



3) a bounding-box regression layer, which predicts bounding boxes based on the offset 

towards the predefined anchor boxes. The following will illustrate these modules in 

detail. 

 

Figure 25. The proposed detection pipeline. 

We consider the points within the ranges (0m, 72m), (-40m, 40m), and (-2m, 1.2m) 

along the X, Y, and Z axes, and discretize the point clouds into a voxel grid. Each 

voxel is a 3D subspace, which contains a variable number of points because the 

LiDAR points are typically sparse and distributed unevenly. Thus, we randomly 

sample 𝐾 points for each voxel if the number of points in a voxel is greater than 𝐾, 

and pad zero-valued points if the number is smaller than 𝐾, to make sure the voxels 

are non-empty. In our experiments, we discretise the point clouds with the resolutions 

of 0.2m, 0.2m, and 0.4m along the X, Y, and Z axes, respectively. Therefore, for each 

example, we generate a sparse 4D tensor, which has the shape of (352,400,10, 𝐾). 

5.4.1 Position imbedded voxel feature encoding 

For each voxel, we propose a position embedded voxel feature encoding layer. The 

structure of this layer is designed based on these considerations: 1) enforce the 

permutation canonicalization, 2) better capture the local structure of the data, and 3) 

with the global position embedding. To clearly illustrate our algorithm, we represent 

a LiDAR point 𝒑  into a (𝒑𝒊, 𝒇𝒊)  form, where 𝒑𝒊 = [𝑥௜ , 𝑦௜, 𝑧௜] ∈ 𝑅ଷ  and 𝒇𝒊 =



[𝑓௜ , 𝑟௜, 𝑔௜, 𝑏௜] ∈ 𝑅ସ are the position and intensity feature of the points, respectively. To 

explore the spatial correlation within a local region, we also incorporate the centre 

position of the 𝑗௧௛ voxel 𝒄𝒋. We first transform the points to the local coordinates by 

subtracting each point by the centre position. Then, we concatenate the intensity 

feature with the local positional feature and the centred positional feature, which 

contains the positional information from both the local and holistic views. The 

position embedded feature can represent different local structures, and has different 

receptive fields for voxels with different scales. This variability makes the feature map 

carry different semantics, which allows us to use a feature pyramid to enrich the 

presentation (see Section 5.4.3). We follow [36] to apply a sharable multi-layer 

perceptron to map the feature to a higher dimensional space. This greatly reduces the 

module's sensitivity to the permutation of the inputs. Instead of applying a symmetric 

function, as [32] and [34] do, as inspired by the spatial transformer network [21], we 

learn a 𝐾 × 𝐾 permutation transformation matrix 𝛱, such that after transformation, 

the points with different permutation can potentially achieve invariant representation 

in another dimensional space. Then, we aggregate the information across points by 

applying a 1 × 𝐾  convolutional layer. The above-mentioned process can be 

summarized as the following algorithm, known as Position Embedded Voxel Feature 

Encoding (PEVFE) module. 

Since the point-cloud points are sparsely distributed across space, most of the voxels 

contain no points. Therefore, we can simply perform the voxel-wise feature extraction, 

because our voxel feature encoding layer is sharable across voxels, and for each voxel, 

the multi-layer perceptron are also shareable across the points. Thus, the algorithm in 

Table 7 can be parallelized in the point level by using GPU. We first store the voxel 

index for each point in a table, then we perform the point-wise feature extraction (up 



to line 5).  To aggregate the features from the same voxel, we apply the 

𝐶𝑜𝑛𝑣(1 × 𝐾, 𝐷௜௡, 𝐷௢௨௧) convolutional kernel across all the voxels to calculate the 

voxel-wise feature, where  1 × 𝐾 is the kernel size, and 𝐷௜௡, 𝐷௢௨௧ are the number 

of input channels and output channels respectively. The aggregated voxel features are 

then indexed to the dense feature volume based on the pre-stored voxel indices. This 

fast GPU implementation is shown in Figure 26. 

Algorithm 5.1: Position Embedded Voxel Feature Encoding (PEVFE) Module 

Input: positional feature: 𝑷 = (𝒑𝟎, 𝒑𝟏, ⋯ ⋯ , 𝒑𝑲ି𝟏)𝑻, 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒: 𝑭 =

(𝒇𝟎, 𝒇𝟏, ⋯ ⋯ , 𝒇𝑲ି𝟏)𝑻, and centroid of voxel 𝑐௝ 

Output: encoded voxel feature: 𝒚 

1. Local coordinates transform: 𝑷෡ = 𝑷 − 𝑐௝  

2. Position embedding: 𝑭෡ = ൣ𝑭, 𝑷෡, 𝑐௝൧    (𝑭෡ ∈ ℝ𝑲×𝟕) 

3. Project to high dimensional feature space: 𝑭෩ = 𝑀𝐿𝑃(𝑭෡)    (𝑭෩ ∈ ℝ𝑲×𝑫𝟏) 

4. Learn the permutation transformation matrix: 𝛱 =  𝑀𝐿𝑃(𝑭෡)  

5. Permutation invariance features: 𝑭∗ = 𝛱 × 𝑭෩ 

6. Feature aggregation: 𝒚 =  𝑪𝒐𝒏𝒗(𝟏 × 𝑲, 𝑫𝟏, 𝑫𝟐)( 𝑭∗)    (𝒚 ∈ ℝ𝑫𝟐) 

Table 7.The algorithm implemented in PEVFE module.  

 

 



 

Figure 26. Fast GPU implementation of the voxel encoding layer. 

 

5.4.2 Bounding-box regression 

We simply adopt the anchor-based regression strategy to predict the 3D bounding-box 

offset towards each anchor. We start from the Bird’s-eye view and divide the 

searching space into a grid with three different resolutions, which are compatible with 

the three scaled output feature maps. We encode the ground-truth bounding box to the 

target feature map by calculating the overlapping area between the ground-truth 

bounding box and the anchor boxes. Since the point clouds are usually sparse, most 

of the anchor boxes contain no points, those anchors overlapped with the ground-truth 

objects are far less than those are not. Therefore, to avoid overfitting the problem, we 

categorize the anchors into either positive, negative or "ignored", with the following 

rule: 1) An anchor box having an overlapping (IoU) area with one of the ground-truth 

boxes, with IoU larger than 0.65, is declared positive. 2) For a ground-truth box, the 

corresponding anchor box with the largest overlapping area is considered to be 

positive. 3) The anchors in a cell, which contain no points, are declared "ignored". 4) 

An anchor with the overlapping area smaller than 0.4 is also declared "ignored". 5) 

An anchor not classified into any of the above four cases is considered to be negative. 



Consider a ground-truth bounding box with parameters (xୠ, yୠ, zୠ, hୠ, wୠ, lୠ, θୠ), 

and the positive anchor at the i୲୦  position ൫xୡ
୧ , yୡ

୧ ൯ , the target output 𝒕𝒊 =

൫x୲
୧ , y୲

୧, z୲
୧, h୲

୧ , w୲
୧, l୲

୧ , τ୲
୧ , η୲

୧൯ ∈ R𝟠 at this position should satisfy the following: 

𝑥௕ = 𝜎൫𝑥௧
௜൯ + 𝑥௖

௜ , 

𝑦௕ = 𝜎൫𝑦௧
௜൯ + 𝑦௖

௜, 

𝑧௕ = 𝜎൫𝑧௧
௜൯ + 𝑧௩௘௟௢ , 

ℎ௕ = ℎ௔𝑒௛೟
೔
, 

𝑤௕ = 𝑤௔𝑒௪೟
೔
, 

𝑙௕ = 𝑙௔𝑒௟೟
೔
, and 

𝜃௕ = arctan
tanh(𝜏௧

௜)

tanh(𝜂௧
௜)

. 

“tanh” is used to normalize the output so that it lies in [−1,1] and σ is the sigmoid 

function 

σ(x) =
1

1 + eି୶
, 

and z୴ୣ୪୭ is the z-value in the Velodyne coordinate of the ground plane, which equals 

-1.7. Thus, we define the following loss functions, a localization loss, which is applied 

to positive anchors only, and a classification loss, which calculates the cross-entropy 

loss over all the positive anchors and negative anchors. The localization loss is defined 

as follows: 

ℒℓℴ𝒸 =
1

N୮୭ୱ
෍ SmoothL1൫𝒑𝒊

𝒍𝒐𝒄, 𝒕𝒊൯

୧

, 



where SmoothL1 is the smooth ℓ1 function [12], i is the index of the positive cells, 

and N୮୭ୱ  is the number of positive anchors. The classification loss is defined as 

follows: 

ℒ𝒸ℓ𝓈
𝓅ℴ𝓈

=
1

N୮୭ୱ
෍ BCE൫𝒑𝒊

𝒄𝒍𝒔, 1൯

୧

, 

ℒ𝒸ℓ𝓈
𝓃ℯℊ

=
1

N୬ୣ୥
෍ BCE൫𝒑𝒋

𝒄𝒍𝒔, 0൯

୨

 

where BCE stands for binary cross entropy loss, i  and j  are the indices of the 

positive and negative anchors, respectively. Note that, in our scenario, the positive and 

negative anchors are highly imbalanced. Thus, we perform the hard-negative mining 

by sorting the negative anchors in terms of the classification loss in descending order. 

Then, we select the top N୬ୣ୥ negative anchors so that the ratio of N୮୭ୱ: N୬ୣ୥ equals 

1:3. The loss functions can be jointly optimized as follows: 

ℒ = 𝛼ℒℓℴ𝒸 + 𝛽ℒ𝒸ℓ𝓈
𝓅ℴ𝓈

+ 𝛾ℒ𝒸ℓ𝓈
𝓃ℯℊ

, 

where the weighting factors (α, β, γ) = (1.5, 5.0, 0.5) , which are determined 

empirically so that the losses will almost lie in the same range.  

5.4.3 Feature pyramid network 

We use the feature pyramid network [13] as our backbone network because it can 

leverage the feature with different scales and semantics, and it demonstrates superior 

performance in object detection. We build a feature pyramid network (FPN), as shown 

in Figure 27, to learn hierarchical representations from the voxel features. FPN is 

built by stacking a number of convolutional blocks, each of which uses sequential 

1 × 1 and 3 × 3 convolutional layers, and is then followed by a batch normalization 

and ReLU activation. We also include skip-connections after each block, which allows 

the model to be deeper. The last layer predicts the encoded bounding box and 



classification probability. In our experiments, we predict two boxes, each of which 

contains 8 regression parameters and 2 classification parameters in terms of 

foreground/background probabilities, so the output is a W × H × [2 ∗ (8 + 2)] 

tensor. We also take the features from earlier layers and concatenate them with the 

bottom layers via an up-sampling kernel. The following diagram shows the network 

in detail. 

 

Figure 27. The proposed feature pyramid network. 

 



5.4.4 Data augmentation 

Data augmentation is crucial in our training because only a limited number of training 

samples are available. An existing pre-trained model is used and fine-tuned with the 

training samples in order to avoid overfitting. The data is augmented randomly using 

one of the following ways. 

1) Flip the point cloud and the ground-truth bounding box horizontally and vertically. 

2) Add jitter to all the points within each ground-truth bounding box. 

3) Apply a global scaling to all the points and ground-truth boxes. 

4) Apply a global rotation to all the points and ground-truth boxes. 

5.4.5 Performance evaluation 

We evaluate our proposed detector on the KITTI [37] 3D object detection benchmark. 

This dataset contains 7,481 training examples, including RGB/grayscale images from 

four cameras and point clouds. The objects include vehicles, pedestrians, and cyclists. 

The evaluation is categorized into three different levels: easy, moderate, and hard, 

based on the object size and the amount of occlusion, as well as whether the object is 

truncated. We conducted our experiments on detecting vehicle objects, and we split 

the training data into a training and a validation set, with a ratio of about 1:1. This 

results in having 3,712 samples for training and 3,769 samples for validation. 

To analyze the proposed feature-encoding module, we chose the binary voxel feature 

[29] as the baseline to compare with our proposed detector. Since our detector outputs 

are 3D bounding-boxes, we reformat them to BEV bounding-box in 2D by dropping 

the height value. We evaluate the performances of BEV detection and 3D detection 

based on the PASCAL criteria. Specifically, we consider each detection as a hit/miss 

based on the overlapping area/volume between the predicted bounding box and the 



ground-truth box. For cars, this bounding-box overlapping area/volume is required to 

exceed 0.7. Then we can calculate multiple precision-recall (PR) values in different 

confidence levels and plot a PR curve. The detection performance can then be 

evaluated in terms of the area under this curve, known as average precision. The 

network is trained for 100 epochs, with a learning rate of 0.001 using the Adam 

optimizer. To remove duplicated bounding boxes, we perform 3D non-maximum 

suppression.  

Table 8 shows the detection performance in terms of the mean average precision. As 

seen from the table, our proposed voxel encoding module can learn features more 

robust than the binary voxel features and PointNet feature. However, the robustness 

also depends on the number of points sampled within a voxel. In our method, we 

sample only 35 points for each non-empty voxel, which follows the same setting in 

VoxelNet [36]. To visualize the precision-recall trade-off of the proposed detector, the 

PR curve is plotted, as shown in Figure 28. 

Benchmark Method Easy Moderate Hard 

Car (3D Detection) 

3DFCN 42.31% 39.52% 32.81% 

VoxelNet* 53.43% 48.78% 48.06% 

Proposed 63.46% 57.90% 56.06% 

Car (Bird’s Eye 

View) 

3DFCN 74.29% 68.31% 62.92% 

VoxelNet* 85.41% 83.16% 77.10% 

Proposed 83.42% 82.61% 80.47% 

Table 8. Mean average precision on two detection tasks. * indicates the unofficial 

results which are based on the implementation https://github.com/qianguih/voxelnet 

 

 



 

 

 

Figure 28.  The precision and recall in the Bird’s-eye view detection (up) and 3D 
detection tasks (bottom). 





 

Figure 29. The detection result between VeloFCN(left)[29] and our proposed 

VoxelCNN(right). The green boxes are prediction boxes and the red ones are ground-

truth boxes. Note that our proposed detector can achieve less missing rate and better 

localization in 3D detection task. 

 

Figure 29 shows the qualitative results of the VeloFCN [29] and our proposed 

VoxelCNN detector. Note that, our approaches can achieve better performance in both 

classification and localization.  

Figure 30 shows the qualitative results of our method on the validation set. Most of 

the vehicles can be detected successfully even under a severe occlusion. Occlusion is 

a common characteristic of LiDAR data. However, in some cases where the objects 

are far from the LiDAR source, the detection may be heavily interfered with. The 

reason behind this is the point cloud data, which is at a farther distance, tends to be 

sparser.  

 



 



 

Figure 30. The qualitative results on the KITTI validation set. 

 



5.5 Conclusion 

In this chapter, we first introduced the 3D object detection based on point clouds data 

by its challenges, the point clouds data is typically sparse and has a non-Euclidian data 

structure. We then reviewed the early approaches which are about projecting the point 

clouds into a Brid’s eye view map and applying the conventional image-based 

technique to perform detection. We then introduced the recently proposed voxel 

feature leaning which can efficiently perform detection in an end-to-end manner. We 

also demonstrated a proposed detector, which performs voxel feature learning with a 

novel permutation transformation technique. The proposed detector also resorted 

multi-scale features by a feature pyramid network and showed its potential power in 

3D vehicle detection task.  

 

 

 

 

 

 

 

 

  



Chapter 6. Conclusion 

In this thesis, we have overviewed different object-detection approaches proposed in 

the computer-vision community. In Chapter 2, we introduced the conventional 

methods in object detection, which applied handcrafted features, like histogram of 

oriented gradients (HoG), local binary pattern (LBP), regionlet, etc., and used machine 

learning based classifiers, such as adaptive boosting, support vector machine (SVM), 

etc. to determine the objectness of sampled regions extracted by using the sliding 

window search. We have also introduced the approaches based on deep learning and 

big data. In this kind of approaches, researchers started to train deep neural networks 

for extracting deep features using an extremely large amount of data. It has turned out 

that the deep features are more robust to different environments, such as weather 

conditions, occlusion, lighting changes, etc. Furthermore, the deep features are better 

to characterize different objects, in terms of different variations such as viewpoints, 

scales and aspect ratios. Instead of using the sliding-window search, researchers 

tended to selectively generate region proposals by some image prior, or directly use 

deep features to coarsely predict the possible region proposals. We have also 

summarized two different paradigms based on deep-learning approaches. The first one 

is the one-shot detector, which directly regresses the object position and the class from 

the same feature layer. This detector can achieve fast detection. In this paradigm, some 

prior boxes (default boxes) are used and regression is performed on each of these 

boxes. A box was considered into positive, negative and ignored based on the 

intersection over union (IoU) with respect to the ground-truth boxes. A large number 



of prior boxes will also cause class imbalance problem which makes the neural 

network hard to train so that affect the recall of the one-shot detector. Some training 

tricks like online hard negative mining (OHNM) and focal loss can be used to stabilize 

the training. Compare to the single-shot detector, the region-based detector can 

achieve relatively higher recall. The region-based detector performs detection in two 

stage, the first stage is about generating region proposals using a class-agnostic one-

shot detector and the second stage is about performing classification on these 

proposals. However, the two-stage detection manner makes it has relatively slow.  

In Chapter 3, we present our proposed lateral convolutional neural network and we 

applied it to the vehicle detection task. In this model, we argue that different layers 

from deep neural network exhibit different semantics. For the earlier layer, the fine-

grained details are better to perform good localization, but low semantics will affect 

the objectness prediction. Thus, we decouple the localization regression and 

objectness prediction from a single layer. Instead, we use an earlier layer to regress 

the localization residual and apply a new bounding box encoding scheme so that the 

detector is robust to handle the occluded object. The proposed network shows its 

potential on the video surveillance for vehicle detection and can achieve almost real-

time with a moderate GPU.  

In Chapter 4, we develop a traffic sign recognition system. We applied the 

aforementioned detector to detect the traffic sign and applied another convolutional 

neural network to perform classification. We consider the scenario the traffic sign may 

not be well localized from our detector and developed a classifier which is robust to 

the spatial shifted from the object. The classifier is built by sequential of convolutional 

layers and one channel-attention layer and one spatial attention module. Experiments 

show that with the spatial attention module, our classifier can further enhance the 



recognition rate. The channel attention layer also shows its potential when detecting 

the objects in salient color. 

In Chapter 5, we investigate the 3D object detection based on the point clouds. We 

first reviewed the latest technology on point-cloud-based detection which projects the 

point cloud into different views and performs the image-based method. Some research 

focuses on multi-source fusion which integrating the features from both point cloud 

data and RGB image. Inspired by VoxelNet, we proposed a “position embedded voxel 

feature encoding” module which can directly learn the features from the scattered 

point. This module tried to solve the permutation invariant problem existed in point 

set feature learning. In which, we learn a permutation canonicalize matrix to transform 

the point set into a high-dimensional domain and apply a convolution operator to 

extract features from the point set. We also utilize the feature pyramid network to 

perform multi-scale detection and propose a novel 3D bounding box encoding scheme 

which can predict the oriented 3D bounding box with 8 regression parameters.  

In point-cloud-based detection problem, the sparsity and the large capacity of the point 

cloud data still a tough problem. Besides this, point set lies in an irregular domain 

which is hard to extract feature with a fix configured convolutional kernel. In our 

future research, we plan to solve these two issues. For the first issue, our thought is to 

perform sparse to dense hallucination by using some image cues. For the second issues, 

we will keep track of the current research on point set classification problem and 

explore more on point set representation methods. 
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