

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

SIMILARITY MEASURES:

ALGORITHMS AND APPLICATIONS

CHAN TSZ NAM

PhD

The Hong Kong Polytechnic University

2019

The Hong Kong Polytechnic University

Department of Computing

Similarity Measures: Algorithms and Applications

Tsz Nam CHAN

A thesis submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

July 2018

CERTIFICATE OF

ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

. .

Tsz Nam CHAN

July 2018

i

ii

Abstract

Similarity measures are the basic components for various problems such as image

processing, computer vision, pattern recognition and machine learning problems.

However, evaluating the similarity measures is normally the bottleneck for many

applications. In this thesis, we highlight three computational intensive applica-

tions and propose efficient algorithms in these scenarios.

The first application is object detection in images. Given a query image,

this problem finds the most similar sub-image within a given target image. The

problem can be formulated as the nearest neighbor search problem. In the con-

text of computer vision, we also call this the template matching problem. The

Euclidean distance is used to measure the dissimilarity between the query im-

age and a sub-image. However, the time complexity of object detection for each

query is the product of the sizes of sub-image and image, which is prohibited for

fast object detection scenario. We propose two solutions which can significantly

outperform the state-of-the-art method by 9-20 times faster.

The second application is image retrieval. Existing image retrieval systems

extract the feature histograms for all images. During the online phase, image

retrieval systems return the k most similar images for each online image-query

from the user. One robust similarity measure between two histograms is based

on the Earth Mover’s Distance (EMD). However, due to the cubic time complex-

ity for evaluating EMD, it restricts the applicability to small-scale datasets. We

present the approximation framework that leverages on lower and upper bound

iii

iv

functions to compute approximate EMD with error guarantee. Under this frame-

work, we present two solutions which can significantly outperform the existing

exact or heuristic solutions. Our experimental studies demonstrate that our best

solution can outperform the existing method by 2.38x to 7.26x times faster.

The third application is (kernel) classification. In machine learning context,

kernel function is the similarity measure between two multidimensional vectors,

which are extracted by different feature extraction methods, based on differ-

ent scenarios. Many machine learning models need to compute the weighted

aggregation of kernel function values with respect to a set of multidimensional

vectors and the query vector, using different types of kernel functions, for exam-

ple: Gaussian, Polynomial or Sigmoid kernels. However, computing the online

kernel aggregation function is normally expensive which limits its applicability

for some real-time (e.g. network anomaly detection) or large-scale (e.g. den-

sity estimation/ classification for physical modeling) applications. We propose

novel and effective bounding techniques to speed up the computation of ker-

nel aggregation. We further boost the efficiency by leveraging index structures

and exploiting index tuning opportunities. Experimental studies on many real

datasets reveal that our proposed method achieves speedups of 2.5-738x over the

state-of-the-art.

Acknowledgements

First, I would like to express my deepest sense of gratitude to my advisors,

Dr. Ken Yiu, for his patient guidance in these four years. He brings me to explore

the research world and provides me with many advices during my research study.

Without him, I would not have completed this research work.

Next, I would like to thanks Hui Li (HKU) and Prof. Nikos Mamoulis, who

are my collaborators in the paper ”FEXIPRO: Fast and Exact Inner Product

Retrieval in Recommender Systems”. Their written paper skills gives me insight

on how to write a good research paper. Moreover, this work provides me insight

for our research work in ”KARL: Fast Kernel Aggregation Queries”.

Later, I would like to thanks Dr. Leong Hou U (Ryan), who is my col-

laborator in two papers ”The Power of Bounds: Answering Approximate Earth

Mover’s Distance with Parametric Bounds” and ”KARL: Fast Kernel Aggrega-

tion Queries”. Ryan’s comments can make me think deeper about my research

work, especially for the topic in Earth Mover’s Distance.

After that, I would also like to thanks Prof Kien. A. Hua who is my collabo-

rator in two research papers of template matching (Similarity Search on Matrix).

v

vi

Prof Hua’s comments make our research papers more readable.

During my research study. I have learnt many different knowledge and

have got inspired from different research students during my study. Thanks to

Ziqiang Feng, Andy He, Capital Li, Hui Li (PolyU), Qiang Li, Wengen Li, Yu

Li, Petrie Wong, Chuanfei Xu, Wenjian Xu and Qiang Zhang for their comments

and encouragement. I am glad to have many joyful moments with all of them.

Lastly, I need to thank my parents, especially for my mum and dad. With-

out them, I am not able to see the beautiful world, not to mention conducting

research.

Table of Contents

Abstract iii

Acknowledgements v

Table of Contents vii

List of Figures xiii

List of Tables xix

1 Introduction 1

2 Literature Review 9

2.1 Representation of Vectors in Different Applications 9

2.2 Types of Similarity Measures . 10

2.3 Queries with Similarity Measures 13

2.4 Bound Functions for Similarity Measures 15

vii

viii TABLE OF CONTENTS

2.4.1 Euclidean Distance (ED) 16

2.4.2 Inner Product (IP)/ Cosine Similarity (COS) 17

2.4.3 Kernels . 18

2.4.4 Dynamic Time Warping (DTW) 18

2.4.5 Earth Mover’s Distance (EMD) 19

2.5 Approximation Methods of Similarity Measures 20

2.5.1 Locality Sensitivity Hashing (LSH) 20

2.5.2 Approximation Methods for EMD 21

2.6 Indexing Structures for Multi-Dimensional Data 22

2.6.1 Group Filtering . 23

2.6.2 Single Vector Filtering . 24

2.6.3 Optimal Order of Filtering 25

3 Sub-Window Nearest Neighbor Search (SWNNS) on Matrix 27

3.1 Preliminaries . 30

3.1.1 Problem Definition . 30

3.1.2 Prefix-Sum Matrix & Basic Lower Bounds 31

3.2 Progressive Search Approach . 34

3.2.1 The Flow of Proposed Algorithm 34

3.2.2 Progressive Filtering for Candidates 37

TABLE OF CONTENTS ix

3.2.3 Progressive Filtering for Groups 39

3.2.4 Supporting Group Filtering Efficiently 44

3.3 Extension for Irregular-Shaped Queries 47

3.3.1 Is Progressive Search still applicable? 49

3.3.2 Extension for LBlevel,� based on Partitioning 51

3.4 Experimental Evaluation . 60

3.4.1 Experiments for Rectangular Queries 60

3.4.2 Experiments for Irregular-Shaped Queries 64

3.5 Related Work . 69

3.6 Chapter Summary . 72

4 The Power of Bounds: Answering Approximate Earth Mover’s

Distance with Parametric Bounds 73

4.1 Preliminaries . 76

4.1.1 Problem Definition . 76

4.1.2 Existing Bound Functions 77

4.2 Parametric Dual Bounding . 78

4.2.1 Exact EMD on Sparse Histograms 79

4.2.2 Skew-Transform Operation 80

4.2.3 Skew-Based Bound Functions 82

x TABLE OF CONTENTS

4.2.4 Case study on Parametric Lower Bound Functions 84

4.3 Approximation Framework . 85

4.3.1 Validator . 86

4.3.2 Training-free Controllers 89

4.3.3 Training-based Controller (ADA-H) 93

4.4 Experimental Evaluation . 96

4.4.1 Experimental Setting . 97

4.4.2 Are Parametric Dual Bound Functions Useful? 99

4.4.3 Approximate EMD Computation 101

4.4.4 Case Study on kNN Content-based Image Retrieval . . . 106

4.5 Related work . 108

4.6 Chapter Summary . 110

4.7 Appendix . 111

4.7.1 The Exponential Sequence Λ in ADA 111

4.7.2 Number of iterations for ADA-L 114

4.7.3 Tightness of the inequality in Theorem 4.2 114

5 KARL: Fast Kernel Aggregation Queries 117

5.1 Preliminaries . 122

5.1.1 Problem Statement . 122

TABLE OF CONTENTS xi

5.1.2 State-of-the-Art (SOTA) 124

5.2 Our Solution: KARL . 127

5.2.1 Fast Linear Bound Functions 127

5.2.2 Tighter Bound Functions 130

5.2.3 Automatic Tuning . 136

5.3 Extensions . 138

5.3.1 Other Types of Weighting 138

5.3.2 Other Kernel Functions 141

5.4 Experimental Evaluation . 143

5.4.1 Experimental Setting . 144

5.4.2 Efficiency Evaluation for Different Query Types 147

5.4.3 Tightness of Bound Functions 150

5.4.4 Offline Index Tuning . 152

5.4.5 Online Index Tuning for In-situ Applications 152

5.4.6 Efficiency for Polynomial Kernel 153

5.5 Related Work . 154

5.6 Chapter Summary . 156

6 Conclusions and Suggestions for Future Research 157

6.1 Contributions . 157

xii TABLE OF CONTENTS

6.2 Future Directions . 158

References 161

List of Figures

1.1 Framework . 1

1.2 Sub-window nearest neighbor search (SWNNS) 3

1.3 1-NN image retrieval . 4

1.4 Example of FP (q) . 6

2.1 Hierarchical tree structure . 23

3.1 Sub-window nearest neighbor search (SWNNS) 28

3.2 Illustration of our progressive approach 28

3.3 Example for the problem . 31

3.4 Example of a prefix-sum matrix 33

3.5 The flow of our progressive search method 36

3.6 LBlevel,� at different levels . 39

3.7 A group with Lg ×Wg consecutive candidates 40

xiii

xiv LIST OF FIGURES

3.8 Illustration of LNq(D[extq(G)]) (in light color) and

HNq(D[extq(G)]) (in dark color) 41

3.9 Illustration of the idea in LB⊕
group(q,G) 41

3.10 Prefix histogram matrix, α = 6, Dmin = 1, Dmax = 12 46

3.11 Examples of irregular-shaped queries 47

3.12 Example for the irregular-shaped query 48

3.13 Group-based lower bound for irregular-shaped query 51

3.14 A valid partition Γ of a mask m 52

3.15 Level � in irregular partition plan 53

3.16 Examples on split . 59

3.17 Examples on mend . 60

3.18 Effect of the number of bins α . 63

3.19 Effect of the query size Nq . 64

3.20 Effect of the data size ND . 65

3.21 Effect of the noise . 66

3.22 Comparisons of partitioning heuristics, varying the noise 67

3.23 Comparisons of methods, varying the noise 68

3.24 Effect of query size, fixing σ = 0 69

4.1 Illustration of bound functions 75

LIST OF FIGURES xv

4.2 Bipartite graph for sparse EMD computation 80

4.3 Example for skew transform . 81

4.4 Skew-based lower and upper bounds 82

4.5 Case study for our LBskew,λ and LBRed,dr [128] 85

4.6 Framework . 86

4.7 Validation . 87

4.8 Adaptive approach . 90

4.9 Lightweight adaptive approach 92

4.10 Picking a sequence of bounds in the offline stage 95

4.11 Throughput of exact EMD computation methods 99

4.12 Number of lower and upper bound functions selected by Oracle in

CAL-Lab dataset . 100

4.13 Throughput vs. number of pre-processing pairs in ADA-H, fixing

ε = 0.2 . 102

4.14 Preprocessing time in ADA-H . 102

4.15 Throughput between our methods and ADA-Opt method, fixing

ε = 0.2 . 103

4.16 Effect of the error threshold ε on different datasets 104

4.17 Effect of the dimensionality d on different datasets 105

4.18 Comparisons with all approximation methods on different datasets 107

xvi LIST OF FIGURES

4.19 Effect of the error threshold ε on the kNN content-based image

retrieval, fixing k = 100 . 108

4.20 Effect of the result size k on the performance of kNN content-

based image retrieval, fixing ε = 0.2 109

4.21 Number of iterations for ADA-L, varying ε from 0.01 to 0.3 . . . 114

5.1 Kernel density estimation on the miniboone dataset, using 1st

and 2nd dimensions . 118

5.2 Hierarchical index structure . 125

5.3 Linear bounds . 128

5.4 Chord-based upper bound function 131

5.5 Tangent-based lower bound function 133

5.6 Bound values of SOTA and KARL vs. the number of iterations;

for type I-τ query on the home dataset 136

5.7 The throughput of query type I-τ , varying the leaf node capacity 137

5.8 Lower and upper bound functions for x3 144

5.9 Query throughput with query type I-τ , varying the threshold τ . 149

5.10 Query throughput with query type I-ε, varying the relative error ε 149

5.11 Query throughput on the susy dataset, varying the dataset size . 150

5.12 Query throughput with query type I-τ (τ = μ) on the mnist

dataset, varying the dimensionality 150

LIST OF FIGURES xvii

5.13 ErrorLB and ErrorUB for Type-I, II and III queries (left,middle

and right respectively) . 151

xviii LIST OF FIGURES

List of Tables

1.1 Three applications for framework 1.1 2

2.1 Existing similarity measures . 10

2.2 Kernel functions . 11

2.3 Types of weighting in FP (q) . 12

2.4 Bounding Functions for Euclidean distance 17

2.5 Bounding Functions for IP and COS 17

2.6 Bounding Functions for DTW . 19

2.7 Summary of lower and upper bound functions for EMD 20

2.8 Summary of different indexing structures 22

3.1 Types of lower bound functions 36

3.2 The list of our methods and the competitors 61

3.3 Our datasets and queries . 62

xix

xx LIST OF TABLES

4.1 Summary of lower and upper bound functions for EMD 78

4.2 Raw datasets of images . 98

4.3 Methods for extracting color histograms 98

4.4 Parameter tuning . 106

4.5 Average Eq,p(R) and E
skew
q,p (R) in different datasets, ε = 0.2 . . . 115

5.1 Types of weighting in FP (q) . 119

5.2 Comparisons of libraries . 121

5.3 Example applications for the above queries 123

5.4 Symbols . 124

5.5 Running steps for state-of-the-art 126

5.6 Details of datasets . 145

5.7 All methods for different types of queries 147

5.8 Query throughput for variants of KARL, using sample set with

|S| = 1000 . 153

5.9 In-situ solutions for different types of queries 154

5.10 Query throughput with query type II/III-τ using polynomial kernel154

Chapter 1

Introduction

Similarity measures are ubiquitous in different types of applications in com-

puter vision [91, 102] and machine learning [124, 107]. In these contexts, image

pixel values [91], or feature histograms [124, 102, 107] are regarded as the vec-

tors and several similarity measures (e.g. Euclidean distance [91]) can be used

to measure the similarity between two objects.

…

Algorithm

dist / sim

Query

Result

User

Figure 1.1. Framework

We show the framework (c.f. Figure 1.1) which summarizes how users re-

1

2

trieve the results from a set of vectors based on different distance or similarity

functions. The vector representation depends on the application which will be

summarized in Section 2.1. Our goal is to design efficient algorithms in order

to support different queries issued by the users, for example: nearest neighbor

search (c.f. Chapters 3 and 4) or kernel classification (c.f. Chapter 5).

Our framework (c.f. Figure 1.1) can be instantiated to support three appli-

cations in computer vision and machine learning, as shown in Table 1.1.

Table 1.1. Three applications for framework 1.1

Our users Problem Similarity Measure

Computer vision engineers Template matching (SWNNS) Euclidean distance
/ scientists

Layman kNN image retrieval Earth mover’s distance

Computer servers kernel aggregation query Equation 2.4 + Table 2.2

Sub-Window Nearest Neighbor Search (a.k.a Template Matching, abbrev.

SWNNS) [91] is the fundamental problem in computer vision, for example: object

detection [18], motion estimation [88] and image editing [30]. Given any sub-

image query, our goal is to find the most similar sub-image window inside the

image, as shown in Figure 1.2. The image sub-window can be either rectangular-

shaped [49, 55, 12, 120, 90, 109, 91, 92, 19, 20, 93] or irregular-shaped [13, 96, 39,

121, 20]. However, existing algorithms are normally inefficient [91], especially for

some real-time applications, for example: motion estimation or object detection.

Since we only need to return the nearest sub-window inside the image, exact

algorithm with different bound functions can be used to boost up the efficiency

performance.

Another application is kNN-Image retrieval/classification (c.f. Figure 1.3)

CHAPTER 1. INTRODUCTION 3

data matrix rectangular irregular-shaped
query query

(a) weather satellite image (b) cloud with (c) cloud
background

Figure 1.2. Sub-window nearest neighbor search (SWNNS)

[102], the goal is to retrieve the k most similar images for each image query from

the users. Earth Mover’s Distance (EMD) [102] is currently the most robust

similarity measure for many feature extraction methods, compared with different

other similarity measures [100], for example: Euclidean distance. However, EMD

is a computational intensive operation. Even with the fastest known algorithm

[89], it requires O(d3 log d) time to compute the exact EMD value, where d is the

dimensionality (i.e., number of histogram bins). With the large-scale datasets,

exact EMD computation for solving kNN image retrieval/ classification problem

is infeasible. The inefficiency issues are pointed out by the existing literatures,

which are quoted as follows:

• “Typically, the EMD between two histograms is modeled and solved as a lin-

ear optimization problem, the min-cost flow problem, which requires super-

cubic time. The high computational cost of EMD restricts its applicability

4

to datasets of low-scale.” [117]

• “Computing the EMD entails finding a solution to the transportation prob-

lem, which is computationally intensive” [103]

Due to the inefficiency issues, it is natural to ask: whether we can obtain the

approximate value of EMD with theoretical guarantee. As such, approximate

algorithms are developed to boost up the performance of computing EMD in

this application.

Image Database

Users

Query

1-NN results

:
:
:

:
:
:

:
:
:

dist(q,p)

Figure 1.3. 1-NN image retrieval

In the machine learning context, Kernel methods [107] have been exten-

sively used in many applications, such as document classification [86], network

fault detection [15, 17, 134], anomaly/outlier detection [23, 80], novelty detection

[108, 84, 58], image classification [29, 43], time series classification [69] and den-

sity estimation for astronomy [4]. In the above applications, a common online

operation is to compute the following function:

FP (q) =
∑
pi∈P

wi exp(−γ ·K(q,pi)) (1.1)

CHAPTER 1. INTRODUCTION 5

where q is a query point, P is a dataset of points, wi, γ are scalars, and K(q,p)

denotes the kernel function between q,pi. Kernel function will be discussed in

Chapter 2. Figure 1.4 plots the function FP (q) for each possible query point q.

In this example, FP (q) is contributed by the sum of three terms that depend on

three data points, respectively. A typical problem, which we term as the threshold

kernel aggregation query (τKAQ), is to test whether FP (q) is higher than a given

threshold τ [107]. This creates an opportunity for achieving speedup. Instead

of computing the exact FP (q), it suffices to compute lower/upper bounds of

FP (q) and then compare them with the threshold τ . However, the above query

is expensive as it takes O(nd) time to compute FP (q) online, where d is the

dimensionality of data points and n is the cardinality of the dataset P . In the

machine learning community, many recent works [78, 57, 68] also complain the

inefficiency issue for computing kernel aggregation, which are quoted as follows:

• “Despite their successes, what makes kernel methods difficult to use in

many large scale problems is the fact that computing the decision function

is typically expensive, especially at prediction time.” [78]

• “However, computing the decision function for the new test samples is typi-

cally expensive which limits the applicability of kernel methods to real-world

applications.” [57]

• “..., it has the disadvantage of requiring relatively large computations in

the testing phase” [68]

Therefore, due to the inefficiency issues in different problems, we need to utilize

our framework (c.f. Figure 4.6) to boost up the efficiency performance. Our goal

6

is to derive fast group bounds LB(q, G), UB(q, G) and new indexing structures.

Moreover, we also provide approximation method to boost up the performance.

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.5 1.0 1.5 2.0
q

function value

term of p1

FP(q): sum of terms

term of p2 term of p3

Figure 1.4. Example of FP (q)

Our main contributions are summarized as follows in different problems:

In the SWNNS problem, we first devise both the progressive individual-

based and group-based lower bounding functions LBlevel,� and LBgroup. Later, we

propose the novel prefix-histogram indexing structure which efficiently supports

our LBgroup function. Our techniques can simultaneously support both regular-

shaped and irregular-shaped image query.

In the Earth Mover’s Distance (EMD) problem, we first propose an approx-

imation framework that leverages lower and upper bound functions to compute

approximate EMD with error guarantee. Later, we devise the novel progressive

lower and upper bound functions for Earth Mover’s Distance and different Kernel

functions. We also present two approximation algorithms, under the proposed

approximation framework, which are Skew Adaptive and Hybrid Adaptive to

CHAPTER 1. INTRODUCTION 7

significantly speedup the computation time of approximate EMD.

In the kernel aggregation query problem, we devise the novel lower and

upper bound functions for different kernel functions. Then, we also develop au-

tomatic index-tuning algorithm which automatically chooses the best index from

the existing indices (kd-tree / ball-tree) with the most suitable leaf size. Next,

our technique can also support the online-stages of different machine-learning/

statistical models, such as: one-class SVM, two-class SVM, kernel density esti-

mation/ classification with different kernel functions. Lastly, our method can

support the in-situ scenario in which the model (e.g., dataset P) would be up-

dated frequently.

Chapter 2 elaborates the literature review. Chapter 3 (based on [19, 20])

summarizes the work on SWNNS problem. Chapter 4 (based on [21]) summarizes

the work on Approximate EMD. Chapter 5 (based on [22]) summarizes the work

on kernel computation problem. Chapter 6 concludes the thesis and discusses

some future research directions.

8

Chapter 2

Literature Review

In this chapter, we first review the literature related to different similarity

measures. Then, we point out three main types of queries which involve the

similarity measures. Next, we mention the bounding functions for different types

of similarity measures. Lastly, we summarize different indexing structures for

multi-dimensional data to boost up the efficiency performance.

2.1 Representation of Vectors in Different Applica-

tions

The vectors q and p can have different meanings in different application

scenarios. We denote the dimension of each feature vector to be d in this thesis.

We also use q[i] and p[i] to denote the ith-dimension value of vectors q and p

respectively.

9

10 2.2. TYPES OF SIMILARITY MEASURES

In image retrieval [102] or recommender system [79] or classification [107]

contexts, these vectors are the feature vectors extracted by feature extraction

algorithms. For example, Lab feature extraction method is used for image repre-

sentation [102, 97]. Some machine learning models, such as, matrix factorization

[75] can create feature vectors to represent each object (e.g. video/ movie) in

recommender system.

In template matching [91] context, these vectors are represented by the raw

image pixel values.

In time series retrieval [44] context, these vectors are represented by the

time series value for each time stamp.

2.2 Types of Similarity Measures

Table 2.1 shows a wide range of similarity functions in the literatures which

can be applied in different applications.

Table 2.1. Existing similarity measures
Similarity Measure Application(s) Time Complexity

Euclidean distance [106, 91] image/ time series retrieval, O(d)
template matching

inner product [79] recommender system O(d)

cosine similarity [7],[127] text retrieval O(d)
template matching

gaussian/ polynomial machine learning O(d)
/ sigmoid kernel [107]

dynamic time warping [98] time series retrieval O(d2)

earth mover’s distance [102] image retrieval O(d3 log d)

Euclidean distance (c.f. Equation 2.1) is the traditional similarity measure

CHAPTER 2. LITERATURE REVIEW 11

for a wide range of applications, for example: image retrieval application [76, 71,

106], template matching [91] and time series retrieval [131].

ED(q,p) =

d∑
i=1

(q[i]− p[i])2 (2.1)

Inner product (c.f. Equation 2.2) is the important similarity measure for

recommender systems, [35] to recommend the products to users.

IP (q,p) =
d∑

i=1

q[i]p[i] (2.2)

In text retrieval and template matching, cosine similarity is a popular simi-

larity measure.

COS(q,p) =

∑d
i=1 q[i]p[i]√∑d

i=1 q[i]
2

√∑d
i=1 p[i]

2

(2.3)

In machine learning community, kernel functions are applicable in different

machine learning/statistical models, such as: kernel support vector machine [107]

and kernel density estimation [124]. The most common kernel functions in the

machine learning context are summarized in Table 2.2.

Table 2.2. Kernel functions
Kernel function Equation

Gaussian KGauss(q,p) = exp(−γED(q,p)2)

Polynomial KPoly,deg(q,p) = (γIP (q,p) + β)deg

Sigmoid KSig(q,p) = tanh(γIP (q,p) + β)

The online operation is to compute the weighted aggregation of kernel func-

12 2.2. TYPES OF SIMILARITY MEASURES

tion values with respect to a set P (|P | = n) of d-dimensional vectors and query

vector q [107], which are defined as follows. Let K(q,pi) be any kernel function

in Table 2.2.

FP (q) =

n∑
i=1

wiK(q,pi) (2.4)

In Equation 2.4, the weight vectors wi depend on the nature of different

models (Table 5.1).

Table 2.3. Types of weighting in FP (q)
Type of weighting Used in model

Type I: identical, positive wi Kernel density
(most specific) [50, 46]

Type II: positive wi 1-class SVM
(subsuming Type I) [86]

Type III: no restriction on wi 2-class SVM
(subsuming Types I, II) [107]

In time series retrieval application, Dynamic Time Warping (DTW) is an-

other famous distance function for measuring the difference between two time

series. Unlike previous similarity measures. The dimensionalities of different

time series can be different. Equation 2.5 [114] defines this function, we denote

the dimensionalities of q and p to be d1 and d2 respectively.

DTW (q, p) = fDTW (d1, d2) (2.5)

where:

CHAPTER 2. LITERATURE REVIEW 13

fDTW (i, j) = (q[i]− p[j])2 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fDTW (i− 1, j)

fDTW (i, j − 1)

fDTW (i− 1, j − 1)

if i �= 0, j �= 0

0 if i = 0, j = 0

∞ if i = 0 xor j = 0

(2.6)

In the late 90s, Rubner [101] et al. propose earth mover’s distance (EMD) to

measure the similarity between the feature vectors of images. They experimen-

tally demonstrate that EMD is more robust compared with traditional Euclidean

distance for image retrieval application [101, 102, 100]. EMD (c.f. Equation 2.2)

is formulated as the following linear programming problem [101]. The time com-

plexity of state-of-the-art method [89] for computing EMD is O(d3 log d).

emdc(q,p) = minimize
f

d∑
i=1

d∑
j=1

ci,jfi,j

such that ∀i, j ∈ [1..d] : fi,j ≥ 0

∀i ∈ [1..d] :

d∑
j=1

fi,j = q[i]

∀j ∈ [1..d] :

d∑
i=1

fi,j = p[j]

2.3 Queries with Similarity Measures

In this section, we discuss several queries that involve similarity measures.

14 2.3. QUERIES WITH SIMILARITY MEASURES

Definition 2.1 (Range Search Query) Given a query q, the set P of vectors

and the threshold τ . We denote dist (for example: ED) and sim (for example:

IP) the dissimilarity and similarity measures respectively. Our goal is to find

the vectors p that dist(q,p) ≤ τ or sim(q,p) ≥ τ .

Definition 2.2 (kNN Similarity Search Query) Given a query q and the set P

of vectors, we need to find the k-most similar vectors from the set P from query

q.

For the Kernel Aggregation Query, this is only used for Equation 2.4.

Definition 2.3 (Kernel Aggregation Query-τ) Given a query q and the set P

of vectors and the classification threshold τ , we classify q to be either 1 or -1,

according to the following equation.

Class(q) =

⎧⎪⎪⎨
⎪⎪⎩
1 if FP (q) ≥ τ

−1 otherwise

(2.7)

Definition 2.4 (Kernel Aggregation Query-ε) Given a query q and the set P of

vectors and the relative error value ε, this problem returns an approximate value

F̂ such that its relative error (from the exact value FP (q)) is at most ε, i.e.,

(1− ε)FP (q) ≤ F̂ ≤ (1 + ε)FP (q) (2.8)

CHAPTER 2. LITERATURE REVIEW 15

2.4 Bound Functions for Similarity Measures

In different similarity measures, different properties can be exploited to de-

rive the bounding functions. Therefore, we summarize different bound techniques

for the similarity measures in this section. In this section, we use the following

concepts and notations.

Definition 2.5 (Single bounding function) Let S(q,p) be the similarity mea-

sures (either dist or sim). We denote LB(q,p) and UB(q,p) the lower and

upper bound functions respectively for all pairs (q,p) if they satisfy the condi-

tion:

LB(q,p) ≤ S(q,p) ≤ UB(q,p) (2.9)

Definition 2.6 (Group bounding function) Let G be the group of objects. We

denote LB(q, G) and UB(q, G) the lower and upper bound functions between q

the group G if:

LB(q, G) ≤ minp∈GS(q,p) and maxp∈GS(q,p) ≤ UB(q, G) (2.10)

Using range search query (Definition 2.1) as an example, the bounding func-

tions can be used to filter some objects which are near or far away from the query

q. For example: if p is the vector such that LB(q,p) ≥ τ , we can immediately

declare the dissimilarity function dist(q,p) ≥ τ due to the Definition 2.5 and

directly discard this vector p since this vector is no longer possible to be inside

the solution set. Instead of filtering each vector one-by-one, we can also filter

a group of objects via the group-bounding function (c.f. Definition 2.6). The

filtering condition for group G is either LB(q, G) ≥ τ or UB(q, G) ≤ τ . The

16 2.4. BOUND FUNCTIONS FOR SIMILARITY MEASURES

bounding function is useful once the bound is tight and the evaluation time is

much faster than the exact computation of the similarity measure.

We review some existing bound functions for the similarity measures in Table

2.1.

2.4.1 Euclidean Distance (ED)

Euclidean distance contains a wide range of properties. Faloutsos et al. [44]

derive the MBR-based lower bound function for Euclidean distance. Ciaccia et

al. [33, 120] utilize the metric property of Euclidean distance and derive efficient

triangle inequality lower bound function. These two bound functions (LBR and

LBmetric) are also used as the group bounding functions [44, 33] for filtering a

group of objects. On the other hand, some other individual bounding functions

are also developed. Yi et al. [131] apply the convex property of the Euclidean

norm and derive the fast lower bound function. Different research groups in com-

puter vision community [55, 12, 90, 91, 92] utilize the fast orthogonal transform

(called Walsh Hadamard Transform) for establishing new efficient algorithms.

Some other dimension reduction bounding functions are also developed for Eu-

clidean distance similarity measures, Gharavi-Alkhansari [49] derives the pro-

gressive bounds for boosting the efficiency performance in template matching

problem. Yi et al. [131] also develop another progressive bounding functions

in time series retrieval problem. Table 2.4 summarizes all bound functions. e

means, on average, the number of access elements in the vectors for each query,

the range of e is within [1,d]. dr means the reduced dimension used in the bound

functions.

CHAPTER 2. LITERATURE REVIEW 17

Table 2.4. Bounding Functions for Euclidean distance
Nature Name References Time Complexity

Group LBR [44] O(d)
Group LBmetric [33] O(d)

Single (transform-based) LBtrans [55, 12, 90, 91, 92] O(e)
Single (dimension reduction) LBred [131, 49] O(dr)

2.4.2 Inner Product (IP)/ Cosine Similarity (COS)

In the group bounding function, Ram et al. [99] explore the fast group

upper bounding function (UBball) for inner product and combine with the ball-

tree structure to boost up the performance of this problem. Teflioudi et al. [119]

utilize the Cauchy Schwarz Inequality to propose the group upper bounding

functions (UBCauchy): maxp∈GqTp ≤ ||q|| × maxp∈G||p||. In the individual

bounding function, Teflioudi et al. [119] also propose another fast individual

upper bounding functions. Li er al. [79] further develop SIR transformation-

based algorithm to further tighten the upper bound function from [119].

Due to the similar functional-form between COS and IP, the technical bound

functions are similar with each others. Existing works in the literatures [127, 7]

utilize the upper bound function which is based on the derivation of the Cauchy-

Schwarz Inequality. Wei et al. [127] further derive the progressive bound function

to tighten the upper bound functions. These two techniques are similar with

[119]. Table 2.5 summarizes all bound functions.

Table 2.5. Bounding Functions for IP and COS
Nature Name References Time Complexity

Group UBball [99] O(d)
Group UBCauchy [119] O(d)
Single UBincr [127, 119, 79] O(e)

18 2.4. BOUND FUNCTIONS FOR SIMILARITY MEASURES

2.4.3 Kernels

Gray [50] and Gan et al. [46] focus on the Gaussian kernel function KGauss

and apply the group-based bound function of Euclidean distance (e.g. [44]) to

derive the fast lower and upper group bounding functions, denoted as �(q, G)

and u(q, G) respectively, for FP (q), as shown in Equations 2.11 and 2.12.

LB(q, G) =
∑
pi∈G

wi exp(−γu(q, G)2) (2.11)

UB(q, G) =
∑
pi∈G

wi exp(−γ�(q, G)2) (2.12)

The bound functions LB(q, G) and UB(q, G) depend on the selection of

group-based Euclidean bound functions �(q, G) and u(q, G) (c.f. Table 2.4).

2.4.4 Dynamic Time Warping (DTW)

Different bound functions for DTW have been derived in the literatures

[72, 104, 45, 98]. The time complexity is summarized in Table 2.6. dr in LBFTW

is the reduced dimension of the time series. Rakthanmanon et al. [98] further

reduce the time complexity of LBKim and propose LBKimFL which is in O(1)

time. Moreover, they perform the experimental evaluation of the tightness and

the computation time of different bound functions. Then, they conclude the

sequence of the bound evaluations (refer to Figure 9 of [98]) to be 1: LBKimFL,

2: LBKeogh and then 3: the progressive evaluation of the DTW.

CHAPTER 2. LITERATURE REVIEW 19

Table 2.6. Bounding Functions for DTW
Nature Name References Time Complexity

single LBKimFL [98] O(1)
single LBKim [72] O(d)
single LBKeogh [45] O(d)
single LBFTW [104] O(d2r)

2.4.5 Earth Mover’s Distance (EMD)

A wide range of EMD lower bound and upper bound functions are derived

in the previous literatures. The most representative works for the derivation of

the lower bound functions are summarized in [34, 9, 128, 103, 117]. Cohen [34]

utilizes the property of ground matrix and develops the O(d) time lower bound

function. Assent et al. [9] relieve the constraints of the linear programming of

EMD and derive the O(d2) lower bound function. Later, Wichterich et al. [128]

derive another lower bound function by reducing the dimensionality of the feature

vectors. Since this bound function depends on the parameter, dimensionality

dred, we also call this function the parametric bounding function. Ruttenberg et

al. [103] demonstrate the significant tightness of [34] and further derive the group-

based lower bound functions. Tang et al. [117] utilize the bipartite flow network

property and derive the progressive lower bound function for EMD(q,p), which

iteratively provides the tighter bound values until it either reaches the exact value

or can be filtered. Consider the upper bound functions, Jang et al. [64] store

a set of hilbert curves and assign the flow between the bipartite graph based

on these curves. Since the flow is feasible, this can be regarded as the upper

bound function of EMD(q,p). The time complexity is O(d) in this upper bound

function. Another upper bound function is based on the greedy assignment of

flow from the bipartite graph [117] (Section 4.5). It assigns the flow from q to

20 2.5. APPROXIMATION METHODS OF SIMILARITY MEASURES

p with the smallest cost cij first iteratively until all flow are moved to p. The

time complexity of this upper bound function is O(d2).

We summarize the lower and upper bound functions in Table 4.1.

Table 2.7. Summary of lower and upper bound functions for EMD
Nature Name References Time Complexity

group LBProj,group [103] O(d)

single LBProj [34] O(d)

single LBIM [9] O(d2)

single LBRed,dr [128] O(d2 + dr
3 log dr)

single UBH [64] O(d)

single UBG [117] O(d2)

2.5 Approximation Methods of Similarity Measures

In reality, many applications, for example: kNN Image Retrieval, template

matching and kernel computations, require the massive amount of computations

of the similarity function. Exact computations of this query can be inefficient.

As such, many approximate methods have been proposed for different similarity

measures. We summarize different approximation methods.

2.5.1 Locality Sensitivity Hashing (LSH)

LSH [62] is originally designed for boosting up the k-nearest neighbor search

with ED as the similarity measure. Its idea is to retrieve the objects which are

near with the query q with probabilistic guarantee. This technique has been

studied extensively in ED [37, 118, 47]. Gan et al. [47] provides the following

guarantee (c.f. Lemma 2.1).

CHAPTER 2. LITERATURE REVIEW 21

Lemma 2.1 The approximate k-nearest neighbor search algorithm in [47] can

guarantee the time complexity to be O(d log n + n log n) and the accuracy

|ED(q,p
(i)
r) − ED(q,p

(i)
exact)| ≤ c2R with constant probability. p

(i)
r and p

(i)
exact

mean the ith returned object from the approximate k-nearest neighbor solution set

and ith returned object from the exact k-nearest neighbor solution set respectively.

c and R, which mean the constant and fixed radius respectively, are internal pa-

rameters of LSH algorithm.

This algorithm is useful for high dimensional datasets where the dimension-

ality d >> log n.

This approach is also generalized to other similarity measures, for example:

IP [113], EMD [25].

2.5.2 Approximation Methods for EMD

As shown in Table 2.1, the time complexity of EMD is O(d3 log d) which is

inefficient. As such, using EMD as the distance function for kNN image retrieval

is not efficient, which limits its application to low-scale datasets [117]. There-

fore, many approximate techniques are proposed to EMD function to boost up

the efficiency performance without losing too much accuracy theoretically or

practically.

The literatures can be also divided into two parts. The first part guarantees

the returned result is theoretically near EMD(q,p). The second part is the

heuristics method which does not provide theoretical guarantee. In the first

part, [61, 8, 70, 5] are the representative works in the theoretical computer science

22 2.6. INDEXING STRUCTURES FOR MULTI-DIMENSIONAL DATA

community. However, they either focus on a planar graph setting (i.e., calculating

EMD on two planar pointsets) [61] or lack of flow concept (i.e., the approximate

ratio is analyzed based on a uni-flow model) [8, 70, 5]. In the second part, Pele

et al. [97] remove some records from the cost matrix when their values are larger

than a pre-defined threshold. The EMD computation time is correlated to the

sparsity of the cost matrix so that the threshold plays a role in controlling the

quality and the efficiency. Jang et al. [64] store a set of hilbert curves and

assign the distance between two images based on these curves. However, the

approximate quality is highly relevant to the hilbert curve selection and there is

no theoretical guarantee. Shirdhonkar et al. [112] utilize the wavelet theory in

their approximation algorithm, which can be viewed as a heuristic solution with

no theoretical guarantee.

2.6 Indexing Structures for Multi-Dimensional Data

Except for the bound functions, indexing structure is also the key to help

boosting up the evaluation time for the bound functions for different similarity

measures. Table 2.8 summarizes different indexing structures in the literature.

Table 2.8. Summary of different indexing structures
Name Nature Group Type References

kd-tree group hyper-rectangle [14]

R-tree (family) group hyper-rectangle [53, 111, 11]

ball-tree group hyper-sphere [87]

m-tree group hyper-sphere [33]

I-distance group hyper-sphere [63]

VA-file single n/a [126]

Prefix Sum Array single n/a [56, 123]

CHAPTER 2. LITERATURE REVIEW 23

2.6.1 Group Filtering

In order to support group filtering for different queries (c.f. Section 2.3)

Many research works focus on how to efficiently filter a group of objects at once.

Tree-structures (c.f. Figure 2.1) are extensively studied for achieving this goal.

We can divide the literatures into two main camps. The first camp is to build-

index based on the hyper-rectangle, while another part is to build-index based

on the hyper-sphere.

R1,5 | R2,4

p1 p2 … p5

R3,4 | R4,5

R5,9 | R6,9

p6 p7 … p9

node N5

root node: Nroot

node N1

node N6

p10 p11 … p13 p14 p15 … p18

node N3node N2 node N4

Figure 2.1. Hierarchical tree structure

In the first camp, Faloutsos et al. [44] propose using the R-tree to index

the time-series in sequence database which support MBR-based bound functions.

Scikit-learn [94] supports the kd-tree indexing [14] for accelerating the Approxi-

mation of Kernel Aggregate Query. Gan et al. [46] also combine the kd-tree for

boosting up the computation of Classification of Kernel Aggregate Query.

In the second camp, Ciaccia et al. [33] propose M-tree to index the general

feature vectors. Moore [87] propose another ball-tree structure for boosting up

different other machine learning problems, such as K-mean. This structure has

been also used for Approximation of Kernel Aggregation Query [50] which is also

24 2.6. INDEXING STRUCTURES FOR MULTI-DIMENSIONAL DATA

currently supported by Scikit-learn [94]. Later, I-Distance [63] has been also

proposed to support group-based filtering in different metric-based similarity

measures. In recommender system context, cone-tree [99] has been proposed for

efficient computation for the inner product retrieval problem.

Many other variants of these index-structures are summarized in the mono-

graphs [105, 132] and the most recent experimental paper [28].

2.6.2 Single Vector Filtering

Many problems in computer vision and machine learning normally involve

high-dimensional data. For example: In the kNN image retrieval context, Lab

feature extraction normally produces 256-dimensional feature vector [102]. How-

ever, once the dimension is increased to more than 10-100, existing group-based

filtering indexing structure [126], for example: R-tree [53], can degenerate into

the basic sequential scan method without any improvement. This effect is

called curse of dimensionality [126]. As such, Weber et al. [126] propose the

compression-based method, in which they store smaller number of bits for each

dimension value and then create the compressed dataset in the offline stage.

Their algorithm further scans this compressed dataset in the online stage and

obtain the lower bound function.

In some problems, the dimension of each multi-dimensional query vector is

not known in advance. For example: In template matching problem for object

detection application, the size of query (image object) is not necessary pre-known

in the pre-processing stage for any object detection system. In time-series re-

trieval problem, the length of query time series is also not known in advance [98].

CHAPTER 2. LITERATURE REVIEW 25

Therefore, it is very space-inefficient if we use tree-based structures (c.f. Section

2.6.1) for this type of applications [98] since we need to prebuild the tree for

each dimension. Prefix-Sum Array [56] (also known as Integral Image [123] in

computer vision context) is applied for existing problem (e.g. template match-

ing [91]) to boost up the evaluation time of bounding functions which involves

the summation terms, for example: one bound function [131], which is based on

dimension reduction technique and e = 1 (c.f. Table 2.4), of Euclidean distance

is: LB⊕ (c.f. Table 2.4, [131]), which is:

LB⊕(q,p) =
1√
d

∣∣∣∣
d∑

i=1

q[d]−
d∑

i=1

p[d]

∣∣∣∣ (2.13)

The computation time of the summation terms
∑d

i=1 q[d] and
∑d

i=1 p[d] can

be achieved in O(1) time via the prefix-sum array and thus, LB⊕(q,p) can be

also computed in O(1) time.

2.6.3 Optimal Order of Filtering

Generic nearest neighbor search algorithms [110, 77] are applicable to any

types of objects and similarity measures, while Ref. [110, 77] focus on the dis-

similarity function dist(q,p). Ref. [110] requires using a lower bound function

LB(q,p). Its search strategy [110] is to examine objects in ascending order of

LB(q,p) and then compute their exact distances to q, until the current LB(q,p)

exceeds the best NN distance found so far. Ref. [77] takes an additional upper

bound function UB(q,p) as input and utilizes it to further reduce the searching

time.

26 2.6. INDEXING STRUCTURES FOR MULTI-DIMENSIONAL DATA

Chapter 3

Sub-Window Nearest Neighbor

Search (SWNNS) on Matrix

SWNNS (a.k.a Template Matching, c.f. Figure 3.1) is the fundamental prob-

lem in computer vision. Many existing solutions have been proposed to solve

SWNNS problem for rectangular-shape query [49, 55, 12, 120, 90, 109, 91, 92,

19, 20, 93] and irregular-shape query [96, 39, 121, 13].

Dual-Bound [109] is the state-of-the-art exact method for the SWNNS prob-

lem on rectangular queries. The idea is to utilize both lower and upper distance

bound functions (LB(q, c)/UB(q, c)) for candidates (i.e., sub-windows) such that

LB(q, c) ≤ dist(q, c) ≤ UB(q, c). This method terminates when the smallest up-

per bound is less than the lower bounds of all other candidates. In addition, it

iteratively refines the bounds of candidates by using a sequence of tighter lower

and upper bound functions. However, this solution may invoke a large number

of bounding functions per candidate in the worst case, leading to a high cost.

27

28

data matrix rectangular irregular-shaped
query query

(a) satellite map image (b) junction with (c) junction
background

Figure 3.1. Sub-window nearest neighbor search (SWNNS)

exact dist.

Level-based:
LBlevel , l

bound
tightness

(2)

(3)

logarithmic

O(1)

time

O(4l)

Group-based:
LBgroup

O(α)

group size
(0)

(1) LBbasic

O(Nq)

g
number of functions

Figure 3.2. Illustration of our progressive approach

Our work [19] first focuses on rectangular queries. Specifically, we contribute

a solution with a group-based lower bound function LBgroup and a level-based

lower bound function LBlevel,�, as shown in Figure 3.2. Instead of examining can-

didates individually, we first gather candidates into groups and attempt pruning

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 29

unpromising groups by using LBgroup. For the surviving groups, we divide them

into smaller groups and repeat the above process. When a group degenerates to

a candidate, we attempt pruning it by using LBlevel,�.

Our LBlevel,� is designed in a fashion such that: (i) it is generic and can take

any lower bound function as a building block, (ii) it limits the worst-case cost by

using a logarithmic number of levels (for �).

To obtain meaningful results in the aforementioned applications, it is impor-

tant to ignore irrelevant pixels in the ‘background’ of a query (e.g., Figure 1.2b)

and exclude them from matching. As such, it is more appropriate to model a

query (e.g., cloud, road junction) by an irregular shape, as shown in Figure 1.2c.

The state-of-the-art exact method for this problem [39] is an extended ver-

sion of Dual-Bound [109].

To cope with an irregular shape, it incrementally partitions candidates into

rectangles on-the-fly in order to tighten their lower and upper bounds. How-

ever, this solution needs to maintain a set of rectangles for each candidate, thus

incurring high overhead on both the memory space and the response time.

Compared to our preliminary work [19], our new work [20] is to develop an

efficient solution for answering SWNNS on irregular-shaped queries (Section 3.3).

To reduce the memory space for managing candidates, we adopt the same par-

titioning scheme for all candidates. In this approach, it is desirable to find the

optimal partitioning scheme that can minimize the computation cost. We show

that it is hard to find the optimal partitioning efficiently, and then propose several

heuristics for this issue.

30 3.1. PRELIMINARIES

The rest of this chapter is organized as follows. Section 5.1 defines our prob-

lem and introduces background information. Section 3.2 presents our proposed

solution for rectangular queries. Section 3.3 studies the SWNNS problem for

queries with irregular shapes. Section 3.4 discusses our experimental results.

Section 3.5 elaborates on the related work on SWNNS problem. Section 3.6

concludes the paper with future research directions.

3.1 Preliminaries

We first give our problem definition and provide background on prefix-sum

matrices and lower bound functions.

3.1.1 Problem Definition

In this paper, we represent each image as a matrix. LetD be the data matrix

(of size ND = LD ×WD) and q be the query matrix (of size Nq = Lq ×Wq). A

candidate cx,y is a sub-window of D with the same size as q.

cx,y[1..Lq, 1..Wq] = D[x..(x+ Lq − 1), y..(y +Wq − 1)]

The subscript of cx,y denotes the start position in D; we drop it when the context

is clear.

Problem 3.1 (Sub-window NN Search) Given a query matrix q and a data

matrix D, this problem finds the candidate cbest such that it has the minimum

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 31

dist(q, cbest), where the distance is the Lp norm:

dist(q, c) = (

Lq∑
i=1

Wq∑
j=1

|q[i, j]− c[i, j]|p)
1
p

The value of p is predefined by the application.

Figure 3.3 shows a query q of size 4× 4 and a data matrix D of size 8× 8.

There are (8−4+1)2 = 25 candidates in D. For instance, the dotted sub-window

refers to the candidate c3,3. The right-side of Figure 3.3 enumerates the distances

from q to each candidate, assuming the L1 distance (i.e., p = 1) is used. In this

example, the best match is c3,3 as it has the smallest distance dist(q, c3,3) = 27

from q.

1 2 3 4 5 6 7 8

1 16 24 26 13 18 16 20 13
2 14 10 11 12 19 14 16 161 2 3 4

candidate cx

dist1(q,c)2 14 10 11 12 19 14 16 16
3 24 25 20 16 23 20 17 19
4 16 12 17 16 22 11 18 14
5 11 15 14 15 21 25 17 24
6 17 19 14 30 24 26 25 31
7 14 26 22 33 26 19 20 20
8 23 21 18 21 24 23 18 22

1 2 3 4

1 16 13 22 21
2 18 17 20 11
3 13 15 20 22
4 15 32 22 22

query q

x

y

103 109 77 76 89

95 79 71 79 77

88 86 27 87 86

70 91 74 105 110

98 96 98 108 106

1(q)

8 23 21 18 21 24 23 18 22query q

data matrix D
y

distances from q
to candidates

Figure 3.3. Example for the problem

3.1.2 Prefix-Sum Matrix & Basic Lower Bounds

For convenience, we define a shorthand notation below, which will be used

in later discussions.

32 3.1. PRELIMINARIES

Definition 3.1 (Accessing a matrix by region) Let R = [x1..x2, y1..y2] be

a rectangular region and let A be a matrix. The notation A[R] represents

A[x1..x2, y1..y2].

As we will introduce shortly, lower bound functions require summing the

values in a rectangular region in a matrix. We can speed up their computation

by using a prefix-sum matrix [56], also known as an integral image [123] in the

computer vision community.

Definition 3.2 (Prefix-sum matrix) Given a matrix A (of size NA =

LA × WA), we define its prefix-sum matrix PA with entries: PA[x, y] =∑x
i=1

∑y
j=1A[i, j]

The prefix-sum matrix occupies O(NA) space and takes O(NA) construction

time [56]. It supports the following region-sum operation, i.e., finding the sum

of values of a rectangular region (say, R = [x1..x2, y1..y2]) in a matrix A, in O(1)

time, according to Equation 3.1.

∑
A[R] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PA[x2, y2] if x1 = 1, y1 = 1

PA[x2, y2]− PA[x1 − 1, y2] if x1 > 1, y1 = 1

PA[x2, y2]− PA[x2, y1 − 1] if x1 = 1, y1 > 1

PA[x2, y2] + PA[x1 − 1, y1 − 1]

−PA[x1 − 1, y2]− PA[x2, y1 − 1] otherwise

(3.1)

Figure 3.4 illustrates a data matrix D and its corresponding prefix-sum

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 33

matrix PD. The sum of values in the dotted region ([4..7,2..5]) in D can be

derived from the entries (7,5), (3,1), (3,5), (7,1) in PD.

1 2 3 4 5 6 7 8

Σ D[4..7,2..5] = PD[7,5] – PD[3,5] – PD[7,1] + PD[3,1]

x
1 2 3 4 5 6 7 8

1 16 40 66 79 97 113 133 146
x

1 16 24 26 13 18 16 20 13

2 14 10 11 12 19 14 16 16

3 24 25 20 16 23 20 17 19

4 16 12 17 16 22 11 18 14

5 11 15 14 15 21 25 17 24

6 17 19 14 30 24 26 25 31

7 14 26 22 33 26 19 20 20

x 1 16 40 66 79 97 113 133 146

2 30 64 101 126 163 193 229 258

3 54 113 170 211 271 321 374 422

4 70 141 215 272 354 415 486 548

5 81 167 255 327 430 516 604 690

6 98 203 305 407 534 646 759 876

7 112 243 367 502 655 786 919 1056

8 23 21 18 21 24 23 18 22

data matrix D
y

8 135 287 429 585 762 916 1067 1226

prefix-sum matrix PD of D
y

Figure 3.4. Example of a prefix-sum matrix

We introduce the basic lower bound function LBbasic, which is used as a

building block in Figure 3.2. We require that: (i) LBbasic(q, c) ≤ dist(q, c)

always holds, and (ii) LBbasic supports any query size. In this paper, we intro-

duce two functions that satisfy the above requirements of LBbasic. The first one

(LB⊕(q, c)) is given in [131]. The second one (LBΔ(q, c)) is derived from the

triangle inequality of the Lp distance [33, 63]. Both of them can be computed in

O(1) time, by using a prefix-sum matrix as discussed before. Regarding the sum-

mation term for q, we can compute it once and then reuse it for every candidate

c. For LB⊕(q, c), the term
∑Lq

i=1

∑Wq

j=1 c[i, j] can be derived from the prefix-sum

matrix PD (of data matrix D). For LBΔ(q, c), the term
∑Lq

i=1

∑Wq

j=1 |c[i, j]|p can

be derived from the prefix-sum matrix PD′ , where the matrix D′ is defined with

entries: D′[i, j] = |D[i, j]|p.

34 3.2. PROGRESSIVE SEARCH APPROACH

LB⊕(q, c) =
p
√

Nq

Nq
·
∣∣∣∣∣

Lq∑
i=1

Wq∑
j=1

q[i, j]−
Lq∑
i=1

Wq∑
j=1

c[i, j]

∣∣∣∣∣ (3.2)

LBΔ(q, c) =

∣∣∣∣∣ p

√√√√ Lq∑
i=1

Wq∑
j=1

|q[i, j]|p − p

√√√√ Lq∑
i=1

Wq∑
j=1

|c[i, j]|p
∣∣∣∣∣ (3.3)

As a remark, we are aware of lower bound functions used in the pattern

matching literature [90, 120, 12, 55, 91]. However, since those lower bound

functions take more than O(1) time, we choose not to use them as LBbasic (the

building block) in our solution.

3.2 Progressive Search Approach

We first present our idea and algorithm in Section 3.2.1. Then, we elaborate

the lower bound functions used in the algorithm in Sections 3.2.2, 3.2.3, 3.2.4.

3.2.1 The Flow of Proposed Algorithm

We illustrate the flow of our proposed NN search method in Figure 3.5.

Like [110, 77], we employ a min-heap H in order to process entries in ascending

order of their lower bound distance. The main difference is that H contains two

types of entries: (i) a candidate and (ii) a group of candidates. As discussed

before, a candidate corresponds to a sub-window of D. On the other hand, a

group represents a region of candidates. Initially, H contains a group entry that

represents the entire D.

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 35

When we deheap an entry from H, we check whether it is a group or a

candidate.

1. If it is a group G, then we divide it into several smaller groups Gi. For

each Gi, we compute the group-based lower bound LBgroup(q,Gi) and then

enheap Gi into H.

2. If it is a candidate c, then we compute the level-based lower bound

LBlevel,�(q, c) at the next level �, and then enheap c into H again.

During this process, a group would degenerate into a candidate when it covers

exactly one candidate. Similarly, when a candidate reaches the deepest level, we

directly apply the exact distance function dist(q, c) on it and update the best

NN distance found so far τbest. The search terminates when the lower bound of

a deheaped entry exceeds τbest.

Table 3.1 lists the lower bound functions to be used in our NN search method.

We measure the cost of each function as the number of region-sum operations

(i.e., calls to Equation 3.1). We have introduced LBbasic (e.g., LBΔ, LB⊕) in

Section 3.1.2. We will develop a level-based bound LBlevel,� and a group-based

bound LBgroup in Sections 3.2.2 and 3.2.3, respectively. Section 3.2.4 explores an

efficient technique for computing LBgroup, which involves a tunable parameter

α.

We summarize our method in Algorithm 1. Like [110, 77], we employ a

min-heap H in order to process entries in ascending order of their lower bound

distance. We also maintain the best distance found thus far τbest during the

search. The algorithm terminates when the deheaped entry’s lower bound dis-

36 3.2. PROGRESSIVE SEARCH APPROACH

a group

apply LBgroup to these groups, then enheap them

(of candidates)

min-heap H
deheap an entry

divide it into
4 groups

increment
level

apply LBlevel to it, then enheap it

a candidate
(at level l)

or compute
exact distance

Figure 3.5. The flow of our progressive search method

Table 3.1. Types of lower bound functions
Function Apply to Cost: # of region-sum operations

Basic: LBbasic candidate 1

Level: LBlevel,� candidate 4�

Group: LBgroup group α

tance is larger than τbest (Line 10), as the remaining heap entries can only have

the same or larger bounds than the deheaped entry. The main difference from

[110, 77] is that we apply multiple lower bound functions on candidates (Line

20) and also consider lower bound function for groups of candidates (Lines 6 and

15).

As a remark, at Line 19, �max denotes the maximum possible level, which is

computed as follows:

�max = 	log2(max{Lq,Wq})
 (3.4)

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 37

Algorithm 1 Progressive Search Algorithm for NN search

1: procedure Progressive Search(query q, data matrix D)
2: τbest ←∞; ebest ← ∅ 	 the best entry found so far
3: create a min-heap H
4: create a heap entry eroot
5: eroot.G← [0..LD − 1, 0..WD − 1] 	 the entire region
6: eroot.bound← LBgroup(q, e.G)
7: enheap eroot to H
8: while H �= ∅ do
9: e← deheap an entry in H

10: if e.bound ≥ τbest then 	 termination condition
11: break
12: if |e.G| �= 1 then 	 group entry
13: divide e into 4 entries e1, e2, e3, e4
14: for each ei, i← 1 to 4 do
15: ei.bound← LBgroup(q, ei.G)
16: ei.�← 0
17: if ei.bound < τbest then enheap ei to H

18: else 	 candidate entry
19: if e.� < �max then
20: e.bound← LBlevel,�(q, e)
21: increment e.�
22: if e.bound < τbest then enheap e to H
23: else 	 the deepest level
24: temp← dist(q, e)
25: if temp < τbest then τbest ← temp; ebest ← e

3.2.2 Progressive Filtering for Candidates

As discussed before, the lower bound LBbasic and the exact distance dist

have a significant gap in terms of computation time and bound tightness (cf.

Figure 3.2). In order to save expensive distance computations, we suggest ap-

plying tighter lower bound functions progressively.

In this section, we present a generic idea to construct a parameterized lower

38 3.2. PROGRESSIVE SEARCH APPROACH

bound function LBlevel,� by using LBbasic as a building block. The level param-

eter � controls the trade-offs between the bound tightness and the computation

time in LBlevel,�. A small � incurs small computation time whereas a large �

provides tighter bounds.

Intuitively, we build LBlevel,� by using divide-and-conquer. We can partition

the space [1..Lq, 1..Wq] into 4� disjoint rectangles {Rv : 1 ≤ v ≤ 4�}, and then

apply LBbasic (for q and c) in each rectangle Rv.
1 Then, we combine these 4�

lower bound distances into LBlevel,� in Equation 3.5. LBlevel,� takes at most 4�

region-sum operations, as each LBbasic takes one region-sum operation.

LBlevel,�(q, c) =
(4�∑

v=1

LBbasic(q[Rv], c[Rv])
p
)1/p

(3.5)

For example, in Figure 3.6, when � = 2, both the query q and the candidate c

are divided into 4� = 16 rectangles. We apply LBbasic on each rectangle in order

to compute LBlevel,�(q, c).

Next, we show that LBlevel,� satisfies the lower bound property.

Lemma 3.1 Let LBbasic(q, c) be a lower bound function for dist(q, c). It holds

that, LBlevel,�(q, c) ≤ dist(q, c), for any candidate c. [Proved in Ref. [19]]

Note that [49, 131] have considered a similar lemma, but only for the case

where LBbasic(q, c) = LB⊕(q, c). In contrast, our lemma is applicable to any

LBbasic(q, c).

During search, we apply LBlevel,� on a candidate c in the ascending order

of � as shown in Figure 3.6. If we cannot filter c at level �, then we attempt to

1In general, the space [1..Lq, 1..Wq] may have less than 4� disjoint rectangles.

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 39

filter it with minimal extra effort, i.e., at level �+ 1.

l = 1 l = 2 l = 3

…

apply LBbasic to each region Rv

l = 0

Figure 3.6. LBlevel,� at different levels

3.2.3 Progressive Filtering for Groups

We first introduce the concept of a group and then propose a lower bound

function for it. A group G represents a consecutive region of candidates as

shown in Figure 3.7. Specifically, we define G as the region [xstart..xstart + Lg −

1, ystart..ystart+Wg−1], where (i) Lg and Wg represent the size of the group, and

(ii) xstart and ystart represent the start position (i.e., top-left corner) of the group.

In order to cover all candidates in the group (e.g., those at bottom-right corner),

we define the extended region of G as extq(G) = [xstart..xend, ystart..yend], where

xend = min(xstart +Lg +Lq − 2, LD) and yend = min(ystart +Wg +Wq − 2,WD).

Then, D[extq(G)] = D[xstart..xend, ystart..yend] represents the submatrix of D in

the region extq(G).

Our lower bound functions require the following concepts.

Definition 3.3 (The lowest/highest k elements in D[extq(G)]) We de-

fine Lk(D[extq(G)]) and Hk(D[extq(G)]) as the lowest and highest k ele-

ments in the submatrix D[extq(G)] respectively.

40 3.2. PROGRESSIVE SEARCH APPROACH

(xstart , ystart)

Lq

(xend , yend)

Wq

Wg

group region

extended group region

candidates

Figure 3.7. A group with Lg ×Wg consecutive candidates

We illustrate these concepts in Figure 3.8. Assume that the query size is

Nq = 2 × 2 = 4. Consider the group G = [2..5, 2..5] (as dotted square) and

the extended region extq(G) = [2..6, 2..6] (as bolded square). In this example,

the lowest Nq values in D[extq(G)] are: LNq(D[extq(G)]) = {9, 9, 10, 10}. Thus,

SLNq(D[extq(G)]) = 9 + 9 + 10 + 10 = 38.

Definition 3.4 (Summation of the lowest/highest k elements in D[extq(G)])

We define SLk(D[extq(G)]) as the sum of lowest k elements in D[extq(G)]

and SHk(D[extq(G)]) as the sum of highest k elements in D[extq(G)].

We then extend basic lower bound functions (e.g., LB⊕, LBΔ) for a group

G. We propose the lower bound functions LB⊕
group and LBΔ

group for G in Equa-

tions 3.6, 3.7. In Equation 3.7, the term D◦p denotes the element-wise power

of the matrix D with power index p, i.e., D◦p[i, j] = (D[i, j])p. These func-

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 41

1 2 3 4 5 6 7 8

1 8 6 3 7 9 3 1 5
2 5 11 10 11 10 10 1 7
3 2 11 11 12 11 11 2 10
4 4 11 10 11 10 10 11 9
5 7 11 9 10 11 12 8 7
6 10 9 11 10 11 10 9 12
7 8 3 5 6 4 1 3 2
8 5 10 4 10 4 2 2 4

1 2

1 3 2
2 2 4

query q

data matrix D

group region G

x

y

x

y

extended region extq(G)

Figure 3.8. Illustration of LNq(D[extq(G)]) (in light color) and HNq(D[extq(G)])
(in dark color)

)])([(GextDSH qNq

Group G

)])([(GextDSL qNq

q3

* 2q
Accumulation
 Value

q2 q1 c

* 3q
*
c

* 1q

Figure 3.9. Illustration of the idea in LB⊕
group(q,G)

tions serve as lower bounds of LB⊕(q, c), LBΔ(q, c) for any candidate c in G (cf.

Lemmas 3.2,3.3).

42 3.2. PROGRESSIVE SEARCH APPROACH

LB⊕
group(q,G) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
√

Nq

Nq
(SLNq (D[extq(G)])−∑

∗ q) if SLNq (D[extq(G)]) >
∑

∗ q

p
√

Nq

Nq
(
∑

∗ q − SHNq (D[extq(G)])) if SHNq (D[extq(G)]) <
∑

∗ q

0 otherwise

(3.6)

LBΔ
group(q,G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
√SLNq (D

◦p[extq(G)])− p
√∑

∗ |q[i, j]|p if SLNq (D
◦p[extq(G)]) >

∑
∗ |q[i, j]|p

p
√∑

∗ |q[i, j]|p − p
√SHNq (D

◦p[extq(G)]) if SHNq (D
◦p[extq(G)])

<
∑

∗ |q[i, j]|p

0 otherwise

(3.7)

LB′⊕
group(q,G) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
√

Nq

Nq
(SL′

Nq (CHD[extq(G)])−
∑

∗ q) if SL′
Nq (CHD[extq(G)]) >

∑
∗ q

p
√

Nq

Nq
(
∑

∗ q − SH′
Nq (CHD[extq(G)])) if SH′

Nq (CHD[extq(G)]) <
∑

∗ q

0 otherwise

(3.8)

where
∑
∗

q =

Lq∑
i=1

Wq∑
j=1

q[i, j] and
∑
∗
|q[i, j]|p =

Lq∑
i=1

Wq∑
j=1

|q[i, j]|p

Lemma 3.2 Given a group G, for any candidate c in G, we have:

LB⊕
group(q,G) ≤ LB⊕(q, c).

Proof. First, we focus on the first case of LB⊕
group(q,G), i.e., when

φmin(G.Rext) >
∑

∗ q.

Consider a candidate c in the group region of G. Since Nq min(G.Rext)

contains the least Nq values in the group, we have:
∑

∗ c ≥ φmin(G.Rext). Com-

bining it with the condition in the first case, i.e., φmin(G.Rext) >
∑

∗ q), we have∑
∗ c ≥ φmin(G.Rext) >

∑
∗ q.

Then we apply the above inequality on LB⊕(q, c) and derive: LB⊕(q, c) =

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 43

p
√

Nq

Nq
· (∑∗ c−

∑
∗ q) ≥

p
√

Nq

Nq
(φmin(G.Rext)−∑

∗ q) = LB⊕
group(q,G).

We omit the proof for the second case as it is similar to the above argument.

The proof for the third case (i.e., LB⊕
group(q,G) = 0) is trivial.

Lemma 3.3 Given a group G, for any candidate c in G, we have:

LBΔ
group(q,G) ≤ LBΔ(q, c).

Proof. First, we focus on the first case of LBΔ
group(q,G), i.e., when

φp
min(G.Rext) >

∑
∗ |q[i, j]|p.

Consider a candidate c in the group region of G. Since Nq min(G.Rext)

contains the least Nq values in the group, we have:
∑

∗ |c[i, j]|p ≥ φp
min(G.Rext).

Combining it with the condition in the first case, i.e., φp
min(G.Rext) >

∑
∗ |q[i, j]|p,

we have
∑

∗ |c[i, j]|p ≥ φp
min(G.Rext) >

∑
∗ |q[i, j]|p.

Then we apply the above inequality on LBΔ(q, c) and derive:

LBΔ(q, c) =
p
√∑

∗ |c[i, j]|p− p
√∑

∗ |q[i, j]|p ≥ p
√

φp
min(G.Rext)− p

√∑
∗ |q[i, j]|p =

LBΔ
group(q,G).

We omit the proof for the second case as it is similar to the above argument.

The proof for the third case (i.e., LBΔ
group(q,G) = 0) is trivial.

Figure 3.9 explains why LB⊕
group(q,G) is a lower bound function. We

use three query points q1, q2, q3 (with same size Nq) to illustrate the three

cases in LB⊕
group(q,G), respectively. For convenience, we drop the subscript

Nq in the notations SL and SH. By Equation 3.2, the lower bound be-

tween query q and candidate c depends on two summation terms (
∑

∗ q and∑
∗ c =

∑Lq

i=1

∑Wq

j=1 c[i, j]). The latter term
∑

∗ c is always bounded between

44 3.2. PROGRESSIVE SEARCH APPROACH

SL(D[extq(G)]) and SH(D[extq(G)]), provided that c is a member of the group

G. For example, for query q1, the lower bound distance is the difference between∑
∗ q1 and SL(D[extq(G)]). For query q2, it is symmetric to the above case, so

the lower bound is the difference between
∑

∗ q2 and SH(D[extq(G)]). For query

q3, the lower bound distance is zero because
∑

∗ q3 falls into the range between

SL(D[extq(G)]) and SH(D[extq(G)]). The above idea can also be applied to

LBΔ
group(q,G).

During our search procedure (cf. Figure 3.5 and Algorithm 1), we apply

LBgroup(q,G) on a group G. If we cannot filter G, then we partition its group re-

gion G into four sub-groups G1, G2, G3, G4 accordingly and apply LBgroup(q,Gi)

on each sub-group Gi. We will discuss how to compute LBgroup(q,G) efficiently

in the next subsection.

3.2.4 Supporting Group Filtering Efficiently

The lower bound LBgroup(q,G) involves the terms SLNq(D[extq(G)])

and SHNq(D[extq(G)]) (Equation 3.6) or SLNq(D
◦p[extq(G)]) and

SHNq(D
◦p[extq(G)]) (Equation 3.7), which require finding the lowest Nq

and the highest Nq values in D[extq(G)] or D◦p[extq(G)].

In this section, we design a data structure called prefix histogram matrix

to support the above operations efficiently. The parameter α allows trade-off

between the running time and the bound tightness. A larger α tends to provide

tighter bounds, but it incurs more computation time.

We proceed to elaborate on how to construct the prefix histogram matrix

for a data matrix D. First, we partition the values in matrix D into α bins and

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 45

convert each value D[i, j] to the following bin number β(D[i, j]):

β(D[i, j]) =

⌊
α · D[i, j]−Dmin

Dmax −Dmin + 1

⌋
+ 1

where Dmin and Dmax denote the minimum and maximum values in D, respec-

tively. Consider one example using Figure 3.8, D[2, 2] = 11, Dmin = 1 and

Dmax = 12 in this case. We can notice that β(D[2, 2]) = 6 when we set α = 6

bins.

We define the prefix histogram matrix PHβ as a matrix where each element

PHβ [i, j] is a count histogram:

PHβ [i, j] = 〈P1[i, j], P2[i, j], · · · , Pα[i, j]〉

where

Pv[i, j] = count(x,y)∈[1..i,1..j](β(D[x, y]) = v)

As a remark, the prefix histogram matrix occupies O(αND) space.

Figure 3.10a illustrates a histogram matrix PHβ in which each element

PHβ [i, j] stores a count histogram for values in region [1..i, 1..j] in the data

matrix D.

Given an extended group region extq(G), we first retrieve count histograms

at four corners of D[extq(G)], and then combine them into the histogram as

shown in Figure 3.10b. With this histogram, we can derive bounds for the sum

of minimum / maximum Nq values of D[extq(G)] i.e. SLNq(D[extq(G)]) and

SHNq(D[extq(G)]) by Definition 3.5.

46 3.2. PROGRESSIVE SEARCH APPROACH

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

x

y

extended region
extq(G)

(a) prefix histogram matrix PH
(b) count histogram for D[extq(G)]

(= PH [6,6] – PH [6,1] – PH [1,6] + PH [1,1])

0
2
4
6
8

10
12
14
16

count

value

Figure 3.10. Prefix histogram matrix, α = 6, Dmin = 1, Dmax = 12

Definition 3.5 (Sum of the lowest / highest Nq values in a count histogram)

Let CHD[extq(G)] be a count histogram for D[extq(G)]. We define

SL′
Nq(CHD[extq(G)]) as the sum of the lowest Nq values in CHD[extq(G)],

and SH′
Nq(CHD[extq(G)]) as the sum of the highest Nq values in CHD[extq(G)].

While scanning the bins of CHD[extq(G)] from left to right, we examine the count

and the minimum bound of each bin to derive SL′
Nq(CHD[extq(G)]). A similar

method can be used to derive SH′
Nq(CHD[extq(G)]). The cost of computing a

group-based lower bound equals to α region-sum operations because CHD[extq(G)]

contains α bins and each bin requires 1 region-sum operation to compute.

As an example, consider the count histogram CHD[extq(G)] obtained in Fig-

ure 3.10b. Assume that α = 6 and Nq = 4. Thus, the width of each bin is

Dmax−Dmin+1
α = 12

6 = 2. Since the count of bin 9..10 is above Nq, we derive:

SL′
Nq(CHD[extq(G)]) = 9 · 4 = 36. Note that SL′

Nq(CHD[extq(G)]) = 36 is looser

than the actual value SLNq(D[extq(G)]) = 38 (obtained in Figure 3.8). Then we

propose LB′⊕
group(q,G) in Equation 3.8 to replace LB⊕

group(q,G).

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 47

Since SL′
Nq(CHD[extq(G)]) ≤ SLNq(D[extq(G)]) and SH′

Nq(CHD[extq(G)]) ≥

SHNq(D[extq(G)]), LB′⊕
group(q,G) ≤ LB⊕

group(q,G). Similarly, we can adapt the

above technique to derive a lower bound of LBΔ
group(q,G) efficiently.

3.3 Extension for Irregular-Shaped Queries

As discussed before, some applications may need to deal with irregular-

shaped queries. For example, in geospatial data integration [27, 26, 31], the

query can be a road junction which may have a T-shape. In cloud motion

detection [16], the query can be an irregular cloud. Figure 3.11 illustrates the

differences between rectangular queries and irregular-shaped queries. For each

irregular-shaped query, we employ a binary mask matrix to indicate irrelevant

pixels [39]. The binary mask matrix can be extracted by image segmentation

methods or by application requirements [16, 27, 121].

rectangular queries irregular-shaped queries

(a) cloud with (b) junction with (c) cloud (d) junction
background background

Figure 3.11. Examples of irregular-shaped queries

Problem 3.2 (Sub-window NN Search for Irregular-Shaped Query)

Given a query matrix q, a binary mask matrix m, and a data matrix D, this

problem finds the candidate cbest such that it has the minimum dist♦(q, cbest)

48 3.3. EXTENSION FOR IRREGULAR-SHAPED QUERIES

where the distance is defined as:

dist♦(q, c) =
(Lq∑

i=1

Wq∑
j=1

m[i, j] · |q[i, j]− c[i, j]|p
)1/p

(3.9)

We illustrate this problem in Figure 3.12. In the mask, relevant entries have

m[i, j] = 1 and irrelevant entries have m[i, j] = 0. The best match is indicated

by the candidate in a dashed square.

data matrix D

1 2 3 4 5 6 7 8

1 16 24 26 13 18 16 20 13
2 14 10 11 12 19 14 16 16
3 24 25 26 16 23 20 17 19
4 16 12 17 16 22 11 18 14
5 11 15 14 15 21 25 17 24
6 17 19 14 29 24 26 25 31
7 14 26 22 33 26 19 20 20
8 23 21 18 21 24 23 18 22

x

y

2 13 1 4
3 17 20 2

13 15 20 22
3 32 22 1

query q

85 76 41 50 56
57 47 41 49 42
56 51 16 54 47
36 51 34 61 64
50 65 67 64 58

distances from q
to candidates

0 1 0 0
0 1 1 0
1 1 1 1
0 1 1 0

mask m

Figure 3.12. Example for the irregular-shaped query

We will present two approaches in extending our progressive search method

to solve the above problem. First, we propose an intuitive extension in Sec-

tion 3.3.1. Second, we develop a more efficient extension by partitioning the

mask in Section 3.3.2.

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 49

3.3.1 Is Progressive Search still applicable?

Recall that our progressive search method (Algorithm 1) applies two lower

bound functions LBlevel,� and LBgroup. The correctness of the algorithm depends

on whether both LBlevel,� and LBgroup satisfy the lower bound property. In the

following, we demonstrate that, for the case of irregular-shaped query, (i) LBgroup

can be slightly modified to satisfy the lower bound property, and (ii) LBlevel,�

violates the lower bound property.

We can modify LBgroup (Equations 3.6,3.7) in order to satisfy the lower

bound property. Intuitively, we replace Nq (i.e., the size of q) by the number of

relevant entries in the mask matrix m. For this purpose, we define the set of

relevant entries as

Mq = {(i, j) : m[i, j] = 1} (3.10)

By using Mq, we revise the equations for LBgroup into LB⊕,♦
group(q,G) and

LBΔ,♦
group(q,G), in Equations 3.11 and 3.12, respectively. We omit the proofs

of their lower bound property as they are similar to the proofs of Lemmas 3.2

and 3.3. Figure 3.13 illustrates how to compute LB⊕,♦
group(q,G). Note that there

are |Mq| = 5 relevant entries in q. For the group G, we indicate the lowest 5 and

the highest 5 entries in light gray and dark gray, respectively. Then we obtain:

LB⊕,♦
group(q,G) = (|12 + 14 + 16 + 16 + 16| − |7 + 5 + 5 + 5 + 5|) = 47.

However, it is not trivial to simply extend LBlevel,�. We provide an exam-

ple to show that LBlevel,� can violate the lower bound property. Consider the

candidate c3,3 (in a dashed square) in Figure 3.12 and assume p = 1. By Equa-

tion 3.9, the exact distance is: dist♦(q, c3,3) = 16. For the lower bound distance,

50 3.3. EXTENSION FOR IRREGULAR-SHAPED QUERIES

suppose that we use LB⊕ as an instance of LBbasic. At level � = 0, we com-

pute: LBlevel,0(q, c3,3) = LB⊕(q, c3,3) = |∑∗ q −
∑

∗ c3,3| = |190 − 319| = 129.

This violates the lower bound property as LBlevel,0(q, c3,3) > dist♦(q, c3,3). This

happens because LBbasic considers all entries (including irrelevant entries) in a

candidate. To prevent such violation, a simple solution is to disable LBlevel,�.

LB⊕,♦
group(q,G) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
√

|Mq |
|Mq | (SL|Mq |(D

◦1[extq(G)])−∑
Mq

q) if SL|Mq |(D
◦1[extq(G)]) >

∑
Mq

q

p
√

|Mq |
|Mq | (

∑
Mq

q − SH|Mq |(D
◦1[extq(G)])) if SH|Mq |(D

◦1[extq(G)]) <
∑

Mq
q

0 otherwise

(3.11)

LBΔ,♦
group(q,G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p

√
SL|Mq |(D◦p[extq(G)])− p

√∑
Mq
|q[i, j]|p if SL|Mq |(D

◦p[extq(G)]) >
∑

Mq
|q[i, j]|p

p

√∑
Mq
|q[i, j]|p − p

√
SH|Mq |(D◦p[extq(G)]) if SH|Mq |(D

◦p[extq(G)])

<
∑

Mq
|q[i, j]|p

0 otherwise

(3.12)

where L|Mq |(D[G.Rext]) is the lowest |Mq| values in the submatrix D[G.Rext] (3.13)

SL|Mq |(D
◦ω[extq(G)]) =

∑
v∈L|Mq|(D[G.Rext])

vω

We then summarize how to extend our progressive search algorithm (Algo-

rithm 1) for irregular-shaped queries. First, we disable LBlevel,� by removing

Lines 18–21. Second, we replace LBgroup by LB♦
group at Lines 6 and 15. Third,

we replace dist(q, c) by dist♦(q, c) at Line 23, and compute it efficiently by Equa-

tion 3.14.

dist♦(q, c) =
(∑

(i,j)∈Mq

|q[i, j]− c[i, j]|p
)1/p

(3.14)

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 51

1 2 3 4 5 6 7 8

1 14 12 12 14 19 23 28 32
2 10 14 16 16 30 29 26 23
3 9 10 17 8 15 33 37 39
4 10 8 7 9 10 5 6 7
5 4 5 3 5 1 4 10 22
6 2 2 5 2 3 4 10 26
7 4 4 7 1 3 5 18 29
8 3 3 2 5 3 3 40 35

x

y

1 2 3

1 * 12 *
2 14 16 16
3 * 16 *

x

y

group region G extended region extq(G)

query q data matrix D

Figure 3.13. Group-based lower bound for irregular-shaped query

3.3.2 Extension for LBlevel,� based on Partitioning

To achieve efficient extension of Algorithm 1, it is important to develop a

replacement for the level-based lower bound LBlevel,�.

We plan to decompose the maskm into a set of disjoint rectangles. To enable

the lower bound property, we should use a partition that covers no ‘0’-entry of

m. We formally define a valid partition as follows.

Definition 3.6 (Valid partition) Let Γ be a set of disjoint rectangles, where

each rectangle R ∈ Γ can be described by [R.xstart..R.xend, R.ystart..R.yend].

Given a mask matrix m, we call Γ a valid partition if, ∀ R ∈ Γ, ∀ (i, j) ∈ R,

m(i, j) = 1.

Figure 3.14 illustrates a mask m and a valid partition of three rectangles: Γ =

{[1..1, 3..3], [2..3, 2..4], [4..4, 3..3]}. Note that a valid partition cannot cover any

52 3.3. EXTENSION FOR IRREGULAR-SHAPED QUERIES

‘0’-entry of m.

1 2 3 4

1 0 1 0 0
x

2 0 1 1 0
3 1 1 1 1
4 0 1 1 0

y

1 2 3 4

1 0 1 0 0
x

2 0 1 1 0
3 1 1 1 1
4 0 1 1 0

y

Figure 3.14. A valid partition Γ of a mask m

Given a valid partition Γ of a mask m, we define the lower bound function

LBΓ(q, c) in Equation 3.15.

LBΓ(q, c) =
(∑

R∈Γ

LBbasic(q[R], c[R])
p
)1/p

(3.15)

Since each term LBbasic(q[R], c[R]) takes one region-sum operation, the cost of

computing LBΓ(q, c) equals to |Γ| region-sum operations.

Then we prove that LBΓ(q, c) satisfies the lower bound property (cf.

Lemma 3.4).

Lemma 3.4 LBΓ(q, c) ≤ dist♦(q, c).
Proof.

dist♦(q, c)p =

Lq∑
i=1

Wq∑
j=1

m[i, j]|q[i, j]− c[i, j]|p

≥
∑
R∈Γ

∑
(i,j)∈R

m[i, j]|q[i, j]− c[i, j]|p

≥
∑
R∈Γ

LBbasic(q[R], c[R])p

= LBΓ(q, c)
p

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 53

In general, we may employ a sequence of valid partitions

〈Γ0,Γ1,Γ2, · · · ,Γ�♦max−1〉 with an increasing number of rectangles, where

�♦max denotes the number of levels. During search, we apply LBΓ�
on a candidate

c in the ascending order of � as shown in Figure 3.15. If we cannot filter c at

level �, then we attempt to filter it with minimal extra effort, i.e., at level �+1.

l = 1 l = 2 l = 3

…

l = 0

apply LBbasic to each rectangle

0 1 2 3

Figure 3.15. Level � in irregular partition plan

We propose to apply the same sequence Γseq for all candidates. This would

eliminate the overhead of on-the-fly partitioning and allow us to manage each

candidate with O(1) space only (i.e., the current lower bound and level of the

candidate).

We then discuss the extension to the progressive search algorithm.

First, before Line 1, we construct a sequence of valid partitions Γseq =

〈Γ0,Γ1,Γ2, · · · ,Γ�♦max−1〉 from the mask m, by using heuristics to be discussed in

Section 3.3.2.2. Second, at Line 19, we replace LBlevel,�(q, e) by LBΓ�
(q, e).

3.3.2.1 Cost Formulation and Hardness

We first formulate the computation cost of our algorithm. The cost depends

on a query matrix q, a binary mask matrix m, a data matrix D, and a sequence of

54 3.3. EXTENSION FOR IRREGULAR-SHAPED QUERIES

partitions Γseq = 〈Γ0,Γ1,Γ2, · · · ,Γ�♦max−1〉. To simplify our analysis, we disable

group-based pruning and measure the computation cost as the total number of

rectangles used in calling LBΓ�
(q, c), dist♦(q, c) only.

Given a candidate c of D, we have:

cost(LBΓ�
(q, c)) = |Γ�|

cost(dist♦(q, c)) = |Mq|

where Mq was defined in Equation 3.10.

We denote the NN distance by τopt = minc dist
♦(q, c). Since the algorithm

employs a min-heap, it examines candidates in ascending order of lower bound

distance until reaching τopt. For simplicity, we can assume that τopt is known

in advance in this model. If a candidate c can be pruned before or at level

�♦max−1, then it incurs cost
∑F (q,c)

�=0 |Γ�| only, where F (q, c) denotes the last level

for computing the lower bound LBΓ�
(q, c):

F (q, c) = min({� : LBΓ�
(q, c) ≥ τopt} ∪ {�♦max − 1})

In addition, we must compute the exact distance dist♦(q, c) for the following

subset of candidates:

Cexact = {c : F (q, c) = �♦max − 1, LBΓ
�♦max−1

(q, c) < τopt}

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 55

In summary, the total cost of Γseq is:

cost(Γseq, q,m,D) =
∑
c

F (q,c)∑
�=0

|Γ�|+ |Cexact||Mq|

Generally, we wish to find the best sequence 〈Γ0,Γ1,Γ2, · · · ,Γ�♦max−1〉 that

minimizes cost(Γseq, q,m,D). Although our solution computes Γseq only once,

we cannot afford to spend too much time (e.g., more than O(NDNq) which is

the time complexity of brute force method) to compute Γseq. Unfortunately, we

will show that this problem is NP-hard, let alone to solve it in O(NDNq) time.

In Theorem 3.1, we will show that the decision version of our problem (in

Definition 3.7) is NP-hard via reduction from a known NP-complete problem

called the Rectilinear Picture Compression (RPC) decision problem [48] (p.232)

(in Definition 3.8).

Definition 3.7 (Γ-decision problem)

Instance: 〈q,D,m, �♦max, LBbasic,K〉, where q,D are matrices, m is a binary

matrix, �♦max,K are integers, and LBbasic is a basic lower bound function.

Problem: Is there any sequence Γseq = 〈Γ0,Γ1,Γ2, · · · ,Γ�♦max−1〉 such that it

satisfies Definition 3.6 and cost(Γseq, q,m,D) ≤ K?

Definition 3.8 (RPC-decision problem)

Instance: 〈K ′,m′[1..n, 1..n]〉, where K ′, n are integers, and m′ is a n×n binary

matrix.

Problem: Is there any set S of disjoint rectangles {R1, R2, ...} that satisfies both

conditions below?

56 3.3. EXTENSION FOR IRREGULAR-SHAPED QUERIES

• |S| ≤ K ′

• ⋃
Rz∈S Rz = {(i, j) : m′[i, j] = 1}

Theorem 3.1 The Γ-decision problem is NP-hard.

Proof.

First, we present the reduction scheme from the RPC-decision problem to our

Γ-decision problem.

• Set m[1..n, 1..n] to m′[1..n, 1..n]

• Set q[1..n, 1..n] with all ‘0’ entries

• Set D[1..n, 1..n] with all ‘1’ entries

• Set K to K ′, set �♦max to 1, and set LBbasic to LB⊕

The above reduction scheme takes polynomial time.

We proceed to show that the RPC-decision instance returns true if and only

if the Γ-decision instance returns true. For convenience, we define the notation

Mq = {(i, j) : m[i, j] = 1}. Since D has only one candidate c, we obtain:

τopt = dist♦(q, c) =
(∑

(i,j)∈Mq
|0− 1|p

) 1
p
= |Mq|

1
p .

If the RPC-decision instance returns true, then there exists a set S

of disjoint rectangles such that:

• |S| ≤ K ′ = K

• ⋃
Rz∈S Rz = Mq (since m = m′)

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 57

Thus, S also satisfies the valid partition condition in Definition 3.6. We then set

Γ0 = S and plan to show that Γ-decision instance returns true. By Equation 3.15,

we derive:

(LBΓ0(q, c))
p =

∑
Rz∈Γ0

LB⊕(q[Rz], c[Rz])
p

=
∑

Rz∈Γ0

(
p
√
|Rz|
|Rz|

∣∣∣∣ ∑
(i,j)∈Rz

q[i, j]− c[i, j]

∣∣∣∣
)p

=
∑

Rz∈Γ0

(
p
√
|Rz|
|Rz|

|Rz|
)p

=
∑

Rz∈Γ0

|Rz| = |Mq|

We get LBΓ0(q, c) ≥ τopt and thus F (q, c) = 0. Then we obtain:

cost(Γseq, q,m,D) = |Γ0| + 0 ≤ K. Therefore, the Γ-decision instance returns

true.

If the Γ-decision instance returns true, then there exists 〈Γ0〉 such that

cost(Γseq, q,m,D) ≤ K. Since D has only one candidate, we have two cases to

consider:

Case when |Cexact| = 1

We have: cost(Γseq, q,m,D) = |Γ0|+ |Mq| ≤ K. Since K = K ′ and |Γ0| ≥ 0,

we get |Mq| ≤ K ′. We then set S = {[i..i, j..j] : m[i, j] = 1}. Since |Mq| ≤ K ′ and

m = m′, we infer that S covers m′ exactly and thus the RPC-decision instance

returns true.

Case when |Cexact| = 0

We have: cost(Γseq, q,m,D) = |Γ0| ≤ K = K ′. Since |Cexact| = 0, we

derive: LBΓ0(q, c) ≥ τopt. By the lower bound property of LBΓ0 , we get τopt =

dist♦(q, c) ≥ LBΓ0(q, c). Thus, we obtain LBΓ0(q, c) = τopt. By substituting

58 3.3. EXTENSION FOR IRREGULAR-SHAPED QUERIES

q, c, τopt into the above equation, we get:

∑
Rz∈Γ0

|Rz| = |Mq|.

By Definition 3.6, Γ0 contains disjoint rectangles that cover only ‘1’-entries. Com-

bining this fact with the above equation, we infer that Γ0 covers all ‘1’-entries in

Mq (i.e., in m′).

Finally, we set S = Γ0. The RPC-decision instance returns true because we

have shown that: (i) |Γ0| ≤ K ′, and (ii) Γ0 covers all ‘1’-entries in m′.

3.3.2.2 Split-and-Mend Partitioning

In this section, we present several O(Nq)-time heuristics for partitioning a

mask m at level �. We propose a split-and-mend strategy to obtain good parti-

tioning heuristics. First, we apply ‘split’ to divide m into at most 4� rectangles.

Second, we apply ‘mend’ to ensure that each rectangle is valid (cf. Definition 3.6).

We consider two ‘split’ heuristics based on tree structures for 2D points:

• Quad-tree split: We build a level-� quad-tree on m, and then output each

leaf node as a rectangle.

• KD-tree split: We build a level-2� KD-tree on ‘1’-entries of m. Note that

the KD-tree divides m by the x-axis and the y-axis in an alternate manner.

Then, we output each leaf node as a rectangle.

We show the results of Quad-tree split at level � = 1 in Figure 3.16a and KD-tree

split at level � = 2 in Figure 3.16b, respectively.

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 59

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

Figure 3.16. Examples on split

Suppose that, after splitting, we obtain the rectangles in Figure 3.17a. How-

ever, the top-right and the bottom-left rectangles are invalid because they cover

some ‘0’-entries in m. We then suggest ‘mend’ heuristics on the above rectangles

in order to generate a valid partition (cf. Definition 3.6).

• Drop: We simply drop invalid rectangles, as shown in Figure 3.17b.

• Grow: Consider the bottom-left invalid rectangle in Figure 3.17c. We

choose a ‘1’-entry (in gray color) and then find the maximal rectangle

containing it.

While ‘Drop’ returns fewer rectangles, ‘Grow’ tends to produce rectangles that

lead to tighter bounds. We will compare them in the experimental study.

Based on the split-and-mend strategy, we obtain four combinations of heuris-

tics for partitioning the mask: Quad-Drop, Quad-Grow, KD-Drop and KD-Grow.

60 3.4. EXPERIMENTAL EVALUATION

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1

Figure 3.17. Examples on mend

3.4 Experimental Evaluation

We present our experiments for rectangular queries and irregular-shaped

queries in Sections 3.4.1 and 3.4.2, respectively. We implemented all algorithms

in C++ and conducted experiments on an Intel i7 3.4GHz PC running Ubuntu.

3.4.1 Experiments for Rectangular Queries

3.4.1.1 Experimental Setting

We summarize our methods and the state-of-the-art [109] (denoted as Dual)

in Table 3.2a. We label our progressive search methods with the same prefix PS.

Their suffixes represent which techniques are used.

• PSL applies LBlevel only, and

• PSLG applies both LBlevel and LBgroup.

The subscripts (e.g., ⊕ or Δ) indicate whether their lower bound functions are

built on top of LB⊕ or LBΔ.

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 61

Table 3.2. The list of our methods and the competitors
Method Techniques used

Dual [109] [109]

PSL⊕ Section 3.2.2

PSLΔ Section 3.2.2

PSLG⊕ Sections 3.2.2 and 3.2.3

(a) methods for rectangular queries

Method Techniques used

iDual [39] [39]

iPSG Section 3.3.1

iPSLquad,drop, iPSLquad,grow Section 3.3.2
iPSLkd,drop, iPSLkd,grow

iPSLGquad,drop, iPSLGquad,grow Sections 3.3.1, 3.3.2
iPSLGkd,drop, iPSLGkd,grow

(b) methods for irregular-shaped queries

Note that each method (in Table 3.2) requires a preprocessing step — scan

a data image D to compute its prefix-sum matrix. This step is done only once

before queries arrive. For example, the preprocessing time is only 0.22s per image

for the Weather dataset in Table 3.3.

Table 3.3a lists the details of our datasets and queries. We collect these

datasets from [3, 91]. Photo640, Photo1280 and Photo2560 [91] contain 30 images

of the size 640×480, 1280×960 and 2560×1920 respectively. Weather [3] contains

30 weather satellite images of the size 1800×1800; the timestamps of these images

are from 00:00 on 1/4/2014 to 06:00 on 2/4/2014. For each image, we generate

10 random starting positions by the uniform distribution to extract queries from

that image. Since our competitors only support the L2 norm, we use the L2

norm in all experiments.

In each experiment, we execute the methods for 300 queries (= 30 images

62 3.4. EXPERIMENTAL EVALUATION

× 10 queries) and then report the average response time.

Table 3.3. Our datasets and queries
Dataset Image size Number of Number of

images queries per image

Photo2560 2560× 1920 30 10

Photo1280 1280× 960 30 10

Photo640 640× 480 30 10

Weather 1800× 1800 30 10

(a) the setting for rectangular queries

Dataset Number of Number of Query extraction
images queries per image method

Photo2560 30 10 Matlab segmentation

Weather 30 1 Manual extraction

(b) the setting for irregular-shaped queries

3.4.1.2 Results

First, we study the effect of the number of bins α on the response time of our

method PSLG⊕. Figure 3.18 plots the running time as a function of α. When

α increases, the group-based lower bound LBgroup becomes tighter (i.e., higher

pruning power) so the response time drops. Nevertheless, when α is too large, it

incurs high overhead to compute LBgroup so the response time rises slightly. In

subsequent experiments, we set α = 16 by default.

We have also collected measurements to study the effectiveness of techniques

in PSLG⊕, at the default setting (α = 16). First, the exact distance calculation

incurs only 5% of the running time, whereas the computation of bounds incurs

95% of the running time. Second, the majority of candidates (99%) are pruned

at the group level and the remaining candidates are pruned at the candidate

level.

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 63

(a) Photo2560 (b) Weather

Figure 3.18. Effect of the number of bins α

Next, we evaluate the scalability of methods with respect to the query size

Nq. Figure 3.19 shows the response time of methods versus the query size Nq.

Since Dual [109] can only support query size of the form 2r×2r, we use query sizes

like 322, 642, · · · in this experiment. Thanks to the group lower bound function,

PSLG⊕ outperforms all other methods and scales better with respect to Nq. On

the other hand, Dual, PSLΔ and PSL⊕ need to obtain candidates one-by-one

and incur higher overhead on maintaining the min-heap. Since PSL⊕ performs

better than PSLΔ, we omit PSLΔ in the next experiment.

Then, we test the scalability of methods with different data sizes (by using

three datasets Photo640, Photo1280 and Photo2560), while fixing the query size

to 64× 64. Figure 3.20 shows the response time of methods with respect to the

data size. Our methods perform better than the competitor Dual. When the

data size increases, our group-based pruning technique becomes more powerful

and thus the gap between PSLG⊕ and the other methods widens.

To test the robustness of methods, we follow [109] and add Gaussian noise

64 3.4. EXPERIMENTAL EVALUATION

(a) Photo2560 (b) Weather

Figure 3.19. Effect of the query size Nq

into each query image. The query size is fixed to 128 × 128 in this experiment.

Figure 3.21 shows the response time of methods as a function of the noise (in stan-

dard deviation). The performance gap between our methods and Dual widens

as the noise increases. At a high noise, the pruning power of all lower bound

functions becomes weaker. In the worst-case, Dual may invoke a long sequence

of bounding functions per candidate, whereas our methods invoke at most a log-

arithmic number of LBlevel (in terms of Nq) per candidate. In summary, our

methods are more robust than Dual against noise.

3.4.2 Experiments for Irregular-Shaped Queries

3.4.2.1 Experimental Setting

We summarize our methods and the state-of-the-art [39] (denoted as iDual)

in Table 3.2b. We label our methods with the same prefix iPS. Their suffixes (G

or L or both) represent which lower bound techniques are used. Their subscripts

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 65

Figure 3.20. Effect of the data size ND

represent which partitioning techniques are used.

Table 3.3b lists the details of our datasets and queries. The experiments

in [39] have tested with three synthetic query shapes only. In contrast, we test

with a wider variety of query shapes in our experiments. For the Photo2560

dataset [91], we apply the Matlab segmentation function on each rectangular

query in order to obtain an irregular-shaped query. For the Weather dataset [3],

we follow the same approach as in [121] and manually extract a cloud pattern

from each data image.

The response time of our iPSLG methods includes the partitioning time. In

all of our experiments, the partitioning time is at most 1.2% of the response time

only, implying that our partitioning heuristics incur very low overhead.

3.4.2.2 Results

We first compare the effectiveness of our partitioning heuristics and name

these methods as iPSLkd,drop, iPSLquad,drop iPSLkd,grow and iPSLquad,grow. Fig-

66 3.4. EXPERIMENTAL EVALUATION

(a) Photo2560 (b) Weather

Figure 3.21. Effect of the noise

ures 3.22a and b plot the response time of these methods with respect to the

Gaussian noise as described in Section 3.4.1.2. In general, ‘grow’ is better

than ‘drop’ because ‘grow’ can produce more rectangles and thus provide tighter

bounds. On the other hand, ‘quad’ performs slightly better than ‘kd’. The best

method iPSLquad,grow is faster than others up to 20% and 40%, on the Photo2560

and the Weather datasets, respectively.

In Section 3.3.2, we have formulated a cost equation to express the compu-

tation cost of our method. We then measure this cost in the above experiment

and show it in Figures 3.22c and d. We observe that the trends are similar to

those in Figures 3.22a and b. Again, iPSLquad,grow achieves the lowest cost, and

it performs better than other methods by up to 37% and 53%, on the Photo2560

and the Weather datasets, respectively.

In the next experiment, we compare the competitor (iDual) with three

variants of our methods: one using group-based lower bound (iPSG), one us-

ing level-based lower bound (iPSLquad,grow), and one using both types of lower

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 67

(a) response time on Photo2560 (b) response time on Weather

(c) cost on Photo2560 (d) cost on Weather

Figure 3.22. Comparisons of partitioning heuristics, varying the noise

bounds (iPSLGquad,grow). Figure 3.23a and b show the response time of these

methods as a function of the noise. iDual is the worst since it incurs high over-

head on maintaining a set of rectangles for each candidate. Both iPSLquad,grow

and iPSLGquad,grow outperform iPSG, implying that our lower bounds in Sec-

tion 3.3.2 are more powerful than the simple bound in Section 3.3.1. We then

plot the maximum heap space of these methods, in terms of the number of rect-

angles, in Figure 3.23c and d. iDual occupies considerable amount of space on

maintaining rectangles for candidates. iPSLquad,grow requires only O(1) space per

68 3.4. EXPERIMENTAL EVALUATION

candidate. Since iPSLGquad,grow can perform group-based pruning, it consumes

the smallest amount of space.

(a) response time on Photo2560 (b) response time on Weather

(c) max. heap space on Photo2560 (d) max. heap space on Weather

Figure 3.23. Comparisons of methods, varying the noise

Finally, we test the effect of the query size on the response time of our

method iPSLquad,grow and the competitor iDual, without noise. We measure the

query size as the number of ‘1’-entries in the mask. The sizes of queries range from

960 to 16384 in the Photo2560 dataset and from 5400 to 84710 in the Weather

dataset. We plot the results in Figure 3.24. Both the average response time and

the worst-case response time of iPSLquad,grow outperform iDual significantly.

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 69

(a) iPSLquad,grow on Photo2560 (b) iDual on Photo2560

(c) iPSLquad,grow on Weather (d) iDual on Weather

Figure 3.24. Effect of query size, fixing σ = 0

3.5 Related Work

The literature review of the recent techniques of Euclidean distance have

been summarized in Section 2.4.1. In this section, we cover the works directly

related to our problem. Then, we mainly discuss the differences between our

work [19, 20] and previous works.

Similarity search methods on matrix can be classified along two dimensions:

70 3.5. RELATED WORK

(i) whether they support rectangular queries or irregular-shaped queries, and (ii)

whether they support range search or NN search.

We first discuss the works for rectangular queries on a matrix. Various lower

bound functions [90, 120, 12, 55, 91, 49, 109] have been developed for similarity

search problems on a matrix, in order to prune unpromising candidates efficiently

and thus avoid expensive distance computations. Ouyang et al. [91] propose a

unified framework that covers range search solutions [90, 120, 12, 55, 49]. The

state-of-the-art NN search method is [109]. It applies both lower and upper

bound functions to accelerate NN search. Its lower / upper bound functions are

based on a Fourier transform on matrix (called the Walsh-Hadamard transform),

which can only support query of the size 2r × 2r but not arbitrary query size.

Also, [109] has not explored our group-based lower bound function LBgroup,

which enables efficient pruning for a group of candidates.

Although the idea of multi-level pruning originates from [49], our method

(in Section 3.2) differs from [49] in two aspects. First, our method is applicable

to any rectangular query, but [49] can only handle square queries of the size

μr × μr (where μ and r are integers). Second, as we will explain in Section 3.2,

our multi-level pruning takes a a given lower bound function LBbasic as building

block. Thus, our method is extensible and can benefit from future developments

of LBbasic. Ref. [85] assigns candidates into groups and exploits the similarities

of candidates within the same group for pruning. However, it still processes

candidates in each group one-by-one. In contrast, our group-based pruning tech-

nique enables pruning at the group granularity. We then discuss the works for

irregular-shaped queries on a matrix [13, 95, 96, 39, 121]. Like [13], our method

partitions an irregular-shaped query into regions. While Ref.[13] allows only par-

CHAPTER 3. SUB-WINDOW NEAREST NEIGHBOR SEARCH (SWNNS)
ON MATRIX 71

titioning with square regions of sizes 2r×2r, we allow a more flexible partitioning

with rectangles. Our partitioning leads to fewer regions than [13] and thus re-

duces the computation overhead during pruning. Several heuristics [95, 96, 121]

have been proposed to compute the results, but they do not always return the

best match. The state-of-the-art method for NN search [39] is an extension of

[109]. This method decomposes each candidate into a set of disjoint rectangles,

and associates each rectangle Ri with a lower bound lbi and an upper bound

ubi. When it refines the bound of a candidate, it chooses the rectangle with the

largest ubi − lbi, then splits that rectangle based on an entropy idea. While this

approach tends to produce a good partitioning for each individual candidate,

it incurs high space and time overhead on maintaining the above partitions /

rectangles. In contrast, our method eliminates such overhead by using the same

partitioning scheme for all candidates.

The above works assume that the image and the query have the same ori-

entation. Several methods have been developed to deal with deformation or

rotation of images during matching [18, 74, 30]. A representative method [30]

requires solving template matching (SWNNS) as a sub-problem. As such, our

proposed method can be applied to speed up the method in [30].

The similarity search on a time series [131, 45, 98] can be considered as

a special case of our problem, where both the data image D and the query q

are modeled as vectors instead of matrices. While some simple lower bound

functions (e.g., LB⊕) originate from them, our proposed level-based and group-

based lower bound functions (LBlevel,�, LBgroup) are specifically designed for the

SWNNS problem.

72 3.6. CHAPTER SUMMARY

3.6 Chapter Summary

The contribution of our work is twofold. First, the proposed technique can

support irregular-shaped queries. This new flexibility makes the new solution

much more effective. Second, this new advantage is achieved with substantially

less computation in comparison with the current state of the art, about 20 times

faster when the noise level is low to medium and at least 9 times faster when the

noise level is high. Our experiments on real datasets indicate that the proposed

method is capable of real-time computation and therefore enables a wide range

of new applications not possible before. In the future, we plan to investigate

approximation algorithms to further reduce the running time with theoretical

guarantee.

Chapter 4

The Power of Bounds:

Answering Approximate Earth

Mover’s Distance with

Parametric Bounds

In this chapter, we focus on computing approximate EMD yet allowing user

to control the error. Specifically, given an error parameter ε, our problem is

to find an approximate EMD value R such that R is within 1 ± ε times the

exact EMD value. We are not aware of efficient algorithms that satisfy the

above error requirement. The database community has derived several lower

and upper bound functions of EMD [9, 10, 64, 102, 103, 117, 128, 130]. However,

these bound functions provide no guarantee on the error of the bound.

73

74

Motivated by this, we wonder whether existing lower and upper bound func-

tions can be exploited to solve our problem efficiently. Intuitively, if we can obtain

a lower bound � and an upper bound u of the exact EMD value such that they are

sufficiently close (e.g., u/� ≤ 1+ε), then we get an approximate EMD value with

error guarantee. The next question is how to select appropriate lower and upper

bound functions with respect to ε. Consider all possible pairs of 〈LBi, UBj〉

where LBi is a lower bound function, and UBj is an upper bound function.

Ideally, if we can accurately estimate the response time and the error for each

pair 〈LBi, UBj〉, as shown in Figure 4.1, then the optimal solution is to choose

the cheapest pair (i.e., 〈LB1, UB4〉) whose error is below ε. The challenge is

how to estimate quickly the response time and the error, while the estimates are

reasonably accurate. This issue is complicated by the fact that, even within the

same dataset, the same pair 〈LBi, UBj〉 of bound functions may yield different

response time and error for different pairs of histograms.

Another issue is that, the limited number of bound functions prevents us to

conduct fine-grained optimization. We need a wide spectrum of bound functions

for EMD to provide sufficient trade-off points for optimization. To address this

issue, we propose the concept of parametric dual bound function, which produces

both lower and upper bounds simultaneously via shared computation, while its

running time and tightness can be controlled via a parameter. In Figure 4.1, we

indicate a parametric dual bound function by a dotted line in blue. By choosing

its parameter value carefully, it is possible to obtain a better choice than the

pair 〈LB1, UB4〉. Since it is common to have skewed data in real applications,

we will exploit the characteristics of skewed data to design a parametric dual

bound function. As a remark, Wichterich et al. [128] have devised a parametric

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 75

lower bound function, but not any parametric upper bound function. In con-

trast, we utilize shared computation to compute both lower and upper bounds

simultaneously.

response time

error

LB1,UB3

Exact

parametric
bound function

ε

LB2,UB3

LB1,UB4

LB2,UB4

Figure 4.1. Illustration of bound functions

We attempt to tackle our problem in two directions. First, we propose an

adaptive approach, which does not rely on any training. It gradually invokes

tighter bound functions until satisfying the error requirement. Then, we develop

an enhancement, called lightweight adaptive approach, by reducing the number

of calls to bound functions. Finally, we apply training to collect statistics, and

exploit them to boost the performance of our solution.

In our experimental study, we will evaluate both the efficiency and the effec-

tiveness of our proposed methods. We will conduct case study on the represen-

tative application (i.e., kNN image retrieval) and demonstrate that approximate

EMD values yield reasonably accurate results. Our methods achieve an order of

magnitude speedup over the fastest exact computation method.

76 4.1. PRELIMINARIES

In Section 4.1, we define our problem formally and briefly review existing

bound functions for EMD in the literature. We then present our parametric

dual bound functions in Section 4.2. After that, we propose our approximation

framework and also our solutions in Section 4.3. In Section 4.4, we present

experimental results on real datasets. We discuss the related work in Section 4.5

and then conclude in Section 4.6.

4.1 Preliminaries

4.1.1 Problem Definition

The Earth Mover Distance (EMD) [102] can be used to measure the dis-

similarity between two histograms (e.g., probability distributions). We represent

a histogram by p = [p1, p2, ..., pd], where d is the dimensionality (i.e., number

of bins). Following the previous works [102, 117, 103], we assume that each

histogram p is normalized, i.e.,
∑d

j=1 pj = 1. Given two histograms q and p,

the EMD between them is defined as the minimum-cost flow on a bipartite flow

network between q and p. We denote a cost matrix by c and a flow matrix by

f , where ci,j models the cost of moving flow from qi to pj , and fi,j represents

the amount of flow to move from qi to pj . Formally, we define emdc(q,p) as the

following linear programming problem.

emdc(q,p) = minimize
f

d∑
i=1

d∑
j=1

ci,jfi,j

such that ∀i, j ∈ [1..d] : fi,j ≥ 0

∀i ∈ [1..d] :
d∑

j=1

fi,j = qi

∀j ∈ [1..d] :

d∑
i=1

fi,j = pj

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 77

According to Ref. [102], EMD satisfies the triangle inequality provided that

the cost matrix c is a metric (i.e., non-negativity, symmetry and triangle inequal-

ity for all ci,j).

Lemma 4.1 (Proved in Ref. [102]) For any histograms q,p, r with the same

dimensionality, we have:

emdc(q,p) ≤ emdc(q, r) + emdc(r,p)

EMD is computationally expensive. Even with the fastest known algo-

rithm [89], it is still expensive to compute the exact EMD value, which takes

O(d3 log d) time. Instead, we propose to compute an approximate EMD value

R with bounded error. We formulate our problem below; it guarantees that R

is within 1± ε times the exact EMD value. Our objective is to develop efficient

algorithms for this problem.

Problem 4.1 (Error-Bounded EMD) Given an error threshold ε, this prob-

lem returns a value R such that Eq,p(R) ≤ ε, where the relative error of R is

defined as:

Eq,p(R) =
|R− emdc(q,p)|

emdc(q,p)
(4.1)

4.1.2 Existing Bound Functions

We introduce existing lower bound and upper bound functions for EMD in

the literature, which will be used in subsequent sections. These bound functions

must satisfy the following properties (c.f. Definition 4.1).

78 4.2. PARAMETRIC DUAL BOUNDING

Definition 4.1 LB(q,p) is called a lower bound function if emdc(q,p) ≥

LB(q,p) for any q,p. UB(q,p) is called an upper bound function if

emdc(q,p) ≤ UB(q,p) for any q,p.

We summarize several representative lower and upper bound functions in the

literature in Table 4.1. For each bound function, we show its name (in subscript),

its time complexity, and its reference(s). We refer the interested readers to the

references.

Most of the bound functions yield time complexities in terms of the his-

togram dimensionality d. Wichterich et al. [128] propose a parametric lower

bound function LBRed,dr , which accepts an additional parameter dr (i.e., re-

duced dimensionality) to control its running time and tightness. However, we

are not aware of any parametric upper bound function in the literature.

Table 4.1. Summary of lower and upper bound functions for EMD
Name Type Time Complexity Reference Parametric

LBIM lower O(d2) [9] no

LBProj lower O(d) [103, 34] no

LBRed,dr lower O(d2 + dr
3 log dr) [128] yes

UBG upper O(d2) [117] no

UBH upper O(d) [64, 65] no

4.2 Parametric Dual Bounding

Although there exists a parametric lower bound function [128], we are not

aware of any parametric upper bound function in the literature. Instead of pro-

viding separate functions for lower bound and upper bound, we propose another

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 79

parametric dual bound function, which utilizes shared computation to compute

both lower and upper bounds simultaneously, and offers control on running time

and tightness via a parameter. Moreover, our parametric bound functions take

advantage of skewed property of data, we provide the case study in Section 4.2.4

to demonstrate our parametric lower bound is generally superior than [128] for

small error in this type of datasets.

4.2.1 Exact EMD on Sparse Histograms

Recall from Section 5.1 that the computation of emdc(q,p) is equivalent to

the minimum-cost flow problem on a bipartite flow network. This flow network

contains d2 edges because there is an edge between each qi and each pj .

It turns out that, when both q and p are sparse histograms (i.e., having

0 in many bins), it is possible to shrink the flow network without affecting the

exact EMD value. Consider the example in Figure 4.2 where the dimensionality

is d = 4. Since each flow fi,j (from qi to pj) must be non-negative, any bin with

zero value must have zero flow (to and from other bins). Therefore, we can safely

remove the edge for fi,j if either qi = 0 or pj = 0. For example, in Figure 4.2, it

suffices to keep only 2× 2 = 4 edges in the flow network.

Formally, we introduce the notation Φ(p) to measure the denseness of the

histogram.

Definition 4.2 Let Φ(p) be the number of non-zero bins in histogram p, i.e.,

Φ(p) = COUNT{j : pj �= 0}.

With this idea, we can compute the exact value of emdc(q,p) in O(d3s log ds)

80 4.2. PARAMETRIC DUAL BOUNDING

q

p

1 2 3 4

1 2 3 4

0.5 0.5 0 0

0 0 0.8 0.2

Figure 4.2. Bipartite graph for sparse EMD computation

time, where ds = max(Φ(q),Φ(p)).

4.2.2 Skew-Transform Operation

Based on the idea of efficient EMD evaluation on sparse histograms, we

propose the Skew-Transform operation which will be used for our skew-based

bound functions. This operation takes a histogram p and an integer λ as input,

and returns a histogram p′ that contains exactly λ non-zero bins (i.e., Φ(p′) =

λ). We illustrate an example of this operation in Figure 4.3, with the input

p = [0.1, 0.1, 0.6, 0.2] and λ = 2. After moving values in bin 1 and bin 2 to bin

3, we obtain the histogram p′ = [0, 0, 0.8, 0.2], which contains exactly two non-

zero bins. As we will explain later, an upper bound ubmove(p,p
′) can be derived

efficiently from the sequence of movements. In this case, we have: ubmove(p,p
′) =

0.1 · c2,3 + 0.1 · c1,3.

We adopt a greedy method to implement the skew-transform operation.

First, we select a source bin (say, s) with the smallest non-zero value. Then,

we select a target bin (say, t) such that it has non-zero value and the smallest

movement cost cs,t. We repeat the above procedure until the result histogram p′

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 81

0.6

0.1

2 31 4

0.1 0.2

0.7

2 31 4

v(1)

0.2
0

move 0.1
from (2) to (3)

0.8

2 31 4

0.2
00

0.1

move 0.1
from (1) to (3)

p = v(0) p' = v(2)

Figure 4.3. Example for skew transform

contains exactly λ non-zero bins. The pseudo-code of this method is described

in Algorithm 2.

Algorithm 2 Skew Transform Operation
1: procedure Skew-Transform(histogram p, cost matrix c, integer λ)
2: p′ ← p
3: ubmove ← 0
4: while Φ(p′) > λ do
5: s← argmin{i : p′i �= 0}
6: t← argmin{j : cs,j , p

′
j �= 0, j �= s}

7: δ ← p′s
8: ubmove ← ubmove + cs,tδ
9: p′t ← p′t + δ; p′s ← 0

10: return (p′, ubmove)

The value ubmove computed by Algorithm 2 is indeed an upper bound of

emdc(p,p
′). We prove this in the following lemma.

Lemma 4.2 When Algorithm 2 terminates, it holds that: ubmove ≥ emdc(p,p
′).

Proof. In each iteration of the Algorithm 2, the movement of value δ from bin

s to bin t is feasible; it preserves the summation terms
∑

j=1..d fij = pi, ∀i,∑
i=1..d fij = p′j , ∀j and ensures that each movement incurs non-negative flow

from bin s to t. Therefore, fij ≥ 0, ∀i, j. Therefore, the total movement cost is

at least the minimum possible cost emdc(p,p
′).

82 4.2. PARAMETRIC DUAL BOUNDING

The time complexity of Algorithm 2 is O((d− λ)d).

4.2.3 Skew-Based Bound Functions

We illustrate the idea behind our bound functions in Figure 4.4.

• First, we transform histograms q and p into sparser histograms q′ and

p′. To control their sparsity, we introduce a parameter λ in the transform

operation and require that Φ(q′) = Φ(p′) = λ.

• Then, we derive lower and upper bound functions for emd(q,p) by using

the transformed histograms (i.e., q′,p′) and their relationships with the

original histograms (i.e., q,p).

q

p

q'

p'

emdc(q,q')

emdc(p,p')

emdc(q',p')emdc(q,p)

Skew transform

Skew transform

λ non-zero bins

Figure 4.4. Skew-based lower and upper bounds

As shown in Figure 4.4, our bounds for emdc(q,p) depend on three terms

emdc(q,q
′), emdc(p,p

′), and emdc(q
′,p′). Since q′ and p′ are sparse, we can

compute emdc(q
′,p′) efficiently by the idea in Section 4.2.1. However, this idea

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 83

cannot be used to accelerate the computation of emdc(q,q
′), and emdc(p,p

′).

To reduce the computation time, we replace emdc(q,q
′), emdc(p,p

′) by fast-to-

compute upper bounds UB(q,q′), UB(p,p′) (cf. Section 4.2.2). Specifically,

we propose the following parametric functions in terms of λ and call them as

skew-based bound functions:

LBskew,λ(q,p) = emdc(q
′,p′)− UB(q,q′)− UB(p,p′)

UBskew,λ(q,p) = emdc(q
′,p′) + UB(q,q′) + UB(p,p′)

(4.2)

such that (i) Φ(q′) = Φ(p′) = λ and (ii) UB(·, ·) is an upper bound function of

emdc(·, ·).

Observe that both LBskew,λ(q,p) and UBskew,λ(q,p) share all the terms,

suggesting an opportunity for shared computation for both bounds.

Lemma 4.3 shows that LBskew,λ(q,p) and UBskew,λ(q,p) are lower and

upper bound functions for emdc(q,p), respectively.

Lemma 4.3 For any histograms q,p, we have: LBskew,λ(q,p) ≤ emdc(q,p) ≤

UBskew,λ(q,p).

Proof. By the triangle inequality (Lemma 4.1), we obtain:

emdc(q,p
′) ≤ emdc(q,q

′) + emdc(q
′,p′)

emdc(q,p) ≤ emdc(q,p
′) + emdc(p

′,p)

Adding these two inequalities, we get:

emdc(q,p) ≤ emdc(q
′,p′) + emdc(q,q

′) + emdc(p
′,p)

≤ emdc(q
′,p′) + UB(q,q′) + UB(p,p′)

This implies that emdc(q,p) ≤ UBskew,λ(q,p).

84 4.2. PARAMETRIC DUAL BOUNDING

By using Lemma 4.1 in another way, we obtain:

emdc(q
′,p) ≥ emdc(q

′,p′)− emdc(p
′,p)

emdc(q,p) ≥ emdc(q
′,p)− emdc(q

′,q)

Adding these two inequalities, we get:

emdc(q,p) ≥ emdc(q
′,p′)− emdc(q

′,q)− emdc(p
′,p)

≥ emdc(q
′,p′)− UB(q,q′)− UB(p,p′)

This implies that emdc(q,p) ≥ LBskew,λ(q,p).

Regarding the time complexity, the transformation operation (in Section

4.2.2) takes O((d− λ)d) time, and the exact EMD computation on transformed

histograms takes O(λ3 log λ) time. Thus, the total time complexity is: O((d −

λ)d+ λ3 log λ).

4.2.4 Case study on Parametric Lower Bound Functions

Recall from Table 4.1, LBRed,dr [128] is the only parametric lower bound

function in the literature. In order to compare the effectiveness of our para-

metric bound functions, we first sample 1000 (q,p) pairs from CAL-RGB and

CAL-Lab datasets (see Section 4.4.1.1 for details). Then we test the running

time (per pair) with respective to the average relative error of each bound, i.e.

1
1000

∑
(q,p)Eq,p(LBRed,dr(q,p)) and

1
1000

∑
(q,p)Eq,p(LBskew,λ(q,p)). We select

the most suitable parameters of λ and dr such that the relative errors to be ap-

proximately 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. As shown in Figure 4.5, our bound

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 85

function LBskew,λ generally outperforms the existing bound function LBRed,dr

under the small average relative error (e.g. 0 to 0.2). The main reason is our

bound function LBskew,λ applies the smallest bin value shift first greedy strategy

(cf. Figure 4.3) which is more suitable for skewed data. However, LBRed,dr does

not consider this property.

LBskew,λ � LBRed,dr ♦

Figure 4.5. Case study for our LBskew,λ and LBRed,dr [128]

4.3 Approximation Framework

Although the lower/upper bound functions (cf. Table 4.1 and Section 4.2)

may be used to compute approximate EMD value R, they provide no guarantee

on the relative error (i.e., Eq,p(R) ≤ ε).

In contrast, we propose a framework to compute an approximate EMD value

with bounded error. Our framework leverages on lower/upper bound functions

for EMD. As shown in Figure 4.6, our framework consists of the following two

components.

86 4.3. APPROXIMATION FRAMEWORK

• The controller selects a lower bound function and an upper bound function.

Then it computes a lower bound �, an upper bound u, and an approximate

result R which is the value between � and u.

• The validator receives information (e.g., �, u,R) from the controller, and

then checks whether the relative error definitely satisfies Eq,p(R) ≤ ε.

If the validator returns true, then the controller reports R to the user. Otherwise,

the controller needs to obtain tighter bounds for � and u, and repeats the above

procedure.

Figure 4.6. Framework

4.3.1 Validator

In order to secure the correctness of our framework, we specify the following

requirements for the validator:

• If it returns true, then it guarantees that the approximate result R must

satisfy Eq,p(R) ≤ ε.

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 87

• Otherwise, it does not provide any guarantee for R.

For brevity in the remaining subsection, we use �, u and e to represent

LB(q,p), UB(q,p) and emdc(q,p).

e (unknown):
between l and u

l uR
Figure 4.7. Validation

As shown in Figure 4.7, since the validator does not know the exact value

e, it cannot directly compute the relative error of R, i.e., Eq,p(R). Nevertheless,

the validator can compute the maximum possible relative error of R, according

to Lemma 4.4.

Lemma 4.4 Eq,p(R) ≤ max

(
R
� − 1, 1− R

u

)
.

Proof. By the definition of Eq,p(R), we have:

Eq,p(R) =
|R− e|

e
=

∣∣∣∣Re − 1

∣∣∣∣

Case 1: R ≥ e

Eq,p(R) =
R

e
− 1 ≤ R

�
− 1 (By e ≥ �)

88 4.3. APPROXIMATION FRAMEWORK

Case 2: R < e

Eq,p(R) = 1− R

e
≤ 1− R

u
(By e ≤ u)

Combining both cases, we obtain the following inequality:

Eq,p(R) ≤ max

(
R

�
− 1, 1− R

u

)

Our next step is to find the optimal R in order to minimize the maximum

possible relative error max
(
R
� − 1, 1 − R

u

)
. According to Theorem 4.1, it is

minimized when R = 2�u
�+u , and the maximum possible relative error becomes

u−�
u+� .

In subsequent sections, we use the notation Emax(�, u) to represent u−�
u+� , and

use the notation R(�, u) to represent 2�u
�+u .

Theorem 4.1 If R = 2�u
�+u , then:

(1) max
(
R
� − 1, 1− R

u

)
achieves minimum

(2) Eq,p(R) ≤ u−�
u+� .

Proof. For (1), we observe that the first term R
� − 1 is monotonic increasing

with R and the second term 1− R
u is monotonic decreasing with R. In order to

minimize it, we set:

R

�
− 1 = 1− R

u
⇐⇒ R =

2�u

�+ u

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 89

For (2),

Eq,p(R) =
|R− e|

e
=

∣∣∣∣Re − 1

∣∣∣∣ =
∣∣∣∣ 2�u

e(�+ u)
− 1

∣∣∣∣
≤ max

(∣∣∣∣ 2�u

�(�+ u)
− 1

∣∣∣∣,
∣∣∣∣ 2�u

u(�+ u)
− 1

∣∣∣∣
)

=
u− �

u+ �

Therefore, once the condition u−�
u+� ≤ ε is fulfilled, R = 2�u

�+u can achieve the

bounded error Eq,p(R) ≤ ε.

4.3.2 Training-free Controllers

In this section, we propose two control algorithms: Adaptive (ADA) and

Lightweight Adaptive (ADA-L) which are based on our developed parametric

lower and upper bound functions (cf. Section 4.2). These two control methods

do not have the preprocessing stage.

4.3.2.1 Adaptive (ADA)

Recall from Section 4.2.3, our parametric dual bound functions LBskew,λ

and UBskew,λ depend on the parameter λ, which can affect both the running

time and the error. This calls for an automatic method for selecting a suitable

value for λ, upon the arrival of the (q,p)-pair.

We propose the adaptive approach (ADA) as illustrated in Figure 4.8. It

gradually applies tighter bounds until passing the validation test. We present

90 4.3. APPROXIMATION FRAMEWORK

this method in Algorithm 3. It consists of an adaptive phase which performs

validation by our parametric bound functions LBskew,λ, UBskew,λ in ascending

order of λ. We denote the increasing sequence of λ values by Λ (cf. Line 2). The

algorithm executes our parametric bound functions in ascending order of λ ∈ Λ

until passing. It terminates as soon as it passes the validation test.

l1 u1l2 l3 u2u3

gradually using tighter bounds

Figure 4.8. Adaptive approach

Algorithm 3 Adaptive Algorithm (ADA)

1: procedure ADA(histogram q, histogram p, cost matrix c, error threshold ε)
2: initialize the sequence Λ of increasing integers
3: for each λ ∈ Λ do � compute LBskew,λ, UBskew,λ

4: (q′, ub1)←Skew-Transform(q, λ)
5: (p′, ub2)←Skew-Transform(p, λ)
6: temp← emdc(q

′,p′) � expensive call
7: �← temp− ub1 − ub2; u← temp+ ub1 + ub2
8: if Emax(�, u) ≤ ε then � Theorem 4.1
9: return R = 2�u

�+u

10: return emdc(q,p) � expensive call

We propose one instantiation for Λ below:

• Exponential sequence: We introduce a parameter α > 1 and construct

Λ = 〈�αi� : i ≥ 0, �αi� < d〉. For example, when α = 1.4 and d = 25,

the sequence is: 〈1, 1, 1, 2, 3, 5, 7, 10, 14, 20〉. In implementation, we omit

duplicate integers in the sequence.

Theoretically, we show that ADA can be worse than the ADA-Opt (which

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 91

knows the optimal λ value in advance for each (q,p) pair) by only a constant

factor 5.18 if α = 1.2.

Lemma 4.5 For every (q,p) pair, let T(ADA(q,p)) and T(ADA-Opt(q,p)) be

the running time of ADA(q,p) and ADA-Opt(q,p) respectively. If α = 1.2, we

have:

T(ADA(q,p))

T(ADA-Opt(q,p))
≤ 5.18

The detail proof is shown in Appendix (Section 4.7).

4.3.2.2 Lightweight Adaptive (ADA-L)

ADA may examine several λ and compute emdc(q
′,p′) multiple times (in the

adaptive phase). Thus, ADA can be expensive when ε is small. To avoid such

overhead, we propose a lightweight version of the adaptive method such that it

computes emdc(q
′,p′) exactly once.

We show this lightweight method (ADA-L) in Figure 4.9. This algorithm (cf.

Algorithm 4) applies the skew-transform operation on histograms q′ and p′ such

that they have one more zero bin. If the validation condition is satisfied, then

we continue the loop. Otherwise, we terminate the loop and return emdc(q
′,p′)

as the approximate result.

The correctness of the validation condition is established by the following

theorem.

92 4.3. APPROXIMATION FRAMEWORK

q’

p’ emdc(q’,p’)

Figure 4.9. Lightweight adaptive approach

Theorem 4.2 If R = emdc(q
′,p′), then:

Eq,p(R) ≤ UB(q,q′) + UB(p,p′)
LB(q,p)

(4.3)

Proof. In the proof of Lemma 4.3, we have: emdc(q,p) ≤ emdc(q
′,p′) +

UB(q,q′) + UB(p,p′) and emdc(q,p) ≥ emdc(q
′,p′)− UB(q,q′)− UB(p,p′).

Thus, we obtain: |emdc(q
′,p′)− emdc(q,p)| ≤ UB(q,q′) + UB(p,p′).

Eq,p(R) =
|emdc(q

′,p′)− emdc(q,p)|
emdc(q,p)

(Given value of R)

≤ UB(q,q′) + UB(p,p′)
emdc(q,p)

≤ UB(q,q′) + UB(p,p′)
LB(q,p)

(By Definition 4.1)

Therefore, once the condition UB(q,q′)+UB(p,p′) ≤ εLB(q,q′) is fulfilled,

R = emdc(q
′,p′) can achieve the bounded error Eq,p(R) ≤ ε.

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 93

Before computing R, we can bound the error Eq,p(R) by using three terms,

namely UB(q,q′), UB(p,p′) and LB(q,p). In the algorithm, the value � (cf.

Line 2) corresponds to LB(q,p), and the value ubsum + ub1 + ub2 (cf. Line 8)

corresponds to UB(q,q′) + UB(p,p′).

Algorithm 4 Lightweight Adaptive Method (ADA-L)

1: procedure ADA-L(histogram q, histogram p, cost matrix c, error threshold ε)
2: �← LBProj(q,p) � Use the fastest lower bound function
3: ubsum ← 0
4: q′ ← q, p′ ← p
5: while Φ(q′) > 1 and Φ(p′) > 1 do
6: (q′′, ub1)←Skew-Transform(q′, c,Φ(q′)− 1)
7: (p′′, ub2)←Skew-Transform(p′, c,Φ(p′)− 1)
8: if ubsum + ub1 + ub2 ≤ ε · � then � Theorem 4.2
9: ubsum ← ubsum + ub1 + ub2
10: q′ ← q′′, p′ ← p′′

11: else
12: break
13: return emdc(q

′,p′) � expensive call

The most appealing property of this ADA-L is that it avoids the expensive

call of EMD operation in each iteration. The fast incremental upper bound

function (cf. Lemma 4.2) incrementally updates UB(q,q′) and UB(p,p′) which

leads to efficient computation in each iteration.

4.3.3 Training-based Controller (ADA-H)

Some applications, e.g., image retrieval [102, 67, 66] and image classification

[133], might have huge historical workload data, i.e., Γ = set of (q,p). Such rich

information can help to pick the bounds such that the framework can find a good

approximate result R at lower cost.

As discussed in Table 4.1, there exist several lower bound functions LB ∈

SetLB and upper bound functions UB ∈ SetUB at lower cost as compared to

94 4.3. APPROXIMATION FRAMEWORK

our ADA-L. If we can select the fast combination of LB and UB for (q,p) with

the validation condition Emax(�, u) ≤ ε is fulfilled, then the response time can

be further reduced. The question is which bound functions in SetLB and SetUB

should be picked.

In this work, we propose another control method ADA-H which picks the

sequence of bound functions (from SetLB and SetUB) based on ε and the statistics

of the workload Γ in the offline stage. After obtaining this sequence, we utilize

this sequence to handle the online computation.

4.3.3.1 Offline stage

We first build the following tables for Γ.

Definition 4.3 (Vε-Table) Vε(LB,UB) denotes the set of (q, p) pairs where

their estimated results (using LB and UB) pass the validation stage subject to

the error threshold ε.

Vε(LB,UB) = {(q,p) ∈ Γ|Emax(LB(q,p), UB(q,p)) ≤ ε}

Definition 4.4 (T-Table) T-Table records the response time

T(LB(q,p), UB(q,p)) of different bound functions LB ∈ SetLB and

UB ∈ SetUB for every (q,p) pair.

Given the Vε-Table and the T-Table of a workload set Γ, we want to find

a sequence of bounds (from SetLB and SetUB) such that the response time of

evaluating these bounds is minimized subject to a constraint that all estimated

result R of (q,p) ∈ Γ satisfies the validation condition Eq,p(R) ≤ ε.

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 95

Figure 4.10. Picking a sequence of bounds in the offline stage

Figure 4.10 shows our basic idea. A feasible sequence of bounds in this

example is (lbj , ubi), (lby, ubx), ... , ADA-L. These bounds secure that every pair

in Γ fulfills the error threshold ε, which is verified by the validator (based on the

information in Vε-Table). Note that we need ADA-L at the last step to secure the

feasibility (since ADA-L is an adaptive method so it always finds a result fulfilling

Eq,p(R) ≤ ε).

Among all feasible sequences of bounds, we want to find the best sequence of

bounds that minimizes the response time (based on the information in T-Table).

However, finding the best sequence of bounds that optimizes the objective and

fulfills the constraint is a combinatorial problem. For the sake of processing, we

simplify the problem and use a greedy method to find the sequence of bounds.

1. We sort the bounds of SetLB and SetUB based on their running time.

2. Pick the fastest pair of bounds into the suggested sequence S and call the

validator to partition Γ into Γ1 and R1, where R1 indicates those pairs

passing the validator and Γ1 is the remaining pairs.

3. Get the next fastest pair (LB,UB) of bounds and call the validator to

96 4.4. EXPERIMENTAL EVALUATION

partition Γi into Γi+1 and Ri+1. We estimate the response time by the

following equation.

∑
(q,p)∈Γi

T(LB(q,p), UB(q,p)) +
∑

(q,p)∈Γi+1

T(ADA-L(q,p)) (4.4)

4. If Eq. 4.4 is smaller than
∑

(q,p)∈Γi
T(ADA-L(q,p)), then we pick this pair

into the suggested sequence S. Repeat Step (3) until the Γi becomes ∅.

4.3.3.2 Online stage

When processing a new pair (q,p) (of the same application domain), our

controller only evaluates those picked sequence of bounds in S (cf. Algorithm

5). This chosen sequence S offers very good performance in practice since the

validator skips to check many ineffective bound pairs. We will show the detail

performance in the experimental section.

Algorithm 5 ADA-H (Online)

1: procedure ADA-H Online(histogram q, histogram p, sequence of bounds S, cost matrix
c, error threshold ε)

2: for each (LB,UB) ∈ S do
3: �← LB(q,p), u← UB(q,p)
4: if Emax(�, u) ≤ ε then � Theorem 4.1
5: return R = 2�u

�+u

6: Return ADA-L(q,p, c, ε)

4.4 Experimental Evaluation

We introduce the experimental setting in Section 4.4.1. Then, we evaluate

the effectiveness of different bound functions in Section 4.4.2. Next, we present

the experiments for approximate EMD computation in Section 4.4.3. Then, we

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 97

demonstrate the effectiveness and the efficiency of our methods on k-NN content-

based image retrieval in Section 4.4.4. We implemented all algorithms in C++

and conducted experiments on an Intel i7 3.4GHz PC running Ubuntu.

4.4.1 Experimental Setting

4.4.1.1 Datasets

We have collected five raw datasets of images as listed in Table 5.6. These

datasets have been used extensively in the computer vision and the information

retrieval areas. For each raw image, we apply a histogram extraction method to

obtain a color histogram p.

We consider two representative methods for extracting color histograms,

as shown in Table 4.3. RGB color histogram is the traditional representation

method since 1990s [116, 54, 115]. It is still effective for content-based image re-

trieval [40] and EMD-based applications [135]. Lab color histogram is extensively

used in computer vision and image retrieval applications [102, 112, 97, 129]. We

follow the setting of [40, 102] to extract these two types of color histograms.

Specifically, we divide the color space uniformly into 4 × 4 × 4 partitions and

4× 8× 8 partitions, for RGB and Lab respectively. According to [102, 117], we

compute the cost matrix c by setting ci,j to the Euclidean distance between the

centers of partitions i and j in the color space.

By using each histogram extraction method on each raw dataset, we obtain

ten datasets: UW-RGB, VOC-RGB, COR-RGB, CAL-RGB, FL-RGB, UW-Lab,

VOC-Lab, COR-Lab, CAL-Lab, FL-Lab. We name each dataset by the format

[raw dataset]-[histogram name].

98 4.4. EXPERIMENTAL EVALUATION

Table 4.2. Raw datasets of images
Raw dataset # of images Used in

UW 1,109 [40]
VOC 5,011 [42]

COR (Corel) 10,800 [125]
CAL (Caltech) 30,609 [51]
FL (Flickr) 1,000,000 [60]

Table 4.3. Methods for extracting color histograms
Histogram name Dimensionality Used in

RGB 64 [40]
Lab 256 [102]

4.4.1.2 Exact EMD computation

For the sake of fairness, we consider representative methods for computing

exact EMD and attempt to identify the fastest one on our datasets. These

methods include: (i) two algorithms CAP and NET from the Lemon Graph

Library1, (ii) SIA [117] and (iii) TRA [102].

In this experiment, we randomly sample 1000 pairs of histograms from a

dataset, and measure the throughput (number of processed pairs/sec) of each

method. Figure 4.11 shows the throughput on two datasets: CAL-RGB and

CAL-Lab. Observe that TRA performs the best on both datasets. We obtain

similar trends on other datasets. Therefore, we use TRA for exact EMD compu-

tation in the remaining experimental study.

4.4.1.3 Oracle

In order to demonstrate the usefulness of different control algorithms in our

approximation framework, we define the following omniscient method Oracle.

1http://lemon.cs.elte.hu/trac/lemon

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 99

(a) CAL-RGB (b) CAL-Lab

Figure 4.11. Throughput of exact EMD computation methods

Definition 4.5 Given histograms q,p, we define the optimal pair of lower and

upper bound functions as follows:

Oracle(q,p) = argmin
(LB,UB)

{T(LB(q,p), UB(q,p))

: LB ∈ SetLB, UB ∈ SetUB,

Emax(LB(q,p), UB(q,p)) ≤ ε} (4.5)

For each (q,p) pair, Oracle pre-knows the fastest pair of (�, u) which fulfills

the validation condition Emax(�, u) ≤ ε. As such, it acts as the most efficient so-

lution for all control methods in our approximation framework. In later sections,

we will demonstrate how efficient of our solutions compare with Oracle.

4.4.2 Are Parametric Dual Bound Functions Useful?

In this section, we compare the effectiveness of our derived parametric dual

bound functions with existing bounds. Recall from Section 4.4.1.3, Oracle(q,p)

is denoted by the best lower and upper bound pair for (q,p) pair. Therefore, if

the bound is frequently selected by Oracle, that bound is more useful.

100 4.4. EXPERIMENTAL EVALUATION

We first randomly sample 1000 (q,p) pairs of histogram from the dataset

CAL-Lab. For a given error threshold ε, we count the number of lower and

upper bound functions selected by Oracle in these histogram pairs. Observe

from Figures 4.12a and c, Exact are frequently chosen at small ε (e.g. 0.01 and

0.02). Therefore, existing bound functions are not useful for small ε case in which

LBskew and UBskew are widely applicable for these cases (c.f. Figures 4.12b and

d). Moreover, LBskew and UBskew are frequently selected compared with other

bound functions in small to moderate ε values (0.01-0.2) by Oracle.

(a) LB Selections (b) LB Selections (with LBskew)

(c) UB Selections (d) UB Selections (with UBskew)

Figure 4.12. Number of lower and upper bound functions selected by Oracle in

CAL-Lab dataset

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 101

4.4.3 Approximate EMD Computation

In this section, we test the throughput and the error of various approximate

EMD computation methods. Our competitors are lower/upper bound functions

LBIM , LBProj , LBRed, UBG, UBH [9, 103, 128, 117, 64] and an approximate

method in the computer vision area FEMD2 [97]. Our proposed methods are

ADA, ADA-L and ADA-H. Note that our methods offer guarantee on error thresh-

old ε, but our competitors do not provide such guarantee. By default, we set

ε = 0.2.

In each dataset, we randomly sample 1000 testing pairs of histograms, and

measure the throughput (pairs/sec) of all methods.

4.4.3.1 Effect of pre-processing in ADA-H

The performance of our ADA-H method depends on the number of pairs in

the pre-processing steps. For fairness, we make sure that pre-processing pairs

are different from testing pairs. In this experiment, we vary the number of

pre-processing pairs and plot the throughput in Figure 4.13. Observe that the

throughput becomes stable when the numbers of preprocessing pairs are 100,

1000 and 10000. By default, we use 100 pre-processing pairs for ADA-H in sub-

sequent experiments.

Figure 4.14 shows the preprocessing time in COR-RGB and COR-Lab

datasets. The preprocessing time is proportional to the number of pairs used

for training. However, using 100 training-pairs leads to stable performance in

2Implementation at http://www.ariel.ac.il/sites/ofirpele/FastEMD/

102 4.4. EXPERIMENTAL EVALUATION

(a) COR-RGB (b) COR-Lab

Figure 4.13. Throughput vs. number of pre-processing pairs in ADA-H, fixing
ε = 0.2

(a) COR-RGB (b) COR-Lab

Figure 4.14. Preprocessing time in ADA-H

the online stage, as shown in Figure 4.13. Therefore, the training time is not the

bottleneck in general.

4.4.3.2 Comparisons among our methods

In order to conduct meaningful comparisons, we compare our methods with

three benchmarks.

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 103

• Exact: the fastest exact EMD computation method (TRA), according to

Figure 4.11.

• ADA-Opt: an optimal skew method that knows the optimal lambda value

in advance. Its throughput serves as the upper bound of our skew-based

methods ADA and ADA-L.

• Oracle: the theoretically optimal method, which knows the optimal pair of

bound functions in advance (Section 4.4.1.3).

Figure 4.15 plots the throughput of ADA-Opt and our adaptive methods

(ADA and ADA-L). Observe that ADA-L can achieve a similar throughput com-

pared to ADA-Opt. Since ADA-L performs better than ADA in practice, we

exclude ADA for subsequent experiments. For more details in ADA-L, we provide

additional experiments in Appendix (cf. Sections 4.7.2 and 4.7.3).

Figure 4.15. Throughput between our methods and ADA-Opt method, fixing ε =
0.2

In Figure 4.16, we study the effect of the error threshold ε on the throughput

of our methods ADA-H and ADA-L. We also report the throughput of Oracle and

104 4.4. EXPERIMENTAL EVALUATION

Exact in this experiment. In general, our methods achieve higher throughput

than Exact. Our best method ADA-H can achieve significant speed-up (e.g.,

by an order of magnitude) on various datasets. Even though Exact can also

achieve 1600-7000 pairs/sec in all datasets, which are not slow in general, some

applications, for example: kNN-image retrieval and classification [102] or EMD

similarity join [59] involve many EMD computations, especially for large-scale

datasets, which make Exact inefficient for these applications. We will discuss in

detail in our case study (c.f. Section 4.4.4).

Oracle × Exact � ADA-L © ADA-H �

(a) UW-RGB (b) VOC-RGB (c) COR-RGB (d) CAL-RGB

(e) UW-Lab (f) VOC-Lab (g) COR-Lab (h) CAL-Lab

Figure 4.16. Effect of the error threshold ε on different datasets

In the next experiment, we vary the dimensionality d of the dataset by using

RGB color histogram with d = m3 bins. Figure 4.17 shows the throughput of Ex-

act and ADA-H as a function of the dimensionality. As expected, the throughput

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 105

decreases when the dimensionality d increases. ADA-H consistently outperforms

Exact by an order of magnitude.

Exact � ADA-H �

(a) UW-RGB (b) VOC-RGB (c) COR-RGB (d) CAL-RGB

Figure 4.17. Effect of the dimensionality d on different datasets

4.4.3.3 Comparisons with competitors

We proceed to compare our best method ADA-H with other approximation

methods. We classify our competitors into two types:

• non-parametric approximation methods whose throughput cannot be tuned

(i.e., LBIM , LBProj , UBG, UBH [9, 103, 117, 64]),

• parametric approximation methods whose throughput can be tuned via a

parameter (i.e., LBRed [128], FEMD [97], SIAB [117]).

Table 4.4 shows how we choose the parameter for each parametric approxi-

mation method. LBRed [128] is the dimension reduction technique for EMD, we

choose different reduced dimensions, dred for conducting this experiment. FEMD

[97] utilizes the threshold to truncate the edges (i, j) which costs cij exceed the

threshold in the bipartite flow network of EMD(q,p). Tang et al. [117] develop

106 4.4. EXPERIMENTAL EVALUATION

the progressive lower bound function and apply UBG for upper bound function,

SIAB combines these bounding functions with our approximation framework

(c.f. Section 4.3). Since SIAB utilizes our approximation framework, this is the

only existing parametric approximate method which can provide the theoretical

guarantee of the returned result.

Table 4.4. Parameter tuning
Method para. RGB Lab

LBRed dred [128] {12,18,...,60} {24,56,...,248}
FEMD Threshold [97] {50,100,...,350} {12,24,...,84}

SIAB , ADA-H ε {0.01,0.05,0.1,...,0.3}

In order to obtain a holistic view, we plot the throughput and the error of a

method as a point. The error of a method is taken as the average relative error

(per tested pair). The performance of all methods are shown in Figure 4.18.

First, we compare the performance of ADA-H with nonparametric approxi-

mation methods. Since LBProj , UBH , LBIM and UBG take at most O(d2) time,

they are normally faster than ADA-H (especially for the points with small error)

but incur high error. Next, we consider the parametric approximation methods,

ADA-H obtains better performance in terms of both throughput and error in

most of the tested cases.

4.4.4 Case Study on kNN Content-based Image Retrieval

We conduct case study to demonstrate the effectiveness and the efficiency

of methods on kNN content-based image retrieval. Our competitor, denoted by

Exact-kNN, is the fastest known method for exact kNN search with EMD [117].

Our kNN search method is the same as Exact-kNN, except that we replace the

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 107

LBProj � LBIM � UBH ∗ UBG � ADA-H � SIAB + LBRed ♦ FEMD ×

(a) UW-RGB (b) VOC-RGB (c) COR-RGB (d) CAL-RGB

(e) UW-Lab (f) VOC-Lab (g) COR-Lab (h) CAL-Lab

Figure 4.18. Comparisons with all approximation methods on different datasets

refinement stage by our approximate method ADA-H.

We use the largest datasets (FL-RGB, FL-Lab) for testing. In each dataset,

we randomly sample 100 query histograms. For each method, we measure its

efficiency as the query throughput (queries/sec), and measure its effectiveness as

the average precision per query, where the precision is defined as the fraction of

the retrieved results in the exact kNN results.

We investigate the effect of ε on the kNN retrieval performance in terms

of both precision and efficiency. In this experiment, we set k = 100 by default

and vary ε from 0.05 to 0.3. Figure 4.19 shows the precision and the throughput

of ADA-H compared with Exact-kNN. Observe that the precision remains above

0.8 (in Figures 4.19(a) and (b)) when ε is relatively large (e.g., ε = 0.3). Fig-

108 4.5. RELATED WORK

Exact-kNN � ADA-H �

(a) precision on FL-RGB (b) precision on FL-Lab (c) throughput on FL-RGB (d) throughput on FL-Lab

Figure 4.19. Effect of the error threshold ε on the kNN content-based image re-
trieval, fixing k = 100

ures 4.19(c) and (d) demonstrate that ADA-H outperforms Exact-kNN by 3-5x

and 3.5-7x on FL-RGB and FL-Lab, respectively.

Next, we test the effect of k on the kNN retrieval performance in terms

of both precision and efficiency. Figures 4.20(a) and (b) show the precision of

ADA-H as a function of k. The precision of ADA-H is high and it is independent

of k. In Figures 4.20(c) and (d), we observe that the throughput of ADA-H is

not sensitive to k. On the other hand, the throughput of Exact-kNN is linearly

proportional to k. Overall, ADA-H outperforms Exact-kNN by 2.38-5x and 3.38-

7.26x on FL-RGB and FL-Lab, respectively.

4.5 Related work

The literature review of the recent bounding functions of Earth Mover’s

distance have been summarized in Section 2.4.5. In this section, we cover the

works directly related to our problem. Then, we mainly discuss the differences

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 109

(a) precision on FL-RGB (b) precision on FL-Lab (c) throughput on FL-RGB (d) throughput on FL-Lab

Figure 4.20. Effect of the result size k on the performance of kNN content-based
image retrieval, fixing ε = 0.2

between our work [21] and previous works.

The Earth Mover’s Distance (EMD) was first introduced in [101] as a simi-

larity metric in image databases. Comparing to other bin-by-bin distances (e.g.,

Euclidean distance), the cross-bin calculation makes EMD better match the hu-

man perception of differences. EMD can be regarded as a special case of the

minimum cost flow problem and many algorithms have been proposed in litera-

ture [6], e.g., capacity scaling algorithm, cost scaling algorithm, transportation

simplex, and network simplex. However, their worst case time complexity re-

mains super cubic to the number of bins, which limits the applicability of EMD.

In order to employ EMD as a similarity metric in large datasets, the database

community attempted to use a filter-and-refinement framework to reduce the

number of exact EMD computations. The key factor of the filter-and-refinement

framework is to provide a tight lower / upper bound estimation such that more

EMD computations can be pruned at the filtering stage. Thereby, there are

plenty of EMD bounding techniques [82, 9, 128, 10, 130, 64, 103, 117] being

110 4.6. CHAPTER SUMMARY

proposed in the database community. In this work, we design a new approximate

framework by reutilizing these bounds, which not only provides high quality

approximate result (due to the tightness of these bounds) but also reduce the

implementation difficulty.

In the theoretical computer science community, there are quite a few of

studies [61, 8, 70, 5] in calculating approximate EMD. However, they either focus

on a planar graph setting (i.e., calculating EMD on two planar point-sets) [61] or

lack of flow concept (i.e., the approximate ratio is analyzed based on a uni-flow

model) [8, 70, 5].

Approximate EMD has also been studied in the computer vision commu-

nity [112, 97, 64]. Pele et al. [97] remove some records from the cost matrix

when their values are larger than a pre-defined threshold. The EMD computa-

tion time is correlated to the sparsity of the cost matrix so that the threshold

plays a role in controlling the quality and the efficiency. Jang et al. [64] store a

set of hilbert curves and assign the distance between two images based on these

curves. However, the approximate quality is highly relevant to the hilbert curve

selection and there is no theoretical guarantee. Shirdhonkar et al. [112] utilize

the wavelet theory in their approximation algorithm, which can be viewed as a

heuristic solution with no theoretical guarantee.

4.6 Chapter Summary

This chapter studies the computation of approximate EMD value with

bounded error. Specifically, we guarantee to return an approximate EMD value

that is within 1± ε times the exact EMD value. We have presented an adaptive

approach for our problem. In our experimental evaluation, we have used five

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 111

raw image datasets with two histogram extraction methods. Our best method,

ADA-H, yields up to an order of magnitude speedup over the fastest exact com-

putation algorithm. We have also evaluated the effectiveness of ADA-H on the

kNN content-based image retrieval application. In the future, we plan to inves-

tigate how to extend our approximation framework to other applications, e.g.

EMD similarity join, and other similarity functions, e.g. edit distance.

4.7 Appendix

4.7.1 The Exponential Sequence Λ in ADA

In the following, we compare the running time of ADA with an ADA-Opt

algorithm, which knows additional information in advance. Specifically, ADA-Opt

knows the best λ to be chosen for a given (q,p)-pair.

According to the analysis below, by using the exponential sequence with

α = 1.2, the running time of ADA is bounded by a constant multiple (i.e., 5.18)

of the running time of ADA-Opt.

4.7.1.1 Analysis

For the sake of analysis, we model the running time as follows.

T(emdc(q,p)) = d3 log d (4.6)

T(LBskew,λ(q,p), UBskew,λ(q,p)) = λ3 log λ (4.7)

because the state-of-the-art EMD computation algorithm requires O(d3 log d)

time. We fix the hidden constant factor to 1 and the log base to 2.

Our competitor is the ADA-Opt method, which knows in advance the value

112 4.7. APPENDIX

d∗ as defined below:

d∗ = min{λ : Emax(LBskew,λ(q,p), UBskew,λ(q,p)) ≤ ε} (4.8)

Therefore, ADA-Opt suffices to call the fastest LBskew,λ and UBskew,λ once, then

passes the validation test. Thus, we have: T(ADA-Opt(q,p)) = d3∗ log d∗.

We assume that Emax(LBskew,λ(q,p), UBskew,λ(q,p)) decreases when λ in-

creases. Therefore, ADA terminates when λ ∈ Λ is the smallest integer that

satisfies λ ≥ d∗.

We define the ratio of the running time of ADA to ADA-Opt:

Ratio =
T(ADA(q,p))

T(ADA-Opt(q,p))
(4.9)

Theorem 4.3 Given the exponential sequence

Λ = 〈�αi� : i ≥ 0, �αi� < d〉, we have:

T(ADA(q,p))

T(ADA-Opt(q,p))
≤ α6(1 + log2 α)

α3 − 1

Proof. When d∗ = 1, the iteration i = 0 can directly handle it. We have

Ratio = 1 in this case. In the remaining discussion, we assume that d∗ > 1.

Let n be the positive number such that

αn−1 < d∗ ≤ αn (4.10)

ADA terminates when it reaches the iteration n = 	logα d∗
. Thus, we have:

T(ADA(q,p)) =
n∑

i=0

⌊
αi
⌋3

log
⌊
αi
⌋
≤

n∑
i=1

α3i logαi

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 113

Ratio ≤
∑n

i=1 α
3i logαi

d∗3 log d∗

≤ n logα

d∗3 log d∗
·

n∑
i=1

α3i

=
n logα

d∗3 log d∗
· α

3(α3n − 1)

α3 − 1

Since n = 	logα d∗
, we have n ≤ logα d∗+1 and α3n ≤ α3(logα d∗+1) = d∗3α3.

Therefore:

Ratio ≤ (logα d∗ + 1) logα

d∗3 log d∗
· α

3(d∗3α3 − 1)

α3 − 1

=
α3(d∗3α3 − 1)

d∗3(α3 − 1)
·
(
log d∗
logα

+ 1

)
· logα
log d∗

=
α3(d∗3α3 − 1)

d∗3(α3 − 1)
· (1 + logd∗ α)

=
α3

α3 − 1
·
(
α3 − 1

d∗3
)
(1 + logd∗ α)

Since logd∗ α ≤ log2 α and − 1
d∗ ≤ 0, we have:

Ratio ≤ α6(1 + log2 α)

α3 − 1

Corollary 4.1 Given that α = 1.2, we have:

T(ADA(q,p))

T(ADA-Opt(q,p))
≤ 5.18

Proof. By finding the minimum value of α6(1+log2 α)
α3−1

with a numerical solver.

114 4.7. APPENDIX

4.7.2 Number of iterations for ADA-L

We provide the additional experimental study for the number of iterations

for ADA-L (i.e. skew operations in Figure 4.9) with the variations of different

ε, as shown in Figure 4.21. When ε is larger, more skew operations can be

performed. However, once the number of iterations is larger, it is harder for the

feature vectors to be skewed more, as each non-zero value dimension contains

larger value (cf. Figure 4.9) and thus, the cost to skew one more dimension is

larger. This explains the slow trend increasing when ε is larger.

 0

 5

 10

 15

 20

 25

0.01 0.05 0.1 0.15 0.2 0.25 0.3

It
er

at
io

ns

 0

 5

 10

 15

 20

 25

0.01 0.05 0.1 0.15 0.2 0.25 0.3

It
er

at
io

ns

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.01 0.05 0.1 0.15 0.2 0.25 0.3

It
er

at
io

ns

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

0.01 0.05 0.1 0.15 0.2 0.25 0.3
It

er
at

io
ns

(a) UW-RGB (b) VOC-RGB (c) COR-RGB (d) CAL-RGB

Figure 4.21. Number of iterations for ADA-L, varying ε from 0.01 to 0.3

4.7.3 Tightness of the inequality in Theorem 4.2

We first define the term E
skew
q,p (R) and fix ε = 0.2.

E
skew
q,p (R) =

UB(q,q′) + UB(p,p′)
LB(q,p)

(4.11)

Table 4.5 shows the average E
skew
q,p (R) and Eq,p(R). Even though the upper

bound E
skew
q,p (R) can achieve nearly 0.2, the average relative error Eq,p(R) still

retain smaller than 0.05 in practice. In our future work, we exploit whether we

CHAPTER 4. THE POWER OF BOUNDS: ANSWERING APPROXIMATE
EARTH MOVER’S DISTANCE WITH PARAMETRIC BOUNDS 115

Table 4.5. Average Eq,p(R) and E
skew
q,p (R) in different datasets, ε = 0.2

Error UW-RGB VOC-RGB COR-RGB CAL-RGB

Eq,p(R) 0.035 0.038 0.035 0.042

E
skew
q,p (R) 0.164 0.165 0.161 0.156

can further tighten this inequality.

116 4.7. APPENDIX

Chapter 5

KARL: Fast Kernel

Aggregation Queries

In this era of digitalization, a vast amount of data are being continuously

collected and analyzed. Kernel functions are typically used in two tasks: (i) ker-

nel density estimation (for statistical analysis) and (ii) support vector machine

classification (for data mining). These tasks are actively used in the following

applications. Network security systems [17, 15] utilize kernel SVM to detect sus-

picious packets. In medical science, medical scientists [32] utilize kernel SVM

to identify tumor samples. Astronomical scientists [4] utilize kernel density esti-

mation for quantifying the galaxy density. In particle physics, physicists utilize

kernel density estimation to search for particles [36]. For example, Figure 5.1 il-

lustrates the usage of kernel density estimation on a real dataset (miniboone [2])

for searching particles. Physicists are interested in the dense region (in yellow).

Implementation-wise, both commercial database systems (e.g., Oracle, Ver-

117

118

Figure 5.1. Kernel density estimation on the miniboone dataset, using 1st and 2nd

dimensions

tica) and open-source libraries (e.g., LibSVM [24]) provide functions for support

vector machines (SVM), which can combine with different kernel functions.

In the above applications, a common online operation is to compute the

following function:

FP (q) =
∑
pi∈P

wi exp(−γ · dist(q,pi)
2) (5.1)

where q is a query point, P is a dataset of points, wi, γ are scalars, and dist(q,pi)

denotes the Euclidean distance between q and pi. A typical problem, which

we term as the threshold kernel aggregation query (τKAQ), is to test whether

FP (q) is higher than a given threshold τ [107]. This creates an opportunity for

achieving speedup. Instead of computing the exact FP (q), it suffices to compute

lower/upper bounds of FP (q) and then compare them with the threshold τ .

In addition, different types of weighting (for wi) have been used in different

statistical/learning models, as summarized in Table 5.1. Although there exist

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 119

several techniques to speedup the computation of FP (q), each work focuses on

one type of weighting only [50, 46, 68, 57, 78]. In contrast, this paper intends to

handle the kernel aggregation query under all types of weightings.

Table 5.1. Types of weighting in FP (q)
Type of weighting Used in model Techniques

Type I: identical, positive wi Kernel densityQuality-preserving
(most specific) [50, 46] solutions [50, 46]

Type II: positive wi 1-class SVM Heuristics
(subsuming Type I) [86] [81]

Type III: no restriction on wi 2-class SVM Heuristics
(subsuming Types I, II) [107] [68, 57, 78]

The above query is expensive as it takes O(nd) time to compute FP (q)

online, where d is the dimensionality of data points and n is the cardinality of

the dataset P . In the machine learning community, many recent works [78, 57, 68]

also complain the inefficiency issue for computing kernel aggregation, which are

quoted as follows:

• “Despite their successes, what makes kernel methods difficult to use in

many large scale problems is the fact that computing the decision function

is typically expensive, especially at prediction time.” [78]

• “However, computing the decision function for the new test samples is typi-

cally expensive which limits the applicability of kernel methods to real-world

applications.” [57]

• “..., it has the disadvantage of requiring relatively large computations in

the testing phase” [68]

Existing solutions are divided into two camps. The machine learning com-

munity tends to improve the response time by using heuristics [68, 57, 78, 81]

120

(e.g., sampling points in P), which may affect the quality of the model (e.g.,

classification/prediction accuracy). The other camp, which we are interested in,

aims to enhance the efficiency while preserving the quality of the model. The

pioneering solutions in this category are [50, 46], albeit they are only applicable

to queries with Type I weighting (see Table 5.1). Their idea [50, 46] is to build

an index structure on the point set P offline, and then exploit index nodes to

derive lower/upper bounds and attempt pruning for online queries.

In this paper, we identify several important research issues that have not

yet been addressed in [50, 46], as listed below:

1. Tighter bound functions: How to design lower/upper bound functions

that are always tighter than existing ones? How to compute them quickly?

2. Type of weighting: The techniques in [50, 46] are applicable to Type I

weighting only (see Table 5.1). Can we develop a general solution for all

types of weighting?

3. Automatic index tuning: The performance of a solution may vary

greatly across different types of index structures. How to develop an auto-

matic index tuning technique for achieving the best possible efficiency?

4. In-situ scenario: In this scenario, the entire dataset is not known in

advance. An example scenario is online kernel learning [38, 83, 73], in

which the model (e.g., dataset P) would be updated frequently. The end-

to-end response time includes the index construction time and the tuning

time as well. How to develop a quick tuning technique while enjoying the

benefit of a reasonably-good index structure?

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 121

Our proposal is Kernel Aggregation Rapid Library (KARL)1, a compre-

hensive solution for addressing all the issues mentioned above. It utilizes a novel

bounding technique and index tuning in order to achieve excellent efficiency.

Experimental studies on many real datasets reveal that our proposed method

achieves speedups of 2.5-738 over the state-of-the-art.

Two widely-used libraries, namely LibSVM [24] and Scikit-learn [94], provide

convenient programming support for practitioners to handle kernel aggregation

queries. Implementation-wise, LibSVM is based on the sequential scan method,

and Scikit-learn is based on the algorithm in [50] for query type I. We compare

them with our proposal (KARL) in Table 5.2. As a remark, since Scikit-learn

supports query types II and III via the wrapper of LibSVM [94], we remove those

two query types from the row of Scikit-learn in Table 5.2. The features of KARL

are: (i) it supports all three types of weightings as well as both εKAQ and τKAQ

queries, (ii) it supports index structures, (iii) it yields much lower response time

than existing libraries.

Table 5.2. Comparisons of libraries
Library Supported Supported Support Response

queries weightings indexing time

LibSVM [24] τKAQ Types I, II, III no high
Scikit-learn [94] εKAQ Type I yes high

KARL (this paper) εKAQ, τKAQ Types I, II, III yes low

We first introduce the preliminaries in Section 5.1, and then present our

solution in Section 5.2. We later extend our techniques for different types of

weighting and kernel functions in Section 5.3. After that, we present our exper-

iments in Section 5.4. Then, we present our related work in Section 5.5. Lastly,

1https://github.com/edisonchan2013928/KARL-Fast-Kernel-Aggregation-Queries

122 5.1. PRELIMINARIES

we conclude the paper with future research directions in Section 5.6.

5.1 Preliminaries

We consider two popular types of kernel aggregation queries in the liter-

ature [107, 50]. The first variant is to test whether FP (q) is higher than a

threshold [107]. We term this as the threshold kernel aggregation query (τKAQ),

which simply tests whether FP (q) ≥ τ , where τ is a given threshold. The second

variant is to compute an approximate value of FP (q) with accuracy bound [50].

We call this as approximate kernel aggregation query (εKAQ), which returns an

approximate value within (1± ε) times the exact value of FP (q).

5.1.1 Problem Statement

First, we reiterate the kernel aggregation query (KAQ) as discussed in the

introduction.

Definition 5.1 (KAQ) Given a query point q and a set of points P , this query

computes:

FP (q) =
∑
pi∈P

wi K(q,pi) (5.2)

where wi is a scalar indicating the weight of the i-th term, and K(q,pi) denotes

the kernel function.

In the machine learning and statistics communities [24, 107, 124], the typical

kernel functions are the Gaussian kernel function, the polynomial kernel function,

and the sigmoid kernel function. For example, the Gaussian kernel function

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 123

is expressed as K(q,pi) = exp(−γ · dist(q,pi)
2), where γ is a positive scalar

denoting smoothing parameter, and dist(q,pi) denotes the Euclidean distance

between q,pi.

Then we formally define two variants of KAQ: threshold kernel aggregation

query (τKAQ) [107] and approximate kernel aggregation query (εKAQ) [50].

Problem 5.1 (τKAQ) Given a threshold value τ , a query point q, and a set of

points P , this problem returns a Boolean value denoting whether FP (q) ≥ τ .

Problem 5.2 (εKAQ) Given a relative error value ε, a query point q, and a set

of points P , this problem returns an approximate value F̂ such that its relative

error (from the exact value FP (q)) is at most ε, i.e.,

(1− ε)FP (q) ≤ F̂ ≤ (1 + ε)FP (q) (5.3)

Table 5.3 summarizes the types of queries that can be used for each appli-

cation model. Table 5.4 summarizes the frequently-used symbols in this paper.

Table 5.3. Example applications for the above queries
Application Relevant Obtained from Specified

model queries training/learning by user

Kernel density εKAQ, N.A. query point q,
[50, 46] τKAQ point set P ,

parameters ε, τ, γ
1-class SVM τKAQ point set P , weights wi, query point q

[86] parameters τ, γ
2-class SVM τKAQ point set P , weights wi, query point q

[107] parameters τ, γ

124 5.1. PRELIMINARIES

Table 5.4. Symbols
Symbol Description

P Point set
FP (q) Kernel aggregation function (Equation 5.2)
K(q,p) Kernel (e.g., Gaussian, polynomial)

Linm,c(x) Linear function mx+ c
FLP (q, Linml,cl) Linear lower bound of FP (q)
FLP (q, Linmu,cu) Linear upper bound of FP (q)

dist(q,p) Euclidean distance between q and p

5.1.2 State-of-the-Art (SOTA)

We proceed to introduce the state-of-the-art [50, 46] (SOTA), albeit it is

only applicable to queries with Type I weighting (see Table 5.1). In this case, we

denote the common weight by w.

Bounding functions.

We introduce the concept of bounding rectangle [105] below.

Definition 5.2 Let R be the bounding rectangle for a point set P . We denote

its interval in the j-th dimension as [R[j].l, R[j].u], where R[j].l = minp∈P p[j]

and R[j].u = maxp∈P p[j].

Given a query point q, we can compute the minimum distance mindist(q, R)

from q to R, and the maximum distance maxdist(q, R) from q to R.

It holds that mindist(q, R) ≤ dist(q,p) ≤ maxdist(q, R) for every point p

inside R.

With the above notations, the lower bound LBR(q) and the upper bound

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 125

UBR(q) for FP (q) (Equation 5.1) are defined as:

LBR(q) = w ·R.count · exp(−γ ·maxdist(q, R)2)

UBR(q) = w ·R.count · exp(−γ ·mindist(q, R)2)

where R.count denotes the number of points (from P) in R, and w denotes the

common weight (for Type I weighting). It takes O(d) time to compute the above

bounds online.

Refinement of bounds.

The state-of-the-art [50, 46] employs a hierarchical index structure (e.g., k-d

tree) to index the point set P . Consider the example index in Figure 5.2. Each

non-leaf entry (e.g., R5, 9) stores the bounding rectangle of its subtree (e.g., R5)

and the number of points in its subtree (e.g., 9).

R1,5 | R2,4

p1 p2 … p5

R3,4 | R4,5

R5,9 | R6,9

p6 p7 … p9

node N5

root node: Nroot

node N1

node N6

p10 p11 … p13 p14 p15 … p18

node N3node N2 node N4

Figure 5.2. Hierarchical index structure

We illustrate the running steps of the state-of-the-art on the above example

index in Table 5.5. For conciseness, the notations LBR(q), UBR(q),FP (q) are

abbreviated as lbR, ubR,FP respectively. The state-of-the-art maintains a lower

126 5.1. PRELIMINARIES

bound l̂b and upper bound ûb for FP (q). Initially, the bounding rectangle of the

root node (say, Rroot) is used to compute l̂b and ûb. It uses a priority queue to

manage the index entries that contribute to the computation of those bounds;

the priority of an index entry Ri is defined as the difference ubRi − lbRi . In each

iteration, the algorithm pops an entry Ri from the priority queue, processes the

child entries of Ri, then refines the bounds incrementally and updates the priority

queue. For example, in step 2, the algorithm pops the entry R5 from the priority

queue, inserts its child entries R1, R2 into the priority queue, and refines the

bounds incrementally. Similar technique can be also found in similarity search

community (e.g., [19, 20]).

Table 5.5. Running steps for state-of-the-art
Step Priority queue Maintenance of lower bound l̂b

and upper bound ûb

1 Rroot l̂b = lbRroot ,

ûb = ubRroot

2 R5, R6 l̂b = lbR5 + lbR6 ,

ûb = ubR5 + ubR6

3 R6, R1, R2 l̂b = lbR6 + lbR1 + lbR2 ,

ûb = ubR6
+ ubR1

+ ubR2

4 R1, R2, R3, R4 l̂b = lbR1 + lbR2 + lbR3 + lbR4 ,

ûb = ubR1 + ubR2 + ubR3 + ubR4

5 R2, R3, R4 l̂b = Fp1···p5 + lbR2 + lbR3 + lbR4 ,

ûb = Fp1···p5 + ubR2 + ubR3 + ubR4

The state-of-the-art terminates upon reaching a termination condition. For

τKAQ, the termination condition is: l̂b ≥ τ or ûb < τ . For εKAQ, the termina-

tion condition is: ûb < (1 + ε)l̂b.

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 127

5.2 Our Solution: KARL

Our proposed solution, KARL, adopts the state-of-the-art (SOTA) for query

processing, except that existing bound functions (e.g., LBR(q) and UBR(q)) are

replaced by our bound functions.

Our key contribution is to develop tighter bound functions for FP (q). In

Section 5.2.1, we propose a novel idea to bound the function exp(−x) and discuss

how to compute such bound functions quickly. In Section 5.2.2, we devise tighter

bound functions and show that they are always tighter than existing bound

functions. Then, we discuss automatic tuning in Section 5.2.3.

In this section, we assume using Type I weighting and the Gaussian kernel

in the function FP (q). We leave the extensions to other types of weighting and

kernel functions in Section 5.3.

5.2.1 Fast Linear Bound Functions

We wish to design bound functions such that (i) they are tighter than ex-

isting bound functions (cf. Section 5.1.2), and (ii) they are efficient to compute,

i.e., taking only O(d) computation time.

In this section, we assume Type I weighting and denote the common weight

by w. Consider an example on the dataset P = {p1,p2,p3}. Let xi denotes the

value γ · dist(q,pi)
2. With this notation, the value FP (q) can be simplified to:

w
(
exp(−x1) + exp(−x2) + exp(−x3)

)
.

128 5.2. OUR SOLUTION: KARL

In Figure 5.3, we plot the function value exp(−x) for x1, x2, x3 as points.

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0

xmin=
γ mindist(q,p)2

x axis

function value

x1 x2 x3

function

exp(–x)

xmax=
γ maxdist(q,p)2

Figure 5.3. Linear bounds

We first sketch our idea for bounding FP (q). First, we compute the bound-

ing interval of xi, i.e., the interval [xmin, xmax], where xmin = γ ·mindist(q, R)2,

xmax = γ ·maxdist(q, R)2, and R is the bounding rectangle of P . Within that

interval, we employ two functions EL(x) and EU (x) as lower and upper bound

functions for exp(−x), respectively (see Definition 5.3). We illustrate these two

functions by a red line and a blue line in Figure 5.3.

Definition 5.3 (Constrained bound functions) Given a query point q

and a point set P , we call two functions EL(x) and EU (x) to be lower and

upper bound functions for exp(−x), respectively, if

EL(x) ≤ exp(−x) ≤ EU (x)

holds for any x ∈ [γ ·mindist(q, R)2, γ ·maxdist(q, R)2], where R is the bounding

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 129

rectangle of P .

In this paper, we model bound functions EL(x) and EU (x) by using two

linear functions Linml,cl(x) = mlx+cl and Linmu,cu(x) = mux+cu, respectively.

Then, we define the aggregation of a linear function Linm,c as:

FLP (q, Linm,c) =
∑
pi∈P

w
(
m(γ · dist(q,pi)

2) + c
)

(5.4)

With this concept, the functions FLP (q, Linml,cl) and FLP (q, Linmu,cu) serve

as a lower and an upper bound function for FP (q), subject to the condition

stated in the following lemma:

Lemma 5.1 Suppose that Linml,cl and Linmu,cu are lower and upper bound func-

tions for exp(−x), respectively, for the query point q and point set P . It holds

that:

FLP (q, Linml,cl) ≤ FP (q) ≤ FLP (q, Linmu,cu) (5.5)

Observe that the bound functions in Figure 5.3 are not tight. We will devise

tighter bound functions in the next subsection.

Fast computation of bounds.

The following lemma allows FLP (q, Linm,c) to be efficiently computed, i.e., in

O(d) time.

Lemma 5.2 Given two values m and c, FLP (q, Linm,c) (Equation 5.4) can be

130 5.2. OUR SOLUTION: KARL

computed in O(d) time and it holds that:

FLP (q, Linm,c) = wmγ
(
|P | · ||q||2 − 2q · aP + bP

)
+ wc|P |

where aP =
∑

pi∈P pi and bP =
∑

pi∈P ||pi||2.

Proof.

FLP (q, Linm,c) =
∑
pi∈P

w
(
m(γ · dist(q,pi)

2) + c
)

= wmγ
∑
pi∈P

(
||q||2 − 2q · pi + ||pi||2

)
+ wc|P |

= wmγ
(
|P | · ||q||2 − 2q · aP + bP

)
+ wc|P |

Observe that both terms aP and bP are independent of the query point q.

Therefore, with the pre-computed values of aP and bP , FLP (q, Linm,c) can be

computed in O(d) time.

5.2.2 Tighter Bound Functions

We proceed to devise tighter bound functions by using Linml,cl and Linmu,cu .

Linear function Linmu,cu for modeling EU (x).

Recall that, by using the query point q and the bounding rectangle R (of point set

P), we obtain the bounding interval [xmin, xmax], where xmin = γ ·mindist(q, R)2

and xmax = γ ·maxdist(q, R)2. Since exp(−x) is a convex function, the chord be-

tween two points (say, (xmin, exp(−xmin)) and (xmax, exp(−xmax)) must always

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 131

reside above the curve exp(−x). We illustrate this in Figure 5.4.

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0
x axis

function value

function
exp(–x)

the chord:
EU(x) = mu x + cu

xmin

x1

x2

x3

xmax

existing bound:
exp(–xmin)

Figure 5.4. Chord-based upper bound function

Regarding the linear function Linmu,cu , its slope mu and the intercept cu

are computed as:

mu =
exp(−xmax)− exp(−xmin)

xmax − xmin
(5.6)

cu =
xmax exp(−xmin)− xmin exp(−xmax)

xmax − xmin
(5.7)

It turns out that the above chord-based linear function Linmu,cu leads to

a tighter upper bound than the existing bound exp(−xmin) (see Section 5.1.2).

Clearly, as shown in Figure 5.4, the projected values on the blue line (Linmu,cu)

are smaller than the existing bound exp(−xmin) (green dashed line in Figure 5.4).

Lemma 5.3 There exists a linear function Linmu,cu such that

FLP (q, Linmu,cu) ≤ UBR(q), where UBR(q) is the upper bound function

used in the state-of-the-art (see Section 5.1.2).

132 5.2. OUR SOLUTION: KARL

Linear function Linml,cl for modeling EL(x).

We exploit a property of convex function [52], namely that, any tangent line

of a convex function must be a lower bound of the function. This property is

applicable to exp(−x) because it is also a convex function.

We illustrate the above property in Figure 5.5a. For example, the tangent

line of function exp(−x) at point (xmax, exp(−xmax)) serves as a lower bound

function for exp(−x). Furthermore, this lower bound is already tighter than the

existing bound exp(−xmax) (see Section 5.1.2). Note that in Figure 5.5a, the

projected values on the red line (Linml,cl) are higher than the existing bound

exp(−xmax) (green dashed line in Figure 5.5a).

Lemma 5.4 There exists a linear function Linml,cl such that FLP (q, Linml,cl) ≥

LBR(q), where LBR(q) is the lower bound function used in the state-of-the-art

(see Section 5.1.2).

Interestingly, it is possible to devise a tighter bound than the above. Fig-

ure 5.5b depicts the tangent line at point (t, exp(−t)). This tangent line offers a

much tighter bound than the one in Figure 5.5a.

In the following, we demonstrate how to find the optimal tangent line (i.e.,

leading to the tightest bound). Suppose that the lower bound linear function

Linml,cl is the tangent line at point (t, exp(−t)). Then, we derive the slope ml

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 133

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0
x axis

function value

function
exp(–x)

the tangent line (at xmax):
EL(x) = ml x + cl

existing bound:
exp(–xmax)

xmin

x1

x2

x3 xmax

(a) tangent line at xmax

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0
x axis

function value

function
exp(–x)

optimized tangent line (at t):
EL(x) = ml x + cl

xmin

x1

x2

x3 xmax

(b) optimized tangent line at t

Figure 5.5. Tangent-based lower bound function

and the intercept cl as:

ml =
d exp(−x)

dx

∣∣∣
x=t

= − exp(−t)

cl = exp(−t)−mlt = (1 + t) exp(−t)

134 5.2. OUR SOLUTION: KARL

The following theorem establishes the optimal value topt that leads to the tightest

bound.

Theorem 5.1 Consider the function FLP (q, Linml,cl) as a function of t, where

ml = − exp(−t) and cl = (1 + t) exp(−t). This function yields the maximum

value at:

topt =
γ

|P | ·
∑
pi∈P

dist(q,pi)
2 (5.8)

Proof. Let H(t) = FLP (q, Linml,cl) be a function of t. For the sake of clarity,

we define the following two constants that are independent of t:

z1 = wγ ·
∑
pi∈P

dist(q,pi)
2 and z2 = w|P |

Together with the given ml and cl, we can rewrite H(t) as:

H(t) = −z1 exp(−t) + z2(1 + t) exp(−t)

The remaining proof is to find the maximum value ofH(t). We first compute

the first derivative of H(t) (in terms of t):

H ′(t) = z1 exp(−t) + z2 exp(−t)− z2(1 + t) exp(−t)

= (z1 + z2 − z2 − z2t) exp(−t)

= (z1 − z2t) exp(−t)

Next, we compute the value topt such that H ′(topt) = 0. Since exp(−topt) �=

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 135

0, we get:

z1 − z2topt = 0

topt =
z1
z2

=
γ

|P | ·
∑
pi∈P

dist(q,pi)
2

Then we further test whether topt indeed yields the maximum value. We

consider two cases for H ′(t). Note that both z1 and z2 are positive constants.

1. For the case t > topt, we get H ′(t) < 0, implying that H(t) is a decreasing

function

2. For the case t < topt, we get H ′(t) > 0, implying that H(t) is an increasing

function.

Thus, we conclude that the function H(t) yields the maximum value at t = topt.

The optimal value topt involves the term
∑

pi∈P dist(q,pi)
2. This term can

be computed efficiently in O(d) time by the trick in Lemma 5.2. By apply-

ing Lemma 5.2 and substituting w = m = γ = 1 and c = 0, we can express∑
pi∈P dist(q,pi)

2 in the form of FLP (q, Linm,c), which can be computed in

O(d) time.

Case study.

We conduct the following case study on the augmented k-d tree, in order to

demonstrate the performance of KARL and the tightness of our bound functions

compared to existing bound functions. First, we pick a random query point from

136 5.2. OUR SOLUTION: KARL

the home dataset [2] (see Section 5.4.1 for details). Then, we plot the lower/upper

bound values of SOTA and KARL versus the number of iterations. Observe that

our bounds are much tighter than existing bounds, and thus KARL terminates

sooner than SOTA.

Figure 5.6. Bound values of SOTA and KARL vs. the number of iterations; for type
I-τ query on the home dataset

5.2.3 Automatic Tuning

The performance of KARL depends on the choices of the index structure and

the index height. Popular index structures include the k-d tree and the ball tree,

which are also supported in an existing machine learning library (e.g., Scikit-

learn [94]). In addition, the height of such index structure can be controlled via

the parameter ‘leaf node capacity’ (i.e., the maximum number of points per leaf

node).

To demonstrate the above effect, we conduct the following test by using

different index structures with different values of leaf node capacity. Then we

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 137

measure the throughput (i.e., the number of processed queries per second) of

KARL in each index structure. Figures 5.7a and b show the throughput of KARL

on two datasets (home and susy respectively). In each figure, the speedup of the

best choice to the worst choice can be up to 4 times. Furthermore, the optimal

choice can be different on different datasets.

To tackle the above issue, we propose some automatic tuning techniques.

(a) dataset home (b) dataset susy

Figure 5.7. The throughput of query type I-τ , varying the leaf node capacity

Offline tuning scenario.

In this scenario, we are given ample time for tuning and the dataset is provided

in advance.

Observe that two index structures with similar leaf node capacity (e.g., 100

and 101) tend to offer similar performance. It is sufficient to vary the leaf node

capacity in an exponential manner (e.g., 10,20,40,80,160,320,640). Next, we build

an index structure for each parameter value and for each index type. Finally, we

sample a small subset Q of query points, then recommend the index structure

having the highest throughput on Q. According to our experimental results, it

138 5.3. EXTENSIONS

is enough to set the sample size to |Q| = 1000.

In-situ scenario: online tuning.

This scenario is more challenging because the dataset is not known in advance.

The end-to-end response time includes index construction time, tuning time, and

query execution time. To achieve high throughput, we should reduce the index

construction time and the tuning time, while figuring out a reasonably good

index.

First, we recommend to build the k-d tree due to its low construction time.

It suffices to build a single k-d tree with all levels (i.e., log2(n) levels). Denote

the entire tree by T , and the tree with the top i levels by Ti. Observe that the

tree Ti can be simulated by using the entire tree T , by skipping lower/upper

bound computations in the lowest log2(n)− i levels of T .

Suppose that we are given the number of queries to be executed. We sample

s% (say, 1%) of those queries and then partition them into log2(n) groups. For

the i-group, we run its sample queries on the tree Ti. Then, we obtain the value

i∗ that yields the best performance. Finally, we execute the remaining (100−s)%

of queries on the k-d tree Ti∗ .

5.3 Extensions

The state-of-the-art solution has not considered other types of weighting nor

other types of kernel functions. In this section, we adapt our bounding techniques

(in Sections 5.2.1 and 5.2.2) to address these issues.

5.3.1 Other Types of Weighting

We extend our bounding techniques for the following function:

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 139

FP (q) =
∑
pi∈P

wi exp(−γ · dist(q,pi)
2)

under other types of weighting.

5.3.1.1 Type II Weighting

For Type II weighting, each wi takes a positive value. Note that different

wi may take different values.

First, we redefine the aggregation of a linear function Linm,c as:

FLP (q, Linm,c) =
∑
pi∈P

wi

(
m(γ · dist(q,pi)

2) + c
)

(5.9)

This function can also be computed efficiently (i.e., in O(d) time), as shown in

the following lemma.

Lemma 5.5 Under Type II weighting, FLP (q, Linm,c) (Equation 5.9) can be

computed in O(d) time, given two values of m and c.

Proof.

FLP (q, Linm,c)

=
∑
pi∈P

wi

(
m(γ · dist(q,pi)

2) + c
)

=
∑
pi∈P

wi

(
mγ

(
||q||2 − 2q · pi + ||pi||2

))
+ c

∑
pi∈P

wi

= mγ
(
wP · ||q||2 − 2q · aP + bP

)
+ cwP

where aP =
∑

pi∈P wipi, bP =
∑

pi∈P wi||pi||2 and wP =
∑

pi∈P wi.

The terms aP, bP , wP are independent of q. With their pre-computed values,

140 5.3. EXTENSIONS

FLP (q, Linm,c) can be computed in O(d) time.

It remains to discuss how to find tight bound functions. For the upper

bound function, we adopt the same technique in Figure 5.4. For the lower bound

function, we use the idea in Figure 5.5b, except that the optimal value topt should

also depend on the weighting.

Theorem 5.2 Consider the function FLP (q, Linml,cl) as a function of t, where

ml = − exp(−t) and cl = (1 + t) exp(−t). This function yields the maximum

value at:

topt =
γ

wP
·
∑
pi∈P

widist(q,pi)
2 (5.10)

where wP =
∑

pi∈P wi.

Proof. Following the proof of Theorem 5.1, we let H(t) = FLP (q, Linml,cl) be

a function of t and we define the following two constants.

z1 = γ ·
∑
pi∈P

widist(q,pi)
2 and z2 = wP

Then, we follow exactly the same steps of Theorem 5.1 to derive the maximum

value (Equation 5.10).

Again, the value topt can also be computed efficiently (i.e., in O(d) time).

5.3.1.2 Type III Weighting

For Type III weighting, there is no restriction on wi. Each wi takes either a

positive value or a negative value.

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 141

Our idea is to convert the problem into two subproblems that use Type II

weighting. First, we partition the point set P into two sets P+ and P− such

that: (i) all points in P+ are associated with positive weights, and (ii) all points

in P− are associated with negative weights. Then we introduce the following

notation:

FP−(q) =
∑

pi∈P−
|wi| exp(−γ · dist(q,pi)

2) = −FP−(q)

This enables us to rewrite the function FP (q) as:

FP (q) =
∑

pi∈P+∪P−
wi exp(−γ · dist(q,pi)

2)

= FP+(q) + FP−(q)

= FP+(q)−FP−(q)

Since the weights in both FP+(q) and FP−(q) are positive, the terms FP+(q)

and FP−(q) can be bounded by using the techniques for Type II weighting.

The upper bound of FP (q) can be computed as the upper bound of FP+(q)

minus the lower bound of FP−(q).

The lower bound of FP (q) can be computed as the lower bound of FP+(q)

minus the upper bound of FP−(q).

5.3.2 Other Kernel Functions

In this section, we develop our bounding techniques for other kernel func-

tions, such as the polynomial kernel function, and the sigmoid kernel function.

142 5.3. EXTENSIONS

First, we consider the polynomial kernel function K(q,pi) = (γ q ·pi+β)deg,

where γ, β are scalar values, and deg denotes the polynomial degree. In this

context, we express the function FP (q) as follows.

FP (q) =
∑
pi∈P

wi(γ q · pi + β)deg (5.11)

For the sake of discussion, we assume Type II weighting (i.e., positive weight

coefficients wi).

We introduce the notation xi to represent the term γ q·pi+β. The bounding

interval of xi, i.e., the interval [xmin, xmax], is computed as:

xmin = γ IPmin(q, R) + β

xmax = γ IPmax(q, R) + β

where R is the bounding rectangle of P , and IPmin(q, R), IPmax(q, R) represent

the minimum and the maximum inner product between q and R, respectively.

We then extend the efficient computation techniques in Section 5.2.1.

Suppose that we are given two linear functions Linml,cl(x) = mlx + cl and

Linmu,cu(x) = mux + cu such that Linml,cl(x) ≤ xdeg ≤ Linmu,cu(x) for all x.

Similar to Lemma 5.1, we can obtain the following property: FLP (q, Linml,cl) ≤

FP (q) ≤ FLP (q, Linmu,cu), where:

FLP (q, Linm,c) =
∑
pi∈P

wi(m(γq · pi + β) + c)

= mγq · âP + (mβ + c)b̂P

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 143

where âP =
∑

pi∈P wipi and b̂P =
∑

pi∈P wi. Such function can be computed in

O(d) time, provided that the terms âP, b̂P have been precomputed.

We proceed to discuss how to devise the bounding linear functions for xdeg.

When deg is even, the function xdeg satisfies the convex property, and thus the

techniques in Section 5.2.2 remain applicable. However, when deg is odd, the

techniques in Section 5.2.2 are not applicable. For example, we plot the function

x3 in Figure 5.8 and notice that the chord between xmin and xmax is no longer

an upper bound function.

Our idea is to exploit the monotonic increasing property of the function xdeg

(given that deg is odd). We illustrate how to construct the bounding linear func-

tions in Figure 5.8. For the upper bound function, we start with the horizontal

line y = (xmax)
deg and then rotate-down the line until its left-hand-side hits

the function xdeg. For the lower bound function, we start with the horizontal

line y = (xmin)
deg and then rotate-up the line until its right-hand-side hits the

function xdeg. The parameters of these lines can be derived by mathematical

techniques.

The above idea is also applicable to the sigmoid kernel because it is also

a monotonic increasing function. The tightness of all these bound functions

depends on xmin and xmax.

5.4 Experimental Evaluation

We introduce the experimental setting in Section 5.4.1. Next, we demon-

strate the performance of different methods in Section 5.4.2. Then, we compare

144 5.4. EXPERIMENTAL EVALUATION

-1

-0.5

0

0.5

1

-1.0 -0.5 0.0 0.5 1.0

xmin

x axis

function value

function

x3

xmax

rotate down

rotate up

Figure 5.8. Lower and upper bound functions for x3

the tightness of KARL and SOTA bound functions in Section 5.4.3. After that,

we perform experimental analysis of our index-tuning method (KARLauto) in

Section 5.4.4. Next, we compare different methods for in-situ applications in

Section 5.4.5. Lastly, we extend our techniques to combine with polynomial

kernel function in Section 5.4.6.

5.4.1 Experimental Setting

5.4.1.1 Datasets

For Type-I, Type-II, Type-III weighting, we take the application model as

kernel density estimation, 1-class SVM, and 2-class SVM, respectively. We use a

wide variety of real datasets for these models, as shown in Table 5.6. The value

nraw denotes the number of points in the raw dataset, and the value d denotes

the data dimensionality. The source/reference for each dataset is also provided.

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 145

These datasets either come from data repository websites [2, 24] or have been

used in recent papers [46, 41].

For Type-I weighting, we follow [46] and use the Scott’s rule to obtain the

parameter γ. Type-II and Type III datasets require a training phase. We con-

sider two kernel functions: the Gaussian kernel and the polynomial kernel. We

denote the number of remaining points in the dataset after training as ngauss
model

and npoly
model, for the Gaussian kernel and the polynomial kernel respectively.

The LIBSVM software [24] is used in the training phase. The training

parameters are configured as follows. For each Type-II dataset, we apply 1-class

SVM training, with the default kernel parameter γ = 1
d [24]. Then we vary

the training model parameter ν from 0.01 to 0.3 and choose the model which

provides the highest accuracy. For each Type-III dataset, we apply 2-class SVM

training with the automatic script in [24] to determine the suitable values for

training parameters.

Table 5.6. Details of datasets
Model Raw dataset nraw ngauss

model npoly
model d

mnist [24] 60000 n/a n/a 784
Type I: miniboone [2] 119596 n/a n/a 50
kernel home [2] 918991 n/a n/a 10
density susy [2] 4990000 n/a n/a 18

Type II: nsl-kdd [1] 67343 17510 6738 41
1-class kdd99 [2] 972780 19461 19462 41
SVM covtype [24] 581012 25486 14165 54

Type III: ijcnn1 [24] 49990 9592 9706 22
2-class a9a [24] 32561 11772 15682 123
SVM covtype-b [24] 581012 310184 323523 54

146 5.4. EXPERIMENTAL EVALUATION

5.4.1.2 Methods for Comparisons

SCAN is the sequential scan method which computes FP (q) without any

pruning. Scikit-learn (abbrev. Scikit) is the machine learning library which sup-

ports the approximate KDE problem [50] (i.e., query type I-ε) and handles SVM-

based classification (by LIBSVM [24]), i.e., query type I-τ , types II-τ and III-τ .

SOTA is the state-of-the-art method which was developed by [46] for handling

the Kernel Density Classification problem, i.e., I-τ query. We modify and extend

their framework to handle other types of queries. Our KARL follows the frame-

work of [46], combining with our linear bound functions, LBKARL and UBKARL.

Both SOTA and KARL can work seamlessly with various index-structures. The

space complexity of all these methods are O(|P |d). Even for the largest tested

dataset (susy), the memory consumption is only at most 1.34GBytes.

For the indexing options, kd-tree [105] and ball-tree [122, 87] are currently

supported by Scikit. We only report the best result of Scikit (denoted as

Scikitbest). For consistency, we also evaluate SOTA and KARL with these two

indices. KARL can automatically choose suitable index and leaf capacity among

these two indices, which we called KARLauto. To demonstrate our effectiveness

compared with SOTA, we select the best index with the best leaf capacity during

the comparison in later sections, which we denote it by SOTAbest. For in-situ

application, we combine the online-tuning method with KARL which we called

KARLonline
auto . We also compare this method with the best performance of SOTA

for this scenario, which we term it as SOTAonline
best .

We implemented all algorithms in C++ and conducted experiments on an

Intel i7 3.4GHz PC running Ubuntu. For each dataset, we randomly sample

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 147

10,000 points from the dataset as the query set Q. Following [46], we measure

the efficiency of a method as the throughput (i.e., the number of queries processed

per second).

5.4.2 Efficiency Evaluation for Different Query Types

We test the performance of different methods for four types of queries which

are I-ε, I-τ , II-τ and III-τ . The parameters of these queries are set as follows.

Type I-ε. We set the relative error ε = 0.2 for each dataset.

Type I-τ . We fix the mean value μ of FP (q) from the set Q, i.e., μ =∑
q∈QFP (q)/|Q| as the threshold τ for each dataset in Table 5.7.

Types II-τ and III-τ . The threshold τ can be obtained during the training

phase.

Table 5.7. All methods for different types of queries
Type Datasets SCAN LIBSVM Scikitbest SOTAbest KARLauto

miniboone 36.1 n/a 36 16.5 301
I-ε home 15.2 n/a 11.9 36.2 187

susy 2.02 n/a 1.17 0.77 13.2

miniboone 36.1 34 n/a 102 510
I-τ home 15.2 14.1 n/a 93.2 258

susy 2.02 1.86 n/a 3.58 83.4

nsl-kdd 283 481 n/a 748 20668
II-τ kdd99 260 520 n/a 1269 11324

covtype 158 462 n/a 448 6022

ijcnn1 903 1170 n/a 1119 826928
III-τ a9a 162 610 n/a 546 6885

covtype-b 13 38.4 n/a 33.9 274

Table 5.7 shows the throughput of different methods for all types of queries.

148 5.4. EXPERIMENTAL EVALUATION

In the result of query type I-ε, SCAN is comparable to Scikitbest and SOTAbest

since the bounds computed by the basic bound functions are not tight enough.

The performance of Scikitbest and SOTAbest is affected by the overhead of the

loose bound computations. KARLauto uses our new bound functions which are

shown to provide tighter bounds. These bounds lead to significant speedup in

all evaluated datasets, e.g., KARLauto is at least 5.16 times faster than other

methods.

For the type I-τ threshold-based queries, our method KARLauto improves the

throughput by 2.76x to 21.2x when comparing to the runner-up method SOTA.

The improvement becomes more obvious for type II-τ and type III-τ queries. The

improvement of KARLauto can be up to 738x as compared to SOTA. KARLauto

achieves significant performance gain for all these queries due to its tighter bound

value compared with SOTA.

Sensitivity of τ . In order to test the sensitivity of threshold τ in different

methods, we select seven thresholds from the range μ − 2σ to μ + 4σ, where

σ =
√∑

q∈Q(FP (q)− μ)2/|Q| is the standard deviation. Figure 5.9 shows the

results on three datasets. As a remark, for the miniboone dataset, we skip the

thresholds μ−σ and μ−2σ as they are negative. Due to the superior performance

of our bound functions, KARLauto outperforms SOTAbest by nearly one order of

magnitude in most of the datasets regardless of the chosen threshold.

Sensitivity of ε. In Scikit-learn library [94], we can select different relative error

ε, which is called as tolerance in the approximate KDE. To test the sensitivity, we

vary the relative error ε for different datasets with query type I-ε. If the value of

ε is very small, the room for the bound estimations is very limited so that neither

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 149

SCAN © SOTAbest � KARLauto �

(a) miniboone (b) home (c) susy

Figure 5.9. Query throughput with query type I-τ , varying the threshold τ

(a) miniboone (b) home (c) susy

Figure 5.10. Query throughput with query type I-ε, varying the relative error ε

KARLauto nor SOTAbest perform well in very small ε setting (e.g., 0.05). For

other general ε settings, our method KARLauto consistently outperforms other

methods by a visible margin (c.f. Figure 5.10).

Sensitivity of dataset size. In the following experiment, we test how the

size of the dataset affects the evaluation performance of different methods for

both query types I-ε and I-τ . We choose the largest dataset (susy) and vary the

size via sampling. The trend in Figure 5.11 meets our expectation; a smaller

size implies a higher throughput. Our KARLauto in general outperforms other

methods by one order of magnitude in a wide range of data sizes.

150 5.4. EXPERIMENTAL EVALUATION

(a) type I-τ , fixing τ = μ (b) type I-ε, fixing ε = 0.2

Figure 5.11. Query throughput on the susy dataset, varying the dataset size

Sensitivity of dimensionality. In this experiment, we choose the dataset

(mnist) with the largest dimensionality (784) and then vary the dimensionality

via PCA dimensionality reduction as in [46]. The default threshold τ = μ is

used. As shown in Figure 5.12, our method KARLauto consistently outperforms

existing methods under different dimensionalities.

Figure 5.12. Query throughput with query type I-τ (τ = μ) on the mnist dataset,
varying the dimensionality

5.4.3 Tightness of Bound Functions

Recall from Section 5.2, we have theoretically shown that our developed lin-

ear bound functions LBKARL and UBKARL are tighter than SOTA bound func-

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 151

tions. In this section, we explore how tight our bound functions can be better

than SOTA in practice.

For the sake of fairness, we fix the tree-structure to be the kd-tree with leaf

capacity 80. We use the following equation to measure the average tightness of

bound values.

Errorbound =
1

|Q| · L

L∑
l=1

∑
q∈Q

∣∣∣∣∣
∑

Rj∈Rl
bound(q, Rj)−FP (q)

FP (q)

∣∣∣∣∣
where Rl denotes the set of entries (cf. Figure 5.2) in the lth level of kd-tree

(with L levels in total).

Figure 5.13. ErrorLB and ErrorUB for Type-I, II and III queries (left,middle and

right respectively)

Our bound functions are in practice much tighter than LBSOTA and UBSOTA

in all evaluated datasets, especially for LBKARL, as shown in Figure 5.13. In

152 5.4. EXPERIMENTAL EVALUATION

addition, the bound functions (of SOTA and KARL) provide very tight bounds

for query types II and III. There are two reasons for this phenomenon, including

the data distribution and data normalization. First, the data points of types II

and III are the support vectors (being trained by SVM), which are the nearest

points to the decision boundary [107] and are very close to each other. Second,

the set of support vectors are normalized to the domain [0, 1]d [24]. This limits

the range of possible values of the exponential function so that the lower and

upper bounds are close to the exact value.

5.4.4 Offline Index Tuning
Recall from Figure 5.2, different indexing structures can be applied to our

problems. One natural question is how can we predict the suitable index-

structure. In this section, we demonstrate our offline tuning method KARLauto

(cf. Section 5.2.3), which automatically selects the best tree-structure with the

suitable leaf capacity from kd-tree [105] and ball-tree [122, 87]. These two tree-

structures are currently supported by Scikit-learn library [94].

Our solution KARLauto randomly samples 1000 vectors, denoted by the

sample set S, from each dataset and predicts the performance based on the

throughput, using different leaf capacities of tree. Table 5.8 shows that in the

offline stage, our method KARLauto can provide good prediction which yields an

online throughput near the best solution KARLbest.

5.4.5 Online Index Tuning for In-situ Applications

In some online learning scenarios [38, 83, 73], we may not be able to pre-

build the index. Thereby, we cannot simply omit the index construction time.

In this section, we consider our online-tuning solution KARLonline
auto (cf. Section

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 153

Table 5.8. Query throughput for variants of KARL, using sample set with |S| =
1000

Type Datasets KARLworst KARLauto KARLbest

miniboone 88.1 302 304
I-ε home 35.9 185 188

susy 5.5 12.9 13.3

miniboone 64.8 514 566
I-τ home 76.6 258 258

susy 16.7 84 89

nsl-kdd 4357 20668 20677
II-τ kdd99 5911 11324 11325

covtype 915 6022 6038

ijcnn1 388109 826928 843601
III-τ a9a 408 6885 6891

covtype-b 52 274 277

5.2.3). All results are shown in Table 5.9.

For query types I-ε and I-τ , SOTAonline
best is not efficient because its bound-

ing functions are not tight (recall from Figure 5.6). Our method KARLonline
auto

outperforms existing methods significantly on all tested datasets.

For query types II-τ and III-τ , our KARLonline
auto can significantly increase the

throughput in several datasets since each support vector in a dataset is near to

each other.

5.4.6 Efficiency for Polynomial Kernel

Recall from Section 5.3.2, our linear bound functions can be also used for

polynomial kernel. In this section, we experimentally test the online query

throughput with query types II-τ and III-τ . We use the polynomial kernel with

degree 3 which is the default setting in LIBSVM [24]. We also normalize the

154 5.5. RELATED WORK

Table 5.9. In-situ solutions for different types of queries
Type Datasets baseline SOTAonline

best KARLonline
auto

miniboone 36.1 16.4 217
I-ε home 35.8 32.1 184

susy 2.02 0.75 7.26

miniboone 36.1 101 419
I-τ home 15.2 92.1 243

susy 2.02 3.57 51

nsl-kdd 481 733 9869
II-τ kdd99 260 1264 7920

covtype 462 439 2389

ijcnn1 1170 1112 426132
III-τ a9a 610 543 1966

covtype-b 38.4 33.5 101

datasets to the domain [−1, 1]d [24]. Then, we apply the same setting in the

training phases in 1-class and 2-class SVM which are stated in Section 5.4.2.

Table 5.10 shows that our method KARLauto outperforms SOTAbest by 3x to

165x.

Table 5.10. Query throughput with query type II/III-τ using polynomial kernel
Type Datasets baseline SOTAbest KARLauto

nsl-kdd 909 1200 4522
II-τ kdd99 314 639 2741

covtype 537 6423 88396

ijcnn1 1154 1122 185372
III-τ a9a 463 422 2813

covtype-b 36.4 30.5 187

5.5 Related Work

The literature review of the recent techniques of kernel functions have been

summarized in Section 2.4.3. In this section, we cover the works directly related

to our problem. Then, we mainly discuss the differences between our work [22]

and previous works.

CHAPTER 5. KARL: FAST KERNEL AGGREGATION QUERIES 155

The term “kernel aggregation query” abstracts a common operation in sev-

eral statistical and learning problems such as kernel density estimation [50, 46],

1-class SVM [86], and 2-class SVM [107].

Kernel density estimation is a non-parametric statistical method for den-

sity estimation. To speedup kernel density estimation, existing works would

either compute approximate density values with accuracy guarantee [87] or test

whether density values are above a given threshold [46]. Zheng et al. [136] focus

on fast kernel density estimation on low-dimensional data (e.g., 1d, 2d) and pro-

pose sampling-based solutions with theoretical guarantees on both efficiency and

quality. On the other hand, [87, 46] assume that the point set P is indexed by a

k-d tree, and apply filter-and-refinement techniques for kernel density estimation.

The library Scikit-learn [94] adopts the implementation in [87]. Our proposal,

KARL, adapts the algorithm in [87, 46] to evaluate kernel aggregation queries.

The key difference between KARL and [87, 46] lies in the bound functions. As

explained in Section 5.2.2, our proposed linear bound functions are tighter than

existing bound functions used in [87, 46]. Furthermore, we extend our linear

bound functions to deal with different types of weighting and kernel functions,

which have not been considered in [87, 46].

SVM is proposed by the machine learning community to classify data ob-

jects or detect outliers. SVM has been applied in different application do-

mains, such as document classification [86], network fault detection [134, 17, 15],

anomaly/outlier detection [23, 80], novelty detection [58, 84, 108], tumor sam-

ples classification [32], image classification [29], time series classification [69]. The

typical process is divided into two phases. In the offline phase, training/learning

algorithms are used to obtain the point set P , the weighting, and parameters.

156 5.6. CHAPTER SUMMARY

Then, in the online phase, threshold kernel aggregation queries can be used to

support classification or outlier detection. Two approaches have been studied

to accelerate the online phase. The library LibSVM [24] assumes sparse data

format and applies inverted index to speedup exact computation. The machine

learning community has proposed heuristics [68, 57, 78, 81] to reduce the size of

the point set P in the offline phase, in order to speedup the online phase. How-

ever, these heuristics may affect the prediction quality of SVM. Our proposed

bound functions have not been studied in the above work.

5.6 Chapter Summary

In this chapter, we study kernel aggregation queries, which can be used

to support a common operation in kernel density estimation [50, 46], 1-class

SVM [86], and 2-class SVM [107].

Our key contribution is the development of fast linear bound functions,

which are proven to be tighter than existing bound functions, yet allowing fast

computation. In addition, we propose a comprehensive solution that can support

different types of kernel functions and weighting schemes. Our automatic tuning

methods support identification of efficient index structure, which depends on the

underlying point set P .

Experimental studies on a wide variety of datasets show that our solution

yields higher throughput than the state-of-the-art by 2.5–738 times.

A promising future research direction is to consider more statistical/learning

tasks based on kernel functions, e.g., kernel regression and multi-class kernel

SVM.

Chapter 6

Conclusions and Suggestions

for Future Research

Similarity measures are important for many computer vision and machine

learning tasks. In this paper, we propose both exact or approximation algorithms

combining with the developed lower and upper bound functions to boost up the

efficiency performance in three fundamental problems.

6.1 Contributions

The first one is for the template matching problem (SWNNS) in Chapter

3 which are deemed to be inefficient in previous work. Our developed solution

boosts up the performance for nearly 9-20x faster which can enable different

applications in computer vision, for example: object detection or motion estima-

tion.

157

158 6.2. FUTURE DIRECTIONS

The second one is for the image retrieval problem in Chapter 4. Earth

mover’s distance is a robust similarity measure for this application, but it is slow.

Our developed approximation methods can not only retain the accurate result

compared with the exact one, but also they can provide an order of magnitude

speedup over the fastest exact computation algorithm.

The third one is for the kernel aggregation query in Chapter 5. This type

of query is computed in kernel based machine learning/ statistics models such

as: one-class SVM, two-class SVM or kernel density estimation/ classification.

Directly computing this query is not efficient. Our developed solution can boost

up the efficiency performance by 2.5-738x faster in various datasets, models and

kernel types.

6.2 Future Directions

In Chapter 3, our problem formulation is only limited to the rectangular/ ir-

regular shaped query. However, existing object detection algorithms also need to

handle some objects which contain a wide range of deformation, such as: rotation,

affline transformation. Our developed techniques may not be straightforward to

apply in these scenarios. As such, our next goal is to develop algorithms to boost

up the efficiency performance for these tasks.

In Chapter 4, we develop an approximate framework to efficiently boost up

the efficiency performance of evaluating EMD function. However, this frame-

work is general which can also support other similarity measures. One research

direction is to apply this framework to other similarity measures.

CHAPTER 6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE
RESEARCH 159

In Chapter 5, our solution only covers some popular machine learning mod-

els, for example: svm or kernel density estimation, in the online phase. However,

it is interesting to know whether our techniques can be applied to other models,

such as: kernel regression model. Another interesting direction is how to extend

our techniques to boost up the training phase of these models. Recently, many

works also focus on deep learning based models for different machine learning

tasks with successful results. Our next goal is to exploit the property in this

categories of model and develop efficient algorithms.

160 6.2. FUTURE DIRECTIONS

References

[1] Nsl-kdd dataset. https://github.com/defcom17/NSL_KDD.

[2] UCI machine learning repository. http://archive.ics.uci.edu/ml/

index.php.

[3] Weather datasets. http://weather.is.kochi-u.ac.jp/sat/GAME/.

[4] Comparison of density estimation methods for astronomical datasets. As-

tronomy and Astrophysics, 531, 7 2011.

[5] Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for

bipartite matching with metric and geometric costs. In STOC, pages 555–

564, 2014.

[6] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network

flows - theory, algorithms and applications. Prentice Hall, 1993.

[7] David C. Anastasiu and George Karypis. L2AP: fast cosine similarity

search with prefix L-2 norm bounds. In ICDE, pages 784–795, 2014.

[8] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover

distance over high-dimensional spaces. In SODA, pages 343–352, 2008.

161

162 REFERENCES

[9] Ira Assent, Andrea Wenning, and Thomas Seidl. Approximation techniques

for indexing the earth mover’s distance in multimedia databases. In ICDE,

page 11, 2006.

[10] Ira Assent, Marc Wichterich, Tobias Meisen, and Thomas Seidl. Efficient

similarity search using the earth mover’s distance for large multimedia

databases. In ICDE, pages 307–316, 2008.

[11] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The r*-tree: An efficient and robust access method for points

and rectangles. In SIGMOD, pages 322–331, 1990.

[12] Gil Ben-Artzi, Hagit Hel-Or, and Yacov Hel-Or. The gray-code filter ker-

nels. IEEE Trans. Pattern Anal. Mach. Intell., 29(3):382–393, 2007.

[13] Michal Ben-Yehuda, Lihi Cadany, and Hagit Hel-Or. Irregular pattern

matching using projections. In ICIP, pages 834–837, 2005.

[14] Jon Louis Bentley. Multidimensional binary search trees used for associa-

tive searching. Commun. ACM, 18(9):509–517, 1975.

[15] Monowar H. Bhuyan, D. K. Bhattacharyya, and Jugal K. Kalita. Network

anomaly detection: Methods, systems and tools. IEEE Communications

Surveys and Tutorials, 16(1):303–336, 2014.

[16] Remus Brad and Ioan Alfred Letia. Extracting cloud motion from satellite

image sequences. In ICARCV, pages 1303–1307, 2002.

[17] Anna L. Buczak and Erhan Guven. A survey of data mining and machine

learning methods for cyber security intrusion detection. IEEE Communi-

cations Surveys and Tutorials, 18(2):1153–1176, 2016.

REFERENCES 163

[18] Yunliang Cai and George Baciu. Detecting, grouping, and structure in-

ference for invariant repetitive patterns in images. IEEE Trans. Image

Processing, 22(6):2343–2355, 2013.

[19] Tsz Nam Chan, Man Lung Yiu, and Kien A. Hua. A progressive approach

for similarity search on matrix. In SSTD, pages 373–390, 2015.

[20] Tsz Nam Chan, Man Lung Yiu, and Kien A. Hua. Efficient sub-window

nearest neighbor search on matrix. IEEE Trans. Knowl. Data Eng.,

29(4):784–797, 2017.

[21] Tsz Nam Chan, Man Lung Yiu, and Leong Hou U. The Power of Bounds:

Answering Approximate Earth Mover’s Distance with Parametric Bounds.

submitted to TKDE.

[22] Tsz Nam Chan, Man Lung Yiu, and Leong Hou U. KARL: Fast Kernel

Aggregation Queries. ICDE, 2019.

[23] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-

tion: A survey. ACM Comput. Surv., 41(3):15:1–15:58, 2009.

[24] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vec-

tor machines. ACM Transactions on Intelligent Systems and Technology,

2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm.

[25] Moses Charikar. Similarity estimation techniques from rounding algo-

rithms. In STOC, pages 380–388, 2002.

164 REFERENCES

[26] Ching-Chien Chen, Craig A. Knoblock, and Cyrus Shahabi. Automatically

conflating road vector data with orthoimagery. GeoInformatica, 10(4):495–

530, 2006.

[27] Ching-Chien Chen, Cyrus Shahabi, and Craig A. Knoblock. Utilizing road

network data for automatic identification of road intersections from high

resolution color orthoimagery. In STDBM 04, pages 17–24, 2004.

[28] Lu Chen, Yunjun Gao, Baihua Zheng, Christian S. Jensen, Hanyu Yang,

and Keyu Yang. Pivot-based metric indexing. PVLDB, 10(10):1058–1069,

2017.

[29] Qiang Chen, Zheng Song, Jian Dong, ZhongYang Huang, Yang Hua, and

Shuicheng Yan. Contextualizing object detection and classification. IEEE

Trans. Pattern Anal. Mach. Intell., 37(1):13–27, 2015.

[30] Ming-Ming Cheng, Fang-Lue Zhang, Niloy J. Mitra, Xiaolei Huang, and

Shi-Min Hu. Repfinder: finding approximately repeated scene elements for

image editing. ACM Trans. Graph., 29(4):83:1–83:8, 2010.

[31] Yao-Yi Chiang, Craig A. Knoblock, Cyrus Shahabi, and Ching-Chien

Chen. Automatic and accurate extraction of road intersections from raster

maps. GeoInformatica, 13(2):121–157, 2009.

[32] Hua-Sheng Chiu and et al. Pan-Cancer Analysis of lncRNA Regulation

Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell

Reports, 23(1):297–312, April 2018.

REFERENCES 165

[33] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access

method for similarity search in metric spaces. In VLDB, pages 426–435,

1997.

[34] Scott D. Cohen and Leonidas J. Guibas. The earth mover’s distance: Lower

bounds and invariance under translation technical report. 1997.

[35] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for

youtube recommendations. In RecSys, pages 191–198, 2016.

[36] Kyle Cranmer. Kernel estimation in high-energy physics. 136:198–207,

2001.

[37] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable distributions. In SoCG,

pages 253–262, 2004.

[38] Manuel Davy, Frédéric Desobry, Arthur Gretton, and Christian Doncarli.

An online support vector machine for abnormal events detection. Signal

Processing, 86(8):2009–2025, 2006.

[39] R. Deng. Fast Matching Techniques Utilizing Integral Images. PhD thesis,

University of Texas at Dallas, 2011.

[40] Thomas Deselaers, Daniel Keysers, and Hermann Ney. Features for image

retrieval: an experimental comparison. Inf. Retr., 11(2):77–107, 2008.

[41] Remi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane

Zouaoui. A comparative evaluation of outlier detection algorithms: Ex-

periments and analyses. Pattern Recognition, 74:406–421, 2018.

166 REFERENCES

[42] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-

man. The PASCAL Visual Object Classes Challenge 2007 (VOC2007)

Results. http://www.pascal-network.org/challenges/VOC/voc2007/

workshop/index.html.

[43] Mark Everingham, S. M. Ali Eslami, Luc J. Van Gool, Christopher K. I.

Williams, John M. Winn, and Andrew Zisserman. The pascal visual ob-

ject classes challenge: A retrospective. International Journal of Computer

Vision, 111(1):98–136, 2015.

[44] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast sub-

sequence matching in time-series databases. In SIGMOD, pages 419–429,

1994.

[45] Ada Wai-Chee Fu, Eamonn J. Keogh, Leo Yung Hang Lau, Chotirat (Ann)

Ratanamahatana, and Raymond Chi-Wing Wong. Scaling and time warp-

ing in time series querying. VLDB J., 17(4):899–921, 2008.

[46] Edward Gan and Peter Bailis. Scalable kernel density classification via

threshold-based pruning. In SIGMOD, pages 945–959, 2017.

[47] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. Locality-sensitive

hashing scheme based on dynamic collision counting. In SIGMOD, pages

541–552, 2012.

[48] Michael R. Garey and David S. Johnson. Computers and Intractability;

A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New

York, NY, USA, 1990.

REFERENCES 167

[49] Mohammad Gharavi-Alkhansari. A fast globally optimal algorithm for

template matching using low-resolution pruning. IEEE Trans. Image Pro-

cessing, 10(4):526–533, 2001.

[50] Alexander G. Gray and Andrew W. Moore. Nonparametric density esti-

mation: Toward computational tractability. In SDM, pages 203–211, 2003.

[51] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset.

technical report 7694, caltech. 2007.

[52] O. Güler. Foundations of Optimization. Graduate Texts in Mathematics.

Springer New York, 2010.

[53] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In SIGMOD, pages 47–57, 1984.

[54] James L. Hafner, Harpreet S. Sawhney, William Equitz, Myron Flickner,

and Wayne Niblack. Efficient color histogram indexing for quadratic form

distance functions. IEEE Trans. Pattern Anal. Mach. Intell., 17(7):729–

736, 1995.

[55] Yacov Hel-Or and Hagit Hel-Or. Real-time pattern matching using projec-

tion kernels. IEEE Trans. Pattern Anal. Mach. Intell., 27(9):1430–1445,

2005.

[56] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan

Srikant. Range queries in OLAP data cubes. In SIGMOD, pages 73–88,

1997.

[57] Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon. Fast prediction for large-scale

kernel machines. In NIPS, pages 3689–3697, 2014.

168 REFERENCES

[58] Chengqiang Huang, Geyong Min, Yulei Wu, Yiming Ying, Ke Pei, and

Zuochang Xiang. Time series anomaly detection for trustworthy services

in cloud computing systems. IEEE Trans. Big Data, to appear.

[59] Jin Huang, Rui Zhang, Rajkumar Buyya, Jian Chen, and Yongwei Wu.

Heads-join: Efficient earth mover’s distance similarity joins on hadoop.

IEEE Trans. Parallel Distrib. Syst., 27(6):1660–1673, 2016.

[60] Mark J. Huiskes and Michael S. Lew. The MIR flickr retrieval evaluation.

In SIGMM, pages 39–43, 2008.

[61] Piotr Indyk. A near linear time constant factor approximation for euclidean

bichromatic matching (cost). In SODA, pages 39–42, 2007.

[62] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: To-

wards removing the curse of dimensionality. In STOC, pages 604–613,

1998.

[63] H. V. Jagadish, Beng Chin Ooi, Kian-Lee Tan, Cui Yu, and Rui Zhang.

idistance: An adaptive b+-tree based indexing method for nearest neighbor

search. ACM Trans. Database Syst., 30(2):364–397, 2005.

[64] Min-Hee Jang, Sang-Wook Kim, Christos Faloutsos, and Sunju Park. A

linear-time approximation of the earth mover’s distance. In CIKM, pages

505–514, 2011.

[65] Min-Hee Jang, Sang-Wook Kim, Christos Faloutsos, and Sunju Park. Accu-

rate approximation of the earth mover’s distance in linear time. J. Comput.

Sci. Technol., 29(1):142–154, 2014.

REFERENCES 169

[66] Feng Jing, Mingjing Li, HongJiang Zhang, and Bo Zhang. An efficient

and effective region-based image retrieval framework. IEEE Trans. Image

Processing, 13(5):699–709, 2004.

[67] Feng Jing, Mingjing Li, HongJiang Zhang, and Bo Zhang. Relevance feed-

back in region-based image retrieval. IEEE Trans. Circuits Syst. Video

Techn., 14(5):672–681, 2004.

[68] Ho Gi Jung and Gahyun Kim. Support vector number reduction: Sur-

vey and experimental evaluations. IEEE Trans. Intelligent Transportation

Systems, 15(2):463–476, 2014.

[69] Argyro Kampouraki, George Manis, and Christophoros Nikou. Heartbeat

time series classification with support vector machines. IEEE Trans. In-

formation Technology in Biomedicine, 13(4):512–518, 2009.

[70] Michael Kapralov and Rina Panigrahy. NNS lower bounds via metric ex-

pansion for l ∞ and EMD. In ICALP, pages 545–556, 2012.

[71] Daniel A. Keim and Benjamin Bustos. Similarity search in multimedia

databases. In ICDE, page 873, 2004.

[72] Sang-Wook Kim, Sanghyun Park, and Wesley W. Chu. An index-based

approach for similarity search supporting time warping in large sequence

databases. In ICDE, pages 607–614, 2001.

[73] Jyrki Kivinen, Alexander J. Smola, and Robert C. Williamson. Online

learning with kernels. In NIPS, pages 785–792, 2001.

170 REFERENCES

[74] Yan Kong, Weiming Dong, Xing Mei, Xiaopeng Zhang, and Jean-Claude

Paul. Simlocator: robust locator of similar objects in images. The Visual

Computer, 29(9):861–870, 2013.

[75] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization

techniques for recommender systems. IEEE Computer, 42(8):30–37, 2009.

[76] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot L. Siegel,

and Zenon Protopapas. Fast nearest neighbor search in medical image

databases. In VLDB, pages 215–226, 1996.

[77] Hans-Peter Kriegel, Peer Kröger, Peter Kunath, and Matthias Renz. Gen-

eralizing the optimality of multi-step k -nearest neighbor query processing.

In SSTD, pages 75–92, 2007.

[78] Quoc V. Le, Tamás Sarlós, and Alexander J. Smola. Fastfood - computing

hilbert space expansions in loglinear time. In ICML, pages 244–252, 2013.

[79] Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. FEXIPRO:

fast and exact inner product retrieval in recommender systems. In SIG-

MOD, pages 835–850, 2017.

[80] Bo Liu, Yanshan Xiao, Philip S. Yu, Longbing Cao, Yun Zhang, and

Zhifeng Hao. Uncertain one-class learning and concept summarization

learning on uncertain data streams. IEEE Trans. Knowl. Data Eng.,

26(2):468–484, 2014.

[81] Yi-Hung Liu, Yan-Chen Liu, and Yen-Jen Chen. Fast support vector

data descriptions for novelty detection. IEEE Trans. Neural Networks,

21(8):1296–1313, 2010.

REFERENCES 171

[82] Vebjorn Ljosa, Arnab Bhattacharya, and Ambuj K. Singh. Indexing spa-

tially sensitive distance measures using multi-resolution lower bounds. In

EDBT, pages 865–883, 2006.

[83] Jing Lu, Steven C. H. Hoi, Jialei Wang, Peilin Zhao, and Zhiyong Liu.

Large scale online kernel learning. Journal of Machine Learning Research,

17:47:1–47:43, 2016.

[84] J. Ma and S. Perkins. Time-series novelty detection using one-class support

vector machines. In IJCNN, pages 1741–1745, 2003.

[85] Arif Mahmood and Sohaib Khan. Exploiting transitivity of correlation for

fast template matching. IEEE Trans. Image Processing, 19(8):2190–2200,

2010.

[86] Larry M. Manevitz and Malik Yousef. One-class svms for document clas-

sification. Journal of Machine Learning Research, 2:139–154, 2001.

[87] Andrew W. Moore. The anchors hierarchy: Using the triangle inequality

to survive high dimensional data. In UAI, pages 397–405, 2000.

[88] Yair Moshe and Hagit Hel-Or. Video block motion estimation based on

gray-code kernels. IEEE Trans. Image Processing, 18(10):2243–2254, 2009.

[89] James B. Orlin. A faster strongly polynominal minimum cost flow algo-

rithm. In STOC, pages 377–387, 1988.

[90] Wanli Ouyang and Wai-kuen Cham. Fast algorithm for walsh hadamard

transform on sliding windows. IEEE Trans. Pattern Anal. Mach. Intell.,

32(1):165–171, 2010.

172 REFERENCES

[91] Wanli Ouyang, Federico Tombari, Stefano Mattoccia, Luigi di Stefano, and

Wai-kuen Cham. Performance evaluation of full search equivalent pattern

matching algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 34(1):127–

143, 2012.

[92] Wanli Ouyang, Renqi Zhang, and Wai-kuen Cham. Segmented gray-

code kernels for fast pattern matching. IEEE Trans. Image Processing,

22(4):1512–1525, 2013.

[93] Wanli Ouyang, Tianle Zhao, Wai-kuen Cham, and Liying Wei. Fast full-

search-equivalent pattern matching using asymmetric haar wavelet packets.

IEEE Trans. Circuits Syst. Video Techn., 28(4):819–833, 2018.

[94] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cour-

napeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay.

Scikit-learn: Machine learning in python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

[95] Ofir Pele and Michael Werman. Accelerating pattern matching or how

much can you slide? In ACCV, pages 435–446, 2007.

[96] Ofir Pele and Michael Werman. Robust real-time pattern matching using

bayesian sequential hypothesis testing. IEEE Trans. Pattern Anal. Mach.

Intell., 30(8):1427–1443, 2008.

[97] Ofir Pele and Michael Werman. Fast and robust earth mover’s distances.

In ICCV, pages 460–467, 2009.

REFERENCES 173

[98] Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gus-

tavo E. A. P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria,

and Eamonn J. Keogh. Searching and mining trillions of time series subse-

quences under dynamic time warping. In SIGKDD, pages 262–270, 2012.

[99] Parikshit Ram and Alexander G. Gray. Maximum inner-product search

using cone trees. In SIGKDD, pages 931–939, 2012.

[100] Yossi Rubner, Jan Puzicha, Carlo Tomasi, and Joachim M. Buhmann. Em-

pirical evaluation of dissimilarity measures for color and texture. Computer

Vision and Image Understanding, 84(1):25–43, 2001.

[101] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for dis-

tributions with applications to image databases. In ICCV, pages 59–66,

1998.

[102] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s

distance as a metric for image retrieval. International Journal of Computer

Vision, 40(2):99–121, 2000.

[103] Brian E. Ruttenberg and Ambuj K. Singh. Indexing the earth mover’s

distance using normal distributions. PVLDB, 5(3):205–216, 2011.

[104] Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. FTW: fast

similarity search under the time warping distance. In PODS, pages 326–

337, 2005.

[105] H. Samet. Foundations of Multidimensional and Metric Data Structures.

Morgan Kaufmann. 2006.

174 REFERENCES

[106] Hanan Samet. Techniques for similarity searching in multimedia databases.

PVLDB, 3(2):1649–1650, 2010.

[107] Bernhard Schölkopf and Alexander Johannes Smola. Learning with Ker-

nels: support vector machines, regularization, optimization, and beyond.

Adaptive computation and machine learning series. MIT Press, 2002.

[108] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John

Shawe-Taylor, and John C. Platt. Support vector method for novelty de-

tection. In NIPS, pages 582–588, 1999.

[109] Haim Schweitzer, Rui A. Deng, and Robert Finis Anderson. A dual-bound

algorithm for very fast and exact template matching. IEEE Trans. Pattern

Anal. Mach. Intell., 33(3):459–470, 2011.

[110] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neigh-

bor search. In SIGMOD, pages 154–165, 1998.

[111] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree:

A dynamic index for multi-dimensional objects. In VLDB, pages 507–518,

1987.

[112] Sameer Shirdhonkar and David W. Jacobs. Approximate earth mover’s

distance in linear time. In CVPR, 2008.

[113] Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for sublinear

time maximum inner product search (MIPS). In NIPS, pages 2321–2329,

2014.

REFERENCES 175

[114] Diego Furtado Silva and Gustavo E. A. P. A. Batista. Speeding up all-

pairwise dynamic time warping matrix calculation. In SDM, pages 837–845,

2016.

[115] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath

Gupta, and Ramesh C. Jain. Content-based image retrieval at the end

of the early years. IEEE Trans. Pattern Anal. Mach. Intell., 22(12):1349–

1380, 2000.

[116] Michael J. Swain and Dana H. Ballard. Color indexing. International

Journal of Computer Vision, 7(1):11–32, 1991.

[117] Yu Tang, Leong Hou U, Yilun Cai, Nikos Mamoulis, and Reynold Cheng.

Earth mover’s distance based similarity search at scale. PVLDB, 7(4):313–

324, 2013.

[118] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and efficiency

in high dimensional nearest neighbor search. In SIGMOD, pages 563–576,

2009.

[119] Christina Teflioudi, Rainer Gemulla, and Olga Mykytiuk. LEMP: fast

retrieval of large entries in a matrix product. In SIGMOD, pages 107–122,

2015.

[120] Federico Tombari, Stefano Mattoccia, and Luigi di Stefano. Full-search-

equivalent pattern matching with incremental dissimilarity approxima-

tions. IEEE Trans. Pattern Anal. Mach. Intell., 31(1):129–141, 2009.

176 REFERENCES

[121] Dai-Duong Truong, Vinh-Tiep Nguyen, Anh Duc Duong, Chau-

Sang Nguyen Ngoc, and Minh-Triet Tran. Realtime arbitrary-shaped tem-

plate matching process. In ICARCV, pages 1407–1412, 2012.

[122] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with

metric trees. Inf. Process. Lett., 40(4):175–179, 1991.

[123] Paul A. Viola and Michael J. Jones. Robust real-time face detection. In-

ternational Journal of Computer Vision, 57(2):137–154, 2004.

[124] M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman & Hall/CRC

Monographs on Statistics & Applied Probability. Taylor & Francis, 1994.

[125] James Ze Wang, Jia Li, and Gio Wiederhold. Simplicity: Semantics-

sensitive integrated matching for picture libraries. IEEE Trans. Pattern

Anal. Mach. Intell., 23(9):947–963, 2001.

[126] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis

and performance study for similarity-search methods in high-dimensional

spaces. In VLDB, pages 194–205, 1998.

[127] Shou-Der Wei and Shang-Hong Lai. Fast template matching based on

normalized cross correlation with adaptive multilevel winner update. IEEE

Trans. Image Processing, 17(11):2227–2235, 2008.

[128] Marc Wichterich, Ira Assent, Philipp Kranen, and Thomas Seidl. Efficient

emd-based similarity search in multimedia databases via flexible dimen-

sionality reduction. In SIGMOD, pages 199–212, 2008.

REFERENCES 177

[129] Jia Xu, Bin Lei, Yu Gu, Marianne Winslett, Ge Yu, and Zhenjie Zhang.

Efficient similarity join based on earth mover’s distance using mapreduce.

IEEE Trans. Knowl. Data Eng., 27(8):2148–2162, 2015.

[130] Jia Xu, Zhenjie Zhang, Anthony K. H. Tung, and Ge Yu. Efficient and

effective similarity search over probabilistic data based on earth mover’s

distance. PVLDB, 3(1):758–769, 2010.

[131] Byoung-Kee Yi and Christos Faloutsos. Fast time sequence indexing for

arbitrary lp norms. In VLDB, pages 385–394, 2000.

[132] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The

Metric Space Approach. Advances in Database Systems. Springer US, 2006.

[133] Jianguo Zhang, Marcin Marszalek, Svetlana Lazebnik, and Cordelia

Schmid. Local features and kernels for classification of texture and object

categories: A comprehensive study. International Journal of Computer

Vision, 73(2):213–238, 2007.

[134] Liangwei Zhang, Jing Lin, and Ramin Karim. Adaptive kernel density-

based anomaly detection for nonlinear systems. Knowledge-Based Systems,

139(Supplement C):50 – 63, 2018.

[135] Qi Zhao, Zhi Yang, and Hai Tao. Differential earth mover’s distance with its

applications to visual tracking. IEEE Trans. Pattern Anal. Mach. Intell.,

32(2):274–287, 2010.

[136] Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li. Quality and

efficiency for kernel density estimates in large data. In SIGMOD, pages

433–444, 2013.

