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Abstract 

Skip-stop service, also termed “limited-stop service”, is a transit service with more 

than one transit route operating simultaneously on the same line and each route 

only visiting a subset of the stops. Compared to the conventional all-stop service 

(where a transit vehicle visits each and every stop along the line), the skip-stop 

service has higher commercial speed and patrons can enjoy reduced in-vehicle 

travel time. This service scheme has long been both studied in the literature and 

implemented in real cities. The majority of the previous studies have formulated 

discrete models for optimizing the skip-stop routing plan only; i.e., they optimize 

the selection of stops to be visited by each skip-stop route from a given set of stops. 

Hence, they fail to jointly optimize the skip-stop routing plan and stop locations. 

In addition, those discrete models were often solved by heuristic methods. Thus 

evaluating the solution quality, in terms of the optimality gap between the heuristic 

solution and the global optimum, is difficult. To address these deficiencies, this 

thesis has developed continuum approximation (CA) models to optimize various 

forms of skip-stop services designs under spatially heterogeneous demand. 

Efficient solution algorithms are also proposed and tested via extensive numerical 

examples.  

Specifically, the following three forms of skip-stop services are considered: 

i) AB-type service; ii) local-express service; and iii) a general form of skip-stop 

service. 

In an AB-type service, different skip-stop routes visit the non-transfer stops 

in a rotating fashion. If there are only two routes named route A and route B, then 

the non-transfer stops will be placed in an “ABABAB…” fashion; hence the term 

AB-type service. Each transfer stop will be visited by all the skip-stop routes. We 

have formulated CA models for jointly optimizing the stop spacings, the number 

of skip-stop routes, and the transfer stop spacings under any heterogeneous 

demand patterns. Near-optimal solutions to the CA formulation are obtained via 

an efficient solution approach, employing the calculus of variations method in an 

iterative algorithm. A discretization recipe is also proposed to convert the CA 

solution to a real design plan. Numerical case studies confirm the practicality of 

the models, the efficiency of the solution approach, and the advantages of the AB-
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type design over the conventional all-stop design under various heterogeneous 

demand patterns. 

A local-express service consists of an express route and a local route. The 

express route only visits the express stops (which are also transfer stops between 

the express and local routes), and the local route visits all the stops. CA models 

are again formulated for optimally designing the express and local stop spacings 

under heterogeneous demand. The models explicitly account for passengers’ 

choices between different route options (for example, taking the local route only 

or taking the local route as feeder to access the express route). Numerical case 

studies compared the optimal local-express design with other corridor designs.  

Finally, a more general skip-stop service is also studied in this thesis, 

where the non-transfer stops of different routes and the transfer stops can both be 

distributed along the line in an arbitrary fashion. A novel formulation for 

optimizing this general design has been developed in this thesis, which is discrete 

in nature but inspired by the conventional CA models. Specifically, our model 

allows the stops to be located anywhere along the line, with stop densities instead 

of individual stop positions employed as decision variables. Efficient solution 

methods for this new formulation yielding near-optimal solutions under various 

heterogeneous demand patterns are presented. Comparison between different skip-

stop design forms shows that the general skip-stop design is a generalization of the 

AB-type design and under some demand patterns the general design can 

significantly outperform AB-type and local-express designs. 
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Chapter 1 Introduction 

Section 1.1 presents the background of this research and Section 1.2 reviews 

related studies in the literature. Section 1.3 provides a dissertation overview. 

1.1 Background 

Public transport corridors play a vital role in urban areas for efficiently serving 

cross-district mass travel demand (e.g., commuters). These corridors are crucial 

for densely populated metropolitan areas such as New York City, San Francisco, 

London, Tokyo, Beijing, and Hong Kong. For instance, The Metro Line 1 in 

Beijing and Metro Line 2 in Shanghai each provide more than 1 million passenger 

trips daily. Hence, improving the transit service in these essential corridors is of 

great importance for both city managers and transit patrons. They are the cardio 

vascular system supporting the life blood and breathe of the world’s greatest cities. 

To better serve vast passenger numbers, skip-stop service schemes are 

often employed in heavy-traffic transit corridors. Skip-stop service, also termed 

“limited-stop service”, is defined as a transit service where more than one transit 

routes operate simultaneously on the same line, with each route visiting only a 

subset of the stops. This service scheme has long been implemented in real cities 

and studied in the literature. Compared to the conventional all-stop service (where 

a transit vehicle visits each and every stop along the line), the skip-stop service 

can operate at a higher commercial speed, save patrons’ travel time, improve the 

productivity of transit fleets, and increase transit schedule reliability.  

Skip-stop service operates in a number of specific forms, including: i) 

zonal service, where a transit vehicle starts the service run by visiting all the stops 

within a zone, and then performs a non-stop line-haul travel to the city center; ii) 

short-turn service, where some service runs only cover a continuous portion of the 

line and skip the remaining part of the line entirely; iii) local-express service, 

where an all-stop local line operates in parallel with an express line which only 

stops at a few express stops; iv) AB-type service (Vuchic, 2007), where two or 

more lines operate in parallel in a corridor, each visiting all the transfer stops and 

a subset of the non-transfer stops (which are arranged in a rotating fashion; see the 

detailed illustration in Section 1.3); and v) skip-stop services of the general form, 
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where multiple skip-stop lines simultaneously serve a corridor, each visiting an 

arbitrary subset of stops. 

Zonal and short-run services are perhaps most commonly used in the real 

world due to their simplicity (Larrain et al. 2015; Cortes et al. 2011). For example, 

the Massachusetts Bay Transit Authority (MBTA) has been operating a short-run 

service (bus route 57A) in the Watertown-Brighton corridor in the Boston 

metropolitan area during weekday rush hours since 2008. This short-run service 

effectively mitigates overcrowding along the middle part of the route (Belcher, 

2015). Zonal services have also been operating in the same corridor to connect the 

Downtown Boston and suburban areas. These services are relatively easy, both for 

the agency to design and implement, and for the patrons to understand and use. 

However, their applicability is often limited to certain specific demand patterns; 

e.g., zonal service is suitable for the many-to-one demand pattern, and short-run 

service is suitable for corridors where demand is high in the middle section and 

low in the other parts.  

More complicated forms of skip-stop service are also operated in various 

cities. For example, the local-express service has been used in the San Pablo 

Avenue of San Francisco Bay Area (Mejias and Deakin, 2005), the TransMilenio 

system in Bogota, Colombia (Hidalgo et al., 2013) and New York City (Hirsch et 

al., 2000). The TransSantiago Metro in Santiago, Chile, has implemented AB-type 

service on line 2, line 4, and line 5 during daily rush hours since 2007 (Metro de 

Santiago, 2008). This AB-type service scheme can be traced back to 1947, when 

the Chicago Metro system introduced possibly the world’s first AB-type service 

(with two routes) to some rail corridors after the design failure of a very 

complicated local-express service (Chicago-L, 2010). A great advantage of the 

AB-type service is that it is easy for the patrons to understand and use and it does 

not need a second track for trains to bypass each other. Other forms of skip-stop 

services (such as the local-express service) often require a resource expensive 

second track or passing lane to operate. 

Other, more general, skip-stop service forms have also been studied in the 

literature (see Section 1.2.1). However, these have few real-world applications in 

urban transit systems, partly because these schemes are more difficult to design 

and operate, and can be confusing for patrons to use. 
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1.2 Literature Review 

Section 1.2.1 describes the studies of different schemes of skip-stop service in 

urban transit systems. Section 1.2.2 discusses two solution method categories 

related to optimal skip-stop service design. 

1.2.1 Skip-stop service schemes in urban transit systems 

Turnquist (1979), presented an early study of zonal service aimed at minimizing 

patrons’ travel time which employed a dynamic programming method to optimize 

the number of zones, the boundaries of zones and the allocation of buses within a 

fixed fleet size. This work was extended by Jordan and Turnquist (1979) who also 

considered bus travel time reliability. Their model can minimize either average 

travel time or travel time variance. Later, Ghoneim and Wirasinghe (1986) 

investigated the benefits of operating zonal service for an existing rail line. Their 

model incorporated some constraints to ensure minimal headway between trains 

on a single track and optimized a more general objective function consisting of 

both the patrons’ cost and the operating cost. Furth (1986) presented a method to 

combine the zonal service design with all-stop service and extended the use of 

zonal service from linear corridors to a branching corridor.  

The above works sought the optimal design of zonal service for existing 

rail systems or bus systems in which stop locations are considered as given. 

Ghoneim and Wirasinghe (1987) included the stop spacings as decision variables 

and addressed the problem of designing zonal service for newly planned urban 

commuter rail lines. Recently, Larrain et al. (2015) have generalized the definition 

of zonal service by specifying that the terminal is not necessarily a single stop but 

can also be a zone. They presented two heuristics to optimize the design of this 

zonal service in congested and uncongested cases.  

Overall, these works have shown that the zonal service can outperform the 

all-stop service significantly under the many-to-one demand pattern.  

Short-turn service is usually operated together with regular all-stop service. 

It is particularly useful in corridors where the demand is high in a continuous 

portion of the corridor and low in other parts of the corridor. Furth (1987) pointed 

out that schedule coordination between short-turn vehicles and all-stop vehicles is 
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essential for balancing passenger loads and minimizing costs. He presented an 

algorithm to find the optimal headways and locations of turn-back points in order 

to minimize fleet size. Delle Site and Filippi (1998) addressed the stochasticity in 

bus arrivals and developed a multi-period short-turn service, which considered 

both elastic and inelastic demands. This problem was formulated as a 

maximization of social benefits for the case of elastic demand, and a minimization 

of total costs for the case of inelastic demand. Later, Tirachini et al., (2011) 

presented a short-turn design model to optimize user and operator costs and 

derived analytical expressions for optimal headways and turn-back points. These 

analytical expressions were used to analyze the influence of different parameters 

on short-turn service performance. They found that the benefit of short-turn 

service hinged on how the demand was spatially concentrated: the more spatially 

concentrated the trips are, the greater the benefit would be. Cortes et al. (2011) 

further explored integrating short-turn service with dead-heading (dead-heading 

means empty vehicles return to the line’s start point in the low-demand direction 

to increase service frequency in the other, high-demand direction). They found that 

the short turning strategy generally yielded greater benefit than dead-heading due 

to the extra costs of operating empty vehicles.  

In zonal and short-turn services, the skip-stop vehicles only serve the 

patrons that arrive at a continuous portion of the corridor. On the other hand, in 

more general local-express services, an express line serves selected stops 

throughout the corridor in parallel with an all-stop local line. A key issue when 

designing a local-express service is, therefore, to model the assignment of patrons 

between the local and express lines: a patron many choose to take either the local 

line only to complete her trip, or the local line first and later transfer to an express 

line. Incorporating patrons’ route choice imposes greater modeling challenges. 

Hence, some studies assumed that no transfer is allowed in an attempt to simplify 

the modeling work (e.g. Chen, X. et al., 2015; Chiraphadhanakul and Barnhart, 

2013; Liu et al., 2013, Thilakaratne and Wirasinghe, 2016).  

Ulusoy et al. (2010) is one of the few studies that explicitly modeled patron 

route choices by developing a logit model to assign the demand to different route 

options. An iterative process was employed to derive the equilibrium of demand 
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assignment. Their model also integrated the short-turn service into the local-

express design.  

The AB-type service form is also limited because the non-transfer stops 

are arranged in a rotating fashion. However, this service form also has advantages. 

First, different routes’ travel times over the same portion of the corridor are similar, 

and thus patron route choice behavior and patron decision making, can be 

simplified. Secondly multiple routes can operate along the same corridor without 

incurring overtaking maneuvers between transit vehicles, even when the headways 

between consecutive vehicles are small. This is especially useful for single-track 

urban rail systems serving a high demand. 

 Freyss et al. (2013) studied how to optimize the headway and routing plan 

of this service for a two-route case. They assumed that demand was uniformly 

distributed along the corridor and explored the relationship between cost and stop 

spacing. Lee et al. (2014) presented a model to optimize the AB-type service under 

heterogeneous demand patterns and proposed a genetic algorithm to solve the 

problem.  

Abdelhafiez et al. (2017) summarized the variants of the AB-type service, 

and classified them into five strategies according to the way to arrange the non-

transfer stops, namely pairing, alternating, modified alternating, non-backtracking, 

and free assignment. They proposed different models for these strategies to 

minimize the patrons’ travel time, and developed a heuristic algorithm for solving 

these models. They found that the average patron’s travel times under these 

different strategies are quite similar.  

System design involving more than two routes has been investigated by Gu 

et al. (2016). That work also incorporated optimization of stop locations and 

coordination between different skip-stop routes. However, similar to Freyss et al. 

(2013), Gu et al. also assumed that demand was uniformly distributed. Thus the 

applicability of their models in real practice is quite limited. 

All the above service forms are special cases of the general skip-stop 

service design, which allows multiple skip-stop routes to simultaneously serve a 

corridor, each visiting an arbitrary subset of stops. Optimizing this general form 

of skip-stop service is much more difficult than optimizing the special forms due 
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to the much larger solution space of the routing plan. For this reason, the optimal 

design problem of more general skip-stop services was often formulated as a two-

stage problem in the literature: one stage optimizing the service headways and the 

other optimizing the skip-stop routing plan. Patron route choice behaviors were 

usually simplified, for example by assuming that patrons will always choose to 

take the first vehicle that arrives at the stop. For instance, Levia et al. (2010) 

presented a model to optimize only the headways of the skip-stop service with 

vehicle capacity constraints under a given skip-stop routing plan. Larrain et al. 

(2013) proposed a few heuristic methods to generate the skip-stop routing plan. 

Chen, J. et al. (2015) further extended the work of Liu et al. (2013) to a multiple 

route design and proposed a hybrid artificial bee colony and Monte Carlo 

algorithm to find the optimal skip-stop routing plan. Niu et al. (2011) studied the 

optimization of both headways and routing plan under time-dependent demands 

and proposed a bi-level genetic algorithm to iteratively determine the headways 

and the routing plan. 

 Soto et al. (2017) is among the few that have embedded route assignment 

models into the optimization problem. In their modeling framework, headway 

optimization and route assignment are iteratively processed. Two route assignment 

models, i.e. a deterministic model and a stochastic model, were examined. The 

results showed that the stochastic model led to more realistic and robust solutions, 

although this made the problem much harder to solve. 

1.2.2 Solution methods 

Most works in the realm of optimal skip-stop service design for urban transit 

systems have relied on discrete models. They take the discrete OD demand as 

inputs and use binary variables to represent if a stop is skipped by a route or not. 

These works took headways and skip-stop routing plan as the decision variables, 

while assuming that stop locations along the line are given. Their objective is either 

to minimize the patrons’ total travel time or to minimize the generalized cost of 

the system, which is the sum of the patrons’ travel time cost and the agency’s 

operating cost.  

Exact solution methods have been developed for simple forms of skip-stop 

services. For instance, Turnquist (1979) and Jordan and Turnquist (1979) 
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employed the dynamic programming method to optimize zonal service. Tirachini 

et al., (2011) and Cortes et al. (2011) derived analytical solutions for the 

optimization of short-turn design that minimizes the total user and operator costs. 

Exact methods have also been applied to skip-stop service optimization in intercity 

rail systems (Yang et al., 2016; Qi et al. 2018; Yue et al, 2016; Jiang et al. 2017). 

Note that intercity rail systems’ optimization objective is usually different from 

that of urban transit systems. Specifically, the nonlinear cost terms that are 

necessary for urban transit systems were ignored in intercity rail models, including 

the patrons’ access/exit cost, in-vehicle travel cost, and certain agency cost terms. 

Due to that, the models for skip-stop service in intercity rail systems can often be 

formulated as mixed-integer programs, and exact methods can be developed. 

However, for the more complicated skip-stop service designs (e.g. local-

express, AB-type, and more general forms) in urban transit systems, exact methods 

are usually unavailable. This is partly due to the nonlinear and non-convex features 

of the formulation, and the problem’s large solution space. The optimal design of 

the skip-stop routing plan on a medium-sized corridor would involve dozens or 

even hundreds of binary decision variables, not to mention that even more 

variables will be included if the stop locations are jointly optimized. Hence, studies 

of this kind have to rely on heuristic methods, such as genetic algorithm (Liu et al. 

2013; Lee et al. 2014; Niu et al. 2011; Chen, X. et al. 2015), tabu search (Li et al., 

1995), artificial bee colony (Chen, J. et al. 2015), or iterative methods (Ulusoy et 

al. 2010; Niu et al. 2011; Soto et al. 2017). Therefore, assessing the quality of those 

solutions (how close they are to the global optima) is often difficult. 

Note furthermore that most works in the literature, including all those cited 

above, have assumed that the candidate stop locations were given so only the 

routing plan and the vehicle dispatch schedules were optimized. To our best 

knowledge, no discrete model has been proposed for jointly optimizing stop 

locations along a corridor in combination with the skip-stop routing plan. 

In contrast to the discrete models, continuous approximation (CA) models 

are based upon a number of continuous functions, which approximate the 

temporally- or spatially-varying discrete parameters and variables (for example 

the OD demand, line and stop spacings) of a transit system. The CA approach has 

been used for developing models for optimizing transit system designs, including 
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the line and stop spacings (Holryod, 1967; Newell, 1971, 1973, 1979; Wirasinghe 

and Ghoneim, 1981; Vaughan, 1986; Daganzo, 2010; Chen et al., 2015; Gu et al., 

2016).  

Vaughan and Cousins (1977) appears to be the first work on developing 

CA models for a transit route, where the demand is assumed to be continuous and 

follows a many-to-many demand pattern. Stop density (the reciprocal of stop 

spacing) is chosen as the decision function, which is location-dependent along the 

route. The optimization problem (the minimization of transit users’ travel time) is 

solved using calculus of variations. Later, Wirasinghe and Ghoneim (1981) 

proposed a more general CA-based model for determining bus stop spacing (also 

expressed as a function of location) along a transit route section. Li and Bertini 

(2009) simply assumed a uniform stop spacing and optimized that for a bus route 

using a 1-year demand dataset collected in Portland, Oregon (US). Recently, 

Medina et al. (2013) have applied a similar CA-based transit design model to a bus 

route considering time-varying demand in Santiago, Chile. In particular, they 

considered more realistic conditions in their optimal design such as asymmetric 

stop locations between the two travel directions, the passenger-carrying capacity 

of vehicles, and the vehicle-carrying capacity at the stops.  

Some works extended the design of a single transit route to more 

complicated line structures along a corridor. For example, Wirasinghe et al. (1977), 

Hurdle and Wirasinghe (1980), and Wirasinghe (1980) studied the optimal design 

of a rail corridor with feeder transit service (e.g., feeder buses). In Wirasinghe et 

al.’s work (1977), the rail-bus corridor (trunk-feeder corridor in general) was 

optimized to maximize the users’ benefit, and the results compared against a 

scenario of providing direct-bus service only along the corridor. Their decision 

variables include the rail station spacing (as a function of location) and the train 

headway during peak period. Hurdle and Wirasinghe (1980) examined the impacts 

of several feeder transit modes (walking, bus, park-and-ride, and bicycle) on the 

optimal design solutions of the trunk-feeder corridor. Further, Wirasinghe (1980) 

jointly optimized the route density (also expressed as a function of location) and 

headways of the feeder buses along a rail corridor.  

Thanks to the nice mathematical properties of most CA models in the 

literature, analytical formulas have been developed as the optimal solution, or 
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large part of the solution, in all of the above-cited CA works. By virtue of these 

analytical results, the CA-based transit design models enjoy computational 

efficiency, allowing researchers to conduct extensive parametric analysis to unveil 

more findings on the cause-and-effect relationship between key input parameters 

and optimal design outcomes. However, these optimal solutions, often cannot be 

directly applied in practice due to their idealized and unrealistic assumptions (such 

as assuming continuous demand) and the continuum approximation made in the 

formulations. Fortunately, these solutions are often robust to small changes in the 

operating parameters, and the optimization objective is usually insensitive to small 

adjustments of the solution in the neighborhood of the optimum (for example 

adjusting individual stop placement locally to avoid junctions or ramps). This is 

because the CA objective functions have similar forms as the Economic-Order-

Quantity (EOQ) model, which is known to have robust solutions (Estrada et al., 

2011). As such, the optimal CA solutions can provide transit planners a rough, 

high-level picture about how a transit system should be laid out. Subsequently, the 

solution can be fine-tuned to obtain realistic design plans.  

In summary, most previous skip-stop service design studies formulated 

discrete models for optimizing the service headway and routing plan. These 

discrete models were often solved by heuristic methods but evaluating the solution 

quality in terms of the optimality gap between the heuristic solution and the global 

optimum, is often difficult. In those discrete model works, optimal designs that 

also involve stop location optimization were only studied for zonal services due to 

their simple structure. For more complicated skip-stop service structures, the CA 

approach appears to be a promising way to jointly optimize stop locations and the 

skip-stop routing plan. Freyss et al. (2013) and Gu et al. (2016) pioneered this 

research direction by examining the optimal designs for AB-type and local-express 

services but only under uniformly-distributed demand. However, to our best 

knowledge no examination of this joint design problem under more realistic 

heterogeneous demand patterns has been conducted until now. 

1.3 Dissertation Overview  

This dissertation presents the study of the following three forms of skip-stop 

services under spatially heterogeneous demand patterns: i) AB-type service; ii) 
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local-express service; and iii) a more general form of skip-stop service. CA models 

are developed for optimizing the joint design of these services, including their stop 

locations, routing plans, and service headways. Efficient solution algorithms are 

also developed and tested via extensive numerical examples.  

The dissertation is organized as follows: 

Chapter 2 examines the AB-type service. A 3-route example of this service 

scheme is illustrated in Figure 1.1, where the three routes are labeled A, B, and C. 

The stops are classified as non-transfer stops (marked by squares) or transfer stops 

(marked by black dots). Non-transfer stops labeled A, B, and C will only be visited 

by route A, B, and C, respectively. Transfer stops will be visited by all three routes. 

The line segment between two consecutive transfer stops is termed a ‘skip-stop 

bay’. Within each skip-stop bay, stops of route A, B, and C appear in turn for 𝑘 

times (𝑘 = 2 for the example in Figure 1a).Our model follows  Freyss et al. (2013) 

and Gu et al.’s (2016) logical assumption that a patron will always access and 

egress the transit system through the nearest stops to her origin and destination. 

Hence, a patron has to make a transfer if her origin and destination stops belong 

to different routes. Note that if a trip’s origin and destination stops belong to 

different routes, but are located in the same skip-stop bay, then the trip will contain 

a backtracking segment, as illustrated in Figure 1.1. 

  

Figure 1.1 The AB-type service design 

CA models of the AB-type service under heterogeneous demand patterns 

are formulated in Chapter 2, aiming at minimizing the total generalized costs for 

both patrons and the operating agency. A near-optimal solution approach is 

proposed using the calculus of variations method. This solution is then validated 
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by examining the gap between the resulting generalized cost and the optimal 

generalized cost of a proposed lower bound problem.  

A discretization recipe is also proposed to convert the CA solution to a real 

design plan where exact stop locations are given. The advantages of this AB-type 

design over the conventional all-stop design has been illustrated by a large number 

of numerical cases. 

Chapter 3 examines local-express service. This service design is illustrated 

in Figure 1.2, where one local line and one express line are planned. Local stops 

are marked by squares, and express stops are marked by black dots. The local line 

will visit all the stops and the express line will only visit express stops. Although 

patrons may have multiple route choices, they are assumed to always choose the 

route with the shortest travel time. For instance, a patron travelling from a local 

stop to another a local stop can choose either to take a local line only (without any 

transfers) or to take a local line first, then transfer to an express line, and finally 

transfer back to the local line to reach her destination, whichever has shorter travel 

time. The two kinds of trips are illustrated in Figure 1.2. 

 

Figure 1.2 The local-express service design 

CA models of the local-express service are formulated again to minimize 

the generalized cost of the system. The decision variables include the headways 

and stop spacings for both local and express lines. Our model allows for local and 

express lines using differentiated transit technologies (such as rail for the express 

line and bus for the local line). A three-stage iterative algorithm to solve the model 

and a discretization recipe to convert the CA solution to a real design plan is 

proposed. Numerical analysis also shows that the optimal local-express design 

outperforms the conventional all-stop design under various operating conditions. 
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Finally, in Chapter 4 a more general skip-stop service is examined. As 

illustrated in Figure 1.3, now the non-transfer stops of different routes can be 

distributed along the line in an arbitrary fashion. This design is quite general since 

AB-type service and local-express service can both be considered as special cases 

within it. However, for simplicity, some AB-type service assumptions are taken in 

this chapter. These assumptions include: i) that each skip-stop route visits all the 

transfer stops; ii) a patron always accesses the transit system through the nearest 

stop to her origin, and egresses through the nearest stop to her destination; and iii) 

at most one transfer was involved in any patron’s trip. Hence, patron route choices 

are simplified in our modeling work.  

 

Figure 1.3 A more general skip-stop service design 

Our novel formulation to model this highly flexible general design 

combines the properties of discrete models and CA models. Our model takes a 

discrete OD matrix as input, and uses stop densities instead of individual stop 

locations as decision variables. A heuristic method is proposed to solve the 

problem. A relaxed problem, which is much easier to solve than the original 

problem, is developed to: i) provide a good initial solution to enhance the heuristic 

method; and ii) provide a lower bound which can be used to examine the heuristic 

solution’s quality. A discretization recipe is also provided. Numerical analysis 

verifies that this model can generate near-optimal designs under various demand 

patterns. Extensive numerical results reveal that the general skip-stop design 

outperforms the local-express design, and it also outperforms the AB-type design 

if the extra infrastructure cost for a second track or bus lane is not considered. Note 
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that the AB-type design does not require a passing track or bus lane, while both 

local-express and general form designs do. 

Chapter 5 concludes this dissertation and discusses potential extensions of 

the present research. 
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Chapter 2 AB-type Designs 

This chapter presents CA models developed to optimize the AB-type service in a 

loop corridor. The models jointly optimize the stop locations and the routing plan 

under arbitrary heterogeneous demand pattern. Unlike most previous CA models 

in the literature, the optimization formulation for the heterogeneous AB-type 

design cannot be fully decomposed by the local spatial coordinate. Nevertheless, 

we show that this model can still be efficiently solved to near-optimality by 

integrating the calculus of variations method into an iterative process. How the CA 

solution can be converted to a real corridor design with discrete stop locations and 

routing plan is also described. The solution algorithms’ optimality gap is examined 

via a lower bound through a large array of numerical examples. Numerical analysis 

also shows that the optimal AB-type service design outperforms the conventional 

all-stop design under various operating conditions. 

Section 2.1 presents the formulations of the AB-type design. Section 2.2 

describes the proposed models’ solution method. Section 2.3 provides numerical 

analysis. Section 2.4 summarizes the AB-type design models. 

2.1 The CA Formulations 

We consider a bi-directional transit service operating along a loop corridor of 

length 𝐿 as shown in Figure 2.1a. (A linear corridor can be modeled in a similar 

fashion, but the modeling details would be different.) The demand is assumed to 

be exogenous, and its density (in the unit of trips/km2/h) is represented by a slow-

varying, integrable function 𝜆(𝑥, 𝑦), where 𝑥 and 𝑦 are location coordinates of the 

trip origin and destination, respectively. The 𝑥  and 𝑦  are measured along the 

corridor in the clockwise direction; 0 < 𝑥, 𝑦 ≤ 𝐿. We assume that a patron always 

chooses the direction of service that minimizes her travel distance; i.e. the patron 

takes the clockwise service if 0 < 𝑦 − 𝑥 ≤
𝐿

2
 or 𝑦 − 𝑥 ≤ −

𝐿

2
, and the 

counterclockwise service if −
𝐿

2
< 𝑦 − 𝑥 ≤ 0 or 𝑦 − 𝑥 >

𝐿

2
. Figure 2.1b shows a 

square in which each point represents a possible OD pair in the corridor. The 

ranges of OD pairs for clockwise trips are marked by shading. Two clockwise trips 
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((𝑥1, 𝑦1) and (𝑥2, 𝑦2)) and one counterclockwise trip ((𝑥3, 𝑦3)) are also illustrated 

in Figure 2.1a and b. 

  

(a) The loop corridor and  

three example trips. 

(b) Ranges of clockwise and  

counterclockwise OD pairs. 

Figure 2.1 Clockwise and counterclockwise trips in a loop corridor. 

For convenient development of our models, some aggregate demand 

functions, such as the density function of trip origins, need to be defined first. We 

first define the left 𝛿 -neighborhood of 𝑥  in our loop corridor as 𝑈−
𝐿(𝑥, 𝛿) ≡

[max(𝑥 − 𝛿, 0), 𝑥] ∪ [min(𝑥 − 𝛿 + 𝐿, 𝐿) , 𝐿] . The 𝑈−
𝐿(𝑥, 𝛿)  is a set of all the 

points that can be reached by traveling from 𝑥 counterclockwise for a distance no 

more than 𝛿 . Specifically, 𝑈−
𝐿 (𝑥,

𝐿

2
)  represents the set of destinations for 

counterclockwise trips originating from 𝑥 , and 𝑈−
𝐿 (𝑦,

𝐿

2
)  represents the set of 

origins for clockwise trips destined for 𝑦 . Similarly, we define the right 𝛿 -

neighborhood of 𝑥 as 𝑈+
𝐿(𝑥, 𝛿) ≡ [𝑥,min(𝑥 + 𝛿, 𝐿)] ∪ [0,max(0, 𝑥 + 𝛿 −  𝐿)] , 

which indicates a set of all the points that can be reached by traveling from 𝑥 

clockwise for a distance of no more than 𝛿. The 𝑈+
𝐿 (𝑥,

𝐿

2
) represents the set of 

destinations for clockwise trips originating from 𝑥, and 𝑈+
𝐿 (𝑦,

𝐿

2
) represents the 
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set of origins for counterclockwise trips destined for 𝑦.1 We further define the 𝛿-

neighborhood of 𝑥 as 𝑈𝐿(𝑥, 𝛿) ≡ 𝑈−
𝐿(𝑥, 𝛿) ∪ 𝑈+

𝐿(𝑥, 𝛿). 

Built upon the above definitions, the following aggregate demand 

functions and variables are defined: 

i) The densities of origins for clockwise and counterclockwise trips at 

location 𝑥 , denoted by 𝑃𝑐(𝑥)  and 𝑃𝑐𝑐(𝑥) , respectively; and the densities of 

destinations for the two types of trips at location 𝑦, denoted by 𝑄𝑐(𝑦) and 𝑄𝑐𝑐(𝑦) 

respectively: 

𝑃𝑐(𝑥) = ∫ 𝜆(𝑥, 𝑦)𝑑𝑦
𝑦∈𝑈+

𝐿(𝑥,
𝐿

2
)

, 0 < 𝑥 ≤ 𝐿    (2.1a) 

𝑃𝑐𝑐(𝑥) = ∫ 𝜆(𝑥, 𝑦)𝑑𝑦
𝑦∈𝑈−

𝐿(𝑥,
𝐿

2
)

, 0 < 𝑥 ≤ 𝐿    (2.1b) 

𝑄𝑐(𝑦) = ∫ 𝜆(𝑥, 𝑦)𝑑𝑥
𝑥∈𝑈−

𝐿(𝑦,
𝐿

2
)

, 0 < 𝑦 ≤ 𝐿     (2.1c) 

𝑄𝑐𝑐(𝑦) = ∫ 𝜆(𝑥, 𝑦)𝑑𝑥
𝑥∈𝑈+

𝐿(𝑦,
𝐿

2
)

, 0 < 𝑦 ≤ 𝐿      (2.1d) 

ii) The total clockwise and counterclockwise demand, denoted by Λ𝑐 and 

Λ𝑐𝑐, respectively: 

Λ𝑐 = ∫ 𝑃𝑐(𝑥)𝑑𝑥
𝐿

𝑥=0
= ∫ 𝑄𝑐(𝑦)𝑑𝑦

𝐿

𝑦=0
     (2.2a) 

Λ𝑐𝑐 = ∫ 𝑃𝑐𝑐(𝑥)𝑑𝑥
𝐿

𝑥=0
= ∫ 𝑄𝑐𝑐(𝑦)𝑑𝑦

𝐿

𝑦=0
     (2.2b) 

iii) The (approximate) flows of on-board patrons in the clockwise and 

counterclockwise directions at location 𝑥 , denoted by 𝑜𝑐(𝑥)  and 𝑜𝑐𝑐(𝑥) , 

respectively: 

𝑜𝑐(𝑥) = ∫ ∫ 𝜆(𝑧, 𝑦)𝑑𝑧𝑑𝑦
𝑦∈𝑈+

𝐿(𝑧,
𝐿

2
)∩𝑈+

𝐿(𝑥,
𝐿

2
)𝑧∈𝑈−

𝐿(𝑥,
𝐿

2
)

    (2.3a) 

                                                 

 

1 For a linear corridor, the 𝛿 -neighborhoods are defined as 𝑈−
𝐿(𝑥, 𝛿) = [max(𝑥 − 𝛿, 0), 𝑥] and 

𝑈+
𝐿(𝑥, 𝛿) = [𝑥,min(𝑥 + 𝛿, 𝐿)]. The 𝑈−

𝐿(𝑥, 𝐿) represents the set of destinations for “leftward” trips 

originating from 𝑥, and 𝑈−
𝐿(𝑦, 𝐿) represents the set of origins for “rightward” trips destined for 𝑦; 

similarly, the 𝑈+
𝐿(𝑥, 𝐿) represents the set of destinations for “rightward” trips originating from 𝑥, 

and 𝑈+
𝐿(𝑦, 𝐿) represents the set of origins for “leftward” trips destined for 𝑦. 
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𝑜𝑐𝑐(𝑥) = ∫ ∫ 𝜆(𝑧, 𝑦)𝑑𝑧𝑑𝑦
𝑦∈𝑈−

𝐿(𝑧,
𝐿

2
)∩𝑈−

𝐿(𝑥,
𝐿

2
)𝑧∈𝑈+

𝐿(𝑥,
𝐿

2
)

    (2.3b) 

The (2.3a-b) are approximations because the exact on-board patron flows are 

affected by the locations of transit stops (note that the patrons’ boarding and 

alighting behavior only occurs at the stops).  

We next present the CA models for optimizing the conventional all-stop 

service (Section 2.1.1) and the proposed AB-type service (Section 2.1.2). In the 

interest of simplicity, we adopt the following assumptions that have been 

commonly used in the literature (Daganzo, 2010; H. Chen et al., 2015; Gu, et al., 

2016): i) a patron always accesses and egresses the transit system through the 

nearest stops from her origin and destination, respectively; ii) a transit vehicle 

spends a constant time, 𝜏, at each stop loading and unloading patrons, including 

the time lost due to the vehicle’s acceleration and deceleration2; iii) the clockwise 

and counterclockwise services share the same set of stops; and iv) patrons arrive 

randomly at their origin stops, regardless of the service schedule, which is true 

when the transit service frequency is high and therefore patrons often do not bother 

to observe the schedule. 

A complete list of notation is furnished in Appendix A. 

2.1.1 Formulation for the all-stop service 

The models presented in this section are similar to those proposed by Wirasinghe 

and Ghoneim (1981). Our transit cost structure also follows the conventions in the 

literature (Daganzo, 2010; Sivakumaran et al., 2014; Gu et al., 2016). To provide 

a complete picture these are described in full detail here. The description of these 

simple models also forms a basis for the presentation of more complicated skip-

stop models later in this dissertation. 

To minimize the transit system’s generalized cost, consisting of the patrons’ 

travel cost and the transit agency’s cost. The patrons’ total trip cost per operation 

                                                 

 

2 In some papers (e.g. Cipriani et al., 2012; Meng and Qu, 2013), a bus’s dwell time at a stop was 

assumed as a linear function of the number of boarding patrons at the stop. With modest changes, 

the methodology presented in this paper can still be applied if this alternative assumption is used 

instead. 
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hour is the sum of the following components: i) the total access and egress time 

by walking, 𝐴𝑈𝐶𝑎; ii) the total wait time, 𝐴𝑈𝐶𝑤; and iii) the total in-vehicle travel 

time, 𝐴𝑈𝐶𝑖. These cost terms are formulated as follows: 

𝐴𝑈𝐶𝑎 = ∫
𝑠(𝑥)

4𝑣𝑤
(𝑃𝑐(𝑥) + 𝑄𝑐(𝑥) + 𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥))𝑑𝑥

𝐿

𝑥=0
  (2.4) 

𝐴𝑈𝐶𝑤 =
𝐻𝑐

2
𝛬𝑐 +

𝐻𝑐𝑐

2
𝛬𝑐𝑐      (2.5) 

𝐴𝑈𝐶𝑖 = ∫ (𝑜𝑐(𝑥) + 𝑜𝑐𝑐(𝑥)) (
1

𝑣
+

𝜏

𝑠(𝑥)
)𝑑𝑥

𝐿

𝑥=0
    (2.6) 

where the decision variables/functions include: 𝑠(𝑥), which denotes a continuum 

approximation of stop spacing as a function of location 𝑥 (0 < 𝑥 ≤ 𝐿); and 𝐻𝑐 and 

𝐻𝑐𝑐, which denote the transit service headways in clockwise and counterclockwise 

directions, respectively. The operating parameters are: 𝑣𝑤  which denotes the 

patrons’ walking speed; and 𝑣, which denotes the transit vehicles’ cruise speed. 

Equation (2.4) is derived from the fact that the average access or egress walking 

time of a patron originating or destined for 𝑥 is 
𝑠(𝑥)

4𝑣𝑤
. Equation (2.5) is based upon 

the fact that the average wait time per patron is half of the service headway.3 The 

right-hand-side of (2.6) is an integral of the total patron in-vehicle travel time 

accrued in a unit distance at location 𝑥, which is the product of the total on-board 

flow, 𝑜𝑐(𝑥) + 𝑜𝑐𝑐(𝑥), and the average vehicle travel time per unit distance, 
1

𝑣
+

𝜏

𝑠(𝑥)
 (𝜏 is dwell time at a stop). 

The agency’s cost per operation hour consists of: i) the distance-based 

vehicle operating cost (mainly fuel cost)  𝐴𝐴𝐶𝐾 ; ii) the time-based vehicle 

operating cost (including for example amortized vehicle purchase cost and staff 

wages), 𝐴𝐴𝐶𝐻; iii) the amortized line infrastructure cost (such as for busways or 

rail tracks), 𝐴𝐴𝐶𝐼; and iv) the amortized stop infrastructure cost, 𝐴𝐴𝐶𝑆. These are 

formulated as follows: 

                                                 

 

3 For simplicity, here we assume the headway is a constant. Headway variations caused by transit 

service instability (Newell and Potts, 1964) have a second-order effect on the generalized cost and 

are thus omitted in this paper. Please refer to Daganzo (2009) for control methods to stabilize the 

headways. 
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𝐴𝐴𝐶𝐾 =
𝜋𝑣𝐿

𝜇
(

1

𝐻𝑐
+

1

𝐻𝑐𝑐
)      (2.7) 

𝐴𝐴𝐶𝐻 = (
1

𝐻𝑐
+

1

𝐻𝑐𝑐
)

𝜋𝑚

𝜇
∫ (

1

𝑣
+

𝜏

𝑠(𝑥)
) 𝑑𝑥

𝐿

𝑥=0
    (2.8) 

𝐴𝐴𝐶𝐼 =
2𝜋𝑖𝐿

𝜇
        (2.9) 

𝐴𝐴𝐶𝑆 =
𝜋𝑠

𝜇
∫

1

𝑠(𝑥)
𝑑𝑥

𝐿

𝑥=0
       (2.10) 

where 𝜋𝑣  and 𝜋𝑚  are the unit operating costs per vehicle-km and per vehicle- 

service hour, respectively; 𝜋𝑖  and 𝜋𝑠  are the unit construction and maintenance 

costs per km of line infrastructure (per direction) and per stop, respectively, 

amortized for each hour of operations; 𝜇 denotes the value of time for the patrons, 

which is a proxy of the average hourly wage rate among the patrons. 

The generalized cost minimization problem for the all-stop service can thus 

be formulated as follows: 

min
𝑠(𝑥),𝐻𝑐,𝐻𝑐𝑐

𝐴𝐶 = 𝐴𝑈𝐶𝑎 + 𝐴𝑈𝐶𝑤 + 𝐴𝑈𝐶𝑖 + 𝐴𝐴𝐶𝐾 + 𝐴𝐴𝐶𝐻 + 𝐴𝐴𝐶𝐼 + 𝐴𝐴𝐶𝑆  (2.11a) 

subject to: 

𝐻𝑚𝑖𝑛 ≤ 𝐻𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥)}
      (2.11b) 

𝐻𝑚𝑖𝑛 ≤ 𝐻𝑐𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥)}
      (2.11c) 

𝑠(𝑥) > 0         (2.11d) 

where 𝐻𝑚𝑖𝑛 denotes the minimum headway due to technical or safety constraints 

(Gu et al., 2016); and 𝐾 denotes a transit vehicle’s passenger-carrying capacity. 

2.1.2 Formulation for the AB-type service 

The decision variables/functions for the AB-type design optimization program are 

listed below, 

𝑠(𝑥): stop spacing. 

𝑟𝑐 , 𝑟𝑐𝑐 : the numbers of routes in clockwise and counterclockwise directions, 

respectively (note the model allows more than two routes in each direction). 
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𝑘𝑐(𝑥), 𝑘𝑐𝑐(𝑥): the numbers of stops visited by each route in a skip-stop bay in the 

two directions, respectively;  

𝐻𝑐, 𝐻𝑐𝑐: the headways between two consecutive vehicles in the two directions, 

respectively. 

In a given direction, vehicles of each route are dispatched in the same 

headway, 𝑟𝑐𝐻𝑐  in the clockwise direction and 𝑟𝑐𝑐𝐻𝑐𝑐  in the counterclockwise 

direction. The 𝑘𝑐(𝑥) and 𝑘𝑐𝑐(𝑥) should take integer values in an AB-type service 

design. For the simplicity of the solution method, however, we allow these to take 

any positive real values in the CA model. The optimal 𝑘𝑐(𝑥) and 𝑘𝑐𝑐(𝑥) will be 

converted to integer values in a recipe that generates a real system design from the 

CA solution, which will be presented in due course. 

Next the patrons’ travel cost and the agency cost are formulated separately. 

Patrons’ total travel cost consists of total access and egress time, 𝑈𝐶𝑎, total wait 

time, 𝑈𝐶𝑤 (including wait times at both the origin and transfer stops), total in-

vehicle travel time, 𝑈𝐶𝑖, and total transfer penalty to account for the inconvenience 

in transfers, 𝑈𝐶𝑡. First note that the access and egress time 𝑈𝐶𝑎 is the same as that 

of the all-stop service (𝐴𝑈𝐶𝑎), which was formulated in equation (2.4): 

𝑈𝐶𝑎 = ∫
𝑠(𝑥)

4𝑣𝑤
(𝑃𝑐(𝑥) + 𝑄𝑐(𝑥) + 𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥))𝑑𝑥

𝐿

𝑥=0
   (2.12) 

The total wait time 𝑈𝐶𝑤 is furnished by (2.13) below, in which we define 

the number of stops in a skip-stop bay that contains 𝑥 as 𝑇(𝑥) ≡ 𝑟𝑐𝑘𝑐(𝑥) + 1 =

𝑟𝑐𝑐𝑘𝑐𝑐(𝑥) + 1. These intermediate functions are defined to simplify the model 

formulation in this section. Note that we specify 𝑟𝑐𝑘𝑐(𝑥) = 𝑟𝑐𝑐𝑘𝑐𝑐(𝑥) for all 𝑥 ∈

(0, 𝐿] to ensure that the number of stops in a skip-stop bay is the same for both 

service directions; see constraint (2.22c) later in this section. The 𝑏𝑐(𝑥)  and 

𝑏𝑐𝑐(𝑥) in (2.13) denote the average densities of clockwise and counterclockwise 

trips that involve backtracking (see again Figure 1.1a) in a skip-stop bay that 

contains 𝑥, and are approximated by (2.14a) and (2.14b), respectively. All these 

equations are derived in Appendix B.1.  
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𝑈𝐶𝑤 =
(2𝑟𝑐−1)𝐻𝑐𝛬𝑐

2
+

(2𝑟𝑐𝑐−1)𝐻𝑐𝑐Λ𝑐𝑐

2
+ ∫ (−

(𝑟𝑐−1)𝐻𝑐

2

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)

𝑇(𝑥)
−

𝐿

𝑥=0

(𝑟𝑐𝑐−1)𝐻𝑐𝑐

2

𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥)

𝑇(𝑥)
+

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
(𝑏𝑐(𝑥) − 𝑏𝑐𝑐(𝑥)))𝑑𝑥   (2.13) 

𝑏𝑐(𝑥) ≈

𝑟𝑐(𝑟𝑐−1)𝑘𝑐
2(𝑥)

𝑇3(𝑥)𝑠(𝑥)
∫ ∫ 𝜆(𝑧, 𝑦)𝑑𝑧𝑑𝑦

𝑦∈𝑈𝐿(𝑥,
𝑇(𝑥)𝑠(𝑥)

2
)∩𝑈+

𝐿(𝑧,𝑇(𝑥)𝑠(𝑥))𝑧∈𝑈𝐿(𝑥,
𝑇(𝑥)𝑠(𝑥)

2
)

 (2.14a) 

𝑏𝑐𝑐(𝑥) ≈

𝑟𝑐𝑐(𝑟𝑐𝑐−1)𝑘𝑐𝑐
2 (𝑥)

𝑇3(𝑥)𝑠(𝑥)
∫ ∫ 𝜆(𝑧, 𝑦)𝑑𝑧𝑑𝑦

𝑦∈𝑈𝐿(𝑥,
𝑇(𝑥)𝑠(𝑥)

2
)∩𝑈−

𝐿(𝑧,𝑇(𝑥)𝑠(𝑥))𝑧∈𝑈𝐿(𝑥,
𝑇(𝑥)𝑠(𝑥)

2
)

  (2.14b) 

Equation (2.13) is derived under the assumption that routes are 

uncoordinated. As shown in Gu et al. (2016), efficient service coordination 

between these routes at transfer stops will result in much smaller patron wait time. 

Hence (2.13) is conservative and may overestimate a system’s wait time. 

Total in-vehicle travel time 𝑈𝐶𝑖 is furnished by (2.15) below, where 𝜂𝑐(𝑥) 

and 𝜂𝑐𝑐(𝑥) are defined in (2.16a-b). These equations are derived in Appendix B.2. 

𝑈𝐶𝑖 ≈ ∫ (𝜂𝑐(𝑥) + 𝜂𝑐𝑐(𝑥))𝑑𝑥
𝐿

𝑥=0
     (2.15) 

𝜂𝑐(𝑥) = 𝑜𝑐(𝑥) (
1

𝑣
+

𝜏(𝑘𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
) + 𝑏𝑐(𝑥) [

1

3𝑣
𝑠(𝑥)𝑇(𝑥) +

1

6
𝜏(𝑘𝑐(𝑥) +

𝑘𝑐𝑐(𝑥) + 2)]          (2.16a) 

𝜂𝑐𝑐(𝑥) = 𝑜𝑐𝑐(𝑥) (
1

𝑣
+

𝜏(𝑘𝑐𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
) + 𝑏𝑐𝑐(𝑥) [

1

3𝑣
𝑠(𝑥)𝑇(𝑥) +

1

6
𝜏(𝑘𝑐(𝑥) +

𝑘𝑐𝑐(𝑥) + 2)]          (2.16b) 

The total transfer penalty 𝑈𝐶𝑡 is approximated by (2.17), where 𝐶𝑡 denotes 

the penalty cost per transfer (in the unit of time). The derivation of (2.17) is 

presented in Appendix B.3. 

𝑈𝐶𝑡 ≈ 𝐶𝑡 (
𝑟𝑐−1

𝑟𝑐
Λ𝑐 +

𝑟𝑐𝑐−1

𝑟𝑐𝑐
Λ𝑐𝑐 − ∫ (

𝑟𝑐−1

𝑟𝑐
(𝑃𝑐(𝑥) + 𝑄𝑐(𝑥)) +

𝐿

𝑥=0

𝑟𝑐𝑐−1

𝑟𝑐𝑐
(𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥)))

(2𝑇(𝑥)−1)

2𝑇2(𝑥)
𝑑𝑥)     (2.17) 
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The agency cost consists of distance-based and time-based operating costs, 

𝐴𝐶𝐾 and 𝐴𝐶𝐻, respectively, as well as the amortized line and station infrastructure 

costs, 𝐴𝐶𝐼 and 𝐴𝐶𝑆, respectively. These are formulated as follows: 

𝐴𝐶𝐾 =
𝜋𝑣𝐿

𝜇
(

1

𝐻𝑐
+

1

𝐻𝑐𝑐
)       (2.18) 

𝐴𝐶𝐻 =
𝜋𝑚

𝜇
∫ (

1

𝐻𝑐
(
1

𝑣
+

𝜏(𝑘𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
) +

1

𝐻𝑐𝑐
(
1

𝑣
+

𝜏(𝑘𝑐𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
))𝑑𝑥

𝐿

𝑥=0
    (2.19) 

𝐴𝐶𝐼 =
2𝜋𝑖𝐿

𝜇
         (2.20) 

𝐴𝐶𝑆 =
𝜋𝑠

𝜇
∫

1

𝑠(𝑥)
𝑑𝑥

𝐿

𝑥=0
        (2.21) 

where 𝜋𝑣, 𝜋𝑚, 𝜋𝑖, and 𝜋𝑠 have the same definitions as in Section 2.1.1. Equations 

(2.18), (2.20) and (2.21) are exactly the same as those in the all-stop model, (2.7), 

(2.9) and (2.10), respectively. Only (2.19) is different from (2.8) in the all-stop 

model since the commercial speeds of transit vehicles are different from those in 

an all-stop system. 

The generalized cost minimization problem for the AB-type service can 

thus be formulated as: 

min
𝑟𝑐,𝑟𝑐𝑐,𝐻𝑐,𝐻𝑐𝑐,𝑠(𝑥),𝑘𝑐(𝑥),𝑘𝑐𝑐(𝑥)

𝑆𝐶 = 𝑈𝐶𝑎 + 𝑈𝐶𝑤 + 𝑈𝐶𝑖 + 𝑈𝐶𝑡 + 𝐴𝐶𝐾 + 𝐴𝐶𝐻 + 𝐴𝐶𝐼 +

𝐴𝐶𝑆           (2.22a) 

subject to: 

𝑟𝑐, 𝑟𝑐𝑐 ∈ {1,2,3,4}       (2.22b) 

𝑟𝑐𝑘𝑐(𝑥) = 𝑟𝑐𝑐𝑘𝑐𝑐(𝑥), ∀𝑥 ∈ (0, 𝐿]       (2.22c) 

𝐻𝑚𝑖𝑛 + 𝜏 ≤ 𝐻𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥)+𝐵(𝑥)}
      (2.22d) 

𝐻𝑚𝑖𝑛 + 𝜏 ≤ 𝐻𝑐𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥)+𝐵(𝑥)}
      (2.22e) 

𝑠(𝑥), 𝑘𝑐(𝑥), 𝑘𝑐𝑐(𝑥) > 0      (2.22f) 

Constraints (2.22b) specify that there are at most four routes in each 

direction. Constraints (2.22c) ensure that the transit services of the two directions 

share the same set of transfer stops (this is required to facilitate backtracking trips). 

The left parts of (2.22d-e) indicate that the operation headway between two 
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consecutive vehicles should be no less than the minimum required headway plus 

the dwell time. 

The right parts of (2.22d-e) are the vehicle capacity constraints, where 

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥) + 𝐵(𝑥)}  and max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥) + 𝐵(𝑥)}  denote the (approximate) 

maximum on-board patron flows in the clockwise and counterclockwise directions, 

respectively. These maximum flows consist of two components: the patron flow 

of direct travel (𝑜𝑐(𝑥)  and 𝑜𝑐𝑐(𝑥) ), and the extra patron flow added by the 

backtracking trip segments, denoted by 𝐵(𝑥). The latter is derived next. Within a 

skip-stop bay containing 𝑥, the total number of clockwise and counterclockwise 

trips involving backtracking is 𝑇(𝑥)𝑠(𝑥)(𝑏𝑐(𝑥) + 𝑏𝑐𝑐(𝑥)). Approximately half of 

these trips will transfer at each of the two transfer stops bounding the bay. Hence, 

the function 𝐵(𝑥) will peak at 
𝑇(𝑥)𝑠(𝑥)

2
(𝑏𝑐(𝑥) + 𝑏𝑐𝑐(𝑥)) at the downstream side of 

the upstream transfer stop and the upstream side of the downstream transfer stop. 

The following approximations are thus used:  

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥) + 𝐵(𝑥)} ≈ max
0<𝑥≤𝐿

{𝑜𝑐(𝑥) +
𝑇(𝑥)𝑠(𝑥)

2
(𝑏𝑐(𝑥) + 𝑏𝑐𝑐(𝑥))}   (2.23a) 

max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥) + 𝐵(𝑥)} ≈ max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥) +
𝑇(𝑥)𝑠(𝑥)

2
(𝑏𝑐(𝑥) + 𝑏𝑐𝑐(𝑥))} (2.23b) 

The assumption behind (2.22d-e) is that patrons behave uniformly when 

choosing transfer stops. For example, it may be assumed that a patron who needs 

to transfer will always choose to transfer at the first transfer stop on her journey; 

or, it may be assumed that a patron who needs to transfer will always choose 

randomly between all the transfer stops along her journey. The latter assumption 

is reasonable since the choice of transfer stop will not affect the patron’s travel 

cost. If the patrons do not exhibit uniform behavior in the choice of transfer stops, 

then it may be that one route carries a higher on-board patron flow than other 

routes at a specific location 𝑥, and (2.22d-e) cannot guarantee that any capacity 

constraint is not violated. For the simplicity of the modeling work, however, this 

complexity is not considered in this dissertation. 
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2.2 Solution Method 

Sections 2.2.1 and 2.2.2 present solution approaches to the all-stop and AB-type 

service models, respectively. Section 2.2.3 provides a recipe for converting the 

optimal CA model solution to a real AB-type service design. 

2.2.1 Solution to the all-stop design problem 

The all-stop service optimization problem (2.11a-d) has only one decision function 

𝑠(𝑥) and two scalar decision variables 𝐻𝑐 and 𝐻𝑐𝑐. This problem can be solved via 

calculus of variations since the part of the objective function (2.11a) that is related 

to 𝑠(𝑥) is separable by 𝑥. This solution method is similar to that described in 

Wirasinghe and Ghoneim (1981). It is briefly described here to construct the basis 

for presenting the solution approach to the AB-type service problem in Section 

2.2.2. 

Inspection of the cost components (2.4-2.10) reveals that the objective 

function (2.11a), which is the sum of (2.4-2.10), can be expressed as the sum of 

two parts: one part is only related to the scalar decision variables 𝐻𝑐 and 𝐻𝑐𝑐, and 

the other part is an integral over 𝑥 ∈ (0, 𝐿], whose integrand is related to 𝑠(𝑥). 

These details are as follows: 

𝐴𝐶 = ℎ𝐴(𝐻𝑐, 𝐻𝑐𝑐) + ∫ 𝐺𝐴(𝐻𝑐, 𝐻𝑐𝑐, 𝑠(𝑥), 𝑥)𝑑𝑥
𝐿

𝑥=0
    (2.24) 

where,  

ℎ𝐴(𝐻𝑐, 𝐻𝑐𝑐) ≡
𝐻𝑐

2
𝛬𝑐 +

𝐻𝑐𝑐

2
𝛬𝑐𝑐 +

𝜋𝑣𝐿

𝜇
(

1

𝐻𝑐
+

1

𝐻𝑐𝑐
) +

2𝜋𝑖𝐿

𝜇
   (2.25a) 

𝐺𝐴(𝐻𝑐, 𝐻𝑐𝑐 , 𝑠(𝑥), 𝑥) ≡
𝑠(𝑥)

4𝑣𝑤
(𝑃𝑐(𝑥) + 𝑄𝑐(𝑥) + 𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥)) +

(𝑜𝑐(𝑥) + 𝑜𝑐𝑐(𝑥)) (
1

𝑣
+

𝜏

𝑠(𝑥)
) +

𝜋𝑚

𝜇
(

1

𝐻𝑐
+

1

𝐻𝑐𝑐
) (

1

𝑣
+

𝜏

𝑠(𝑥)
) +

𝜋𝑠

𝜇𝑠(𝑥)
   (2.25b) 

Note that ℎ𝐴  consists of the total patrons’ wait cost (2.5), the distance-

based operating cost (2.7), and the line infrastructure cost (2.9). The 𝐺𝐴 consists 

of the localized access/egress cost, in-vehicle travel cost, time-based operating 

cost, and stop infrastructure cost, which are the integrands of (2.4), (2.6), (2.8), 

and (2.10), respectively. 
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Since ℎ𝐴 is unrelated to 𝑠(𝑥), optimizing (2.24) via an iterative process 

consists of two stages. In the first stage, optimize ∫ 𝐺𝐴(𝐻𝑐, 𝐻𝑐𝑐, 𝑠(𝑥), 𝑥)𝑑𝑥
𝐿

𝑥=0
 with 

respect to 𝑠(𝑥) when 𝐻𝑐 and 𝐻𝑐𝑐 are given. The result is the optimal stop spacing 

function 𝑠∗(𝑥) (0 < 𝑥 ≤ 𝐿).In the second stage, fix 𝑠(𝑥) = 𝑠∗(𝑥) for 𝑥 ∈ (0, 𝐿], 

and optimize 𝐴𝐶 with respect to the scalar variables 𝐻𝑐 and 𝐻𝑐𝑐. The two stages 

will be iterated until the solutions of 𝑠(𝑥), 𝐻𝑐 and 𝐻𝑐𝑐 all converge. 

In the first stage, note that the integral ∫ 𝐺𝐴(𝐻𝑐, 𝐻𝑐𝑐, 𝑠(𝑥), 𝑥)𝑑𝑥
𝐿

𝑥=0
 is 

separable by 𝑥 , therefore, minimizing it for the given values of 𝐻𝑐  and 𝐻𝑐𝑐  is 

equivalent to minimizing 𝐺𝐴(𝐻𝑐, 𝐻𝑐𝑐, 𝑠(𝑥), 𝑥) for every 𝑥. Using the first order 

condition of (2.25b) with respect to 𝑠(𝑥), we find the optimal stop spacing, 𝑠∗(𝑥), 

to minimize 𝐺𝐴(𝐻𝑐, 𝐻𝑐𝑐, 𝑠(𝑥), 𝑥) for given values of 𝐻𝑐 and 𝐻𝑐𝑐, is as follows: 

𝑠∗(𝑥) =
√

4𝑣𝑤[𝜏(𝑜𝑐(𝑥)+𝑜𝑐𝑐(𝑥)+
𝜋𝑚
𝜇

(
1

𝐻𝑐
+

1

𝐻𝑐𝑐
))+

𝜋𝑠
𝜇

]

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)+𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥)
     (2.26) 

In the second stage, we fix 𝑠(𝑥) = 𝑠∗(𝑥) for 𝑥 ∈ (0, 𝐿], then the objective 

function can be rearranged as: 

𝐴𝐶 = {
2𝜋𝑖𝐿

𝜇
+ ∫ (

𝑠∗(𝑥)

4𝑣𝑤
(𝑃𝑐(𝑥) + 𝑄𝑐(𝑥) + 𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥)) + (𝑜𝑐(𝑥) +

𝐿

𝑥=0

𝑜𝑐𝑐(𝑥)) (
1

𝑣
+

𝜏

𝑠∗(𝑥)
) +

𝜋𝑠

𝜇𝑠∗(𝑥)
) 𝑑𝑥} + {

𝐻𝑐

2
𝛬𝑐 +

𝐻𝑐𝑐

2
𝛬𝑐𝑐 +

𝜋𝑣𝐿

𝜇
(

1

𝐻𝑐
+

1

𝐻𝑐𝑐
) +

∫
𝜋𝑚

𝜇
(
1

𝑣
+

𝜏

𝑠∗(𝑥)
) (

1

𝐻𝑐
+

1

𝐻𝑐𝑐
) 𝑑𝑥

𝐿

𝑥=0
}       (2.27) 

The cost terms in the first pair of braces in (2.27) are unrelated to𝐻𝑐 and 

𝐻𝑐𝑐, while the expression in the second pair of braces can be minimized by taking 

the first order conditions with respect to 𝐻𝑐 and 𝐻𝑐𝑐, respectively: 

�̃�𝑐 = √
2

𝛬𝑐𝜇
(𝜋𝑣𝐿 +

𝜋𝑚𝐿

𝑣
+ ∫

𝜋𝑚𝜏

𝑠∗(𝑥)
𝑑𝑥

𝐿

𝑥=0
)     (2.28a) 

�̃�𝑐𝑐 = √
2

𝛬𝑐𝑐𝜇
(𝜋𝑣𝐿 +

𝜋𝑚𝐿

𝑣
+ ∫

𝜋𝑚𝜏

𝑠∗(𝑥)
𝑑𝑥

𝐿

𝑥=0
)     (2.28b) 

To calculate the integrals in (2.28a-b), the range (0, 𝐿] is discretized into 

many equal-sized small intervals, and the values of 𝑠∗(𝑥) are calculated using 

(2.26) only for 𝑥 values at the midpoint of each interval. Then the integrals are 

approximated using the trapezoidal rule.  
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Considering constraints (2.11b-c), we have:  

𝐻𝑐
∗ = mid {𝐻𝑚𝑖𝑛, �̃�𝑐,

𝐾

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥)}
}      (2.29a) 

𝐻𝑐𝑐
∗ = mid {𝐻𝑚𝑖𝑛, �̃�𝑐𝑐,

𝐾

max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥)}
}      (2.29b) 

where function mid{𝑥, 𝑦, 𝑧} returns the middle value among 𝑥, 𝑦 and 𝑧 (Daganzo, 

2007). 

With the updated 𝐻𝑐  and 𝐻𝑐𝑐  calculated by (2.29a-b), return to the first 

stage to update 𝑠(𝑥). The two stages are iterated alternately until the solution 

converges. The algorithm is thus summarized as: 

Step 1. Discretize the continuous range of 𝑥 , (0, 𝐿], into 𝑛  equal-sized 

intervals, each of length ∆𝑥 ≡
𝐿

𝑛
. Write 𝑥𝑗 ≡ (𝑗 −

1

2
) ∆𝑥  for (𝑗 = 1,2, … , 𝑛) . 

Initialize 𝐻𝑐 and 𝐻𝑐𝑐 satisfying 𝐻𝑚𝑖𝑛 ≤ 𝐻𝑐 , 𝐻𝑐𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥)}
. 

Step 2. For each 𝑗 ∈ {1,2, … , 𝑛}, apply (2.26) to calculate 𝑠∗(𝑥𝑗). 

Step 3. Apply (2.28a-29b) to calculate 𝐻𝑐
∗ and 𝐻𝑐𝑐

∗ . The integrals in (2.28a-

b) are calculated using the trapezoidal rule. 

Step 4. Set 𝐻𝑐 = 𝐻𝑐
∗ , 𝐻𝑐𝑐 = 𝐻𝑐𝑐

∗ , and 𝑠(𝑥𝑗) = 𝑠∗(𝑥𝑗)  for 𝑗 = 1,2, … , 𝑛 . 

Repeat Steps 2 and 3. If |𝐻𝑐 − 𝐻𝑐
∗| + |𝐻𝑐𝑐 − 𝐻𝑐𝑐

∗ | ≤ 𝜖1  and ∑ |𝑠(𝑥𝑗) −𝑛
𝑗=1

𝑠∗(𝑥𝑗)| ≤ 𝜖2 are both satisfied for prespecified tolerance values 𝜖1 and 𝜖2, then 

consider the solution converged. Otherwise, repeat Step 4. 

The all-stop program (2.11a-d) is convex, and the above algorithm will 

converge to the global optimum if 𝜖1 and 𝜖2 approach to zero. Hence, the initial 

values of 𝐻𝑐 and 𝐻𝑐𝑐 will not affect this convergence and the algorithm’s solution 

quality. The detailed proofs of the convexity of (2.11a-d) and the solution 

algorithm’s convergence are omitted here because the all-stop model is not the 

focus of this dissertation. 

2.2.2 Solution to the AB-type design problem 

The solution procedure to the AB-type service problem is similar to that of the all-

stop problem presented above. The objective function is also decomposed (2.22a) 
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into two parts: one part as denoted by ℎ𝑆(∙)  is related to the scalar decision 

variables 𝑟𝑐, 𝑟𝑐𝑐, 𝐻𝑐 and 𝐻𝑐𝑐; and the other part as denoted by ∫ 𝐺𝑆(∙, 𝑥)𝑑𝑥
𝐿

𝑥=0
, is 

related to the decision functions 𝑠(𝑥), 𝑘𝑐(𝑥) and 𝑘𝑐𝑐(𝑥). We then optimize 𝑆𝐶 ≡

ℎ𝑆(∙) + ∫ 𝐺𝑆(∙, 𝑥)𝑑𝑥
𝐿

𝑥=0
 again by alternately performing two stages: i) fix all the 

scalar decision variables and find the optimal decision functions that minimize 

𝐺𝑆(∙, 𝑥) for each 𝑥 ∈ (0, 𝐿]; and ii) fix the decision function values and find the 

optimal scalar variable values that minimize 𝑆𝐶. 

Specifically, first fix 𝑟𝑐  and 𝑟𝑐𝑐  (because they take values from a small 

finite set {1,2,3,4} ), and replace 𝑘𝑐(𝑥)  and 𝑘𝑐𝑐(𝑥)  by 
𝑇(𝑥)−1

𝑟𝑐
 and 

𝑇(𝑥)−1

𝑟𝑐𝑐
, 

respectively (see the definition of 𝑇(𝑥)  in Section 2.1.2). Also fix 𝑏𝑐(𝑥)  and 

𝑏𝑐𝑐(𝑥)  so that the resulting objective function is separable by 𝑥 . Then by 

inspecting the cost components (2.12-2.21), rewrite the objective function (2.22a) 

for given 𝑟𝑐 and 𝑟𝑐𝑐 as follows: 

𝑆𝐶|𝑟𝑐, 𝑟𝑐𝑐 = ℎ𝑆(𝐻𝑐, 𝐻𝑐𝑐) + ∫ 𝐺𝑆(𝐻𝑐 , 𝐻𝑐𝑐, 𝑠(𝑥), 𝑇(𝑥), 𝑥)𝑑𝑥
𝐿

𝑥=0
 (2.30) 

where, 

ℎ𝑆(𝐻𝑐, 𝐻𝑐𝑐) ≡
(2𝑟𝑐−1)𝛬𝑐

2
𝐻𝑐 +

(2𝑟𝑐𝑐−1)Λ𝑐𝑐

2
𝐻𝑐𝑐 + 𝐶𝑡 (

𝑟𝑐−1

𝑟𝑐
Λ𝑐 +

𝑟𝑐𝑐−1

𝑟𝑐𝑐
Λ𝑐𝑐) +

𝜋𝑣𝐿

𝜇
(

1

𝐻𝑐
+

1

𝐻𝑐𝑐
) +

2𝜋𝑖𝐿

𝜇
         (2.31a) 

𝐺𝑆(𝐻𝑐, 𝐻𝑐𝑐 , 𝑠(𝑥), 𝑇(𝑥), 𝑥) ≡
𝑃𝑐(𝑥)+𝑄𝑐(𝑥)+𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥)

4𝑣𝑤
𝑠(𝑥) −

(𝑟𝑐−1)(𝑃𝑐(𝑥)+𝑄𝑐(𝑥))

2𝑇(𝑥)
𝐻𝑐 −

(𝑟𝑐𝑐−1)(𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥))

2𝑇(𝑥)
𝐻𝑐𝑐 −

𝑟𝑐(𝑏𝑐(𝑥)−𝑏𝑐𝑐(𝑥))

2
𝐻𝑐 +

𝑟𝑐𝑐(𝑏𝑐(𝑥)−𝑏𝑐𝑐(𝑥))

2
𝐻𝑐𝑐 +

𝑜𝑐(𝑥)+𝑜𝑐𝑐(𝑥)

𝑣
+

𝑜𝑐(𝑥)𝜏

𝑟𝑐

𝑇(𝑥)+𝑟𝑐−1

𝑇(𝑥)𝑠(𝑥)
+

𝑜𝑐𝑐(𝑥)𝜏

𝑟𝑐𝑐

𝑇(𝑥)+𝑟𝑐𝑐−1

𝑇(𝑥)𝑠(𝑥)
+

𝑏𝑐(𝑥)+𝑏𝑐𝑐(𝑥)

3𝑣
𝑠(𝑥)𝑇(𝑥) +

1

6
𝜏(𝑏𝑐(𝑥) + 𝑏𝑐𝑐(𝑥)) (

𝑇(𝑥)−1

𝑟𝑐
+

𝑇(𝑥)−1

𝑟𝑐𝑐
+ 2) −

𝐶𝑡 (
𝑟𝑐−1

𝑟𝑐
(𝑃𝑐(𝑥) + 𝑄𝑐(𝑥)) +

𝑟𝑐𝑐−1

𝑟𝑐𝑐
(𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥)))

(2𝑇(𝑥)−1)

2𝑇2(𝑥)
+

𝜋𝑚

𝜇
(
𝐻𝑐+𝐻𝑐𝑐

𝑣
+

𝜏

𝑟𝑐

𝑇(𝑥)+𝑟𝑐−1

𝐻𝑐𝑇(𝑥)𝑠(𝑥)
+

𝜏

𝑟𝑐𝑐

𝑇(𝑥)+𝑟𝑐𝑐−1

𝐻𝑐𝑐𝑇(𝑥)𝑠(𝑥)
) +

𝜋𝑠

𝜇
𝑠−1(𝑥)      (2.31b) 

The ℎ𝑆 consists of part of the total patrons’ wait cost (2.13), part of the total 

transfer penalty (2.17), the distance-based operating cost (2.18), and the line 

infrastructure cost (2.20). The 𝐺𝑆 consists of the localized access/egress cost (2.12), 
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wait cost in (2.13), in-vehicle travel cost in (2.15), time-based operating cost (2.19), 

and stop infrastructure cost (2.21). 

In the first stage, the optimal values of 𝑠(𝑥) and 𝑇(𝑥) for minimizing 

𝐺𝑆(𝐻𝑐, 𝐻𝑐𝑐, 𝑠(𝑥), 𝑇(𝑥), 𝑥) can be obtained when 𝐻𝑐 , 𝐻𝑐𝑐 , and 𝑥 are given. Note 

that the formulas of 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥) (2.14a-b) contain double integrals. Thus 

fixing 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥) is necessary to ensure 𝐺𝑆(∙, 𝑥) is separable by 𝑥 and 𝑠(𝑥) 

and 𝑇(𝑥) are the only two decision variables to be optimized at this stage for any 

given 𝑥. Note too that when 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥) are fixed, 𝐺𝑆(∙, 𝑥) is convex with 

respect to 𝑠(𝑥). This can be verified by checking that the second order derivative 

of 𝐺𝑆(∙, 𝑥) with respect to 𝑠(𝑥) is positive. Hence, the (unconstrained) optimal 

stop spacing, �̃�(𝑥) can be derived from the first order condition of (2.31b) as 

follows: 

�̃�(𝑥)|𝐻𝑐, 𝐻𝑐𝑐, 𝑏𝑐(𝑥), 𝑏𝑐𝑐(𝑥) =

√
(

1

𝑟𝑐
+

𝑟𝑐−1

𝑟𝑐𝑇(𝑥)
)(𝑜𝑐(𝑥)+

𝜋𝑚
𝜇𝐻𝑐

)𝜏+(
1

𝑟𝑐𝑐
+

𝑟𝑐𝑐−1

𝑟𝑐𝑐𝑇(𝑥)
)(𝑜𝑐𝑐(𝑥)+

𝜋𝑚
𝜇𝐻𝑐𝑐

)𝜏+
𝜋𝑠
𝜇

(𝑃𝑐(𝑥)+𝑄𝑐(𝑥)+𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥))/4𝑣𝑤+𝑇(𝑥)(𝑏𝑐(𝑥)+𝑏𝑐𝑐(𝑥))/3𝑣
     (2.32) 

Note that the right parts of constraints (2.22d-e) can be re-written as: 

𝑠(𝑥) ≤
min{2𝐾/𝐻𝑐−2𝑜𝑐(𝑥),2𝐾/𝐻𝑐𝑐−2𝑜𝑐𝑐(𝑥)}

(𝑏𝑐(𝑥)+𝑏𝑐𝑐(𝑥))𝑇(𝑥)
. 

Hence, the optimal 𝑠(𝑥) is given by: 

𝑠∗(𝑥)|𝐻𝑐, 𝐻𝑐𝑐, 𝑏𝑐(𝑥), 𝑏𝑐𝑐(𝑥) = min {�̃�(𝑥),
min{2𝐾/𝐻𝑐−2𝑜𝑐(𝑥),2𝐾/𝐻𝑐𝑐−2𝑜𝑐𝑐(𝑥)}

(𝑏𝑐(𝑥)+𝑏𝑐𝑐(𝑥))𝑇(𝑥)
}  (2.33) 

By plugging (2.33) into (2.31b), the 𝐺𝑆 is converted to a function of 𝑇(𝑥) 

only (while 𝐻𝑐, 𝐻𝑐𝑐, 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥)) are still given. The minimization of 𝐺𝑆 

with respect to 𝑇(𝑥) can be quickly solved to near optimality by a number of 

methods, including the exhaustive search method. To ensure solution quality, the 

exhaustive search is used in this paper, since it guarantees that the solution 

(𝑠∗(𝑥), 𝑇∗(𝑥)|𝐻𝑐, 𝐻𝑐𝑐, 𝑏𝑐(𝑥), 𝑏𝑐𝑐(𝑥)) converges to the global optimum when the 

search interval approaches zero. This is because the objective function is 

continuous and has bounded derivatives with respect to 𝑇(𝑥). Note again that in 

the CA model we allow 𝑇(𝑥) to take positive real values, and it will be converted 

to integers in the recipe presented in Section 2.2.3. 
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After calculating 𝑠∗(𝑥)  and 𝑇∗(𝑥)  for given 𝐻𝑐, 𝐻𝑐𝑐, 𝑏𝑐(𝑥)  and 𝑏𝑐𝑐(𝑥) , 

update 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥) using 𝑠∗(𝑥) and 𝑇∗(𝑥). The 𝐺𝑆 will then be re-optimized 

with the updated 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥). The process is iterated until 𝑠∗(𝑥), 𝑇∗(𝑥), 

𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥) all converge. At the end of this first stage, 𝑠∗(𝑥) and 𝑇∗(𝑥) for 

the given 𝐻𝑐 and 𝐻𝑐𝑐 are obtained. 

In the second stage, fix 𝑠(𝑥) and 𝑇(𝑥) to the optimal values obtained in the 

first stage for 𝑥 ∈ (0, 𝐿], and optimize 𝑆𝐶 with respect to the scalar variables 𝐻𝑐 

and 𝐻𝑐𝑐  (while 𝑟𝑐  and 𝑟𝑐𝑐  are still kept constant for now). By taking first-order 

derivatives of 𝑆𝐶 with respect to 𝐻𝑐 and 𝐻𝑐𝑐, the unconstrained optima of 𝐻𝑐 and 

𝐻𝑐𝑐 are obtained as follows: 

�̃�𝑐 = √

𝜋𝑣𝐿

𝜇
+

𝜋𝑚
𝜇

∫ (
1

𝑣
+

𝜏

𝑠∗(𝑥)
 (

1

𝑟𝑐
+

𝑟𝑐−1

𝑟𝑐𝑇∗(𝑥)
))𝑑𝑥

𝐿
𝑥=0

2𝑟𝑐−1

2
𝛬𝑐+∫ (−

𝑟𝑐−1

2
 
𝑃𝑐(𝑥)+𝑄𝑐(𝑥)

𝑇∗(𝑥)
−

𝑟𝑐
2

𝑏𝑐(𝑥)+
𝑟𝑐
2

𝑏𝑐𝑐(𝑥))𝑑𝑥
𝐿
𝑥=0

   (2.34a) 

�̃�𝑐𝑐 = √

𝜋𝑣𝐿

𝜇
+

𝜋𝑚
𝜇

∫ (
1

𝑣
+

𝜏

𝑠∗(𝑥)
  (

1

𝑟𝑐𝑐
+

𝑟𝑐𝑐−1

𝑟𝑐𝑐𝑇∗(𝑥)
))𝑑𝑥

𝐿
𝑥=0

2𝑟𝑐𝑐−1

2
𝛬𝑐𝑐+∫ (−

𝑟𝑐𝑐−1

2
 
𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥)

𝑇∗(𝑥)
−

𝑟𝑐𝑐
2

𝑏𝑐𝑐(𝑥)+
𝑟𝑐𝑐
2

𝑏𝑐(𝑥))𝑑𝑥
𝐿
𝑥=0

  (2.34b) 

By considering the boundary constraints for the headways (2.22d-e), the 

optimal headways are obtained as follows: 

𝐻𝑐
∗ = mid {𝐻𝑚𝑖𝑛, �̃�𝑐,

𝐾

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥)+𝐵(𝑥)}
}     (2.35a) 

𝐻𝑐𝑐
∗ = mid {𝐻𝑚𝑖𝑛, �̃�𝑐𝑐,

𝐾

max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥)+𝐵(𝑥)}
}     (2.35b) 

where function mid{𝑥, 𝑦, 𝑧} returns the middle value among 𝑥, 𝑦 and 𝑧 (Daganzo, 

2007).  

The two stages described above will be iterated alternately until the 

solution converges for given 𝑟𝑐 and 𝑟𝑐𝑐. This process is then repeated for all the 

possible combinations of (𝑟𝑐, 𝑟𝑐𝑐) ∈ {1,2,3,4} × {1,2,3,4} (see constraint (2.22b)), 

where “×” represents the Cartesian product operator. The lowest-cost solution is 

then identified. 

The entire solution algorithm is summarized as follows: 
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Step 1. Discretize the continuous range of 𝑥, (0, 𝐿], into 𝑛1 equal-sized 

intervals, each of length ∆𝑥 ≡
𝐿

𝑛1
. Write 𝑥𝑗 ≡ (𝑗 −

1

2
)∆𝑥 for (𝑗 = 1,2, … , 𝑛). 

Step 2. Select an unvisited pair of (𝑟𝑐, 𝑟𝑐𝑐) from {1,2,3,4} × {1,2,3,4}. 

Step 3. Initialize 𝐻𝑐  and 𝐻𝑐𝑐  satisfying 𝐻𝑚𝑖𝑛 ≤ 𝐻𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥)}
, and 

𝐻𝑚𝑖𝑛 ≤ 𝐻𝑐𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥)}
. 

Step 4. For each 𝑥 = 𝑥𝑗 , 𝑗 ∈ {1,2, … , 𝑛1}: 

Step 4.1. Initialize 𝑏𝑐(𝑥) = 𝑏𝑐𝑐(𝑥) = 0. 

Step 4.2. Select an unvisited value of 𝑇(𝑥) from a finite set, Ψ, which 

contains the discrete values of 𝑇(𝑥) that will be searched exhaustively. Calculate 

𝑠∗(𝑥)  using (2.32-33) and the optimal function value of 

𝐺𝑆(𝑠
∗(𝑥), 𝑥|𝑇(𝑥), 𝐻𝑐, 𝐻𝑐𝑐, 𝑏𝑐(𝑥), 𝑏𝑐𝑐(𝑥)). 

Step 4.3. Repeat step 4.2 until Ψ is exhausted. Record the 𝑇∗(𝑥) as the 

𝑇(𝑥) value that minimizes 𝐺𝑆. 

Step 4.4. Calculate a new pair of values for 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥) using (15a-

b) and 𝑠∗(𝑥), 𝑇∗(𝑥); denote them as �̂�𝑐(𝑥) and �̂�𝑐𝑐(𝑥). Update 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥) 

as follows: 𝑏𝑐(𝑥) ← (1 − 𝛼1)𝑏𝑐(𝑥) + 𝛼�̂�𝑐(𝑥)  and 𝑏𝑐𝑐(𝑥) ← (1 − 𝛼)𝑏𝑐𝑐(𝑥) +

𝛼�̂�𝑐𝑐(𝑥), where 𝛼 satisfies 0 < 𝛼 < 1. 

Step 4.5. Set �̂�(𝑥) = 𝑠∗(𝑥) , �̂�(𝑥) = 𝑇∗(𝑥) . Repeat steps 4.2-4.4 until 

|𝑠∗(𝑥) − �̂�(𝑥)| + |𝑇∗(𝑥) − �̂�(𝑥)| ≤ 𝜖3  and |𝑏𝑐(𝑥) − �̂�𝑐(𝑥)| + |𝑏𝑐𝑐(𝑥) −

�̂�𝑐𝑐(𝑥)| ≤ 𝜖4 are both satisfied for prespecified tolerance values 𝜖3 and 𝜖4. 

Step 5. Apply (2.34a-2.35b) to calculate 𝐻𝑐
∗ and 𝐻𝑐𝑐

∗ . The integrals in (34a-

b) are calculated using the trapezoidal rule. Update 𝐻𝑐 and 𝐻𝑐𝑐 as follows: 𝐻𝑐 ←

𝐻𝑐
∗ and 𝐻𝑐𝑐 ← 𝐻𝑐𝑐

∗ , 

Step 6. Set �̂�(𝑥) = 𝑠∗(𝑥), �̂�(𝑥) = 𝑇∗(𝑥). Repeat steps 4-5 until |𝑠∗(𝑥) −

�̂�(𝑥)| + |𝑇∗(𝑥) − �̂�(𝑥)| ≤ 𝜖3  and |𝐻𝑐 − 𝐻𝑐
∗| + |𝐻𝑐𝑐 − 𝐻𝑐𝑐

∗ | ≤ 𝜖5  are both 

satisfied for prespecified tolerance values 𝜖3 and 𝜖5. 
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Step 7. Repeat steps 2-6 until the feasible range of (𝑟𝑐, 𝑟𝑐𝑐) is exhausted. 

Record the solution (𝑟𝑐
∗, 𝑟𝑐𝑐

∗ , 𝐻𝑐
∗, 𝐻𝑐𝑐

∗ , 𝑠∗(𝑥), 𝑇∗(𝑥)) that yields the lowest value of 

𝑆𝐶. Set 𝑘𝑐
∗(𝑥) =

𝑇∗(𝑥)−1

𝑟𝑐
∗  and 𝑘𝑐𝑐

∗ (𝑥) =
𝑇∗(𝑥)−1

𝑟𝑐𝑐
∗ . 

Unfortunately, the program (2.22a-f) is not convex, mainly due to the 

existence of 𝑏𝑐(𝑥) and 𝑏𝑐𝑐(𝑥). Hence, a lower bound of the optimal cost 𝑆𝐶 has 

also been developed. The derivation of this lower bound can be found in Appendix 

C. In our numerical analysis in Section 2.3, we compare our solution obtained from 

the above algorithm against the lower bound. This solution is found to be very 

close to the global optimum. 

2.2.3 Generating the exact stop locations 

The solution obtained using the above algorithm includes arrays of discrete points 

on the continuous functions 𝑠(𝑥), 𝑘𝑐(𝑥), and 𝑘𝑐𝑐(𝑥). A 3-step recipe is proposed 

below to generate a real stop location and route plan. In Step 1 of this recipe, the 

stop locations are generated from the optimal 𝑠(𝑥), using a method similar to 

Wirasinghe and Ghoneim (1981). In Step 2, the transfer stops are selected from 

the set of stops generated in Step 1, by using the optimal 𝑟𝑐, 𝑟𝑐𝑐, 𝑘𝑐(𝑥) and 𝑘𝑐𝑐(𝑥). 

Note that the continuous solutions of 𝑘𝑐(𝑥) and 𝑘𝑐𝑐(𝑥) are non-integer, and in 

Step 2 it is ensured that they take integer values that satisfy (2.21c) in each skip-

stop bay. Step 3 completes the design by assigning the non-transfer stops to each 

route. 

Step 1. Place one stop at every 𝑥 where ∫
𝑑𝑧

𝑠(𝑧)

𝑥

𝑧=0
 is an integer (the first stop 

is located at 𝑥 = 0)4. If the last stop is located at �̃� and 𝐿 − �̃� <
𝑠(𝐿)

2
 (i.e. the last 

stop is too close to the first one), remove that last stop. Denote the resulting stop 

location plan as 𝛀 = {𝑥𝑖
𝑆: 𝑖 = 1, 2, … ,𝑁𝑆}, where 𝑁𝑆 denotes the number of stops, 

and 𝑥𝑖
𝑆 the location of the 𝑖-th stop satisfying 0 = 𝑥1

𝑆 < 𝑥2
𝑆 < ⋯ < 𝑥

𝑁𝑆
𝑆 < 𝐿. 

                                                 

 

4 For a linear corridor, stops should be located where ∫
𝑑𝑧

𝑠(𝑧)

𝑥

𝑧=0
−

1

2
 is an integer because the first 

stop is best located half a stop spacing from 𝑥 = 0. 
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Step 2. Select the first stop (𝑥1
𝑆 = 0) to be a transfer stop. Select the 

remaining transfer stops from 𝛀 recursively as follows: given the location of the 

𝑗 -th transfer stop ( 𝑗 ≥ 1 ), 𝑥𝑗
𝑇 , find 𝑥𝑗+1

𝑇 ∈ 𝛀  which minimizes |∫
𝑑𝑧

𝑠(𝑧)

𝑥𝑗+1
𝑇

𝑧=𝑥𝑗
𝑇 −

𝑟𝑐

∫ 𝑘𝑐(𝑧)𝑑𝑧
𝑥𝑗+1
𝑇

𝑧=𝑥𝑗
𝑇

𝑥𝑗+1
𝑇 −𝑥𝑗

𝑇 − 1|  , subject to: i) 𝑥𝑗+1
𝑇 > 𝑥𝑗

𝑇; and ii) ∫
𝑑𝑧

𝑠(𝑧)

𝑥𝑗+1
𝑇

𝑧=𝑥𝑗
𝑇 − 1 is an integer 

multiple of both 𝑟𝑐 and 𝑟𝑐𝑐. If the last transfer stop is located at �̃�𝑇 and ∫
𝑑𝑧

𝑠(𝑧)

𝐿

𝑧=�̃�𝑇 <

1

2
(𝑟𝑐

∫ 𝑘𝑐(𝑧)𝑑𝑧
𝐿

𝑧=�̃�𝑇

𝐿−�̃�𝑇
+ 1) (i.e., if the last transfer stop is too close to the first one), 

remove that last transfer stop. Denote 𝑁𝑇 as the number of transfer stops selected. 

Note that in the last skip-stop bay (the one between the last transfer stop at 𝑥
𝑁𝑇
𝑇  

and 𝑥1
𝑇 = 0), the above constraint ii) may not be satisfied. This may result in some 

routes visiting one less stop than the other routes in the same skip-stop bay. 

Step 3. Between any two consecutive transfer stops, the non-transfer stops 

are assigned to the 𝑟𝑐 (or 𝑟𝑐𝑐) routes in rotation. 

After generating the real stop location and route plan, the generalized cost 

for the AB-type service is recalculated; see Ulusoy et al. (2010) and Leiva et al. 

(2010) for similar cost models that can be used for this purpose. 

2.3 Numerical Analysis  

Section 2.3.1 describes the demand patterns and other parameter values used in 

our numerical experiments. Section 2.3.2 reports the validation tests of our CA 

models. Section 2.3.3 examines the optimal design of the AB-type service under a 

symmetric demand pattern. Section 2.3.4 presents the parametric analysis of the 

optimal design, also under symmetric demand patterns. Section 2.3.5 provides 

examples under asymmetric demand patterns. 

2.3.1 Demand patterns and parameter values 

We consider a demand density function of the following form: 
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𝜆(𝑥, 𝑦) = {
𝑝𝑐(𝑥)𝜃𝑐(𝑙(𝑥, 𝑦))Λ𝑐, if 0 < 𝑦 − 𝑥 ≤

𝐿

2
 or 𝑦 − 𝑥 ≤ −

𝐿

2

𝑝𝑐𝑐(𝑥)𝜃𝑐𝑐(𝑙(𝑥, 𝑦))Λ𝑐𝑐, if −
𝐿

2
< 𝑦 − 𝑥 ≤ 0 or 𝑦 − 𝑥 >

𝐿

2

  (2.36) 

where 𝑝𝑐(𝑥) and 𝑝𝑐𝑐(𝑥) are the probability density functions (PDFs) of the trip 

origins over the corridor for clockwise and counterclockwise directions, 

respectively; 𝜃𝑐(𝑙)  and 𝜃𝑐𝑐(𝑙)  are the PDFs of trip length, where 𝑙(𝑥, 𝑦) =

min(|𝑥 − 𝑦|, 𝐿 − |𝑥 − 𝑦|)  denotes the trip length, 0 < 𝑙 ≤
𝐿

2
. This form of 

demand function allows us to examine separately the effects on the optimal transit 

corridor design stemming from: i) the spatial heterogeneity in trip origins; and ii) 

the distribution of trip lengths. 

In the numerical experiments presented in the following sections, 𝑝𝑐(𝑥) 

and 𝑝𝑐𝑐(𝑥)  are assumed to be truncated normal PDFs denoted by 

𝑇𝑟𝒩 (
𝐿

2
, 𝜎𝑜

2, 0, 𝐿) ; i.e., normal distributions with mean 
𝐿

2
 and variance 𝜎𝑜

2 , 

truncated by the interval [0, 𝐿] . The standard deviation parameter 𝜎𝑜  can take 

different values between the clockwise and counterclockwise directions. The 𝜃𝑐(𝑙) 

and 𝜃𝑐𝑐(𝑙) are assumed to be PDFs of uniform distributions denoted by 𝒰(𝐸𝑙 −

√3𝜎𝑙, 𝐸𝑙 + √3𝜎𝑙), where 𝐸𝑙 and 𝜎𝑙 are the mean and standard deviation of the trip 

length, respectively (these can also take different values between the two service 

directions). We further specify that 𝜎𝑜 ∈ {∞, 8, 4} (km); the three values indicate 

no spatial variation (i.e. uniform distribution), low spatial variation and high 

spatial variation, respectively, for trip origin distribution. Also, four trip length 

distributions with (𝐸𝑙, 𝜎𝑙) ∈ {(8,2), (8,4), (12,2), (12,4)} (km, km) are examined. 

The curves of trip origin and destination densities, 𝑃𝑐(𝑥) + 𝑃𝑐𝑐(𝑥) and 𝑄𝑐(𝑥) +

𝑄𝑐𝑐(𝑥), for the eight heterogeneous demand patterns in a 40-km corridor are 

plotted in Figure 2.2a-h: they are plotted for 𝜎𝑜 = 4  and (𝐸𝑙, 𝜎𝑙) ∈

{(8,2), (8,4), (12,2), (12,4)} in Figure 2.2a-d, and for 𝜎𝑜 = 8 and the same four 

trip length distributions in Figure 2.2e-h. Each plot assumes that the demand is 

symmetric in both directions with average density 
Λ𝑐

𝐿
=

Λ𝑐𝑐

𝐿
= 37.5  trips/km/h. 

These figures illustrate how demand pattern changes along with the key 

parameters defined above. 

The following sections examine two typical transit modes, bus and rail, 

operating on a 40-km corridor with cost and operational parameters borrowed from 



34 

 

previous studies (Daganzo, 2010; Sivakumaran et al., 2014; Gu et al., 2016). These 

parameter values are listed in Table 2.1. We examine three levels of average 

demand densities for each transit mode: 
Λ𝑐

𝐿
,
Λ𝑐𝑐

𝐿
∈ {37.5, 75, 150} trips/km/h for a 

bus corridor, and {250, 500, 1000} trips/km/h for a rail corridor; and two values 

of time: 𝜇 = 5 $/h for a low-wage city, and 𝜇 = 20 $/h for a high-wage city. A 

low walking speed (𝑣𝑤 = 2 km/h) is assumed to account for the signal delays and 

the inconvenience of walking; 𝐶𝑡 is assumed to be 1 min/transfer; and 𝛼1 and 𝛼2 

are set to be 0.5 in the solution algorithm. 

For our solution algorithm, the decompose interval ∆𝑥  is 0.5 km, the 

smooth factor 𝛼 = 0.5, and the convergence tolerance 𝜖1 = 𝜖2 = 𝜖3 = 𝜖4 = 𝜖5 =

0.001. 

  

(a) Highly-spatially-varied demand with 

short, less-varied trip lengths (𝐸𝑙 =
8, 𝜎𝑙 = 2, 𝜎𝑜 = 4 km). 

(b) Highly-spatially-varied demand with 

short, highly-varied trip lengths (𝐸𝑙 =
8, 𝜎𝑙 = 4, 𝜎𝑜 = 4 km). 

  

(c) Highly-spatially-varied demand with 

long, less-varied trip lengths (𝐸𝑙 =
12, 𝜎𝑙 = 2, 𝜎𝑜 = 4 km). 

(d) Highly-spatially-varied demand with 

long, highly-varied trip lengths (𝐸𝑙 =
12, 𝜎𝑙 = 4, 𝜎𝑜 = 4 km). 
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(e) Less-spatially-varied demand with 

short, less-varied trip lengths (𝐸𝑙 =
8, 𝜎𝑙 = 2, 𝜎𝑜 = 8 km). 

(f) Less-spatially-varied demand with 

short, highly-varied trip lengths (𝐸𝑙 =
8, 𝜎𝑙 = 4, 𝜎𝑜 = 8 km). 

  

(g) Less-spatially-varied demand with 

long, less-varied trip lengths (𝐸𝑙 =
12, 𝜎𝑙 = 2, 𝜎𝑜 = 8 km). 

(h) Less-spatially-varied demand with 

long, highly-varied trip lengths (𝐸𝑙 =
12, 𝜎𝑙 = 4, 𝜎𝑜 = 8 km). 

Figure 2.2 Trip origin and destination densities along the corridor. 

Table 2.1 Cost and operational parameters for bus and rail 

 𝜋𝑣 ($/veh∙km) 𝜋𝑚 ($/veh∙h) 𝜋𝑖 ($/km/h) 𝜋𝑠 ($/stop/h) 

Bus 0.59 2.66 + 3𝜇  6 + 0.2𝜇  0.42 + 0.014𝜇  

Rail 2.20 101 + 5𝜇  594 + 19.8𝜇  294 + 9.8𝜇  

 𝜏 (sec) 𝑣 (km/h) 𝐾 (passenger/veh) 𝐻𝑚𝑖𝑛 (min) 

Bus 30 25 80 1 

Rail 45 60 3000 1.5 

2.3.2 Model validation  

Since the all-stop model is a special case of the AB-type service model with 𝑟𝑐 =

𝑟𝑐𝑐 = 1 , this section examines the solution quality and the computational 

efficiency for the AB-type service model only. Specifically, solution quality 

testing is presented in Section 2.3.2.1; computational efficiency is examined in 
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Section 2.3.2.2. How the discretization interval ∆𝑥 (see Step 1 in Section 2.2.2) 

affects the solution quality and computation time is examined in Section 2.3.2.3. 

2.3.2.1 Solution quality   

We first examine the quality of our CA solution to the AB-type service model 

(2.22a-f), and then investigate the approximation error of the CA model as 

compared against the converted real design (see Section 2.2.3). 

The exact solution to (2.22a-f) is very difficult to obtain due to the non-

convexity of the program. Hence, the lower bound developed in Appendix C is 

used to evaluate the solution quality obtained by the algorithm presented in Section 

2.2.2. The lower bound is developed by replacing the original objective function 

(2.22a) with a lower bound of (2.22a), and relaxing some original constraints. The 

resulting program’s exact solution can be found via the method described in 

Appendix C. 

The relative cost gap between the lower bound and the CA solution 

obtained by the algorithm in Section 2.2.2 is calculated for all the 144 symmetric-

demand instances (see Section 2.3.1). The average cost gap is found to be only 0.7% 

and the maximum cost gap is 2.8%. This shows that the solutions found by our 

algorithm are quite good.5 

Approximation errors between the CA solution and the converted real 

design for the 144 numerical instances are summarized in Table 2.2. Note first that 

the generalized cost error never exceeds 1.2% and averages only 0.2%. Thus, our 

CA model’s generalized cost estimation is quite accurate.  

This high level of accuracy can be partly explained as follows. Our CA 

model’s generalized cost function (like many other CA formulations for transit 

corridor or network design problems in the literature) exhibits a form similar to a 

generalized Economic Order Quantity model 𝐴𝑦𝑎 + 𝐵𝑦−𝑏 , where 𝑦  is the 

                                                 

 

5 Note that the lower bound is developed mainly by ignoring the costs related to backtracking. 

Hence the modest cost gaps reported above imply that the backtracking-related cost is very small 

(compared to other cost components). Note, however, that the backtracking costs cannot be ignored 

in our optimization model, because otherwise the skip-stop bays would be unreasonably large in 

the optimal design (without considering backtracking, only one transfer stop would be needed 

throughout the corridor). 
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decision variable and 𝐴, 𝐵, 𝑎, 𝑏 are positive parameters. For example, function 𝐺𝑆 

in (2.32b) has the above form with respect to 𝑠(𝑥). For a model of this kind, the 

objective function value is quite insensitive to small changes in the decision 

variable(s) near the optimal solution, because the resulting changes in the cost 

components are in different directions and are largely canceled out (Daganzo, 

2010). 

Table 2.2 , in addition, shows that most of the detailed cost components 

also have very small errors. However, larger errors are observed for the transfer 

cost 𝑈𝐶𝑡  (6.1% on average and 38.3% at maximum), which are due to the 

approximation used in the derivation of equation (2.17) in Appendix B. Moderate 

errors are also observed for the waiting cost 𝑈𝐶𝑤 (only 2.1% on average but 10.4% 

at maximum). This is caused by estimating the backtracking trip densities 𝑏𝑐(𝑥) 

and 𝑏𝑐𝑐(𝑥) using equations (2.15a-b). 

Table 2.2 Comparing the costs of CA solution and the converted real design 

 Average error (%) Maximum error (%) 

Generalized cost, 𝑆𝐶 0.2% 1.2% 

User cost 0.3% 1.5% 

Agency cost 0.3% 1.5% 

𝑈𝐶𝑎  0.5% 1.3% 

𝑈𝐶𝑤  2.1% 10.4% 

𝑈𝐶𝑖  0.4% 2.3% 

𝑈𝐶𝑡  6.1% 38.3% 

𝐴𝐶𝐾  0.0% 0.0% 

𝐴𝐶𝐻  0.5% 2.5% 

𝑆𝐶𝐼  0.0% 0.0% 

𝐴𝐶𝑆  0.5% 1.2% 

 

2.3.2.2 Computation time 

Computation times for all the 144 symmetric-demand instances are summarized 

in Table 2.3. The run times for three stages of the solution procedure are reported 

separately: i) demand preprocessing, which calculates the aggregate demand 

functions (2.1a-2.3b); ii) finding the CA solution via the algorithm presented in 

Section 2.2.2; and iii) generating a real design plan via the recipe in Section 2.2.3. 
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These stages are performed in Matlab 2016a on a personal computer with Intel 

Core i7-4970 CPU @ 3.60 GHz and 16.00 G RAM.  

Table 2.3 shows that the demand preprocessing stage is the most time-

consuming, which takes 2-3 minutes in general. The second stage is quite fast, 

taking only 13.9 seconds on average. This indicates that our solution algorithm is 

very efficient. The last stage takes only less than 1 second to complete. The total 

run times show that our solution procedure is fairly efficient. 

Table 2.3 Computation time of the solution procedure 

 Average run time (s) Maximum run time (s) 

Demand preprocessing 137.3 141.2 

Finding the CA solution 13.9 35.5 

Generating a real design plan 0.2 0.7 

Total 151.4 175.6 

 

2.3.2.3 Choice of the discretization interval ∆𝑥 

Our solution algorithm requires that we discretize the spatial coordinate of the 

corridor by an interval ∆𝑥 . A larger ∆𝑥  will increase the error due to the 

discretization, while a smaller ∆𝑥 would increase the run time. This is illustrated 

in Table 2.4, where the run times and optimal generalized cost changes obtained 

from the CA model are summarized for ∆𝑥 = 0.25, 0.5, 1, 2, and 4 km. Note that 

the solution procedure’s total run time, averaged across all the 144 numerical 

instances, declines rapidly as ∆𝑥  increases (in fact the average run time is 

approximately proportional to 1/∆𝑥).On the other hand, the average percentage 

change in the CA model’s optimal generalized cost (using the case of ∆𝑥 = 0.25 

km as a benchmark for calculating the percentage change) increases very slowly 

with ∆𝑥, especially when ∆𝑥 = 0.25, 0.5, and 1 km. The maximum percentage 

change in the optimal generalized cost among all the 144 instances is only 0.6% 

for ∆𝑥 = 0.25 and 0.5 km. The table also provides the percentage errors between 

the CA solution’s generalized costs and the converted real design. These 

percentage values show that the error increases with ∆𝑥, but is never greater than 

1.3% for ∆𝑥 = 0.25, 0.5, and 1 km. These results go some way to verifying our 

solution procedure’s robustness and the appropriateness of choosing ∆𝑥 = 0.5 km. 
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Table 2.4 Comparison between different discretization intervals 

∆𝑥 (km) 0.25 0.5 1 2 4 

Average total run time (s) 413.7 151.4 71.3 35.8 16.3 

Average percentage change in the 

generalized cost of CA model 
- 0.4% 0.5% 0.6% 1.7% 

Maximum percentage change in the 

generalized cost of CA model 
- 0.6% 1.1% 1.8% 7.7% 

Average percentage error between 

the costs of CA model and the 

converted design 

0.2% 0.2% 0.3% 0.4% 1.1% 

Maximum percentage error between 

the costs of CA model and the 

converted design 

0.7% 1.2% 1.3% 2.5% 5.4% 

 

2.3.3 Optimal design of AB-type service 

In this section, we examine the optimal design of an AB-type service bus corridor 

for a high-wage city (𝜇 = 20 $/h) with high spatially-varied origin densities (𝜎𝑜 =

4 km), long and less-varied trip lengths (𝐸𝑙 = 12 km, 𝜎𝑙 = 2 km), and symmetric 

demand pattern with low density (
Λ𝑐

𝐿
=

Λ𝑐𝑐

𝐿
= 37.5 trips/km/h). The optimal design 

features two routes in each direction. The converted stop location plan is presented 

in Figure 2.3a, where  routes 1 and 2’s non-transfer stops are marked by blue rings 

and red squares, respectively, and transfer stops are marked by solid black circles. 

The figure shows 5 skip-stop bays along the corridor, each bay containing 7-11 

non-transfer stops for each route. Note that the last skip-stop bay is much longer 

than the other bays, and in that bay the numbers of non-transfer stops for route 1 

and route 2 are not equal (there are 11 non-transfer stops for route 1 and 10 non-

transfer stops for route 2). These small anomalies were created by the recipe for 

generating the real design; see step 2 in Section 2.2.3 for details. 

The stop location plan of the optimal all-stop design for the same corridor 

under the same demand is shown in Figure 2.3b for comparison. The comparison 

between Figure 2.3a and b unveils high similarity: note that both 𝑠(𝑥) curves in 

the two figures peak at 𝑥 = 13 and 28 km, and trough at 𝑥 = 0 and 20 km. The 

two figures’ only difference seems to be that the AB-type design exhibits smaller 

stop spacings in that the 𝑠(𝑥) curve of the AB-type design is like a scaled-down 
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version of that of the all-stop design. In addition, Figure 2.3c illustrates the optimal 

AB-type design for a higher demand density (Λ𝑐/𝐿 = Λ𝑐𝑐/𝐿 = 75 trips/km/h) and 

the same demand variation. For this high demand case, the optimal design features 

three routes per direction, and the non-transfer stops of route 3 are marked by “+”. 

Note that the stop spacing curve in Figure 2.3c is also similar to the one in Figure 

2.3a, but is even ‘flatter’. Similar findings are also observed when comparing the 

optimal AB-type and all-stop designs for the same bus corridor but with a less 

varied origin density (𝜎𝑜 = 8 km); see Figure 2.3d and e. 

The similarities between the optimal 𝑠(𝑥) curves in these figures can be 

explained by examining the following approximation of (2.32) under symmetric 

demand and design (i.e. 𝑃𝑐(𝑥) = 𝑃𝑐𝑐(𝑥), 𝑄𝑐(𝑥) = 𝑄𝑐𝑐(𝑥), 𝑜𝑐(𝑥) = 𝑜𝑐𝑐(𝑥), 𝑟𝑐 =

𝑟𝑐𝑐 and 𝐻𝑐 = 𝐻𝑐𝑐): 

�̃�(𝑥) = √
𝑘𝑐(𝑥)+1

𝑟𝑐𝑘𝑐(𝑥)+1
(𝑜𝑐(𝑥)+

𝜋𝑚
𝜇𝐻𝑐

)𝜏+
𝑘𝑐𝑐(𝑥)+1

𝑟𝑐𝑐𝑘𝑐𝑐(𝑥)+1
(𝑜𝑐𝑐(𝑥)+

𝜋𝑚
𝜇𝐻𝑐𝑐

)𝜏+
𝜋𝑠
𝜇

(𝑃𝑐(𝑥)+𝑄𝑐(𝑥)+𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥))/4𝑣𝑤+(𝑟𝑐𝑘𝑐(𝑥)+1)(𝑏𝑐(𝑥)+𝑏𝑐𝑐(𝑥))/3𝑣
≈

√
(

𝑘𝑐(𝑥)+1

𝑟𝑐𝑘𝑐(𝑥)+1
𝑜𝑐(𝑥)+

𝑘𝑐𝑐(𝑥)+1

𝑟𝑐𝑐𝑘𝑐𝑐(𝑥)+1
𝑜𝑐𝑐(𝑥))𝜏+

𝜋𝑠
𝜇

(𝑃𝑐(𝑥)+𝑄𝑐(𝑥)+𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥))/4𝑣𝑤
≈ √

2

𝑟𝑐
𝑜𝑐(𝑥)𝜏

(𝑃𝑐(𝑥)+𝑄𝑐(𝑥))/2𝑣𝑤
    (2.37) 

This approximation is obtained by ignoring the relatively minor terms 

under the square root sign, including: 
𝜋𝑚

𝜇𝐻𝑐
 (which is usually much smaller 

than 𝑜𝑐(𝑥)6), 
𝑟𝑐−1

𝑟𝑐𝑇(𝑥)
 (which is much smaller than 

1

𝑟𝑐
 in general), 

𝜋𝑠

𝜇
 (which is small, 

especially for buses) in the numerator, and 2𝑇(𝑥)𝑏𝑐(𝑥)/3𝑣 in the denominator 

(since the backtracking trip density 𝑏𝑐(𝑥) is very small). By removing these minor 

terms, it can be clearly seen that optimal stop spacing is mainly determined by the 

ratio between on-board patron flow and the sum of origin and destination densities, 

i.e., 
𝑜𝑐(𝑥)

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)
. In other words, the shape of √

𝑜𝑐(𝑥)

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)
 (𝑥 ∈ [0, 𝐿]) dictates the 

                                                 

 

6 To see why, note that 𝜋𝑚 mainly consists of the staff wage component. Hence, 
𝜋𝑚

𝜇
 is a proxy of 

the number of staff assigned to each transit vehicle, and 
𝜋𝑚

𝜇𝐻𝑐
 can be interpreted as the “flow of staff” 

that passes by any point (e.g. 𝑥) in the corridor. This flow of staff is usually much smaller than the 

flow of on-board patrons passing by 𝑥, i.e., 𝑜𝑐(𝑥). 
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shape of the optimal 𝑠(𝑥). It is not very surprising to see that the above finding is 

consistent with Wirasinghe and Ghoneim’s (1981) for optimal all-stop designs. 

Moreover, this approximation unveils that optimal stop spacing will scale down as 

𝑟𝑐  increases. This explains why the 𝑠(𝑥)  curves for the all-stop and AB-type 

designs under the same demand pattern (although perhaps with different demand 

density levels) look very similar, and why the curve becomes flatter as the number 

of skip-stop routes increases. Note that a lesser degree of similarity will be 

observed between the all-stop and AB-type service designs of rail corridors due to 

the much larger 𝜋𝑠.  

 

(a) AB-type design under demand of low density and high spatial variation (𝜎𝑜 = 4 km, 

Λ𝑐/𝐿 = Λ𝑐𝑐/𝐿 = 37.5 trips/km/h). 

 

(b) All-stop design under demand of low density and high spatial variation (𝜎𝑜 = 4 km, 

Λ𝑐/𝐿 = Λ𝑐𝑐/𝐿 = 37.5 trips/km/h). 

 

(c) AB-type design under demand of medium density and high spatial variation (𝜎𝑜 = 4 

km, Λ𝑐/𝐿 = Λ𝑐𝑐/𝐿 = 75 trips/km/h). 

 

(d) AB-type design under demand of low density and low spatial variation (𝜎𝑜 = 8 km, 

Λ𝑐/𝐿 = Λ𝑐𝑐/𝐿 = 37.5 trips/km/h). 
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(e) All-stop design under demand of low density and low spatial variation (𝜎𝑜 = 8 km, 

Λ𝑐/𝐿 = Λ𝑐𝑐/𝐿 = 37.5 trips/km/h). 

Figure 2.3 Optimal stop spacings for a bus corridor with symmetric demand.  

2.3.4 Parametric analysis for symmetric AB-type designs 

This section examines all the 144 symmetric-demand instances. To demonstrate 

the AB-type design’s effectiveness, the generalized costs of the optimal AB-type 

design are compared for each instance with two or more routes in each direction 

and the optimal all-stop design. The generalized cost savings of the AB-type 

design are plotted against the key parameters in Figure 2.4a-d and Figure 2.5a-b. 

Specifically, Figure 2.4a-c present the generalized cost savings of the AB-

type design over the all-stop design for a bus corridor in a high-wage city with 

𝜎𝑜 = ∞, 8, and 4 km, respectively. Each figure presents four percentage cost 

saving curves against the average demand density for the cases of 𝜎𝑙 ∈ {4, 8} km 

and 𝐸𝑙 ∈ {8, 12}  km, respectively. All these curves show that the cost saving 

increases with demand density. Negative cost savings (as low as -0.9%) are found 

in all the three figures when the demand density (37.5 trips/km/h) and the mean 

trip length (8 km) are both small, indicating that the all-stop design outperforms 

the AB-type design. On the other hand, cost savings of up to 8-9% are observed 

when the demand density is high (150 trips/km/h); see Figure 2.4b and c. Note in 

Figure 2.4c that the points representing the highest demand density (150 trips/km/h) 

and the largest mean trip length (12 km) are missing, because the vehicle capacity 

constraints (2.22d-e) are violated under these high-demand cases. Comparing the 

four curves in each figure reveals that: i) cost saving increases with the mean trip 

length; and ii) trip length variation has a marginal negative effect on cost saving. 

These findings are as expected: the AB-type design benefits patrons (especially 

those with longer trip distances) but raises agency side costs, hence the cost 

advantage of the AB-type design will grow as the system serves more patron-kms 

of travel. 
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Comparison across the three figures shows that cost saving also increases 

with the spatial variation in trip origin density (which is an indicator of the demand 

heterogeneity). This means the AB-type service becomes more competitive when 

the demand is more heterogeneous. 

  

(a) Uniform demand in a high-wage city 

(𝜎𝑜 = ∞, 𝜇 = 20 $/h). 

(b) Less-spatially-varied demand in a 

high-wage city (𝜎𝑜 = 8 km, 𝜇 = 20 $/h). 

  

(c) Highly-spatially-varied demand in a 

high-wage city (𝜎𝑜 = 4 km, 𝜇 = 20 $/h). 

(d) Highly-spatially-varied demand in a 

low-wage city (𝜎𝑜 = 4 km, 𝜇 = 5 $/h). 

Figure 2.4. Percentage savings in AB-type bus systems’ generalized cost. 

To examine the effect of the value of time, we plot in Figure 2.4d the same 

four cost saving curves with the same parameter values as in Figure 2.4c, but for 

a low-wage city (𝜇 = 5 $/h). Comparising Figure 2.4c and d reveals that the AB-

type design is slightly more favorable in high-wage cities. This is also as expected, 

because in a high-wage city the patrons’ travel times are considered more valuable. 

Similar results are also observed under other demand patterns, omitted here for 

brevity. 

Similar results are observed for AB-type rail systems; see e.g. Figure 2.5a 

and b for the percentage cost saving curves with high spatially-varied demand 
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(𝜎𝑜 = 4 km) km in high- and low-wage cities, respectively. Of note, these two 

figures show that the AB-type rail system is significantly more advantageous in 

high-wage cities. In addition, comparing Figure 2.4c-d and Figure 2.5a-b reveals 

that the AB-type scheme is more beneficial when applied to a bus corridor than to 

a rail corridor. Note in Figure 2.4c that the cost saving reaches 8.6% for a bus 

corridor in a high-wage city, when the average demand density is only 150 

trips/km/hr (with 𝐸𝑙 = 8  km and 𝜎𝑙 = 2  km). On the other hand, Figure 2.5a 

shows for the same trip length distribution and value of time AB-type service rail 

corridor’s  cost saving is only 6.4% even at a very high demand density of 1000 

trips/km/hr. This is because the AB-type design requires operation of more transit 

routes, and adding rail routes is much more expensive than adding bus routes. 

Note that the above findings with regard to effects of mean trip length, 

demand heterogeneity, and the value of time on AB-type design performance are 

consistent with that reported in the literature (e.g. Larrain and Muñoz, 2016). 

  

(a) A high-wage city (𝜇 = 20 $/h) (b) A low-wage city (𝜇 = 5 $/h). 

Figure 2.5. Percentage savings in AB-type rail systems’ generalized cost with 

highly-spatially-varied demand. 

2.3.5 Designs under asymmetric demand 

We first consider A bus corridor in a high-wage city (𝜇 = 20 $/h) where the 

demand densities of the two travel directions are different; i.e. 
Λ𝑐

𝐿
= 150 

trips/km/h and 
Λ𝑐𝑐

𝐿
= 75 trips/km/h are considered here. The distributions of the 

trip origins and the trip lengths are assumed to be the same between the two 

directions with 𝜎𝑜 = 8 km, 𝐸𝑙 = 8 km, and 𝜎𝑙 = 4 km. We find that the optimal 
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AB-type design is also asymmetric. Specifically, it features a 3-route AB-type 

service in the clockwise direction and a 2-route counterclockwise AB-type service. 

The optimal stop location plans for the two directions are presented in Figure 2.6a 

and b, respectively, where the transfer stops are marked by solid black circles, and 

the non-transfer stops of different routes in each direction are marked by blue 

circles, red squares, and red crosses, respectively. Note that the two directions 

share the same set of stops, and the same set of transfer stops. However, non-

transfer stops are allocated to three routes in the clockwise direction, and to only 

two counterclockwise routes. 

For comparison, the AB-type design for the same corridor with lower but 

still asymmetric demand densities (
Λ𝑐

𝐿
= 75 trips/km/h and 

Λ𝑐𝑐

𝐿
= 37.5 trips/km/h) 

in a high-wage city was also optimized. This new optimal design features a 2-route 

clockwise AB-type service (see Figure 2.6c) and an all-stop counterclockwise 

service. This all-stop service plan is not shown because it uses the same set of 

stops as the clockwise direction. We further show the optimal design for the same 

corridor with the lower demand densities in a low-wage city (𝜇 = 5 $/h) in Figure 

2.6d. Note in this last case that the all-stop service becomes optimal in both 

directions, despite the asymmetric demand. 

Comparing Figure 2.6a-d confirms that the optimal number of skip-stop 

routes still increases with the demand level and the value of time, and that more 

routes are often required in the higher demand direction. However, the similarity 

between the 𝑠(𝑥) curves in these figures are not clear. 

 

(a) Clockwise AB-type design in a high-wage city with a higher demand level (
Λ𝑐

𝐿
=

150 trips/km/h, 
Λ𝑐𝑐

𝐿
= 75 trips/km/h, 𝜇 = 20 $/h) 
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(b) Counterclockwise AB-type design in a high-wage city with a higher demand level 

(
Λ𝑐

𝐿
= 150 trips/km/h, 

Λ𝑐𝑐

𝐿
= 75 trips/km/h, 𝜇 = 20 $/h) 

 

(c) Clockwise AB-type design in a high-wage city with a lower demand level (
Λ𝑐

𝐿
= 75 

trips/km/h, 
Λ𝑐𝑐

𝐿
= 37.5 trips/km/h, 𝜇 = 20 $/h). 

 

(d) All-stop design in both directions in a low-wage city with a lower demand level 

(
Λ𝑐

𝐿
= 75 trips/km/h, 

Λ𝑐𝑐

𝐿
= 37.5 trips/km/h, 𝜇 = 5 $/h). 

Figure 2.6 Optimal stop spacings for a bus corridor under asymmetric demands. 

2.4 Summary of the AB-Type Design Model 

This chapter presents CA models formulated for optimizing the AB-type service 

design (including both the stop locations and the routing plan) in loop transit 

corridors under arbitrary heterogeneous demand. This design allows the stop 

spacing and the number of non-transfer stops between two consecutive transfer 

stops to vary over the corridor, and the numbers of skip-stop routes to be different 

between the two service directions. This work is an important extension of the 

previous work (Gu et al., 2016), which assumed uniformly distributed demand. 

The CA optimization problem was solved by partially decomposing the 

formulation by the local spatial coordinate (i.e., 𝑥 ∈ [0, 𝐿)), and optimizing the 

decision functions for each 𝑥 . The undecomposable parts pertaining to 
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backtracking trips were taken as given in the partial decomposition, and updated 

through an iterative process. Numerical tests demonstrate that our solution 

approach produced near-optimal solutions in very short times.  

By addressing the demand heterogeneity, this work also paves the way for 

real world application of CA models in AB-type transit corridor design. These 

models’ practicality is further enhanced by our proposed recipe for transforming 

the CA solutions to realistic transit service designs. 

The optimal AB-type design’s advantage over the conventional all-stop 

design was manifested in the large array of numerical experiments. Generalized 

cost savings of up to 8-9% were observed. Note that the real cost savings for bus 

corridors can be even larger, if the arrival times of some buses of different routes 

operating in the same direction are coordinated at transfer stops (please refer to Gu 

et al., 2016, for more details on such coordination strategy).  
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Chapter 3 Local-Express Designs  

In this chapter, a CA model is developed for optimizing the local-express service 

in a linear corridor. The model imbeds patron route choice behaviors through a 

user-optimal route assignment process. In addition to a single-mode system, such 

as a bus or rail system, this proposed model can also be applied to a bimodal 

system, consisting, for example, of both a local bus line and an express rail line. 

The model can jointly optimize stop locations and the routing plan under arbitrary 

heterogeneous demand patterns. By integrating the calculus of variations method 

into a three-stage iterative process, we show that this model can be efficiently 

solved to near-optimality. Numerical analysis also shows that the optimal local-

express design outperforms conventional all-stop design under various operating 

conditions. Specifically, a bimodal local-express system is shown to be more 

efficient than a single-mode system. 

Section 3.1 presents the formulations of the local-express design. Section 

3.2 describes the solution method of the proposed models. Section 3.3 provides 

numerical analysis. Section 3.4 summarizes local-express design models. 

3.1 The CA Formulation 

Consider a linear corridor of length 𝐿  (km). The demand is assumed to be 

exogenous, and its density is represented by a slow-varying, integrable function 

𝜆(𝑥, 𝑦)  (trips/km2/h), where  𝑥  and 𝑦  are origin and destination location 

coordinates of a trip, respectively; 𝑥, 𝑦 ∈ [0, 𝐿].  

For a corridor’s two directions, supposing the eastbound direction is from 

coordinate 0 to 𝐿 and the westbound direction is the opposite, as indicated by 

subscript 𝑑 ∈ {𝐸,𝑊}), the trip origin and destination densities (𝑃𝑑(𝑥), 𝑄𝑑(𝑥), 

trips/h/km) at any location 𝑥 of the corridor, are expressed as follows: 

(1)  Eastbound ( 𝑑 = 𝐸 ) trip origin density at location 𝑥  is 𝑃𝐸(𝑥) =

∫ 𝜆(𝑥, 𝑦)𝑑𝑦
𝐿

𝑦=𝑥
, which implies the sum of OD pairs originating from location 𝑥 to 

any locations to the east of 𝑥 in the corridor. Trip destination density at location 𝑥 
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is 𝑄𝐸(𝑥) = ∫ 𝜆(𝑦, 𝑥)𝑑𝑦
𝑥

𝑦=0
, which is the sum of OD pairs originating from the 

west to location 𝑥. 

(2) Similarly, westbound (𝑑 = 𝑊) trip origin and destination densities at 

location 𝑥 are 𝑃𝑊(𝑥) = ∫ 𝜆(𝑥, 𝑦)𝑑𝑦
𝑥

𝑦=0
, 𝑄𝑊(𝑥) = ∫ 𝜆(𝑦, 𝑥)𝑑𝑦

𝐿

𝑦=𝑥
, respectively. 

The local-express model involves two scalar decision variables, the 

headways 𝐻𝑙  and 𝐻𝑒  for the local and express transit, respectively; and two 

decision functions, i.e., the stop density functions 𝛿𝑙(𝑥) and 𝛿𝑒(𝑥) of location 𝑥 

for the local and express transit, respectively. We assume that local and express 

stops can be located at any point of the corridor; see in Figure 1.2. 𝛿𝑙(𝑥), 𝛿𝑒(𝑥) 

are continuous with slow changes in space. The headways are identical between 

the two directions during the study period (e.g., peak hours). We assume patrons 

always walk to the nearest stop to access the transit service and their route choice 

behaviors follow a deterministic manner: they always choose the route with the 

minimum travel time. We also assume that patrons always travel forward so that 

there are no backtracking trips in the system. 

We first define five route types in the corridor and present the patron’s 

route choice model in Section 3.1.1. Then Sections 3.1.2 and 3.1.3 summarize 

patron and agency cost components, respectively. Section 3.1.4 presents the 

problem formulation. For simplicity, the formulations in Section 3.1.1 are derived 

for the eastbound direction only. Similar models can easily be formulated for the 

other direction. 

3.1.1 Route assignment  

There are four groups of OD pairs according to the type of the origin and 

destination stops, i.e. whether they are local or express stops (see Figure 1.2). 

Group 1 includes trips with both origin and destination falling in the neighborhood 

of express stops; group 2 includes trips originating from local stops and ending at 

express stops; group 3 includes trips originating from express stops and ending at 

local stops; and group 4 includes trips both originating from and ending at local 

stops.  

Different route options are associated with the four OD pairs groups: 

apparently, patrons in Group 1 will choose the express line only; this route option 
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is denoted by 𝑒. Patrons in group 2 have two route options: i) they may choose 

local transit only (denoted by 𝑙) to complete their trips without a transfer; or ii) 

they could take the local line first and then transfer to the express line to reach 

their destination (denoted by 𝑙𝑒). Similarly, patrons in group 3 also have two route 

options: 𝑙 and 𝑒𝑙; the latter representing a route that takes the express line first and 

then transfers to the local line. Lastly, patrons in group 4 also have two route 

options: 𝑙 and 𝑙𝑒𝑙; the latter representing a route that takes the local line first, then 

transfers to the express line at the nearest express stop, and finally transfers back 

to the local line to complete the trip. In total, there are 5 route types of s, denoted 

by the set ℛ = {𝑒, 𝑙, 𝑙𝑒, 𝑒𝑙, 𝑙𝑒𝑙}. 

According to our assumption, patrons will always choose to take the fastest 

route. Note that the local-only route 𝑙  is available for all patrons. Under this 

assumption, route choice can be derived by comparing the travel time of another 

route option (𝑒𝑙, 𝑙𝑒, 𝑙𝑒𝑙) against that of 𝑙. 

Travel time is then derived for each route. A trip’s travel time consists of 

four parts: i) access and egress time by walking to/from the nearest transit stop; ii) 

the total waiting time at the origin stop and transfer stop(s) (if any); iii) the total 

in-vehicle travel time; and iv) the transfer penalty if the trip involves transfers. 

Detailed formulas for the travel times of the 5 route types are given below:  

𝑡(𝑒)
𝐸 (𝑥, 𝑦) = 𝜅(𝑥, 𝑦) +

𝐻𝑒

2
+ ∫

1

𝑉𝑒
𝐸(𝑢)

𝑑𝑢
𝑦

𝑥
      (3.1) 

𝑡(𝑙)
𝐸 (𝑥, 𝑦) = 𝜅(𝑥, 𝑦) +

𝐻𝑙

2
+ ∫

1

𝑉𝑙
𝐸(𝑢)

𝑑𝑢
𝑦

𝑥
      (3.2) 

𝑡(𝑙𝑒)
𝐸 (𝑥, 𝑦) = 𝜅(𝑥, 𝑦) +

𝐻𝑙+𝐻𝑒

2
+ (∫

1

𝑉𝑒
𝐸(𝑢)

𝑑𝑢
𝑦

𝑥
+ 𝛾𝐸(𝑥)) + 𝐶𝑡   (3.3) 

𝑡(𝑒𝑙)
𝐸 (𝑥, 𝑦) = 𝜅(𝑥, 𝑦) +

𝐻𝑙+𝐻𝑒

2
+ (∫

1

𝑉𝑒
𝐸(𝑢)

𝑑𝑢
𝑦

𝑥
+ 𝛾𝐸(𝑦)) + 𝐶𝑡   (3.4) 

𝑡(𝑙𝑒𝑙)
𝐸 (𝑥, 𝑦) = 𝜅(𝑥, 𝑦) +

2𝐻𝑙+𝐻𝑒

2
+ (∫

1

𝑉𝑒
𝐸(𝑢)

𝑑𝑢
𝑦

𝑥
+ 𝛾𝐸(𝑥) + 𝛾𝐸(𝑦)) + 2𝐶𝑡  (3.5) 

where 𝜅(𝑥, 𝑦) =
1

4𝑣𝑤
(

1

𝛿𝑙(𝑥)
+

1

𝛿𝑙(𝑦)
) is the (average) access and egress time; 𝑣𝑤 is 

the patrons’ average walking speed (km/h). The second terms in the right-hand-

side (RHS) of (3.1-3.5) are the average total waiting time at the origin and transfer 
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stops. The third terms in the RHS of (3.1-3.5) are the in-vehicle travel time, where 

𝑉𝑒
𝐸(𝑢) and 𝑉𝑙

𝐸(𝑢) are the commercial speeds at location 𝑢 of the express and local 

transit vehicles, respectively, which are given by: 

1

𝑉𝑒
𝐸(𝑢)

=
1

𝑣𝑒
+ 𝜏𝑒

0𝛿𝑒(𝑢) + max(𝐵𝑒
𝐸(𝑢)𝜏𝑒

𝑏 , 𝐴𝑒
𝐸(𝑢)𝜏𝑒

𝑎)𝐻𝑒  (3.6) 

1

𝑉𝑙
𝐸(𝑢)

=
1

𝑣𝑙
+ 𝜏𝑙

0𝛿𝑙(𝑢) + max(𝐵𝑙
𝐸(𝑢)𝜏𝑙

𝑏 , 𝐴𝑙
𝐸(𝑢)𝜏𝑙

𝑎)𝐻𝑙  (3.7) 

where for express transit vehicles, 𝑣𝑒 is the cruise speed; 𝜏𝑒
0 is the fixed delay per 

stop; 𝜏𝑒
𝑏  and 𝜏𝑒

𝑎  are the boarding and alighting delays per patron, respectively. 

Note that 𝐵𝑒
𝐸(𝑢) and 𝐴𝑒

𝐸(𝑢) are the boarding and alighting densities (including 

boardings and alightings occurring when the patrons make transfers) for the 

express line, respectively; and 𝐵𝑙
𝐸(𝑢) and 𝐴𝑙

𝐸(𝑢) are the boarding and alighting 

densities for the local line, respectively. These will be introduced in equation 

(3.11). 

The 𝑓𝐸(𝑥) in (3.3) and (3.5) and 𝛾𝐸(𝑦) in (3.4) and (3.5) represent the 

additional travel times experienced on the local line. Here the local-line travel 

distance on the origin side of a specific trip of route 𝑙𝑒 is approximated by its mean, 

i.e., 
1

2𝛿𝑒(𝑥)
. Hence, the additional travel time on the local line for route 𝑙𝑒 can be 

expressed as 𝛾𝐸(𝑥) =
1

2𝛿𝑒(𝑥)
(

1

𝑉𝑙
𝐸(𝑥)

−
1

𝑉𝑒
𝐸(𝑥)

) . The same additional travel time 

should be added on the destination side of route 𝑒𝑙 , and on both origin and 

destination sides of route 𝑙𝑒𝑙. 

The last terms in the RHS of (3.3-3.5) are the transfer penalties between 

local and express lines, where 𝐶𝑡 denotes the penalty per transfer (h/transfer). 

Therefore, for each of OD groups 2, 3, and 4, there exists a critical travel 

distance 𝐶(𝐼)
𝐸 (𝑥), ∀𝐼 ∈ {𝑙𝑒, 𝑒𝑙, 𝑙𝑒𝑙}, in which a patron in a corresponding OD group 

will choose route 𝐼 if the trip distance is greater than 𝐶(𝐼)
𝐸 (𝑥). Specifically, the 

following binary variable is defined:  

Ω(𝐼)
𝐸 (𝑥, 𝑦) = {

1 𝑦 − 𝑥 > 𝐶(𝐼)
𝐸 (𝑥)

0 𝑦 − 𝑥 ≤ 𝐶(𝐼)
𝐸 (𝑥)

, ∀𝐼 ∈ {𝑙𝑒, 𝑒𝑙, 𝑙𝑒𝑙}   (3.8) 
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where Ω(𝐼)
𝐸 (𝑥, 𝑦)  takes 1 if route 𝐼  is selected. For notation completeness, 

Ω(𝑒)
𝐸 (𝑥, 𝑦) = 1 is specified for all 𝑥 and 𝑦. The critical distances 𝐶(𝐼)

𝐸 (𝑥) can be 

solved from the following equations: 

𝑡(𝑙)
𝐸 (𝑥, 𝑥 + 𝐶(𝐼)

𝐸 (𝑥)) = 𝑡(𝐼)
𝐸 (𝑥, 𝑥 + 𝐶(𝐼)

𝐸 (𝑥)) , ∀𝐼 ∈ {𝑙𝑒, 𝑒𝑙, 𝑙𝑒𝑙}  (3.9) 

where  𝑡(𝑙)
𝐸  and 𝑡(𝐼)

𝐸 , ∀𝐼 ∈ {𝑙𝑒, 𝑒𝑙, 𝑙𝑒𝑙} are given by equations (3.2-3.5). 𝐶(𝐼)
𝐸 (𝑥) can 

be easily solved when the design functions/variables (𝛿𝑒(𝑥), 𝛿𝑙(𝑥), 𝐻𝑒 , 𝐻𝑙 ) are 

given. 

Each route’s demand, i.e. 𝜆(𝐼)(𝑥, 𝑦), ∀𝐼 ∈ ℛ , is then calculated by the 

following equations: 

𝜆(𝑒)
𝐸 (𝑥, 𝑦) = 𝜆(𝑥, 𝑦)𝑝𝑒(𝑥)𝑝𝑒(𝑦)Ω(𝑒)

𝐸 (𝑥, 𝑦)    (3.10a) 

𝜆(𝑙𝑒)
𝐸 (𝑥, 𝑦) = 𝜆(𝑥, 𝑦)𝑝𝑙(𝑥)𝑝𝑒(𝑦)Ω(𝑙𝑒)

𝐸 (𝑥, 𝑦)    (3.10b) 

𝜆(𝑒𝑙)
𝐸 (𝑥, 𝑦) = 𝜆(𝑥, 𝑦)𝑝𝑒(𝑥)𝑝𝑙(𝑦)Ω(𝑒𝑙)

𝐸 (𝑥, 𝑦)    (3.10c) 

𝜆(𝑙𝑒𝑙)
𝐸 (𝑥, 𝑦) = 𝜆(𝑥, 𝑦)𝑝𝑙(𝑥)𝑝𝑙(𝑦)Ω(𝑙𝑒𝑙)

𝐸 (𝑥, 𝑦)    (3.10d) 

𝜆(𝑙)
𝐸 (𝑥, 𝑦) = {

𝜆(𝑥, 𝑦) − ∑ 𝜆(𝐼)
𝐸 (𝑥, 𝑦)𝐼∈{𝑒,𝑙𝑒,𝑒𝑙,𝑙𝑒𝑙} , 𝑥 ≤ 𝑦

0, 𝑥 > 𝑦
   (3.10e) 

where 𝑝𝑒(𝑢) denotes the probability that location 𝑢 is closer to an express stop 

than a local one, i.e. 𝑝𝑒(𝑢) =
𝛿𝑒(𝑢)

𝛿𝑙(𝑢)
. Also, 𝑝𝑙(𝑢) = 1 − 𝑝𝑒(𝑢)  denotes the 

probability that 𝑢 is closer to a local stop. 

Based on the route demand, 𝜆(𝐼)
𝐸 (𝑥, 𝑦) , the trip origin and destination 

densities for each route can be obtained, 𝑃(𝐼)
𝐸 (𝑢) = ∫ 𝜆(𝐼)

𝐸 (𝑢, 𝑦)𝑑𝑦
𝐿

𝑦=𝑢
 and 

𝑄(𝐼)
𝐸 (𝑢) = ∫ 𝜆(𝐼)

𝐸 (𝑥, 𝑢)𝑑𝑥
𝑢

𝑥=0
. Then, the boarding and alighting densities (including 

transfer boarding) for local and express lines, 𝐵𝑙
𝐸(𝑥), 𝐴𝑙

𝐸(𝑥) and 𝐵𝑒
𝐸(𝑥), 𝐴𝑒

𝐸(𝑥), 

can be given by: 

𝐵𝑙
𝐸(𝑥) = 𝑃(𝑙)

𝐸 (𝑥) + 𝑃(𝑙𝑒)
𝐸 (𝑥) + 𝑃(𝑙𝑒𝑙)

𝐸 (𝑥) + 𝜆𝑒→𝑙
𝐸 (𝑥)   (3.11a) 

𝐴𝑙
𝐸(𝑥) = 𝑄(𝑙)

𝐸 (𝑥) + 𝑄(𝑒𝑙)
𝐸 (𝑥) + 𝑄(𝑙𝑒𝑙)

𝐸 (𝑥) + 𝜆𝑙→𝑒
𝐸 (𝑥)   (3.11b) 

𝐵𝑒
𝐸(𝑥) = 𝑃(𝑒)

𝐸 (𝑥) + 𝑃(𝑒𝑙)
𝐸 (𝑥) + 𝜆𝑙→𝑒

𝐸 (𝑥)    (3.11a) 
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𝐴𝑒
𝐸(𝑥) = 𝑄(𝑒)

𝐸 (𝑥) + 𝑄(𝑙𝑒)
𝐸 (𝑥) + 𝜆𝑒→𝑙

𝐸 (𝑥)    (3.11d) 

where 𝜆𝑒→𝑙
𝐸 (𝑥) and 𝜆𝑙→𝑒

𝐸 (𝑥) are the transfer densities at 𝑥 from express to local 

and from local to express lines, respectively. These are given by 𝜆𝑒→𝑙
𝐸 (𝑥) =

𝑄(𝑒𝑙)
𝐸 (𝑥) + 𝑄(𝑙𝑒𝑙)

𝐸 (𝑥) and 𝜆𝑙→𝑒
𝐸 (𝑥) = 𝑃(𝑙𝑒)

𝐸 (𝑥) + 𝑃(𝑙𝑒𝑙)
𝐸 (𝑥). 

 The above demand assignment process (3.8-3.11) will be iteratively 

updated until equilibrium is reached among all routes. 

3.1.2 Users cost metrics 

User metrics are measured in terms of travel time consisting of four components: 

(i) walking access and egress cost (𝑈𝐶𝑎), (ii)  waiting cost at transit stops (𝑈𝐶𝑤), 

(iii) in-vehicle travel cost (𝑈𝐶𝑖), and (iv) transfer penalty (𝑈𝐶𝑡).  

The total access and egress cost is the total walking time in the corridor, 

given by: 

𝑈𝐶𝑎 = ∫
1

4𝑣𝑤𝛿𝑙(𝑥)
(𝑃𝐸  (𝑥) + 𝑄𝐸(𝑥) + 𝑃𝑊 (𝑥) + 𝑄𝑊(𝑥))

𝐿

𝑥=0
𝑑𝑥 (3.12) 

where 𝑃𝐸  (𝑥) + 𝑄𝐸(𝑥) + 𝑃𝑊 (𝑥) + 𝑄𝑊(𝑥) is the total trip origin and destination 

density at location 𝑥 ; 𝑣𝑤  is patrons’ average walking speed; and 
1

4𝛿𝑙(𝑥)
 is the 

average walking distance to/from the closest stop at 𝑥. 

The total waiting cost, 𝑈𝐶𝑤, is the sum of the waiting times at the trips’ 

origin and transfer stops. This can be expressed as:  

𝑈𝐶𝑤 = ∫ (𝐵𝑙
𝐸(𝑥) + 𝐵𝑙

𝑊(𝑥))
𝐻𝑙

2
𝑑𝑥

𝐿

𝑥=0
+ ∫ (𝐵𝑒

𝐸(𝑥) + 𝐵𝑒
𝑊(𝑥))

𝐻𝑒

2
𝑑𝑥

𝐿

𝑥=0
 (3.13) 

where the two integrals are the collective waiting times at local and express lines, 

respectively; and 
𝐻𝑙

2
 and 

𝐻𝑒

2
 are the average waiting times for a local line vehicle 

and an express vehicle, respectively. Here it is assumed that: i) patrons’ arrivals at 

transit stops are uniformly distributed over the time; ii) headways between transit 

vehicles are deterministic (i.e. the stochastic variations are ignored); and iii) the 

two transit modes’ operations are not coordinated at the express stops.  

The in-vehicle travel cost, 𝑈𝐶𝑖 , is the sum of in-vehicle travel costs in 

express and local lines. This can be estimated by: 
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𝑈𝐶𝑖 = ∫ ∑ (
𝑜𝑒

𝑑(𝑥)

𝑉𝑒
𝑑(𝑥)

+
𝑜𝑙

𝑑(𝑥)

𝑉𝑙
𝑑(𝑥)

)𝑑∈{𝐸,𝑊} 𝑑𝑥
𝐿

𝑥=0
    (3.14) 

where 𝑜𝑒
𝑑(𝑥) and 𝑜𝑙

𝑑(𝑥) (trips/h), 𝑑 ∈ {𝐸,𝑊} are the on-board patron flows on the 

express and local lines, respectively, which are given by: 

𝑜𝑙
𝑑(𝑥) = ∫ ∫ 𝜆(𝑙)

𝑑 (𝑢, 𝑦)𝑑𝑢𝑑𝑦
𝐿

𝑦=𝑥

𝑥

𝑢=0
+

𝜆𝑡
𝑑(𝑥)

2𝛿𝑒(𝑥)
      (3.15) 

𝑜𝑒
𝑑(𝑥) = 𝑜𝑑(𝑥) − 𝑜𝑙

𝑑(𝑥)        (3.16) 

The second term in the RHS of (3.15) accounts for the transfer patron flow at 𝑥, 

in which 𝜆𝑡
𝑑(𝑥) ≡ 𝜆𝑒→𝑙

𝑑 (𝑥) + 𝜆𝑙→𝑒
𝑑 (𝑥) denotes the total transfer demand density. 

In (3.16), 𝑜𝑑(𝑥) is the overall on-board patron flow at 𝑥 for direction 𝑑, given by 

𝑜𝐸(𝑥) = ∫ ∫ 𝜆(𝑢, 𝑦)𝑑𝑢𝑑𝑦
𝐿

𝑦=𝑥

𝑥

𝑢=0
 and 𝑜𝑊(𝑥) = ∫ ∫ 𝜆(𝑢, 𝑦)𝑑𝑢𝑑𝑦

𝑥

𝑦=0

𝐿

𝑢=𝑥
. 

Finally, the transfer penalty, 𝑈𝐶𝑡, depends on the number of transfers of 

the five route types s, and is given by: 

𝑈𝐶𝑡 = ∫ (𝜆𝑡
𝐸(𝑥) + 𝜆𝑡

𝑊(𝑥))𝐶𝑡𝑑𝑥
𝐿

𝑥=0
     (3.17) 

3.1.3 Agency cost metrics 

The agency cost consists of: i) distance-based vehicle operating cost (for example 

fuel cost), 𝐴𝐶𝐾; ii) time-based vehicle operating cost (such as amortized vehicle 

purchase cost and staff wages), 𝐴𝐶𝐻; iii) amortized line infrastructure cost (for 

example busway or rail tracks), 𝐴𝐶𝐼; and iv) the amortized stop infrastructure cost, 

𝐴𝐶𝑆. These are formulated as: 

𝐴𝐶𝐾 =
𝜋𝑣

𝑙

𝜇

2𝐿

𝐻𝑙
+

𝜋𝑣
𝑒

𝜇

2𝐿

𝐻𝑒
       (3.18) 

𝐴𝐶𝐻 =
𝜋𝑚

𝑙

𝜇𝐻𝑙
∫ (

1

𝑉𝑙
𝐸(𝑥)

+
1

𝑉𝑙
𝑊(𝑥)

) 𝑑𝑥
𝐿

0
+

𝜋𝑚
𝑒

𝜇𝐻𝑒
∫ (

1

𝑉𝑒
𝐸(𝑥)

+
1

𝑉𝑒
𝑊(𝑥)

) 𝑑𝑥
𝐿

0
 (3.19) 

𝐴𝐶𝐼 =
2𝜋𝑖

𝑙𝐿

𝜇
+

2𝜋𝑖
𝑒𝐿

𝜇
         (3.20) 

𝐴𝐶𝑆 =
𝜋𝑠

𝑙

𝜇
∫ 𝛿𝑙(𝑥)𝑑𝑥

𝐿

0
+

𝜋𝑠
𝑒

𝜇
∫ 𝛿𝑒(𝑥)𝑑𝑥

𝐿

0
     (3.21) 

where 𝜇  is the value of time ($/h); 𝜋𝑣
𝑙  and 𝜋𝑚

𝑙  are the unit operating costs per 

vehicle-km and per vehicle-hour of local transit service for each service hour, 

respectively; 𝜋𝑖
𝑙  and 𝜋𝑠

𝑙  are the unit infrastructure construction and maintenance 



55 

 

costs per km of local line and per local stop, respectively, amortized for each 

service hour of local line; and similarly, 𝜋𝑣
𝑒 , 𝜋𝑚

𝑒 , 𝜋𝑖
𝑒  and 𝜋𝑠

𝑒  denote the express 

service’s operating and infrastructure cost coefficients .   

3.1.4 Problem formulation 

The generalized cost optimization problem is then formulated as: 

min𝑆𝐶 = 𝑈𝐶𝑎 + 𝑈𝐶𝑤 + 𝑈𝐶𝑖 + 𝑈𝐶𝑖 + 𝐴𝐶𝐾 + 𝐴𝐶𝐻 + 𝐴𝐶𝐼 + 𝐴𝐶𝑆 (3.22a) 

subject to: 

𝐻𝑙 ≥ 𝐻𝑙
𝑚𝑖𝑛        (3.22b) 

𝐻𝑒 ≥ 𝐻𝑒
𝑚𝑖𝑛        (3.22c) 

𝐾𝑙

𝐻𝑙
≥ max

x
{𝑜𝑙

𝐸(𝑥), 𝑜𝑙
𝑊(𝑥)}       (3.22d) 

𝐾𝑒

𝐻𝑒
≥ max

x
{𝑜𝑒

𝐸(𝑥), 𝑜𝑒
𝑊(𝑥)}       (3.22e) 

𝛿𝑒(𝑥) ≤ 𝛿𝑙(𝑥), ∀𝑥 ∈ (0, 𝐿]      (3.22f) 

𝛿𝑒(𝑥), 𝛿𝑙(𝑥) ≥ 0, ∀𝑥 ∈ (0, 𝐿]      (3.22g) 

where the cost components in the objective function (3.22a) are given by equations 

(3.12-3.21); 𝐻𝑙
𝑚𝑖𝑛  and 𝐻𝑒

𝑚𝑖𝑛  are the local and express lines’ minimum service 

headways, respectively; 𝐾𝑙 and 𝐾𝑒 are the local and express vehicles’ passenger-

carrying capacity , respectively. Constraints (3.22d-e) ensure the local and express 

vehicles’ onboard patron numbers never exceed their corresponding vehicle 

capacities. Constraints (3.22f) indicate local stops are more densely deployed than 

express stops.  

3.2 Solution Method 

Section 3.2.1 presents the solution approach to the local-express service model. 

Section 3.2.2 furnishes a recipe for converting the optimal CA model solution to a 

real local-express design. 
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3.2.1 Solution to the local-express model  

The optimization problem (3.22) has two scalar decision variables 𝐻𝑙 and 𝐻𝑒 and 

two decision functions 𝛿𝑒(𝑥) and 𝛿𝑙(𝑥). The problem can be solved via calculus 

of variations since the part of the objective function (3.22a) related to 𝛿𝑒(𝑥) and 

𝛿𝑙(𝑥) is separable by 𝑥.  

By inspecting the cost components (3.12-3.21), the objective function 

(3.22a) can be expressed as the sum of two parts: the first part being only related 

to the scalar decision variables 𝐻𝑙 and 𝐻𝑒, and the second part being an integral 

with respect to 𝑥 over (0, 𝐿], whose integrand is related to 𝛿𝑒(𝑥) and 𝛿𝑙(𝑥). The 

detail is presented as follows: 

𝑆𝐶 = 𝑇(𝐻𝑙, 𝐻𝑒) + ∫ 𝐺(𝐻𝑙, 𝐻𝑒 , 𝛿𝑒(𝑥), 𝛿𝑙(𝑥), 𝑥)𝑑𝑥
𝐿

𝑥=0
   (3.23) 

where,  

𝑇(𝐻𝑙, 𝐻𝑒) ≡
𝜋𝑣

𝑙

𝜇

2𝐿

𝐻𝑙
+

𝜋𝑣
𝑒

𝜇

2𝐿

𝐻𝑒
+

2𝜋𝑖
𝑙𝐿

𝜇
+

2𝜋𝑖
𝑒𝐿

𝜇
     (3.24) 

𝐺(𝐻𝑙, 𝐻𝑒 , 𝛿𝑒(𝑥), 𝛿𝑙(𝑥), 𝑥) ≡ ∑ [
𝑃𝑑(𝑥)+𝑄𝑑(𝑥)

4𝑣𝑤𝛿𝑙(𝑥)
+

𝐵𝑙
𝑑(𝑥)𝐻𝑙

2
+

𝐵𝑒
𝑑(𝑥)𝐻𝑒

2
+𝑑∈{𝐸,𝑊}

𝑜𝑒
𝑑(𝑥)

𝑉𝑒
𝑑(𝑥)

+
𝑜𝑙

𝑑(𝑥)

𝑉𝑙
𝑑(𝑥)

+ 𝜆𝑡
𝑑(𝑥)𝐶𝑡 +

𝜋𝑚
𝑙

𝜇𝐻𝑙

1

𝑉𝑙
𝑑(𝑥)

+
𝜋𝑚

𝑒

𝜇𝐻𝑒

1

𝑉𝑒
𝑑(𝑥)

+
𝜋𝑠

𝑙

𝜇
𝛿𝑙(𝑥) +

𝜋𝑠
𝑒

𝜇
𝛿𝑒(𝑥)] (3.25) 

Note in (3.25) that values of 𝐵𝑙
𝑑(𝑥), 𝐵𝑒

𝑑(𝑥), 𝑜𝑒
𝑑(𝑥), 𝑜𝑙

𝑑(𝑥), 𝑉𝑒
𝑑(𝑥), 𝑉𝑙

𝑑(𝑥) 

and  𝜆𝑡
𝑑(𝑥) depend on the demand assignment results, which are related to the 

decision variables/functions 𝐻𝑙 , 𝐻𝑒 , 𝛿𝑒(𝑥)  and 𝛿𝑙(𝑥) . Hence, a three-stage 

iterative algorithm is proposed next to solve the problem. 

In the first stage, the demand assignment is conducted when the design is 

fixed by the given values of 𝐻𝑙, 𝐻𝑒 , 𝛿𝑒(𝑥) and 𝛿𝑙(𝑥). The demand assignment is 

also processed via an iterative method. Assuming an initial split of demand for the 

five routes, represented as {𝜆(𝐼)
𝑑 (𝑥, 𝑦)(0)|𝐼 ∈ ℛ, 𝑑 ∈ {𝐸,𝑊}}  from origin 𝑥  to 

destination 𝑦 , then it is easy to calculate 𝐵𝑙
𝑑(𝑥), 𝐵𝑒

𝑑(𝑥), 𝑉𝑒
𝑑(𝑥), 𝑉𝑙

𝑑(𝑥), ∀𝑑 ∈

{𝐸,𝑊} from (3.11a-d) and (3.6-3.7), and 𝑡(𝐼)
𝑑 , Ω(𝐼)

𝑑 (𝑥, 𝑦), ∀𝐼 ∈ ℛ, 𝑑 ∈ {𝐸,𝑊} from 

(3.1-3.5) and (3.8-3.9). Hence, the new demand split �̅�(𝐼)
𝑑 (𝑥, 𝑦) can be obtained by 

(3.10a-e). After that, the demand split is updated using the method of successive 

averages (MSA) (Sheffi, 1985), specifically: 
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𝜆(𝐼)
𝑑 (𝑥, 𝑦)(𝑛) = 𝜆(𝐼)

𝑑 (𝑥, 𝑦)(𝑛−1) +
�̅�(𝐼)

𝑑 (𝑥,𝑦)−𝜆(𝐼)
𝑑 (𝑥,𝑦)(𝑛−1)

𝑛
   (3.26) 

where 𝑛 is the time of the present iteration. This process is repeated until the 

assignment result converges.  

In the second stage, 𝐻𝑙  and 𝐻𝑒  are fixed and the first stage’s demand 

assignment results are used to optimize 𝑆𝐶 with respect to 𝛿𝑒(𝑥) and 𝛿𝑙(𝑥). Then 

the first-order conditions of 𝑆𝐶 with respect to 𝛿𝑒(𝑥), 𝛿𝑙(𝑥) are used to obtain the 

following optimal  𝛿𝑒
∗(𝑥), 𝛿𝑙

∗(𝑥): 

𝛿𝑒
∗(𝑥) = √

∑
𝜆𝑡
𝑑(𝑥)

2
(

1

𝑉𝑙
𝑑−

1

𝑣𝑒
−max(𝐵𝑒

𝑑(𝑢)𝜏𝑒
𝑏,𝐴𝑒

𝑑(𝑢)𝜏𝑒
𝑎)𝐻𝑒)𝑑∈{𝐸,𝑤}

𝜋𝑠
𝑒

𝜇
+𝜏𝑒

0[
2𝜋𝑚

𝑒

𝜇𝐻𝑒
+𝑜𝐸(𝑥)+𝑜𝑊(x)−∫ (∫ 𝜆𝑙

𝐸(𝑢,𝑦)𝑑𝑦
𝐿
𝑦=𝑥 +∫ 𝜆𝑙

𝑊(𝑦,𝑢)𝑑𝑦
𝐿
𝑦=𝑥 )𝑑𝑢

𝑥
𝑢=0 ]

 (3.27) 

𝛿𝑙
∗(𝑥) =

1

2√𝑣𝑤 √
𝑃𝐸 (𝑥)+𝑄𝐸(𝑥)+𝑃𝑊 (𝑥)+𝑄𝑊(𝑥)

𝜋𝑠
𝑙

𝜇
+𝜏𝑙

0(
2𝜋𝑚

𝑙

𝜇𝐻𝑙
+𝑜𝑙

𝐸(𝑥)+𝑜𝑙
𝑊(𝑥))

     (3.28) 

In the last stage, 𝐻𝑙 and 𝐻𝑒 are optimized based on the previous two stages’ 

results. The first order conditions of 𝑆𝐶 with respect to 𝐻𝑙 and 𝐻𝑒 are inspected, 

which generate the unconstrained optimal �̃�𝑒 , �̃�𝑙 as below. 

�̃�𝑒 = √

2𝜋𝑣
𝑒𝐿

𝜇
+

2𝜋𝑚
𝑒

𝜇
∫ (

1

𝑣𝑒
+𝜏𝑒

0𝛿𝑒(𝑥))𝑑𝑥
𝐿
0

∫ ∑ (
𝐵𝑒

𝑑(𝑥)

2
+𝑜𝑒

𝑑(𝑥)max(𝐵𝑒
𝑑(𝑢)𝜏𝑒

𝑏,𝐴𝑒
𝑑(𝑢)𝜏𝑒

𝑎))𝑑∈{𝐸,𝑊} 𝑑𝑥
𝐿
𝑥=0

  (3.29) 

�̃�𝑙 = √

2𝜋𝑣
𝑙 𝐿

𝜇
+

2𝜋𝑚
𝑙

𝜇
∫ (

1

𝑣𝑙
+𝜏𝑙

0𝛿𝑙(𝑥))𝑑𝑥
𝐿
0

∫ ∑ (
𝐵𝑙

𝑑(𝑥)

2
+𝑜𝑙

𝑑(𝑥)max(𝐵𝑙
𝑑(𝑢)𝜏𝑙

𝑏,𝐴𝑙
𝑑(𝑢)𝜏𝑙

𝑎))𝑑∈{𝐸,𝑊} 𝑑𝑥
𝐿
𝑥=0

  (3.30) 

Combing constraints (3.22b-e), the optimal 𝐻𝑒
∗, 𝐻𝑙

∗ are finally given by: 

𝐻𝑒
∗ = mid(𝐻𝑒

𝑚𝑖𝑛, �̃�𝑒 ,
𝐾

max
d∈{E,w},x∈[0,L]

{𝑜𝑒
𝑑(𝑥)} 

)    (3.31) 

𝐻𝑙
∗ = mid(𝐻𝑙

𝑚𝑖𝑛, �̃�𝑙 ,
𝐾

max
d∈{E,w},x∈[0,L]

{𝑜𝑙
𝑑(𝑥)} 

)    (3.32) 

where function mid(∙) returns the middle value of the three arguments. Note that 

the values of 𝐵𝑙
𝑑(𝑥), 𝐵𝑒

𝑑(𝑥), 𝑜𝑒
𝑑(𝑥), 𝑜𝑙

𝑑(𝑥), 𝑉𝑒
𝑑(𝑥), 𝑉𝑙

𝑑(𝑥)  and 𝜆𝑡
𝑑(𝑥)  should be 
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updated between the stages. This three-stage algorithm runs by iteration until 

convergence is reached. The algorithm is summarized as follows: 

Step 1. Discretize the continuous range of 𝑥, (0, 𝐿], into 𝑚 equal-sized 

intervals, each of length ∆𝑥 ≡
𝐿

𝑚
. Denote set 𝒞  as 𝒞 ≡

{𝑥𝑗 ≡ (𝑗 −
1

2
) ∆𝑥|𝑗 = 1,2, … ,𝑚} . 

Step 2: Set feasible initial values for  𝐻𝑙, 𝐻𝑒 , 𝛿𝑒(𝑥) and 𝛿𝑙(𝑥). Initialize the 

demand assignment by 𝜆(𝐼)
𝐸 (𝑥, 𝑦)(0) = {

𝜆(𝑥,𝑦)

5
, 𝑥 < 𝑦

    0     , 𝑥 ≥ 𝑦
, 𝜆(𝐼)

𝑊 (𝑥, 𝑦)(0) =

{
𝜆(𝑥,𝑦)

5
, 𝑥 > 𝑦

    0     , 𝑥 ≤ 𝑦
, ∀𝐼 ∈ ℛ.  

Step 3: Conduct demand assignment using (3.26) for each origin and 

destination pair (𝑥, 𝑦) ∈ 𝒞 × 𝒞 . Repeat the demand assignment process until 

|
𝜆(𝐼)

𝑑 (𝑥,𝑦)(𝑛)−𝜆(𝐼)
𝑑 (𝑥,𝑦)(𝑛−1)

𝜆(𝐼)
𝑑 (𝑥,𝑦)(𝑛−1) | ≤ 𝜀 is satisfied for each (𝑥, 𝑦), where 𝜀 is a pre-specified 

tolerance (e.g., 𝜀 = 0.001 ).  

Step 4: Update the values of 𝐵𝑙
𝑑(𝑥), 𝐵𝑒

𝑑(𝑥), 𝑜𝑒
𝑑(𝑥), 𝑜𝑙

𝑑(𝑥), 𝑉𝑒
𝑑(𝑥), 𝑉𝑙

𝑑(𝑥) 

and  𝜆𝑡
𝑑(𝑥) for each 𝑥 ∈ 𝒞, Find the optimal 𝛿𝑒

∗(𝑥) and 𝛿𝑙
∗(𝑥) using (3.27-3.28), 

and then update 𝐵𝑙
𝑑(𝑥), 𝐵𝑒

𝑑(𝑥), 𝑜𝑒
𝑑(𝑥), 𝑜𝑙

𝑑(𝑥), 𝑉𝑒
𝑑(𝑥), 𝑉𝑙

𝑑(𝑥) and  𝜆𝑡
𝑑(𝑥) again.  

Step 5: Find the optimal 𝐻𝑙
∗ and 𝐻𝑒

∗ using (3.31-3.32). 

Step 6: Repeat steps (3-5) until |
𝐻𝑒−𝐻𝑒

∗

𝐻𝑒
| + |

𝐻𝑙−𝐻𝑙
∗

𝐻𝑙
| ≤ 𝜀  and |

𝛿𝑒(𝑥)−𝛿𝑒
∗(𝑥)

𝛿𝑒(𝑥)
| +

 |
𝛿𝑙(𝑥)−𝛿𝑙

∗(𝑥)

𝛿𝑙(𝑥)
| ≤ 𝜀 for each 𝑥 ∈ 𝒞. 

3.2.2 Generating the exact stop locations 

The solution obtained using the above algorithm consists of arrays of discrete point 

values on the continuous functions 𝛿𝑒(𝑥) and 𝛿𝑙(𝑥). A two-step recipe is proposed 

below to generate the exact locations for local stops and express stops. In Step 1, 

local stop locations are generated from the optimal 𝛿𝑙(𝑥) using a method similar 

to that proposed by Wirasinghe and Ghoneim (1981). In Step 2, the express stops 

are selected from the local stop set generated in Step 1 using the optimal 𝛿𝑒(𝑥).  
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Step 1. Place one stop at every 𝑥 where ∫
𝑑𝑢

𝛿𝑙(𝑢)
−

1

2

𝑥

𝑢=0
 is an integer. Denote 

the resulting stop location plan as 𝛀 = {𝑥𝑖
𝑆: 𝑖 = 1, 2, … ,𝑁𝑆}, where 𝑁𝑆  denotes 

the number of stops, and 𝑥𝑖
𝑆 the location of the 𝑖-th stop satisfying 0 = 𝑥1

𝑆 < 𝑥2
𝑆 <

⋯ < 𝑥
𝑁𝑆
𝑆 < 𝐿. 

Step 2. Mark 𝑥𝑖
𝑆 ∈ 𝛀 as an express stop if ∫

𝑑𝑢

𝛿𝑒(𝑢)
−

1

2

𝑥𝑖
𝑆

𝑢=0
 is closest to an 

integer. 

After generating the exact stop locations, the local-express system’s 

generalized cost is recalculated. A cost model similar to Ulusoy et al.’s (2010) and 

Leiva et al.’s (2010) is again used for this purpose. 

3.3 Numerical Analysis 

Section 3.3.1 describes the demand patterns and other parameter values used in 

our numerical experiments. Section 3.3.2 examines an optimal local-express 

service design under a specific demand pattern, reporting the effectiveness of our 

proposed model and solution algorithm. Section 2.3.3 presents parametric analysis 

of local-express designs under different demand patterns.  

3.3.1 Demand patterns and parameter values  

The following demand density function is considered: 

𝜆(𝑥, 𝑦) =
1

2
[𝑞1(𝑥)𝑞2(𝑦) + 𝑞2(𝑥)𝑞1(𝑦)]Λ     (3.33) 

where 𝑞1(⋅)  and 𝑞2(⋅)  are assumed to be truncated normal PDFs denoted by  

𝑇𝑟𝒩(0, 𝜎2, 0, 𝐿) and 𝑇𝑟𝒩(𝐿, 𝜎2, 0, 𝐿), respectively; i.e. normal distributions with 

mean 0 and 𝐿, respectively, variance 𝜎2, and truncated by interval [0, 𝐿]. The Λ is 

the total demand of the corridor. Note that this form of demand density function 

𝜆(𝑥, 𝑦) is symmetric between the two directions.  Similar demand density function 

form was also employed in Vaughan and Cousins (1977). 

 In the numerical experiments presented in the following sections, it is 

specified that 𝜎 ∈ {∞, 10,5} (km) represents three levels of demand heterogeneity, 

specifically: no spatial variation (uniform distribution with 𝜎 = ∞  km), low 

spatial variation (𝜎 = 10 km), and high spatial variation (𝜎 = 5 km). Figures 3.1a 
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and b plot the trip origin and destination densities for eastbound trips under low 

spatial variation (𝜎 = 10 km) and high spatial variation (𝜎 = 5 km), respectively, 

in a 20-km corridor. The average trip density for each figure is 
Λ

𝐿
= 250 trips/h/km, 

and the average trip distance for the three levels of demand heterogeneity is 6.7 

km (𝜎 = ∞ km), 7.6 km (𝜎 = 10 km) and 12.1 km (𝜎 = 5 km), respectively. The 

demand curves in the westbound direction are symmetric to the eastbound. 

  

(a) Low-spatially-varied demand 

(𝜎 = 10 km) 

(b) High-spatially-varied demand 

(𝝈 = 𝟓 km) 

Figure 3.1 Trip origin and destination densities along the corridor for the 

eastbound direction 

Three typical transit modes in a 20-km corridor are considered in the 

following sections: bus, Bus Rapid Transit (BRT), and rail. Table 3.1 presents 

these three transit modes’ costs and operational parameters. Parameter values of 

𝜋𝑣, 𝜋𝑚, 𝜋𝑖 , 𝜋𝑠 , 𝑣, 𝐾 and 𝐻𝑚𝑖𝑛 for bus and rail systems are the same as in Table 2.1. 

Three single-mode local-express systems are examined: bus-bus, BRT-BRT, and 

rail-rail. In each of these systems the local and express lines are both served by the 

same transit mode. In addition, two bimodal local-express systems, namely, bus-

BRT and bus-rail, with bus always serving local lines. We examine the average 

demand density 
Λ

𝐿
 varying between 100 trips/h/km and 1100 trips/h/km; and two 

values of time: 𝜇 = 5 $/h for a low-wage city, and 𝜇 = 20 $/h for a high-wage 

city. A low walking speed (𝑣𝑤 = 2 km/h) is assumed to account for signal delays 

and the inconvenience of walking; 𝐶𝑡 is assumed to be 1 min/transfer (𝐶𝑡 = 1.5 

min/transfer in the bus-rail system).  

For our solution algorithm, the discretization interval ∆𝑥 is 0.5 km, and the 

convergence tolerance 𝜀 = 0.001. 
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Table 3.1 Cost and operational parameters for bus, BRT and rail 

 
𝜋𝑣 
($/veh∙km) 

𝜋𝑚 ($/veh∙h) 𝜋𝑖 ($/km/h) 𝜋𝑠 ($/stop/h) 𝜏0 (sec) 

BRT 0.66 3.81+4𝜇 162+5.4𝜇 4.2+0.14𝜇 30 

 𝜏𝑏 (sec) 𝜏𝑎 (sec) 𝑣 (km/h) 
𝐾 
(patrons/veh) 

𝐻𝑚𝑖𝑛 (min) 

BRT 1 1 40 150 1 

 𝜏𝑏 (sec) 𝜏𝑎 (sec) 𝜏0 (sec) 

Bus 2 1 30 

Rail 0 0 45 

 

3.3.2 Optimal design of the local-express service 

The optimal design for a high-wage city (𝜇 = 20 $/h) with a high spatially-varied 

demand pattern ( 𝜎 = 5  km) and a demand density (
Λ

𝐿
= 250  trips/h/km) is 

examined first. The optimal design results are summarized in Table 3.2. For 

comparison, all-stop service for the three transit modes (namely all-stop-bus, all-

stop-BRT, and all-stop-rail) is included in the analysis. Note that BRT-BRT and 

rail-rail systems have also been tested but are not reported here. These two systems 

need an additional bus lane or rail track, and thus their costs appear to be always 

higher than other systems.  

Table 3.2 illustrates that: i) for the single-mode bus system, the local-

express service outperforms the conventional all-stop service by saving 100% ×

(1 − 50.29/52.69) = 4.6% system cost. ii) the bimodal bus-BRT system also 

performs better than the all-stop-bus system (producing even higher cost saving, 

i.e., 100% × (1 − 47.44/52.69) = 10.0%), but its performance is only slightly 

superior to the all-stop-BRT system. iii) the bus-rail system cannot compete with 

the all-stop-bus system due to high agency costs arising from the construction and 

operation of rail transit; however, a comparison of bus-rail system with all-stop-

rail system shows savings in both user and agency costs. In addition, the user cost 

saving in bimodal systems (bus-BRT and bus-rail) is huge. 

Note in Table 3.2 that cost metrics are computed under the converted real 

design (see Section 3.2.2). Examination shows that estimation errors between CA 
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model results and that of real design remain less than 1% for all the numerical 

scenarios (including those in the following sections). 

Table 3.2 System characteristics under the optimal design solution 

Modes 
All-stop 

bus 

All-stop 

BRT 

All-stop 

rail 
Bus-bus Bus-BRT Bus-rail 

𝐻𝑒 (min) / 2.00 4.83 1.89 2.00 4.55 

𝐻𝑙 (min) 1.82 / / 2.67 2.76 2.53 

Avg. 𝛿𝑒(#/km) / 1.78 1.02 0.60 0.70 0.40 

Avg. 𝛿𝑙(#/km) 1.84 / / 3.50 3.80 3.20 

User cost, 

(min/patron)  49.01   37.87   36.51   44.14   35.27   31.58  

Agency cost 

(min/patron)  3.68   9.71   32.18   6.15   12.17   30.99  

Generalized cost 

(min/patron)  52.69   47.58   68.68   50.29   47.44   64.20  

 

3.3.3 Parametric analysis 

In this section, parametric analysis of the local-express design is conducted under 

three levels of demand heterogeneity (i.e. 𝜎 ∈ {∞, 10,5} km), three transit systems 

(i.e. bus-bus, bus-BRT, bus-rail), two time values (i.e. 𝜇 = 5 $/h and 𝜇 = 20 $/h), 

and various average demand densities: 
𝛬

𝐿
∈ {100, 200, … ,1100} trips/h/km. For 

comparison, the costs of all-stop service for bus, BRT and rail system are also 

computed. 

Figures 3.2a-c depict the cost savings of local-express service against all-

stop service for the three transit systems in a high-wage city. Each figure shows 

three curves of cost saving against demand density. Specifically, the green curves 

with dotted markers, blue curves with triangular markers, and red curves with 

square markers represent the cost savings under uniform, low-spatially-varied, and 

high-spatially-varied demands, respectively. The cost savings are gauged by 

(1 −
𝑆𝐶𝑏𝑢𝑠−𝑏𝑢𝑠

𝐴𝐶𝑏𝑢𝑠
) × 100% for the bus-bus system, (1 −

𝑆𝐶𝑏𝑢𝑠−𝐵𝑅𝑇

min{𝐴𝐶𝑏𝑢𝑠,𝐴𝐶𝐵𝑅𝑇}
)× 100% 

for the bus-BRT system, and (1 −
𝑆𝐶𝑏𝑢𝑠−𝑟𝑎𝑖𝑙

min{𝐴𝐶𝑏𝑢𝑠 ,𝐴𝐶𝑟𝑎𝑖𝑙}
)× 100%  for the bus-rail 

system, where 𝑆𝐶𝑏𝑢𝑠−𝑏𝑢𝑠 , 𝑆𝐶𝑏𝑢𝑠−𝐵𝑅𝑇 , 𝑆𝐶𝑏𝑢𝑠−𝑟𝑎𝑖𝑙 , 𝐴𝐶𝑏𝑢𝑠 , 𝐴𝐶𝐵𝑅𝑇 , and 𝐴𝐶𝑟𝑎𝑖𝑙  are 
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the generalized costs for bus-bus, bus-BRT, bus-rail, all-stop-bus, all-stop-BRT, 

and all-stop-rail systems, respectively.  

As we can see in Figure 3.2a, bus-bus system outperforms all-stop-bus 

system when the average demand density is greater than 100 trips/km/h. The cost 

saving grows with the demand density. Comparison between the three curves 

indicates that higher demand heterogeneity entails greater cost savings. Note that 

the red and blue curves end earlier than the green one since the capacity constraint 

is violated for the all-stop-bus system when demand is high. 

 
(a) bus-bus versus all-stop-bus 

 
(b) bus-BRT versus all-stop-bus and all-stop-BRT 
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(c) bus-rail versus all-stop-bus and all-stop-rail 

Figure 3.2 Comparison results of different systems in a high-wage city (𝜇 =

20$/h) 

Figure 3.2b shows the cost saving of bus-BRT system against all-stop-bus 

system or all-stop-BRT system, whichever has the lower cost. When demand 

density is low, the all-stop-bus system has the lowest cost among the three systems. 

But the bimodal system outperforms single-mode all-stop systems for high-varied 

demand with density greater than 300 trips/km/h, and for low-varied and uniform 

demands with density greater than 400 trips/km/h. It is also observed that the cost 

savings increase with demand density and heterogeneity. 

Similar findings are observed for bus-rail system in Figure 3.2c. Since rail 

system has very high agency cost, the threshold demand densities for the bimodal 

system to win are much higher than those in the cases of bus-bus and bus-BRT 

systems. Furthermore, the cost savings in Figure 3.2c are less sensitive to demand 

density and heterogeneity.  
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(a) In a high-wage city (𝜇 = 20$/h) 

 

(b) In a low-wage city (𝜇 = 5$/h) 

Figure 3.3 The lowest-cost transit systems under high-varied demand 

Figure 3.3a-b compare the costs of different all-stop and local-express 

designs under high-varied demand in high- and low-wage cities, respectively. The 

thin solid, dashed, and dotted curves in either figure illustrate the generalized costs 

for different systems. The red thick curve in either figure represent the lower 

envelope of the thin curves, highlighting the lowest-cost systems under various 

demand densities. In a high-wage city shown by Figure 3.3a, bimodal systems 

(bus-BRT and bus-rail) win for medium to high demand densities, while all-stop 

systems (bus and BRT) triumph only for small demand densities. For a low-wage 
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city shown in Figure 3.3b, a similar trend is observed, except that now bus-bus 

system wins for medium demands, and bus-BRT system wins for high demands. 

3.4 Summary of the Local-Express Design 

This chapter presents CA models for optimizing local-express service design 

(including both the stop locations and the routing plan) in linear corridors under 

arbitrary heterogeneous demand. The design allows the stop spacing of local lines 

and express lines to vary over the corridor, and the transit mode can be different 

between the local and express lines. With an embedded route assignment process, 

our proposed model can explicitly account for patrons’ choices between different 

route options. 

The CA model was solved by partially decomposing the formulation by 

the local spatial coordinate𝑥, and optimizing the decision functions for each 𝑥. The 

undecomposable parts and the route assignment equalibrium are processed 

through iterative methods. Consequently a three-stage iterative algorithm is 

proposed to solve the model and also a discretization recipe is put forward to 

convert the CA solution to a real local-express design. 

The superiority of local-express service over all-stop service is 

demonstrated by a large number of case studies. Results reveal that, compared to 

all-stop service, local-express service can ideally achieve generalized cost savings 

of over 8%. It is also shown that with the rise of demand densities and 

heterogeneity, bimodal local-express (bus-BRT and bus-rail) systems bring more 

benefits than single-mode systems. 
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Chapter 4 A More General Skip-Stop Design  

This chapter presents the optimal design of a more general skip-stop service. In 

this general service different routes’ non-transfer stops can be distributed 

arbitrarily along the line. A novel modelling method for optimizing the joint design 

of stop locations and routing plan has been developed, combining certain features 

of both discrete models and CA models. This novel model uses a discrete OD 

matrix as input, and specifies the stop density functions instead of the individual 

stop locations as decision variables. A heuristic algorithm is proposed to solve the 

problem. A relaxed problem has also been developed: i) to provide an initial 

solution for the heuristic algorithm; and ii) to furnish a lower bound for assessing 

the optimality gap of the heuristic solution. A discretization recipe for determining 

the exact stop locations is also provided. Numerical analysis verifies that this 

model can generate near-optimal designs serving various demand patterns. Our 

proposed general skip-stop model is compared with other corridor design models 

via a number of numerical cases and a real-world case.  

Section 4.1 presents the general skip-stop design’s formulation. Section 4.2 

describes the proposed model’s solution method. Section 4.3 presents numerical 

analysis. Section 4.4 summaries the general skip-stop design model. 

4.1 Formulation 

A bi-directional transit service operating along a linear corridor of length 𝐿 is 

considered as shown in Figure 1.3. Demand is assumed to be exogenous. The 

corridor direction is denoted by 𝑑 ∈ {𝐸,𝑊}, where 𝐸 and 𝑊 represent eastbound 

and westbound travel, respectively.  

The formulation presented in this chapter requires to specify the number 

of skip-stop routes. For simplicity, only the model for two routes, numbered route 

A and route B, is presented. Corridors with more than two skip-stop routes can be 

modeled in a similar way.  

For a two-route system, there are three types of stops: i) A-type stops, 

visited by route A only; ii) B-type stops, visited by route B only; and iii) transfer 
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stops (T-type stops), which are visited by both routes. These stop types are 

illustrated in Figure 1.3.  

To facilitate modeling work, the following assumptions commonly used in 

the literature (Freyss et al., 2013; Gu et al., 2016) have been adopted: i) a patron 

always accesses or egresses the transit system through the nearest stop to her origin 

or destination, regardless of stop type; ii) a transit vehicle spends a constant time, 

𝜏 (h), at each stop for loading and unloading patrons, including the time lost to the 

vehicle’s acceleration and deceleration processes; iii) patrons arrive uniformly at 

their origin stops and always take the first vehicle that arrives; iv) a patron transfers 

only if there is no direct service from origin to destination, and she always transfers 

at the first T-type stop along the trip; and v) the two skip-stop routes’ vehicle 

schedules are not coordinated at T-type stops. 

Demand is represented by the conventional origin-destination (OD) matrix 

(𝑚 × 𝑚) that can be obtained from a transit demand survey. This demand matrix 

implies that the corridor is divided into 𝑚 continuous segments numbered from 

east to west by 𝑘 ∈ {1, 2, … ,𝑚}, each with length 𝑙𝑘  (∑ 𝑙𝑘
𝑚
𝑘=1 = 𝐿). The 𝜆𝑖,𝑗  is 

denoted as the total demand (patrons/h) from segment 𝑖 to 𝑗 (𝑖, 𝑗 ∈ {1,2, … ,𝑚}). 

The demand is assumed to be uniformly distributed within each segment7. Note 

that when 𝑚 and 𝑙𝑘 (𝑘 ∈ {1, 2, … ,𝑚}) take different values, this demand set up 

can approximate any discrete or continuous demand (density) functions in the real 

world. Decision variables of the skip-stop service design problem include: the 

headways for route A and route B, denoted by 𝐻1 and 𝐻2, respectively; the number 

of stops in segment 𝑘, denoted by 𝑛𝑘 (can be a fraction); and the proportions of 

A-, B-, and T-type stops in segment 𝑘, denoted by 𝜙𝑘,1, 𝜙𝑘,2, 𝑡𝑘, respectively. Our 

objective is to minimize the transit corridor’s generalized cost, consisting of the 

patrons’ trip cost and the agency cost. The detailed formulations are given below.  

                                                 

 

7 A demand concentration point (e.g. the entrance to a residential community or a large shopping 

mall) can be represented by a very small segment. 
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4.1.1 User cost metrics 

The patrons’ cost includes four components (Daganzo, 2010): i) the access/egress 

cost, 𝑈𝐶𝑎; ii) the waiting cost at the origin and transfer stops, 𝑈𝐶𝑤; iii) the in-

vehicle travel cost, 𝑈𝐶𝑖; and iv) the transfer penalty, 𝑈𝐶𝑡.  

4.1.1.1 Access and egress cost 

For segment 𝑘 in the corridor, the access and egress cost equals the total walking 

time per hour in the segment. The average walking time for either a patron’s access 

or egress travel is 
𝑙𝑘

4𝑛𝑘𝑣𝑤
, where 𝑣𝑤 is the patrons’ walking speed. The total access 

and egress cost in the segment is then given by: 

 ∑ 𝜆𝑘,𝑗
𝑚
𝑗=1 ⋅

𝑙𝑘

4𝑛𝑘𝑣𝑤
+ ∑ 𝜆𝑖,𝑘

𝑚
𝑖=1 ⋅

𝑙𝑘

4𝑛𝑘𝑣𝑤
 

Thus, the total access and egress cost of the corridor is: 

𝑈𝐶𝑎 = 2∑ (
𝑙𝑘

4𝑣𝑤𝑛𝑘
∑ 𝜆𝑘,𝑗

𝑚
𝑗=1 )𝑚

𝑘=1       (4.1) 

4.1.1.2 Waiting cost at origin and transfer stops 

Waiting cost is the expected waiting time per hour for all patrons, including the 

waiting times at the origin stops and during transfers at transfer stops. 

Specifically, a patron’s waiting time depends on her trip type, which is 

defined by the types of her origin and destination stops. Thus there are totally nine 

trip types: A-type to A-type, A-type to B-type, A-type to T-type, B-type to A-type, 

B-type to B-type, B-type to T-type, T-type to A-type, T-type to B-type, and T-type 

to T-type. For each trip type, the average wait time per trip (including time spent 

at both origin and transfer stops) can be easily estimated. The probability of each 

trip type can be calculated using the proportions of the A-, B- and T-type stops in 

each segment. The results for all the nine trip types are summarized in Table 4.1.  
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Table 4.1 The nine trip types’ probabilities and average wait times per trip 

Trip type Origin stop 

type 

Destination 

stop type 

Probability Average wait time 

per trip 

1 A A 𝜙𝑖,1𝜙𝑗,1  𝐻1/2  

2 A B 𝜙𝑖,1𝜙𝑗,2  (𝐻1 + 𝐻2)/2  

3 A T 𝜙𝑖,1𝑡𝑗  𝐻1/2  

4 B A 𝜙𝑖,2𝜙𝑗,1  (𝐻1 + 𝐻2)/2  

5 B B 𝜙𝑖,2𝜙𝑗,2  𝐻2/2  

6 B T 𝜙𝑖,2𝑡𝑗  𝐻2/2  

7 T A 𝑡𝑖𝜙𝑗,1  𝐻1/2  

8 T B 𝑡𝑖𝜙𝑗,2  𝐻2/2  

9 T T 𝑡𝑖𝑡𝑗  (𝐻1
−1 + 𝐻2

−1)−1/2  

 

Therefore, the average wait cost for a patron traveling from segment 𝑖 to 

segment 𝑗, 𝑤𝑖,𝑗, and the total wait cost for all the patrons, 𝑈𝐶𝑤, are expressed by: 

𝑤𝑖,𝑗 =
1

2
[∑ ((𝜙𝑖,𝑟 + 𝜙𝑗,𝑟 − 𝜙𝑖,𝑟𝜙𝑗,𝑟)𝐻𝑟)

𝑅
𝑟=1 + 𝑡𝑖𝑡𝑗𝐻]   (4.2) 

𝑈𝐶𝑤 = ∑ ∑ 𝑤𝑖,𝑗
𝑚
𝑗=1 𝜆𝑖,𝑗

𝑚
𝑖=1        (4.3) 

where 𝑟 is the index of the route;  𝑅 is the number of routes (𝑅 = 2 for a two-route 

corridor); and 𝐻 = (∑ 𝐻𝑟
−1 𝑅

𝑟=1 )−1 is the average vehicle headway at transfer stops. 

Note that the real headways between vehicles at transfer stops are different from 

this average headway, because the speeds of different routes over the same 

corridor line segment are different due to the asymmetric distribution of non-

transfer stops between the routes. These real headways are difficult to estimate. 

However, using the average headway defined above will not significantly affect 

the model accuracy. 

4.1.1.3 In-vehicle travel cost 

In-vehicle travel cost also depends on trip type. Short-distance trips of types 2 and 

4 (see Table 4.1), whose origin and destination are contained between two 

consecutive transfer stops, must involve backtracking. In the following the cost 

metrics for trips without backtracking and trips involving backtracking are derived 

separately. 



71 

 

For trips without backtracking, the average on-board patron flows of route 

A and route B in segment 𝑘 for direction 𝑑 ∈ {𝐸,𝑊} are specified as �̅�𝑘,1
𝑑  and �̅�𝑘,2

𝑑 , 

respectively, and thus the average on-board patron flow in segment 𝑘 for direction 

𝑑  is �̅�𝑘
𝑑 = ∑ �̅�𝑘,𝑟

𝑑𝑅
𝑟=1 . We show the derivation of �̅�𝑘,1

𝑑  only since �̅�𝑘,2
𝑑  can be 

similarly derived. For a trip from segment 𝑖 to segment 𝑗, the probability that the 

trip is completed via route A without transfer is 𝜙𝑖,1(𝜙𝑗,1 + 𝑡𝑗) + 𝑡𝑖𝜙𝑗,1 + 𝑡𝑖𝑡𝑗 ⋅

𝐻1
−1

𝐻−1, where 
𝐻1

−1

𝐻−1 yields the probability that a patron of a T-type to T-type trip boards 

a route-A vehicle. 

For trips that involve transfers (A-type to B-type or vice versa), the on-

board patron flow will be distributed between the two routes. Since it is assumed 

that patrons always transfer at their first encountered T-type stop, trips traveling 

from B-type stops to A-type stops will mainly contribute to route A’s on-board 

patron flow, and trips traveling from A-type stops to B-type stops will mainly 

contribute to route B’s on-board flow. Thus, the probability that a trip from 

segment 𝑖  to segment 𝑗  is (mainly) completed via route A with a transfer is 

𝜙𝑖,2𝜙𝑗,1. 

Therefore, the probability that a trip is completed via route A (𝑟 = 1), can 

be summarized as:  

𝑝𝑖,𝑗,𝑟 = 𝜙𝑗,𝑟 + 𝜙𝑖,𝑟𝑡𝑗 + 𝑡𝑖𝑡𝑗 ⋅
𝐻𝑟

−1

𝐻−1      (4.4) 

Note that the on-board patron flow varies spatially within any specific 

segment. For simplicity, �̅�𝑘,1
𝑑  is approximated by the average of the on-board flows 

at the left and right ends of the segment; i.e., �̅�𝑘,1
𝑑 ≈ (𝑜𝑘,1

𝑑 + 𝑜𝑘−1,1
𝑑 )/2, where 𝑜𝑘,1

𝑑  

is the on-board flow of route A at the right end of segment 𝑘 for direction 𝑑, which 

is defined as: 

𝑜𝑘,1
𝐸 = ∑ ∑ 𝑝𝑖,𝑗,1𝜆𝑖,𝑗

𝑚
𝑗=𝑘+1

𝑘
𝑖=1 , ∀𝑘 ∈ {1, 2, … ,𝑚 − 1};  

𝑜𝑘,1
𝑊 = ∑ ∑ 𝑝𝑖,𝑗,1𝜆𝑖,𝑗

𝑘
𝑗=1

𝑚
𝑖=𝑘+1 , ∀𝑘 ∈ {1, 2, … ,𝑚 − 1}; 

𝑜𝑘,1
𝑑 = 0,   ∀𝑘 ∈ {0,𝑚}, 𝑑 ∈ {𝐸,𝑊}. 

To simplify the notation, a series of supplementary OD matrices 𝑼𝒌
𝑬 and 

𝑼𝒌
𝑾 is introduced: 
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𝑼𝒌
𝑬 =

[
 
 
 
 
 
0 … 0 𝜆1,𝑘+1 … 𝜆1,𝑚

… … … … … …
… … 0 𝜆𝑘,𝑘+1 … 𝜆𝑘,𝑚

… … 0 0 … 0
… … … … … …
0 … … … … 0 ]

 
 
 
 
 

,    ∀𝑘 ∈ {1, 2, … ,𝑚 − 1};  

𝑼𝒌
𝑾 =

[
 
 
 
 
 

0 … … … . . 0
… … … … … …
0 … 0 0 … …

𝜆𝑘+1,1 … 𝜆𝑘+1,𝑘 0 … …
… … … . . … …

𝜆𝑚,1 … 𝜆𝑚,𝑘 0 … 0]
 
 
 
 
 

,    ∀𝑘 ∈ {1, 2, … ,𝑚 − 1};  

𝑼𝑘
𝑑 = 𝟎,   ∀𝑘 ∈ {0,𝑚}, 𝑑 ∈ {𝐸,𝑊}.  

where each 𝑼𝒌
𝒅 is a 𝑚 × 𝑚 matrix, and the element of 𝑼𝒌

𝒅 at row 𝑖 and column 𝑗 is 

represented by 𝑢𝑖,𝑗
𝑘,𝑑

. 

Thus, the on-board flow at the right end and the average on-board flow of 

route A (𝑟 = 1) for direction 𝑑 ∈ {𝐸,𝑊} can be reformulated as:  

𝑜𝑘,𝑟
𝑑 = ∑ ∑ 𝑝𝑖,𝑗,𝑟

𝑚
𝑗=1 𝑢𝑖,𝑗

𝑘,𝑑𝑚
𝑖=1 , ∀ 𝑘 ∈ {1, 2, … ,𝑚}, 𝑑 ∈ {𝐸,𝑊}    (4.5a) 

�̅�𝑘,𝑟
𝑑 =

(𝑜𝑘,𝑟
𝑑 +𝑜𝑘−1,𝑟

𝑑 )

2
= ∑ ∑ 𝑝𝑖,𝑗,𝑟

𝑚
𝑗=1 �̅�𝑖,𝑗

𝑘,𝑑𝑚
𝑖=1 , ∀𝑘 ∈ {1, 2, … ,𝑚}, 𝑑 ∈ {𝐸,𝑊}  (4.5b) 

where �̅�𝑖,𝑗
𝑘,𝑑 = (𝑢𝑖,𝑗

𝑘,𝑑 + 𝑢𝑖,𝑗
𝑘−1,𝑑)/2. Note that the total average on-board flow in 

segment 𝑘  for direction 𝑑 , i.e. �̅�𝑘
𝑑 = ∑ �̅�𝑘,𝑟

𝑑𝑅
𝑟=1 = ∑ ∑ �̅�𝑖,𝑗

𝑘,𝑑𝑚
𝑗=1

𝑚
𝑖=1 , is a constant  

value for a given demand pattern. 

 Consequently, the cost of trips without backtracking for segment 𝑘 can be 

expressed as 

Γ𝑘 = ∑ (�̅�𝑘,𝑟
𝐸 + �̅�𝑘,𝑟

𝑊 )𝑅
𝑟=1 [

𝑙𝑘

𝑣
+ 𝜏(𝜙𝑘,𝑟 + 𝑡𝑘)𝑛𝑘]    (4.6)  

where 𝑣 is the vehicle cruise speed (assumed to be indifferent between route A 

and B); and (𝜙𝑘,𝑟 + 𝑡𝑘)𝑛𝑘 yields the total number of stops in segment 𝑘 for route 

𝑟. 

For backtracking trips within the skip-stop bays in segment 𝑘, the number 

of transfer stops is 𝑡𝑘𝑛𝑘 and the stop spacing between two transfer stops can be 

approximated by 𝑠𝑘 = min (𝐿, 𝑥𝑘 +
𝑙𝑘

2𝑡𝑘𝑛𝑘
) − max (0, 𝑥𝑘 −

𝑙𝑘

2𝑡𝑘𝑛𝑘
) , where 𝑥𝑘  is 



73 

 

the coordinate of segment 𝑘’s midpoint. Note that 𝑠𝑘  may span more than one 

segment if 𝑡𝑘𝑛𝑘 < 1. Hence, we denote the indices of the left-most and right-most 

segments spanned by 𝑠𝑘 as 𝑏𝑙𝑘 and 𝑏𝑟𝑘,  respectively. These are given by: 

𝑏𝑙𝑘 = 𝐼 (max (0, 𝑥𝑘 −
𝑙𝑘

2𝑡𝑘𝑛𝑘
))      (4.7a) 

𝑏𝑟𝑘 = 𝐼 (min (𝐿, 𝑥𝑘 +
𝑙𝑘

2𝑡𝑘𝑛𝑘
))     (4.7b) 

where 𝐼(𝑥) is an index function that maps coordinate 𝑥 to the index of the segment 

containing 𝑥. 

We can now approximate the total number of backtracking trips within 𝑠𝑘 

by summing up all the contained trips involving transfers. This is given 

by ∑ ∑ �̂�𝑖,𝑗𝜆𝑖,𝑗
𝑏𝑟𝑘
𝑗=𝑏𝑙𝑘

𝑏𝑟𝑘
𝑖=𝑏𝑙𝑘

, where �̂�𝑖,𝑗 is the probability that a trip involves a transfer, 

which is written as: 

�̂�𝑖,𝑗 = ∑ 𝜙𝑖,𝑟(1 − 𝜙𝑗.𝑟 − 𝑡𝑗)
𝑅
𝑟=1       (4.8) 

Then, we calculate the average backtracking density for segment 𝑘 , 𝑏𝑘 

(trips per km), as follows: 

𝑏𝑘 =
∑ ∑ 𝑝𝑖,𝑗𝜆𝑖,𝑗

𝑏𝑟𝑘
𝑗=𝑏𝑙𝑘

𝑏𝑟𝑘
𝑖=𝑏𝑙𝑘

∑ 𝑙𝑠
𝑠=𝑏𝑟𝑘
𝑠=𝑏𝑙𝑘

        (4.9) 

Since a skip-stop bay is not long (Freyss et al., 2013), we here approximate 

the backtracking cost by assuming that those trips are uniformly distributed in the 

skip-stop bay. Under this assumption, the total backtracking vehicle distance is 

1

3
𝑠𝑘𝑏𝑘, where 

1

3
𝑠𝑘 is the average backtracking distance per trip in segment 𝑘 (see 

the detailed derivation in Gu, et al., 2016). Recognizing that half the backtracking 

flow is on route A and the other half is on route B, the additional cost incurred by 

backtracking trips in segment 𝑘 can be expressed as Θ𝑘 = (
𝑙𝑘

𝑣
+

𝜏

2
𝑛𝑘)

1

3
𝑠𝑘𝑏𝑘. As 

𝑠𝑘 is a non-differentiable function of 𝑡𝑘 and 𝑛𝑘, it is approximated by a tight upper 

bound, 
𝛼⋅𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

, where 𝛼 = max
𝑘

𝑙𝑘+1

𝑙𝑘
 (see Appendix D for the derivation of this 

upper bound). The additional backtracking cost is thus re-written as: 

Θ𝑘 =
𝛼

3
(
𝑙𝑘

𝑣
+

𝜏

2
𝑛𝑘)

𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

𝑏𝑘       (4.10) 
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This approximation does slightly over-estimate the backtracking cost, but it is 

conservative and greatly simplifies the problem solving.  

Combining the costs of trips with and without backtracking, the total in-

vehicle travel cost can be calculated as 

𝑈𝐶𝑖 = ∑ [Γ𝑘 + Θ𝑘] 
𝑚
𝑘=1         (4.11) 

where the costs of trips without and with backtracking, Γ𝑘 and Θ𝑘, are given by 

equations (4.4-4.10). 

4.1.1.4 Transfer penalty 

An extra cost penalty for transfers is considered, which is expressed by 

𝑈𝐶𝑡 = ∑ ∑ 𝐶𝑡�̂�𝑖,𝑗𝜆𝑖,𝑗
𝑚
𝑗=1

𝑚
𝑖=1        (4.12) 

where 𝐶𝑡 is the unit transfer penalty (h/transfer); and �̂�𝑖,𝑗 is given by equation (4.8). 

4.1.2 Agency cost metrics 

The agency cost consists of: i) the distance-based vehicle operating cost (for 

example fuel costs), 𝐴𝐶𝐾 ; ii) the time-based vehicle operating cost (such as 

amortized vehicle purchase cost and staff wages), 𝐴𝐶𝐻 ; iii) the amortized line 

infrastructure cost (such as building costs for busway or rail tracks), 𝐴𝐶𝐼; and iv) 

the amortized stop infrastructure cost, 𝐴𝐶𝑆. These are formulated as follows: 

𝐴𝐶𝐾 =
2𝜋𝑣𝐿

𝜇
∑ 𝐻𝑟

−1 𝑅
𝑟=1        (4.13) 

𝐴𝐶𝐻 =
2𝜋𝑚

𝜇
∑ ∑ (

𝑙𝑘

𝑣
+ 𝜏(𝜙𝑘,𝑟 + 𝑡𝑘)𝑛𝑘)𝐻𝑟

−1𝑅
𝑟=1

𝑚
𝑘=1    (4.14) 

𝐴𝐶𝐼 =
2𝜋𝑖𝐿

𝜇
         (4.15)  

𝐴𝐶𝑆 =
𝜋𝑠

𝜇
∑ 𝑛𝑘

𝑚
𝑘=1         (4.16) 

where 𝜇  is the value of time ($/h); 𝜋𝑣  and 𝜋𝑚  are the unit operating costs per 

vehicle-hour and per vehicle-km, respectively; 𝜋𝑖  and 𝜋𝑠  are the unit 

infrastructure construction and maintenance costs per km of line infrastructure and 

per stop, respectively, amortized for each service hour. 
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4.1.3 Problem formulation  

The generalized cost, denoted by 𝑆𝐶, is the sum of user and agency costs. Those 

cost terms have been introduced by equations (4.1-4.16) for a two-route skip-stop 

service model, i.e. 𝑅 = 2. Without further modifications, the above equations are 

still valid for more general multi-route cases, i.e. 𝑅 ≥ 3 , Thus, the cost 

minimization problem can be formulated as: 

min𝑆𝐶 = 𝑈𝐶𝑎 + 𝑈𝐶𝑤 + 𝑈𝐶𝑖 + 𝑈𝐶𝑡 + 𝐴𝐶𝐾 + 𝐴𝐶𝐻 + 𝐴𝐶𝐼 + 𝐴𝐶𝑆 (4.17a) 

subject to: 

𝐻𝑚𝑖𝑛 ≤ 𝐻1 ≤ 𝐻2 … ≤ 𝐻𝑅 ≤ 𝐻𝑚𝑎𝑥        (4.17b) 

𝐾

𝐻𝑟
≥ �̅�𝑘,𝑟

𝑑 + 𝐵𝑘,   ∀𝑟 ∈ {1,2, … , 𝑅}, 𝑘 ∈ {1,2, … ,𝑚}, 𝑑 ∈ {𝐸,𝑊}  (4.17c) 

0 ≤ 𝜙𝑘,𝑟 ≤ 1,   ∀𝑟 ∈ {1, 2, … , 𝑅}, 𝑘 ∈ {1,2, … ,𝑚}     (4.17d) 

0 ≤ 𝑡𝑘 ≤ 1,   ∀𝑘 ∈ {1,2, … ,𝑚}      (4.17e) 

∑ 𝜙𝑘,𝑟
𝑅
𝑟=1 + 𝑡𝑘 = 1, ∀𝑘 ∈ {1,2, … ,𝑚}      (4.17f) 

0 ≤ 𝑛𝑘 ≤ �̅�𝑘 =
𝑙𝑘

𝑠𝑚𝑖𝑛
,   ∀𝑘 ∈ {1,2, … ,𝑚}      (4.17g) 

where 𝐻𝑚𝑖𝑛 and 𝐻𝑚𝑎𝑥 are the minimum and maximum dispatching headways for 

each skip-stop route, respectively; 𝐾 is the vehicle’s passenger-carrying capacity; 

𝐵𝑘  is the maximum backtracking flow in segment 𝑘 in one direction, which is 

approximately equal to half of the total backtracking flow in the segment; 𝐵𝑘 =

𝛼

2𝑡𝑘𝑛𝑘+
2

𝐿

𝑏𝑘. This assumes the trips involving backtracking are uniformly distributed 

within the segment; see Gu et al. (2016) for more details on this issue. Note that 

to break the symmetry between the routes, we specify that 𝐻𝑟+1 ≥ 𝐻𝑟 , ∀𝑟 ∈

{1, . . , 𝑅 − 1}  in constraint (4.17b). Constraints (4.17c) ensure the number of 

patrons onboard a transit vehicle never exceeds the vehicle capacity; note that the 

RHS of the inequality is the on-board flow of segment 𝑘 for direction 𝑑 ∈ {𝐸,𝑊}. 

Constraints (4.17-f) specify that the probability of different stop types is between 

0 and 1 and their probabilities are summed up to 1 in each segment. Constraints 

(4.17g) stipulate that the number of stops in each segment must be positive and 

stop spacing must be greater than a minimum stop spacing of 𝑠𝑚𝑖𝑛. 
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4.2 Solution Method 

Section 4.2.1 presents a heuristic algorithm to solve the model. Section 4.2.2 

describes a relaxed problem to provide: i) an initial solution to the heuristics, and 

ii) a lower bound. Section 4.2.3 introduces a recipe to convert the model solution 

to a design with exact stop locations. 

4.2.1 Heuristic solution method 

The decision variables in problem (4.17) include 𝑅  variables of 𝐻𝑟 , 𝑅 × 𝑚 

variables of 𝜙𝑘,𝑟, 𝑚 variables of 𝑡𝑘, and 𝑚 variables of 𝑛𝑘. It should be noted that 

the number of routes 𝑅 is typically small (𝑅 ≤ 4), since a system with more than 

4 routes is difficult to operate in real practice. A heuristic algorithm to solve (4.17) 

for a given 𝑅 is presented next.  

A two-stage algorithm is proposed to solve the problem. In the first stage, 

we fix 𝐻𝑟, and optimize (4.17a,4.17c-g) with respect to 𝜙𝑘,𝑟 , 𝑡𝑘 and 𝑛𝑘. Note that 

𝑏𝑘  in objective function (4.17a) and constraint (4.17c) involves an indicator 

function, which is discontinuous and indifferentiable; see (4.7-4.9). An iterative 

method is thereby employed to alternately evaluate 𝑏𝑘 and optimize 𝜙𝑘,𝑟 , 𝑡𝑘 and 

𝑛𝑘 . In the 𝑛th iteration, 𝜙𝑘,𝑟
(𝑛)

 , 𝑡𝑘
(𝑛)

, 𝑛𝑘
(𝑛)

 are optimized by solving the following 

non-linear program for given 𝑏𝑘 = 𝑏𝑘
(𝑛−1)

: 

 (𝜙𝑘,𝑟
(𝑛)

 , 𝑡𝑘
(𝑛)

, 𝑛𝑘
(𝑛)

) = min
𝜙𝑘,𝑟,𝑡𝑘,𝑛𝑘

𝑆𝐶|𝐻𝑟 , 𝑏𝑘
(𝑛−1)

     

subject to constraints (4.17c-g).       (4.18) 

The non-linear program is solved via a standard sequential quadratic 

programming (SQP) method. After obtaining the solution, the new values of  𝑏𝑘, 

denoted by 𝑏𝑘
′ , are calculated using (4.7-4.9). The 𝑏𝑘  is then updated via the 

method of successive averages (MSA) (Sheffi, 1985), given by: 

𝑏𝑘
(𝑛)

= 𝑏𝑘
(𝑛−1)

+
𝑏𝑘

′−𝑏𝑘
(𝑛−1)

𝑛
      (4.19) 

 The iterative method is repeated until convergence is reached, thus 

obtaining the local optimum 𝜙𝑘,𝑟
∗ , 𝑡𝑘

∗ , 𝑛𝑘
∗  for the given 𝐻𝑟. 
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 The second stage fixes 𝜙𝑘,𝑟 , 𝑡𝑘  and 𝑛𝑘  and optimizes (4.17a-c) with 

respect to 𝐻𝑟. The problem addressed in this stage is also nonlinear, and it is again 

solved via the SQP method.  

 The two-stage algorithm is executed iteratively until convergence is 

reached. The algorithm’s steps of are summarized as follows:  

 Step 1. Set the initial values of decision variables, 𝐻𝑟
(0)

, 𝜙𝑘,𝑟
(0)

, 𝑡𝑘
(0)

, and 𝑛𝑘
(0)

 

for all 𝑘 ∈ {1,2, … ,𝑚}, 𝑟 ∈ {1,2, …𝑅}, and calculate 𝑏𝑘
(0)

 using (4.7-4.9). 

Step 2. For given 𝐻𝑟
(𝑗)

, apply the iterative method to find the local optimum 

𝜙𝑘,𝑟
∗ , 𝑡𝑘

∗ , 𝑛𝑘
∗  using (4.18-4.19) until |

𝑏𝑘
(𝑛)

−𝑏𝑘
(𝑛−1)

𝑏𝑘
(𝑛−1) | ≤ 𝜀 is satisfied for each 𝑘, where 

𝜀 is a pre-specified tolerance (e.g., 𝜀 = 0.001 ).  

 Step 3. Find the optimal 𝐻𝑟
∗ via the SQP method. Set 𝐻𝑟

(𝑗+1)
= 𝐻𝑟

∗, and 𝑗 =

𝑗 + 1. 

Step 4: Repeat steps (2-3) until ∑ |
𝐻𝑟

(𝑗)
−𝐻𝑟

(𝑗−1)

𝐻𝑟
(𝑗−1) |𝑅

𝑟=1 ≤ 𝜀.  

4.2.2 The relaxed problem 

In the relaxed problem, some items in the objective function are reduced and some 

constraints related to backtracking trips are dropped. In addition, high degree 

polynomial terms are replaced by smaller, quadratic terms. The problem is thus 

reduced to a quadratic program. This relaxed problem’s optimal solution, which is 

much easier to obtain, will thus be a lower bound of the optimum of the original 

problem. Furthermore, the relaxed problem retains the essential cost terms and 

constraints related to the proportions of non-transfer stops in each segment, and 

thus the underlying trade-off between different routes is still by-and-large captured. 

Hence, the optimal solution of the relaxed problem is also used as an initial 

solution for the two-stage algorithm described in Section 4.2.1. 

The relaxed problem is defined for fixed 𝐻𝑟 (𝑟 = 1,… , 𝑅). To create this 

problem, the cost terms related to backtracking in the objective function (4.17a) 

are first removed and then the constraint (4.17b) is relaxed. The original problem 
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is then reduced to program (4.20a-f). Note that the minimal cost of (4.20a-f) is a 

lower bound of the original problem (4.17) for any given 𝐻𝑟. 

min𝑆𝐶1|𝐻𝑟 = ∑
𝑎𝑘

𝑛𝑘

𝑘
𝑖=1 + 𝑔(𝝓, 𝒕, 𝒏) + 𝜏 ∑ ∑ (�̅�𝑘,𝑟

𝐸 + �̅�𝑘,𝑟
𝑊 )𝜙𝑘,𝑟𝑛𝑘

𝑅
𝑟=1

𝑚
𝑘=1 + 𝐶

          (4.20a) 

subject to: 

𝐾

𝐻𝑟
≥ ∑ ∑ 𝜙𝑗,𝑟

𝑚
𝑗=1 𝑢𝑖,𝑗

𝑘,𝑑𝑚
𝑖=1 , ∀𝑟 ∈ {1, 2, … , 𝑅}, 𝑘 ∈ {1,2, … ,𝑚}, 𝑑 ∈ {𝐸,𝑊} (4.20b) 

0 ≤ 𝜙𝑘,𝑟 ≤ 1,   ∀𝑟 ∈ {1, 2, … , 𝑅}, 𝑘 ∈ {1,2, … ,𝑚}     (4.20c) 

0 ≤ 𝑡𝑘 ≤ 1,   ∀𝑘 ∈ {1,2, … ,𝑚}      (4.20d) 

∑ 𝜙𝑘,𝑟
𝑅
𝑟=1 + 𝑡𝑘 = 1, ∀𝑘 ∈ {1,2, … ,𝑚}      (4.20e) 

0 ≤ 𝑛𝑘 ≤ �̅�𝑘 =
𝑙𝑘

𝑠𝑚𝑖𝑛
,   ∀𝑘 ∈ {1,2, … ,𝑚}      (4.20f) 

where 𝑎𝑘 =
𝑙𝑘 ∑ 𝜆𝑘,𝑗

𝑚
𝑗=1

2𝑣𝑤
 is a constant coefficient of 

1

𝑛𝑘
; 𝑔(𝝓, 𝒕, 𝒏)  is a quadratic 

function of decision variables (𝜙𝑘,𝑟 , 𝑡𝑘, 𝑛𝑘) for 𝑘 ∈ {1,2, … ,𝑚}, 𝑟 ∈ {1,2, . . . , 𝑅} 

(the decision variables are represented by vectors 𝝓, 𝒕,  and 𝒏 ) given by: 

𝑔(𝝓, 𝒕, 𝒏) = ∑ ∑ 𝑤𝑖,𝑗
𝑚
𝑗=1 𝜆𝑖,𝑗

𝑚
𝑖=1 + ∑ ∑ 𝐶𝑡�̂�𝑖,𝑗𝜆𝑖,𝑗

𝑚
𝑗=1

𝑚
𝑖=1 +

2𝜋𝑚𝜏

𝜇
∑ ∑ (𝜙𝑘,𝑟 +𝑅

𝑟=1
𝑚
𝑘=1

𝑡𝑘)𝑛𝑘𝐻𝑟
−1 + ∑ 𝜏(�̅�𝑘

𝐸 + �̅�𝑘
𝑊)𝑡𝑘𝑛𝑘

𝑚
𝑘=1 +

𝜋𝑠

𝜇
∑ 𝑛𝑘

𝑚
𝑘=1 ; and 𝐶 is a constant value given 

by 𝐶 = ∑
(�̅�𝑘

𝐸+�̅�𝑘
𝑊)𝑙𝑘

𝑣

𝑅
𝑖=𝑘 +

2𝜋𝑣𝐿

𝜇
𝐻−1 +

2𝜋𝑚

𝜇

𝐿

𝑣
𝐻−1 +

2𝜋𝑖𝐿

𝜇
. Note that constraints 

(4.20b-f) are all linear constraints in problem (4.20).  

The cost term 𝜏 ∑ ∑ (�̅�𝑘,𝑟
𝐸 + �̅�𝑘,𝑟

𝑊 )𝜙𝑘,𝑟𝑛𝑘
𝑅
𝑟=1

𝑚
𝑘=1  in (4.20a) is a fourth degree 

polynomial. We further reduce this cost term to a quadratic function by using the 

inequalities �̅�𝑘,𝑟
𝑑 ≥ ∑ ∑ (𝜙𝑗,𝑟 + max{𝜙𝑖,𝑟 + 𝑡𝑗 − 1,0} +

𝐻𝑟
−1

𝐻−1
max{𝑡𝑖 + 𝑡𝑗 −𝑚

𝑗=1
𝑚
𝑖=1

1,0}) �̅�𝑖,𝑗
𝑘,𝑑

 and 𝑛𝑘 ≥ 𝑛𝑘
𝑚𝑖𝑛 , where 𝑛𝑘

𝑚𝑖𝑛 = √𝑎𝑘  (
𝜋𝑠

𝜇
+ 𝜏(�̅�𝑘

𝐸 + �̅�𝑘
𝑊) +

2𝜋𝑚𝜏

𝜇
𝐻−1)

−
1

2
 . The problem is then reduced to: 

min𝑆𝐶2|𝐻𝑟 = ∑
𝑎𝑘

𝑛𝑘

𝑘
𝑖=1 + 𝑔(𝝓, 𝒕, 𝒏) + 𝜏 ∑  ∑ ∑ ∑ (𝜙𝑗,𝑟 + 𝜎𝑖,𝑗,𝑟 +𝑚

𝑟=1
𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑘

𝐻𝑟
−1

𝐻−1 𝛽𝑖,𝑗)𝜙𝑘,𝑟 (�̅�𝑖,𝑗
𝑘,𝐸 + �̅�𝑖,𝑗

𝑘,𝑊)𝑛𝑘
𝑚𝑖𝑛 + 𝐶      (4.21a) 
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subject to constraints (4.20b-e), and 

 𝑛𝑘
𝑚𝑖𝑛 ≤ 𝑛𝑘 ≤ �̅�𝑘 =

𝑙𝑘

𝑠𝑚𝑖𝑛
  ∀𝑘 ∈ {1,2, … ,𝑚}      (4.21b) 

𝜎𝑖,𝑗,𝑟 ≥ 𝜙𝑖,𝑟 + 𝑡𝑗 − 1        (4.21c) 

𝜎𝑖,𝑗,𝑟 ≥ 0         (4.21d) 

𝛽𝑖,𝑗 ≥ 𝑡𝑖 + 𝑡𝑗 − 1        (4.21e) 

𝛽𝑖,𝑗 ≥ 0         (4.21f) 

Constraints (4.21b) imply that 𝑛𝑘
𝑚𝑖𝑛 ≤ �̅�𝑘, which is true in real practice. In the 

worst case, if there exists some 𝑘′ ∈ {1, … ,𝑚}  such that 𝑛𝑘′
𝑚𝑖𝑛 > �̅�𝑘 , the 

constraints can be modified to 𝑛𝑘′ = �̅�𝑘′  for these 𝑘′  and the following 

proposition still holds. For simplicity, discussion of the above special case is 

omitted. The following proposition shows that problem (4.21) is a lower bound 

problem of (4.20). Its proof is furnished in Appendix E. 

Proposition 1. Assuming that there is at least a feasible solution to problem (4.21), 

the minimum of problem (4.21) must be a lower bound of problem (4.20). 

Finally, the items 
1

𝑛𝑘
  are approximated in the objective function (4.21a) 

using a linear approximation method. For each segment 𝑘, we evenly select 𝑃 

numbers 𝑁𝑘
1, 𝑁𝑘

2, … , 𝑁𝑘
𝑃  from the interval [𝑛𝑘

𝑚𝑖𝑛, 𝑁𝑘] , and define set 𝓝𝒌 =

{𝑁𝑘
1, 𝑁𝑘

2, … , 𝑁𝑘
𝑃}. A linear approximation of 

1

𝑛𝑘
 near the point 𝑁𝑘

𝑝 ∈ 𝓝𝒌  can be 

expressed as 
1

𝑛𝑘
≈ (𝑁𝑘

𝑝)
−1

− (𝑁𝑘
𝑝)

−2
𝑛𝑘. Since 

1

𝑛𝑘
 is a convex function, its linear 

approximation in domain [𝑛𝑘
𝑚𝑖𝑛, 𝑁𝑘] is given by:  

 
1

𝑛𝑘
≥ max

p
{2(𝑁𝑘

𝑝)
−1

− (𝑁𝑘
𝑝)

−2
𝑛𝑘} , ∀𝑁𝑘

𝑝 ∈ 𝓝𝒌   (4.22) 

Hence, we substitute 
1

𝑛𝑘
 in problem (4.21a) by (4.22). Problem (4.21) can then be 

reduced to  

min𝑆𝐶3|𝐻𝑟 = ∑ 𝑎𝑘𝑦𝑘
𝑘
𝑖=1 + 𝑔(𝝓, 𝒕, 𝒏) + 𝜏 ∑  ∑ ∑ ∑ (𝜙𝑗,𝑟 + 𝜎𝑖,𝑗,𝑟 +𝑚

𝑟=1
𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑘

𝐻𝑟
−1

𝐻−1
𝛽𝑖,𝑗)𝜙𝑘,𝑟 (�̅�𝑖,𝑗

𝑘,𝐸 + �̅�𝑖,𝑗
𝑘,𝑊)𝑛𝑘

𝑚𝑖𝑛 + 𝐶      (4.23a) 

subject to constraints (4.20b-e), (4.21b-f), and 
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𝑦𝑘 ≥ 2(𝑁𝑘
𝑝)

−1
− (𝑁𝑘

𝑝)
−2

𝑛𝑘, ∀𝑁𝑘
𝑝 ∈ 𝓝𝒌      (4.23b) 

Obviously, problem (4.23) is a lower bound problem of problem (4.17). 

Note that problem (4.23) is a nonconvex quadratic problem (QP), which has a 

nonconvex quadratic objective function and linear constraints. This problem can 

be solved to global optimality by commercial solvers, such as CPLEX.  

 Note now that the remaining decision variables, 𝐻𝑟, can be optimized using 

exhaustive search with a fixed interval of for instance 0.5 min, since there are at 

most 𝑅 variables of 𝐻𝑟, and these are bounded by constraint (4.17b). The resulting 

solution is near optimal for the relaxed problem, if the search interval of the 

exhaustive search is sufficiently small. This solution can then be used as an initial 

solution for the algorithm presented in Section 4.2.1. In addition, a lower bound 

on the optimal solution to the original problem can be produced, if the search 

interval for 𝐻𝑟  is set to a very small value. This lower bound can be used to 

examine the algorithm’s solution quality. However, the process for obtaining the 

lower bound may take a long time due to the small search interval. 

4.2.3 Generating the exact stop locations 

The numbers of stops for each stop type, obtained using the above algorithm, are 

fractions for each segment. These fractions cannot be directly applied to design a 

real skip-stop service. Hence, the following recipe has been developed to convert 

the optimal solution to a real world design with exact stop locations.  

First, the number of stops in each segment is determined, denoted by �̅�𝑘 

for segment 𝑘. It is given by 

�̅�𝑘 = ⌊∑ 𝑛𝑢
∗𝑘

𝑢=1 − ∑ �̅�𝑢
𝑘−1
𝑢=1 ⌋, ∀𝑘 = {2,3, … ,𝑚}    

�̅�1 = ⌊𝑛1
∗⌋         (4.24) 

where 𝑛𝑢
∗  is obtained by solving (4.17); and ⌊∙⌋ is the floor function. Hence, there 

are 𝑀 = ∑  �̅�𝑘
𝑚
𝑘=1  stops located in the corridor with even stop spacing 

𝑙𝑘

�̅�𝑘
 in each 

segment 𝑘.  

 The stops for each route 𝑟 are then determined. As 𝜙𝑘,𝑟 and 𝑡𝑘 represent 

the proportion of different stop types in a segment, these are re-indexed with 

respect to each stop, denoted by 𝑃𝑧
𝑟, where 𝑧 ∈ {1,…𝑀} is the index of stops; 𝑟 ∈
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{0,1, … , 𝑅} corresponds to the type of stop and 𝑟 = 0 represents the transfer stop. 

Then the stop assignment can be obtained by iteratively calculating the following 

two equations:  

𝑟𝑧 = argmax
r

{∑ 𝑃𝑠
𝑟 − 𝐶𝑧−1

𝑟𝑧
𝑠=1 }      (4.25) 

𝐶𝑧
𝑟 = {

𝐶𝑧−1
𝑟 + 1,   if 𝑟 = 𝑟𝑧

𝐶𝑧−1
𝑟    ,   otherwise

       (4.26) 

where 𝑟𝑧 represents the stop type of stop 𝑧, and 𝐶𝑧
𝑟 is the cumulative number of 

stops for stop type 𝑟, counting from stop 1 to stop 𝑧 (𝐶0
𝑟 ≡ 0). 

4.3 Numerical Analysis 

Section 4.3.1 describes the demand patterns and other parameter values used in 

our numerical experiments. Section 4.3.2 reports the validation tests of our CA 

models. Section 4.3.3 presents parametric analysis of local-express designs under 

different demand patterns, and compares the general skip-stop model with other 

corridor design models. Section 4.3.4 examines a real-world case study.  

4.3.1 Demand patterns and parameter values  

A 𝑚 × 𝑚 demand matrix of the following form is considered: 

𝜆𝑖,𝑗 = [(1 − 𝜌)𝑞𝑖,𝑗
1 + 𝜌𝑞𝑖,𝑗

2 ] Λ      (4.27) 

where Λ is the total demand of the corridor; 𝑞𝑖,𝑗
1  and 𝑞𝑖,𝑗

2  are assumed to be two 

different OD probability matrices, representing the probability of a trip originating 

from segment 𝑖 and terminating at segment 𝑗 in the corridor. The  𝑞𝑖,𝑗
1  is specified 

as a uniform OD probability matrix, i.e. 𝑞𝑖,𝑗
1 =

1

𝑚(𝑚−1)
 for all 𝑖 ≠ 𝑗 and 𝑞𝑖,𝑗

1 = 0 

for 𝑖 = 𝑗; and 𝑞𝑖,𝑗
2  is used to represent the demand heterogeneity. 𝜌 ∈ [0,1] is a 

coefficient used to adjust the proportion of the uniformly distributed demand in 

the total demand, i.e. 𝜌 = 0 represents that 𝜆𝑖,𝑗 is uniformly distributed and 𝜌 = 1 

reflects the greatest demand heterogeneity. 

Numerical studies in the following sections study a 20-km linear corridor. 

A “chessboard” shape probability OD matrix 𝑞𝑖,𝑗
2  is specified, as illustrated in 

Figure 4.1, where the trips’ probability in a unit area is represented by colors. The 
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probability that a trip is in a km2 of yellow area in the figure is 0.52%, and the 

probability that a trip is in a km2 of black area is 1.56% (one can verify that these 

probabilities sum up to 1 over the entire OD region). Examination of 𝜌 from 0 to 

1 is conducted to test the skip-stop model’s performance under different degrees 

of demand heterogeneity. For validation of our model, note that the optimal design 

of a “chessboard” shape demand pattern (𝜌 = 1) should have two independent 

routes: one serving the demand in the yellow squares and the other serving the 

demand in the black squares. T-type stop should not exist because no patron needs 

to transfer. On the other hand, if the demand is uniform (𝜌 = 0), the optimal design 

will be symmetric (for example, an AB-type service). 

 

Figure 4.1 The “chessboard” OD probability matrix 

Two typical transit modes, a bus system and a rail system, are examined. 

These two transit modes’ cost and operational parameters are the same as in Table 

2.1, but the unit infrastructure construction 𝜋𝑖  is doubled for the rail system to 

account for the additional rail track needed for overtaking. We examine the 

average demand density 
Λ

𝐿
∈ {100,200,300} trips/h/km in a bus system, and 

Λ

𝐿
∈

{500,700,900} trips/h/km in a rail system; and two time values: 𝜇 = 5 $/h for a 

low-wage city, and 𝜇 = 20 $/h for a high-wage city. A low walking speed (𝑣𝑤 =
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2 km/h) is assumed to account for signal delays and the inconvenience of walking; 

𝐶𝑡 is assumed to be 1 min/transfer. 

For our solution algorithm, an evenly spaced OD matrix with 𝑚 = 20 and  

𝑙𝑘 = 1  km, ∀𝑘 ∈ {1,2, … ,𝑚}  is considered. The convergence tolerance is 𝜀 =

0.001. When finding the initial solution, 𝐻𝑟 is searched with a step of 1 min, and 

the local minimum solver in CPLEX is employed to rapidly solve the quadratic 

programming (see Section 4.2.2). 

4.3.2 Model validation  

Our model is validated using two specific demand patterns in Section 4.3.2.1. 

Solution quality is examined in Section 4.3.2.2. Section 4.3.2.3 presents the CA 

solution’s computational efficiency and approximation error with respect to 

segment length. 

4.3.2.1 Optimal designs under specific demand patterns 

The optimal design results are examined under the two specific demand patterns, 

namely the “chessboard” shape demand pattern (𝜌 = 1), and the uniform demand 

pattern (𝜌 = 0). Figures 4.2a-b present the optimal design results for a bus corridor 

under these two demand patterns in a high-wage city (𝜇 = 20 $/h) with average 

demand density of  
Λ

𝐿
= 200 trips/h/km. As expected, Figure 4.2a shows a design 

of two independent routes, in which the blue circles represent A-type stops, and 

red squares represent B-type stops. No transfer stop is needed. Figure 4.2b shows 

an AB-type design, where the T-type stops are marked by black dots. Note that 

many T-type stops are located at the corridor’s two ends. This is because the on-

board passenger flow is low near the corridor ends, thus stop spacing of each route 

can be made smaller. 

 

 

(a) “chessboard” shape demand (𝜌 = 1) 
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(b) uniform demand (𝜌 = 0) 

Figure 4.2 Optimal stop spacing under different demand patterns 

4.3.2.2 Solution quality   

The quality of our CA solution is first compared to the lower bound obtained from 

(4.23). Then the approximation error of the CA model as compared with the 

converted design (see Section 4.2.3) is evaluated. 

To find the lower bound, the relaxed problem is solved by using a small 

search interval of 𝐻𝑟 (0.1 min) and applying the global quadratic programming 

solver in CPLEX (see Section 4.2.2). The relative cost gap between the lower 

bound and the CA solution is calculated for the numerical instances in Section 

4.3.1. The average cost gap is found to be about 1.8% and the maximum cost gap 

is only 3.1%. Considering that the lower bound is obtained by ignoring some cost 

terms, the above cost gaps manifest good quality of our CA solution. 

Approximation errors between the CA solution and the converted design 

for the numerical instances are summarized in Table 4.2. The table shows that the 

error for bus systems never exceeds 1.1% and is only 0.3% on average, and the 

error for rail systems never exceeds 1.8% and is 0.8% on average. Hence, our CA 

model is quite accurate in approximating the system’s generalized cost. The 

approximation errors mainly arise from rounding off the number of stops in each 

segment. This also explains why the rail system has larger approximation errors, 

as it has fewer stops in each segment.  
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Table 4.2 Comparison between the costs of CA solution and converted design 

 Bus systems Rail systems 

Average 

error (%) 

Maximum 

error (%) 

Average 

error (%) 

Maximum 

error (%) 

Generalized cost, 𝑆𝐶 0.3% 1.1% 0.8% 1.8% 

User cost 0.5% 1.3% 3.2% 5.2% 

Agency cost 1.7% 2.2% 1.5% 1.8% 

𝑈𝐶𝑎  1.1% 2.1% 2.3% 3.0% 

𝑈𝐶𝑤  1.4% 4.6% 2.7% 4.9% 

𝑈𝐶𝑖  0.5% 1.4% 3.8% 8.3% 

𝑈𝐶𝑡  6.9% 14.9% 13.3% 24.3% 

𝐴𝐶𝐾  0.6% 0.8% 1.3% 1.3% 

𝐴𝐶𝐻  2.0% 2.7% 5.2% 7.2% 

𝐴𝐶𝐼  0.6% 0.8% 1.3% 1.3% 

𝐴𝐶𝑆  0.9% 2.0% 1.5% 2.7% 

 

4.3.2.3 Effects of segment length  

The segment length significantly affects the estimation error and the solution time. 

Understanding these effects is useful for guiding demand data collection and 

transit corridor optimization procedures. 

In this section, the solution procedure is performed using the numerical 

instances defined in Section 4.3.1 with different segment lengths. For simplicity, 

four uniform segment lengths of 0.5 km, 1 km, 2 km, and 4km are used. The 

solution algorithm was performed in Matlab 2016a on a personal computer with 

Intel Core i7-4970 CPU @ 3.60 GHz and 16G RAM. 

 Table 4.3 presents the computation time and the percentage cost error 

between CA solution and converted design for the four segment lengths. It shows 

that the computation time increases as the segment length decreases. However, the 

estimation error is minimum when 1-km segments are used. Further smaller 

segments will only yield greater errors. This is possibly because the round-off error 

for the number of stops increases as the segment length decreases, since a shorter 

segment contains a smaller fraction of stops. 
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Table 4.3 Comparison between different segment lengths 

Segment length 0.5 km 1 km 2 km 4 km 

Computation time (s) 363.7 216.5 124.5 82.8 

Average percentage cost error between 

CA solution and converted design 
0.8% 0.3% 1.5% 4.4% 

Maximum percentage cost error between 

CA solution and converted design 
2.3% 1.1% 3.3% 9.1% 

4.3.3 Parametric analysis  

In this section, parametric analysis is conducted for general skip-stop service 

design of bus and rail systems, two time values (i.e. 𝜇 = 5 $/h and 𝜇 = 20 $/h), 

six degrees of demand heterogeneity (i.e. 𝜌 ∈ {0,0.2,0.4,0.6,0.8,1}) and various 

average demand densities: 
𝛬

𝐿
= {100, 200, 300} trips/h/km for bus systems and 

𝛬

𝐿
= {500, 700, 900} trips/h/km for rail systems. The optimal general skip-stop 

service design is obtained for a 2-route system only, and is compared with three 

other forms of skip-stop service: AB-type service, local-express service, and all-

stop service. Note for rail systems that the line infrastructure cost per km of local-

express and general skip-stop services is twice of that of all-stop and AB-type 

services, since the former need a second track for train overtaking. 

Figures 4.3a and b present the optimal generalized cost curves of the four 

service types for a bus corridor in a low-wage city (𝜇 = 5 $/h) under low and high 

demand densities (
Λ

𝐿
= 100 and 300 trips/h/km), respectively. The cost curves are 

plotted against degree of heterogeneity (𝜌 ∈ [0,1]). Figure 4.3a shows that under 

low demand the AB-type and local-express designs’ performance is worse than 

the all-stop design (note that the AB-type designs examined in these figures consist 

of 2 or more routes in each direction). The figure also shows that the general design 

performs as good as the all-stop design for 𝜌 ≤ 0.4, and it outperforms all the three 

special design forms with greater cost savings as demand heterogeneity rises. 

Under high demand (Figure 4.3b), the all-stop design performs the worst, followed 

by the local-express design and the AB-type design. The general design still has 

the lowest cost regardless of 𝜌, and its cost saving increases with  𝜌. 

To examine the effect of value of time, cost curves of the four service types 

are also plotted in Figures 4.3c-d for a high-wage city (𝜇 = 20 $/h). Under low 



87 

 

demand, comparison between Figures 4.3a and c reveals that the skip-stop services 

are more favourable for high-wage cities; see in Figure 4.3c that the local-express 

and AB-type services now have similar costs as the all-stop service. Under high 

demand, however, the cost savings by skip-stop services are insensitive to the time 

value. 

  

(a) Low demand in a low-wage city 

(
Λ

𝐿
= 100 trips/h/km, 𝜇 = 5 $/h) 

(b) High demand in a low-wage city 

(
Λ

𝐿
= 300 trips/h/km, 𝜇 = 5 $/h) 

  

(c) Low demand in a high-wage city 

(
Λ

𝐿
= 100 trips/h/km, 𝜇 = 20 $/h) 

(d) High demand in a high-wage city 

(
Λ

𝐿
= 300 trips/h/km, 𝜇 = 20 $/h) 

Figure 4.3 Performance of different skip-stop service types for bus systems 

Different findings are obtained for rail systems; see Figures 4.4a and b for 

the four service types’ cost curves for a rail corridor under high demand (
Λ

𝐿
= 900 

trips/h/km) in low and high-wage cities, respectively. Note now that the all-stop 

and AB-type services furnish much lower costs than local-express and general 

skip-stop services due to the additional infrastructure cost entailed by the latter 

two designs. The lowest-cost design is usually AB-type service. Comparison 
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between Figures 4.4a and b shows that the skip-stop services are more favourable 

for high-wage cities. Similar results are also observed for other demand patterns. 

They are however omitted here in the interest of brevity. 

  

(a) High demand in a low-wage city  

(
Λ

𝐿
= 900 trips/h/km, 𝜇 = 5 $/h) 

(b) High demand in a high-wage city  

(
Λ

𝐿
= 900 trips/h/km, 𝜇 = 20$/h) 

Figure 4.4 Performance of different skip-stop service types for rail systems 

4.3.4 Real-world case study 

In this section, the four types of services are designed for a case study of Metro 

Line 1 in Chongqing City (China), as shown in Figure 4.5. The 35.55 km line 

contains 21 stops and has only one track in each direction. The stop-to-stop OD 

demand was collected during a peak hour (7:30-8:30) period on 2016.11.03. The 

two numbers in parentheses on a stop represent the stop’s number (numbered from 

east to west) and longitudinal coordinate (coordinate of station 1 is set to zero), 

respectively. Figure 4.6 plots the boarding and alighting demand over the corridor 

in eastbound and westbound directions. Note that the boarding and alighting 

densities between stop 17 and stop 20 are significantly smaller than at other stops. 

The time value is set to 𝜇 = 20 $/h. 



89 

 

 

Figure 4.5 Layout of the Metro Line 1 of Chongqing 

 

Figure 4.6 Boarding and alighting demand 

Under the given demand pattern, the optimal general skip-stop design is 

shown in Figure 4.7, where the blue circles, red squares and black dots represent 

the A-, B- and T-type stops, respectively. The stop spacings vary in the range of 

[0.4, 2.2] km. It is observed that the stop spacings between 20 km and 33 km are 

much larger than other parts of the corridor, and the skip-stop bay between 17 km 

and 26 km contains A-type stops only. These design features result from the 

significantly low demand between 20 and 34 km as shown in Figure 4.6.  

 

Figure 4.7 Optimal stop spacing of the general skip-stop design 
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Table 4.4 compares the optimal design results for the four service types 

and the existing design (the service headway of the existing design is optimized to 

provide a conservative comparison). Consistent with the findings in Section 4.3.3, 

the AB-type design furnishes the largest cost saving (29.3%) as compared to the 

existing system, since it can operate in the present single-track infrastructure. 

However, the general skip-stop design has the lowest user cost. This type of design 

would be the lowest-cost option if a double-track system is already built, or if the 

demand further increases to entail a double-track rail system.  

Table 4.4 Comparison between four design types and the existing design 

 
Existing 

design 
All-stop AB-type 

Local-

express# 

General 

skip-stop 

Number of stops 21 40 48 39 46 

𝐻1 (min) 4.2 3.2 4.5 7.5 4 

𝐻2 (min) - - 4.5 4.4 3.7 

User cost (min/patron) 48.5 30.6 28 29.4 27.1 

Agency cost 

(min/patron) 
12.6 14.5 15.2 24.6 25.8 

Generalized cost 

(min/patron) 
61.1 45.1 43.2 54 52.9 

Cost saving as compared 

to the existing design 
- 26.2% 29.3% 11.6% 13.4% 

# 𝐻1 corresponds to the headway of the local line 

4.4 Summary of the General Skip-stop Design 

A novel formulation has been developed to model a more general skip-stop design, 

combining the properties of discrete and CA models. This model allows both the 

transfer stops and non-transfer stops of different routes to be distributed along the 

corridor in an arbitrary fashion. The model takes a discrete OD matrix as input, 

and uses stop densities instead of individual stop locations as decision variables.  

A heuristic method is proposed to solve the problem. A relaxed problem is 

also formulated to offer an initial solution to the heuristic method and a lower 

bound to the original problem. A recipe to convert the solution to a design with 

exact stop locations is provided too. The numerical tests verify that our heuristic 

method rapidly produces near-optimal solutions. 
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The superiority of this general design over all-stop, AB-type and local-

express designs is demonstrated through many case studies (if the additional 

infrastructure cost for a second track or bus lane is ignored). Cost savings accrue 

up to 9.1% as compared against all-stop service, 7.2% against local-express 

service and 6.3% against AB-type service. These results suggest great application 

potential for our general skip-stop design model. However, for rail systems with 

expensive track cost, the AB-type design may still be the lowest-cost option if the 

demand is not too high, as is manifested by a real-world case study.  
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Chapter 5 Conclusions and Future Work 

Section 5.1 summarizes this dissertation’s contributions. Section 5.2 discusses 

possible extensions of the current work.  

5.1 Major Contributions 

Continuous approximation (CA) models for optimizing the design of two special 

skip-stop service forms, AB-type service and local-express service, were 

formulated. A novel discrete formulation for a more general skip-stop design was 

also developed. In all three of these models, stop locations and routing plan are 

jointly optimized under spatially heterogeneous demand. We believe these models 

mark an important advance of the present research frontier in skip-stop service 

optimization, since past studies either assumed unrealistic uniform demand pattern, 

or optimized skip-stop routing plan only for given stop locations, and they usually 

furnished heuristic solutions whose optimality gaps were difficult to evaluate. The 

thesis work also addressed other issues, including the modelling of both loop and 

linear corridors, asymmetric designs between two travel directions of a corridor, 

and patrons’ route choice behaviors. 

The two CA models were solved via applying calculus of variations to 

partially decompose the formulations by spatial coordinates. Parts of the 

formulations that cannot be locally decomposed (e.g. the backtracking-related cost 

items and the procedure for calculating patrons’ route choice equilibrium) were 

updated via iterative steps. The discrete formulation for general design was solved 

by an iterative heuristic algorithm that employs an initial solution developed from 

a relaxed formulation. All these solution methods were demonstrated to be 

computationally efficient. Lower bounds were also developed for the AB-type and 

general design models, which were used to verify the near-optimality of model 

solutions.  

Recipes were proposed to convert the solutions of stop spacings/densities 

to exact stop locations and routing plans, paving the way for real world 

implementation. These stop locations can be further refined under the 

consideration of local physical constraints, e.g. bridges and tunnels, ramps, 

junctions, and curbside parking space. 
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The advantages of the three skip-stop designs were examined through a 

large array of numerical experiments. Results show that skip-stop services 

significantly outperform conventional all-stop services under various demand 

patterns and operating conditions. In general, the cost savings resulting from 

optimally-designed skip-stop services increase with trip length, demand density, 

demand heterogeneity and time value. 

Comparison between the three skip-stop service types reveals that: i) for 

single-mode corridors, the general skip-stop model produces the most flexible 

designs with the lowest generalized cost (if the additional infrastructure cost of a 

second track or bus lane is not included), but it also has the highest approximation 

error resulting from its specific formulation; ii) the local-express design is best 

operated with differentiated transit modes, which has substantially lower costs 

than single-mode systems; and iii) the AB-type service often furnishes the lowest-

cost design for rail systems since it does not require an expensive second track. 

The advantages of above designs, especially the AB-type design, can be further 

enhanced by coordinating the schedules of different routes at transfer stops. 

Admittedly, some of the above findings were obtained under limited 

demand patterns. There are infinite number of spatially heterogeneous demand 

patterns. More demand patterns (including real corridor cases) can be examined in 

the future, which may unveil new findings and more comprehensive 

understandings on the optimal structure of transit corridor design. Our models can 

also be easily tuned to optimize skip-stop routing plans for existing transit systems 

with fixed stop locations. Corridors with time-varying demand can be optimized 

by allowing for different service schemes during different periods, e.g. operating 

skip-stop service during peak hours and all-stop service during off-peak periods. 

These time-varying schemes may share the same set of stops. 

5.2 Future Work 

The following extensions of this thesis work can be conducted in the future:  

 i) More sophisticated, stochastic route choice models (e.g. logit-form 

models) can be incorporated into our modeling framework to furnish better 
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predictions of patrons’ route choice behavior. Other stochastic factors in demand, 

patrons’ wait time, and transit travel time will also be considered. 

ii) The general skip-stop design model can be further tailored to include 

zonal service and short-turn service into the feasible design forms that the model 

can produce. This generalization will further expand the applicable scope of this 

model. 

iii) The CA method proposed in this thesis can also be applied to model 

general, heterogeneous trunk-feeder corridors and networks consisting of a mix of 

various feeder service types (fixed-route buses, flex-route vans, shared bikes, etc.). 
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Appendix 

A Tables of notation 

Table A.1 List of common cost terms and parameters used in the paper 

𝐴𝑈𝐶𝑎 Patrons’ total access and egress time for the all-stop service (h/h) 

𝐴𝑈𝐶𝑤 Patrons’ total wait time for the all-stop service (h/h) 

𝐴𝑈𝐶𝑖 Patrons’ total in-vehicle travel time for the all-stop service (h/h) 

𝐴𝐴𝐶𝐾 Distance-based vehicle operating cost for the all-stop service (h/h) 

𝐴𝐴𝐶𝐻 Time-based vehicle operating cost for the all-stop service (h/h) 

𝐴𝐴𝐶𝐼 Line infrastructure cost for the all-stop service (h/h) 

𝐴𝐴𝐶𝑆 Stop infrastructure cost for the all-stop service (h/h) 

𝐴𝐶 Generalized cost for the all-stop service (h/h) 

𝑈𝐶𝑎 Patrons’ total access and egress time for the skip-stop service (h/h) 

𝑈𝐶𝑤 Patrons’ total wait time for the skip-stop service (h/h) 

𝑈𝐶𝑖 Patrons’ total in-vehicle travel time for the skip-stop service (h/h) 

𝑈𝐶𝑡 Total transfer penalty for the skip-stop service (h/h) 

𝐴𝐶𝐾 Distance-based vehicle operating cost for the skip-stop service (h/h) 

𝐴𝐶𝐻 Time-based vehicle operating cost for the skip-stop service (h/h) 

𝐴𝐶𝐼 Line infrastructure cost for the skip-stop service (h/h) 

𝐴𝐶𝑆 Stop infrastructure cost for the skip-stop service (h/h) 

𝑆𝐶 Generalized cost for the skip-stop service (h/h) 

𝐿 Corridor length (km) 

𝑣𝑤 Walking speed (km/h) 

𝑣 Vehicle cruise speed (km/h) 

𝜇 Patrons’ value of time ($/h) 

𝐻𝑚𝑖𝑛 Minimum vehicle headway (h) 

𝐻𝑚𝑎𝑥 Maximum vehicle headway (h) 

𝐾 Vehicle’s passenger-carrying capacity (patron/veh) 

𝐶𝑡 Unit penalty cost per transfer (h) 

𝜋𝑣 Unit distance-based operating cost per vehicle-km ($/veh/km) 

𝜋𝑚 Unit time-based operating cost per vehicle-hour ($/veh/h) 

𝜋𝑖 
Amortized construction and maintenance cost per km of line 

infrastructure (in one direction) per hour of service ($/km/h) 

𝜋𝑠 
Amortized construction and maintenance cost per stop per hour of service 

($/stop/h) 
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Table A.2 List of variables, functions, and parameters used in Chapter 2 

Notation Description 

Decision variables/functions 

𝑟𝑐 Number of skip-stop routes in the clockwise direction 

𝑟𝑐𝑐 Number of skip-stop routes in the counterclockwise direction 

𝑠(𝑥) Stop spacing at 𝑥 (km) 

𝑘𝑐(𝑥) 
The number of non-transfer stops experienced by each clockwise vehicle 

in the skip-stop bay containing 𝑥 

𝑘𝑐𝑐(𝑥) 
The number of non-transfer stops experienced by each counterclockwise 

vehicle in the skip-stop bay containing 𝑥 

𝐻𝑐 Vehicle headway in the clockwise direction (h) 

𝐻𝑐𝑐 Vehicle headway in the counterclockwise direction (h) 

Demand variables/functions 

𝜆(𝑥, 𝑦) Demand density from origin 𝑥 to destination 𝑦 (trip/km2/h) 

Λ𝑐 Total demand of clockwise trips (trip/h) 

Λ𝑐𝑐 Total demand of counterclockwise trips (trip/h) 

𝑃𝑐(𝑥) Trip origin density of clockwise trips at 𝑥 (trip/km/h) 

𝑃𝑐𝑐(𝑥) Trip origin density of counterclockwise trips at 𝑥 (trip/km/h) 

𝑄𝑐(𝑥) Trip destination density of clockwise trips at 𝑥 (trip/km/h) 

𝑄𝑐𝑐(𝑥) Trip destination density of counterclockwise trips at 𝑥 (trip/km/h) 

𝑜𝑐(𝑥) On-board passenger flow of clockwise trips at 𝑥 (trip/h) 

𝑜𝑐𝑐(𝑥) On-board passenger flow of counterclockwise trips at 𝑥 (trip/h) 

𝑙 Trip length (km) 

𝑝𝑐(𝑥) Probability density function of trip origins for clockwise trips 

𝑝𝑐𝑐(𝑥) Probability density function of trip origins for counterclockwise trips 

𝜃𝑐(𝑙) Probability density function of trip length for clockwise trips  

𝜃𝑐𝑐(𝑙) Probability density function of trip length for counterclockwise trips 

𝜎𝑜 Standard deviation of the distribution of trip origins (km) 

𝐸𝑙 Mean trip length (km) 

𝜎𝑙 Standard deviation of trip length (km) 

Other parameters and variables 

𝑈−
𝐿(𝑥, 𝛿) The left 𝛿-neighborhood of 𝑥 in a corridor of length 𝐿 

𝑈+
𝐿(𝑥, 𝛿) The right 𝛿-neighborhood of 𝑥 in a corridor of length 𝐿 
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𝑈𝐿(𝑥, 𝛿) 
The 𝛿-neighborhood of 𝑥 in a corridor of length 𝐿, which is the union of 

both the left and right 𝛿-neighborhoods of 𝑥 

𝑇(𝑥) Number of stops (including one transfer stop) in a skip-stop bay at 𝑥 

𝑏𝑐(𝑥) Density of backtracking trips at 𝑥 in the clockwise direction (trip/km/h) 

𝑏𝑐𝑐(𝑥) 
Density of backtracking trips at 𝑥 in the counterclockwise direction 

(trip/km/h) 

�̅�𝑐(𝑥) 
Average density of clockwise trips contained in a skip-stop bay at 𝑥 

(trip/km/h) 

�̅�𝑐𝑐(𝑥) 
Average density of counterclockwise trips contained in a skip-stop bay at 

𝑥 (trip/km/h) 

𝜏 Vehicle dwell time at each stop (h) 

 

Table A.3 List of variables, functions, and parameters used in Chapter 3 

Notation Description 

Decision variables/functions 

𝛿𝑒(𝑥) Stop density of express transit at location 𝑥 

𝛿𝑙(𝑥) Stop density of local transit at location 𝑥  

𝐻𝑒 Service headway of express transit 

𝐻𝑙 Service headway of local transit 

Demand variables/functions 

𝜆(𝑥, 𝑦) Demand density from origin 𝑥 to destination 𝑦 (trip/km2/h) 

𝜆(𝐼)
𝑑 (𝑥, 𝑦) Demand density of route 𝐼 in direction 𝑑 from 𝑥 to 𝑦 (trip/km2/h) 

𝑃𝑑(𝑥) Trip origin density in direction 𝑑 at 𝑥 (trip/km/h) 

𝑄𝑑(𝑥) Trip destination density in direction 𝑑 at 𝑥 (trip/km/h) 

𝑃(𝐼)
𝑑 (𝑥) Trip origin density of route 𝐼 in direction 𝑑 at 𝑥 (trip/km/h) 

𝑄(𝐼)
𝑑 (𝑥) Trip destination density of route 𝐼 in direction 𝑑 at 𝑥 (trip/km/h) 

𝐵𝑙
𝑑(𝑥) Boarding density of local transits in direction 𝑑 at 𝑥 (trip/km/h) 

𝐴𝑙
𝑑(𝑥) Alighting density of local transits in direction 𝑑 at 𝑥 (trip/km/h) 

𝐵𝑒
𝑑(𝑥) Boarding density of express transits in direction 𝑑 at 𝑥 (trip/km/h) 

𝐴𝑒
𝑑(𝑥) Alighting density of express transits in direction 𝑑 at 𝑥 (trip/km/h) 

𝜆𝑒→𝑙
𝑑 (𝑥) Transfer density from express to local lines in direction 𝑑 at 𝑥 (trip/km/h) 

𝜆𝑙→𝑒
𝑑 (𝑥) Transfer density from local to express lines in direction 𝑑 at 𝑥 (trip/km/h) 

𝜆𝑡
𝑑(𝑥) Transfer density in direction 𝑑 at 𝑥 (trip/km/h) 
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𝑜𝑒
𝑑(𝑥) On-board patron flows on express lines in direction 𝑑 at 𝑥 (trip/km/h) 

𝑜𝑙
𝑑(𝑥) On-board patron flows on local lines in direction 𝑑 at 𝑥 (trip/km/h) 

𝑜𝑑(𝑥) On-board patron flows in direction 𝑑 at 𝑥 (trip/km/h) 

Other parameters and variables 

𝐼 Index of route types, 𝐼 ∈ {𝑙, 𝑒, 𝑙𝑒, 𝑒𝑙, 𝑙𝑒𝑙} 

𝑑 Direction of trips, 𝑑 ∈ {𝐸,𝑊} 

𝑡(𝐼)
𝑑 (𝑥, 𝑦)  Travel time of route 𝐼 in direction 𝑑 from origin 𝑥 to destination 𝑦 (h) 

𝜅(𝑥, 𝑦) Access and egress time from origin 𝑥 to destination 𝑦 (h) 

𝑉𝑒
𝑑(𝑥) Commercial speeds of express line in direction 𝑑 at 𝑥 (km/h) 

𝑉𝑙
𝑑(𝑥) Commercial speeds of local line in direction 𝑑 at 𝑥 (km/h) 

𝐶(𝐼)
𝑑 (𝑥) Critical distance of Route 𝐼 in direction 𝑑 at 𝑥 (km) 

𝑝𝑒(𝑥) The probability that location x is closer to an express stop  

𝑝𝑙(𝑥) The probability that location x is closer to a local stop  

𝜏𝑙
0 Constant delay at stops for local vehicles (h/stop) 

𝜏𝑒
0 Constant delay at stops for express vehicles (h/stop) 

𝜏𝑙
𝑎 Alighting delay at stop for local vehicles (h/patron) 

𝜏𝑒
𝑎 Alighting delay at stop for express vehicles (h/patron) 

𝜏𝑙
𝑏 Boarding delay at stop for local vehicles (h/patron) 

𝜏𝑒
𝑏 Boarding delay at stop for express vehicles (h/patron) 

 

Table A.4 List of variables, functions, and parameters used in Chapter 4 

Notation Description 

Decision variables/functions 

𝜙𝑘,𝑟 Proportion of route 𝑟 stop in segment 𝑘 

𝑡𝑘 Proportion of transfer stop in segment 𝑘 

𝑛𝑘 Number of stops in segment 𝑘 

𝐻𝑟 Service headway of route 𝑟 

Demand variables/functions 

𝜆𝑖,𝑗 Demand from segment 𝑖 to 𝑗 (trip/h) 

�̅�𝑘,𝑟
𝑑  

Average on-board patron flows of route 𝑟  in segment 𝑘  for direction 𝑑 

(trip/km/h) 

𝑜𝑘,𝑟
𝑑  

On-board patron flows of route 𝑟 at the right boundary of segment 𝑘 for 

direction 𝑑 (trip/km/h) 
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𝑼𝒌
𝒅 Supplementary OD matrix for segment 𝑘 for direction 𝑑 

𝑢𝑖,𝑗
𝑘,𝑑

 Element of 𝑼𝒌
𝒅 at row 𝑖 and column 𝑗 

𝑝𝑖,𝑗,𝑟 Probability of a trip completed via route 𝑟 from segment 𝑖 to 𝑗 

�̂�𝑖,𝑗 Probability of a trip involving a transfer 

𝑏𝑘 Average backtracking density in segment 𝑘 (trip/km/h) 

𝐵𝑘 Maximum backtracking flow in segment 𝑘 in one direction (trip/h) 

Other parameters and variables 

𝑘 Index of segment 

𝑚 The number of segments 

𝑙𝑘 Length of segment 𝑘 (km) 

𝑟 Index of route 

𝑅 Number of routes 

𝑑 Direction of trips, 𝑑 ∈ {𝐸,𝑊} 

𝑤𝑖,𝑗 Total wait cost for all the patrons from segment 𝑖 to 𝑗 (h/h) 

𝑠𝑘 Skip-stop bay length in segment 𝑘 

𝑠𝑚𝑖𝑛 Minimum stop length (km) 

𝑏𝑙𝑘 Index of the left-most segment spanned by 𝑠𝑘 

𝑏𝑟𝑘 Index of the right-most segment spanned by 𝑠𝑘 

Γ𝑘 Cost of trips without backtracking for segment 𝑘 (h/h) 

Θ𝑘 Additional cost of backtracking trips for segment 𝑘 (h/h) 

B Derivation of some patron cost components for the AB-type 

service 

Patron wait time, in-vehicle travel time, and transfer penalty are derived in sections 

B.1, B.2, and B.3, respectively. For simplicity, only the derivation of these cost 

components associated with clockwise trips is presented. Counterclockwise trip 

costs can be derived similarly.  

B.1 Patrons’ wait time in equations (2.13-14b) 

Skip-stop system trips can be classified into four types with respect to origin and 

destination stop types. The probabilities and average wait times for the four trip 

types are summarized as follows: 
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Type 1: Both the origin and destination stops are transfer stops. Among all 

the trips from 𝑥 to 𝑦, the probability of Type 1 trips is 𝑃1(𝑥, 𝑦) =
1

𝑇(𝑥)
⋅

1

𝑇(𝑦)
. These 

trips’ average wait time is 𝑊1 =
𝐻𝑐

2
. 

Type 2: The origin stop is a transfer stop and the destination stop is a non-

transfer stop. The local probability of Type 2 trips is 𝑃2(𝑥, 𝑦) =
1

𝑇(𝑥)
⋅

𝑇(𝑦)−1

𝑇(𝑦)
, and 

the average wait time is 𝑊2 =
𝑟𝑐𝐻𝑐

2
. 

Type 3: The origin stop is a non-transfer stop and the destination stop is a 

transfer stop. The local probability of Type 3 trips is 𝑃3(𝑥, 𝑦) =
𝑇(𝑥)−1

𝑇(𝑥)
⋅

1

𝑇(𝑦)
, and 

the average wait time is 𝑊3 =
𝑟𝑐𝐻𝑐

2
. 

Type 4: Both the origin and destination stops are non-transfer stops. The 

local probability of Type 4 trips is 𝑃4(𝑥, 𝑦) =
𝑇(𝑥)−1

𝑇(𝑥)
⋅

𝑇(𝑦)−1

𝑇(𝑦)
. Trips of this type can 

be further divided into three subtypes:  

Type 4.1: The origin and destination stops are on the same route. The 

probability for Type 4.1 trips is 𝑃41(𝑥, 𝑦) =
1

𝑟𝑐
 
𝑇(𝑥)−1

𝑇(𝑥)
⋅

𝑇(𝑦)−1

𝑇(𝑦)
, and the average wait 

time is 𝑊41 =
𝑟𝑐𝐻𝑐

2
. 

Type 4.2: The origin and destination stops are on different routes but are 

located in the same skip-stop bay. Each Type 4.2 trip has a backtracking segment 

via a route in the opposite direction. The average wait time is thus given by 𝑊42 =

𝑟𝑐𝐻𝑐+𝑟𝑐𝑐𝐻𝑐𝑐

2
. Note that the local probability of these trips involving backtracking 

(similar to 𝑃41(𝑥, 𝑦)) cannot be simply written as a function of locations 𝑥 and 𝑦. 

Thus, the approximate local density of these trips is calculated. First, �̅�𝑐(𝑥) 

(trips/km/h) is denoted as the average density of clockwise “contained” trips at 𝑥. 

A contained trip is a trip whose origin and destination are both in the same skip-

stop bay. The �̅�𝑐(𝑥) is calculated by dividing the total number of contained trips 

in the skip-stop bay that contains 𝑥 by that skip-stop bay’s length, i.e., 

�̅�𝑐(𝑥) =
∫ ∫ 𝜆(𝑧,𝑦)𝑑𝑧𝑑𝑦

𝐷(𝑥)

𝑦=𝑧

𝐷(𝑥)

𝑧=𝑈(𝑥)

𝐷(𝑥)−𝑈(𝑥)
≈

∫ ∫ 𝜆(𝑧,𝑦)𝑑𝑧𝑑𝑦
𝑦∈𝑈𝐿(𝑥,

𝑇(𝑥)𝑠(𝑥)
2

)∩𝑈+
𝐿 (𝑧,𝑇(𝑥)𝑠(𝑥))𝑧∈𝑈𝐿(𝑥,

𝑇(𝑥)𝑠(𝑥)
2

)

𝑇(𝑥)𝑠(𝑥)
  (B1) 
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where 𝑈(𝑥)  and 𝐷(𝑥)  denote the locations of the upstream and downstream 

transfer stops that enclose the skip-stop bay containing 𝑥 . Note that 𝐷(𝑥) −

𝑈(𝑥) = 𝑇(𝑥)𝑠(𝑥). The approximation used in (B1) is obtained from 𝑈(𝑥) ≈ 𝑥 −

𝑇(𝑥)𝑠(𝑥)

2
 and 𝐷(𝑥) ≈ 𝑥 +

𝑇(𝑥)𝑠(𝑥)

2
. 

Among those contained trips, the local probability that a trip involves 

backtracking is 
𝑟𝑐𝑘𝑐(𝑥)

𝑇(𝑥)
⋅

(𝑟𝑐−1)𝑘𝑐(𝑥)

𝑇(𝑥)
. The first fraction in the above formula is the 

probability that a trip’s origin stop is a non-transfer stop in the bay; note that 

although a skip-stop bay has two transfer stops, for each of them only half of the 

catchment zone is contained in the bay. The second fraction is the probability that 

the trip’s destination stop is a non-transfer stop in a bay on a different route from 

the origin stop. Note for a contained trip from 𝑥 to 𝑦 that 𝑘𝑐(𝑦) ≈ 𝑘𝑐(𝑥) since 𝑥 

and 𝑦 are very close. Hence, the local density of backtracking trips is given by: 

𝑏𝑐(𝑥) =
𝑟𝑐(𝑟𝑐−1)𝑘𝑐

2(𝑥)

𝑇2(𝑥)
�̅�𝑐(𝑥) =

𝑟𝑐(𝑟𝑐−1)𝑘𝑐
2(𝑥)

𝑇3(𝑥)𝑠(𝑥)
∫ ∫ 𝜆(𝑧, 𝑦)𝑑𝑧𝑑𝑦

𝑦∈𝑈𝐿(𝑥,
𝑇(𝑥)𝑠(𝑥)

2
)∩𝑈+

𝐿(𝑧,𝑇(𝑥)𝑠(𝑥))𝑧∈𝑈𝐿(𝑥,
𝑇(𝑥)𝑠(𝑥)

2
)

  

which is exactly equation (2.14a). The total number of backtracking trips is 

approximately 𝑁42 = ∫ 𝑏𝑐(𝑥)𝑑𝑥
𝐿

𝑥=0
. 

Type 4.3: The origin and destination stops are located on different routes 

and in different skip-stop bays. The average wait time is 𝑊43 = 𝑟𝑐𝐻𝑐 (including 

the transfer stop wait time ). The number of Type 4.3 trips is the total number of 

Type 4 trips minus the number of Types 4.1 and 4.2 trips (for the same reason as 

above, a localized probability similar to 𝑃41(𝑥, 𝑦) cannot be derived): 

𝑁43 = ∬ 𝜆(𝑥, 𝑦) (1 −
1

𝑟𝑐
) 

𝑇(𝑥)−1

𝑇(𝑥)
⋅

𝑇(𝑦)−1

𝑇(𝑦)
𝑑𝑥𝑑𝑦

𝐷𝑐
− ∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
, 

where 𝐷𝑐 denotes the shaded areas in Figure 2.1b, which represent the set of OD 

pairs (𝑥, 𝑦)  for clockwise trips; i.e. 𝐷𝑐 ≡ {(𝑥, 𝑦)|𝑦 ∈ 𝑈+
𝐿 (𝑥,

𝐿

2
) , 𝑥 ∈ (0, 𝐿]} =

{(𝑥, 𝑦)|𝑥 ∈ 𝑈−
𝐿 (𝑦,

𝐿

2
) , 𝑦 ∈ (0, 𝐿]}. 

The total patrons’ wait time for clockwise trips is therefore given by: 
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𝑆𝑈𝐶𝑤𝑐
= ∬ (𝑃1(𝑥, 𝑦)𝑊1 + 𝑃2(𝑥, 𝑦)𝑊2 + 𝑃3(𝑥, 𝑦)𝑊3 +

𝐷𝑐

𝑃41(𝑥, 𝑦)𝑊41)𝜆(𝑥, 𝑦)𝑑𝑥𝑑𝑦 + 𝑁42𝑊42 + 𝑁43𝑊43 =

∬
𝐻𝑐+𝑟𝑐𝐻𝑐(𝑇(𝑥)+𝑇(𝑦)−2)+(2𝑟𝑐−1)𝐻𝑐(𝑇(𝑥)−1)(𝑇(𝑦)−1)

2𝑇(𝑥)𝑇(𝑦)
𝜆(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐷𝑐
+

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
. 

This can be simplified as follows: 

𝑈𝐶𝑤𝑐
=

𝐻𝑐

2
∬ 𝜆(𝑥, 𝑦)

1+𝑟𝑐𝑇(𝑥)+𝑟𝑐𝑇(𝑦)−2𝑟𝑐+(2𝑟𝑐−1)(𝑇(𝑥)𝑇(𝑦)−𝑇(𝑥)−𝑇(𝑦)+1)

𝑇(𝑥)𝑇(𝑦)
𝑑𝑥𝑑𝑦

𝐷𝑐
+

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
  

=
𝐻𝑐

2
∬ 𝜆(𝑥, 𝑦) (2𝑟𝑐 − 1 −

𝑟𝑐−1

𝑇(𝑥)
−

𝑟𝑐−1

𝑇(𝑦)
)𝑑𝑥𝑑𝑦

𝐷𝑐
+

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
  

=
(2𝑟𝑐−1)𝐻𝑐

2
∬ 𝜆(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐷𝑐
−

(𝑟𝑐−1)𝐻𝑐

2
(∬

𝜆(𝑥,𝑦)

𝑇(𝑥)
𝑑𝑦𝑑𝑥

𝐷𝑐
+ ∬

𝜆(𝑥,𝑦)

𝑇(𝑦)
𝑑𝑥𝑑𝑦

𝐷𝑐
) +

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
  

=
(2𝑟𝑐−1)𝐻𝑐

2
∙ 𝛬𝑐 −

(𝑟𝑐−1)𝐻𝑐

2
(∫

𝑑𝑥

𝑇(𝑥)
(∫ 𝜆(𝑥, 𝑦)𝑑𝑦

𝑦∈𝑈+
𝐿(𝑥,

𝐿

2
)

)
𝐿

𝑥=0
+

∫
𝑑𝑦

𝑇(𝑦)
∫ 𝜆(𝑥, 𝑦)𝑑𝑥
𝑥∈𝑈−

𝐿(𝑦,
𝐿

2
)

𝐿

𝑦=0
) +

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
  

=
(2𝑟𝑐−1)𝐻𝑐𝛬𝑐

2
−

(𝑟𝑐−1)𝐻𝑐

2
(∫

𝑃𝑐(𝑥)

𝑇(𝑥)
𝑑𝑥

𝐿

𝑥=0
+ ∫

𝑄𝑐(𝑦)

𝑇(𝑦)
𝑑𝑦

𝐿

𝑦=0
) +

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
  

=
(2𝑟𝑐−1)𝐻𝑐𝛬𝑐

2
−

(𝑟𝑐−1)𝐻𝑐

2
∫

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)

𝑇(𝑥)
𝑑𝑥

𝐿

𝑥=0
+

𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
∫ 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
  (B2) 

In the above derivation, the fourth equality uses the definition of 𝛬𝑐, and 

the fifth equality uses the definitions of 𝑃𝑐(𝑥) and 𝑄𝑐(𝑦). 

Similarly, the total wait time for counterclockwise trips is: 

(2𝑟𝑐𝑐−1)𝐻𝑐𝑐𝛬𝑐𝑐

2
−

(𝑟𝑐𝑐−1)𝐻𝑐𝑐

2
∫

𝑃𝑐𝑐(𝑥)+𝑄𝑐𝑐(𝑥)

𝑇(𝑥)
𝑑𝑥

𝐿

𝑥=0
+

𝑟𝑐𝐻𝑐−𝑟𝑐𝑐𝐻𝑐𝑐

2
∫ 𝑏𝑐𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
 (B3) 

Combining (B2) and (B3), we have equation (2.13).  
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B.2 In-vehicle travel time in equations (2.15-16b) 

The total in-vehicle travel time for clockwise trips consists of two parts: 

1) Direct travel time. This part of travel time is in total: 

∫ 𝑜𝑐(𝑥) (
1

𝑣
+

𝜏(𝑘𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
) 𝑑𝑥

𝐿

𝑥=0
,  

where 
𝜏(𝑘𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
 is the average time spent on dwelling at stops per unit travel 

distance (note that 𝑇(𝑥)𝑠(𝑥) is the length of the skip-stop bay at 𝑥. 

2) Backtracking travel time. The result derived by Gu et al. (2016) is used 

for the average extra distance traveled by a trip involving backtracking, which is 

1

3
𝑇(𝑥)𝑠(𝑥) for those trips contained in a skip-stop bay at 𝑥. Although Gu et al.’s 

result was derived assuming uniformly distributed demand, it can be used as a 

good approximation here because the slow-varying demand within a skip-stop bay 

can be approximately considered uniform. Note that half this distance is traveled 

in the clockwise direction and the other half is in the counterclockwise direction. 

Therefore, the average extra travel time per backtracking trip is: 

1

2
(
1

3
𝑇(𝑥)𝑠(𝑥) ∙ [(

1

𝑣
+

𝜏(𝑘𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
) + (

1

𝑣
+

𝜏(𝑘𝑐𝑐(𝑥)+1)

𝑇(𝑥)𝑠(𝑥)
)]) =

1

3𝑣
𝑇(𝑥)𝑠(𝑥) +

1

6
𝜏(𝑘𝑐(𝑥) + 𝑘𝑐𝑐(𝑥) + 2),  

and the total extra travel time due to backtracking is: 

∫ [
1

3𝑣
𝑇(𝑥)𝑠(𝑥) +

1

6
𝜏(𝑘𝑐(𝑥) + 𝑘𝑐𝑐(𝑥) + 2)] 𝑏𝑐(𝑥)𝑑𝑥

𝐿

𝑥=0
, 

where 𝑏𝑐(𝑥) is the local density of clockwise backtracking trips, which is derived 

in Appendix B.1. 

The above two cost items are summarized in equations (2.15-2.16b) 

showing the clockwise part of 𝑈𝐶𝑖. The counterclockwise part can be similarly 

derived. 

B.3 Transfer penalty in equation (2.17) 

Each trip of Types 4.2 and 4.3 (see Appendix B.1) involves a transfer. Other trips 

have no transfer. Hence the total transfer numbers for clockwise trips is: 
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∬ 𝜆(𝑥, 𝑦) (1 −
1

𝑟𝑐
)

𝑇(𝑥)−1

𝑇(𝑥)
⋅

𝑇(𝑦)−1

𝑇(𝑦)
𝑑𝑥𝑑𝑦

𝐷𝑐
, 

where 𝐷𝑐 denotes the set of OD pairs (𝑥, 𝑦) for clockwise trips (see its definition 

in Appendix B.1). 

This can be further simplified as: 

∬ 𝜆(𝑥, 𝑦)
𝑟𝑐−1

𝑟𝑐
(1 −

1

𝑇(𝑥)
) (1 −

1

𝑇(𝑦)
) 𝑑𝑥𝑑𝑦

𝐷𝑐
  

=
𝑟𝑐−1

𝑟𝑐
∬ 𝜆(𝑥, 𝑦) (1 −

1

𝑇(𝑥)
−

1

𝑇(𝑦)
+

1

𝑇(𝑥)𝑇(𝑦)
) 𝑑𝑥𝑑𝑦

𝐷𝑐
  

=
𝑟𝑐−1

𝑟𝑐
(∬ 𝜆(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐷𝑐
− ∬

𝜆(𝑥,𝑦)

𝑇(𝑥)
𝑑𝑦𝑑𝑥

𝐷𝑐
− ∬

𝜆(𝑥,𝑦)

𝑇(𝑦)
𝑑𝑥𝑑𝑦

𝐷𝑐
+

∬
𝜆(𝑥,𝑦)

𝑇(𝑥)𝑇(𝑦)
𝑑𝑥𝑑𝑦

𝐷𝑐
)  

=
𝑟𝑐−1

𝑟𝑐
(Λ𝑐 − ∫

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)

𝑇(𝑥)
𝑑𝑥

𝐿

𝑥=0
+ ∬

𝜆(𝑥,𝑦)

𝑇(𝑥)𝑇(𝑦)
𝑑𝑥𝑑𝑦

𝐷𝑐
)  

≈
𝑟𝑐−1

𝑟𝑐
(Λ𝑐 − ∫

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)

𝑇(𝑥)
𝑑𝑥

𝐿

𝑥=0
+

1

2
∬ (

𝜆(𝑥,𝑦)

𝑇2(𝑥)
+

𝜆(𝑥,𝑦)

𝑇2(𝑦)
)𝑑𝑥𝑑𝑦

𝐷𝑐
)  

=
𝑟𝑐−1

𝑟𝑐
(Λ𝑐 − ∫

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)

𝑇(𝑥)
𝑑𝑥

𝐿

𝑥=0
+

1

2
∫

𝑃𝑐(𝑥)+𝑄𝑐(𝑥)

𝑇2(𝑥)
𝑑𝑥

𝐿

𝑥=0
)  

=
𝑟𝑐−1

𝑟𝑐
(Λ𝑐 − ∫

(𝑃𝑐(𝑥)+𝑄𝑐(𝑥))(2𝑇(𝑥)−1)

2𝑇2(𝑥)
𝑑𝑥

𝐿

𝑥=0
)  

To see why the third equality in the above derivation holds, please refer to 

the derivation of equation (B2) in Appendix B.1.  

The approximation in the next step is employed to reduce the double 

integral term to a single integral term, so that this cost component can be 

decomposed locally by 𝑥. The local decomposition is needed to ensure the solution 

method presented in Section 2.2.1 works. This approximation is also conservative 

since it overestimates the cost. The next equality is derived in similar fashion to 

the third equality of the above derivation. 

Hence, the clockwise part of the transfer penalty cost is 𝐶𝑡
𝑟𝑐−1

𝑟𝑐
(Λ𝑐 −

∫
(𝑃𝑐(𝑥)+𝑄𝑐(𝑥))(2𝑇(𝑥)−1)

2𝑇2(𝑥)
𝑑𝑥

𝐿

𝑥=0
) , and the counterclockwise part can be derived 

similarly. This explains equation (2.17). 
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C Derivation of the lower bound for AB-type service 

To derive the lower bound, the mathematical program (2.22a-f) is modified by: i) 

removing some cost terms from the objective function and reducing the objective 

function; and ii) relaxing some constraints.  

First the cost terms incurred by backtracking are removed, which are part 

of the right-hand-sides of (2.13) (i.e. the patrons’ waiting cost 𝑈𝐶𝑤) and (2.15) (i.e. 

the patrons’ in-vehicle travel cost 𝑈𝐶𝑖). These cost terms are summed to: 

∫ (
𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
(𝑏𝑐(𝑥) − 𝑏𝑐𝑐(𝑥)) + (

1

3𝑣
𝑠(𝑥)𝑇(𝑥) +

1

6
𝜏(𝑘𝑐(𝑥) + 𝑘𝑐𝑐(𝑥) +

𝐿

𝑥=0

2)) (𝑏𝑐(𝑥) + 𝑏𝑐𝑐(𝑥)))𝑑𝑥.  

If the demand pattern is symmetric, 
𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
(𝑏𝑐(𝑥) − 𝑏𝑐𝑐(𝑥)) = 0 and 

thus the above cost is positive. Otherwise, 
𝑟𝑐𝑐𝐻𝑐𝑐−𝑟𝑐𝐻𝑐

2
(𝑏𝑐(𝑥) − 𝑏𝑐𝑐(𝑥)) can be 

negative but its absolute value should be very small since it is the product of the 

differences between pairs of close numbers. Thus, the above cost, to be removed 

from the objective function, is still positive in most real cases.  

For the remaining cost terms, note that 
𝑘𝑐(𝑥)+1

𝑇(𝑥)
=

𝑘𝑐(𝑥)+1

𝑟𝑐𝑘𝑐(𝑥)+1
=

1

𝑟𝑐
+

1−1/𝑟𝑐

𝑟𝑐𝑘𝑐(𝑥)+1
=

1

𝑟𝑐
+

𝑟𝑐−1

𝑟𝑐𝑇(𝑥)
 and 

𝑘𝑐𝑐(𝑥)+1

𝑇(𝑥)
=

1

𝑟𝑐𝑐
+

𝑟𝑐𝑐−1

𝑟𝑐𝑐𝑇(𝑥)
. Hence, we replace the left-

hand-sides of the above equalities by the corresponding right-hand-sides in (2.16a-

b) for 𝑈𝐶𝑖 and in (2.19) for 𝐴𝐶𝐻. Further note that −
2𝑇(𝑥)−1

2𝑇2(𝑥)
≥ −

1

𝑇(𝑥)
, and thus we 

replace −
2𝑇(𝑥)−1

2𝑇2(𝑥)
 by −

1

𝑇(𝑥)
 in (2.17) for 𝑈𝐶𝑡  to further reduce the objective 

function. After rearranging the terms, the modified objective function can be 

written as: 

𝑆𝐶𝐿𝐵 = 𝜃 + ∫ (𝑓(𝑥) +
𝛽𝑐(𝑥)+𝛽𝑐𝑐(𝑥)

𝑇(𝑥)
)𝑑𝑥

𝐿

𝑥=0
  

where 𝜃 is a function of scalar decision variables 𝐻𝑐, 𝐻𝑐𝑐, 𝑟𝑐 and 𝑟𝑐𝑐 only; 𝑓(𝑥), 

𝛽𝑐(𝑥) and 𝛽𝑐𝑐(𝑥) are functions of 𝑠(𝑥) as well as the scalar variables. These are 

presented as: 
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𝜃 =
(2𝑟𝑐−1)𝛬𝑐

2
𝐻𝑐 +

(2𝑟𝑐𝑐−1)Λ𝑐𝑐

2
𝐻𝑐𝑐 + 𝐶𝑡

𝑟𝑐−1

𝑟𝑐
Λ𝑐 + 𝐶𝑡

𝑟𝑐𝑐−1

𝑟𝑐𝑐
Λ𝑐𝑐 +

𝜋𝑣𝐿

𝜇
(

1

𝐻𝑐
+

1

𝐻𝑐𝑐
) +

2𝜋𝑖𝐿

𝜇
  

𝑓(𝑥) =
𝑠(𝑥)

4𝑣𝑤
(𝑃𝑐(𝑥) + 𝑄𝑐(𝑥) + 𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥)) + (𝑜𝑐(𝑥) +

𝜋𝑚

𝜇𝐻𝑐
) (

1

𝑣
+

𝜏

𝑟𝑐𝑠(𝑥)
) +

(𝑜𝑐𝑐(𝑥) +
𝜋𝑚

𝜇𝐻𝑐𝑐
) (

1

𝑣
+

𝜏

𝑟𝑐𝑐𝑠(𝑥)
) +

𝜋𝑠

𝜇

1

𝑠(𝑥)
  

𝛽𝑐(𝑥) =
(𝑜𝑐(𝑥)+

𝜋𝑚
𝜇𝐻𝑐

)𝜏

𝑠(𝑥)

𝑟𝑐−1

𝑟𝑐
− (

𝑟𝑐−1

𝑟𝑐
𝐶𝑡 +

(𝑟𝑐−1)𝐻𝑐

2
) (𝑃𝑐(𝑥) + 𝑄𝑐(𝑥))  

𝛽𝑐𝑐(𝑥) =
(𝑜𝑐𝑐(𝑥)+

𝜋𝑚
𝜇𝐻𝑐𝑐

)𝜏

𝑠(𝑥)

𝑟𝑐𝑐−1

𝑟𝑐𝑐
− (

𝑟𝑐𝑐−1

𝑟𝑐𝑐
𝐶𝑡 +

(𝑟𝑐𝑐−1)𝐻𝑐𝑐

2
) (𝑃𝑐𝑐(𝑥) + 𝑄𝑐𝑐(𝑥)). 

The constraints (2.22d-e) are further relaxed by ignoring onboard patron 

flow incurred by backtracking trips (i.e. 𝐵(𝑥)). The lower bound problem is 

formulated as: 

min
𝑟𝑐,𝑟𝑐𝑐,𝐻𝑐,𝐻𝑐𝑐,𝑠(𝑥),𝑇(𝑥)

𝑆𝐶𝐿𝐵 = 𝜃 + ∫ (𝑓(𝑥) +
𝛽𝑐(𝑥)+𝛽𝑐𝑐(𝑥)

𝑇(𝑥)
) 𝑑𝑥

𝐿

𝑥=0
    

subject to: 

𝑟𝑐, 𝑟𝑐𝑐 ∈ {1,2,3,4}        

𝐻𝑚𝑖𝑛 + 𝜏 ≤ 𝐻𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐(𝑥)}
        

𝐻𝑚𝑖𝑛 + 𝜏 ≤ 𝐻𝑐𝑐 ≤
𝐾

max
0<𝑥≤𝐿

{𝑜𝑐𝑐(𝑥)}
       

𝑠(𝑥) > 0         

𝑇(𝑥) ≥ 1          

The solution to the problem constructs a lower bound to the solution of the 

original program (2.22a-f) because the objective function is reduced, and the 

constraints are relaxed. The remaining work is to find the above program’s optimal 

solution. 

The lower bound problem is solved using a bi-level method. At the lower 

level, we fix the scalar variables 𝑟𝑐, 𝑟𝑐𝑐, 𝐻𝑐 and 𝐻𝑐𝑐, and optimize the integrand 

𝑓(𝑥) +
𝛽𝑐(𝑥)+𝛽𝑐𝑐(𝑥)

𝑇(𝑥)
 for each 𝑥 ∈ [0, 𝐿]. To achieve this, note that if 𝑠(𝑥) is also 

fixed, 𝐴𝐶𝐿𝐵 will be minimized at either 𝑇(𝑥) = 1 (if 𝛽𝑐(𝑥) + 𝛽𝑐𝑐(𝑥) is negative) 



107 

 

or 𝑇(𝑥) = ∞  (if 𝛽𝑐(𝑥) + 𝛽𝑐𝑐(𝑥)  is positive). The former case, 𝑇(𝑥) = 1 , 

indicates that all the stops are transfer stops; while the latter case indicates that 

there is no transfer stop throughout the corridor. Therefore, the integrand 𝑓(𝑥) +

𝛽𝑐(𝑥)+𝛽𝑐𝑐(𝑥)

𝑇(𝑥)
 can be minimized for each 𝑥 as: 

min {min
𝑠(𝑥)

𝑓(𝑥) , min
𝑠(𝑥)

𝑓(𝑥) + 𝛽𝑐(𝑥) + 𝛽𝑐𝑐(𝑥)}. 

Note further that 𝑓(𝑥), 𝛽𝑐(𝑥) and 𝛽𝑐𝑐(𝑥) are all convex with respect to 

𝑠(𝑥). Hence the global optimal solution to the above minimization problem can 

be easily solved by a gradient search method. 

At the upper level, the scalar variables 𝑟𝑐 , 𝑟𝑐𝑐, 𝐻𝑐 and 𝐻𝑐𝑐 are optimized via 

exhaustive search. 𝑟𝑐 and 𝑟𝑐𝑐 can be easily enumerated from {1,2,3,4} × {1,2,3,4}, 

and 𝐻𝑐 and 𝐻𝑐𝑐 each will be searched from 𝐻𝑚𝑖𝑛 to 15 min with a very small step, 

i.e. 0.1 min.  

In summary, the optimal solution to the problem can be discovered by the 

method described above, and the solution is a lower bound to the optimal solution 

of (2.22a-f).  

D. Derivation of the upper bound of 𝒔𝒌 in the general skip-stop 

model 

Here, we prove that 
𝛼⋅𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

 is a tight upper bound of 𝑠𝑘 = min (𝐿, 𝑥𝑘 +
𝑙𝑘

2𝑡𝑘𝑛𝑘
) −

max (0, 𝑥𝑘 −
𝑙𝑘

2𝑡𝑘𝑛𝑘
), where 𝛼 = max

𝑘

𝑙𝑘+1

𝑙𝑘
.  

Proof. It is to prove that 
𝛼⋅𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

≥ 𝑠𝑘. The value of 
𝑙𝑘

2𝑡𝑘𝑛𝑘
 could be discussed in 

three cases:  

Case 1: 
𝑙𝑘

2𝑡𝑘𝑛𝑘
≥ 𝐿. In this case, we can easily get 𝑠𝑘 = 𝐿 − 0 = 𝐿. Since 

𝑙𝑘

2𝑡𝑘𝑛𝑘
≥

𝐿 ⇒ 𝑙𝑘 ≥ 2𝑡𝑘𝑛𝑘𝐿, we can derive that 
𝛼⋅𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

≥
𝛼⋅𝑙𝑘
𝑙𝑘
2𝐿

+
1

𝐿

=
2𝛼⋅𝑙𝑘

𝑙𝑘+2
𝐿 ≥

2𝑙𝑘+2

𝑙𝑘+2
𝐿 ≥ 𝐿.  

Case 2: 
𝐿

2
≤

𝑙𝑘

2𝑡𝑘𝑛𝑘
≤ 𝐿. According to the value of 𝑥𝑘, there are four situations: 
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1) If 𝑥𝑘 +
𝑙𝑘

2𝑡𝑘𝑛𝑘
≤ 𝐿  and 𝑥𝑘 −

𝑙𝑘

2𝑡𝑘𝑛𝑘
≤ 0 , then 𝑥𝑘 ≤ 𝐿 −

𝑙𝑘

2𝑡𝑘𝑛𝑘
, 𝑠𝑘 = 𝑥𝑘 +

𝑙𝑘

2𝑡𝑘𝑛𝑘
. Since 𝑥𝑘 +

𝑙𝑘

2𝑡𝑘𝑛𝑘
≤ 𝐿, we have 𝑠𝑘 ≤ 𝐿. Recognize that 

𝐿

2
≤

𝑙𝑘

2𝑡𝑘𝑛𝑘
≤

𝐿, we can derive that 
𝛼⋅𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

≥
𝛼⋅𝑙𝑘
𝑙𝑘
𝐿
+

1

𝐿

=
𝛼⋅𝑙𝑘

𝑙𝑘+1
𝐿 ≥ 𝐿 ≥ 𝑠𝑘. 

2) If 𝑥𝑘 +
𝑙𝑘

2𝑡𝑘𝑛𝑘
≤ 𝐿 and 𝑥𝑘 −

𝑙𝑘

2𝑡𝑘𝑛𝑘
≥ 0, then 𝑥𝑘 = ∅. Hence, this situation 

does not exist.  

3) If 𝑥𝑘 +
𝑙𝑘

2𝑡𝑘𝑛𝑘
≥ 𝐿 and 𝑥𝑘 −

𝑙𝑘

2𝑡𝑘𝑛𝑘
≤ 0, then 𝐿 −

𝑙𝑘

2𝑡𝑘𝑛𝑘
≤ 𝑥𝑘 ≤

𝑙𝑘

2𝑡𝑘𝑛𝑘
, 𝑠𝑘 =

𝐿 . It is similar to situation 1), such that we have 
𝛼⋅𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

≥ 𝐿 . Hence, 

𝛼⋅𝑙𝑘

𝑡𝑘𝑛𝑘+
1

𝐿

≥ 𝑠𝑘. 

4) If 𝑥𝑘 +
𝑙𝑘

2𝑡𝑘𝑛𝑘
≥ 𝐿 and 𝑥𝑘 −

𝑙𝑘

2𝑡𝑘𝑛𝑘
≥ 0, then 𝑥𝑘 = ∅. Again, this situation 

does not exist.  

Case 3: If 
𝑙𝑘

2𝑡𝑘𝑛𝑘
≤

𝐿

2
, then let 𝑥𝑘

′ = 𝐿 − 𝑥𝑘  and substitute 𝑥𝑘  in 𝑠𝑘 . Then the 

derivation appears similar to Case 2. 

E Proof of Proposition 1 for the general skip-stop model 

Proposition 1. Assuming that there is at least a feasible solution to problem (4.21), 

the minimum of problem (4.21) must be a lower bound of problem (4.20). 

Proof. Since the constraints of problem (4.21) are tighter than those of problem 

(4.20), there must exist a feasible solution to problem (4.20). It is assumed that the 

optimal solution to (4.20) is (𝝓∗, 𝒕∗, 𝒏∗)  and the optimal solution to (4.21) 

is (𝝓∗∗, 𝒕∗∗, 𝒏∗∗). Checking the First-Order conditions of (4.20) with respect to 𝑛𝑘 

(𝑛𝑘 has only boundary constraints), we can easily verify that the optimal value of 

𝑛𝑘  must satisfy  𝑛𝑘
∗ = √𝑎𝑘  [

𝜋𝑆

𝜇
+ ∑ (𝜏(�̅�𝑘,𝑟

𝐸 + �̅�𝑘,𝑟
𝑊 ) +

2𝜋𝑀𝜏

𝜇
𝐻𝑟

−1) (𝜙𝑘,𝑟 +𝑅
𝑟=1

𝑡𝑘)]
−

1

2
. Since 𝜙𝑘,𝑟 + 𝑡𝑘 ≤ 1 , we have 𝑛𝑘

∗ ≥ √𝑎𝑘  (
𝜋𝑆

𝜇
+ 𝜏(�̅�𝑘

𝐸 + �̅�𝑘
𝑊) +

2𝜋𝑀𝜏

𝜇
𝐻−1)

−
1

2
= 𝑛𝑘

𝑚𝑖𝑛 . Therefore, (𝝓∗, 𝒕∗, 𝒏∗)  is a feasible solution of problem 

(4.21). Since 𝑆𝐶2(𝝓∗, 𝒕∗, 𝒏∗) ≤ 𝑆𝐶1(𝝓∗, 𝒕∗, 𝒏∗) , the minimum of (4.21) 
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𝑆𝐶2(𝝓∗∗, 𝒕∗∗, 𝒏∗∗)  must be a lower bound of (4.20), satisfying 

𝑆𝐶2(𝝓∗∗, 𝒕∗∗, 𝒏∗∗) ≤ 𝑆𝐶2(𝝓∗, 𝒕∗, 𝒏∗) ≤ 𝑆𝐶1(𝝓∗, 𝒕∗, 𝒏∗).         
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