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Abstract 

Complex networks are ubiquitous in the real world. Learning appropriate feature 

representations for complex networks is important for a wide variety of graph mining 

tasks. Motivated by this, in this thesis, we propose four models to learn informative 

feature vector representations for nodes or edges in the networks, which can effectively 

and efficiently address several canonical graph mining tasks. In the first work, we utilize a 

feature-engineering approach to define explicit topological features for nodes and edges in 

the influence maximization (IM) scenario. Next, we propose three deep network 

embedding models to learn the low-dimensional latent node vector representations which 

can well preserve the original network structures and properties. Preserving various 

network properties is important for learning informative feature representations for 

different graph mining tasks. Thus, the first two proposed deep network embedding 

models focus on preserving the asymmetric network transitivity and the signed network 

property to effectively address the typical graph mining tasks within a single network, 

including node classification, node clustering and link prediction. In addition, the third 

proposed deep network embedding model incorporates domain adaptation technique into 

deep network embedding to learn generalized and comparable feature representations 

which can effectively address the cross-network prediction task.  

In the first work, we propose a cross-network learning (CNL) framework to leverage 

the greedy seed selection and influence propagation knowledge pre-learned from a smaller 

source network to select seed nodes and remove inactive edges for multiple larger target 

networks. To address domain discrepancy, we assign lower weights to the explicit 

topological features which perform less similarly between the source network and the 

target network. In addition, we utilize a fuzzy self-training algorithm to iteratively retrain 

the prediction model based on not only the fully labeled instances from the source 
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network, but also the most confident predicted instances in the target network with their 

predicted fuzzy labels. Extensive experiments demonstrate that the proposed CNL model 

can achieve a good trade-off between the efficiency and effectiveness of the IM task in the 

target networks. 

In addition, the three proposed deep network embedding models focus on addressing 

several open issues in current network embedding research, i.e., asymmetric network 

embedding, signed network embedding and cross-network embedding. Firstly, an 

asymmetry-aware deep network embedding (AsDNE) model is proposed, which is 

composed of two semi-supervised stacked auto-encoders (SAEs) to preserve the 

asymmetric outward and inward network proximities. To well capture the asymmetric 

relationships, we design pairwise constraints to map node pairs with bi-directionally 

strong connections much closer than those with strong connection in only one direction. 

Extensive experiments demonstrate that AsDNE can learn task-independent network 

representations outperforming the state-of-the-art network embedding algorithms, in both 

directed and undirected networks. Secondly, we propose a deep network embedding 

model with structural balance preservation (DNE-SBP) for signed networks. A 

semi-supervised SAE is employed to reconstruct the signed adjacency matrix, where 

larger penalty is added to make the SAE focus more on reconstructing the scarce negative 

links than the abundant positive links. To well preserve the structural balance property, we 

design pairwise constraints to map positively connected nodes much closer than 

negatively connected nodes. Extensive experiments demonstrate the superiority of 

DNE-SBP over the state-of-the-art network embedding algorithms for graph 

representation learning in signed networks. Finally, we propose a cross-network deep 

network embedding (CDNE) model, which innovatively integrates deep network 

embedding and domain adaptation techniques to learn label-discriminative and 

network-invariant node vector representations. Two semi-supervised SAEs are employed 

to embed nodes from the source network and the target network into a unified 
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low-dimensional latent space. In addition, similar nodes within a network and across 

networks would be mapped closer to each other, based on their network structures, 

attributes and labels. Extensive experiments demonstrate that CDNE significantly 

outperforms the state-of-the-art network embedding algorithms for node classification in 

the target network. 
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Chapter 1 

Introduction 

1.  
Nowadays, networks are ubiquitous in the real world, such as social networks, 

citation networks, collaboration networks, brain networks, protein-protein 

interaction networks, transportation networks, computer networks, communication 

networks and so on. Network science, “the study of network representations of 

physical, biological, and social phenomena leading to predictive models of these 

phenomena [1]”, is a young and active discipline of mathematics, statistics, 

physics, biology, social sciences and computer sciences. 

A network can be represented as a graph, which consists of a set of vertices 

(also called nodes) and a set of edges (also called links) capturing the relationships 

between nodes. A network can be directed or undirected, weighted or unweighted, 

according to the relationships between nodes. For example, in the Facebook social 

network, an undirected edge connecting two social network users indicates the 

bi-directional friendship between them. While in a paper citation network, a 

directed edge from paper A to paper B indicates that paper A unidirectionally cites 

paper B. In addition, in a collaboration network, if the relationship between two 

nodes is defined as “author A collaborated with author B”, then we say this 

collaboration network is unweighted. If the relationship is defined as “author A 

collaborated with author B 4 times”, then the collaboration network is weighted. 

Moreover, a network can be homogeneous or heterogeneous. If all the nodes in a 

network belong to a single type and all the edges in a network also belong to a 

single type, then we say this network is homogeneous. In contrast, if there are 

more than one type of nodes or more than one type of edges in a network, then we 
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say this network is heterogeneous. For example, a multimedia network containing 

different types of nodes, i.e., image, video and text, is heterogeneous.  

1.1 Graph Mining Tasks 

Real-world networks are with very complex network structures. Mining useful 

information from complex networks can benefit a wide variety of graph analytics 

tasks, such as node classification, node clustering, node/link retrieval and ranking, 

link prediction, link classification and network visualization. Node classification 

aims to predict node labels in a network [2]. For example, in a protein-protein 

interaction network, one might be interested in identifying the functional labels of 

proteins [3]. Node clustering aims to cluster nodes in a network into several 

disjoint partitions, where nodes belonging to the same partition should be more 

tightly connected than those across different partitions [4]. It can be applied to 

detect communities in social networks [5], [6]. Node/link retrieval and ranking 

tasks aim to prioritize nodes or links in a network according to specific rules [7]. 

For example, in viral marketing, one aims to select top-k seed nodes which are the 

most influential to spread the information in a network [8]. Also, in large-scale 

influence maximization (IM) problem, one aims to retrieve a fraction of edges to 

be removed which are the most useless for influence propagation [9]. Link 

prediction aims to predict whether a link exists between two nodes in a network 

and it can be utilized to recommend new friends to users in a social network [10]. 

Link classification aims to predict edge labels in a network. For example, one 

might be interested in predicting the signed labels of links in a signed social 

network [11], [12], or inferring the type of social relationships among family, 

colleagues, classmates and friends in a heterogeneous social network [13]. In 

addition, motivated by the recent success of transfer learning [14], some 

innovative cross-network graph mining tasks [8], [9], [13], [15], [16], [17], [18], 
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[19], [20] have been proposed to leverage the knowledge pre-learned from a 

mature source network to predict the labels of nodes or edges in a newly formed 

target network.  

1.2 Graph Representation Learning 

All the aforementioned canonical graph mining tasks require a set of informative 

and discriminative feature vector representations pre-defined for nodes or edges in 

the networks. A former solution is to utilize a feature engineering approach to 

manually define explicit features for nodes or edges based on their topological 

structures. Some widely used hand-crafted topological features [20], [21], [22] 

include Degree, Weighted Degree, Eigenvector Centrality, Closeness Centrality, 

Betweenness Centrality, HITS Hub/Authority, PageRank Score, Clustering 

Coefficient, Modularity Class Size, Number of Triangles, Common Neighbors, 

Jaccard Coefficient and Adamic Adar Score.  

In addition, network embedding has recently drawn significant attentions and it 

can automatically learn the low-dimensional latent vector representations with the 

preservation of original network properties. Existing network embedding 

techniques can be categorized into three families, namely random walk based [23], 

[24], [25], [26], [27], matrix factorization based [6], [28], [29], [30], [31], [32], 

[33], and deep learning based [4], [5], [10], [11], [12], [17], [34], [35], [36]. A 

comprehensive survey of network embedding research can be found in [37], [38], 

[39], [40]. Random walk based embedding algorithms employ the truncated 

random walks sampled from a given network to exploit network structures. Then, 

borrowing the idea of word embedding [41] in natural language processing (NLP), 

the low-dimensional continuous node vector representations with neighborhood 

preservation would be learned. In addition, the network structures can be 

represented via a matrix form, such as adjacency matrix [10], k-step transition 
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probability matrix [29], and high-order proximity matrix [30]. On one hand, the 

matrix factorization based network embedding models linearly project the 

associated matrix into a low-rank space, via Singular Value Decomposition (SVD) 

[30] or Nonnegative Matrix Factorization (NMF) [6], which requires a high time 

complexity at least super-quadratic to the number of nodes in the network. On the 

other hand, to better capture the non-linear complex underlying network structure, 

a family of deep network embedding algorithms [4], [5], [10], [11], [12], [34], [42] 

adopts stacked auto-encoder (SAE) to reconstruct the associated matrix so as to 

learn the non-linear node vector representations. In practice, SAE is more efficient 

than the matrix factorization techniques, just with the time complexity being linear 

to the number of nodes in the network [4]. Based on the low-dimensional node 

vector representations learned by the network embedding algorithms, one can 

simply apply the vector-based machine learning techniques to efficiently and 

effectively address a wide variety of graph mining tasks, such as node 

classification [10], [11], [42], network clustering [4], [5], link prediction [10], [11], 

[12], node recommendation [10], [30] and network visualization [43].  

1.3 Contributions 

To exploit the latest advances of machine learning, deep learning and data mining 

techniques in canonical graph mining tasks, a set of informative feature vector 

representations for nodes or edges in the networks should be pre-defined. To this 

end, we propose four models in this thesis to learn appropriate feature vector 

representations to efficiently and effectively address several graph mining tasks. 

Figure 1.1 shows the connections between the four proposed models.  

On one hand, from the perspective of feature representation learning technique, 

the first model utilizes a feature engineering approach to manually define the 

explicit topological features which can reflect the influence of nodes in a network 
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in the IM scenario. While the other three proposed models correspond to the 

state-of-the-art deep network embedding techniques which can automatically learn 

the low-dimensional latent node vector representations. Preserving various 

network properties by the network embedding algorithms is important for learning 

informative feature representations for different graph mining tasks. For example, 

preserving high-order network proximities can benefit node classification and 

node clustering [34], [29], and preserving asymmetric network transitivity is 

advantageous for link prediction [30], [26]. In addition, preserving structural 

balance property is important for learning informative feature representations for 

the graph analytics tasks in the signed networks [44], [45]. Motivated by this, we 

proposed two deep network embedding models to learn the latent vector 

representations which can well preserve the asymmetric network property and the 

signed network property, respectively. In addition, it has been shown that 

incorporating domain adaptation techniques into feature representation learning 

process can effectively address the prediction tasks across different domains, in the 

areas of computer vision (CV) [46], [47] and NLP [48], [49]. Motivated by this, 

we proposed a cross-network deep network embedding model to learn generalized 

and comparable feature vector representations to effectively address the graph 

 

Figure 1.1: Connections between four proposed models in this thesis. 
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mining tasks across different networks. The three deep network embedding models 

can successfully address several important issues which have not been well 

investigated by existing network embedding research, i.e., asymmetric network 

embedding, signed network embedding and cross-network embedding.  

On the other hand, from the perspective of graph mining applications, the 

second model for asymmetric network embedding and the third model for signed 

network embedding target at the graph prediction tasks involving one network. 

While the first and the fourth models making use of feature engineering and 

feature learning respectively further employ domain adaptation techniques to 

address the cross-network node/link prediction tasks. In the following sub-sections, 

we would further elaborate on the contributions of each proposed model.  

1.3.1 Cross-network Node and Edge Prediction in Influence 

Maximization  

The conventional IM problem [50] has been extensively studied, aiming at 

selecting a limited number of seed nodes to maximize the influence spread in a 

given network. However, very little work exists for the cross-network IM problem. 

To fill this gap, we propose a cross-network learning (CNL) model to leverage the 

knowledge pre-learned from a smaller source network with the IM task being 

successfully completed, to help maximize the influence in the new larger target 

networks for two important tasks, i.e., seed selection and graph sparsification. On 

one hand, we consider cross-network seed selection as a cross-network node 

prediction task, with the goal of selecting the nodes most likely to act as seeds for 

each target network, by leveraging the greedy seed selection knowledge 

pre-learned from a source network. On the other hand, we consider graph 

sparsification as a cross-network edge prediction task, with the goal of removing 

the edges least likely to contribute to influence propagation in the target network, 
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by leveraging the influence propagation knowledge pre-learned from the source 

network. In the cross-network node and edge prediction tasks in the IM scenario, 

we define some explicit features for node and edge based on their topological 

structures, which can reflect the influence of a node in a network. To address the 

domain discrepancy issue, we assign lower absolute weights to the features which 

perform more differently between the source network and the target network. In 

addition, a fuzzy self-training algorithm is proposed to iteratively retrain the 

prediction model by leveraging not only the fully labeled instances from the 

source network, but also the most confident predicted instances in the target 

network with their predicted fuzzy labels. Experimental results in the real-world 

datasets demonstrate that the proposed CNL model can achieve a good trade-off 

between the efficiency and effectiveness of the IM task in the target networks.  

1.3.2 Asymmetry-Aware Deep Network Embedding   

Network transitivity and proximities should be asymmetric in both directed and 

undirected networks [30], [26]. However, most existing network embedding 

algorithms fail to capture such important asymmetric properties. In this regard, we 

propose an asymmetry-aware deep network embedding (AsDNE) model to 

preserve the asymmetric outward and inward network proximities. Existing deep 

network embedding models [4], [10], [11], [34] employing one SAE would only 

consider a specific node as a source role in its input raw vector, when learning the 

corresponding hidden vector representation. In contrast, the proposed AsDNE 

model employs two semi-supervised SAEs to learn the outward and inward latent 

vector representations for each node, by considering the node with a source role 

and a target role, respectively, within its K-step network connections. In addition, 

to better capture the asymmetric relationships, we devise pairwise constraints to 

map node pairs with bi-directionally strong connections much closer than those 
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node pairs with strong connection in only one direction. We evaluated the network 

representation learning ability of AsDNE for two graph mining tasks, namely 

multi-label node classification and link sign prediction. Extensive experimental 

results in both directed and undirected real-world networks demonstrate that the 

proposed AsDNE model can learn task-independent network representations 

outperforming the state-of-the-art network embedding algorithms. 

1.3.3 Deep Network Embedding in Signed Networks 

The signed networks containing both positive and negative links have pretty 

distinct properties from the unsigned counterparts [51], [52]. However, the vast 

majority of the state-of-the-art network embedding algorithms have only been 

designed for unsigned networks. To fill this gap, we propose a deep network 

embedding with structural balance preservation (DNE-SBP) model to learn 

network representations for the signed networks. The DNE-SBP model employs a 

semi-supervised SAE to reconstruct the adjacency connections of a signed 

network. As the connections are overwhelmingly positive in the real-world signed 

networks, we impose a larger penalty to make the SAE focus more on 

reconstructing the scarce negative links than the abundant positive links. In 

addition, to preserve the structural balance property of the signed networks, we 

design pairwise constraints to map the positively connected nodes much closer 

than the negatively connected nodes in the low-dimensional embedding space. 

Based on the network representations learned by DNE-SBP, we conduct link sign 

prediction and community detection in signed networks. Extensive experimental 

results in the real-world signed networks demonstrate the superiority of the 

proposed DNE-SBP model over the state-of-the-art network embedding algorithms 

for graph representation learning in signed networks. 
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1.3.4 Cross-Network Deep Network Embedding 

Existing network embedding algorithms only target for a single network, which 

aim to preserve the proximities between nodes within one network. However, 

many important graph mining tasks involve more than one network, such as 

cross-network node classification or cross-network link prediction. It has been 

shown that the single-network embedding algorithms fail to learn generalized and 

comparable feature representations across different networks [53], [54]. To address 

this, we propose an innovative cross-network deep network embedding (CDNE) 

model to capture the proximities between nodes within a network and across 

different networks. The CDNE model employs two semi-supervised SAEs to 

embed nodes from the source network and the target network into a unified 

low-dimensional latent space. It should be the first work to integrate deep network 

embedding and domain adaptation techniques to learn label-discriminative and 

network-invariant feature vector representations for cross-network node 

classification. Extensive experimental results in the real-world networks 

demonstrate that CDNE can achieve significantly better node classification 

performance in the target network, as compared to the state-of-the-art network 

embedding algorithms. 

The rest of this thesis is organized as follows. Chapter 2 introduces the 

proposed CNL model for cross-network node and edge prediction in IM. Chapter 3 

introduces the proposed AsDNE model which can learn low-dimensional node 

vector representations with the preservation of the asymmetric outward and inward 

network proximities in both directed and undirected networks. Chapter 4 

introduces the proposed DNE-SBP for signed network embedding which can  

well preserve the structural balance property of the signed networks. Chapter 5 

introduces the proposed CDNE model for learning label-discriminative and 
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network-invariant feature vector representations for cross-network node 

classification. Chapter 6 gives the conclusions of this thesis and our future 

research plans. 
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Chapter 2 

Cross-network Node and Edge 

Prediction in Influence 

Maximization 

2.  

2.1 Introduction 

Nowadays, people tend to trust the information from their friends, relatives and 

families more than that from general advertising media [55]. Thus, one promising 

marketing strategy for product promotion is to select a few most influential initial 

users to give them free samples and let them influence their friends through the 

word-of-mouth effect. Such an approach is referred to viral marketing [56]. 

Motivated by the idea of viral marketing, the influence maximization (IM) 

problem can be formulated as a discrete optimization problem [50], i.e., to select k 

seed nodes (i.e. initial users) in a given network such that the expected number of 

nodes influenced by the k seeds (i.e. influence spread) is as large as possible, under 

a certain influence cascade model. Existing IM algorithms can be grouped into two 

families, namely, greedy algorithms and heuristic algorithms. Generally, greedy 

algorithms [50], [57], [58], [59] are highly effective (i.e. achieving large influence 

spread) but with low efficiency (i.e. long running time). In contrast, heuristic 

algorithms [59], [60], [61], [62] are highly efficient but generally fail to guarantee 

large influence spread.  

Although the IM problem has been extensively studied, very little work 

addresses this problem in a cross-network scenario. Suppose that a company 

intends to promote a new product through multiple media (e.g. online social 
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networks, email communication networks, and telephone communication networks) 

by viral marketing. Then, if the company greedily selects the initial users for each 

target network independently, it should be extremely time consuming and 

expensive. On the other hand, if the company heuristically selects initial users, it 

might be difficult to guarantee a high influence spread in a new target network, 

where the company lacks enough preliminary knowledge about which types of 

users should be most influential. To address such a cross-network IM problem 

more effectively and efficiently, we propose a cross-network learning (CNL) 

model to leverage the knowledge pre-learned from a smaller source network to 

help maximize the influence in the new larger target networks. Specifically, we 

address the cross-network IM problem from two perspectives, i.e., seed selection 

and graph sparsification. 

On one hand, we consider seed selection for IM across multiple networks as a 

cross-network node prediction task. Here, the goal is to select the nodes most 

likely to act as seeds for each target network, by leveraging the greedy seed 

 

Figure 2.1: Illustration of cross-network seed selection in IM. The red nodes indicate seed nodes 

and the blue nodes represent non-seed nodes. 
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selection knowledge pre-learned from a source network. Figure 2.1 illustrates the 

main idea of the cross-network seed selection problem. Firstly, in a smaller source 

network 𝐺𝑆, one can run a standard IM greedy algorithm to select k seed nodes. 

Then, based on the topological structures and labels (i.e. seed or non-seed) of all 

the nodes in 𝐺𝑆 , we can train a node prediction model 𝑃𝑁  to learn what 

characterized nodes would be selected as seeds by the greedy algorithm. Then, the 

prediction model 𝑃𝑁 is iteratively adapted to the larger target network 𝐺𝑇 to 

heuristically select the nodes most likely to act as seeds for IM. Since the proposed 

CNL model learns the knowledge from a highly effective greedy algorithm in the 

source network, it is more reliable to achieve a high influence spread in the target 

network, as compared to the conventional IM heuristic algorithms without the help 

of greedy algorithms. In addition, since CNL heuristically selects seed nodes, it 

runs much faster than the greedy algorithms in the target network. Thus, the CNL 

model can achieve a good trade-off between efficiency and effectiveness of seed 

selection in IM. 

On the other hand, to tackle large-scale IM problem, some studies proposed to 

employ graph sparsification as a pre-processing step, by removing a fraction of 

edges to make the original network become more concise and tractable for IM. 

Previous IM-based graph sparsification algorithms only leverage the information 

in a single network, either using an unsupervised approach [21], [63], or requiring 

a log of past influence propagation traces in the given network [64]. To the best of 

our knowledge, we are the first to leverage cross-network information to conduct 

graph sparsification for IM. Here, we consider graph sparsification as a 

cross-network edge prediction task, with the goal of removing the edges least 

likely to contribute to influence propagation in the target network, by leveraging 

the influence propagation knowledge pre-learned from the source network. As 

illustrated in Figure 2.2, we firstly simulate the influence propagation traces in a 
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smaller source network 𝐺𝑆, by running an influence cascade model. After that, we 

label all the edges in 𝐺𝑆 as either active or inactive, where active edges indicate 

that the influence has actually been propagated through them to maximize the 

influence during simulations. Then, based on the explicit topological features and 

labels of all the edges in 𝐺𝑆, we can train an edge prediction model 𝑃𝐸  to learn 

what characterized edges would be helpful for influence propagation in IM. While 

those unsupervised graph sparsification algorithms [21], [63] without any labeled 

information would fail to do so. Next, we iteratively adapt the prediction model 

𝑃𝐸  to a larger target network 𝐺𝑇 to predict the probability of each edge to be 

active for influence propagation. By removing the edges least likely to be active, 

we can make 1) existing IM greedy algorithm runs more efficiently; and 2) the loss 

of influence spread of the greedy algorithm as small as possible, in the sparse 

target networks.  

The aforementioned cross-network seed selection and graph sparsification 

problem can be regarded as a domain adaptation task, which aims to transfer the 

 

Figure 2.2: Illustration of cross-network graph sparsification in IM. The red nodes indicate seed 

nodes and the blue nodes represent non-seed nodes. The red lines indicate active edges during 

influence propagation simulations, and the blue lines represent inactive edges. 
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knowledge pre-learned from a source domain to assist in solving the same task in a 

target domain, in the condition that the source domain and the target domain share 

an identical feature space but have different data distributions [14]. To address the 

domain discrepancy between different networks, we employ a self-training for 

domain adaptation (SEDA) algorithm [65] to iteratively retrain the prediction 

model by leveraging not only the fully labeled data in the source network, but also 

the most confident predictions in the target network. It is worth noting that the 

predictions generated by different self-training iterations are with different levels 

of confidence. Thus, directly utilizing the predicted binary labels to retrain the 

prediction model might cause negative effect on the prediction performance when 

the target network predictions become not confident enough. Fuzzy techniques are 

advantageous in capturing the imprecise, uncertain and vague information during 

knowledge transfer [66], [67], [68], [69]. Motivated by this, we propose a fuzzy 

self-training algorithm to assign fuzzy labels to the most confident predicted target 

network instances, when they are iteratively added to retrain the prediction model. 

With the provision of fuzzy labels, we can easily differentiate the confidence 

levels of the predictions generated by different self-training iterations during 

retraining, thus, the negative effects caused by such not confident enough 

predictions can be alleviated. The contributions of this work can be summarized as 

follows: 

1) We propose a CNL model to study two issues of the cross-network IM problem, 

namely seed selection and graph sparsification, by viewing them as a 

cross-network node prediction task and a cross-network edge prediction task, 

respectively; 

2) For seed selection, CNL leverages the greedy seed selection knowledge 

pre-learned from a smaller source network, to heuristically select top-k nodes 

most likely to act as seeds for IM in multiple larger target networks; 
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3) For graph sparsification, CNL leverages the influence propagation knowledge 

previously acquired in a smaller source network to remove a fraction of edges 

least useful for influence propagation in multiple larger target networks; 

4) To address domain discrepancy, a fuzzy self-training approach is proposed to 

iteratively adapt the prediction model to the target network, by utilizing fuzzy 

labels to capture prediction uncertainty; 

5) Extensive experiments in the real-world public datasets demonstrate that CNL 

can achieve a good trade-off between efficiency and effectiveness of IM.  

The rest of this chapter is organized as follows. Section 2.2 introduces the 

related work about the IM algorithms and IM-based graph sparsification 

approaches. Section 2.3 formulates the cross-network seed selection and 

cross-network graph sparsification problem, respectively. Section 2.4 presents the 

proposed CNL model. Section 2.5 discusses the experimental results in the 

real-world datasets. Section 2.6 summaries this work. 

2.2 Related Work 

In this section, we review the standard IM algorithms and the graph sparsification 

algorithms developed for IM. 

2.2.1 Influence Maximization 

Domingos et al. [70] are the first to study influence propagation in a social 

network using a probabilistic algorithm. Then, Kempe et al. [50] proposed two 

pioneering influence cascade models, namely Independent Cascade (IC) model 

and Linear Threshold (LT) model. In an influence cascade model, each node is 

associated with a status at a certain time, either active or inactive. In IC model, 

each edge is associated with an influence probability p, which is set to be a 

constant. Then, an inactive node becomes active if it is successfully influenced by 
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any of its active neighbors independently. While in LT model, an inactive node 

would become active if the sum of the influence probabilities from all of its active 

neighbors exceeds a given threshold. Given a certain influence cascade model, the 

influence is propagated from seed nodes to all the other nodes in the network. The 

goal of the IM problem is to maximize the influence spread in the given network 

with the constraint that the seed set size is fixed to be a small value, say k. 

Existing algorithms to address the IM problem can be grouped into two 

families, namely greedy and heuristic methods. Originally, Kempe et al. [50] 

proposed a greedy hill-climbing approach to iteratively add a new node to the seed 

set which provides the largest marginal gain on the influence spread. This greedy 

algorithm can guarantee a (1 − 1/𝑒) approximation of the optimal solution but 

requires a rather high computation cost. To improve the efficiency of the general 

greedy algorithm, the CELF [57] and CELF++ [58] greedy algorithms have been 

proposed to reduce the number of evaluations on the influence spread estimation, 

by exploiting the sub-modularity property of the influence spread function. In 

addition, Chen et al. [59] proposed a NewGreedyIC algorithm to employ a breadth 

first search (BFS) on a deterministic graph which is converted from the influence 

probabilistic graph, to calculate the influence spread. To efficiently estimate 

influence spread, a pruned BFS method [71] and a static greedy algorithm [72] 

were proposed to reduce the number of Monte-Carlo simulations. Also, Wang et al. 

[73] developed a community based greedy algorithm to select the most influential 

nodes within each community rather than in the whole network. Instead of 

utilizing Monte-Carlo simulations to estimate the influence spread, some recent 

work [74], [75], [76] utilize the reverse influence sampling (RIS) method to select 

seed nodes based on reverse reachability tests. The idea of RIS [74] is to randomly 

sample a collection of reserve reachable (RR) sets from the given network and 

then select the set of nodes which can cover the maximum number of RR sets as 
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seeds. Although such sampling can guarantee up to a (1 − 1/𝑒 − 𝜀) 

approximation, [77] has shown that these sampling methods would incur a high 

memory overhead in practice. Besides greedy algorithms, some heuristic 

algorithms are also developed to tackle the IM problem. Degree and 

centrality-based heuristics are the common metrics to estimate the influence of 

nodes in a network. To improve the pure degree heuristic, Chen et al. [59] 

proposed a DegreeDiscountIC algorithm to discount the degree contributed by the 

nodes already in the seed set. Luo et al. [62] proposed a PageRank-based heuristic 

which greedily selects seed nodes only from the nodes with high PageRank scores. 

Chen et al. [60] developed a PMIA algorithm to approximate the influence spread 

based on the maximum influence paths. Then, an IRIE algorithm [61] and an IPA 

algorithm [78] were proposed to reduce the high memory overhead incurred by 

PMIA. Besides, Tang et al. [77] designed a hop-based influence estimation 

algorithm to compute the influence spread up to two hops, the idea is similar to the 

time-constrained IM problem [79]. 

Although the IM problem has been extensively studied in the literature, very 

little work focuses on the cross-network IM problem. In [80], [81], the influence 

propagation across multiple aligned social networks has been studied, where some 

common users must be shared by different networks. Besides, Hu et al. [20] 

studies the cross-network IM problem in a more generalized scenario where the 

source network and the target network do not share any common users. A Transfer 

Influence Learning (TIL) method was proposed to transfer the influence across 

multiple networks, by viewing seed selection for IM as a node classification task. 

However, this TIL method does not consider domain discrepancy between 

different networks. 
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2.2.2 Graph Sparsification 

Many real-world networks are with massive number of nodes and edges, 

hampering some promising IM greedy algorithms to work in practice. To tackle 

the large-scale IM problem, one can construct a more succinct representation of 

the original network by retaining fewer nodes or edges. Graph sparsification is one 

technique to construct a sparse network by retaining all the nodes in the original 

network, while removing a fraction of edges. Several graph sparsification 

algorithms have been developed as a pre-processing step for IM. For example, 

Wilder et al. [63] developed a Random Walk algorithm to preserve a subset of 

edges by minimizing the Kullback-Leibler divergence [82] between a random walk 

on the original network and the sparse network. Mathioudakis et al. [64] proposed 

a SPINE algorithm to detect the “backbone” of an influence network, by 

preserving the edges most important for influence propagation. However, the 

SPINE algorithm requires the input of not only the topology structure, but also a 

log of past influence propagation traces in the given network, which are 

impracticable to obtain in most real-world applications. Purohit et al. [83] 

proposed a COARSENET algorithm to merge a fraction of adjacent node pairs, by 

minimizing the difference of the first eigenvalue of the adjacency matrix between 

the original network and the coarsened network. In addition, Lamba et al. [21] 

proposed a model independent approach to remove the least informative edges, 

according to an overall ranking weighted by several topological features. To 

aggregate multiple feature rankings, they measure the Kendall Tau distances [84] 

between different rankings, and then assign higher weight to more unique feature 

ranking. 
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2.3 Problem Formulation 

In order to achieve a good trade-off between efficiency and effectiveness of IM, 

we propose to leverage the cross-network information to address the seed selection 

and graph sparsification tasks in IM. Let 𝐺𝑆 = (𝑉𝑆, 𝐸𝑆) be a smaller source 

network with a set of nodes 𝑉𝑆 and a set of edges 𝐸𝑆, and 𝐺𝑇 = (𝑉𝑇, 𝐸𝑇) be a 

larger target network with a set of nodes 𝑉𝑇 and a set of edges 𝐸𝑇. Next, we 

formulate the cross-network seed selection and cross-network graph sparsification 

problem, respectively.  

2.3.1 Cross-network Seed Selection in IM 

We consider cross-network seed selection as a cross-network node prediction task, 

with the goal of selecting the nodes most likely to act as seed in 𝐺𝑇 by leveraging 

the greedy seed selection knowledge pre-learned in 𝐺𝑆. 

Firstly, in 𝐺𝑆, we run an IM greedy algorithm to select k seed nodes multiple 

times. Then, a node 𝑣𝑆
𝑖 ∈ 𝑉𝑆 is labeled as seed if it is selected by the greedy 

algorithm at least one time; otherwise, 𝑣𝑆
𝑖  is labeled as non-seed. Next, based on 

𝐷𝑆 = {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖)}𝑖=1
|𝑉𝑆| , where 𝑥𝑆

𝑖  and 𝑦𝑆
𝑖  represent the set of explicit topological 

features and the label of node 𝑣𝑆
𝑖 , we can train a node prediction model 𝑃𝑁.  

In 𝐺𝑇, we compute the same set of topological features (as in 𝐺𝑆) for all the 

nodes, i.e., 𝐷𝑇 = {𝑥𝑇
𝑖 }𝑖=1

|𝑉𝑇|. Then, we iteratively retrain 𝑃𝑁 by the proposed CNL 

algorithm. After t iterations, we apply 𝑃𝑁 on 𝐷𝑇 to predict {�̂�𝑇
𝑖 }𝑖=1
|𝑉𝑇|, where �̂�𝑇

𝑖  

denotes the predicted probability of 𝑣𝑇
𝑖  to be labeled as seed. Then, we rank 

{�̂�𝑇
𝑖 }𝑖=1
|𝑉𝑇|  and heuristically select top-k nodes with the highest predicted 

probabilities as seeds, denoted as �̂� . In addition, we run the same greedy 

algorithm (as in 𝐺𝑆) to select a set of k seed nodes in 𝐺𝑇, denoted as 𝐴, which is 
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treated as the ground-truth seed selection result. The aim of cross-network seed 

selection is to make �̂� as similar as possible to 𝐴 such that the influence spread 

achieved by �̂� can be approximately maximized in 𝐺𝑇. 

2.3.2 Cross-network Graph Sparsification in IM 

We consider cross-network graph sparsification as a cross-network edge prediction 

task. Here, the goal is to remove the edges least likely to contribute to influence 

propagation in 𝐺𝑇 , by leveraging the influence propagation knowledge 

pre-learned in 𝐺𝑆. 

In 𝐺𝑆, we firstly run an IM greedy algorithm to select k seed nodes. Then, we 

run an influence cascade model multiple times to simulate the influence 

propagation traces induced by the k seed nodes. In an influence cascade model 

[50], [85], the influence is firstly propagated from the seed nodes to their inactive 

neighbors. Then, if a neighbor has been successfully influenced to become active, 

it can further influence its inactive neighbors with a specific probability. After 

simulations, we can label all the edges in 𝐺𝑆  as either active or inactive as 

follows:  

In an undirected network, an edge e𝑖𝑗 is labeled as active, if during at least 

one time of influence propagation simulation, node 𝑣𝑖 successfully influences 

node 𝑣𝑗 or node 𝑣𝑗 successfully influences node 𝑣𝑖; otherwise, e𝑖𝑗 is labeled 

as inactive. In a directed network, an edge e𝑖𝑗 is denoted as active, iff node 𝑣𝑖 

successfully influences node 𝑣𝑗, during at least one time of influence propagation 

simulation; otherwise, e𝑖𝑗 is labeled as inactive.  

Next, based on 𝐷𝑆 = {(𝑥𝑆
𝑖𝑗
, 𝑦𝑆

𝑖𝑗
)}𝑖𝑗=1
|𝐸𝑆|  , where 𝑥𝑆

𝑖𝑗
 and 𝑦𝑆

𝑖𝑗
 represent the set of 

explicit topological features and the label of edge 𝑒𝑆
𝑖𝑗

, we can train an edge 

prediction model 𝑃𝐸 . In 𝐺𝑇, we define the same set of topological features for all 
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the edges, i.e., 𝐷𝑇 = {𝑥𝑇
𝑖𝑗
}𝑖𝑗=1
|𝐸𝑇| . Then, we iteratively retrain 𝑃𝐸  by the CNL 

algorithm for t iterations. Next, we apply 𝑃𝐸  on 𝐷𝑇  to predict {�̂�𝑇
𝑖𝑗
}𝑖𝑗=1
|𝐸𝑇| , 

where �̂�𝑇
𝑖𝑗

 denotes the predicted probability of 𝑒𝑇
𝑖𝑗

 to be labeled as active. Finally, 

we rank {�̂�𝑇
𝑖𝑗
}𝑖𝑗=1
|𝐸𝑇|  and remove a fraction f of the edges with the least predicted 

probabilities to be active for influence propagation, denoted as 𝐼. In addition, we 

define the ground-truth labels for all the edges in 𝐺𝑇, via the same approach as in 

𝐺𝑆, and denote the set of ground-truth inactive edges in 𝐺𝑇 as 𝐼. The goal of 

cross-network graph sparsification in IM is to make all the edges in 𝐼 are indeed 

inactive, i.e., belonging to 𝐼. Thus, we would only remove the edges inactive for 

influence propagation in the target network, which makes the loss of influence 

spread as small as possible in the sparse target network. 

It is worth noting that in the proposed CNL model, it is flexible to learn the 

greedy seed selection and influence propagation knowledge from any IM greedy 

algorithms and any influence cascade models in 𝐺𝑆. But the greedy algorithm and 

the influence cascade model employed to define the ground-truth labels in 𝐺𝑇 

should be the same as in 𝐺𝑆. 

2.4 The Proposed Algorithm 

In this section, we briefly introduce several topological features adopted in the 

prediction model and then present the detailed framework of the CNL model. 

2.4.1 Explicit Topological Features 

As shown in the literature [21], [20], [86], the following topological features can 

reflect the influence of a node in a network. 

1) Degree. It calculates the number of edges adjacent to a node.  

2) Weighted Degree. Different from degree, it calculates the number of edges 
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adjacent to a node by taking the weight of each edge into consideration.  

3) Eigenvector Centrality. It evaluates a node’s influence in the scenario of 

information diffusion. A node with high eigenvector centrality indicates it is 

highly influential to spread the influence in the network [87].  

4) HITS Hub. HITS algorithm [88] computes two values for each node, namely 

HITS authority and HITS hub. The authority and hub values of a node are 

estimated based on the incoming links and the outgoing links from the node, 

respectively.  

5) PageRank Score. PageRank algorithm [89] was originally designed to rank 

page authority. By viewing each node as a page, it can be used to compute the 

ranking of nodes based on the structure of the incoming links to the nodes.  

6) Clustering Coefficient. It reflects the fraction of a node’s friends who are also 

friends with each other. A node with high clustering coefficient indicates that 

the node’s neighbors are likely to be connected with each other. 

On one hand, for seed node prediction, we employ the aforementioned 

topological features as node features. On the other hand, for inactive edge 

prediction, we assume that the likelihood of an edge to be active for influence 

propagation depends on the influence of two nodes on the edge. Thus, we 

construct edge features based on the average topological feature values of the two 

nodes on each edge. To make the feature values network independent, we rank the 

absolute values of each feature ascendingly and map them into [0, 1]. All these 

selected features can be efficiently measured by NetworkX1, thus making the 

proposed CNL model more efficient for the IM task, as compared to the standard 

greedy algorithms. In addition, it is flexible to employ other informative 

topological features in the CNL model as long as they can effectively reflect a 

node’s influence and also be efficiently computed in large-scale networks. 

                                                             
1 http://networkx.github.io/ 
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2.4.2 Cross-Network Learning (CNL) Model 

We apply the CNL model to address both cross-network seed selection and 

cross-network graph sparsification problems. For seed selection, we treat seed 

nodes as positive class and non-seed nodes as negative class. For graph 

sparsification, we treat active edges as positive class while inactive edges as 

negative class. Then, with positive instances labeled as “1” and negative instances 

labeled as “0”, a supervised learning method can be devised to train a node or edge 

prediction model via the logistic regression (LR) algorithm as follows: 

 𝐽(𝜃) = −
1

𝑚𝑆
∑ (𝑦𝑆

𝑢 𝑙𝑜𝑔(ℎ𝜃(𝑥𝑆
𝑢)) + (1 − 𝑦𝑆

𝑢) 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑆
𝑢)))

𝑚𝑆
𝑢=1   (2.1) 

where 𝑚𝑆 denotes the number of training examples in 𝐷𝑆; 𝑥𝑆
𝑢 = {𝑥𝑆,𝑗

𝑢 }𝑗=1
𝑛  is a 

feature vector representing the topological feature values of instance u in 𝐷𝑆, and 

n is the number of features; 𝑦𝑆
𝑢 is the label of instance u in 𝐷𝑆; 𝜃 = {𝜃𝑗}𝑗=1

𝑛
 is a 

weight vector denoting the importance degree of different typological features for 

the prediction task; ℎ𝜃(𝑥𝑆
𝑢) = 𝑃(𝑦𝑆

𝑢 = 1|𝑥𝑆
𝑢; 𝜃) refers to the predicted probability 

of instance u to be labeled as positive. After 𝜃∗ = 𝑎𝑟𝑔min
𝜃
(2.1) has been learned 

in 𝐷𝑆, one can firstly leverage it to estimate the probability of an instance u to be 

positive in 𝐷𝑇, using a sigmoid function as: 

 �̂�𝑇
𝑢 = (1 + 𝑒−(𝜃

∗)𝑇𝑥𝑇
𝑢
)−1  (2.2) 

Due to its simplicity and high efficiency, LR was adopted as the prediction 

algorithm in this work. However, the proposed CNL model is flexible to work with 

other prediction algorithm, as long as it can work efficiently and also provide the 

probabilities for its predictions.  

2.4.2.1 Feature Incompatibility 

Due to domain discrepancy, an identical feature might have different importance 
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degree for the same prediction task in different networks. To address this, we 

measure the incompatibility of each feature 𝑋𝑗 between 𝐷𝑆 and 𝐷𝑇, following 

the approach in [65] as below: 

 𝐼𝐶(𝑋𝑗) = 1 − 𝑃𝑐𝑐(𝑋𝑆,𝑗, 𝑌𝑆)𝑃𝑐𝑐(𝑋𝑇,𝑗, �̂�𝑇)  (2.3) 

where 𝑃𝑐𝑐(𝑋𝑆,𝑗 , 𝑌𝑆) represents the Pearson correlation coefficient (PCC) between 

the value of the j-th feature and the label of all the instances in 𝐷𝑆; 𝑃𝑐𝑐(𝑋𝑇,𝑗, �̂�𝑇) 

indicates the PCC between the value of the j-th feature and the predicted 

probability of all the instances to be positive in 𝐷𝑇 . The smaller the 

incompatibility, the more similarly the feature performs between the source 

network and the target network. Based on the feature incompatibility measure, a 

regularization term is defined as: 

 𝑅1(𝜃) = ∑ 𝐼𝐶(𝑋𝑗)
𝑛
𝑗=1 |𝜃𝑗|  (2.4) 

By minimizing 𝑅1(𝜃), lower absolute weights would be assigned to the 

features with larger incompatibility (i.e. perform more differently between 𝐷𝑆 and 

𝐷𝑇). In addition, a L2 regularization is defined to prevent overfitting as below: 

 𝑅2(𝜃) =
1

2
∑ 𝜃𝑗

2𝑛
𝑗=1   (2.5) 

By integrating the regularization terms (2.4), (2.5) and the cost function (2.1), 

an overall loss function is developed as: 

 𝐿(𝜃) = 𝐽(𝜃) +
𝜆1

𝑚𝑆
𝑅1(𝜃) +

𝜆2

𝑚𝑆
𝑅2(𝜃)  (2.6) 

where 𝜆1, 𝜆2 ≥ 0  are the trade-off parameters to balance the effects of the 

regularizations (2.4) and (2.5). Next, gradient descent algorithm is employed to 

find the parameters minimizing the overall loss function (2.6), as follows: 

 
𝜕𝐿(𝜃)

𝜕𝜃𝑗
=

1

𝑚𝑆
{
∑ [(ℎ𝜃(𝑥𝑆

𝑢) − 𝑦𝑆
𝑢)𝑥𝑆,𝑗

𝑢𝑚𝑆
𝑢=1 + 𝜆1𝐼𝐶(𝑋𝑗) + 𝜆2𝜃𝑗], 𝑖𝑓𝜃𝑗 ≥ 0

∑ [(ℎ𝜃(𝑥𝑆
𝑢) − 𝑦𝑆

𝑢)𝑥𝑆,𝑗
𝑢𝑚𝑆

𝑢=1 − 𝜆1𝐼𝐶(𝑋𝑗) + 𝜆2𝜃𝑗], 𝑖𝑓𝜃𝑗 < 0
  (2.7) 
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 𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕𝐿(𝜃)

𝜕𝜃𝑗
  (2.8) 

where 𝛼 > 0 denotes the learning rate. 

2.4.2.2 Iterative Self-Training 

So far, we have considered feature incompatibility between 𝐷𝑆 and 𝐷𝑇. However, 

the training data are merely obtained from 𝐷𝑆. To make the prediction model also 

consider the training data from 𝐷𝑇, one can employ a SEDA algorithm [65] to 

leverage not only the fully labeled data from the source network but also the 

unlabeled data from the target network to iteratively retrain the prediction model. 

Specifically, at each self-training iteration, the top-c most confident predicted 

positive samples with the pseudo binary label “1” and the top-c most confident 

predicted negative samples with the pseudo binary label “0”, are moved from 𝐷𝑇 

to 𝐷𝑆 to retrain the prediction model in the next self-training iteration. However, 

in the IM application, the number of seed nodes should be much smaller than that 

of non-seed nodes, and the number of active edges is generally smaller than that of 

inactive edges. To tackle such imbalanced data, in the CNL model, we propose to 

move the top-c most confident predicted positive instances, while the top-𝑐′ most 

confident predicted negative instances from 𝐷𝑇  to 𝐷𝑆  at each self-training 

iteration, where 𝑐′ = 𝑐 ∗ 𝑙 and 𝑙 > 1 denotes the ratio of the number of most 

confident predicted negative instances over that of positive instances moved from 

𝐷𝑇 to 𝐷𝑆.  

2.4.2.3 Fuzzy Labels 

In the SEDA algorithm [65], the most confident predicted positive (or negative) 

instances generated by different self-training iterations are actually not with equal 

likelihood to be positive (or negative). Thus, assigning predicted binary labels to 

them would fail to differentiate the degree of their membership to be positive (or 
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negative). Moreover, when the self-training iteration becomes large or too large, 

the most confident predictions in the target network might become not confident 

enough. In such a case, if some wrongly predicted labeled instances in the target 

network are employed to retrain the prediction model, the prediction performance 

will be degraded. Fuzzy techniques have demonstrated high effectiveness to 

handle imprecision, uncertainty and vagueness during knowledge transfer [66], 

[90]. Motivated by this, we exploit the use of fuzzy labels to alleviate the 

weakness of the SEDA algorithm, by differentiating the confidence levels of the 

predictions generated by different self-training iterations. Here, the fuzzy labels 

represent the degree of the membership of the instances predicted as positive. Note 

that in the SEDA algorithm [65], when the most confident predictions in the target 

network are iteratively added to 𝐷𝑆, they are also simultaneously removed from 

𝐷𝑇 . Intuitively, as the self-training iteration increases, the most confident 

predictions in 𝐷𝑇  will become less confident. Thus, we would assign higher 

membership of positive to the most confident predicted positive instances, while 

lower membership of positive to the most confident predicted negative instances, 

generated by the earlier self-training iterations. Specifically, at the i-th iteration, 

the fuzzy labels assigned to the top-c most confident predicted positive instances 

are defined as: 

 1 −
1−𝛼

𝑡−1
(𝑖 − 1)  (2.9) 

where t indicates the total number of self-training iterations and 1 ≤ 𝑖 ≤ 𝑡, 𝑡 > 1; 

0.5 < 𝛼 < 1 denotes the fuzzy label (i.e. predicted membership to be positive) 

assigned to the top-c most confident predicted positive instances, generated by the 

last (i.e. t-th) self-training iteration. Note that if 𝛼 = 1, the fuzzy labels are 

equivalent to binary labels; and if 𝑡 = 1, we do not assign fuzzy labels. On the 

other hand, the fuzzy labels assigned to the top-𝑐′  most confident predicted 
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negative instances, generated at the i-th self-training iteration are defined as: 

 
1−𝛼

𝑡−1
(𝑖 − 1)  (2.10) 

For simplicity, we only differentiate the confidence levels of the predictions 

generated by different self-training iterations. While we treat all the top-c most 

confident positive instances (and all the top-𝑐′ most confident negative instances) 

generated by the same self-training iteration as equally confident.  

Algorithm 2.1: Cross-network Learning (CNL) 

Input: Source network 𝐷𝑆 = {(𝑥𝑆
𝑢, 𝑦𝑆

𝑢)}𝑢=1
𝑚𝑆  with 𝑚𝑆  labeled instances; Target 

network 𝐷𝑇 = {𝑥𝑇
𝑢}𝑢=1

𝑚𝑇  with 𝑚𝑇  unlabeled instances; Number of self-training 

iterations: t; Number of most confident predicted positive instances moved from 𝐷𝑇 to 

𝐷𝑆 at each iteration: c; Ratio of the number of most confident predicted negative 

instances over that of positive instances moved from 𝐷𝑇 to 𝐷𝑆: 𝑙.  

1. 𝐷𝑇
′ = 𝐷𝑇; 

2. On 𝐷𝑆, train a model to obtain 𝜃∗ = 𝑎𝑟𝑔min
𝜃
(2.1); 

3. For i=1:t iterations, do: 

3.1 Based on 𝜃∗, apply (2.2) on 𝐷𝑇 to predict {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 ; 

3.2 Based on {(𝑥𝑆
𝑢, 𝑦𝑆

𝑢)}𝑢=1
𝑚𝑆  and {(𝑥𝑇

𝑢, �̂�𝑇
𝑢)}𝑢=1

𝑚𝑇 , measure feature incompatibility 

between 𝐷𝑆 and 𝐷𝑇, via (2.3); 

3.3 Rank {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇  and move the top-c most confident predicted positive 

instances with their fuzzy labels from 𝐷𝑇 to 𝐷𝑆: 

𝐷𝑆 ∶= 𝐷𝑆 + {(𝑥𝑇
𝑢, 1 −

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 𝑐  ℎ𝑖𝑔ℎ𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 }; 

𝐷𝑇 ∶= 𝐷𝑇 − {(𝑥𝑇
𝑢, 1 −

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 𝑐  ℎ𝑖𝑔ℎ𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 }; 

3.4 Rank {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇  and move the top-(𝑐 ∗ 𝑙) most confident predicted negative 

instances with their fuzzy labels from 𝐷𝑇 to 𝐷𝑆: 

𝐷𝑆 ∶= 𝐷𝑆 + {(𝑥𝑇
𝑢,

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 (𝑐∗𝑙) 𝑙𝑜𝑤𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 }; 

𝐷𝑇 ∶= 𝐷𝑇 − {(𝑥𝑇
𝑢,

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 (𝑐∗𝑙) 𝑙𝑜𝑤𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 }; 

3.5 On new 𝐷𝑆, retrain the model to obtain updated 𝜃∗ = 𝑎𝑟𝑔 min
𝜃
(2.6); 

   End for 

4. Based on 𝜃∗, apply (2.2) on 𝐷𝑇
′  to predict {�̂�𝑇

𝑢}𝑢=1
𝑚𝑇 . 

Output: Predicted probabilities of all the instances on 𝐷𝑇 to be positive: {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 . 
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Next, by iteratively moving the most confident predicted instances (i.e. both 

feature vectors and predicted fuzzy labels) from 𝐷𝑇 to 𝐷𝑆, the prediction model 

can be updated based on not only all the fully labeled data in the source network, 

but also the newly added most confident predicted labeled data in the target 

network. In addition, with the devised fuzzy labels, lower degree of membership 

would be assigned to less confident predicted instances. Thus, we can lower the 

negative effects caused by adding the less confident predicted target network 

instances into the training set. Finally, after t self-training iterations, for 

cross-network seed selection, we employ the latest trained node prediction model 

to select the top-k nodes with the highest predicted probability to be positive (i.e. 

act as seed for IM) in the target network. On the other hand, for cross-network 

graph sparsification, we leverage the latest trained edge prediction model to 

remove a fraction f of the edges predicted as least likely to be positive (i.e. active 

for influence propagation in IM) in the target network. 

2.5 Experiments 

2.5.1 Datasets 

The performance of the proposed CNL model was tested for both cross-network 

seed selection and cross-network graph sparsification tasks on four public 

real-world datasets, namely, NetHEPT2, Email-Enron3, Epinions4 and DBLP5. 

These datasets were frequently employed to evaluate the IM performance in the 

literature [21], [58], [59], [63]. Both NetHEPT [59] and DBLP [91] datasets are 

collaboration networks, where each node represents an author and each link 

connecting two nodes indicates the co-author relationship. The Email-Enron 

                                                             
2 https://www.microsoft.com/en-us/research/people/weic/ 
3 https://snap.stanford.edu/data/email-Enron.html 
4 https://snap.stanford.edu/data/soc-Epinions1.html 
5 https://snap.stanford.edu/data/com-DBLP.html 
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dataset [92] is an email communication network, where each node represents an 

email address and each link connecting two nodes indicates the existence of 

communication between them. The Epinions dataset [93] is a “who trust whom” 

online social network generated from the Epinions site. Table 2.1 gives some 

statistics of these datasets. To demonstrate the efficiency of the CNL model, we 

employed the smallest NetHEPT network as the source network, while the other 

three larger networks as the target networks. 

Table 2.1: Statistics of real-world datasets. 

Dataset Type Source/Target # Nodes # Edges 

NetHEPT Undirected Source 15233 31398 

Email-Enron Undirected 

Target 

36692 183831 

Epinions Directed 75879 508837 

DBLP Undirected 317080 1049866 

2.5.2 Implementation Details 

In the experiments, the IC model [50] with the influence probability p=0.01 was 

employed as the influence propagation model in the IM task. On one hand, for 

cross-network seed selection, the NewGreedyIC algorithm [59] was employed to 

select 100 seed nodes in the source network over 10 times to learn node labels. 

Next, in the CNL model, we set the weight of the feature incompatibility 

regularization as 𝜆1 = 10 and divided it by a factor of 1.1 after each self-training 

iteration, following the practice in [65]; and set the L2-regularization weight as 

𝜆2 = 0.5. For self-training process, we set t=5, c=10, l=30 for all the datasets. It 

means that at each of the 5 self-training iterations, the top-10 most confident 

predicted seed nodes and top-300 most confident predicted non-seed nodes in the 

target network would be iteratively moved to the training set to retrain the node 

prediction model in the next self-training iteration. In addition, for fuzzy label 

design, we set 𝛼 = 0.8, which indicates that at the last (i.e. 5-th) self-training 

iteration, the top-10 most confident predicted seed nodes are with 80% of 
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membership to be seed, while the top-300 most confident predicted non-seed 

nodes are with 80% of membership to be non-seed. 

On the other hand, for cross-network graph sparsification, in the source 

network, we run the IC model [50] 1000 times to simulate the influence 

propagation traces induced by 50 seed nodes selected by NewGreedyIC [59] so as 

to learn the edge labels. Then, in the CNL model, 𝜆1 was set with the same value 

as that for cross-network seed selection. While 𝜆2 = 1, 0.1 and 1 were 

experimentally adopted for the Email-Enron, Epinions and DBLP target network, 

respectively. For self-training process, we set t=3, c=200, l=30, meaning that 

during each of 3 self-training iterations, the top-200 most confident predicted 

active edges and top-6000 most confident predicted inactive edges in the target 

network would be moved to the training set to iteratively update the edge 

prediction model. For fuzzy label design, we conducted a grid search on 𝛼 ∈

{0.6, 0.7, 0.8,0.9} and consequently set 𝛼=0.7, 0.7 and 0.8 for the Email-Enron, 

Epinions and DBLP target networks, respectively. 

2.5.3 Performance of CNL for Seed Selection 

In this subsection, we report the performance of the proposed CNL model for seed 

selection in three target networks. 

2.5.3.1 Baselines 

The following IM algorithms are benchmarked against the proposed CNL model. 

1) NewGreedyIC [59]: It is a greedy IM algorithm which firstly converts the 

influence probabilistic graph into a deterministic graph and then employs a 

BFS on the deterministic graph to calculate the influence spread;  

2) CELF [57]: It is a greedy IM algorithm which greatly reduces the number of 

evaluations on influence spread by exploiting the sub-modularity property; 
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3) CELF++ [58]: It further exploits the sub-modularity property to avoid 

unnecessary re-computations of marginal gains incurred by CELF;  

4) EigenCen: It is a heuristic method based on Eigenvector Centrality which 

reflects a node’s influence in information diffusion [87]. It heuristically selects 

nodes with the highest eigenvector centrality to be seeds; 

5) TIL [20]: It is most related to the proposed CNL model, which views seed 

selection for IM as a cross-network node classification task. However, it 

ignores domain discrepancy between the source network and the target 

network. 

2.5.3.2 Evaluation Metrics 

For each of the compared IM algorithms, the same number of seed nodes from [10, 

100] was assigned for each target network. We evaluate the cross-network seed 

selection performance from two perspectives, i.e., the performance w.r.t. IM in the 

target network and the performance w.r.t. cross-network node retrieval. Firstly, to 

evaluate the IM performance in the target networks, we adopt two metrics as in the 

IM literature [50], [57], [59], namely, influence spread and running time. The 

higher the influence spread, the better the performance; while the shorter the 

running time, the better the performance. Secondly, by considering seed selection 

as a node prediction task, we let both TIL [20] and the proposed CNL model learn 

the greedy seed selection knowledge from the same greedy algorithm (i.e. 

NewGreedyIC [59] in the experiments) in the source network. Thus, in the target 

networks, we should check whether TIL and CNL could obtain similar seed 

selection results w.r.t. the greedy algorithm which they learned the knowledge 

from. To evaluate it, we adopted the precision@k metric to measure the accuracy 

of their top-k seed node retrieval results. Here, the ground-truth seed nodes in the 

target networks should be the k seed nodes selected by the same greedy algorithm  
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(i.e. NewGreedyIC) as in the source network. The higher the seed node precision, 

the better the performance. 

2.5.3.3 Performance Analysis 

Next, we report the performance of CNL when it is applied to three target 

networks for seed selection. Firstly, as shown in Figure 2.3, CNL can always 

achieve a good influence spread almost matched with NewGreedyIC in the three 

target networks. In addition, as shown in Figure 2.3(a), in the Email-Enron target 

network, both CNL and NewGreedyIC achieved lower influence spread than 

CELF and CELF++ when selecting no more than 40 seed nodes; while achieving 

higher influence spread than CELF and CELF++ when selecting at least 60 seed 

nodes. In the Epinions target network, as shown in Figure 2.3(b), both CNL and 

NewGreedyIC achieved lower influence spread than CELF and CELF++ when the 

seed set size was smaller than 50, while achieving higher influence spread than 

CELF and CELF++ if at least 50 seed nodes were selected. While in the DBLP 

target network, as shown in Figure 2.3(c), both CNL and NewGreedyIC achieved 

higher influence spread than CELF and CELF++ for any seed set sizes within [10, 

100]. These results could be explained by the fact that in the experiments, CNL 

learned the greedy seed selection knowledge from NewGreedyIC in the source 

network, thus CNL would tend to match with the influence spread of 

NewGreedyIC, rather than other greedy algorithms, such as CELF and CELF++. 

On the other hand, as shown in Figure 2.3, the running time of CNL was much 

shorter than all the greedy algorithms in all the three target networks. For example, 

when selecting 100 seed nodes in the largest DBLP target network containing 

millions of edges, the running time of NewGreedyIC, CELF and CELF++ was 

about 36, 11, and 9 hours, respectively. While in the CNL model, it only took 4 

minutes to measure all the topological features for all the nodes in the network and 
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another 4 minutes to train the prediction model via 5 self-training iterations. Since 

 

Figure 2.3: Performance of CNL for seed selection for IM in three target networks. The higher the 

influence spread, the better the performance; while the shorter the running time, the better the 

performance.   
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the selected topological features can be measured efficiently and the time taken to 

train the prediction model via self-training was quite short, CNL can run much 

more efficiently than the greedy algorithms. In addition, as shown in Figure 2.3, 

although the EigenCen heuristic was fastest among all the comparing algorithms, 

it failed to achieve a high influence spread in all the three target networks. Also, 

we can see that although the greedy algorithms can achieve a high influence 

spread, the running time was extremely long. In contrast, the proposed CNL model 

can obtain a good trade-off between the efficiency and effectiveness of the IM 

problem, i.e., greatly saving the running time while still achieving a good 

influence spread almost matched with the greedy algorithm. 

Next, we compare the performance of TIL and the proposed CNL model. As 

shown in Figures 2.3(a) and 2.3(c), in the Email-Enron and DBLP target networks, 

CNL always achieved higher influence spread than TIL for different seed set sizes 

between [10, 100]. In the Epinions target network, as shown in Figure 2.3(b), CNL 

achieved higher influence spread than TIL when selecting more than 30 seed 

nodes. In addition, as shown in Figure 2.4, CNL always achieved much higher 

seed node precisions than TIL, when retrieving any number of k seed nodes 

between [10, 100] in all the three target networks. Both the higher influence spread 

and the higher precisions of CNL over TIL demonstrates the importance and 

necessity of addressing domain discrepancy between the source network and the 

 

Figure 2.4: Performance of CNL for seed node prediction in three target networks, in terms of the 

seed node precision at top-k retrieved most likely seed nodes. The higher the seed node precision, 

the better the performance. 
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target network, for cross-network seed selection in IM. 

Moreover, we observe an interesting phenomenon of IM in different types of 

networks. As shown in Figure 2.3, when the same number of seed nodes, say 10, 

was selected, the influence spread achieved by CNL in the DBLP collaboration 

network was only 74; in the Epinion trust social network, it was 390; while in the 

email communication network, it was 463. These reveal that the email 

communication and online social networks are much easier to spread the 

information effectively than the collaboration network. 

2.5.4 Performance of CNL for Graph Sparsification 

Next, we investigate the performance of the proposed CNL model for graph 

sparsification in three target networks. 

2.5.4.1 Baselines 

We compete with the following graph sparsification algorithms. 

1) Random Heuristic: It randomly selects a fraction of edges to remove;  

2) RandomWalk [63]: It removes a fraction of edges such that the 

Kullback-Leibler divergence between a random walk on the original network 

and the sparse network can be minimized;  

3) AggRanks [21]: It removes a fraction of edges according to an overall ranking 

aggregated by multiple topological feature rankings. It assigns higher weights 

to more unique feature rankings during aggregation. 

2.5.4.2 Evaluation Metrics 

For each of the compared graph sparsification algorithms, a fraction f of edges 

chosen from [10%, 90%] were removed in the original network to extract the 

sparse networks. Then, in both the original network and the sparse networks, the 

NewGreedyIC algorithm [59] was employed to select the same number of (i.e. 50 
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in the experiments) seed nodes to maximize the influence. Next, we evaluate the 

performance of the graph sparsification algorithms from two perspectives, namely 

the performance w.r.t. IM and w.r.t. cross-network edge retrieval. To evaluate the 

performance of graph sparsification as a pre-processing step for IM, we adopt two 

metrics as in the related literature [9], [21], [63]. Firstly, we measure how much 

influence spread will be lost in the sparse network, as compared to that in the 

original network. The less the loss of influence spread, the better the performance. 

In addition, we check how much running time of the greedy algorithm (i.e. 

NewGreedyIC) could be saved in the sparse network, as compared to that taken in 

the original network. Note that the running time of NewGreedyIC [59] depends on 

the number of edges in the target network, rather than the topological structures of 

the edges. Thus, after removing an equal fraction of edges by different graph 

sparsification algorithms, the save of running time of NewGreedyIC would be the 

same for different graph sparsification algorithms. 

On the other hand, by viewing graph sparsification as a cross-network edge 

retrieval task, both AggRanks [21] and the proposed CNL model aim to remove a 

fraction f of edges most likely to be inactive (i.e. useless) for influence propagation. 

Thus, we employ the precision@f metric to examine the accuracy of the top-f (%) 

most likely inactive edges retrieved by the graph sparsification algorithms. To 

learn the ground-truth edge labels in the target networks, we run the same 

influence cascade model as in the source network (i.e. IC model) to simulate the 

influence propagation traces. The detailed approach for edge label learning has 

been introduced in section 2.3.2. The higher the inactive edge precision, the better 

the performance. 

2.5.4.3 Performance Analysis 

Next, we report the performance of CNL for graph sparsification in the three target 
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networks. Firstly, as shown in Figure 2.5, we can see that among all the compared 

graph sparsification algorithms, CNL always performed the best (i.e. achieved the 

lowest influence spread loss) in all the sparse target networks with different edge 

removal fractions between [10%, 90%]. In addition, if 40% of edges were 

 

Figure 2.5: Performance of CNL for graph sparsification as a pre-processing step for IM in three 

target networks. The lower the loss of influence spread, the better the performance. (NGIC is short 

for NewGreedyIC) 
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removed by CNL in the Email-Enron, Epinions and DBLP target networks, the 

influence spread were just reduced by 8.07%, 6.37% and 0.84%, respectively, 

while the running time of NewGreedyIC can be greatly saved by 34.7%, 56.2% 

and 29.2% in return, respectively. In addition, as a graph sparsification algorithm    

for IM, the proposed CNL model is with high efficiency and scalability. For 

example, even in the largest DBLP target network, the time taken to measure all 

the topological features and train the prediction model via 3 self-training iterations 

was only about 15 minutes. These reveal that the proposed CNL model indeed acts 

as an effective graph sparsification algorithm for IM, since it can obtain a good 

trade-off between efficiency and effectiveness of IM, i.e., greatly speeding up the 

greedy algorithm without causing a notable loss of influence spread in the sparse 

networks. 

Secondly, we look at the performance of the random heuristic and 

RandomWalk algorithms. As shown in Figure 2.5, in all the three target networks, 

both AggRanks and CNL can all achieve much lower influence spread loss than 

the random heuristic and RandomWalk algorithms. This could be explained by the 

fact that for the IM task, the influence tends to be propagated through those active 

edges which are adjacent to the highly influential nodes, rather than the randomly 

selected edges. Since the highly influential nodes are with discriminative 

 

Figure 2.6: Performance of CNL for inactive edge prediction in three target networks, in terms of 

the inactive edge precision at top-f(%) retrieved most likely inactive edges. The higher the inactive 

edge precision, the better the performance. 
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topological features w.r.t. randomly selected nodes. The active edges should also 

be with discriminative topological structures w.r.t inactive edges. Thus, the 

AggRanks and CNL algorithms based on the discriminative topological features 

can significantly outperform the random-based approaches. 

Next, we compare the performance of AggRanks and the proposed CNL 

algorithms in the sparse target networks, in terms of the influence spread loss and 

inactive edge precision. As shown in Figure 2.5, when removing less than 30% 

edges in the target networks, these two algorithms would perform quite similarly, 

i.e., only lead to a little loss of influence spread in the sparse target networks. 

However, CNL can achieve lower influence spread loss than AggRanks, when the 

edge removal fraction is more than 30% in the three target networks. On the other 

hand, as shown in Figure 2.6(a), CNL achieved higher inactive edge precision than 

AggRanks in the sparse Email-Enron target networks with the edge removal 

fraction between [10%, 70%]. In addition, as shown in Figures 2.6(b) and 2.6(c), 

CNL achieved higher precision than AggRanks when the edge removal fraction is 

more than 10% and 20% in the Epinions and DBLP target networks, respectively. 

It is worth noting that for fair comparison, we let both AggRanks and CNL 

aggregate the same set of topological features to remove the edges least useful for 

influence propagation. But when learning the feature weightings for aggregation, 

AggRanks only leverages the topological information in a single network and 

assigns higher weight to more unique feature in an unsupervised manner. However, 

the more unique feature might not necessarily be more important for inactive edge 

prediction. In contrast to AggRanks, the proposed CNL model employ a fuzzy 

self-training approach to iteratively leverage the influence propagation knowledge 

pre-learned in a source network to learn the feature weightings for the target 

network. Thus, the better overall performance of CNL over AggRanks 

demonstrates the advantage of leveraging the cross-network information w.r.t. the 
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single network information for inactive edge prediction in IM. 

Finally, let us look at some interesting differences when graph sparsification is 

applied to different types of networks. As shown in Figure 2.5, when removing 

equal fraction of edges in the three target networks, the loss of influence spread is 

lowest in the DBLP target network. On the other hand, as shown in Figure 2.6, 

when giving the same edge removal fraction, the inactive edge precisions are 

highest in the DBLP target network. These results reveal that the email 

communication (i.e. Email-Enron) and trust social networks (i.e. Epinions) show 

greater challenge to graph sparsification than the collaboration network (i.e. 

DBLP). This could be explained by our previous observation in seed selection that 

the email communication and trust social networks are much easier to spread the 

information than the collaboration network. In other words, the fraction of active 

edges should be smallest (i.e., most of the edges are inactive for influence 

propagation) in the DBLP collaboration network. Thus, even though removing 

quite a large fraction (e.g. 70%) of edges in the DBLP network, the influence 

spread in the sparse network would not be substantially affected. 

2.5.5 Parameter Sensitivity 

In this subsection, we analyze the sensitivity of the parameters, i.e. 𝜆1, 𝜆2 , 𝑡, 𝑐, 𝑙, 𝛼 

on the performance of CNL for seed node selection and inactive edge prediction. 

Specifically, for seed selection, the sensitivity tests were conducted in the DBLP 

target network when the seed set size is 50. For inactive edge prediction, the 

sensitivity analyses were performed in the Email-Enron target network when the 

edge removal fraction is 30%.  
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Parameter 𝝀𝟏 denotes the weight of the feature incompatibility regularization  

(2.4) and parameter 𝝀𝟐 indicates the weight of the L2-norm regularization (2.5). 

As shown in Figure 2.7, 𝜆1 > 0 generally yields higher precisions for both seed 

node prediction and inactive edge prediction, as compared to 𝜆1 = 0 . This 

demonstrates the effectiveness of incorporating (2.4) in CNL to assign lower 

absolute weights to the features which perform less similarly between the source 

network and the target network. In addition, as shown in Figure 2.7(a), when 𝜆1 ∈

{5, 10,15,20}, the seed node prediction performance of CNL is not sensitive to the 

value of 𝜆2. On the other hand, for inactive edge prediction, as shown in Figure 

2.7(b), when 𝜆1 = 10, the performance of CNL is also not sensitive to the value 

of 𝜆2. However, when 𝜆1 ∈ {15, 20}, relatively smaller values of 𝜆2, i.e., 0.01 or 

0.001, would lead to good performance of CNL for inactive edge prediction. 

Parameter t denotes the total number of self-training iterations. As shown 

Figure 2.8(a), for seed node prediction, setting 𝑡 = 5  leads to a significant 

improvement over 𝑡 = 1 and 3. However, when 𝑡 > 5, the seed node precision 

can only be slightly improved. In addition, note that the running time of CNL will 

increase as t increase. Thus, in order to achieve a good prediction performance and 

also save the running time, we fix t=5 for seed node prediction on all the datasets. 

On the other hand, as shown in Figure 2.9(a), t=3 can significantly increase the 

 

Figure 2.7: Impact of 𝜆1 and 𝜆2 on the performance of CNL for seed node prediction in the 

DBLP target network when the seed set size is 50 and for inactive edge prediction in the 

Email-Enron target network when the edge removal fraction is 30%.  

 

 

 

(a) Seed node prediction (b) Inactive edge prediction
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inactive edge precision w.r.t. t=1, however, when t>3, the inactive edge prediction 

 

Figure 2.8: Parameter sensitivity of CNL over 𝑡, 𝑐, 𝑙, 𝛼 for seed node prediction in the DBLP 

target network when the seed set size is 50. The default settings are 𝜆1 = 10, 𝜆2 = 0.5, 𝑡 = 5, 𝑐 =

10, 𝑙 = 30, 𝛼 = 0.8. 

 

 
Figure 2.9: Parameter sensitivity of CNL over  𝑡, 𝑐, 𝑙, 𝛼  for inactive edge prediction in the 

Email-Enron target network when the edge removal fraction is 30%. The default settings are 𝜆1 =

10, 𝜆2 = 1, 𝑡 = 3, 𝑐 = 200, 𝑙 = 30, 𝛼 = 0.7. 
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performance will be degraded. This might be caused by the shortcoming of the 

self-training approach [65], i.e., when t becomes too large, the most confident 

predicted instances in the target network might become not confident enough. 

Then, if some wrongly predicted labeled target network instances are utilized as 

the training data to retrain the prediction model, the prediction performance will be 

declined. Thus, we fix t=3 in the CNL model for cross-network graph 

sparsification in all the target networks.  

Parameter c indicates the number of most confident predicted positive 

instances moved from the target network to the training set, at each iteration. As 

shown in Figure 2.8(b), 𝑐 ∈ {10,20,30,40,50} all achieve much higher seed node   

precision than c=0. Also, as shown in Figure 2.9(b), 𝑐 ∈ {100,200,300} yields 

much higher inactive edge precision than c=0. These demonstrate the effectiveness 

of the self-training approach to leverage the target network data to train the 

prediction model. In addition, we assigned a larger value of c for inactive edge 

prediction than that for seed node prediction. This is because the number of edges 

is generally much larger than that of nodes in a target network. Intuitively, when 

training an edge prediction model, we would require larger number of training 

samples (i.e. larger c) than that for node prediction. 

Parameter l represents the ratio of the number of most confident predicted 

negative instances over that of positive instances moved from the target network to 

the training set. As shown in Figure 2.8(c), 𝑙 ≥ 1 contributes to much higher seed 

node precision than 𝑙 = 1. This is because the number of non-seed nodes are 

much larger than that of seed nodes. If we just add the equal number of most 

confident predicted seed nodes and non-seed nodes (i.e. 𝑙 = 1) in the target 

network to the training set, the prediction model might fail to consider enough 

negative training samples from the target network. Thus, it is effective to 

incorporate the parameter 𝑙 to address the imbalanced data condition for seed 
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node prediction. In addition, as shown in Figure 2.9(c), 𝑙 ≥ 1 also leads to much 

higher inactive edge precisions than 𝑙 = 1. In addition, as shown in Figures 2.9(b) 

and 2.9(c), when c or l become too large, i.e., 𝑐 ≥ 400, 𝑙 = 50, the inactive edge 

precision will significantly decrease. This is also caused by the weakness of the 

self-training approach as we explained above, i.e., utilizing not confident enough 

target network predictions to retrain the model would lead to negative effect on the 

prediction performance. 

Finally, we evaluate the effectiveness of incorporating fuzzy labels in the 

iterative self-training algorithm for cross-network seed selection and graph 

sparsification. Parameter 𝜶 denotes the degree of membership to be positive 

assigned to the most confident predicted positive instances generated at the last 

self-training iteration. Note that 0.5 < 𝛼 < 1 indicates that we incorporate fuzzy 

labels, while 𝛼 = 1 indicates that we utilize binary labels instead of fuzzy labels. 

As shown in Figures 2.8(d) and 2.9(d), 𝛼 ∈ {0.6, 0.7, 0.8, 0.9} all lead to both 

higher seed node precisions and higher inactive edge precisions than 𝛼 = 1. This 

confirms the effectiveness of incorporating fuzzy labels in the CNL model for both 

cross-network seed selection and graph sparsification. In addition, as shown in 

Figure 2.8(d), the performance of CNL w.r.t. seed node prediction is not sensitive 

to the value of 𝛼, when 𝛼 ∈ {0.6, 0.7, 0.8}. While for inactive edge prediction, as 

shown in Figure 2.9(d), 𝛼 ∈ {0.6, 0.7} can achieve much higher precisions than 

𝛼 = 0.8. This could be explained by the fact that we utilize a larger number of 

target network instances (i.e. larger value of c) to train the inactive edge prediction 

model, as compared to that for seed node prediction. Such larger number of target 

network instances might be more likely to include the predictions which are not 

confident enough. Thus, for inactive edge prediction, we would assign lower 

confident level (smaller value of 𝛼) to those most confident target network 

predictions generated by the last self-training iteration. 
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2.6 Summary 

Although the IM problem has been extensively studied, very little work addresses 

this problem in a cross-network scenario. In this work, we propose an innovative 

cross-network learning approach to study two issues of the cross-network IM 

problem, i.e., cross-network seed selection and cross-network graph sparsification. 

On one hand, we consider cross-network seed selection for IM as a cross-network 

node prediction task, with the goal of selecting the nodes most likely to act as seed 

for IM in the target network. On the other hand, we view cross-network graph 

sparsification as a cross-network edge prediction task, aiming to remove the edges 

least likely to contribute to influence propagation for IM in the target network. To 

achieve such goals, a CNL model is proposed to leverage the knowledge 

pre-learned from a smaller source network to help predict seed nodes and inactive 

edges for multiple larger target networks. To address domain discrepancy, lower 

weights would be assigned to the features which perform less similarly between 

the source network and the target network. In addition, a fuzzy self-training 

approach is employed to iteratively retrain the prediction model based on not only 

the fully labeled data in the source network, but also the most confident predicted 

labeled data in the target network with their predicted fuzzy labels. With the help 

of fuzzy labels, we can differentiate the levels of prediction confidence at different 

self-training iterations so as to reduce the negative effects of the less confident 

target network predictions on iterative retraining. Experiments on the real-world 

datasets demonstrate that the proposed CNL model can achieve a good trade-off 

between the efficiency and effectiveness of the IM task in the target networks. On 

one hand, by leveraging the cross-network seed selection knowledge, CNL can 

achieve a satisfactory influence spread comparable to the greedy algorithm in the 

target network while greatly saving the required running time. On the other hand, 
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by leveraging the cross-network influence propagation knowledge for graph 

sparsification, CNL just causes a little loss of influence spread in the sparse target 

networks, while significantly speeding up the IM greedy algorithms. A limitation 

of the CNL model is that it requires the greedy algorithm and the influence 

propagation model to be the same in the source network and the target network. 

Otherwise, the topological features and node/edge labels might be incomparable 

across networks and might cause negative transfer. 

Some preliminary results for cross-network graph sparsification in IM without 

the provision of fuzzy labels has been published in [9]. In addition, employing the 

CNL model empowered by fuzzy labeling for both cross-network seed selection 

and graph sparsification in IM are currently under review in [8]. In the future, we 

plan to leverage the knowledge pre-learned from multiple source networks instead 

of a single source network, to make predictions over seed nodes and inactive edges 

for the target networks. In addition, we can apply the proposed fuzzy self-training 

approach to address other domain adaptation tasks, i.e., not just limited to the IM 

application. 
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Chapter 3 

Asymmetry-Aware Deep Network 

Embedding 

3.  

3.1 Introduction 

Networks are ubiquitous in many real-world applications, such as social networks, 

co-author networks, biological networks, word co-occurrence networks, and 

communication networks. Mining the information behind complex networks is 

important for a variety of graph analytics tasks, such as node classification, 

network clustering, link prediction, node recommendation, and network 

visualization. To address such graph mining tasks successfully, a set of 

informative and discriminative feature vector representations should be predefined 

for nodes or links. Network embedding aims to learn a low-dimensional feature 

vector representation for each node in a given network such that the original 

network structures can be well preserved by the embedding vectors. Then, one can 

simply apply the vector-based machine learning techniques on the 

low-dimensional latent vector representations to solve diverse graph mining 

applications efficiently and effectively.  

Network transitivity should be asymmetric in both directed and undirected 

networks. For example, as shown in Figure 3.1, given two nodes 𝑣𝑖 and 𝑣𝑗 , due 

to different local neighborhood structures, the transition probability from 𝑣𝑖 to 𝑣𝑗  

can be rather different from that towards 𝑣𝑖  from 𝑣𝑗 , in both directed and 

undirected networks. In addition, considering the asymmetric proximities is 

important for various graph mining tasks. For example, in node classification, the 
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node pairs with bi-directional strong connections would be more likely to share the 

same labels as compared to those with unidirectional strong connection. Also, for 

link prediction in signed networks, the positive links would more tend to be 

bi-directional than the negative links [51]. However, most existing network 

embedding algorithms fail to capture such asymmetric relationships. The only few 

asymmetric network embedding algorithms, namely HOPE [30] and APP [26], 

employ the matrix factorization and random walk approaches, respectively, while 

taking advantage of deep network embedding to capture asymmetric proximities 

has not yet been studied. In the state-of-the-art deep network embedding models 

[34], [11], [10], [4], when learning the latent vector representation of a specific 

node, say 𝑣𝑖, the corresponding input raw vector would only consider 𝑣𝑖 as a 

source role, thus, only the network transitivity outward from 𝑣𝑖 towards all the 

other nodes would be captured, while the network transitivity inward towards 𝑣𝑖 

from all the other nodes have been ignored.  

The outward and inward network transitivity capture different neighborhood 

structure of a specific node. If one network embedding model can well capture 

both the associated outward and inward transitivity in each node’s input raw 

vector space, then the learned embedding node vector representation should be 

more comprehensive to preserve the original neighborhood structure. To this end, 

we propose an asymmetry-aware deep network embedding (AsDNE) model with 

 

Figure 3.1: Illustration of asymmetric network transitivity in both directed and undirected 

networks. In a directed network (a), the 1-step transition probability from 𝑣𝑖 to 𝑣𝑗 is 0, while the 

1-step transition probability towards 𝑣𝑖 from 𝑣𝑗 is 1. In an undirected network (b), the 1-step 

transition probability from 𝑣𝑖 to 𝑣𝑗 is 0.33, while the 1-step transition probability towards 𝑣𝑖 

from 𝑣𝑗 is 1. 

    

    

（b）Undirected

    

    

（a）Directed
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outward and inward proximity preservation. Unlike existing deep network 

embedding models which employ one single stacked auto-encoder (SAE) as the 

main building block, the proposed AsDNE model consists of two SAEs, i.e., 

SAE-Out and SAE-In. For each node, SAE-Out and SAE-In will learn an outward 

and an inward vector representations, respectively, by considering the node as a 

source role and a target role within its K-step network connections. Then, by 

concatenating the outward and inward vector representations of each node, the 

final node vector representation can well preserve the asymmetric network 

proximities. In addition, we incorporate pairwise constraints into SAE-Out and 

SAE-In to embed node pairs that are more strongly connected in the original 

network closer to each other in the embedding space. To better capture the 

asymmetric proximities, we impose stronger constraint on the node pairs with 

bi-directionally strong connections, as compared to those with only 

unidirectionally strong connection. Thus, the node pairs which can easily reach 

each other bi-directionally would have more similar latent vector representations. 

The network representation learning ability of AsDNE was evaluated on two graph 

mining tasks, i.e., multi-label node classification and link sign prediction. The 

distinctive features of AsDNE can be summarized as follows: 

1) Two semi-supervised SAEs are employed to learn non-linear network 

representations with asymmetric proximities preservation; 

2) The designed pairwise constraints can distinguish bi-directionally strong 

connections from unidirectionally strong connections so as to better capture 

asymmetric relationships; 

3) Extensive experiments in the real-world undirected and directed, unweighted 

and weighted networks demonstrates that AsDNE can learn task-independent 

network representations outperforming the state-of-the-art network embedding 

algorithms. 
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The rest of this chapter is organized as follows. Section 3.2 reviews the 

state-of-the-art network embedding algorithms. Section 3.3 introduces the detailed 

framework of AsDNE. Section 3.4 reports the experimental results of AsDNE on 

public real-world datasets. Section 3.5 summaries this work. 

3.2 Related Work 

In this section, we review the state-of-the-art network embedding algorithms, 

which are categorized as random walk based, matrix factorization based, and deep 

learning based.  

3.2.1 Random Walk based Network Embedding Algorithms 

The random walk based network embedding algorithms were inspired by word 

embedding in NLP. DeepWalk [24] is a pioneer work in this family of algorithms 

which utilizes a Depth-first Sampling (DFS) approach to generate a collection of 

truncated random walks in the given network. Then, by viewing a network as a 

document, a node as a word, and the sampled random walks as short sentences, the 

Skip-Gram language model [41] was extended to learn the low-dimensional node 

vector representations. Tang et al. [43] proposed a LINE algorithm to generate the 

first-order and second-order neighborhood via a Breath-first Sampling (BFS) 

strategy. Then, an objective function was carefully designed to learn the node 

vector representations which can preserve the first-order and second-order 

proximities between nodes in the network. Instead of defining rigid notions of 

neighborhoods like DeepWalk [24] and LINE [43], Grover and Leskovec [23] 

introduced a biased random walk sampling strategy interpolating between DFS 

and BFS to generate the flexible neighborhood. Then, a node2vec algorithm which 

employs Skip-Gram language model [41] and negative sampling [94] was 

developed to learn the low-dimensional node vector representations, with the goal 
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of maximizing the likelihood of neighborhood preservation.  

3.2.2 Matrix Factorization based Network Embedding 

Algorithms 

A family of low rank embedding algorithms has been proposed to linearly project 

the representation space of the original network into a low rank space. For 

example, Wang et al. [6] proposed a Modularized Nonnegative Matrix 

Factorization (M-NMF) model to preserve both microscopic structure and 

mesoscopic community structure in the network. To learn the low-dimensional 

node representations, the NMF technique was adopted to factorize the adjacency 

matrix of the given network. Cao et al. [29] proposed a GraRep algorithm to 

factorize each k-step positive pointwise mutual information (PPMI) matrix via 

SVD and then concatenate multiple k-step low-rank representations as the final 

representation. The matrix factorization based network embedding models can be 

seen as performing linear dimensionality reduction, thus, they might fail to capture 

the highly non-linear properties of the complex network structures.  

3.2.3 Deep Learning based Network Embedding Algorithms 

Due to the recent success of deep learning in representation learning [95], [96], 

several deep network embedding algorithms have been proposed. For example, 

Tian et al. [4] utilized a sparse SAE to learn deep network representations for 

network clustering. Instead of utilizing an unsupervised SAE, Yang et al. [5] 

employed a semi-supervised SAE to reconstruct the modularity matrix of a given 

network so as to learn the deep network representations for community detection. 

A pairwise constraint was incorporated into the SAE to make the nodes belonging 

to the same community have similar embedding vector representations. In SDNE, 

Wang et al. [10] proposed a semi-supervised SAE to reconstruct the adjacency 
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matrix and map the directly connected node pairs closer to each other in the 

embedding space. SDNE only captures the first-order and second-order 

proximities between nodes in a network. To capture high-order proximities, Cao et 

al. [34] developed a DNGR model which utilizes an unsupervised de-noising SAE 

to reconstruct the PPMI matrix. Furthermore, to take advantage of the 

semi-supervised approach and preserving high-order proximities, we proposed a 

DNE-APP model [11] which employs a semi-supervised SAE to learn deep 

network representations by reconstructing the aggregated K-th order proximity 

matrix and mapping node pairs with higher aggregated proximities closer to each 

other in the embedding space. Besides, some deep network embedding models 

have been proposed to employ convolutional neural networks to learn deep 

network representations [35], [36], [97].  

Network transitivity and proximity should be asymmetric in both directed and 

undirected networks. However, most existing network embedding algorithms fail 

to capture such asymmetric properties. Only few studies focus on asymmetric 

network embedding. Ou et al. [30] proposed a HOPE algorithm to factorize the 

high-order Katz proximity matrix via SVD. Then, a source and a target vector 

representations would be learned for each node so as to capture the asymmetric 

network transitivity. Zhou et al. [26] designed an APP model based on random 

walk sampling and Skip-Gram language model. By considering each node as a 

source role and a target role in the sampled paths, a source and a target vector 

representations would be learned for each node to capture the asymmetric network 

proximities. However, taking advantage of deep network embedding to preserve 

the asymmetric network proximities has not been exploited. To fill this gap, 

instead of utilizing one SAE as existing deep network embedding models [10], 

[34], [11], [4], [5], we employed two SAEs in the proposed AsDNE model to 

simultaneously capture the asymmetric outward and inward network proximities. 
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In addition, the pairwise constraints incorporated in DNE-APP [11] and SDNE [10] 

do not specifically consider the asymmetric proximities between connected nodes. 

To better capture the asymmetric pairwise proximities, we devised the 

asymmetry-aware pairwise constraints to judiciously make the bi-directionally 

strongly connected node pairs possess more similar latent vector representations 

than the unidirectionally strongly connected node pairs. 

3.3 AsDNE Model 

In this section, we elaborate the framework of the AsDNE model. Firstly, we 

define the asymmetric outward and inward proximity matrices, then, we explain 

how to employ two SAEs to preserve the asymmetric proximities, how to design 

the asymmetry-aware pairwise constraints, and how to optimize the AsDNE model. 

Table 3.1 summaries the frequently used notations and the corresponding 

descriptions in this chapter. 

Table 3.1: Frequently used notations and descriptions in Chapter 3. 

Notations Descriptions 

𝒜,𝒜𝑇  Aggregated outward and inward transition probability matrices 

𝑂, 𝐼  Outward and inward proximity matrices 

l Number of layers in SAE-Out and SAE-In 

d(k) Dimensionality of the k-th hidden layer of SAE-Out and SAE-In 

𝑊1
𝑂(𝑘)

,𝑊2
𝑂(𝑘)

  Encoding and decoding weight matrices of k-th layer of SAE-Out 

𝐵1
𝑂(𝑘)

, 𝐵2
𝑂(𝑘)

  Encoding and decoding bias matrices of k-th layer of SAE-Out 

𝑊1
𝐼(𝑘)

,𝑊2
𝐼(𝑘)

  Encoding and decoding weight matrices of k-th layer of SAE-In 

𝐵1
𝐼(𝑘)

, 𝐵2
𝐼(𝑘)

  Encoding and decoding bias matrices of k-th layer of SAE-In 

𝐻𝑂(𝑘) Outward matrix representation learned by k-th layer of SAE-Out 

𝐻𝐼(𝑘) Inward matrix representation learned by k-th layer of SAE-In 

𝑟 
Ratio of pairwise constraint weight on bi-directionally strongly connected 

node pairs over that of unidirectionally strongly connected node pairs 

3.3.1 Asymmetric Outward and Inward Proximities 

Given a network 𝐺 = (𝑉, 𝐸) with a set of nodes 𝑉 = {𝑣𝑖}𝑖=1
𝑛  and a set of edges 
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𝐸 = {𝑒𝑖𝑗}, the adjacency matrix 𝑆 is defined as: 𝑆𝑖𝑗 > 0 if 𝑣𝑖  can reach 𝑣𝑗  

after exactly one-step; otherwise, 𝑆𝑖𝑗 = 0. Based on 𝑆, the one-step transition 

probability matrix is computed as 𝐴1 = 𝐷−1𝑆 , where 𝐷  denotes the degree 

matrix of network 𝐺. Then, any k-step (𝑘 ≥ 2) transition probability matrix can 

be computed as 𝐴𝑘 = 𝐴𝑘−1𝐴1, where 𝐴𝑖𝑗
𝑘  represents the transition probability 

from the source node 𝑣𝑖 to the target node 𝑣𝑗  after exactly k-steps. Alternatively, 

in very large-scale networks, we can approximate the k-step transition probability 

matrix based on the random walk sampling approach [25] or the random surfing 

strategy [34]. After generating a series of k-step transition probability matrices up 

to the maximum K-step, we can aggregate an overall transition probability matrix 

by assigning higher weights to closer neighbors as: 𝒜 = ∑ 𝐴𝑘 𝑘⁄𝐾
𝑘=1 , where 

𝒜𝑖𝑗 > 0  if 𝑣𝑖  can reach 𝑣𝑗  within 𝐾  steps; otherwise, 𝒜𝑖𝑗 = 0 . Due to 

different local neighborhood structures, the overall transition probability matrix 

𝒜 is asymmetric in both directed and undirected networks. In this work, we refer 

to 𝒜  and 𝒜𝑇  as the outward and inward transition probability matrix, 

respectively, where the i-th row of 𝒜 and 𝒜𝑇 capture the outward transition 

probabilities from 𝑣𝑖 towards all the nodes, and the inward transition probabilities 

towards 𝑣𝑖 from all the nodes, in network 𝐺. 

The PPMI metric [98] has been typically employed by the state-of-the-art 

network embedding algorithms [29], [11], [34] to measure node proximities based 

on the outward transition probability matrix. However, the outward and inward 

network transitivity play a rather different role in capturing the local neighborhood 

structure of a specific node. Thus, in this work, we employ PPMI in both outward 

and inward transition probability matrices to measure the asymmetric proximities 

between node pairs. Specifically, if 𝑣𝑖 can reach 𝑣𝑗  within K steps, i.e., 𝒜𝑖𝑗 > 0, 

the outward proximity from 𝑣𝑖 to 𝑣𝑗  is measured as: 
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 𝑂𝑖𝑗 = 𝑚𝑎𝑥 (𝑙𝑜𝑔
𝑂𝑃(𝑣𝑖,𝑣𝑗)

∑ 𝑂𝑃(𝑣𝑘,𝑣𝑗)𝑂𝑃(𝑣𝑘)
𝑛
𝑘=1

, 0)  (3.1) 

where 𝑂𝑃(𝑣𝑖 , 𝑣𝑗) = 𝒜𝑖𝑗 ∑ 𝒜𝑖𝑘
𝑛
𝑘=1⁄  indicates the normalized outward transition 

probability from 𝑣𝑖 to 𝑣𝑗  within K steps; 𝑂𝑃(𝑣𝑘) denotes the probability of a 

path randomly starting at 𝑣𝑘 , by assuming a uniform distribution, we set 

𝑂𝑃(𝑣𝑘) = 1 𝑛⁄ , where 𝑛 is the number of nodes in network G. In addition, if 

there is no connection from 𝑣𝑖 to 𝑣𝑗  within K steps, i.e., 𝒜𝑖𝑗 = 0, then we set 

𝑂𝑖𝑗 = 0. To reduce noises, PPMI [98] replaces all the negative PMI [99] values by 

0. Thus, even though 𝒜𝑖𝑗 is positive but not large enough, i.e., 𝑣𝑖 has a very 

weak outward connection towards 𝑣𝑗 , then 𝑂𝑖𝑗 will still be 0. Therefore, 𝑂𝑖𝑗 > 0 

iff there exists a strong outward connection from 𝑣𝑖 to 𝑣𝑗  within K steps. 

Similarly, given an inward connection towards 𝑣𝑖 from 𝑣𝑗  within K steps, i.e., 

(𝒜𝑇)𝑖𝑗 > 0, the inward proximity towards 𝑣𝑖 from 𝑣𝑗  is computed as: 

 𝐼𝑖𝑗 = 𝑚𝑎𝑥 (𝑙𝑜𝑔
𝐼𝑃(𝑣𝑖,𝑣𝑗)

∑ 𝐼𝑃(𝑣𝑘,𝑣𝑗)𝐼
𝑛
𝑘=1 𝑃(𝑣𝑘)

, 0)  (3.2) 

where  𝐼𝑃(𝑣𝑖, 𝑣𝑗) = (𝒜𝑇)𝑖𝑗 ∑ (𝒜𝑇)𝑖𝑘
𝑛
𝑘=1⁄  represents the normalized inward 

transition probability towards 𝑣𝑖 from 𝑣𝑗; 𝐼𝑃(𝑣𝑘) = 1/𝑛 denotes the probability 

of a path randomly ending at 𝑣𝑘; and if (𝒜𝑇)𝑖𝑗 = 0, we set 𝐼𝑖𝑗 = 0. Note that 

𝐼𝑖𝑗 > 0 iff the inward connection towards 𝑣𝑖 from 𝑣𝑗  is strong enough.  

In this work, we use 𝑂 and 𝐼 to denote the outward and inward proximity 

matrices, respectively. The i-th row of 𝑂  and 𝐼  represent the proximities 

associated with 𝑣𝑖, by viewing 𝑣𝑖 as a source role and a target role within its 

associated K-step network connections, respectively. 

3.3.2 SAE-Out and SAE-In 

Next, we employ two SAEs, i.e., SAE-Out and SAE-In, to learn the 

low-dimensional node vector representations with asymmetric proximities 
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preservation. Firstly, given the outward proximity matrix 𝑂  as the input to 

SAE-Out (i.e. 𝐻𝑂(0) = 𝑂 ), the hidden representations can be learned 

layer-by-layer as: 

 𝐻𝑂(𝑘) = 𝑓 (𝐻𝑂(𝑘−1)(𝑊1
𝑂(𝑘)

)
𝑇

+ 𝐵1
𝑂(𝑘)

) ,   𝑘 = 1,… , 𝑙  (3.3) 

where 𝑓 is a non-linear encoding function; l indicates the number of layers of 

SAE-Out; 𝑊1
𝑂(𝑘)

∈ 𝑅𝑑(𝑘)×𝑑(𝑘−1)  and 𝐵1
𝑂(𝑘)

∈ 𝑅𝑛×𝑑(𝑘)  denote the encoding 

weight and bias matrices at the k-th layer of SAE-Out, and 𝑑(𝑘) indicates the 

dimensionality of the k-th hidden layer of SAE-Out. The i-th row of the input 

matrix, i.e., 𝑂(𝑖) ∈ 𝑅1×𝑛, captures the outward proximities from 𝑣𝑖 towards all 

the nodes in a network. 𝐻𝑂(𝑘) ∈ 𝑅𝑛×𝑑(𝑘)  represents the hidden matrix 

representation learned by the k-th layer of SAE-Out. The i-th row of 𝐻𝑂(𝑘) , 

denoted as 𝐻𝑂(𝑘)(𝑖) ∈ 𝑅1×𝑑(𝑘), represents the latent vector representation of 𝑣𝑖 

learned by the k-th layer of SAE-Out, which captures the outward proximities 

associated with 𝑣𝑖.  

Then, at the decoding step, giving �̂�𝑂(𝑙) = 𝐻𝑂(𝑙) , the input matrix can be 

reconstructed in a reverse order as below: 

 �̂�𝑂(𝑘−1) = 𝑓 (�̂�𝑂(𝑘)(𝑊2
𝑂(𝑘)

)
𝑇

+ 𝐵2
𝑂(𝑘)

) ,   𝑘 = 𝑙, … ,1  (3.4) 

where 𝑓 is a non-linear decoding function; 𝑊2
𝑂(𝑘)

∈ 𝑅𝑑(𝑘−1)×𝑑(𝑘) and 𝐵2
𝑂(𝑘)

∈

𝑅𝑛×𝑑(𝑘−1) refer to the decoding weight and bias matrices associated with the k-th 

layer of SAE-Out; and �̂�𝑂(0) = �̂� is the reconstructed input matrix learned by 

SAE-Out. In this work, we employed the sigmoid function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥) 

as both the encoding and decoding function.  

In general, the number of strongly connected node pairs are smaller than that 

of weakly connected and disconnected node pairs, thus yielding a sparse outward 

proximity matrix 𝑂. To address the sparsity issue, we modify the reconstruction  



 

58 
 

errors of SAE-Out by incorporating a penalty matrix 𝑃𝑂(1) ∈ 𝑅𝑛×𝑛, as in [10]: 

 𝒥1
𝑂(1)

=
1

2𝑛
‖𝑃𝑂(1) ⊙ (�̂� − 𝑂)‖𝐹

2   (3.5) 

where ⊙ denotes an element-wise Hadamard product; 𝑃𝑖𝑗
𝑂(1)

= 𝛽, if 𝑂𝑖𝑗 > 0 

and 𝑃𝑖𝑗
𝑂(1)

= 1 , if 𝑂𝑖𝑗 = 0 . 𝛽 > 1  denotes the ratio of penalty on the 

reconstruction errors of the positive outward proximities over that of the zero 

outward proximities. Incorporating 𝛽  makes SAE-Out focus more on 

reconstructing the strong outward connections than the weak or unobserved 

outward connections. Similarly, we define the reconstruction errors for any k-th 

(1 ≤ 𝑘 ≤ 𝑙) layer of SAE-Out as:  

 𝒥1
𝑂(𝑘)

=
1

2𝑛
‖𝑃𝑂(𝑘) ⊙ (�̂�𝑂(𝑘−1) − 𝐻𝑂(𝑘−1))‖𝐹

2   (3.6) 

where 𝑃𝑂(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1), 𝑃𝑖𝑗
𝑂(𝑘)

= 𝛽 , if 𝐻𝑂(𝑘−1) > 0  and 𝑃𝑖𝑗
𝑂(𝑘)

= 1 , if 

𝐻𝑂(𝑘−1) = 0. Even though when 𝑘 ≥ 2, the input matrix 𝐻𝑂(𝑘−1) has become 

dense, we still keep 𝑃𝑂(𝑘)  in 𝒥1
𝑂(𝑘)

 by regarding 𝛽2  as the weight of the 

reconstruction errors in the overall loss function introduced latter.  

On the other hand, giving the inward proximity matrix 𝐼 as the input to 

SAE-In, i.e., 𝐻𝐼(0) = 𝐼, the reconstruction errors at any k-th layer of SAE-In are 

similarly defined as: 

 𝒥1
𝐼(𝑘)

=
1

2𝑛
‖𝑃𝐼(𝑘)⊙ (�̂�𝐼(𝑘−1) − 𝐻𝐼(𝑘−1))‖𝐹

2   (3.7) 

where 𝑃𝐼(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1), 𝑃𝑖𝑗
𝐼(𝑘) = 1, if 𝐻𝑖𝑗

𝐼(𝑘−1)
= 0  and 𝑃𝑖𝑗

𝐼 = 𝛽 > 1 , if 

𝐻𝑖𝑗
𝐼(𝑘−1)

> 0. In addition, the i-th row of 𝐻𝐼(𝑘−1), i.e.,  𝐻𝐼(𝑘−1)(𝑖) ∈ 𝑅1×𝑑(𝑘−1) 

learned by the (k-1)-th layer of SAE-In, represents the hidden vector 

representation of 𝑣𝑖 capturing its associated inward proximities. 
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3.3.3 Asymmetry-Aware Pairwise Constraints 

Next, we incorporate pairwise constraints into SAE-Out and SAE-In to map node 

pairs with higher proximities closer to each other in the low-dimensional 

embedding space. Given two node pairs, (𝑣𝑖, 𝑣𝑗) and (𝑣𝑖, 𝑣𝑘), assume that 𝑂𝑖𝑗 +

𝑂𝑗𝑖 = 𝑂𝑖𝑘 + 𝑂𝑘𝑖. In addition, both 𝑣𝑖 and 𝑣𝑗  can easily reach each other within K 

steps, while only 𝑣𝑖 can easily reach 𝑣𝑘 but 𝑣𝑘 fails to easily reach 𝑣𝑖 within K 

steps. Then, according to the pairwise constraints designed in [10], [11], 𝑣𝑖 would 

be mapped closely to 𝑣𝑗  and 𝑣𝑘  to the same extent. However, 𝑣𝑖  should be 

considered as more similar to 𝑣𝑗  than 𝑣𝑘 , due to the bi-directionally strong 

connections between 𝑣𝑖 and 𝑣𝑗 . To capture such asymmetric relationships, we 

devise the following pairwise constraint for SAE_Out: 

 𝒥2
𝑂(𝑘)

=
1

2𝑛
∑ 𝑅𝑖𝑗

𝑂(𝑂𝑖𝑗 + 𝑂𝑗𝑖)
𝑛
𝑖,𝑗=1 ‖𝐻𝑂(𝑘)(𝑖) − 𝐻𝑂(𝑘)(𝑗)‖2

2  (3.8) 

where 𝑅𝑖𝑗
𝑂 = 𝑟 iff 𝑂𝑖𝑗 > 0 and 𝑂𝑗𝑖 > 0; otherwise, 𝑅𝑖𝑗

𝑂 = 1. 𝑟 > 1 denotes the 

ratio of the weight of the pairwise constraint on the bi-directionally strongly 

connected node pairs over that of the unidirectionally strongly connected node pairs. 

Minimizing 𝒥2
𝑂(𝑘)

 yields an embedding space where the node pairs having 

bi-directionally positive proximities are much closer, w.r.t. the node pairs having 

unidirectionally positive proximity. Equation (3.8) can be written as 𝒥2
𝑂(𝑘)

=

𝑇𝑟((𝐻𝑂(𝑘))𝑇𝐿𝑂𝐻𝑂(𝑘)) 𝑛⁄ , where 𝑇𝑟(. ) denotes the trace of a matrix; 𝐿𝑂 refers to 

the Laplacian matrix of 𝑈𝑂 = 𝑅𝑂 ⊙ (𝑂 + 𝑂𝑇), i.e., 𝐿𝑂 = 𝐷𝑈𝑂 − 𝑈𝑂 and 𝐷𝑈𝑂 is 

a diagonal matrix with the diagonal entries as the row summation of 𝑈𝑂, i.e., 

(𝐷𝑈𝑂)
𝑖𝑖
= ∑ 𝑈𝑖𝑗

𝑂𝑛
𝑗=1 . Similarly, for SAE-In, the pairwise constraint is devised as: 

 𝒥2
𝐼(𝑘)

=
1

2𝑛
∑ 𝑅𝑖𝑗

𝐼 (𝐼𝑖𝑗 + 𝐼𝑗𝑖)
𝑛
𝑖,𝑗=1 ‖𝐻𝐼(𝑘)(𝑖) − 𝐻𝐼(𝑘)(𝑗)‖2

2  (3.9) 

where 𝑅𝑖𝑗
𝐼 = 𝑟 > 1 iff 𝐼𝑖𝑗 > 0 and 𝐼𝑗𝑖 > 0; otherwise, 𝑅𝑖𝑗

𝐼 = 1. 
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Then, by combining the reconstruction errors 𝒥1
𝑂(𝑘)

 and the pairwise 

constraint 𝒥2
𝑂(𝑘)

, the overall loss function of SAE-Out is defined as follows:  

 𝒥𝑂 = ∑ 𝒥𝑂(𝑘) = ∑ 𝒥1
𝑂(𝑘)

+ 𝛼𝑘𝒥2
𝑂(𝑘)

+ 𝜆𝑘𝒥3
𝑂(𝑘)𝑙

𝑘=1
𝑙
𝑘=1   (3.10) 

where  𝒥3
𝑂(𝑘)

= ‖𝑊1
𝑂(𝑘)‖𝐹

2 + ‖𝑊2
𝑂(𝑘)‖𝐹

2  refers to a L-2 norm regularization to 

prevent over-fitting; 𝛼𝑘 , 𝜆𝑘 > 0 are the weights of 𝒥2
𝑂(𝑘)

 and 𝒥3
𝑂(𝑘)

 at the k-th 

layer of SAE-Out. Similarly, the overall loss function of SAE-In is defined as: 

 𝒥𝐼 = ∑ 𝒥𝐼(𝑘) = ∑ 𝒥1
𝐼(𝑘)

+ 𝛼𝑘𝒥2
𝐼(𝑘)

+ 𝜆𝑘𝒥3
𝐼(𝑘)𝑙

𝑘=1
𝑙
𝑘=1   (3.11) 

where 𝒥3
𝐼(𝑘)

= ‖𝑊1
𝐼(𝑘)‖𝐹

2 + ‖𝑊2
𝐼(𝑘)‖𝐹

2 . 

3.3.4 Optimization of AsDNE 

To optimize AsDNE, we can optimize SAE-Out and SAE-In in parallel. Firstly, to 

optimize each k-th layer of SAE-Out, one can employ back-propagation algorithm 

to compute the “error” terms of its output layer 𝛿3
𝑂(𝑘)

 and hidden layer 𝛿2
𝑂(𝑘)

 as 

follows: 

𝛿3
𝑂(𝑘)

= (�̂�𝑂(𝑘−1) − 𝐻𝑂(𝑘−1)) ⊙ 𝑃𝑂(𝑘) ⊙𝑃𝑂(𝑘) ⊙𝑓′(𝑍3
𝑂(𝑘)

)   (3.12) 

𝛿2
𝑂(𝑘) = (𝛿3

𝑂(𝑘)
𝑊2

𝑂(𝑘)
+ 𝛼𝑘(𝐿

𝑂 + (𝐿𝑂)𝑇)𝐻𝑂(𝑘))⊙ 𝑓′(𝑍2
𝑂(𝑘)

)     (3.13) 

where 𝑍3
𝑂(𝑘)

= 𝐻𝑂(𝑘)(𝑊2
𝑂(𝑘)

)
𝑇

+ 𝐵2
𝑂(𝑘)

 ,  𝑍2
𝑂(𝑘)

= 𝐻𝑂(𝑘−1)(𝑊1
𝑂(𝑘)

)
𝑇

+ 𝐵1
𝑂(𝑘)

 

and 𝑓′ denotes the derivative of the activation function. Based on 𝛿3
𝑂(𝑘)

 and 

𝛿2
𝑂(𝑘)

, we can compute the partial derivatives of the overall loss function of the 

k-th layer of SAE-Out w.r.t. the encoding weight 𝑊1
𝑂(𝑘)

, decoding weight 𝑊2
𝑂(𝑘)

, 

encoding bias 𝐵1
𝑂(𝑘)

, and decoding bias 𝐵2
𝑂(𝑘)

 as follows: 

 
𝜕𝒥𝑂(𝑘)

𝜕𝑊1
𝑂(𝑘) =

1

𝑛
(𝛿2

𝑂(𝑘))
𝑇

𝐻𝑂(𝑘−1) + 𝜆𝑘𝑊1
𝑂(𝑘)

  (3.14) 
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𝜕𝒥𝑂(𝑘)

𝜕𝑊2
𝑂(𝑘) =

1

𝑛
(𝛿3

𝑂(𝑘)
)
𝑇

𝐻𝑂(𝑘) + 𝜆𝑘𝑊2
𝑂(𝑘)

  (3.15) 

 
𝜕𝒥𝑂(𝑘)

𝜕𝐵1
(𝑘) = 𝛿2

𝑂(𝑘) 𝑛⁄   (3.16) 

 
𝜕𝒥𝑂(𝑘)

𝜕𝐵2
𝑂(𝑘) = 𝛿3

𝑂(𝑘)
𝑛⁄   (3.17) 

To minimize the loss function 𝒥𝑂(𝑘), one can use stochastic gradient descent 

(SGD) to iteratively update the parameters as follows: 

 𝑊1
𝑂(𝑘)

= 𝑊1
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝑊1
𝑂(𝑘)  (3.18) 

 𝑊2
𝑂(𝑘)

= 𝑊2
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝑊2
𝑂(𝑘)  (3.19) 

 𝐵1
𝑂(𝑘)

= 𝐵1
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝐵1
𝑂(𝑘)  (3.20) 

 𝐵2
𝑂(𝑘)

= 𝐵2
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝐵2
𝑂(𝑘)  (3.21) 

where 𝜂𝑘 indicates the learning rate of the k-th layer of SAE-Out. Next, we 

greedily layer-wise optimize SAE-Out until reaching the deepest (i.e. l-th) layer 

and learn the deepest hidden matrix representation with outward proximity 

preservation, i.e., 𝐻𝑂(𝑙) . Similarly, with greedily layer-wise optimization of 

SAE-In, we can learn the deepest hidden matrix representation with inward 

proximity preservation, i.e., 𝐻𝐼(𝑙). Finally, we concatenate 𝐻𝑂(𝑙) and 𝐻𝐼(𝑙) to 

get the final matrix representation 𝐻(𝑙). Note that the i-th row of 𝐻(𝑙), i.e., 

𝐻(𝑙)(𝑖) ∈ 𝑅1×𝑑, 𝑑 = 2 × 𝑑(𝑙), corresponds to the feature vector representation of 

𝑣𝑖 , where the first half (i.e. 𝐻𝑂(𝑙)(𝑖) ∈ 𝑅1×𝑑/2) captures the outward network 

transitivity from 𝑣𝑖 while the latter half (i.e. 𝐻𝐼(𝑙)(𝑖) ∈ 𝑅1×𝑑/2) preserves the 

inward transitivity towards 𝑣𝑖.  

The time complexity of AsDNE is O(nchi), where 𝑛 denotes the number of 

nodes in a network, 𝑐 indicates the average number of strongly connected 

neighbors (within K steps) per node, ℎ = 𝑑(1) represents the maximum hidden 

dimensionality in SAE-Out and SAE-In, and i refers to the number of training 
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iterations. Since chi is independent of 𝑛, the overall time complexity of AsDNE is 

linear to the number of nodes. 

3.4 Experiments 

3.4.1 Datasets 

We evaluate the proposed AsDNE model in several real-world datasets, including 

Algorithm 3.1: AsDNE 

Input: Outward and inward proximity matrices within K steps, i.e., 𝑂  and 𝐼 ; 

Parameters 𝑙, 𝛽, 𝛼, 𝑟, 𝜆. 

1. Greedy layer-wised training for SAE-Out: 

Set 𝐻𝑂(0) = 𝑂 

For k=1: l 

1.1 Leverage 𝐻O(𝑘−1) as input to k-th layer of SAE-Out; 

1.2 Given 𝐻O(𝑘−1) and 𝑂, optimize k-th layer of SAE-Out by finding 𝜃𝑂(𝑘)∗ =

{𝑊1
𝑂(𝑘)∗

,𝑊2
𝑂(𝑘)∗

, 𝐵1
𝑂(𝑘)∗

, 𝐵2
𝑂(𝑘)∗

} = 𝑎𝑟𝑔min
𝜃𝑂(𝑘)

𝒥𝑂(𝑘) via SGD;  

1.3 Leverage 𝜃𝑂(𝑘)∗ to learn 𝐻𝑂(𝑘); 

End for 

2. Greedy layer-wised training for SAE-In: 

Set 𝐻𝐼(0) = 𝐼 

For k=1: l 

2.1 Leverage 𝐻𝐼(𝑘−1) as input to k-th layer of SAE-In; 

2.2 Given 𝐻𝐼(𝑘−1) and 𝐼, optimize k-th layer of SAE-In by finding 𝜃𝐼(𝑘)∗ =

{𝑊1
𝐼(𝑘)∗,𝑊2

𝐼(𝑘)∗, 𝐵1
𝐼(𝑘)∗, 𝐵2

𝐼(𝑘)∗
} = 𝑎𝑟𝑔min

𝜃𝐼(𝑘)
𝒥𝐼(𝑘) via SGD;  

2.3 Leverage 𝜃𝐼(𝑘)∗ to learn 𝐻𝐼(𝑘); 

End for 

Output: Concatenate 𝐻𝑂(𝑙) and 𝐻𝐼(𝑙) to get 𝐻(𝑙). 
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weighted and unweighted, directed and undirected networks. The statistics of the 

datasets are shown in Table 3.2. Blogcatalog [100] is an online social network, 

where each user can be associated with multiple interested groups. Cora [101] is a 

paper citation network, where one paper can be labeled with multiple topics. Since 

a citation reflects that the two associated papers tend to have similar topic, we 

modeled citation as undirected relationship in the experiments. IMDb [102] is a 

weighted movie co-stars network, where each movie can be associated with 

multiple genres, and the weight of each edge represents the number of common 

stars between two movies. We evaluated multi-label node classification on the 

Blogcatalog, Cora and IMDb datasets.  

In addition, Wiki [103], Slashdot [104] and Epinions [105] are directed signed 

networks, where each directed edge is associated with a signed label, either 

positive or negative. 78.43%, 76.18% and 89.55% of edges are positive in the 

Wiki, Slashdot and Epinions datasets, respectively. We employed these three 

datasets for link sign prediction.  

Table 3.2: Statistics of the datasets. 

Dataset # Nodes # Edges # Labels 

Blogcatalog 10312 333983 39 

Cora 11471 33416 10 

IMDb 19359 362079 21 

Wiki 7118 103675 

2 Slashdot 7000 238029 

Epinions 7000 451149 

3.4.2 Baselines 

AsDNE was benchmarked against the following state-of-the-art network 

embedding algorithms, including random walks based, matrix factorization based, 

and deep learning based. 

1) DeepWalk [24]: It generates a collection of random walks via DFS, and then 
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employs Skip-Gram language model [41] to learn node vector representations.  

2) LINE [43]: It utilizes a BFS strategy to generate the first-order and 

second-order neighborhood and preserve the first-order and second-order 

proximities. 

3) GraRep [29]: It uses SVD to factorize each k-step PPMI matrix and then 

concatenates all the k-step representations as the final representation. 

4) SDNE [10]: It employs a semi-supervised SAE to reconstruct the adjacency 

matrix and map the directly connected node pairs closer to each other. It 

preserves the first-order and second-order proximities. 

5) DNGR [34]: It adopts an unsupervised denoising SAE to reconstruct the PPMI 

matrix. It can preserve high-order proximities. 

6) DNE-APP [11]: It employs a semi-supervised SAE to reconstruct the 

aggregated k-th order PPMI matrix and map nodes pairs with higher 

aggregated proximities closer to each other.  

7) APP [26]: It is a random walk based embedding algorithm based on Skip-gram 

language model. Unlike DeepWalk, it can preserve asymmetric proximities by 

learning a source and a target vector representations for each node.  

8) HOPE [30]: It employs SVD to factorize the high-order Katz proximity matrix 

and learns a source and a target vector representations for each node so as to 

capture the asymmetric network transitivity. 

3.4.3 Implementation Details 

In the proposed AsDNE model, both SAE-Out and SAE-In were constructed as a 

2-layer SAE, where the number of dimensions at the first hidden layer and the 

second hidden layer were set as 𝑑(1) = 256 and 𝑑(2) = 128, respectively. By 

concatenating the deepest hidden representations of SAE-Out and SAE-In, the 

number of dimensions of our final node vector representation was 𝑑 = 2 × 𝑑(2) =
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256. For all datasets, we set the ratio of the weight of pairwise constraint on the 

bi-directionally strong connections over that of the unidirectionally strong 

connections as r=4; and set the weight of pairwise constraint for different layers of 

SAE-Out and SAE-In as 𝛼1 = 𝛼 = 0.5 and 𝛼𝑘 = 𝛼/2, ∀ 𝑘 ≥ 2. In addition, we 

set the weight of regularization for different layers of SAE-Out and SAE-In as 

𝜆1 = 0.05, 𝜆𝑘 = 0.01, ∀ 𝑘 ≥ 2. Also, we set the ratio of reconstruction penalty on 

the strong connections over that of weak or unobserved connections as 𝛽 =5 on 

the IMDb, Slashdot and Epinions datasets and 𝛽 =6 on the other datasets. In 

addition, we set the maximum step K=6 for node classification in all datasets, while 

set K as 1, 1 and 2 for link sign prediction in the Wiki, Slashdot and Epinions 

datasets, respectively.  

For fair comparisons, we fixed the same dimensionality of node vector 

representations, i.e., d=256 for all the baselines. We also built a 2-layer SAE for all 

the deep network embedding baselines (i.e. SDNE, DNGR and DNE-APP), where 

the number of hidden dimensions at each layer of SAE was equal to that of the 

concatenated hidden representations in our AsDNE model. The maximum K-step in 

GraRep, DNGR and DNE-APP were set with the same values as in our AsDNE 

model. For GraRep, the dimension of each k-step representation was set as 

𝑟𝑜𝑢𝑛𝑑(𝑑/𝐾), i.e., 𝑑/𝐾 is rounded to the nearest integer. For APP and HOPE, the 

dimensionality of the source and the target vector representation was set as d/2, as 

in AsDNE. For DeepWalk, the number of walks started from each node was set as 

40, and the walk length was set as 80. Note that DeepWalk only works in 

undirected and unweighted networks, while node2vec is flexible to work in 

weighted and directed networks. In addition, when setting the parameters as p=1, 

q=1 in node2vec, DeepWalk can be a special case of node2vec [23]. Thus, in the 

directed or weighted networks, we report the results of DeepWalk by running 

node2vec with the specific parameter setting. 
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3.4.4 Multi-label Node Classification 

For multi-label node classification, we randomly split all the nodes as a training set 

and a testing set, where the training fraction ranges from 10% to 90%. Then, we 

train a one-vs-rest LR classifier based on the labeled nodes in the training set and 

then leverage the classifier to predict multiple labels for each testing node. We 

repeated the random split 10 times for each network embedding algorithm and 

report their average Macro-F1 and Micro-F1 scores [106] over the same 10 random 

splits. The Macro-F1 metric computes F1 score by giving equal weight to each 

class while the Micro-F1 metric gives equal weight to each sample. 

Firstly, as shown in Figures. 3.2(a) and 3.2(b), AsDNE can achieve the highest 

Micro-F1 and Macro-F1 scores among all the comparing algorithms, no matter 

what percentage of labeled nodes were used for training in the Blogcatalog and 

Cora networks. In addition, as shown in Figure 3.2(c), although DNE-APP 

achieved higher Micro-F1 scores than AsDNE when using less than 40% of labeled 

nodes for training in the IMDb network, AsDNE can achieve significantly higher 

Macro-F1 scores than DNE-APP under all training percentages. It is worth noting 

that both DNGR and DNE-APP adopt a single SAE to reconstruct the outward 

proximity matrix. While in the AsDNE model, two SAEs are employed to 

reconstruct the asymmetric outward and inward proximity matrices. The better 

overall performance of AsDNE over DNGR and DNE-APP demonstrates that even 

in undirected networks, considering both outward and inward proximities would 

yield more informative node feature representations.  

In addition, we can see that DNE-APP, DNGR, and DeepWalk achieved much 

higher Micro-F1 and Macro-F1 scores than SDNE and LINE. Note that DNE-APP, 

DNGR and DeepWalk can capture high-order proximities between different nodes 

in the network, while SDNE and LINE are only able to capture the first-order and 
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second-order proximities. Thus, it demonstrates that capturing high-order 

proximities is rather important and necessary for learning the informative feature 

vector representations for node classification.  

 

Figure 3.2: Micro-F1 and Macro-F1 scores of multi-label node classification on Blogcatalog, Cora 

and IMDB networks. GraRep failed to work in the largest IMDb dataset in the experiments, due to 

its high complexity. 
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3.4.5 Link Sign Prediction 

For link sign prediction, we firstly utilize the unsigned version of the signed 

networks to learn the low-dimensional node vector representations. Then, given an 

edge 𝑒𝑖𝑗, its vector representation is constructed as 𝐻(𝑒𝑖𝑗) = 𝐻(𝑖) ⊙ 𝐻(𝑗), where 

𝐻(𝑖) and 𝐻(𝑗) denote the deepest latent vector representations of node 𝑣𝑖 and 

𝑣𝑗 , respectively. Next, we randomly sample a fraction of labeled edges to train a LR 

classifier and employ the classifier to predict the signed labels of remaining edges. 

Since the real-world signed networks are rather imbalanced, i.e., containing 

overwhelmingly positive links, directly evaluating the accuracy on such datasets 

will be misleading. Thus, we followed [107], [108], [109] to adopt the Area Under 

ROC Curve (AUC) metric to evaluate the link sign prediction performance, which 

is insensitive to the imbalanced data. The higher the AUC score, the better the 

performance. For all the network embedding algorithms, we report the average 

AUC scores over the same 5 random splits. 

Firstly, as shown in Tables 3.3, 3.4, and 3.5, the proposed AsDNE model always 

significantly outperforms all the baselines, i.e., achieves the highest AUC score in 

all the three networks. For example, when using 20% of labeled edges for training 

in the sparest Wiki dataset (as shown in Table 3.3), AsDNE can achieve a 6.4% 

higher AUC score than the best baseline, i.e., DNE-APP. 

Secondly, we can see that in all the three networks, both DNE-APP and SDNE 

achieved much higher AUC scores than DNGR. Note that both DNE-APP and 

SDNE employ a semi-supervised SAE for network embedding, while DNGR 

adopts an unsupervised SAE. Thus, the better performance of DNE-APP and 

SDNE over DNGR demonstrates the effectiveness of the semi-supervised 

approach for learning network representations for link sign prediction. The same 

findings were also observed in our previous work [11].  
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Thirdly, DeepWalk can preserve high-order proximities, while LINE only 

Table 3.3: The AUC Scores of link sign prediction on the Wiki dataset. 

Algorithms 
% of labeled edges for training 

20 40 60 80 

AsDNE 0.7485 0.7535 0.7542 0.7529 

DNE-APP 0.7036 0.7097 0.7108 0.7133 

SDNE 0.7029 0.7084 0.7090 0.7105 

DNGR 0.6773 0.6830 0.6851 0.6878 

GraRep 0.5971 0.6065 0.6101 0.6120 

LINE 0.6561 0.6634 0.6658 0.6690 

DeepWalk 0.6222 0.6302 0.6305 0.6289 

APP 0.6467 0.6555 0.6581 0.6610 

HOPE 0.6043 0.6100 0.6137 0.6119 

Table 3.4: The AUC Scores of link sign prediction on the Slashdot dataset. 

Algorithms 
% of labeled edges for training 

20 40 60 80 

AsDNE 0.8261 0.8274 0.8282 0.8283 

DNE-APP 0.8079 0.8094 0.8104 0.8103 

SDNE 0.8033 0.8045 0.8052 0.8052 

DNGR 0.7376 0.7397 0.7405 0.7402 

GraRep 0.6102 0.6139 0.6161 0.6162 

LINE 0.7692 0.7714 0.7725 0.7726 

DeepWalk 0.6728 0.6758 0.6764 0.6761 

APP 0.7051 0.7075 0.7083 0.7082 

HOPE 0.6401 0.6448 0.6482 0.6506 

Table 3.5: The AUC Scores of link sign prediction on the Epinions dataset. 

Algorithms 
% of labeled edges for training 

20 40 60 80 

AsDNE 0.9121 0.9128 0.9129 0.9137 

DNE-APP 0.8884 0.8895 0.8894 0.8897 

SDNE 0.8843 0.8855 0.8856 0.8862 

DNGR 0.8553 0.8566 0.8567 0.8571 

GraRep 0.7809 0.7826 0.7830 0.7846 

LINE 0.8818 0.8827 0.8827 0.8837 

DeepWalk 0.7485 0.7503 0.7513 0.7524 

APP 0.7904 0.7923 0.7927 0.7932 

HOPE 0.7580 0.7605 0.7616 0.7623 
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preserves the first-order and second-order proximities. As shown in Figure 3.2, for 

node classification, DeepWalk performs much better (i.e. achieves much higher 

Macro-F1 and Micro-F1 scores) than LINE. However, as shown in Tables 3.3, 3.4,  

and 3.5, in all the three networks, LINE would achieve much higher AUC score 

than DeepWalk for link sign prediction. In addition, in the experiments, we found 

that when the maximum step K becomes larger than 2, the prediction performance 

will be all degraded for DNGR, GraRep, DNE-APP, and AsDNE. This is because 

the high-order proximities are measured based on the transitive assumption which 

suggests that “the friend of my friend is likely to be my friend” [110], [111].  

However, the negative links are not transitive in the signed networks, since both 

“the enemy of my enemy is my friend” and “the enemy of my enemy is my enemy” 

can be observed in the signed networks [112], [51]. Thus, the high-order 

proximities measured based on such a transitive assumption might be inaccurate in 

the signed networks and would lead to noises for negative link prediction. 

Conformably, we can see that SDNE which only captures the low-order proximity 

performs much better in link sign prediction, as compared to its performance in 

node classification. Thus, it reflects that preserving high-order proximities is rather 

important for learning network representations for node classification, while 

preserving low-order proximities yields better link sign prediction performance. 

Next, we discuss the performance of the asymmetric network embedding 

algorithms. Both APP and DeepWalk are random-walk based embedding 

algorithms, however, APP always achieved much higher AUC score than 

DeepWalk in all the three directed networks. In addition, both GraRep and HOPE 

are matrix factorization based embedding algorithms. While HOPE can achieve 

much higher AUC score than GraRep in the Wiki and Slashdot networks (as 

shown in Tables 3.3 and 3.4). Moreover, SDNE, DNGR, and our DNE-APP and 

AsDNE models are all deep network embedding models, while the AsDNE model 
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always performed significantly better than other deep network embedding 

baselines, in all the three networks. The better performance of the 

asymmetry-aware network embedding algorithms (i.e. APP, HOPE and AsDNE) 

w.r.t. their corresponding category of asymmetry-unaware benchmarks 

demonstrates that it is indeed necessary to capture the asymmetric proximities for 

learning network representations for link sign prediction in directed networks.  

3.4.6 Parameter Sensitivity 

In this subsection, we examine how different values of the parameters 

𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 would affect the performance of AsDNE. Figure 3.3 shows the 

parameter sensitivity of AsDNE w.r.t. multi-label node classification when 50% of 

labeled nodes were used for training on the Blogcatalog dataset. Figure 3.4 reports 

the sensitivity of AsDNE w.r.t. link sign prediction when 20% of labeled links 

were utilized for training on the Epinions dataset.  

Parameter 𝜷 denotes the ratio of penalty on the reconstruction errors of 

positive proximities (i.e. strong connections) over that of zero proximities (i.e. 

weak or unobserved connections). As shown in Figures. 3.3(a) and 3.4(a), 𝛽 > 1 

always leads to much higher Micro-F1 score for node classification and also much 

higher AUC score for link sign prediction than 𝛽 = 1. This demonstrates that 

imposing larger penalty to make the SAE-Out and SAE-In focus more on 

reconstructing the strong connections than the weak or unobserved connections is 

highly effective for learning informative feature representations for both node 

classification and link sign prediction.  

Parameter 𝜶 indicates the weight of pairwise constraint in the overall loss 

function. As shown in Figures 3.3(b) and 3.4(b), 𝛼 > 0 always yields better node 

classification and link sign prediction performance than 𝛼 = 0. This reflects that 

incorporating the pairwise constraints into SAE-Out and SAE-In can learn more 
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informative network representations, as compared to the unsupervised SAEs. In  

addition, in AsDNE, we incorporate the parameter 𝒓  to impose stronger 

constraints on the bi-directionally strongly connected node pairs so as to map them 

much closer than the unidirectionally strongly connected node pairs. As shown in 

Figures 3.3(c) and 3.4(c), 𝑟 > 1  leads to higher Micro-F1 score for node 

classification and higher AUC score for link sign prediction than 𝑟 = 1. This 

 

Figure 3.3: Sensitivity of the parameters  𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 on the Micro-F1 score of AsDNE for 

multi-label node classification, when 50% of labeled nodes were used for training on the 

Blogcatalog dataset. The higher the Micro-F1 score, the better the performance. 

 

Figure 3.4: Sensitivity of the parameters  𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 on the AUC score of AsDNE for link sign 

prediction, when 20% of labeled links were used for training on the Epinions dataset. The higher 

the AUC score, the better the performance. 

0.41

0.42

0.43

1 2 3 4 6 8

M
ic

r
o

-F
1

(d) Value of Maximum step: K

0.13

0.23

0.33

0.43

1 4 5 6 7

M
ic

r
o

-F
1

(a) Ratio of reconstruction penalty:β

0.37

0.39

0.41

0.43

0 0.25 0.5 1

M
ic

r
o

-F
1

(b) Weight of pairwise constraint: α

0.4

0.41

0.42

0.43

1 2 3 4 5 6

M
ic

r
o

-F
1

(c) Ratio of constraint strength: r

0.4

0.41

0.42

0.43

1 2 3 4
M

ic
r
o

-F
1

(e) # layer of SAE: l

0.4

0.41

0.42

0.43

64 128 256 512

M
ic

r
o

-F
1

(f) # dimension: d

0.76

0.8

0.84

0.88

0.92

1 4 5 6 7

A
U

C

(a) Ratio of reconstruction penalty:β

0.89

0.9

0.91

0.92

0 0.25 0.5 1

A
U

C

(b) Weight of pairwise constraint: α

0.9

0.91

0.92

1 2 3 4 5 6

A
U

C

(c) Ratio of constraint strength: r

0.9

0.91

0.92

1 2 3 4 6 8

A
U

C

(d) Value of Maximum step: K

0.9

0.91

0.92

1 2 3 4

A
U

C

(e) # layer of SAE: l

0.88

0.9

0.92

64 128 256 512

A
U

C

(f) # dimension: d



 

73 
 

demonstrates the effectiveness of our designed asymmetry-aware pairwise 

constraints for different prediction tasks in the directed (i.e. Epinions) and even 

undirected (i.e. Blogcatalog) networks. 

Parameter 𝑲 refers to the maximum step of neighbor which is considered as 

similar to a target node. As shown in Figure 3.3(d), a larger value of K would lead 

to better node classification result. This indicates that capturing high-order 

proximities is rather effective for learning the feature representations for node 

classification. However, as shown in Figure 3.4(d), conversely, for link sign 

prediction, the AUC score would decrease as K increases, especially when K is 

larger than 2. This finding is consistent with the experimental results we have 

discussed previously. The high-order proximities are recursively measured based 

on the transitive assumption [110], [111], however, in the signed networks, the 

positive links are transitive while the negative links are not [112], [51]. Thus, if a 

K-step connection between two nodes contains any negative links, then the K-step 

pairwise proximities measured based on the transitive assumption would be 

inaccurate. Then, predicting the link signed labels based on such inaccurate 

high-order proximities would degrade the performance. However, if one aims to 

predict the existence of links in the unsigned networks without negative links, 

preserving the high-order proximities might be useful. 

Parameter 𝒍 indicates the number of layers in SAE-Out and SAE-In. We 

constructed 4 SAEs for both SAE-Out and SAE-In, with the number of layer 

differently set as 1, 2, 3, and 4, and fixing their deepest hidden dimensionality 

equally as 128. As shown in Figures 3.3(e) and 3.4(e), as compared with a shallow 

architecture (i.e. 1-layer SAE), a 2-layer SAE yields better node classification and 

also better link sign prediction performance. However, a deeper architecture more 

than 3 layers would yield even worse node classification results. 

Parameter d is the dimensionality of the concatenated hidden vector 
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representations. As shown in Figure 3.3(f), for node classification, the Micro-F1 

score significantly increases when d is increased from 64 to 128. After that, the 

Micro-F1 score just slightly increases as d further increases. As shown in Figure 

3.4(f), for link sign prediction, the AUC score keeps increasing as d increases. 

3.5 Summary 

In this chapter, we propose a deep network embedding model, AsDNE with 

asymmetric proximities preservation. AsDNE consists of two semi-supervised 

SAEs, i.e., SAE-Out and SAE-In, which are employed to learn the 

low-dimensional outward and inward vector representations, by considering each 

node as a source role and a target role, respectively, within its K-step network 

connections. To better capture the asymmetric relationships, we devise pairwise 

constraint to map the bi-directionally strongly connected nodes much closer than 

the unidirectionally strongly connected nodes. Extensive experimental results 

demonstrate that capturing asymmetric proximities can significantly improve 

prediction over both nodes and links, in both undirected and directed networks. 

Moreover, we found that capturing high-order proximities leads to better node 

classification results, while introducing noises to degrade link sign prediction. As 

the proposed AsDNE model can capture any K-th order proximities, it is flexible 

to learn informative network representations for both node classification and link 

sign prediction.  

Some preliminary results of the proposed DNE-APP model were published in 

[11]. In addition, the comprehensive results of the proposed AsDNE model are 

currently under review in [42]. In the future, we can extend AsDNE for 

heterogenous network embedding, which not only considers the network structure 

but also utilizes the abundant content information associated with the nodes or 

edges for learning network representations.  
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Chapter 4 

Deep Network Embedding in 

Signed Networks 

4.  

4.1 Introduction 

The vast majority of existing network embedding algorithms are only designed for 

unsigned networks, without considering the polarities of edges in the signed 

networks. A signed network contains both positive and negative links, where 

positive links indicate proximity or similarity, while negative links reflect 

dissimilarity or distance [113]. Recent studies [51], [52] have shown that the 

signed networks have properties substantially distinct from the unsigned networks. 

For example, in unsigned networks, the homophily effect [111] and social 

influence [110] theories suggest that the connected users tend to have similar 

preferences. However, such theories are not applicable to the signed networks due 

to the existence of negative links. For instance, in a signed network like Epinions6, 

two negatively connected users reveal that they have rather opposite opinions 

instead of similar preferences. In addition, the transitivity property of unsigned 

networks which suggests that “the friend of my friend is likely to be my friend” is 

also not true for the negative links in the signed networks as both “the enemy of 

my enemy is my friend” and “the enemy of my enemy is my enemy” can be 

observed in the signed networks [112]. Due to the substantially distinct properties 

between signed networks and unsigned networks, existing network embedding 

algorithms designed for unsigned networks cannot be directly applied to the signed 

                                                             
6 http://www.epinions.com/ 
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networks. Thus, it is indeed necessary to design signed network embedding 

algorithms to capture the specific properties of the signed networks. “Structural 

balance” is one prevailing social property of the signed networks [114]. The 

balance theory states that “a network is balanced if and only if all the edges are 

positive; or all the nodes in the network can be grouped into two clusters where the 

edges within the same cluster are all positive while across different clusters are all 

negative” [115]. A weak balance theory [116] was proposed to generalize the 

original balance theory from two-way clustering to k-way clustering. Recently, 

Cygan et al. [117] further extended the structural balance theory as “the nodes 

connected with positive links should sit closer than those connected with negative 

links”.  

Existing signed network embedding algorithms mostly employ the spectral 

techniques [113], [44], [118], [119] to embed the representation space of the 

original network into a low-dimensional space spanned by the top-k eigenvectors 

of the characteristic matrix associated with the given network. It has been shown 

that such spectral methods based on matrix decomposition techniques are with 

limited representation learning ability to capture the highly nonlinear properties of 

the complex network structure [34]. In addition, the spectral methods based on 

Eigen Value Decomposition (EVD) are computationally highly expensive, i.e., 

even the fastest implementation of EVD requires a super-quadratic computational 

complexity [4]. On the other hand, deep learning techniques have demonstrated 

powerful ability to learn more complex and non-linear feature representations in 

CV [120], [121], speech recognition [122] and NLP [48]. Thus, most recently, 

several promising deep network embedding algorithms [4], [5], [10], [11], [34] 

have been proposed to learn deep graph representations for unsigned networks. 

However, very little deep network embedding work exists for the signed networks. 

In this work, we propose a deep network embedding with structural balance 
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preservation (DNE-SBP) model to learn deep graph representations for the signed 

networks. A stacked auto-encoder (SAE) is employed to learn the nonlinear hidden 

node vector representations, by reconstructing the adjacency matrix of a given 

signed network. As the real-world signed networks are generally overwhelmingly 

positive [112], we impose larger penalty on the reconstruction errors of negative 

links so as to make the SAE focus more on reconstructing the scarce negative links 

as compared to the abundant positive links. In addition, we design the pairwise 

constraints to map each positively connected node pair closer to each other (i.e. 

having similar hidden vector representations), and to map each negatively 

connected node pair more far apart from each other (i.e. having rather different 

hidden vector representations), in the low-dimensional embedding space. Thus, the 

important structural balance property of the signed networks can be well captured 

by the embedding vector representations. Then, we apply vector-based machine 

learning algorithms on the node vector representations learned by DNE-SBP to 

carry out two important signed network mining tasks, namely, link prediction and 

community detection. The contributions of this work can be summarized as 

follows: 

1) We propose a novel DNE-SBP model for signed network embedding, which 

leverages a semi-supervised SAE to learn the low-dimensional nonlinear graph 

representations;  

2) By reconstructing the signed adjacency matrix, the learned hidden 

representations can capture positive, negative and unobserved network 

connections in the original network; 

3) By designing the pairwise constraints to map the positively connected nodes 

nearer than the negatively connected nodes, the structural balance property of 

the signed networks can be well preserved by the embedding vector 

representations;  
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4) To deal with the highly imbalanced data in the real-world signed networks, we 

impose larger penalty and stronger pairwise constraint on negative links to 

make them have very distinctive embedding vector representations w.r.t. the 

positive links; 

5) Extensive experiments on real-world datasets demonstrate the superiority of 

the proposed DNE-SBP model over the state-of-the-art network embedding 

algorithms for graph representation learning in the signed networks.  

The rest of this chapter is organized as follows. Section 4.2 reviews the 

state-of-the-art signed network embedding algorithms. Section 4.3 introduces the 

detailed framework of DNE-SBP. Section 4.4 reports the experimental results of 

DNE-SBP for link sign prediction and community detection in three public 

real-world signed networks. Section 4.5 summaries this work. 

4.2 Related Work 

The state-of-the-art unsigned network embedding algorithms have been 

comprehensively reviewed in section 3.2. Here, we focus on reviewing the signed 

network embedding algorithms and the semi-supervised learning techniques. 

4.2.1 Network Embedding for Signed Networks 

Firstly, we review the spectral embedding algorithms designed for the signed 

networks. Kunegis et al. [113] introduced a signed Laplacian matrix by extending 

the conventional Laplacian matrix [123] designed for unsigned networks. Then, a 

signed network can be embedded into a d-dimensional space spanned by the top-d 

eigenvectors corresponding to the smallest eigenvalues of the signed Laplacian 

matrix. Chiang et al. [114] proposed a multi-level clustering framework based on 

the balanced normalized cut objective, which is proved to be mathematically 

equivalent to the weighed kernel k-means clustering objective. However, this 
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framework only outputs the partitions of a network rather than an embedded map. 

Zheng et al. [44] further proposed a spectral embedding algorithm for the signed 

networks, by defining the simple normalized signed (SNS) graph Laplacian matrix 

and the balanced normalized signed (BNS) graph Laplacian matrix. Then, the 

top-d eigenvectors corresponding to the smallest non-zero eigenvalues of the SNS 

and BNS Laplacian matrices, respectively, were employed to construct a 

d-dimensional embedding space. Hsieh et al. [119] proposed to utilize Singular 

Value Projection to complete the adjacency matrix of a given signed network. 

Then, the top-d eigenvectors of the completed adjacency matrix were employed as 

the low rank embeddings. However, a recent study [118] has shown that the 

eigenvector encoding of the cluster structure does not necessarily correspond to 

the smallest eigenvalues. Thus, the standard spectral clustering techniques based 

on the top-k eigenvectors associated with the smallest eigenvalues might fail to 

guarantee the recovery of the ground truth cluster structures. To address this issue, 

Mercado et al. [118] proposed to use the geometric mean of the Laplacian matrices, 

instead of the arithmetic mean used by the standard spectral clustering methods. 

However, measuring the geometric mean of the Laplacian matrix is 

computationally expensive, thus limiting this method to be scaled to the large 

sparse networks.  

Recently, Wang et al. [45] proposed a SiNE algorithm to utilize a deep learning 

framework to learn embedding representations for the signed networks, based on 

the extended structural balance theory [117]. Firstly, for each node 𝑣𝑖, a set of 

triplets {(𝑣𝑖, 𝑣𝑗 , 𝑣𝑘)|𝑒𝑖𝑗 = 1, 𝑒𝑖𝑘 = −1}  were randomly sampled from a given 

signed network, where 𝑣𝑗  and 𝑣𝑘  denote a positive neighbor and a negative 

neighbor of 𝑣𝑖, respectively. Then, based on the sampled triplets, the goal of SiNE 

is to make the similarity between the hidden vector representations of a node and 
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its positive neighbor larger than that between the node and its negative neighbor. 

Since SiNE learns the network representations based on the sampled triplets rather 

than the whole network connections, some information in the original network 

might be unavoidably missing. For example, for the nodes with a very large degree, 

sampling a limited number of triplets might fail to get enough information to learn 

informative feature representations. In addition, such sampled triplets only capture 

the observed connections, while ignoring all the unobserved connections. Thus, 

the network representations learned by SiNE would fail to easily distinguish the 

disconnected nodes from the connected ones. In contrast to SiNE, our proposed 

DNE-SBP model learns the network representation from the adjacency matrix, 

which captures not only the positive and negative connections, but also the 

unobserved connections. Thus, the network representations learned by DNE-SBP 

can not only distinguish the positively connected nodes from the negatively 

connected nodes, but also differentiate the connected nodes from the disconnected 

ones.  

4.2.2 Semi-Supervised Learning 

In the real-world applications, acquiring the fully labeled data is generally very 

expensive and time-consuming, while it is much easier to obtain the unlabeled data. 

Semi-supervised learning is an effective technique to leverage both the limited 

labeled data and the abundant unlabeled data to improve learning performance. 

The semi-supervised learning techniques can be grouped into two categories, i.e., 

semi-supervised classification [124], [125] and semi-supervised clustering [126], 

[127], [128]. On one hand, semi-supervised classification explores how to utilize a 

large amount of unlabeled samples as the extra training data to improve the 

classification performance, such as self-training and co-training [8], [9], [65]. On 

the other hand, semi-supervised clustering studies how to incorporate the prior 
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information, such as pairwise constraints, to boost the clustering performance. For 

example, Klein et al. [127] proposed a semi-supervised clustering algorithm by 

incorporating the must-link (ML) and cannot-link (CL) pairwise constraints into 

the clustering process. The ML pairwise constraint indicates that the two instances 

are similar and should belong to the same cluster. While the CL pairwise constraint 

reflects that the two instances are dissimilar and cannot be assigned to the same 

cluster. Yu et al. [128] proposed a transitive closure based constraint propagation 

approach, which fully utilizes the ML and CL pairwise constraints in an ensemble 

framework for semi-supervised clustering. He et al. [126] developed a 

semi-supervised clustering algorithm to propagate the ML and CL pairwise 

constraints through multi-level random walks. In addition, in the recently proposed 

deep network embedding models [10], [11], [42], [5], pairwise constraints have 

been incorporated into SAEs to capture the proximities between different nodes, 

which are similar to the ML constraints in semi-supervised clustering. However, 

none of them have utilized the CL pairwise constraints to capture the dissimilarity 

between the nodes. To well capture the structural balance property of the signed 

networks, in the proposed DNE-SBP model, the ML and CL pairwise constraints 

have been incorporated to target for the positively and negatively connected node 

pairs, respectively. 

4.3 Deep Network Embedding Model with Structural 

Balance Preservation 

In this section, we introduce how a SAE is employed to reconstruct the signed 

adjacency matrix, how the pairwise constraints are designed and how the 

DNE-SBP model can be optimized. Algorithm 4.1 represents the framework of the 

DNE-SBP model. For clarity, we summary the frequently used notations and the 

corresponding descriptions in Table 4.1. 
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Table 4.1: Frequently used notations and descriptions in Chapter 4. 

Notations Descriptions 

A Signed adjacency matrix of the network 

l Number of layers in SAE 

𝑑(𝑘) Dimensionality of k-th hidden layer of SAE 

𝑋(𝑘), �̂�(𝑘) Input and reconstructed matrices of k-th layer of SAE 

𝑊1
(𝑘)

, 

𝑊2
(𝑘)

 
Encoding and decoding weight matrices of k-th layer of SAE 

𝐵1
(𝑘)

, 𝐵2
(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE 

𝐻(𝑘) Hidden matrix representation learned by k-th layer of SAE 

𝛾 
Ratio of reconstruction penalty and pairwise constraint on negative links over that 

of positive links 

Given a signed network 𝐺 = (𝑉, 𝐸) with a set of nodes  𝑉 = {𝑣𝑖}𝑖=1
𝑛  and a 

set of edges 𝐸 = {𝑒𝑖𝑗} , the associated signed adjacency matrix  𝐴 ∈ 𝑅𝑛×𝑛  is 

defined as below: 

   𝐴𝑖𝑗 = {

= 1, 𝑖𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑣𝑖 , 𝑣𝑗) 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

= −1, 𝑖𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑣𝑖, 𝑣𝑗) 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

      = 0, 𝑖𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑣𝑖 , 𝑣𝑗)  𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛    

 

Then, the signed adjacency matrix A can be broken into a positive part 𝐴+ ∈

𝑅𝑛×𝑛  and a negative part 𝐴− ∈ 𝑅𝑛×𝑛  as: 𝐴𝑖𝑗
+ = 𝑚𝑎𝑥(𝐴𝑖𝑗 , 0) , 𝐴𝑖𝑗

− =

−𝑚𝑖𝑛(𝐴𝑖𝑗 , 0), where 𝐴𝑖𝑗
+ , 𝐴𝑖𝑗

−  ≥ 0 represent the absolute weight of positive link 

and negative link, respectively. 

4.3.1 Stacked Auto-Encoder 

Next, we employ a SAE to reconstruct the signed adjacency matrix A to learn the 

nonlinear hidden vector representations for all the nodes in the signed network G. 

A SAE consists of l layers of basic auto-encoder is constructed as follows: 

 𝐻(𝑘) = 𝑓 (𝑋(𝑘)(𝑊1
(𝑘)
)
𝑇

+ 𝐵1
(𝑘)
) ,   𝑘 = 1,… , 𝑙  (4.1) 

 �̂�(𝑘) = 𝑓 (�̂�(𝑘)(𝑊2
(𝑘)
)
𝑇

+ 𝐵2
(𝑘)
) ,   𝑘 = 𝑙, … ,1  (4.2) 
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where (1) and (2) represent the encoding and decoding process at the k-th layer of 

SAE, respectively. 𝐻(𝑘) ∈ 𝑅𝑛×𝑑(𝑘)  denotes the hidden matrix representation 

learned by the k-th layer of SAE, n is the number of nodes in network G, and 𝑑(𝑘) 

represents the dimensionality of the k-th hidden layer of SAE. Specifically, the i-th 

row of 𝐻(𝑘), i.e., 𝐻𝑖
(𝑘)

∈ 𝑅1×𝑑(𝑘) represents the hidden vector representation of 

node 𝑣𝑖, learned by the k-th layer of SAE. 𝑋(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1) denotes the input 

matrix of the k-th layer of SAE, 𝑋(1) = 𝐴  and 𝑋(𝑘) = 𝐻(𝑘−1), ∀ 𝑘 = 2,… , 𝑙 

indicating that the hidden matrix representation learned by the (k-1)-th layer of 

SAE are utilized as the input matrix to the k-th layer of SAE. 𝑊1
(𝑘)

∈

𝑅𝑑(𝑘)×𝑑(𝑘−1) and 𝐵1
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘) refer to the encoding weight and bias matrices 

associated with the k-th layer of SAE, respectively. In addition, �̂�(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1) 

and �̂�(𝑘) ∈ 𝑅𝑛×𝑑(𝑘)  indicate the reconstructed matrices of 𝑋(𝑘)  and 𝐻(𝑘) , 

respectively, where �̂�(𝑙) = 𝐻(𝑙) and  �̂�(𝑘) = �̂�(𝑘+1), ∀ 𝑘 = 𝑙 − 1,… ,1 .  𝑊2
(𝑘)

∈

𝑅𝑑(𝑘−1)×𝑑(𝑘)  and 𝐵2
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘−1)  denote the decoding weight and bias 

matrices associated with the k-th layer of SAE, respectively. 𝑓 is a non-linear 

activation function, in the proposed DNE-SBP model, the tanh function 𝑓(𝑥) =

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
  is employed as the activation function for each layer of SAE. 

Then, by minimizing the reconstruction errors ‖�̂� − 𝐴‖
𝐹

2
, we can learn the 

low-dimensional hidden vector representations which can best preserve the 

original network connections between different nodes. However, the connections 

in the real-world networks are generally rather sparse, yielding much more zero 

elements than non-zero elements in the adjacency matrix A. Then, directly 

reconstructing matrix A would make the SAE more tend to reconstruct the zero 

elements (i.e. unknown connections) than non-zero elements (i.e. observed 
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connections). However, reconstructing observed connections should be more 

meaningful than reconstructing unobserved ones. To address the sparsity issue, we 

follow the approach in [10] to add a larger penalty on the reconstruction errors of 

non-zero input elements. Moreover, unlike SDNE [10] which lacks the 

consideration about negative links, the proposed DNE-SBP model targets for the 

signed networks. A recent study has shown that forming negative links requires 

higher cost than forming positive links [112], which leads to the overwhelmingly 

positive links in the real-world signed networks. To handle such highly imbalanced 

data in the signed networks, we design the following penalty matrix 𝑃 ∈ 𝑅𝑛×𝑛 to 

make the SAE focus more on reconstructing the scarce negative links than the 

abundant positive links: 

𝑃𝑖𝑗 = {

   1,             𝐴𝑖𝑗 = 0

   𝛽,             𝐴𝑖𝑗 > 0

𝛾 ∗ 𝛽, 𝐴𝑖𝑗 < 0
 

where 𝛽 ≥ 1 denotes the ratio of penalty on the reconstruction errors of observed 

connections (i.e. non-zero input elements) over that of unobserved connections (i.e. 

zero input elements);  𝛾 ≥ 1 indicates the ratio of penalty on the reconstruction 

errors of negative links over that of positive links. By incorporating the penalty 

matrix 𝑃, we have the modified reconstruction error as:  

 𝒥1
(1)

=
1

2𝑛
‖(�̂� − 𝐴) ⊙ 𝑃‖

𝐹

2
  (4.3) 

4.3.2 Pairwise Constraints 

Next, we design a semi-supervised SAE by incorporating the ML and CL pairwise 

constraints to capture the extended structural balance property of the signed 

networks. For each k-th layer of SAE, the ML pairwise constraint 𝒥2
(𝑘)

 and the 

CL pairwise constraint 𝒥3
(𝑘)

 are devised as follows: 
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 𝒥2
(𝑘)

=
1

2𝑛
∑ ∑ 𝐴𝑖𝑗

+‖𝐻𝑖
(𝑘) − 𝐻𝑗

(𝑘)‖
2

2
𝑛
𝑗=1

𝑛
𝑖=1   (4.4) 

 𝒥3
(𝑘)

= −
1

2𝑛
∑ ∑ 𝐴𝑖𝑗

−‖𝐻𝑖
(𝑘) − 𝐻𝑗

(𝑘)‖
2

2
𝑛
𝑗=1

𝑛
𝑖=1   (4.5) 

where 𝐻𝑖
(𝑘), 𝐻𝑗

(𝑘) ∈ 𝑅1×𝑑(𝑘) indicate the hidden vector representation of node 𝑣𝑖 

and 𝑣𝑗 , respectively, learned by the k-th layer of SAE. On one hand, minimizing 

the ML pairwise constraint 𝒥2
(𝑘)

 which is equivalent to minimizing the positive 

ratio cut objective in signed network spectral clustering [114], we can push the 

positively connected nodes close to each other in the embedding space. On the 

other hand, via minimizing the CL pairwise constraint 𝒥3
(𝑘)

 which is equivalent to 

maximizing the negative ratio cut objective [114], we can pull the negatively 

connected nodes far away from each other in the embedding space. Moreover, to 

handle the highly imbalanced data (i.e. overwhelming positive links) in the signed 

networks, we also utilize the parameter 𝛾 to integrate 𝒥2
(𝑘)

 and 𝒥3
(𝑘)

, as follows: 

𝒥2
(𝑘) + 𝛾𝒥3

(𝑘) =
1

𝑛
(𝑇𝑟 ((𝐻(𝑘))

𝑇
𝐿+𝐻(𝑘)) − 𝛾 𝑇𝑟 ((𝐻(𝑘))

𝑇
𝐿−𝐻(𝑘))) 

 =
1

𝑛
𝑇𝑟 ((𝐻(𝑘))

𝑇
𝐿𝐻(𝑘))  (4.6) 

where 𝐿+ ∈ 𝑅𝑛×𝑛 is the Laplacian matrix of 𝐴+, i.e., 𝐿+ = 𝐷+ − 𝐴+ and 𝐷+ ∈

𝑅𝑛×𝑛 denotes the diagonal degree matrix of 𝐴+, with the diagonal entries 𝐷𝑖𝑖
+ =

∑ 𝐴𝑖𝑗
+𝑛

𝑗=1  representing the positive degree of node 𝑣𝑖. Similarly, 𝐿− = 𝐷− − 𝐴− 

is the Laplacian matrix of 𝐴−, and 𝐷− is the diagonal degree matrix of 𝐴−, 

where 𝐷𝑖𝑖
− = ∑ 𝐴𝑖𝑗

−𝑛
𝑗=1  denoting the negative degree of node 𝑣𝑖 . In addition, 

𝐿 = 𝐿+ − 𝛾𝐿−, where 𝛾 ≥ 1 indicates the ratio of weight of the CL pairwise 

constraint targeting for the negative links over that of the ML pairwise constraint 

targeting for the positive links. A larger value of 𝛾 would make DNE-SBP more 

tend to enlarge the distance between the negatively connected nodes, w.r.t. 
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narrowing the distance between the positively connected nodes. Note that when 

𝛾 = 1  minimizing (𝒥2
(𝑘)

+ 𝒥3
(𝑘)
)  is analogous to minimizing the Rayleigh 

quotient of SNS graph Laplacian in signed network spectral embedding [44]. This 

reflects that our designed pairwise constraints are indeed able to capture the 

extended structural balance property of the signed networks. In addition, in both 

the pairwise constraint (4.6) and the penalty-modified reconstruction errors (4.3), 

we set the same value to the parameter 𝛾 to make the DNE-SBP model easily 

distinguish the scarce negative links from the abundant positive links. 

Algorithm 4.1: DNE-SBP 

Input: Signed adjacency matrix 𝐴; Parameters 𝑙, 𝛽, 𝛼, 𝛾, 𝜆. 

Set 𝑋(1) = 𝐴 

For k=1: l 

1. Leverage 𝑋(𝑘) as input to k-th layer of SAE; 

2. Given 𝑋(𝑘)  and 𝐴 , optimize k-th layer of SAE by finding 𝜃(𝑘)∗ =

{𝑊1
(𝑘)∗,𝑊2

(𝑘)∗, 𝐵1
(𝑘)∗, 𝐵2

(𝑘)∗
} = 𝑎𝑟𝑔min

𝜃(𝑘)
𝒥(𝑘) via SGD;  

3. Leverage 𝜃(𝑘)∗ to learn 𝐻(𝑘); 

4. Set 𝑋(𝑘+1) = 𝐻(𝑘); 

End for 

Output: The deepest hidden matrix representation, 𝐻(𝑙). 

4.3.3 Overall Loss Function 

By integrating the reconstruction errors (4.3), the pairwise constraint (4.6), and a 

L2-norm regularization term 𝒥4
(𝑘)

=
1

2
(‖𝑊1

(𝑘)
‖
𝐹

2

+ ‖𝑊2
(𝑘)
‖
𝐹

2

), the overall loss 

function is defined as: 

 𝒥 = ∑ 𝒥(𝑘) = ∑ (𝒥1
(𝑘)

+ 𝛼𝑘 (𝒥2
(𝑘)

+ 𝛾𝑘𝒥3
(𝑘)
) + 𝜆𝑘𝒥4

(𝑘)
)𝑙

𝑘=1
𝑙
𝑘=1   (4.7) 
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where l represents the number of layers in the SAE; 𝒥(𝑘)  denotes the loss 

function of the k-th layer of SAE; 𝛼𝑘, 𝜆𝑘 > 0 refer to the weights of the pairwise 

constraint and the regularization term at the k-th layer of SAE, respectively. By 

minimizing the overall loss function (4.7), we can learn the hidden node vector 

representations which not only preserve the original network connections, but also 

capture the structural balance property of the signed networks.  

4.3.4 Optimization of DNE-SBP 

Here, we explain how to obtain the optimized parameters minimizing the overall 

loss function (4.7). Firstly, for each k-th layer basic auto-encoder in the SAE, with 

the help of back-propagation algorithm, the “error” terms of its output layer 

𝛿3
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘−1) and hidden layer 𝛿2
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘) can be computed, respectively, 

as follows: 

 𝛿3
(𝑘)

= {
(�̂� − 𝐴)⊙ 𝑃⊙ 𝑃⊙ 𝑓′(𝑍3

(𝑘)), 𝑘 = 1

(�̂�(𝑘)−𝑋(𝑘)) ⊙ 𝑓′(𝑍3
(𝑘)), 𝑘 ≥ 2

  (4.8) 

 𝛿2
(𝑘) = (𝛿3

(𝑘)
𝑊2

(𝑘)
+ 𝛼𝑘(𝐿 + 𝐿𝑇)𝐻(𝑘))⊙ 𝑓′(𝑍2

(𝑘)
)  (4.9) 

where 𝑍3
(𝑘)

= 𝐻(𝑘)(𝑊2
(𝑘)
)
𝑇

+ 𝑏2
(𝑘)

 ,  𝑍2
(𝑘)

= 𝑋(𝑘)(𝑊1
(𝑘)
)
𝑇

+ 𝑏1
(𝑘)

 and 𝑓′ 

denotes the derivative of the activation function. 

Next, the partial derivatives w.r.t. the encoding weight 𝑊1
(𝑘)

, decoding weight 

𝑊2
(𝑘)

, encoding bias 𝐵1
(𝑘)

, and decoding bias 𝐵2
(𝑘)

, can be computed, respectively, 

as follows: 

 
𝜕𝒥(𝑘)

𝜕𝑊1
(𝑘) =

1

𝑛
(𝛿2

(𝑘))
𝑇

𝑋(𝑘) + 𝜆𝑘𝑊1
(𝑘)

  (4.10) 

 
𝜕𝒥(𝑘)

𝜕𝑊2
(𝑘) =

1

𝑛
(𝛿3

(𝑘)
)
𝑇

𝐻(𝑘) + 𝜆𝑘𝑊2
(𝑘)

  (4.11) 

 
𝜕𝒥(𝑘)

𝜕𝐵1
(𝑘) = 𝛿2

(𝑘) 𝑛⁄   (4.12) 
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𝜕𝒥(𝑘)

𝜕𝐵2
(𝑘) = 𝛿3

(𝑘) 𝑛⁄   (4.13) 

To minimize the loss function 𝒥(𝑘), we use stochastic gradient descent (SGD) 

to update the parameters as: 𝑊1
(𝑘)

= 𝑊1
(𝑘)

− 𝜂𝑘
𝜕𝒥(𝑘)

𝜕𝑊1
(𝑘); 𝑊2

(𝑘)
= 𝑊2

(𝑘)
− 𝜂𝑘

𝜕𝒥(𝑘)

𝜕𝑊2
(𝑘); 

𝐵1
(𝑘)

= 𝐵1
(𝑘)

− 𝜂𝑘
𝜕𝒥(𝑘)

𝜕𝐵1
(𝑘) ; 𝐵2

(𝑘)
= 𝐵2

(𝑘)
− 𝜂𝑘

𝜕𝒥(𝑘)

𝜕𝐵2
(𝑘) , where 𝜂𝑘  denotes the learning 

rate of the k-th layer basic auto-encoder in the SAE. Next, to optimize a SAE 

consists of multiple layers of basic auto-encoder, we adopt a greedily layer-wised 

training approach, as in [34], [129].  

4.4 Experiments 

4.4.1 Datasets 

We evaluated the graph representation learning performance of the proposed 

DNE-SBP model for link sign prediction and community detection in three 

real-world signed networks, namely Epinions, Slashdot and Wiki. The Epinions 

dataset [105] is a “who trust whom” online social network generated from the 

Epinions site, where one user can “trust” (positive) or “distrust” (negative) another. 

The Slashdot dataset [104] is a signed social network extracted from the 

technology news site Slashdot, where users can form the relationships as friends 

(positive) or foes (negative). The Wiki dataset [103] is extracted from the 

Wikipedia site, which describes the votes “for” (positive) and “against” (negative) 

the other in elections. In the experiments, we used the full Wiki dataset, and 

extracting 7000 nodes with the largest degree and retaining all the edges between 

the selected nodes, from the original Epinions and Slashdot datasets. Table 4.2 

shows some statistics of the three datasets. Among the three networks, Wiki is the 

sparsest one, Slashdot is second sparsest, while Epinions is the densest. 
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Table 4.2: Statistics of the signed networked datasets. 

Datasets Epinions Slashdot Wiki 

# Users 7000 7000 7118 

# Links 451149 238029 103675 

# Positive links 404006 181354 81318 

# Negative links 47143 56675 22357 

Table 4.3: Layer configuration of the SAE in three datasets for link sign prediction and 

community detection. 

Datasets 
Dimensionality of each layer of SAE 

Link Sign Prediction Community Detection 

Wiki 7118-256-64 7118-512-256-128-64 

Slashdot 7000-256-64 7000-512-256-128-64 

Epinions 7000-256-64 7000-512-256-128-64 

4.4.2 Implementation Details 

For link sign prediction, we built a two-layer SAE in the DNE-SBP model. The 

layer configurations of the SAEs for the three datasets are shown in Table 4.3. For 

example, for Wiki dataset, the layer configuration “7118-256-64” indicates that 

the 1-st layer basic auto-encoder and the 2-nd layer basic auto-encoder in the SAE 

were configured with the dimensionality of each layer as 7118-256-7118 and 

256-64-256, respectively. In addition, the batch sizes of the 1-st layer and the 

deeper layers of SAE were set as 500 and 100, respectively, and the learning rates 

were set as 𝜂1 = 0.025 and 𝜂𝑘 = 0.015, ∀𝑘 ≥ 2. Also, we set the weight of 

L2-norm regularization as 𝜆1 = 0.05  and 𝜆𝑘 = 0.1, ∀𝑘 ≥ 2  in both Epinions 

and Slashdot datasets; while set 𝜆1 = 0.05 and 𝜆𝑘 = 0.25, ∀𝑘 ≥ 2 in the Wiki 

dataset. In addition, we set the weight of pairwise constraint at the 1-st layer and 

the deeper layers of SAE as: 𝛼1 = 16, 14, 10 and 𝛼𝑘 = 0.4, 0.2, 0.2, ∀𝑘 ≥ 2 for 

the Wiki, Slashdot and Epinions datasets, respectively. The ratio of penalty on the 

reconstructing errors of non-zero input elements over that of zero input elements 

were set as 𝛽= 25, 25 and 10 in the Wiki, Slashdot and Epinions datasets, 
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respectively. Besides, we set the ratio of penalty on the reconstructing errors of 

negative links over that of positive links, and the ratio of the weight of the CL 

constraint over that of the ML constraint as 𝛾1 = 𝑓𝑙𝑜𝑜𝑟 (
∑ ∑ 𝐴𝑖𝑗

+𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝐴𝑖𝑗
−𝑛

𝑗=1
𝑛
𝑖=1

), where 

𝑓𝑙𝑜𝑜𝑟(𝑥) rounds 𝑥 to the nearest integer less than or equal to 𝑥. While we set 

𝛾𝑘 = 1, ∀ 𝑘 ≥ 2, because after the first layer embedding, the larger penalty and 

stronger pairwise constraint for negative links have already been imposed to learn 

the hidden representations.  

On the other hand, for community detection, a four-layer SAE was built for the 

three datasets, respectively, as shown in Table 4.3. The parameter settings for 

community detection are similar to those introduced for link sign prediction. Here, 

we only report the differences. Firstly, in contrast to link sign prediction, we set a 

larger batch size of 1000 for each layer of SAE. Secondly, we assigned a larger 

weight to the pairwise constraint at the deeper layers of SAE, i.e., 𝛼𝑘 =

1.5, ∀ 𝑘 ≥ 2. This is because the structural balance theory [115], [116] was 

originally proposed for network clustering, thus it should be more important and 

necessary to preserve the structural balance property for the community detection 

task, by assigning larger weight to the pairwise constraint. In addition, for both 

link sign prediction and community detection, we employed the deepest hidden 

vector representations  learned by the last layer of SAE as the node vector 

representations, with the dimensionality of d=64. 

4.4.3 Analysis of Embedding Learned by DNE-SBP 

Here, we analyze whether the network representations learned by the proposed 

DNE-SBP model can preserve the extended structural balance property of the 

signed networks, i.e., whether the positively connected nodes are sitting closer 

than the negatively connected nodes in the embedding space. In this regard, we 

adopt three distance measures introduced in [44], namely average edge ratio 
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(AER), median edge ratio (MER) and average node ratio (ANR). AER is defined 

as the ratio of the average embedded distance between the positively connected 

nodes over that between the negatively connected nodes: 

(∑ ∑ 𝐴𝑖𝑗
+𝑛

𝑗=1
𝑛
𝑖=1 𝑑𝑖𝑗)/∑ ∑ 𝐴𝑖𝑗

+𝑛
𝑗=1

𝑛
𝑖=1

(∑ ∑ 𝐴𝑖𝑗
−𝑛

𝑗=1
𝑛
𝑖=1 𝑑𝑖𝑗)/∑ ∑ 𝐴𝑖𝑗

−𝑛
𝑗=1

𝑛
𝑖=1

, where 𝑑𝑖𝑗 indicates the Euclidean distance between 

the hidden vector representations of node 𝑣𝑖 and 𝑣𝑗 . MER is computed as the 

ratio of the median of the embedded distance between the positively connected 

nodes over that between the negatively connected nodes: 
𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑗|𝐴𝑖𝑗

+>0)

𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑗|𝐴𝑖𝑗
−>0)

. ANR is 

computed as the ratio of the average embedded length of positive links over that of 

negative links, from the perspective of nodes: 
∑ (∑ 𝐴𝑖𝑗

+𝑑𝑖𝑗
𝑛
𝑗=1 /𝐷𝑖𝑖

+)/𝑛𝑝
𝑛
𝑖=1

∑ (∑ 𝐴𝑖𝑗
−𝑑𝑖𝑗

𝑛
𝑗=1 /𝐷𝑖𝑖

−)/𝑛𝑛
𝑛
𝑖=1

, where 𝑛𝑝 

and 𝑛𝑛 indicate the number of nodes having at least one positive link and having 

at least one negative link, respectively. As shown in Figure 4.1, all the three ratios 

are smaller than 1 in the three datasets, indicating that the embeddings learned by 

DNE-SBP can actually preserve the extended structural balance property. 

Moreover, we can observe that the ratios measured in the embedding space learned 

by the 2nd layer of SAE were smaller than that learned by the 1st layer of SAE. 

This indicates that the hidden representations learned by the deeper layer of SAE 

can better satisfy the extended structural balance condition.  

 

Figure 4.1: The AER, MER and ANR ratios of the distances between the positively connected 

nodes over that between the negatively connected nodes in the embedding spaces learned by the 

1-st layer and the 2-nd layer of SAE in the DNE-SBP model. 
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Moreover, we further compare the distances between the node pairs with 

positive connections, negative connections, and unobserved connections in the 

low-dimensional embedding space learned by the proposed DNE-SBP model. As 

shown in Figure 4.2, the positively connected nodes would be mapped much 

closer than the negatively connected nodes. In addition, the disconnected nodes 

would be mapped closer than negatively connected nodes while more far apart 

than positively connected nodes.  

4.4.4 Baselines 

The following state-of-the-art network embedding algorithms were employed to 

benchmark against the proposed DNE-SBP model.  

1) SL [113]: It is a spectral clustering algorithm, with a signed Laplacian matrix 

defined as �̅� = �̅� − 𝐴, where �̅�𝑖𝑖 = ∑ |𝐴𝑖𝑗|
𝑛
𝑗=1  indicates the sum of positive 

and negative degree of node 𝑣𝑖. The top-d eigenvectors of �̅� are selected as 

the node vector representations.  

2) SNS [44]: It is a spectral embedding algorithm defining the SNS Laplacian 

matrix as 𝐿𝑆𝑁𝑆 = �̅�−1(𝐷+ − 𝐷− − 𝐴). The top-d eigenvectors of 𝐿𝑆𝑁𝑆  are 

selected as the node vector representations.  

 

Figure 4.2: The average distances between positively connected nodes, negatively connected nodes 

and disconnected nodes in the embedding space learned by the 2-nd layer of SAE in the DNE-SBP 

model. 
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3) BNS [44]: It is a spectral embedding algorithm with the BNS Laplacian matrix 

defined as 𝐿𝐵𝑁𝑆 = �̅�−1(𝐷+ − 𝐴) . The top-d eigenvectors of 𝐿𝐵𝑁𝑆  are 

selected as the node vector representations. 

4) SiNE [45]: It is a deep network embedding model designed to preserve the 

extended structural balance property of the signed networks. It randomly 

samples a set of triplets containing the positive and negative neighbors of each 

node in the given network. Then, it employs a deep learning framework to 

learn the node vector representations based on the sampled triplets.  

5) SDNE [10]: It is a deep network embedding model designed for unsigned 

networks. It employs a semi-supervised SAE to map the connected node pairs 

close to each other, without differentiating the positive and negative links. 

Since the structural balance theory is naturally defined for undirected networks 

[51], we evaluated all the comparing algorithms in undirected signed networks. To 

guarantee the best performance of SiNE, we used the default settings in [45], i.e., 

building a 3-layer neural network with the dimensionality of each layer and the 

node vector representations as d=20. For other baselines in link sign prediction, we 

used the same dimensionality of node vector representation as in our DNE-SBP 

model, i.e., d=64. In addition, note that the spectral embedding algorithms, i.e., SL, 

SNS and BNS, assume that the top-k eigenvectors encode the corresponding k-way 

clustering structure [113], [44]. Thus, for the community detection task, the 

dimensionality of the node vector representations learned by these spectral 

embedding algorithms were set as equal to the number of clusters in the given 

network, i.e. d=k. 

4.4.5 Experimental Results 

In this subsection, we report the experimental results of the network embedding 

algorithms for link sign prediction and community detection in three real-world 
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signed networks. 

4.4.5.1 Link Sign Prediction 

For a given signed network, we firstly randomly sampled a fraction 𝑓% of the 

observed (positive and negative) connections from its signed adjacency matrix. 

Then, we employed such sampled edges as the training set and the remaining   

(1 − 𝑓)% of edges as the testing set. Based on all the edges in the training set, 

one can construct a training signed adjacency matrix 𝐴, where 𝐴𝑖𝑗 = 1 if there is 

one positive edge between 𝑣𝑖  and 𝑣𝑗  in the training set; 𝐴𝑖𝑗 = −1  if one 

negative edge connecting 𝑣𝑖 and 𝑣𝑗  is in the training set; and 𝐴𝑖𝑗 = 0 if there is 

no edge between 𝑣𝑖 and 𝑣𝑗  in the training set. Next, giving the training signed 

adjacency matrix as the input, the network embedding algorithms can learn the 

low-dimensional node vector representations. Based on the node vector 

representations, four types of edge feature representations were built as follows: 

L1:  𝐻(𝑒𝑖𝑗) = |𝐻𝑖 − 𝐻𝑗| 

L2:  𝐻(𝑒𝑖𝑗) = |𝐻𝑖 − 𝐻𝑗|
2
 

Had:  𝐻(𝑒𝑖𝑗) = 𝐻𝑖 ⊙𝐻𝑗 

Avg:  𝐻(𝑒𝑖𝑗) = (𝐻𝑖 + 𝐻𝑗)/2 

where 𝐻(𝑒𝑖𝑗) indicates the feature vector of edge 𝑒𝑖𝑗; 𝐻𝑖 and 𝐻𝑗  denote the 

low-dimensional feature vector representation of node 𝑣𝑖 and 𝑣𝑗 , respectively. A 

LR classifier was trained based on the edge vector representations and the 

(positive and negative) edge labels in the training set. Next, the classifier was 

employed to predict the signed labels of edges in the testing set. As the signed 

network datasets are overwhelmingly positive, directly evaluating the accuracy on 

the highly imbalanced dataset will be misleading. Thus, following [107], [108], 
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[45], we adopt the AUC metric to evaluate the link sign prediction performance, 

which is insensitive to the imbalanced data. The higher the AUC score, the better 

the link sign prediction performance. In addition, we employ AP [130] as another 

metric. To better reflect the link sign prediction performance in such highly 

Table 4.4: AUC and AP of link sign prediction on the Wiki dataset. The highest AUC and AP 

scores among all the comparing methods are shown in Boldface. * and ** indicate statistically 

superior performance to SiNE (with its best suitable edge feature) at level of (0.05, 0.01) using 

a paired t-test. 

Algorithm 
Edge 

Feature 

AUC AP 

% of observed links for training % of observed links for training 

20 40 60 80 20 40 60 80 

DNE-SBP 

L1 0.7337 0.8184 0.8431 0.8517 0.4662 0.5987 0.6346 0.6389 

L2 0.7161 0.7991 0.8319 0.8431 0.4604 0.5805 0.6238 0.6321 

Had 0.7937 0.8459 
0.8626 

** 

0.8681 

* 
0.5210 

0.6268

* 

0.6595

** 

0.6642 

** 

Avg 0.8038 0.8454 0.8562 0.8591 0.5311 0.6057 0.6267 0.6305 

SiNE 

L1 0.6143 0.6700 0.6818 0.7021 0.3005 0.3390 0.3601 0.3671 

L2 0.6775 0.7092 0.7155 0.7001 0.3677 0.3952 0.3965 0.3682 

Had 0.7961 0.8215 0.8053 0.8093 0.5212 0.5396 0.5047 0.5233 

Avg 0.8080 0.8399 0.8537 0.8644 0.5492 0.5863 0.6130 0.6305 

SL 

L1 0.5726 0.5858 0.5900 0.6024 0.2771 0.2777 0.2795 0.2857 

L2 0.5118 0.5046 0.5026 0.5012 0.2319 0.2205 0.2177 0.2164 

Had 0.5000 0.5000 0.5000 0.5000 0.2156 0.2133 0.2142 0.2141 

Avg 0.5001 0.5003 0.5038 0.5040 0.2232 0.2172 0.2162 0.2157 

SNS 

L1 0.6747 0.6928 0.7011 0.6951 0.3500 0.3665 0.3768 0.3734 

L2 0.6497 0.6595 0.6571 0.6703 0.3367 0.3508 0.3558 0.3597 

Had 0.5106 0.5028 0.4998 0.5018 0.2663 0.2529 0.2487 0.2635 

Avg 0.5461 0.5252 0.5156 0.5141 0.2784 0.2741 0.2543 0.2513 

BNS 

L1 0.6541 0.6440 0.6505 0.6536 0.4073 0.3918 0.4044 0.4000 

L2 0.5149 0.5078 0.5042 0.5025 0.2491 0.2323 0.2252 0.2199 

Had 0.5000 0.5000 0.5000 0.5000 0.2146 0.2128 0.2137 0.2135 

Avg 0.5122 0.5108 0.5037 0.5051 0.2504 0.2442 0.2328 0.2227 

SDNE 

L1 0.6032 0.6232 0.6353 0.6374 0.3027 0.3475 0.3899 0.4072 

L2 0.6030 0.6223 0.6307 0.6380 0.3121 0.3594 0.3893 0.4090 

Had 0.6494 0.6746 0.6825 0.6804 0.3456 0.3935 0.4223 0.4332 

Avg 0.6507 0.6744 0.6940 0.6977 0.3365 0.3756 0.4228 0.4464 
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imbalanced datasets, we calculated the AP of the scarce class (i.e. negative links). 

The higher the AP, the better the link sign prediction performance. Table 4.4 

reports the AUC and AP scores of all the comparing algorithms with four types of 

edge representation in the Wiki dataset. Tables 4.5 and 4.6 report the highest AUC 

and AP scores each algorithm can achieve with its best suitable edge 

representation, in the Slashdot and Epinions datasets. The reported AUC and AP 

scores for each comparing algorithm were averaged over the same 5 random splits.  

As shown in Table 4.4, when the given network is rather sparse, e.g., just 

giving 20% of observed links in the sparest Wiki network, the SiNE algorithm 

with the Avg edge representation can achieve the highest AUC and AP scores 

among all the comparing algorithms. Except that, the proposed DNE-SBP model 

Table 4.5: AUC and AP of link sign prediction on the Slashdot dataset. 

Algorithm 

Best 

Edge 

Feature 

AUC AP 

% of observed links for training % of observed links for training 

20 40 60 80 20 40 60 80 

DNE-SBP Had 
0.8473 

** 

0.8855 

** 

0.8979

** 

0.9058

** 

0.6821 

** 

0.7571

** 

0.7808

** 

0.7957

** 

SiNE Avg 0.8192 0.8467 0.8572 0.8623 0.5986 0.6427 0.6645 0.6713 

SL Had 0.7824 0.8350 0.8500 0.8528 0.5117 0.6065 0.6432 0.6363 

SNS L1 0.7654 0.7726 0.7215 0.7712 0.5213 0.5484 0.5191 0.5745 

BNS L1 0.7761 0.8023 0.8167 0.8292 0.5250 0.5864 0.6278 0.6544 

SDNE Avg 0.6672 0.7213 0.7429 0.7503 0.3813 0.4339 0.4627 0.4726 

Table 4.6: AUC and AP of link sign prediction on the Epinions dataset. 

Algorithm 

Best 

Edge 

Feature 

AUC AP 

% of observed links for training % of observed links for training 

20 40 60 80 20 40 60 80 

DNE-SBP Had 
0.9137

** 

0.9288

** 

0.9336

** 

0.9373

** 

0.7280

** 

0.7686

** 

0.7846

** 

0.7925

** 

SiNE Avg 0.9009 0.9127 0.9135 0.9114 0.6201 0.6432 0.6481 0.6491 

SL Had 0.8811 0.8991 0.9076 0.9031 0.5911 0.6618 0.6932 0.6842 

SNS L1 0.8381 0.7092 0.6792 0.8074 0.5417 0.3524 0.3905 0.5221 

BNS L2 0.8494 0.8725 0.8817 0.8908 0.5170 0.5889 0.6311 0.6617 

SDNE Avg 0.7248 0.7515 0.7635 0.7620 0.2622 0.2917 0.3101 0.3033 
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with the Had edge representation always achieves the highest AUC and AP scores 

in the three signed networks, as shown in Tables 4.4, 4.5 and 4.6. This could be 

explained by the fact that SiNE learns the network representations based on the    

sampled triplets [45]. Then, if the given network is very dense (i.e. having a large 

number of possible triplets), a limited number of samples would unavoidably lose 

some information. Thus, SiNE would perform worse as the given network is 

denser. In contrast to SiNE, our DNE-SBP model learns the network  

representations based on the adjacency matrix of a given network. Thus, we can 

take advantage of the whole network connections to learn more informative 

network representations. In addition, we observe that both DNE-SBP and SiNE 

outperform the spectral embedding algorithms in the three signed networks. This 

demonstrates the higher effectiveness of deep learning techniques for graph 

representation learning, as compared to the linear matrix decomposition methods.  

Secondly, we discuss the performance of the spectral embedding algorithms, 

i.e., SL, SNS and BNS. We can see that in the densest Epinions dataset (shown in 

Table 4.6), SL with the Had edge representation can achieve the highest AUC 

scores among all the spectral embedding baselines. However, conversely, on the 

sparsest Wiki dataset (shown in Table 4.4), SL always achieved the lowest AUC 

and AP scores, no matter what percentage of observed links were used for training. 

This reflects that SL is rather unsuitable for the sparse networks, despite of the fact 

that it can perform much better in the dense networks. In addition, as shown in 

Table 4.4, SNS with the L1 edge representation can achieve the highest AUC 

scores among all the spectral embedding methods on the Wiki dataset. While BNS 

can achieve both higher AUC and AP scores than SNS on both Slashdot and 

Epinions datasets, as shown in Tables 4.5 and 4.6. This reflects that BNS performs 

better in the dense networks, while showing greater challenge when dealing with 

the sparse networks. 



 

98 
 

Next, let us continue to evaluate the performance of the unsigned network 

embedding algorithm, i.e., SDNE. As shown in Tables 4.5 and 4.6, SDNE always 

achieved much lower AUC and AP scores than all the signed network embedding 

algorithms on Slashdot and Epinions datasets. This is because that SDNE aims to 

map the connected node pairs closer to each other based on the social theories 

which suggest that the connected nodes tend to have similar preferences [111], 

[110]. However, such theories are not applicable for the signed networks where 

negative links indicate dissimilarity while positive links indicate similarity. Thus,  

directly applying the unsigned network embedding algorithm to the signed 

networks would fail to capture the important structural balance property [115], 

[116], [117] which requires the positively connected nodes to sit closer than the 

negatively connected ones.  

Moreover, we can observe that all the network embedding algorithms achieve 

the highest AUC scores on the Epinions dataset, while the lowest AUC scores on 

the Wiki dataset. These could be explained by the previous findings in [107], [131] 

that the structural balance condition is most satisfied in the Epinions network, 

while least satisfied in the Wiki network. Thus, it should be easier to predict the 

link signed labels based on the structural balance property for the Epinions dataset. 

4.4.5.2 Community Detection 

For community detection, a k-means algorithm was run on the node vector 

representations learned by each network embedding algorithm to get the clustering 

results. Unlike community detection in unsigned networks, the objective of signed 

network clustering is to group the nodes into k clusters, where the connections 

between the nodes within the same cluster should be mostly positive, while the 

connections between the nodes belonging to different clusters should be mostly 

negative [51], [114]. To evaluate the performance of signed network community 



 

99 
 

detection, we adopt the “error rate” metric, which is widely utilized in the related 

literature [114], [119], [132]. The error rate E is defined as the sum of the number 

of negative edges within the same cluster and the number of positive edges 

between different clusters, normalized by the total number of edges in the network: 

𝐸 =
∑ ∑ 𝐴𝑖𝑗

−𝛿(𝑐𝑖, 𝑐𝑗) + 𝐴𝑖𝑗
+ (1 − 𝛿(𝑐𝑖, 𝑐𝑗))

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ |𝐴𝑖𝑗|
𝑛
𝑗=1

𝑛
𝑖=1

 

where 𝑐𝑖 , 𝑐𝑗 indicate the community node 𝑣𝑖 and 𝑣𝑗  belonging to, respectively. 

If  𝑣𝑖 and 𝑣𝑗  are assigned to the same community, then 𝛿(𝑐𝑖, 𝑐𝑗) = 1; otherwise, 

𝛿(𝑐𝑖, 𝑐𝑗) = 0. The lower the error rate, the better the signed network clustering 

performance. 

Firstly, as shown in Table 4.7, the proposed DNE-SBP model always 

outperformed all the baselines (i.e. achieved the lowest error rates) in all the three 

datasets. This again proves that the network representations learned by our 

DNE-SBP model can well capture and preserve the structural balance property of 

signed networks. In addition, among all the spectral embedding algorithms, BNS 

achieved the lowest error rates in all the three datasets. SNS achieved slightly 

lower error rates than SL in the Slashdot and Epinions networks. Note that the 

objective function of SNS is analogue to the pairwise constraint designed in our 

DNE-SBP model. However, when learning the network representations, SNS 

employs EVD to linearly project the original network into a low-dimensional 

embedding space. In contrast, we take advantage of deep learning technique to 

learn non-linear network representations. The significant outperformance of our 

DNE-SBP model over SNS reflects that the deep learning techniques possess more 

powerful feature representation learning ability to capture the complex underlying 

network structure.  
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Secondly, we can see that SiNE achieved the highest error rates among all the 

comparing algorithms in the Wiki and Epinions datasets. As the number of cluster 

k increases, SiNE would perform even worse. It might be explained by the fact 

that SiNE learns network representations based on the triplets only sampled from 

the observed connections, while all the unobserved connections in the original 

network have been ignored. Thus, the network representations learned by SiNE 

would fail to distinguish the disconnected nodes from the connected nodes, which 

is not desirable for community detection. In addition, the sampled triplets only 

capture the local neighborhood structure, however, community detection also 

requires the global structural information. Hence, SiNE performs rather badly 

when learning the network representations for signed network community 

Table 4.7: The error rates (%) of k-way Clustering in three signed networks. The lowest error 

rates among all the comparing algorithms are shown in Boldface. 

Dataset Algorithms 
Number of cluster k 

2 3 4 5 6 7 8 9 10 

Wiki 

DNE-SBP 15.64 15.66 15.74 15.71 15.71 15.71 15.71 15.70 15.69 

SL 21.94 21.94 21.94 21.94 21.94 21.93 21.93 21.93 21.93 

SNS 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 

BNS 21.86 21.80 21.77 21.76 21.74 21.72 21.72 21.71 21.70 

SiNE 33.48 53.57 58.62 61.14 62.01 63.30 66.85 67.74 69.12 

SDNE 26.01 33.67 42.16 42.69 44.97 55.81 56.03 55.70 55.84 

Slashdot 

DNE-SBP 18.54 18.19 18.15 18.17 18.15 18.23 18.22 18.23 18.23 

SL 25.38 25.39 25.39 25.39 25.39 25.39 25.39 25.40 25.40 

SNS 25.36 25.24 25.21 25.20 25.20 25.06 25.05 25.05 24.90 

BNS 25.19 25.15 25.00 24.81 24.74 24.84 24.81 24.44 23.49 

SiNE 40.38 47.65 51.18 57.00 55.89 56.16 58.37 62.35 63.72 

SDNE 48.91 55.75 57.78 61.29 62.34 63.65 64.00 65.35 66.09 

Epinions 

DNE-SBP 7.95 8.25 8.20 8.29 8.30 8.33 8.31 8.31 8.32 

SL 12.20 12.20 12.20 12.20 12.20 12.20 12.21 12.21 12.21 

SNS 11.73 12.08 12.10 11.93 11.97 11.78 11.93 12.05 11.90 

BNS 9.01 9.01 9.77 9.02 9.57 9.54 9.50 9.54 9.55 

SiNE 40.70 48.03 56.43 61.87 66.58 68.21 69.64 70.82 71.61 

SDNE 36.76 38.75 43.19 48.35 49.26 50.02 52.89 56.34 57.01 
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detection. 

Moreover, we can see that SDNE performed significantly worse (i.e. achieved 

much higher error rates) than all the spectral embedding algorithms developed for 

the signed networks. This again confirms that the unsigned network embedding 

algorithm fails to learn informative network representations for the signed 

networks. Thus, it is indeed necessary to design the network embedding 

algorithms targeting for the signed networks, which can well capture the important 

structural balance property so as to easily distinguish the negative links from the 

positive links. 

4.4.6 Parameter Sensitivity 

In this subsection, the sensitivities of the parameters 𝛽, 𝛾, 𝛼, 𝑙, 𝑑  on the 

performance of DNE-SBP are reported. Figures 4.3 and 4.4 show the parameter 

sensitivity of DNE-SBP for link sign prediction and community detection, 

respectively.  

Parameter 𝜷 denotes the ratio of the penalty on the reconstruction errors of 

non-zero input elements over that of zero input elements. As shown in Figures 

4.3(a) and 4.4(a), 𝛽 > 1 leads to much better link sign prediction (i.e. higher 

AUC score) and also much better community detection (i.e. lower error rate) than 

𝛽=1. This demonstrates that it is highly effective to assign larger penalty to make  

the SAE more prone to reconstruct the observed connections than unknown 

connections.  

Parameter 𝜸 specifies the ratio of penalty on the reconstruction errors of 

negative links over that of positive links, and the ratio of the weight of the 

pairwise constraint targeting for the negative links over that of the positive links. 

As shown in Figure 4.3(b), for link sign prediction, 𝛾 > 1 can achieve much 

higher AUC scores than 𝛾 = 1. This demonstrates the significant effectiveness 



 

102 
 

and necessity of imposing larger penalty and stronger pairwise constraint on the 

scarce negative links to handle the highly imbalanced data (i.e. overwhelming 

positive links) in the real-world signed networks. Also, when 𝛾 ≤ 3, a higher 

value of 𝛾 would lead to higher AUC score, while after that, the AUC scores will 

 

Figure 4.3: Sensitivity of the parameters  𝛽, 𝛾, 𝛼, 𝑙, 𝑑 on the AUC score of DNE-SBP (with the 

Had edge representation) for link sign prediction, when 40% of observed links were used for 

training on the Wiki dataset. The higher the AUC score, the better the performance. 

 

Figure 4.4: Sensitivity of the parameters  𝛽, 𝛾, 𝛼, 𝑙, 𝑑 on the error rate of DNE-SBP for 3-way 

signed network community detection on the Wiki dataset. The lower the error rate, the better the 

performance. 
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slightly decrease. Note that on the Wiki dataset, the ratio of the number of positive 

links over that of negative links is 3.63. Thus, it indicates that setting 𝛾 =

𝑓𝑙𝑜𝑜𝑟(∑ ∑ 𝐴𝑖𝑗
+𝑛

𝑗=1
𝑛
𝑖=1 ∑ ∑ 𝐴𝑖𝑗

−𝑛
𝑗=1

𝑛
𝑖=1⁄ ) is reasonable for DNE-SBP to achieve a 

good performance for link sign prediction. On the other hand, as shown in Figure 

4.4(b), all different values of 𝛾 can achieve a satisfactory low error rate for signed 

network clustering. It indicates that the performance of DNE-SBP for signed 

network clustering is insensitive to the value of 𝛾. 

Parameter 𝜶𝒌 denotes the weight assigned to the pairwise constraints at the 

k-th layer of SAE. As shown in Figures 4.3(c) and 4.4(c), 𝛼1 > 0  would 

contribute to better link sign prediction and also better signed network clustering 

performance, as compared to 𝛼1=0. This demonstrates the effectiveness of 

designing a semi-supervised SAE to capture the structural balance property for 

signed network embedding. In addition, as shown in Figure 4.3(d), when 𝑘 ≥ 2, 

the AUC scores of DNE-SBP are insensitive to the value of 𝛼𝑘. This indicates that 

for link sign prediction, incorporating pairwise constraints to the first layer of SAE 

is much more effective than doing that for the deeper layers of SAE. However, as 

shown in Figure 4.4(d), when 𝑘 ≥ 2, 𝛼𝑘 > 0 can significantly reduce the error 

rate achieved by 𝛼𝑘 = 0. Thus, in contrast to link sign prediction, incorporating 

pairwise constraints at the deeper layers of SAE is more effective for community 

detection than doing that at the first layer of SAE. 

Parameter l denotes the number of layers in the SAE. We constructed five 

SAEs, with the layer configuration setting as 7118-64, 7118-256-64, 

7118-512-256-64, 7118-512-256-128-64 and 7118-1024-512-256-128-64, 

respectively. The number of layers in these five SAEs are 1, 2, 3, 4 and 5, 

respectively. Then, for all the five SAEs, we employ the deepest hidden 

representations as node vector representations, which are with the same 
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dimensionality as d=64. As shown in Figure 4.3(e), 𝑙 > 1 contributes to much 

higher AUC score than 𝑙 = 1. While when 𝑙 > 2, the AUC score does not further 

increase as 𝑙 increases. This reveals that building a 2-layer SAE can contribute to 

much better link sign prediction performance, as compared to a basic auto-encoder. 

However, the link sign prediction performance cannot be further improved, even 

though a deeper SAE is built. In contrast, as shown in Figure 4.4(e), for signed 

network clustering, the error rate would keep decreasing as 𝑙 increases. This 

indicates that the deeper SAE framework contributes to better signed network 

community detection performance. Such interesting differences could be explained 

by the fact that link prediction generally focuses on the concrete local 

neighborhood structure, thus the more abstract feature representations might not be 

more informative. However, community detection requires to capture the global 

network structure which is more abstract, thus the deeper SAE framework would 

be more powerful for learning the meaningful feature representations. 

Parameter d indicates the dimensionality of the node vector representation 

learned by the deepest layer of SAE. As shown in Figures 4.3(f) and 4.4(f), when 

𝑑 ∈ {64, 128, 256}, DNE-SBP always achieves good performance for both link 

sign prediction and signed network clustering.  

4.5 Summary  

Although several promising network embedding algorithms have been proposed 

recently, the vast majority of them are only designed for unsigned networks, 

without considering the polarities of the links in the signed networks. In this work, 

we propose a DNE-SBP model to learn the nonlinear hidden vector representations 

for nodes of a given signed network, which employs a semi-supervised SAE to 

reconstruct the signed adjacency matrix. To handle the overwhelmingly positive 

links in the real-world signed networks, we impose larger penalty on the 
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reconstruction errors of negative links to make the SAE focus more on 

reconstructing the scarce negative links than the abundant positive links. In 

addition, to capture the structural balance property of signed networks, we 

incorporate the ML and CL pairwise constraints into the SAE to map the 

positively connected nodes closer to each other and map the negatively connected 

nodes more far apart from each other in the embedding space. Based on the 

low-dimensional node vector representations learned by DNE-SBP, we apply 

vector-based machine learning techniques to conduct link sign prediction and 

signed network community detection. Comprehensive experimental results 

demonstrate that the proposed DNE-SBP model significantly outperforms the 

state-of-the-art network embedding algorithms for graph representation learning in 

the signed networks.  

This work is accepted in [12]. In the future, we can extend the signed network 

embedding algorithm to capture other properties of the signed networks, such as 

status theory [52]. In addition, we can apply DNE-SBP to recommender systems, 

by modeling users and items as nodes, and the “like” and “dislike” relations as the 

“positive” and “negative” links. Moreover, by integrating network structures and 

rich content information (e.g. users/items features), we can extend DNE-SBP to 

heterogeneous network embedding. Then, we can make recommendations for 

users based on the link sign prediction results of DNE-SBP and conduct customer 

segmentation according to the network clustering results of DNE-SBP. 
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Chapter 5 

Cross-network Deep Network 

Embedding 

5.  

5.1 Introduction  

Domain adaptation, aiming to transfer the knowledge pre-learned from a source 

domain to assist in solving the same task in a target domain, has received 

significant attentions in recent years [14]. Domain adaptation has been widely 

applied to computer vision (CV) [133], [134], [135] and natural language 

processing (NLP) [49], [136]. However, applying domain adaptation to classify 

nodes across networks has not been extensively investigated. In this chapter, we 

address a cross-network node classification problem, where the source network 

has fully labeled nodes while the target network has a very small fraction of 

labeled nodes together with a large number of unlabeled nodes. Our aim is to 

leverage the rich labeled information from the source network to help build an 

accurate node classifier for the target network in a collaborative manner. Here, 

following the assumption in domain adaption [14], the source network and the 

target network should share the same set of node labels. In order to achieve good 

performance in cross-network node classification, it is required to learn 

appropriate feature vector representations which are not only discriminative for 

different categories of nodes, but also invariant across different networks. 

Network embedding is an effective method to learn the low-dimensional node 

vector representations which can preserve the original network structures. The 

homophily hypothesis [111] and social influence theory [110] suggest that the 
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connected nodes tend to have similar labels. Based on such theories, recent 

state-of-the-art network embedding algorithms [29], [34], [24], [11], [10], [23], [43] 

aim to preserve network proximities by learning similar latent feature vector 

representations for nodes having connections in a given network. The 

proximity-based network embedding algorithms have demonstrated promising 

results for graph mining tasks involving one network. However, such proximities 

are defined based on the similarity between the neighborhood of the nodes in a 

given network, while the nodes from different networks do not have direct 

network connections, i.e., do not share common neighborhood. Thus, the node 

vector representations learned by the network embedding algorithms with 

single-network proximity preservation would lack consistency across different 

network and would be unsuitable for prediction tasks involving multiple networks 

[53], [54]. To learn appropriate feature vector representations for cross-network 

node classification, we need to preserve the proximities between nodes not only 

within a single network but also across different networks. It is indeed challenging 

to measure cross-network node proximities solely based on network topological 

structures. At the same time, nodes in the real-world networks are often associated 

with rich attributes, e.g., users in the social networks have profile information and 

papers in the citation networks have titles and abstracts. Node attributes have been 

shown to be generalized and comparable across different networks [54], [137]. For 

example, the papers belonging to the same research area, say “Information 

Security”, from two different citation networks, might be likely to include some 

common keywords (textual attributes) in their titles, e.g., “Privacy, Verification, 

Encipher, Encryption, Decryption, Cryptography”, while they might not have 

similar network topological structures across different networks. Thus, it would be 

beneficial to take advantage of network structures, node attributes and node labels 

together to learn appropriate feature vector representations for cross-network node 
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classification. 

In this regard, we propose an innovative cross-network deep network 

embedding (CDNE) model to learn label-discriminative and network-invariant 

node feature vector representations. Figure 5.1 illustrates the main ideas of the 

proposed CDNE model. Two semi-supervised SAEs, namely SAE_s and SAE_t, 

 

Figure 5.1: Illustration of the ideas of the CDNE model. 𝑣𝑖
𝑠 and 𝑣𝑖

𝑡  represent the i-th node in 

𝒢𝑠 and 𝒢𝑡; 𝐴𝑠, 𝐴𝑡 denote node attribute matrices in 𝒢𝑠 and 𝒢𝑡; 𝑌𝑠 , 𝑌𝑡 indicate node label 

matrices in 𝒢𝑠 and 𝒢𝑡. Different colors correspond to different labels. Full colors indicate 

observed labels while gradient colors represent the predicted fuzzy labels of unlabeled target 

network nodes. Firstly, in 𝒢𝑠, SAE_s maps the connected nodes closer to each other and maps 

the same labeled nodes closer while different labeled nodes far apart from each other. Then, in 

𝒢𝑡, SAE_t maps the connected nodes closer and also maps the labeled nodes in 𝒢𝑡 closer to 

the nodes associated with the same labels in 𝒢𝑠. 
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are employed to learn the low-dimensional feature vector representations for the 

nodes in the source network and the target network, respectively. Firstly, in the 

source network, we employ SAE_s to map more strongly connected nodes closer 

to each other, and also map the nodes belonging to the same class closer while 

belonging to different classes far apart from each other, in the embedding space. 

Secondly, in order to successfully transfer the knowledge from the source network 

to the target network, we need to minimize the difference of the marginal and 

class-conditional distributions of the hidden node vector representations between 

the source network and the target network. However, the target network just has 

very limited labeled nodes, making it rather difficult to approximate its 

class-conditional distribution. To address this, we leverage the available node 

attributes and the labeled information from both the source network and the target 

network to predict pseudo-labels for the unlabeled target network nodes. Since 

such predictions might not be accurate, instead of utilizing binary labels, we 

employ fuzzy labels to capture the prediction uncertainty. Then, with the limited 

observed labels and the predicted fuzzy labels, we can easily estimate the 

class-conditional distributions of the target network. Thirdly, we employ SAE_t to 

learn more similar hidden vector representations for more strongly connected 

target network nodes. In addition, by minimizing the cross-network 

class-conditional distributions in SAE_t, we can make the labeled target network 

nodes have similar hidden vector representations w.r.t. the source network nodes 

associated with the same labels. Note that in SAE_s, different categories of source 

network nodes have already been mapped separately in the embedding space. Thus, 

the cross-network label-guided alignment in SAE_t would make the nodes 

associated with same labels no matter within the target network or across the 

source network and the target network have similar hidden vector representations, 

while making the nodes associated with completely different labels within the 
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target network or across networks have rather different hidden vector 

representations. Such properties yield label-discriminative and network-invariant 

node vector representations, which can significantly benefit cross-network node 

classification. The contributions of this work are summarized as follows: 

1) We should be the first to take advantage of both deep network embedding and 

domain adaptation to address the cross-network node classification problem; 

2) We leverage network structures, node attributes and node labels to map similar 

nodes no matter within a network or across different networks closer to each 

other in the unified low-dimensional embedding space so as to learn 

label-discriminative and network-invariant node vector representations; 

3) Extensive experimental results in the real-world datasets demonstrate that the 

proposed CDNE model significantly outperforms the state-of-the-art related 

algorithms for cross-network node classification. 

The rest of this chapter is organized as follows. Section 5.2 reviews the 

network embedding algorithms and network transfer learning algorithms. Section 

5.3 formulates the cross-network node classification problem. Section 5.4 

introduces the detailed framework of CDNE. Section 5.5 reports the experimental 

results of CDNE for cross-network node classification. Section 5.6 summaries this 

work. 

5.2 Related Work 

In this section, we review the state-of-the-art single-network embedding 

algorithms, cross-network embedding algorithms and network transfer learning 

algorithms.  

5.2.1 Single-network Embedding Algorithms  

Recent network embedding algorithms aim to embed a given network into a 
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low-dimensional space where the original network properties can be well 

preserved. The vast majority of network embedding algorithms are 

proximity-based [29], [34], [24], [11], [10], [23], [43], with the goal of mapping 

nodes with higher proximities closer to each other. Such proximities are defined in 

terms of the neighborhoods between nodes, thus, these network embedding 

algorithms can only preserve the proximities between connected nodes. If two 

nodes are disconnected from each other in a network, then they would not have 

similar hidden vector representations. In contrast to proximity-based network 

embedding algorithms, Ribeiro et al. [138] proposed a struc2vec algorithm to 

measure structural similarity between nodes independently of their positions in the 

network. Thus, two disconnected nodes that are far apart from each other in the 

network but are structurally similar would have similar latent feature 

representations. struc2vec can achieve better node classification performance than 

the proximity-based embedding algorithms when the node labels depend more on 

structural identity while less on homophily. Both proximity-based and structural 

identity-based network embedding algorithms just employ the pure network 

topological structures to learn the latent node vector representations. While in the 

real-world networks, nodes are often associated with rich attributes. In addition, it 

has been shown that capturing the correlations between network structures and 

node attributes can benefit graph mining applications [139]. Thus, recently, some 

attributed network embedding algorithms have been proposed to incorporate node 

attributes into network representation learning so as to preserve both network 

topological proximity and node attribute affinity. For example, Chang et al. [35] 

proposed a heterogenous network embedding framework to leverage deep learning 

technique to learn node vector representations based on both node contents and 

linkage structures in the network. Huang et al. [139] developed a LANE algorithm 

to incorporate the label information into attributed network embedding and jointly 
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project node labels, network structures and node attributes into a unified 

embedding space via EVD. Pan et al. [140] designed a TriDNR model which 

utilizes a coupled neural network architecture to learn deep network 

representations from node structures, node content and node labels.  

5.2.2 Cross-network Embedding 

Although the single-network embedding algorithms can well capture the properties 

necessary for the graph mining tasks involving one network, they fail to learn 

generalized and comparable network representations across different networks 

[53], [54]. Recently, some cross-network embedding approaches have been 

proposed to address the network alignment problem, which aims to find the 

corresponding nodes across different networks. For example, in [141], [142], the 

observed anchor links are utilized as the supervised information to learn a 

cross-network embedding space based on the network structural information. Then, 

the unknown anchor links across networks would be predicted in the unified 

embedding space. In [54], Heimann et al. proposed to measure cross-network node 

similarities based on the nodes’ structural and attribute identities, and then employ 

SVD to factorize the cross-network similarity matrix so as to learn the 

low-dimensional node vector representations. Next, they infer network alignment 

based on the cross-network node vector representations, by finding the top-c most 

similar nodes in one network given a query node in the other network. 

However, to the best of our knowledge, leveraging cross-network embedding 

to address the cross-network node classification task has not been investigated. 

Cross-network node classification is different from network alignment in two 

aspects. Firstly, network alignment assumes that some users should be 

simultaneously involved in the two aligned social networks [137]. In contrast, in 

cross-network node classification, the source network and the target network do 
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not share any common nodes. Secondly, the goal of network alignment is to infer a 

node mapping between two networks, while cross-network node classification 

aims to predict node labels in the target network by leveraging the abundant label 

information from the source network. Thus, the existing cross-network embedding 

algorithms developed for network alignment cannot be applied to the 

cross-network node classification task.  

5.2.3 Transfer Learning Across Networks  

Network transfer learning aims to transfer the useful knowledge from a source 

network to help predict node or edge labels in the target network. For example, Ye 

et al. [15] proposed a transfer learning approach to predict the signed labels of 

edges in a target network by leveraging the edge label information in the source 

network. They construct the generalized edge features from two aspects, namely 1) 

the explicit topological features, such as node degree, betweenness centrality, triad 

count and edge embeddedness, and 2) the latent topological features learned by 

projecting the adjacency matrices of the source network and the target network 

into a common latent space via Nonnegative Matrix Tri-Factorization (NMTF) 

[143]. Then, based on the constructed edge feature vector representations, they 

adopt an AdaBoost [144] scheme for transfer learning by assigning higher weights 

to the source edge instances which are more useful for edge label prediction in the 

target network. In [13], Tang et al. aim to classify the type of social relationships 

in a target network by borrowing the knowledge from a source network. They 

manually defined the edge features based on the social theories, such as social 

balance, structural hole and social status. Fang et al. [16] developed a network 

transfer learning algorithm to predict node labels in the target network by 

transferring the useful knowledge from the source network. To learn 

domain-independent latent structural features, the NMTF [143] technique is 
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employed to project the label propagation matrices of the two networks into a 

common latent space. Then, they predict node labels in the target network based 

on the latent structural features, node content features and relational features. In 

our previous work [9], [8], we proposed a CNL model to predict most likely seed 

nodes and inactive edges in the target network, by leveraging the greedy seed 

selection and influence propagation knowledge pre-learned from a source network. 

The model selects a set of discriminative topological features as the node and edge 

features and assigns higher weights to the features which perform more similarly 

between the source network and the target network. 

To effectively transfer the knowledge from a source network to a target 

network for cross-network prediction, it is required to learn the feature vector 

representations which are generalized and comparable across networks. Existing 

literatures either manually define explicit topological features or learn the common 

latent features by factorizing the associated characteristic matrices of the source 

network and the target network into a common latent space. To the best of our 

knowledge, we are the first to take advantage of deep network embedding to learn 

generalized and comparable feature vector representations for cross-network 

prediction. 

5.3 Problem Statement 

Given a target network with very limited labeled nodes and a source network with 

fully labeled nodes, the goal of cross-network node classification is to leverage the 

abundant labeled information from the source network to help classify unlabeled 

nodes in the target network. In this chapter, we use superscripts s and t to denote 

the source network and the target network, respectively. Table 5.1 lists the used 

notations and corresponding descriptions. 
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Table 5.1: Frequently used notations and descriptions in Chapter 5. 

Notations Descriptions 

𝒢𝑠, 𝒢𝑡 Source network and target network 

𝑛𝑠, 𝑛𝑡 Number of nodes in source network and in target network 

𝐴𝑠, 𝐴𝑡 Node attribute matrices of source network and target network 

𝑐 Number of node labels 

𝑌𝑠 , 𝑌𝑡 Observable node label matrices of source network and target network 

�̂�𝑡 Predicted node label matrix of target network 

𝑋𝑠, 𝑋𝑡 Aggregated PPMI matrices of source network and target network 

l Number of layers in SAE_s and SAE_t 

𝑑(𝑘) The hidden dimensionality at the k-th layer of SAE_s and SAE_t 

𝑊1
𝑠(𝑘)

,𝑊2
𝑠(𝑘)

 Encoding and decoding weight matrices of k-th layer of SAE_s 

𝐵1
𝑠(𝑘)

, 𝐵2
𝑠(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE_s 

𝐻𝑠(𝑘) 
Hidden matrix representation of source network learned by k-th layer of 

SAE_s 

𝑄𝑠(𝑘) 
i-th row represents average hidden vector representation of the source 

network nodes associated with label i  

𝑊1
𝑡(𝑘)

,𝑊2
𝑡(𝑘)

 Encoding and decoding weight matrices of k-th layer of SAE_t 

𝐵1
𝑡(𝑘)

, 𝐵2
𝑡(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE_t 

𝐻𝑡(𝑘) 
Hidden matrix representation of target network learned by k-th layer of 

SAE_t 

𝑄𝑡(𝑘) 
i-th row represents average hidden vector representation of the target 

network nodes associated with label i 

Let 𝒢𝑠 = (𝑉𝑠, 𝐸𝑠 , 𝑌𝑠, 𝐴𝑠)  be a fully labeled source network, where 𝑉𝑠 

denotes the set of all labeled nodes and 𝐸𝑠 indicates the set of edges. 𝑌𝑠 ∈ 𝑅𝑛
𝑠×𝑐 

is a label matrix encoding the label information of all nodes in 𝒢𝑠, where 𝑛𝑠 =

|𝑉𝑠| is the number of nodes in 𝒢𝑠 and c is the number of labels. The entry in the 

i-th row and k-th column of matrix 𝑌𝑠 , i.e., 𝑌𝑖𝑘
𝑠 = 1 if node 𝑣𝑖

𝑠 ∈ 𝑉𝑠  is 

associated with label k; otherwise, 𝑌𝑖𝑘
𝑠 = 0. Here, a node can have multiple labels. 

𝐴𝑠 ∈ 𝑅𝑛
𝑠×𝑤 is the associated attribute matrix representing the attribute values of 

all nodes in 𝒢𝑠 , where 𝑤  indicates the number of attributes and 𝐴𝑖𝑘
𝑠 ≥ 0 

indicates the k-th attribute value of node 𝑣𝑖
𝑠. 

Let 𝒢𝑡 = (𝑉𝑡, 𝐸𝑡 , 𝑌𝑡 , 𝐴𝑡) be an insufficiently labeled target network with a set 
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of nodes 𝑉𝑡 = {𝑉𝑙
𝑡, 𝑉𝑢

𝑡} and a set of edges 𝐸𝑡 , where 𝑛𝑡 = |𝑉𝑡| denotes the 

number of nodes in 𝒢𝑡, 𝑉𝑙
𝑡 indicates the set of a very small fraction of labeled 

nodes and 𝑉𝑢
𝑡 represents the set of a large amount of unlabeled nodes in 𝒢𝑡. 𝑌𝑡 ∈

𝑅𝑛
𝑡×𝑐 is the observable node label matrix associated with 𝒢𝑡, where 𝑌𝑖𝑘

𝑡 = 1 if 

node 𝑣𝑖
𝑡 ∈ 𝑉𝑡 has an observable label k; otherwise, 𝑌𝑖𝑘

𝑡 = 0. 𝐴𝑡 ∈ 𝑅𝑛
𝑡×𝑤 refers 

to the associated node attribute matrix, where 𝐴𝑖𝑘
𝑡 ≥ 0 indicates the k-th attribute 

value of node 𝑣𝑖
𝑡.  

It should be noted that in the defined cross-network node classification 

problem, the network dimensionality (i.e. number of nodes) and the distribution of 

network connections are varied between the source network and the target network. 

However, the two networks should share the same set of node labels and node 

attributes, while the data distributions across networks are varied. 

5.4 Cross-network Deep Network Embedding Model 

In this section, we introduce the proposed CDNE model which is composed of two 

semi-supervised SAEs, i.e., SAE_s and SAE_t. Algorithm 5.1 shows the 

framework of the CDNE model. Firstly, we employ SAE_s to learn the 

label-discriminative feature vector representations for nodes in the source network. 

Next, we employ SAE_t to learn node vector representations for the target network, 

which can match with the marginal and class-conditional distributions of the 

source network. Before introducing SAE_s and SAE_t, we firstly compute the 

aggregated k-step PPMI matrices for the source network and the target network, 

denoted as 𝑋𝑠 and 𝑋𝑡, respectively. The approach of computing the PPMI matrix 

can be refereed to Section 3.3.1. 
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5.4.1 SAE_s for Deep Network Embedding in Source Network 

In SAE_s, we aim to map nodes with higher network proximities in the source 

network closer to each other, and map nodes associated with more common labels 

closer while mapping nodes not sharing any common labels far apart from each 

other.   

5.4.1.1 Penalty-modified Reconstruction Errors 

Given the aggregated k-step PPMI matrix of the source network as the input, 

i.e., 𝐻𝑠(0) = 𝑋𝑠, a l-layer SAE_s is constructed as follow: 

 𝐻𝑠(𝑘) = 𝑓 (𝐻𝑠(𝑘−1)(𝑊1
𝑠(𝑘)

)
𝑇

+ 𝐵1
𝑠(𝑘)

) ,   𝑘 = 1,… , 𝑙  (5.1) 

 �̂�𝑠(𝑘−1) = 𝑓 (�̂�𝑠(𝑘)(𝑊2
𝑠(𝑘)

)
𝑇

+ 𝐵2
𝑠(𝑘)

) ,   𝑘 = 𝑙, … ,1  (5.2) 

where (5.1) and (5.2) represent the encoding and decoding process of SAE_s, 

respectively. 𝐻𝑠(𝑘) ∈ 𝑅𝑛
𝑠×𝑑(𝑘) denotes the hidden matrix representation learned 

by the k-th layer of SAE_s, with the i-th row (i.e. 𝐻𝑖
𝑠(𝑘) ∈ 𝑅1×𝑑(𝑘)) representing 

the feature vector representation of 𝑣𝑖
𝑠 , and 𝑑(𝑘)  indicates the hidden 

dimensionality at the k-th layer of SAE_s. �̂�𝑠(𝑘)  indicates the reconstructed 

matrix of 𝐻𝑠(𝑘)  and �̂�𝑠(𝑙) = 𝐻𝑠(𝑙) . In addition, 𝑊1
𝑠(𝑘)

∈ 𝑅𝑑(𝑘)×𝑑(𝑘−1), 𝐵1
𝑠(𝑘)

∈

𝑅𝑛
𝑠×𝑑(𝑘),𝑊2

𝑠(𝑘)
∈ 𝑅𝑑(𝑘−1)×𝑑(𝑘), 𝐵2

𝑠(𝑘)
∈ 𝑅𝑛

𝑠×𝑑(𝑘−1) refer to the encoding weight, 

encoding bias, decoding weight and decoding bias matrices associated with the 

k-th layer of SAE_s, respectively; 𝑓 is a non-linear activation function, in this 

work, the sigmoid function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥) is utilized as the activation 

function for each layer of SAE_s. The i-th row of the input matrix 𝑋𝑠, i.e., 𝑋𝑖
𝑠 ∈

𝑅1×𝑛
𝑠
 captures the neighborhood of 𝑣𝑖

𝑠 with the associated proximities, where 

𝑋𝑖𝑗
𝑠 > 0 if 𝑣𝑗

𝑠 is a strong neighbor of 𝑣𝑖
𝑠 within K steps; otherwise, 𝑋𝑖𝑗

𝑠 = 0. 
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The nodes having similar neighborhood structure would have similar input raw 

vectors. Then, by minimizing th3 reconstruction errors of SAE_s, we can learn 

more similar hidden vector representations for nodes with more similar 

neighborhood structure. In addition, to address the network sparsity issue, we 

follow [10] to incorporate a penalty matrix 𝑃𝑠(1) ∈ 𝑅𝑛
𝑠×𝑛𝑠 into the reconstruction 

errors as: 

 ℛ𝑠(1) =
1

2𝑛𝑠
‖𝑃𝑠(1) ⊙ (�̂�𝑠 − 𝑋𝑠)‖

𝐹

2
  (5.3) 

where 𝑃𝑖𝑗
𝑠(1)

= 𝛽 > 1, if 𝑋𝑖𝑗
𝑠 > 0 and 𝑃𝑖𝑗

𝑠(1)
= 1, if 𝑋𝑖𝑗

𝑠 = 0. Incorporating 𝛽 >

1 makes SAE_s focus more on reconstructing the strong connections (positive 

proximities) than the weak connections or disconnections (zero proximities). 

Although the input matrix (i.e. 𝐻𝑠(𝑘−1)) of the deep k-th (𝑘 ≥ 2) layer of SAE_s 

is not sparse any more, we still incorporate the penalty matrix by regarding 𝛽2 as 

the weight of the reconstruction errors in the overall loss function. Thus, the 

reconstruction errors at any k-th (1 ≤ 𝑘 ≤ 𝑙) layer of SAE-s is defined as: 

 ℛ𝑠(𝑘) =
1

2𝑛𝑠
‖𝑃𝑠(𝑘) ⊙ (�̂�𝑠(𝑘−1) − 𝐻𝑠(𝑘−1))‖

𝐹

2
  (5.4) 

where 𝑃𝑠(𝑘) ∈ 𝑅𝑛
𝑠×𝑑(𝑘−1) , if 𝐻𝑖𝑗

𝑠(𝑘−1)
> 0 , 𝑃𝑖𝑗

𝑠(𝑘)
= 𝛽 > 1 ; if 𝐻𝑖𝑗

𝑠(𝑘−1)
= 0 , 

𝑃𝑖𝑗
𝑠(𝑘)

= 1. 

5.4.1.2 Pairwise Constraint on Connected Nodes 

Next, we design the following pairwise constraint on strongly connected node 

pairs:  

 𝒞𝑠(𝑘) =
1

2𝑛𝑠
∑ ∑ (𝑋𝑖𝑗

𝑠 + 𝑋𝑗𝑖
𝑠)‖𝐻𝑖

𝑠(𝑘) − 𝐻𝑗
𝑠(𝑘)‖

2

2
𝑛𝑠

𝑗=1
𝑛𝑠

𝑖=1  

 =
1

𝑛𝑠
𝑇𝑟 ((𝐻𝑠(𝑘))

𝑇
𝐿𝑋𝑠𝐻

𝑠(𝑘)) (5.5) 

where 𝐿𝑋𝑠 = 𝐷𝑋𝑠 − (𝑋𝑠 + (𝑋𝑠)𝑇) is the Laplacian matrix of 𝑋𝑠 + (𝑋𝑠)𝑇, and 

𝐷𝑋𝑠  is a diagonal matrix with the diagonal entry computed as (𝐷𝑋𝑠)𝑖𝑖 =
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∑ 𝑋𝑖𝑗
𝑠𝑛𝑠

𝑗=1 + ∑ 𝑋𝑗𝑖
𝑠𝑛𝑠

𝑗=1 . Minimizing 𝒞𝑠(𝑘) would map the more strongly connected 

node pairs which are with higher aggregated proximities to have more similar 

hidden vector representations. 

5.4.1.3 Pairwise Constraint on Labeled Nodes  

In addition, we devise the pairwise constraint on the labeled nodes in the source 

network. Firstly, we define the following matrix 𝑂𝑠 ∈ 𝑅𝑛
𝑠×𝑛𝑠  to represent 

whether two nodes in 𝒢𝑠 share common labels or not: 

 𝑂𝑖𝑗
𝑠 = {

(𝑌𝑠(𝑌𝑠)𝑇)𝑖𝑗, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑌𝑠(𝑌𝑠)𝑇)𝑖𝑗 > 0

−1, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑌𝑠(𝑌𝑠)𝑇)𝑖𝑗 = 0 

0,   𝑖𝑓 𝑖 = 𝑗

   

where 𝑂𝑖𝑗
𝑠 = −1  if 𝑣𝑖

𝑠  and 𝑣𝑗
𝑠  do not share any common labels; 𝑂𝑖𝑗

𝑠 ≥ 1 

indicates the number of common labels shared by 𝑣𝑖
𝑠 and 𝑣𝑗

𝑠. Then, the pairwise 

constrain is devised as: 

 ℒ𝑠(𝑘) =
1

2𝑛𝑠
∑ ∑ 𝑂𝑖𝑗

𝑠 ‖𝐻𝑖
𝑠(𝑘) −𝐻𝑗

𝑠(𝑘)
‖
2

2
𝑛𝑠

𝑗=1
𝑛𝑠

𝑖=1 =
1

𝑛𝑠
𝑇𝑟 ((𝐻𝑠(𝑘))

𝑇
 𝐿𝑂𝑠𝐻

𝑠(𝑘))  (5.6) 

where 𝑂𝑠 can be divided into a positive part 𝑂𝑠+ and a negative part 𝑂𝑠− as: 

𝑂𝑠+ = 𝑚𝑎𝑥(𝑂𝑠, 0)  and 𝑂𝑠− = −𝑚𝑖𝑛(𝑂𝑠, 0) . In addition, 𝐿𝑂𝑠 = 𝐿𝑂𝑠+ − 𝐿𝑂𝑠− , 

where 𝐿𝑂𝑠+ = 𝐷𝑂𝑠+ − 𝑂𝑠+ is the associated Laplacian matrix of 𝑂𝑠+ and 𝐷𝑂𝑠+ 

is a diagonal matrix of 𝑂𝑠+ with the diagonal entries as the row summation of 

𝑂𝑠+, i.e., (𝐷𝑂𝑠+)𝑖𝑖 = ∑ 𝑂𝑖𝑗
𝑠+𝑛𝑠

𝑗=1 . Similarly, 𝐿𝑂𝑠− = 𝐷𝑂𝑠− − 𝑂𝑠− is the associated 

Laplacian matrix of 𝑂𝑠− . Minimizing ℒ 𝑠(𝑘) would make the node pairs sharing 

more common labels have more similar hidden vector representations, while 

making the node pairs not sharing any common labels (i.e. belonging to 

completely different classes) have rather different hidden vector representations. 
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5.4.1.4 Overall Loss Function of SAE_s: 

By integrating the penalty-modified reconstruction errors (5.4), the pairwise 

constraints on strongly connected nodes (5.5) and on labeled nodes (5.6), and a 

L2-norm regularization term to prevent overfitting Ω𝑠(𝑘) =
1

2
(‖𝑊1

𝑠(𝑘)
‖
𝐹

2

+

‖𝑊2
𝑠(𝑘)

‖
𝐹

2

), the overall loss function of SAE_s is defined as: 

 𝒥𝑠 = ∑ 𝒥𝑠(𝑘)𝑙
𝑘=1 = ∑ ℛ𝑠(𝑘) + 𝛼𝑠(𝑘) 𝒞𝑠(𝑘) + 𝜑𝑠(𝑘)ℒ 𝑠(𝑘) + 𝜆𝑠(𝑘)𝛺𝑠(𝑘)𝑙

𝑘=1   (5.7) 

where 𝛼𝑠(𝑘), 𝜑𝑠(𝑘) and 𝜆𝑠(𝑘) are the trade-off parameters to balance the effect 

of different terms in the overall loss function.  

5.4.2 SAE_t for Deep Network Embedding in Target Network 

Next, in SAE_t, we aim to learn node vector representations for the target network 

which can match with the distributions of nodes in the source network. It is worth 

noting that the number of layers of SAE_t and the hidden dimensionality at each 

k-th (∀ 1 ≤ 𝑘 ≤ 𝑙) of SAE_t are set as the same as in SAE_s. However, the raw 

input dimensionality between SAE_s and SAE_t are varied, since the number of 

nodes in the source network and the target network can be rather different.  

Given the aggregated k-step PPMI matrix of the target network as the input of 

SAE_t, i.e., 𝐻𝑡(0) = 𝑋𝑡 ∈ 𝑅𝑛
𝑡×𝑛𝑡 , the penalty-modified reconstruction errors of 

SAE_t are similarly defined as: 

 ℛ𝑡(𝑘) =
1

2𝑛𝑡
‖𝑃𝑡(𝑘) ⊙ (�̂�𝑡(𝑘−1) − 𝐻𝑡(𝑘−1))‖

𝐹

2
  (5.8) 

where 𝑃𝑡(𝑘) ∈ 𝑅𝑛
𝑡×𝑑(𝑘−1) , and 𝑃𝑖𝑗

𝑡(𝑘)
= 𝛽 > 1, if 𝐻𝑖𝑗

𝑡(𝑘−1)
> 0 and 𝑃𝑖𝑗

𝑡(𝑘)
= 1, if 

𝐻𝑖𝑗
𝑡(𝑘−1)

= 0. In addition, similar to SAE_s, we define the pairwise constraint to 

map more strongly connected nodes in the target network closer to each other as: 

 𝒞𝑡(𝑘) =
1

𝑛𝑡
𝑇𝑟 ((𝐻𝑡(𝑘))

𝑇
𝐿𝑋𝑡𝐻

𝑡(𝑘))  (5.9) 

where 𝐿𝑋𝑡 = 𝐷𝑋𝑡 − (𝑋𝑡 + (𝑋𝑡)𝑇) is the Laplacian matrix of 𝑋𝑡 + (𝑋𝑡)𝑇 , and 
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𝐷𝑋𝑡  is a diagonal matrix with the diagonal entry computed as (𝐷𝑋𝑡)𝑖𝑖 =

∑ 𝑋𝑖𝑗
𝑡𝑛𝑡

𝑗=1 + ∑ 𝑋𝑗𝑖
𝑡𝑛𝑡

𝑗=1 . 

5.4.2.1 Matching Marginal and Conditional Cross-network Distributions  

Next, we need to align the node vector representations learned for the target 

network to that of the source network. In domain adaptation algorithms [134], 

[145], [46] the nonparametric maximum mean discrepancy (MMD) [146] metric 

have been widely employed to measure the difference of data distributions across 

domains. Motivated by this, we utilize the MMD metric to measure the marginal 

and conditional distributions of the embedding node vector representations 

between the source network and the target network.  

Firstly, the empirical marginal MMD between the source network and the 

target network is defined as: 

 ℳ𝑀
𝑡(𝑘)

=
1

2
‖
1

𝑛𝑠
𝟏 𝐻𝑠(𝑘) −

1

𝑛𝑡
𝟏 𝐻𝑡(𝑘)‖

2

2

  (5.10) 

where 𝟏 ∈ 𝑅1×𝑛
𝑠
 and 𝟏 ∈ 𝑅1×𝑛

𝑡
 denote two ones-vectors. By minimizing 

(5.10), the marginal distributions between the source network and the target 

network can be matched. 

Secondly, the class-conditional MMD [46] between the source network and the 

target network is defined as: 

 ℳ𝐶
𝑡(𝑘)

=
1

2
‖𝑄𝑡(𝑘) − 𝑄𝑠(𝑘)‖

𝐹

2
  (5.11) 

where 𝑄𝑠(𝑘) = (𝑌𝑠(𝐷𝑌𝑠)
−1)

𝑇
𝐻𝑠(𝑘),  𝐷𝑌𝑠 ∈ 𝑅𝑐×𝑐 is a diagonal matrix with the 

diagonal entries as the column summation of 𝑌𝑠, (𝐷𝑌𝑠)𝑖𝑖 = ∑ 𝑌𝑗𝑖
𝑠𝑛𝑠

𝑗=1 . The i-th row 

of 𝑄𝑠(𝑘) , i.e., 𝑄𝑖
𝑠(𝑘)

∈ 𝑅1×𝑑(𝑘)  represents the average feature vector 

representation of all the nodes associated with label i in the source network. 

In addition, we need to compute 𝑄𝑡(𝑘), i.e., the label-specific average feature 
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vector representations of the nodes in the target network. Unlike the nodes in the 

source network which are with completely observable labels, the target network 

nodes are just with very limited observable labels. Then, directly utilizing the 

sparse observable label matrix 𝑌𝑡  to compute 𝑄𝑡(𝑘)  would fail to obtain 

sufficient statistics to update the weights of SAE_t, and thus cannot learn a good 

cross-network embedding alignment. To address this, we take advantage of the 

available node attributes in the source network and the target network to predict 

labels for the unlabeled nodes in the target network. Since the original node 

attributes might contain noises, we firstly employ Principal Components Analysis 

(PCA) [147] to extract the low-dimensional (i.e. 128-D in the experiments) node 

attribute vector representations. Then, we employ a one-vs-rest logistic regression 

(LR) classifier to predict the labels of the unlabeled target network nodes based on 

the low-dimensional attribute vector representations and all the observable labels 

in the source network and the target network. Fuzzy labels have been shown to be 

effective in capturing imprecise, uncertain and vague information during 

knowledge transfer [67], [66]. Thus, instead of using binary labels, we utilize 

fuzzy labels to capture the degree of the membership of each node belonging to a 

specific class. Let �̂�𝑡 denotes the predicted label matrix of the target network, 

where if 𝑣𝑖
𝑡 ∈ 𝑉𝑙

𝑡, �̂�𝑖𝑗
𝑡 = 𝑌𝑖𝑗

𝑡 ∈ {0,1}; and if 𝑣𝑖
𝑡 ∈ 𝑉𝑢

𝑡, 0 < �̂�𝑖𝑗
𝑡 < 1 represents the 

predicted probability of 𝑣𝑖
𝑡 to be labeled as j. Next, we utilize �̂�𝑡 which includes 

both limited observable binary labels and predicted fuzzy labels to compute the 

average node feature vector representation of each class in the target network as 

𝑄𝑡(𝑘) = (�̂�𝑡(𝐷�̂�𝑡)
−1)

𝑇
𝐻𝑡(𝑘), where 𝐷�̂�𝑡  is a diagonal matrix with the diagonal 

entries as the column summation of �̂�𝑡, i.e., (𝐷�̂�𝑡)𝑖𝑖 = ∑ �̂�𝑗𝑖
𝑡𝑛𝑡

𝑗=1 ; and the i-th row 

of 𝑄𝑡(𝑘) represents the average feature vector representations of all the target 

network nodes associated with (observable or predicted) label i, learned by the k-th 
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layer of SAE_t.  

By minimizing (5.11), we can align the true and pseudo labeled target network 

nodes to the source network nodes which are associated with the same labels. Thus, 

the same category of nodes across different networks would have similar hidden 

vector representations. In addition, it should be noted that minimizing (5.6) in 

SAE_s has already pulled the nodes belonging to different classes far apart from 

each other. Therefore, minimizing (5.11) would simultaneously make different 

categories of target network nodes have rather different feature vector 

representations. In addition, by minimizing (5.10) and (5.11) at each layer of 

SAE_t, we can match the cross-network marginal and class-conditional 

distributions of the embedding node vector representations at each corresponding 

layer of SAE_s and SAE_t. Then, with the narrowed cross-network distributions, it 

is beneficial to leverage the abundant label information from the source network to 

help classify unlabeled nodes in the target network. 

5.4.2.2 Overall Loss Function of SAE_t 

By integrating the penalty-modified reconstruction errors (5.8), the pairwise 

constraints on strongly connected nodes (5.9), the marginal MMD (5.10), the 

conditional MMD (5.11), and a L2-norm regularization 𝛺𝑡(𝑘) =
1

2
(‖𝑊1

𝑡(𝑘)
‖
𝐹

2

+

‖𝑊2
𝑡(𝑘)

‖
𝐹

2

), the overall loss function of SAE_t is defined as: 

𝒥𝑡 =∑ 𝒥𝑡(𝑘)
𝑙

𝑘=1
 

 = ∑ ℛ𝑡(𝑘) + 𝛼𝑡(𝑘) 𝒞𝑡(𝑘) + 𝜇𝑡(𝑘)ℳ𝑀
𝑡(𝑘)

+ 𝛾𝑡(𝑘)ℳ𝐶
𝑡(𝑘)

+ 𝜆𝑡(𝑘)𝛺𝑡(𝑘)𝑙
𝑘=1  (5.12) 

where 𝛼𝑡(𝑘), 𝜇𝑡(𝑘), 𝛾𝑡(𝑘) and 𝜆𝑡(𝑘) are the trade-off parameters to balance the 

effect of different terms in the overall loss function.  

On one hand, for a labeled node 𝑣𝑖
𝑡 ∈ 𝑉𝑙

𝑡 in the target network, minimizing 

(5.11) would make 𝑣𝑖
𝑡 have a feature vector representation similar to the same 
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categories of nodes in the source network. On the other hand, for an unlabeled 

node 𝑣𝑖
𝑡 ∈ 𝑉𝑢

𝑡 in the target network, if 𝑣𝑖
𝑡 has some network connection with any 

labeled nodes in 𝑉𝑙
𝑡 within K steps, then minimizing (5.9) would make 𝑣𝑖

𝑡 have 

similar hidden vector representation w.r.t. its labeled neighbors in the target 

network. In addition, if an unlabeled target network node 𝑣𝑖
𝑡 ∈ 𝑉𝑢

𝑡 is disconnected 

from all the labeled nodes in 𝑉𝑙
𝑡 within K steps, then minimizing (5.11) will make 

𝑣𝑖
𝑡  have similar hidden vector representations w.r.t. the same labeled source 

network nodes, according to the predicted fuzzy labels of 𝑣𝑖
𝑡  based on the 

available node attribute information. 

By simultaneously taking advantage of network connections, node attributes 

and node labels, the proposed CDNE model can 1) make more strongly connected 

nodes within a network have more similar hidden vector representations, and 2) 

make nodes associated with same labels within a network or across networks have 

similar hidden vector representations while making nodes associated with different 

labels within a network or across networks have rather different hidden vector 

representations. Thus, the proposed CDNE model can learn label-discriminative 

and network-invariant feature vector representations for cross-network node 

classification. 

To optimize CDNE, SAE_s and SAE_t should be trained in sequence, as 

shown in Algorithm 5.1. To optimize SAE_s or SAE_t, one can use stochastic 

gradient descent (SGD) to optimize each k-th layer of a SAE and employ a greedy 

layer-wise training approach [34], [129] until reaching the deepest l-th layer so as 

to learn the deepest hidden matrix representation. 
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Algorithm 5.1: CDNE 

Input: Source network 𝒢𝑠 = (𝑉𝑠, 𝐸𝑠, 𝑋𝑠, 𝑌𝑠, 𝐴𝑠)  and target network 𝒢𝑡 =

(𝑉𝑡, 𝐸𝑡 , 𝑋𝑡 , 𝑌𝑡 , 𝐴𝑡). 

1. Greedy layer-wised training for SAE-s: 

Set 𝐻𝑠(0) = 𝑋𝑠 

For k=1: l 

1.1 Leverage 𝐻𝑠(𝑘−1) as input to k-th layer of SAE-s; 

1.2 Given 𝐻𝑠(𝑘−1), 𝑋𝑠, 𝑌𝑠 , optimize k-th layer of SAE-s by finding 𝜃𝑠(𝑘)∗ =

{𝑊1
𝑠(𝑘)∗

,𝑊2
𝑠(𝑘)∗

, 𝐵1
𝑠(𝑘)∗

, 𝐵2
𝑠(𝑘)∗

} = 𝑎𝑟𝑔min
𝜃𝑠(𝑘)

𝒥𝑠(𝑘) via SGD;  

1.3 Leverage 𝜃𝑠(𝑘)∗ to learn 𝐻𝑠(𝑘); 

End for 

2. Get predicted label matrix for 𝒢𝑡: 

2.1 Convert 𝐴𝑠  and 𝐴𝑡  into low-dimensional attribute node vector 

representations via PCA; 

2.2 Predict fuzzy labels for nodes in 𝑉𝑢
𝑡 based on attribute vector representations 

and obtain �̂�𝑡; 

3. Greedy layer-wised training for SAE-t: 

Set 𝐻𝑡(0) = 𝑋𝑡 

For k=1: l 

3.1 Leverage 𝐻𝑡(𝑘−1) as input to k-th layer of SAE-t; 

3.2 Given 𝐻𝑡(𝑘−1), 𝑋𝑡 , �̂�𝑡 , 𝐻𝑠(𝑘−1), 𝑌𝑠, optimize k-th layer of SAE-t by finding 

𝜃𝑡(𝑘)∗ = {𝑊1
𝑡(𝑘)∗,𝑊2

𝑡(𝑘)∗, 𝐵1
𝑡(𝑘)∗, 𝐵2

𝑡(𝑘)∗
} = 𝑎𝑟𝑔min

𝜃𝑡(𝑘)
𝒥𝑡(𝑘) via SGD; 

3.3 Leverage 𝜃𝑡(𝑘)∗ to learn 𝐻𝑡(𝑘); 

End for 

Output: Discriminative and generalized hidden node vector representations for 𝒢𝑠 and 

𝒢𝑡, i.e., 𝐻𝑠(𝑙) and 𝐻𝑡(𝑙). 
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5.5 Experiments 

5.5.1 Datasets 

We evaluated the proposed CDNE model in five real-world networked datasets. 

The statistics of these datasets are shown in Table 5.2. BlogCatalog1 and 

BlogCatalog2 are two disjoint subnetworks we extracted from the BlogCatalog 

dataset [148]. In these two networks, a node represents a blogger and an edge 

indicates friendship between two bloggers. In addition, each node is associated 

with some attributes, which are the keywords extracted from the blogger’s 

self-description. In the original BlogCatalog dataset [148], each node has only one 

label, indicating the blogger’s interested group. Since the two networks were 

extracted from the same original network, the attribute distributions between the 

two networks are not varied enough. To enlarge the cross-network distribution 

discrepancy, we randomly altered 30% of non-zero attribute values to be zeroes 

and randomly altered 30% of zero attribute values to be “1” in each network so as 

to simulate missing and inconsistent attribute values across different networks. 

In addition, Citationv1, DBLPv7 and ACMv9 are the citation networks, where 

each node denotes a paper and each edge indicates that one paper cites another. We 

extracted Citationv1, DBLPv7 and ACMv9 from the datasets provided by 

ArnetMiner7 [149], which were from different sources, i.e., Microsoft Academic 

Graph, DBLP and ACM, respectively. The papers were labeled according to their 

associated research areas and one paper can have multiple labels. The possible 

labels include “Database, Artificial Intelligence, Computer Vision, Information 

Security, and Networking”. For each paper, we adopted the bag-of-words features 

extracted from its title as the attributes. Besides, we removed the attributes that are 

                                                             
7 https://www.aminer.cn/citation 
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not shared by the three networks so as to ensure a common set of attributes across 

networks. In addition, the extracted papers we keep in Citationv1, DBLPv7 and 

ACMv9 were published before year 2008, between year 2004 and 2008 and after 

year 2010, respectively. Since the three citation networks were extracted from 

different original sources and also formed in different time periods, there have 

already existed varied cross-network distributions among them.  

Table 5.2: Statistics of the networked datasets. 

Dataset # Nodes # Edges # Attributes # Labels 

BlogCatalog1 2300 33471 
8189 6 

BlogCatalog2 2896 53836 

Citationv1 8935 15113 

3092 5 DBLPv7 5484 8130 

ACMv9 9360 15602 

5.5.2 Implementation Details 

In the proposed CDNE model, we built a 2-layer SAE for both SAE_s and SAE_t, 

with the number of hidden dimensions as 𝑑(1) = 256 and 𝑑(2) = 128 for the 

1-st layer and the 2-nd layer of SAE, respectively. We employed the deepest 

hidden vector representations learned by SAE_s and SAE_t as the node vector 

representations for the source network and the target network. For all the datasets, 

we set the maximum step as K=6. In both SAE_s and SAE_t, we set the ratio of 

penalty on the reconstruction errors of strong connections over that of weak 

connections and disconnections as 𝛽 = 6 ; set the weight of L2-norm 

regularization as 𝜆𝑠(𝑘) = 𝜆𝑡(𝑘) = 0.05; and set the weight of pairwise constraints 

on strongly connected nodes as 𝛼𝑠(1) = 𝛼𝑡(1) = 𝛼 = 4  and 𝛼𝑠(𝑘) = 𝛼𝑡(𝑘) =

𝛼/2, ∀ 𝑘 ≥ 2. In addition, in SAE_s, we set the weight of pairwise constraints on 

the labeled nodes as 𝜑𝑠(1) = 𝜑 = 2 and 𝜑𝑠(𝑘) = 𝜑/2, ∀ 𝑘 ≥ 2. In SAE_t, we set 

the weight of marginal MMD as 𝜇𝑡(1) = 𝜇 = 2 and 𝜇𝑡(𝑘) = 𝜇/2, ∀ 𝑘 ≥ 2 for all 
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the datasets; and set the weight of conditional MMD as 𝛾𝑡(1) = 𝛾 = 60, 𝛾𝑡(𝑘) =

𝛾/2, ∀ 𝑘 ≥ 2 for the cross-network node classification task across BlogCatalog1 

and BlogCatalog2, and set 𝛾 = 50 for cross-network node classification among 

Citationv1, DBLPv7 and ACMv9. 

5.5.3 Baselines 

The proposed CDNE was benchmarked against two transfer learning algorithms. 

In addition, since there is no existing cross-network embedding algorithm 

developed for cross-network node classification, we compare CDNE with the 

state-of-the-art single-network embedding algorithms. 

1) NetworkTr [16]: It is a transfer learning algorithm specifically developed for 

the networked data. It employs NMTF to project the label propagation 

matrices of the source network and the target network into a common latent 

space so as to learn the latent structural features shared by the two networks. 

Then, it employs node attributes and latent structural features as the node 

features for cross-network node classification. 

2) TrAdaBoost [144]: It is an instance weighting transfer learning algorithm 

which assigns higher weights to the source domain instances that are more 

useful for prediction in the target domain. It requires the source domain and 

the target domain to share the same set of pre-defined feature vector 

representations. To tailor TrAdaBoost for cross-network node classification, 

we employed the low-dimensional attribute vector representations extracted by 

PCA as the node feature vector representations.  

3) DeepWalk [24]: It is a random-walk based network embedding algorithm, 

which exploits the network structure by generating a collection of truncated 

random walks via DFS. Then, by regarding a node in a network as a word in a 
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document, it extends the Skip-Gram language model [41] to learn 

low-dimensional node vector representations.  

4) GraRep [29]: It is a matrix-factorization based network embedding algorithm, 

which employs SVD to factorize each k-step PPMI matrix so as to learn the 

low-dimensional node vector representations. Then, it concatenates all the 

k-step representations as the final representations.  

5) DNE-APP [11]: It is a deep network embedding algorithm which employs a 

semi-supervised SAE to learn the low-dimensional node vector representations 

from the aggregated k-step PPMI matrix. It incorporates pairwise constraint to 

make the node pairs with higher aggregated proximities have more similar 

hidden vector representations.     

6) LANE [139]: It is an attributed network embedding algorithm, which aims to 

preserve both network topological proximity and node attribute affinity by the 

embedding vector representations. It incorporates label information into 

attributed network embedding so as to capture the correlations among network 

topological structures, node attributes and node labels. 

Note that DeepWalk, GraRep, DNE-APP and LANE were originally 

developed for a single-network scenario. To tailor them to cross-network node 

classification, we construct a unified network containing all the nodes in the 

source network and the target network. Then, by utilizing the unified network for 

training, the cross-network proximities between nodes from the source network 

and the target network can be directly captured in the unified network. 

5.5.4 Cross-network Node Classification  

For cross-network node classification, all the nodes in the source network have 

observable labels, while in the target network, we randomly sample a very small 

fraction of nodes to give them accessible labels. Then, we run each baseline to 
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learn the low-dimensional node vector representations with the same 

Table 5.3: Cross-network node classification between the BlogCatalog1 and BlogCatalog2 

networks when only 1% of labeled nodes are available in the target network. The training set as 

“T” indicates that only leveraging the labeled nodes in the target network for training, while 

“S+T” indicates that leveraging the labeled nodes from both the source network and the target 

network for training. The highest Micro-F1 and Macro-F1 scores among all the comparing 

algorithms are shown in Boldface. 

𝓖 → 𝓖  BlogCatalog1→BlogCatalog2 BlogCatalog2→BlogCatalog1 

Algorithms 
Training 

Set 
Micro-F1 Macro-F1 Micro-F1 Macro-F1 

CDNE S+T 0.6466 0.6452 0.6218 0.6192 

NetworkTr S+T 0.5041 0.4965 0.5234 0.5162 

TrAdaBoost S+T 0.4742 0.4532 0.4817 0.4630 

DeepWalk 
T 0.3272 0.2717 0.3434 0.2979 

S+T 0.2856 0.2544 0.2483 0.2323 

GraRep 
T 0.4234 0.3850 0.4542 0.4303 

S+T 0.3049 0.2650 0.2615 0.2475 

DNE-APP 
T 0.3531 0.2980 0.3676 0.3251 

S+T 0.2721 0.2317 0.2879 0.2360 

LANE 
T 0.2221 0.1333 0.2202 0.1209 

S+T 0.5278 0.5190 0.5318 0.5270 

Table 5.4: Cross-network node classification between the Citationv1 and DBLPv7 networks 

when only 1% of labeled nodes are available in the target network.  

𝓖 → 𝓖  Citationv1→DBLPv7 DBLPv7→Citationv1 

Algorithms Training Set Micro-F1 Macro-F1 Micro-F1 Macro-F1 

CDNE S+T 0.7642 0.7420 0.8099 0.7904 

NetworkTr S+T 0.6600 0.6207 0.6722 0.6443 

TrAdaBoost S+T 0.6114 0.5673 0.6074 0.5761 

DeepWalk 
T 0.5787 0.4996 0.6773 0.6125 

S+T 0.3130 0.2724 0.4847 0.4297 

GraRep 
T 0.6207 0.5541 0.6982 0.6439 

S+T 0.4021 0.3495 0.5427 0.4796 

DNE-APP 
T 0.6165 0.5429 0.7128 0.6509 

S+T 0.5517 0.4945 0.6107 0.5609 

LANE 
T 0.4280 0.2718 0.4674 0.3759 

S+T 0.5961 0.5549 0.5728 0.5344 
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dimensionality as 128-D. Next, we train a one-vs-rest LR classifier based on the 

fully labeled nodes in the source network and the scarce labeled nodes in the target 

network, and leverage the classifier to predict the labels of the unlabeled nodes in 

the target network. To evaluate the cross-network node classification performance, 

we measure the Micro-F1 and Marco-F1 scores of the predictions for the testing 

Table 5.5: Cross-network node classification between the Citationv1 and ACMv9 networks 

when only 1% of labeled nodes are available in the target network.  

𝓖 → 𝓖  Citationv1→ACMv9 ACMv9→Citationv1 

Algorithms Training Set Micro-F1 Macro-F1 Micro-F1 Macro-F1 

CDNE S+T 0.7899 0.7890 0.8263 0.8087 

NetworkTr S+T 0.6406 0.6107 0.6643 0.6402 

TrAdaBoost S+T 0.5637 0.5387 0.6199 0.5966 

DeepWalk 
T 0.5983 0.5903 0.6773 0.6125 

S+T 0.3974 0.3721 0.4260 0.3635 

GraRep 
T 0.6308 0.6260 0.6982 0.6439 

S+T 0.5384 0.5307 0.4833 0.4243 

DNE-APP 
T 0.6658 0.6625 0.7128 0.6509 

S+T 0.5672 0.5566 0.6262 0.5644 

LANE 
T 0.4298 0.3222 0.4674 0.3759 

S+T 0.5688 0.5337 0.6020 0.5656 

Table 5.6: Cross-network node classification between the DBLPv7 and ACMv9 networks when 

only 1% of labeled nodes are available in the target network.  

𝓖 → 𝓖  DBLPv7→ACMv9 ACMv9→DBLPv7 

Algorithms Training Set Micro-F1 Macro-F1 Micro-F1 Macro-F1 

CDNE S+T 0.7829 0.7847 0.7543 0.7325 

NetworkTr S+T 0.6171 0.5818 0.6364 0.6008 

TrAdaBoost S+T 0.5396 0.5099 0.5957 0.5493 

DeepWalk 
T 0.5983 0.5903 0.5787 0.4996 

S+T 0.3880 0.3407 0.4078 0.3502 

GraRep 
T 0.6308 0.6260 0.6207 0.5541 

S+T 0.4355 0.4350 0.3754 0.2803 

DNE-APP 
T 0.6658 0.6625 0.6165 0.5429 

S+T 0.5400 0.5332 0.4801 0.3776 

LANE 
T 0.4298 0.3222 0.4280 0.2718 

S+T 0.5416 0.4832 0.6004 0.5435 
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nodes in the target network. The reported Micro-F1 and Macro-F1 scores are the 

average over the same 5 random splits, for each comparing algorithm.  

Firstly, as shown in Tables 5.3, 5.4, 5.5 and 5.6, the proposed CDNE model 

always achieved the highest Micro-F1 and Macro-F1 scores for node classification 

in all the target networks, among all the comparing algorithms. In addition, the 

improvement of CDNE over the best baseline is rather significant. For example, as 

shown in Table 5.3, for cross-network node classification from BlogCatalog1 to 

BlogCatalog2, CDNE can achieve a 22.51% higher Micro-F1 score and also a 

24.32% higher Macro-F1 score than the best baseline, i.e., LANE (S+T).  

Secondly, we can see that among all the cross-network node classification 

tasks, both CDNE and NetworkTr always achieve much higher Micro-F1 and 

Macro-F1 scores than TrAdaBoost. Note that both CDNE and NetworkTr consider 

network connections and node attributes for cross-network node classification, 

however, TrAdaBoost only leverages the attribute information while ignoring 

network connections. Thus, it reflects that it is indeed necessary to design the 

network-specific transfer learning algorithms to consider the important network 

structural properties during knowledge transfer across networks. In addition, the 

proposed CDNE model always significantly outperforms NetworkTr for all the 

cross-network node classification tasks. This could be explained by the fact that 

we employ deep network embedding to learn a unified embedding space shared by 

the source network and the target network, which is more powerful to capture the 

non-linear properties of the complex underlying network structures than the 

matrix-factorization approach utilized by NetworkTr. Moreover, NetworkTr does 

not minimize the cross-network distribution discrepancy when learning the unified 

latent space. In contrast, we incorporate conditional MMD constraint into the 

overall loss function of CDNE to make the same labeled nodes across networks 

closer to each other in the unified embedding space, which is rather beneficial for 
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cross-network node classification.  

Thirdly, we found that the three state-of-the-art network embedding algorithms, 

i.e., DeepWalk, GraRep and DNE-APP, are rather unsuitable for cross-network 

node classification. As shown in Tables 5.3, 5.4, 5.5 and 5.6 when utilizing the 

fully labeled source network nodes and the limited labeled target network nodes 

together to train the classifier, DeepWalk (S+T), GraRep (S+T) and DNE-APP 

(S+T) perform even much worse than DeepWalk (T), GraRep (T) and DNE-APP 

(T) which only utilize 1% of the target network labeled nodes for training. This is 

because these network embedding algorithms only preserve the topological 

proximities between nodes within a single network, which makes the learned node 

vector representations incomparable across different networks [53] and leads to 

negative transfer. However, we can see that when leveraging the labeled nodes 

from both the source network and the target network for training, LANE (S+T) 

can always achieve much better performance than LANE (T) which just utilizes 

the scarce target network labeled nodes for training. This might be because LANE 

can capture the correlations among node attributes, network proximities and node 

labels, and such correlations might be generalized across different networks. 

In addition, as shown in Table 5.3, for node classification across BlogCatalog1 

and BlogCatalog2, NetworkTr, TrAdaBoost and LANE (S+T) can achieve 

significantly better performance than DeepWalk, GraRep and DNE-APP. 

However, as shown in Tables 5.4, 5.5 and 5.6, when the target network is 

Citationv1 or ACMv9, GraRep (T) and DNE-APP (T) can achieve even better 

performance than NetworkTr, TrAdaBoost and LANE (S+T). Note that 

NetworkTr, TrAdaBoost and LANE consider node attributes and network 

connections when learning the hidden node feature vector representations, while 

all of DeepWalk, GraRep and DNE-APP ignore the attribute information. The 

different results in the BlogCatalog and the citation networks reflect that the 
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attribute information are more important and useful for node classification in 

BlogCatalog. This might be explained by the fact that the node labels in the 

citation networks are more perfectly satisfied with the homophily theory, i.e., the 

cited papers are more likely to belong to the same research area. However, in the 

dense BlogCatalog networks with abundant network connections, two connected 

bloggers might be interested in different groups. In such a case, only leveraging 

network connections to predict node labels might be misleading sometimes, while 

leveraging node attributes as the complementary information would significantly 

improve node classification performance. 

Next, we vary the target network training fraction in 

{0.5%, 1%, 3%, 5%, 10%} and test the performance of the algorithms. Since 

DeepWalk, GraRep and DNE-APP are rather unsuitable for cross-network node 

classification, we report their results for single-network node classification by only 

utilizing the target network labeled nodes for training. As shown in Figure 5.2, as 

the target network training fraction increases, the DeepWalk (T), GraRep (T) and 

DNE-APP (T) algorithms will achieve significantly higher Micro-F1 and 

Macro-F1 scores. In addition, as shown in Figure 5.2(b), when the training fraction 

is more than 1% in the Citationv1 target network, GraRep (T) and DNE-APP (T) 

can achieve even much better performance than NetworkTr and TrAdaBoost. This 

is because the state-of-the-art single-network embedding algorithms can well 

preserve the proximities between connected nodes within a single network, which 

is necessary for learning informative node vector representations for node 

classification in a single network. On the other hand, although NetworkTr can 

learn the shared latent structural features across networks, it cannot guarantee such 

latent features to be label-discriminative for node classification. In addition, we 

can see that although LANE (S+T) achieved promising performance for 

cross-network node classification from BlogCatalog1 to BlogCatalog2, it 
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performed the worst among all the comparing algorithms for the task from 

ACMv9 to Citationv1. It might because the citation networks are rather sparse, 

which makes the matrix factorization technique employed in LANE more 

challenging in capturing the correlations among node attributes, network 

proximities and node labels. The proposed CDNE model not only takes advantage 

of deep network embedding to learn the informative and discriminative node 

vector representations, but also incorporates MMD constraints to match the 

 

Figure 5.2: Micro-F1 and Macro-F1 scores of predicting labels for unlabeled nodes in the target 

network, with varied fractions of labeled nodes observed in the target network. (a) and (b) 

show the results of the cross-network node classification task from BlogCatalog1 to 

BlogCatalog2, and from ACMv9 to Citationv1, respectively. 

0.25

0.35

0.45

0.55

0.65

0.5 1 3 5 10

M
ic

ro
-F

1
 

% of labeled nodes in target network

0.17

0.27

0.37

0.47

0.57

0.67

0.5 1 3 5 10

M
a
c
ro

-F
1

 

% of labeled nodes in target network

(a) From BlogCatalog1 to BlogCatalog2

0.54

0.64

0.74

0.84

0.5 1 3 5 10

M
ic

ro
-F

1
 

% of labeled nodes in target network

CDNE NetworkTr TrAdaBoost Deepwalk (T)

GraRep (T) DNE-APP (T) LANE (S+T)

(b) From ACMv9 to Citationv1

0.54

0.64

0.74

0.84

0.5 1 3 5 10

M
a
c
ro

-F
1

 

% of labeled nodes in target network



 

136 
 

cross-network distributions. Thus, even with varied target network training 

fractions, the proposed CDNE model always achieves significantly better 

cross-network node classification results than the single-network embedding 

algorithms and the transfer learning baselines without deep network embedding.  

5.5.5 Parameter Sensitivity 

In this subsection, we analyze the sensitivity of the parameters 𝐾, 𝛽, 𝛼, 𝜑, 𝜇, 𝛾 on 

the performance of CDNE.  

Parameter 𝑲 denotes the maximum step of neighbors utilized to measure the 

aggregated PPMI matrix. As shown in Figure 5.3(a), as K increases, both the 

Micro-F1 and Macro-F1 scores will increase. For example, setting K=6 yields a 

6.51% higher Macro-F1 score and a 5.28% higher Micro-F1 score than K=1. This 

indicates that preserving high-order proximities is indeed useful for learning 

informative feature vector representations for node classification.  

Parameter 𝜷 indicates the ratio of penalty on the reconstruction errors of 

strong connections over that of weak connections and disconnections. As shown in 

Figure 5.3(b), 𝛽 > 1 always yields much higher Micro-F1 and Macro-F1 scores 

than 𝛽 = 1. Thus, adding larger penalty to make SAE_s and SAE_t focus more 

on reconstructing strong connections is indeed helpful for learning informative 

feature vector representations for node classification.  

Parameter 𝜶 refers to the weight of pairwise constraint on strongly connected 

nodes. As shown in Figure 5.3(c), 𝛼 > 0 always achieves better cross-network 

node classification results than 𝛼 = 0. This demonstrates the effectiveness of 

incorporating the pairwise constraint into SAE_s and SAE_t to map more strongly 

connected nodes within a network closer to each other so as to well capture the 

homophily effect. 
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Parameter 𝝋 denotes the weight of pairwise constraint on labeled nodes in the 

source network. As shown in Figure 5.3(d), 𝜑 > 0 always leads to much higher 

F1 scores than 𝜑 = 0. Thus, incorporating pairwise constraint to map nodes 

sharing more common labels closer to each other, while mapping nodes belonging 

to completely different categories far apart from each other is indeed effective for 

learning discriminative feature vector representations for node classification.  

Parameters 𝝁 and 𝜸 represent the weight of marginal MMD and conditional 

MMD in the overall loss function of SAE_t, respectively. As shown in Figures 

5.3(e) and 5.3(f), 𝜇 and 𝛾 with positive values would always lead to much better 

performance than with zero values. This reflects that incorporating the MMD 

constraints is indeed effective for learning network-invariant node vector 

representations. Moreover, we can see that γ = 50 leads to a 25.5% higher 

Micro-F1 score and a 43.7% higher Macro-F1 score than γ = 0 . Thus, it 

demonstrates that incorporating the conditional MMD to map the same labeled 

nodes across networks to have similar latent vector representations should play a 

rather important role in achieving good performance in cross-network node 

 

Figure 5.3: Sensitivity of the parameters, i.e., 𝐾, 𝛽, 𝛼, 𝜑, 𝜇, 𝛾  on the cross-network node 

classification performance of CDNE, when the source network is ACMv9 and the target 

network is dblpv7, and 1% of nodes in the target networks are with observed labels. 

0.3

0.4

0.5

0.6

0.7

0.8

1 4 5 6 7

(b) Ratio of reconstruction penalty: β

0.7

0.72

0.74

0.76

0 2 4 6 8

(c) Weight of pairwise constraint on 
connected nodes: α

0.67

0.7

0.73

0.76

1 2 3 4 6 8

F
1

(a) Value of Maximum step: K

0.68

0.7

0.72

0.74

0.76

0 1 2 3 4

F
1

(d) Weight of pairwise constraint on 
labeled nodes: φ

0.71

0.73

0.75

0.77

0 1 2 3 4

(e) Weight of marginal MMD: μ

Micro-F1 Macro-F1

0.48

0.55

0.62

0.69

0.76

0 40 50 60 70

(f) Weight of conditional MMD: γ



 

138 
 

classification.  

5.6 Summary 

In this work, we address a cross-network node classification problem. Given a 

target network with scarce labeled nodes and a source network with fully labeled 

nodes, we aim to leverage the abundant labeled information from the source 

network to help classify unlabeled nodes in the target network. The state-of-the-art 

single-network embedding algorithms can achieve promising results for node 

classification involving one network, however, they fail to learn generalized and 

comparable network representations across networks. To address this, we propose 

a novel cross-network embedding model, i.e., CDNE, which is composed of two 

semi-supervised SAEs, to embed the nodes from the source network and from the 

target network into a unified low-dimensional latent space. To well capture the 

homophily effect for each single network, we devise pairwise constraints to make 

more strongly connected nodes within a network have more similar hidden vector 

representations. In addition, to learn discriminative feature vector representations 

for node classification, we devise pairwise constraints to make the source network 

nodes sharing more common labels closer while those belonging to completely 

different categories far apart from each other in the embedding space. Moreover, 

to make the hidden vector representations comparable across networks, we 

incorporate the marginal and class-conditional MMD constraints to minimize the 

cross-network distribution discrepancy. Specifically, we employ the associated 

node attributes to predict fuzzy labels for the unlabeled nodes in the target network. 

Then, we leverage both the observable binary labels and the predicted fuzzy labels 

to guide the cross-network label-aligned embedding so as to learn similar hidden 

vector representations for the same category of nodes across networks. Extensive 

experimental results demonstrate that the proposed CDNE model achieves 
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significant gains over the related algorithms for node classification in the target 

network. 

This work is now under review in [17]. There are several directions to extend 

this work. Firstly, we can further exploit the abundant node attribute information 

as one of the input components to learn the node vector representations. In 

addition, we can address a more challenging task where nodes from the source 

network and the target network do not share the same categories of node attributes, 

and consequently how the CDNE model can be extended to select the commonly 

useful node attributes across networks. Moreover, instead of leveraging all the 

labeled nodes from the source network to help classify the unlabeled target 

network nodes, we can design a scheme to filter the useless source network nodes 

so as to achieve better cross-network node classification performance. Moreover, 

it is interesting to adapt CDNE to a more generalized cross-network node 

classification task, where the node labels in the source network and the target 

network can be not fully identical. 
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Chapter 6 

Conclusions and Future Work 

6.  

6.1 Conclusions 

Complex networks are ubiquitous in many real-world scenarios, such as social 

networks, publication networks, biological networks and transportation networks. 

Mining information from complex networks is important for a wide variety of 

applications. To effectively and efficiently address the canonical graph mining 

tasks, such as node classification, node clustering, link prediction, node/link 

retrieval, one should pre-define a set of informative and discriminative feature 

vector representations for nodes or edges in the networks. Motivated by this, in 

this thesis, we proposed four models to learn the informative node or edge feature 

vector representations in the complex networks.  

In Chapter 2, we proposed a cross-network learning (CNL) framework to 

address the cross-network prediction tasks over nodes and edges in the IM 

problem. Specifically, the proposed CNL model aims to leverage the greedy seed 

selection and influence propagation knowledge pre-learned from a smaller source 

network to help predict seed nodes and inactive edges in multiple larger target 

networks. In the CNL model, we employed a feature engineering approach to 

manually select explicit topological features which can reflect the influence of 

nodes in the IM problem. In addition, to address domain discrepancy, we assign 

lower weights to the features which perform less similarly between the source 

network and the target network. Moreover, we proposed an innovative fuzzy 

self-training for domain adaptation algorithm to iteratively retrain the prediction 
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model based on not only the fully labeled instances in the source network, but also 

the most confident predicted instances in the target network with their predicted 

fuzzy labels. On one hand, for seed selection, since the CNL model learns the 

greedy seed selection knowledge from the source network, it can achieve a high 

influence spread comparable to the greedy algorithms in the target networks. In 

addition, since the CNL model heuristically selects seed nodes in the target 

network, it can greatly save the running time. On the other hand, for graph 

sparsification, by leveraging the influence propagation knowledge pre-learned 

from the source network, the CNL model would only remove the edges least 

useful for influence propagation in the target network. Thus, it would just cause a 

little loss of influence spread in the sparse target networks, while significantly 

speeding up the greedy algorithms. 

In addition, motivated by the recent success of deep learning, we proposed 

three state-of-the-art deep network embedding models to automatically learn the 

low-dimensional node vector representations, which can tackle a wide variety of 

graph mining tasks. These three deep network embedding models aim to address 

the open issues in current network embedding research, namely asymmetric 

network embedding, signed network embedding and cross-network embedding.  

Most existing network embedding algorithms ignore the important asymmetric 

relationships between nodes in a network. To address this, in Chapter 3, we 

proposed an asymmetry-aware deep network embedding (AsDNE) model to 

preserve the asymmetric outward and inward proximities between nodes, in both 

directed and undirected networks. We employed two semi-supervised SAEs, i.e., 

SAE-Out and SAE-In, to learn the non-linear outward and inward node vector 

representations, respectively. To well capture the asymmetric relationships, we 

incorporated pairwise constraints into SAE-Out and SAE-In to map node pairs 

with bi-directionally strong connections much closer than those with strong 
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connection in only one direction. Extensive experimental results in both directed 

and undirected real-world networks demonstrate that the proposed AsDNE model 

can learn task-independent network representations outperforming the 

state-of-the-art network embedding algorithms. 

In addition, the vast majority of existing network embedding algorithms are 

developed for unsigned networks, while the signed networks have pretty distinct 

properties from the unsigned networks. Thus, it is necessary to design the signed 

network embedding algorithms to capture the distinct properties of the signed 

networks. In this regard, in Chapter 4, we proposed a deep network embedding 

with structural balance preservation (DNE-SBP) model to learn deep graph 

representations for the signed networks. We employed a semi-supervised SAE to 

reconstruct the adjacency connections of a signed network. To preserve the 

structural balance property of the signed networks, we incorporated pairwise 

constraints into the SAE to map positively connected nodes much closer than 

negatively connected nodes. Extensive experimental results in the real-world 

signed networks demonstrate the superiority of the proposed DNE-SBP model 

over the state-of-the-art network embedding algorithms for graph representation 

learning in signed networks. 

Existing network embeddings are generally developed for a single network 

while failing to capture the proximities between nodes across different networks. 

In Chapter 5, we proposed a cross-network deep network embedding (CDNE) 

model to learn label-discriminative and network-invariant node vector 

representations. We should be the first to integrate deep network embedding and 

domain adaptation to address the cross-network node classification task. We 

employed two semi-supervised SAEs, i.e., SAE_s and SAE_t, to embed the nodes 

from the source network and from the target network into a unified 

low-dimensional latent space. In addition, we leveraged network structures, node 
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attributes and node labels to capture the proximities between nodes not only within 

a network but also across different networks. Extensive experimental results in the 

real-world networks demonstrate that the proposed CDNE model significantly 

outperforms the state-of-the-art single-network embedding algorithms and the 

traditional transfer learning algorithms (without deep network embedding), for 

node classification in the target network. 

In summary, in this thesis, we not only utilize a feature-engineering approach 

to manually define explicit topological features for nodes or edges in the networks, 

but also employ the state-of-the-art deep network embedding models to 

automatically learn the low-dimensional latent feature vector representations. In 

addition, we leverage the learned feature vector representations to address various 

graph mining tasks within a single network, such as node classification, node 

clustering, link prediction, and node/edge retrieval. Moreover, we are among the 

first to incorporate the domain adaptation techniques in the graph mining tasks 

across different networks, such as cross-network node classification and 

cross-network link prediction. We believe that the innovative ideas and proposed 

techniques in this thesis would inspire the research in complex network analysis, 

graph mining, and graph representation learning within a single network and 

across different networks. 

6.2 Future Work 

There are several directions to extend the existing network embedding work. 

6.2.1 Signed Network Embedding 

Existing signed network embedding algorithms [114], [113], [45], [44], [12] only 

focus on preserving the structural balance properties of the signed networks. 

However, the signed networks also have other distinct properties, as described in 
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[51]. For example, the nodes connected with positive links are with higher 

clustering coefficients than those connected with negative links. In addition, the 

positively connected nodes would have stronger tendency to form bi-directional 

connections than those negatively connected ones. Moreover, the structural 

balance theory is naturally defined for undirected networks [51]. Thus, existing 

signed network embedding algorithms with structural balance preservation would 

be problematic when applied to the directed signed networks. For example, in a 

directed signed network, if node 𝑣𝑖 has a positive link towards 𝑣𝑗 , while 𝑣𝑗  has 

a negative link towards 𝑣𝑖 , then according to 𝑒𝑖𝑗 = 1, 𝑣𝑖  and 𝑣𝑗  should be 

mapped close to each other, while according to 𝑒𝑗𝑖 = −1, 𝑣𝑗  and 𝑣𝑖 should be 

mapped far apart from each other. To address this issue, we can consider another 

important property of the signed networks, i.e., status theory, which is relevant to 

the directed signed networks [150], [52]. The status theory suggests that 𝑣𝑖  has a 

higher status than 𝑣𝑗 , if there is a positive link from 𝑣𝑗  to 𝑣𝑖 or a negative link 

from 𝑣𝑖  to 𝑣𝑗 . Thus, in the future work, we can design the signed network 

embedding algorithms to capture other important properties of the signed 

networks. 

6.2.2 Cross-network Embedding 

The proposed CDNE model should be the first cross-network deep network model 

for learning label-discriminative and network-invariant feature vector 

representations for cross-network node classification. Several issues can be further 

investigated. Firstly, in the CDNE model, we leverage all the labeled nodes from 

the source network to help classify the unlabeled target network nodes. In the 

future research, it is better to design a scheme to filter the useless source network 

nodes which might cause negative transfer. Also, we can design a scheme to 

re-weight the latent features according to their generalization across networks. For 
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example, we can employ the proposed CNL model to address the feature 

incompatibility between the source network and the target network and assign 

lower weights to the features which perform less similarly between the two 

networks. In addition, in the CDNE model, we assume that the nodes from the 

source network and the target network share the same categories of node attributes. 

A more challenging task can be addressed where the source network and the target 

network do not share the identical node attributes, and by then, we need to design 

algorithms to automatically select the commonly useful node attributes across 

networks. Besides, most recently, several attributed network embedding 

algorithms [151], [152], [97], [153] have been proposed to employ node attributes 

as the main input for learning network representations, with the goal of preserving 

both attributed affinity and network topological proximities. Thus, instead of 

utilizing node attributes as the side information, we can exploit them as the main 

input to learn the cross-network node vector representations. Moreover, instead of 

utilizing SAEs as the main building block in the deep network model, we can also 

try some other deep neural network architectures, such as convolutional neural 

network, variational auto-encoder and generative adversarial networks. 

6.2.3 Heterogeneous Network Embedding 

In this thesis, we focus on network embedding in homogeneous networks. 

However, in a heterogeneous network, there are more than one type of nodes or 

more than one type of edges. For example, in a recommender system, nodes can be 

users or items, and edges can be the relationships between two users, between one 

user and one item, or between two items. Similarly, in a question answering 

system, a node can be a question, an answer, or a user, and the edges can be any 

relationships among different types or the same type of nodes. In the future work, 

we can extend the ideas and the proposed models in this thesis to heterogeneous 
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network embedding. For example, we can extend our signed network embedding 

model, i.e., DNE-SBP, to a recommender system, by modeling users and items as 

two types of nodes. Then, we can model the “like” and “dislike” relationships 

between users and items as the positive and negative links between users and items, 

and model the “similar” and “dissimilar” relationships between two items as the 

positive and negative links between items. Next, we can make recommendations 

for users based on the link sign prediction results between users and items and 

conduct customer segmentation according to the network clustering results of 

users. 
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