

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

FEATURE REPRESENTATION

LEARNING IN COMPLEX

NETWORKS

SHEN XIAO

PhD

The Hong Kong Polytechnic University

2019

The Hong Kong Polytechnic University

Department of Computing

Feature Representation Learning in

Complex Networks

Shen Xiao

A thesis submitted in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

July 2018

ii

Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

(Signature)

SHEN Xiao (Name of student)

iii

Abstract

Complex networks are ubiquitous in the real world. Learning appropriate feature

representations for complex networks is important for a wide variety of graph mining

tasks. Motivated by this, in this thesis, we propose four models to learn informative

feature vector representations for nodes or edges in the networks, which can effectively

and efficiently address several canonical graph mining tasks. In the first work, we utilize a

feature-engineering approach to define explicit topological features for nodes and edges in

the influence maximization (IM) scenario. Next, we propose three deep network

embedding models to learn the low-dimensional latent node vector representations which

can well preserve the original network structures and properties. Preserving various

network properties is important for learning informative feature representations for

different graph mining tasks. Thus, the first two proposed deep network embedding

models focus on preserving the asymmetric network transitivity and the signed network

property to effectively address the typical graph mining tasks within a single network,

including node classification, node clustering and link prediction. In addition, the third

proposed deep network embedding model incorporates domain adaptation technique into

deep network embedding to learn generalized and comparable feature representations

which can effectively address the cross-network prediction task.

In the first work, we propose a cross-network learning (CNL) framework to leverage

the greedy seed selection and influence propagation knowledge pre-learned from a smaller

source network to select seed nodes and remove inactive edges for multiple larger target

networks. To address domain discrepancy, we assign lower weights to the explicit

topological features which perform less similarly between the source network and the

target network. In addition, we utilize a fuzzy self-training algorithm to iteratively retrain

the prediction model based on not only the fully labeled instances from the source

iv

network, but also the most confident predicted instances in the target network with their

predicted fuzzy labels. Extensive experiments demonstrate that the proposed CNL model

can achieve a good trade-off between the efficiency and effectiveness of the IM task in the

target networks.

In addition, the three proposed deep network embedding models focus on addressing

several open issues in current network embedding research, i.e., asymmetric network

embedding, signed network embedding and cross-network embedding. Firstly, an

asymmetry-aware deep network embedding (AsDNE) model is proposed, which is

composed of two semi-supervised stacked auto-encoders (SAEs) to preserve the

asymmetric outward and inward network proximities. To well capture the asymmetric

relationships, we design pairwise constraints to map node pairs with bi-directionally

strong connections much closer than those with strong connection in only one direction.

Extensive experiments demonstrate that AsDNE can learn task-independent network

representations outperforming the state-of-the-art network embedding algorithms, in both

directed and undirected networks. Secondly, we propose a deep network embedding

model with structural balance preservation (DNE-SBP) for signed networks. A

semi-supervised SAE is employed to reconstruct the signed adjacency matrix, where

larger penalty is added to make the SAE focus more on reconstructing the scarce negative

links than the abundant positive links. To well preserve the structural balance property, we

design pairwise constraints to map positively connected nodes much closer than

negatively connected nodes. Extensive experiments demonstrate the superiority of

DNE-SBP over the state-of-the-art network embedding algorithms for graph

representation learning in signed networks. Finally, we propose a cross-network deep

network embedding (CDNE) model, which innovatively integrates deep network

embedding and domain adaptation techniques to learn label-discriminative and

network-invariant node vector representations. Two semi-supervised SAEs are employed

to embed nodes from the source network and the target network into a unified

v

low-dimensional latent space. In addition, similar nodes within a network and across

networks would be mapped closer to each other, based on their network structures,

attributes and labels. Extensive experiments demonstrate that CDNE significantly

outperforms the state-of-the-art network embedding algorithms for node classification in

the target network.

vi

Publications

The following papers, published, in press or submitted, are partial outputs of my

PhD study in PolyU.

Conference Papers

1. X. Shen, Q. Dai, S. Mao and F.-l. Chung, “Network together: Node

classification via cross-network deep network embedding,” submitted to ACM

SIGIR Conference on Research and Development in Information Retrieval,

2019.

2. Q. Dai, X. Shen, L. Zhang, Q. Li and D. Wang, “Adversarial training methods

for network embedding,” accepted by International Conference on World Wide

Web, 2019.

3. S. Mao, X. Shen, and F.-l. Chung, “Deep domain adaptation based on

multi-layer joint kernelized distance,” in Proceedings of the ACM SIGIR

Conference on Research and Development in Information Retrieval, 2018.

4. X. Shen, F.-l. Chung, and S. Mao, “Leveraging cross-network information for

graph sparsification in influence maximization,” in Proceedings of the ACM

SIGIR Conference on Research and Development in Information Retrieval,

2017.

5. X. Shen and F.-l. Chung, “Deep network embedding with aggregated

proximity preserving,” in Proceedings of the IEEE/ACM International

Conference on Advances in Social Network Analysis and Mining, 2017.

6. X. Yi, X. Shen, W. Lu, T. S. Chan, and F.-l. Chung, “Persuasion driven

influence analysis in online social networks,” in Proceedings of the

International Joint Conference on Neural Networks, 2016.

vii

Journal Papers

7. X. Shen, S. Mao, and F.-l. Chung, “Asymmetry-aware deep network

embedding,” under 2nd review by IEEE Transactions on Knowledge and Data

Engineering, 2018.

8. X. Shen and F.-l. Chung, “Deep network embedding for graph representation

learning in signed networks,” IEEE Transactions on Cybernetics, 2018.

9. X. Shen, S. Mao, and F.-l. Chung, “Cross-network learning with fuzzy labels

for seed selection and graph sparsification in influence maximization,” under

3rd round review by IEEE Transactions on Fuzzy Systems, 2018.

viii

Acknowledgements

First and foremost, I would like to express my sincere appreciation to my

supervisor, Prof. Korris Fu-lai Chung, who always gives me enlightening guidance,

insightful suggestions, great support, continuous encouragement, and enough

freedom to let me explore my interested research.

I would also like to thank Prof. Maggie Wenjie Li, Prof. Lei Zhang, Prof.

Jiannong Cao, Prof. Xiao-Ming Wu and Prof. Qin Lu in the Department of

Computing, the Hong Kong Polytechnic University, who gave me insightful

comments and suggestions during my presentations for the guided study and

confirmation. Their great encouragement makes me have more confidence and

passion for my research. I also would like to appreciate Prof. Wai Hung TSANG

and Prof. Kwok Wai CHEUNG’s constructive comments to help me further

improve the work in my thesis.

I also want to thank my colleagues and friends in PolyU, Yumeng Guo, Wei

Lu, Chengyao Chen, Quanyu Dai, Jiaxin Chen and Sitong Mao, for their

stimulating research discussions and sharing happiness with me in my daily life.

In addition, I would like to thank the Research Grants Council of Hong Kong

and the Department of Computing, the Hong Kong Polytechnic University, for

awarding me the Hong Kong PhD Fellowship and the COMP Scholarship, which

provides me an excellent research environment.

Finally and most importantly, I would like to express my deepest thanks to my

beloved parents, my sister, and my husband. Without their great support,

continuous encouragement, and sincere love, I cannot complete this journey.

ix

Table of Contents

Certificate of Originality .. ii

Abstract ... iii

Publications ... vi

Acknowledgements ... viii

List of Figures .. xii

List of Tables ... xiv

1. Introduction ...1

1.1 Graph Mining Tasks ...2

1.2 Graph Representation Learning ..3

1.3 Contributions ..4

1.3.1 Cross-network Node and Edge Prediction in Influence Maximization

 6

1.3.2 Asymmetry-Aware Deep Network Embedding7

1.3.3 Deep Network Embedding in Signed Networks8

1.3.4 Cross-Network Deep Network Embedding ..9

2. Cross-network Node and Edge Prediction in Influence Maximization 11

2.1 Introduction .. 11

2.2 Related Work ..16

2.2.1 Influence Maximization ..16

2.2.2 Graph Sparsification ...19

2.3 Problem Formulation ..20

2.3.1 Cross-network Seed Selection in IM ..20

2.3.2 Cross-network Graph Sparsification in IM21

2.4 The Proposed Algorithm ...22

2.4.1 Explicit Topological Features ...22

2.4.2 Cross-Network Learning (CNL) Model ...24

2.5 Experiments ..29

2.5.1 Datasets ...29

2.5.2 Implementation Details ...30

2.5.3 Performance of CNL for Seed Selection ..31

2.5.4 Performance of CNL for Graph Sparsification36

2.5.5 Parameter Sensitivity ..41

2.6 Summary ...46

3. Asymmetry-Aware Deep Network Embedding ...48

3.1 Introduction ..48

3.2 Related Work ..51

3.2.1 Random Walk based Network Embedding Algorithms51

x

3.2.2 Matrix Factorization based Network Embedding Algorithms 52

3.2.3 Deep Learning based Network Embedding Algorithms 52

3.3 AsDNE Model .. 54

3.3.1 Asymmetric Outward and Inward Proximities 54

3.3.2 SAE-Out and SAE-In ... 56

3.3.3 Asymmetry-Aware Pairwise Constraints .. 59

3.3.4 Optimization of AsDNE ... 60

3.4 Experiments .. 62

3.4.1 Datasets .. 62

3.4.2 Baselines ... 63

3.4.3 Implementation Details .. 64

3.4.4 Multi-label Node Classification ... 66

3.4.5 Link Sign Prediction ... 68

3.4.6 Parameter Sensitivity .. 71

3.5 Summary .. 74

4. Deep Network Embedding in Signed Networks ... 75

4.1 Introduction .. 75

4.2 Related Work .. 78

4.2.1 Network Embedding for Signed Networks 78

4.2.2 Semi-Supervised Learning ... 80

4.3 Deep Network Embedding Model with Structural Balance Preservation 81

4.3.1 Stacked Auto-Encoder .. 82

4.3.2 Pairwise Constraints ... 84

4.3.3 Overall Loss Function .. 86

4.3.4 Optimization of DNE-SBP ... 87

4.4 Experiments .. 88

4.4.1 Datasets .. 88

4.4.2 Implementation Details .. 89

4.4.3 Analysis of Embedding Learned by DNE-SBP 90

4.4.4 Baselines ... 92

4.4.5 Experimental Results .. 93

4.4.6 Parameter Sensitivity .. 101

4.5 Summary .. 104

5. Cross-network Deep Network Embedding .. 106

5.1 Introduction .. 106

5.2 Related Work .. 110

5.2.1 Single-network Embedding Algorithms ... 110

5.2.2 Cross-network Embedding ... 112

5.2.3 Transfer Learning Across Networks ... 113

5.3 Problem Statement ... 114

xi

5.4 Cross-network Deep Network Embedding Model 116

5.4.1 SAE_s for Deep Network Embedding in Source Network 117

5.4.2 SAE_t for Deep Network Embedding in Target Network 120

5.5 Experiments .. 126

5.5.1 Datasets ... 126

5.5.2 Implementation Details ... 127

5.5.3 Baselines ... 128

5.5.4 Cross-network Node Classification .. 129

5.5.5 Parameter Sensitivity: ... 136

5.6 Summary ... 138

6. Conclusions and Future Work ... 140

6.1 Conclusions .. 140

6.2 Future Work .. 143

6.2.1 Signed Network Embedding ... 143

6.2.2 Cross-network Embedding ... 144

6.2.3 Heterogeneous Network Embedding .. 145

Bibliography ... 147

xii

List of Figures

Figure 1.1: Connections between four proposed models in this thesis. 5

Figure 2.1: Illustration of cross-network seed selection in IM. The red nodes indicate seed

nodes and the blue nodes represent non-seed nodes. ... 12

Figure 2.2: Illustration of cross-network graph sparsification in IM. The red nodes indicate

seed nodes and the blue nodes represent non-seed nodes. The red lines indicate active

edges during influence propagation simulations, and the blue lines represent inactive

edges. .. 14

Figure 2.3: Performance of CNL for seed selection for IM in three target networks. The

higher the influence spread, the better the performance; while the shorter the running

time, the better the performance. .. 34

Figure 2.4: Performance of CNL for seed node prediction in three target networks, in terms

of the seed node precision at top-k retrieved most likely seed nodes. The higher the

seed node precision, the better the performance. ... 35

Figure 2.5: Performance of CNL for graph sparsification as a pre-processing step for IM in

three target networks. The lower the loss of influence spread, the better the

performance. (NGIC is short for NewGreedyIC) ... 38

Figure 2.6: Performance of CNL for inactive edge prediction in three target networks, in

terms of the inactive edge precision at top-f(%) retrieved most likely inactive edges.

The higher the inactive edge precision, the better the performance. 39

Figure 2.7: Impact of 𝜆1 and 𝜆2 on the performance of CNL for seed node prediction in

the DBLP target network when the seed set size is 50 and for inactive edge prediction

in the Email-Enron target network when the edge removal fraction is 30%. 42

Figure 2.8: Parameter sensitivity of CNL over 𝑡, 𝑐, 𝑙, 𝛼 for seed node prediction in the

DBLP target network when the seed set size is 50. The default settings are 𝜆1 =

10, 𝜆2 = 0.5, 𝑡 = 5, 𝑐 = 10, 𝑙 = 30, 𝛼 = 0.8. .. 43

Figure 2.9: Parameter sensitivity of CNL over 𝑡, 𝑐, 𝑙, 𝛼 for inactive edge prediction in the

Email-Enron target network when the edge removal fraction is 30%. The default

settings are 𝜆1 = 10, 𝜆2 = 1, 𝑡 = 3, 𝑐 = 200, 𝑙 = 30, 𝛼 = 0.7. 43

Figure 3.1: Illustration of asymmetric network transitivity in both directed and undirected

networks. In a directed network (a), the 1-step transition probability from 𝑣𝑖 to 𝑣𝑗 is

0, while the 1-step transition probability towards 𝑣𝑖 from 𝑣𝑗 is 1. In an undirected

network (b), the 1-step transition probability from 𝑣𝑖 to 𝑣𝑗 is 0.33, while the 1-step

transition probability towards 𝑣𝑖 from 𝑣𝑗 is 1. ... 49

Figure 3.2: Micro-F1 and Macro-F1 scores of multi-label node classification on Blogcatalog,

Cora and IMDB networks. GraRep failed to work in the largest IMDb dataset in the

experiments, due to its high complexity. .. 67

Figure 3.3: Sensitivity of the parameters 𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 on the Micro-F1 score of AsDNE

file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470443
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470444
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470444
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470445
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470445
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470445
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470445
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470446
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470446
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470446
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470447
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470447
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470447
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470448
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470448
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470448
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470449
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470449
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470449
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470450
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470450
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470450
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470451
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470451
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470451
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470452
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470452
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470452
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470453
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470453
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470453
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470453
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470453
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470454
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470454
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470454
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470455

xiii

for multi-label node classification, when 50% of labeled nodes were used for training

on the Blogcatalog dataset. The higher the Micro-F1 score, the better the performance. 72

Figure 3.4: Sensitivity of the parameters 𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 on the AUC score of AsDNE for

link sign prediction, when 20% of labeled links were used for training on the Epinions

dataset. The higher the AUC score, the better the performance. 72

Figure 4.1: The AER, MER and ANR ratios of the distances between the positively

connected nodes over that between the negatively connected nodes in the embedding

spaces learned by the 1-st layer and the 2-nd layer of SAE in the DNE-SBP model. 91

Figure 4.2: The average distances between positively connected nodes, negatively

connected nodes and disconnected nodes in the embedding space learned by the 2-nd

layer of SAE in the DNE-SBP model. .. 92

Figure 4.3: Sensitivity of the parameters 𝛽, 𝛾, 𝛼, 𝑙, 𝑑 on the AUC score of DNE-SBP (with

the Had edge representation) for link sign prediction, when 40% of observed links

were used for training on the Wiki dataset. The higher the AUC score, the better the

performance. ... 102

Figure 4.4: Sensitivity of the parameters 𝛽, 𝛾, 𝛼, 𝑙, 𝑑 on the error rate of DNE-SBP for

3-way signed network community detection on the Wiki dataset. The lower the error

rate, the better the performance. ... 102

Figure 5.1: Illustration of the ideas of the CDNE model. 𝑣𝑖𝑠 and 𝑣𝑖𝑡 represent the i-th

node in 𝒢𝑠 and 𝒢𝑡; 𝐴𝑠, 𝐴𝑡 denote node attribute matrices in 𝒢𝑠 and 𝒢𝑡; 𝑌𝑠, 𝑌𝑡

indicate node label matrices in 𝒢𝑠 and 𝒢𝑡. Different colors correspond to different

labels. Full colors indicate observed labels while gradient colors represent the

predicted fuzzy labels of unlabeled target network nodes. Firstly, in 𝒢𝑠, SAE_s maps

the connected nodes closer to each other and maps the same labeled nodes closer while

different labeled nodes far apart from each other. Then, in 𝒢𝑡, SAE_t maps the

connected nodes closer and also maps the labeled nodes in 𝒢𝑡 closer to the nodes

associated with the same labels in 𝒢𝑠. ... 108

Figure 5.2: Micro-F1 and Macro-F1 scores of predicting labels for unlabeled nodes in the

target network, with varied fractions of labeled nodes observed in the target network.

(a) and (b) show the results of the cross-network node classification task from

BlogCatalog1 to BlogCatalog2, and from ACMv9 to Citationv1, respectively.............. 135

Figure 5.3: Sensitivity of the parameters, i.e., 𝐾, 𝛽, 𝛼, 𝜑, 𝜇, 𝛾 on the cross-network node

classification performance of CDNE, when the source network is ACMv9 and the

target network is dblpv7, and 1% of nodes in the target networks are with observed

labels. .. 137

file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470455
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470455
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470456
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470456
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470456
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470457
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470457
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470457
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470458
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470458
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470458
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470459
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470459
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470459
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470459
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470460
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470460
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470460
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470461
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470462
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470462
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470462
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470462
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470463
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470463
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470463
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470463

xiv

List of Tables

Table 2.1: Statistics of real-world datasets. .. 30

Table 3.1: Frequently used notations and descriptions in Chapter 3. 54

Table 3.2: Statistics of the datasets. .. 63

Table 3.3: The AUC Scores of link sign prediction on the Wiki dataset. 69

Table 3.4: The AUC Scores of link sign prediction on the Slashdot dataset. 69

Table 3.5: The AUC Scores of link sign prediction on the Epinions dataset. 69

Table 4.1: Frequently used notations and descriptions in Chapter 4. 82

Table 4.2: Statistics of the signed networked datasets. .. 89

Table 4.3: Layer configuration of the SAE in three datasets for link sign prediction and

community detection. ... 89

Table 4.4: AUC and AP of link sign prediction on the Wiki dataset. The highest AUC and

AP scores among all the comparing methods are shown in Boldface. * and ** indicate

statistically superior performance to SiNE (with its best suitable edge feature) at level

of (0.05, 0.01) using a paired t-test. ... 95

Table 4.5: AUC and AP of link sign prediction on the Slashdot dataset. 96

Table 4.6: AUC and AP of link sign prediction on the Epinions dataset. 96

Table 4.7: The error rates (%) of k-way Clustering in three signed networks. The lowest

error rates among all the comparing algorithms are shown in Boldface. 100

Table 5.1: Frequently used notations and descriptions in Chapter 5. 115

Table 5.2: Statistics of the networked datasets. .. 127

Table 5.3: Cross-network node classification between the BlogCatalog1 and BlogCatalog2

networks when only 1% of labeled nodes are available in the target network. The

training set as “T” indicates that only leveraging the labeled nodes in the target

network for training, while “S+T” indicates that leveraging the labeled nodes from

both the source network and the target network for training. The highest Micro-F1 and

Macro-F1 scores among all the comparing algorithms are shown in Boldface. 130

Table 5.4: Cross-network node classification between the Citationv1 and DBLPv7 networks

when only 1% of labeled nodes are available in the target network. 130

Table 5.5: Cross-network node classification between the Citationv1 and ACMv9 networks

when only 1% of labeled nodes are available in the target network. 131

Table 5.6: Cross-network node classification between the DBLPv7 and ACMv9 networks

when only 1% of labeled nodes are available in the target network. 131

file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470467
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470468
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470469
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470473
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470473
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470473
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470473
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470474
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470475
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470476
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470476
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470479
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470479
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470479
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470479
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470479
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470479
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470480
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470480
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470481
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470481
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470482
file:///C:/Users/84460/Desktop/thesis/thesis_revised.docx%23_Toc470482

1

Chapter 1

Introduction

1.
Nowadays, networks are ubiquitous in the real world, such as social networks,

citation networks, collaboration networks, brain networks, protein-protein

interaction networks, transportation networks, computer networks, communication

networks and so on. Network science, “the study of network representations of

physical, biological, and social phenomena leading to predictive models of these

phenomena [1]”, is a young and active discipline of mathematics, statistics,

physics, biology, social sciences and computer sciences.

A network can be represented as a graph, which consists of a set of vertices

(also called nodes) and a set of edges (also called links) capturing the relationships

between nodes. A network can be directed or undirected, weighted or unweighted,

according to the relationships between nodes. For example, in the Facebook social

network, an undirected edge connecting two social network users indicates the

bi-directional friendship between them. While in a paper citation network, a

directed edge from paper A to paper B indicates that paper A unidirectionally cites

paper B. In addition, in a collaboration network, if the relationship between two

nodes is defined as “author A collaborated with author B”, then we say this

collaboration network is unweighted. If the relationship is defined as “author A

collaborated with author B 4 times”, then the collaboration network is weighted.

Moreover, a network can be homogeneous or heterogeneous. If all the nodes in a

network belong to a single type and all the edges in a network also belong to a

single type, then we say this network is homogeneous. In contrast, if there are

more than one type of nodes or more than one type of edges in a network, then we

2

say this network is heterogeneous. For example, a multimedia network containing

different types of nodes, i.e., image, video and text, is heterogeneous.

1.1 Graph Mining Tasks

Real-world networks are with very complex network structures. Mining useful

information from complex networks can benefit a wide variety of graph analytics

tasks, such as node classification, node clustering, node/link retrieval and ranking,

link prediction, link classification and network visualization. Node classification

aims to predict node labels in a network [2]. For example, in a protein-protein

interaction network, one might be interested in identifying the functional labels of

proteins [3]. Node clustering aims to cluster nodes in a network into several

disjoint partitions, where nodes belonging to the same partition should be more

tightly connected than those across different partitions [4]. It can be applied to

detect communities in social networks [5], [6]. Node/link retrieval and ranking

tasks aim to prioritize nodes or links in a network according to specific rules [7].

For example, in viral marketing, one aims to select top-k seed nodes which are the

most influential to spread the information in a network [8]. Also, in large-scale

influence maximization (IM) problem, one aims to retrieve a fraction of edges to

be removed which are the most useless for influence propagation [9]. Link

prediction aims to predict whether a link exists between two nodes in a network

and it can be utilized to recommend new friends to users in a social network [10].

Link classification aims to predict edge labels in a network. For example, one

might be interested in predicting the signed labels of links in a signed social

network [11], [12], or inferring the type of social relationships among family,

colleagues, classmates and friends in a heterogeneous social network [13]. In

addition, motivated by the recent success of transfer learning [14], some

innovative cross-network graph mining tasks [8], [9], [13], [15], [16], [17], [18],

3

[19], [20] have been proposed to leverage the knowledge pre-learned from a

mature source network to predict the labels of nodes or edges in a newly formed

target network.

1.2 Graph Representation Learning

All the aforementioned canonical graph mining tasks require a set of informative

and discriminative feature vector representations pre-defined for nodes or edges in

the networks. A former solution is to utilize a feature engineering approach to

manually define explicit features for nodes or edges based on their topological

structures. Some widely used hand-crafted topological features [20], [21], [22]

include Degree, Weighted Degree, Eigenvector Centrality, Closeness Centrality,

Betweenness Centrality, HITS Hub/Authority, PageRank Score, Clustering

Coefficient, Modularity Class Size, Number of Triangles, Common Neighbors,

Jaccard Coefficient and Adamic Adar Score.

In addition, network embedding has recently drawn significant attentions and it

can automatically learn the low-dimensional latent vector representations with the

preservation of original network properties. Existing network embedding

techniques can be categorized into three families, namely random walk based [23],

[24], [25], [26], [27], matrix factorization based [6], [28], [29], [30], [31], [32],

[33], and deep learning based [4], [5], [10], [11], [12], [17], [34], [35], [36]. A

comprehensive survey of network embedding research can be found in [37], [38],

[39], [40]. Random walk based embedding algorithms employ the truncated

random walks sampled from a given network to exploit network structures. Then,

borrowing the idea of word embedding [41] in natural language processing (NLP),

the low-dimensional continuous node vector representations with neighborhood

preservation would be learned. In addition, the network structures can be

represented via a matrix form, such as adjacency matrix [10], k-step transition

4

probability matrix [29], and high-order proximity matrix [30]. On one hand, the

matrix factorization based network embedding models linearly project the

associated matrix into a low-rank space, via Singular Value Decomposition (SVD)

[30] or Nonnegative Matrix Factorization (NMF) [6], which requires a high time

complexity at least super-quadratic to the number of nodes in the network. On the

other hand, to better capture the non-linear complex underlying network structure,

a family of deep network embedding algorithms [4], [5], [10], [11], [12], [34], [42]

adopts stacked auto-encoder (SAE) to reconstruct the associated matrix so as to

learn the non-linear node vector representations. In practice, SAE is more efficient

than the matrix factorization techniques, just with the time complexity being linear

to the number of nodes in the network [4]. Based on the low-dimensional node

vector representations learned by the network embedding algorithms, one can

simply apply the vector-based machine learning techniques to efficiently and

effectively address a wide variety of graph mining tasks, such as node

classification [10], [11], [42], network clustering [4], [5], link prediction [10], [11],

[12], node recommendation [10], [30] and network visualization [43].

1.3 Contributions

To exploit the latest advances of machine learning, deep learning and data mining

techniques in canonical graph mining tasks, a set of informative feature vector

representations for nodes or edges in the networks should be pre-defined. To this

end, we propose four models in this thesis to learn appropriate feature vector

representations to efficiently and effectively address several graph mining tasks.

Figure 1.1 shows the connections between the four proposed models.

On one hand, from the perspective of feature representation learning technique,

the first model utilizes a feature engineering approach to manually define the

explicit topological features which can reflect the influence of nodes in a network

5

in the IM scenario. While the other three proposed models correspond to the

state-of-the-art deep network embedding techniques which can automatically learn

the low-dimensional latent node vector representations. Preserving various

network properties by the network embedding algorithms is important for learning

informative feature representations for different graph mining tasks. For example,

preserving high-order network proximities can benefit node classification and

node clustering [34], [29], and preserving asymmetric network transitivity is

advantageous for link prediction [30], [26]. In addition, preserving structural

balance property is important for learning informative feature representations for

the graph analytics tasks in the signed networks [44], [45]. Motivated by this, we

proposed two deep network embedding models to learn the latent vector

representations which can well preserve the asymmetric network property and the

signed network property, respectively. In addition, it has been shown that

incorporating domain adaptation techniques into feature representation learning

process can effectively address the prediction tasks across different domains, in the

areas of computer vision (CV) [46], [47] and NLP [48], [49]. Motivated by this,

we proposed a cross-network deep network embedding model to learn generalized

and comparable feature vector representations to effectively address the graph

Figure 1.1: Connections between four proposed models in this thesis.

6

mining tasks across different networks. The three deep network embedding models

can successfully address several important issues which have not been well

investigated by existing network embedding research, i.e., asymmetric network

embedding, signed network embedding and cross-network embedding.

On the other hand, from the perspective of graph mining applications, the

second model for asymmetric network embedding and the third model for signed

network embedding target at the graph prediction tasks involving one network.

While the first and the fourth models making use of feature engineering and

feature learning respectively further employ domain adaptation techniques to

address the cross-network node/link prediction tasks. In the following sub-sections,

we would further elaborate on the contributions of each proposed model.

1.3.1 Cross-network Node and Edge Prediction in Influence

Maximization

The conventional IM problem [50] has been extensively studied, aiming at

selecting a limited number of seed nodes to maximize the influence spread in a

given network. However, very little work exists for the cross-network IM problem.

To fill this gap, we propose a cross-network learning (CNL) model to leverage the

knowledge pre-learned from a smaller source network with the IM task being

successfully completed, to help maximize the influence in the new larger target

networks for two important tasks, i.e., seed selection and graph sparsification. On

one hand, we consider cross-network seed selection as a cross-network node

prediction task, with the goal of selecting the nodes most likely to act as seeds for

each target network, by leveraging the greedy seed selection knowledge

pre-learned from a source network. On the other hand, we consider graph

sparsification as a cross-network edge prediction task, with the goal of removing

the edges least likely to contribute to influence propagation in the target network,

7

by leveraging the influence propagation knowledge pre-learned from the source

network. In the cross-network node and edge prediction tasks in the IM scenario,

we define some explicit features for node and edge based on their topological

structures, which can reflect the influence of a node in a network. To address the

domain discrepancy issue, we assign lower absolute weights to the features which

perform more differently between the source network and the target network. In

addition, a fuzzy self-training algorithm is proposed to iteratively retrain the

prediction model by leveraging not only the fully labeled instances from the

source network, but also the most confident predicted instances in the target

network with their predicted fuzzy labels. Experimental results in the real-world

datasets demonstrate that the proposed CNL model can achieve a good trade-off

between the efficiency and effectiveness of the IM task in the target networks.

1.3.2 Asymmetry-Aware Deep Network Embedding

Network transitivity and proximities should be asymmetric in both directed and

undirected networks [30], [26]. However, most existing network embedding

algorithms fail to capture such important asymmetric properties. In this regard, we

propose an asymmetry-aware deep network embedding (AsDNE) model to

preserve the asymmetric outward and inward network proximities. Existing deep

network embedding models [4], [10], [11], [34] employing one SAE would only

consider a specific node as a source role in its input raw vector, when learning the

corresponding hidden vector representation. In contrast, the proposed AsDNE

model employs two semi-supervised SAEs to learn the outward and inward latent

vector representations for each node, by considering the node with a source role

and a target role, respectively, within its K-step network connections. In addition,

to better capture the asymmetric relationships, we devise pairwise constraints to

map node pairs with bi-directionally strong connections much closer than those

8

node pairs with strong connection in only one direction. We evaluated the network

representation learning ability of AsDNE for two graph mining tasks, namely

multi-label node classification and link sign prediction. Extensive experimental

results in both directed and undirected real-world networks demonstrate that the

proposed AsDNE model can learn task-independent network representations

outperforming the state-of-the-art network embedding algorithms.

1.3.3 Deep Network Embedding in Signed Networks

The signed networks containing both positive and negative links have pretty

distinct properties from the unsigned counterparts [51], [52]. However, the vast

majority of the state-of-the-art network embedding algorithms have only been

designed for unsigned networks. To fill this gap, we propose a deep network

embedding with structural balance preservation (DNE-SBP) model to learn

network representations for the signed networks. The DNE-SBP model employs a

semi-supervised SAE to reconstruct the adjacency connections of a signed

network. As the connections are overwhelmingly positive in the real-world signed

networks, we impose a larger penalty to make the SAE focus more on

reconstructing the scarce negative links than the abundant positive links. In

addition, to preserve the structural balance property of the signed networks, we

design pairwise constraints to map the positively connected nodes much closer

than the negatively connected nodes in the low-dimensional embedding space.

Based on the network representations learned by DNE-SBP, we conduct link sign

prediction and community detection in signed networks. Extensive experimental

results in the real-world signed networks demonstrate the superiority of the

proposed DNE-SBP model over the state-of-the-art network embedding algorithms

for graph representation learning in signed networks.

9

1.3.4 Cross-Network Deep Network Embedding

Existing network embedding algorithms only target for a single network, which

aim to preserve the proximities between nodes within one network. However,

many important graph mining tasks involve more than one network, such as

cross-network node classification or cross-network link prediction. It has been

shown that the single-network embedding algorithms fail to learn generalized and

comparable feature representations across different networks [53], [54]. To address

this, we propose an innovative cross-network deep network embedding (CDNE)

model to capture the proximities between nodes within a network and across

different networks. The CDNE model employs two semi-supervised SAEs to

embed nodes from the source network and the target network into a unified

low-dimensional latent space. It should be the first work to integrate deep network

embedding and domain adaptation techniques to learn label-discriminative and

network-invariant feature vector representations for cross-network node

classification. Extensive experimental results in the real-world networks

demonstrate that CDNE can achieve significantly better node classification

performance in the target network, as compared to the state-of-the-art network

embedding algorithms.

The rest of this thesis is organized as follows. Chapter 2 introduces the

proposed CNL model for cross-network node and edge prediction in IM. Chapter 3

introduces the proposed AsDNE model which can learn low-dimensional node

vector representations with the preservation of the asymmetric outward and inward

network proximities in both directed and undirected networks. Chapter 4

introduces the proposed DNE-SBP for signed network embedding which can

well preserve the structural balance property of the signed networks. Chapter 5

introduces the proposed CDNE model for learning label-discriminative and

10

network-invariant feature vector representations for cross-network node

classification. Chapter 6 gives the conclusions of this thesis and our future

research plans.

11

Chapter 2

Cross-network Node and Edge

Prediction in Influence

Maximization

2.

2.1 Introduction

Nowadays, people tend to trust the information from their friends, relatives and

families more than that from general advertising media [55]. Thus, one promising

marketing strategy for product promotion is to select a few most influential initial

users to give them free samples and let them influence their friends through the

word-of-mouth effect. Such an approach is referred to viral marketing [56].

Motivated by the idea of viral marketing, the influence maximization (IM)

problem can be formulated as a discrete optimization problem [50], i.e., to select k

seed nodes (i.e. initial users) in a given network such that the expected number of

nodes influenced by the k seeds (i.e. influence spread) is as large as possible, under

a certain influence cascade model. Existing IM algorithms can be grouped into two

families, namely, greedy algorithms and heuristic algorithms. Generally, greedy

algorithms [50], [57], [58], [59] are highly effective (i.e. achieving large influence

spread) but with low efficiency (i.e. long running time). In contrast, heuristic

algorithms [59], [60], [61], [62] are highly efficient but generally fail to guarantee

large influence spread.

Although the IM problem has been extensively studied, very little work

addresses this problem in a cross-network scenario. Suppose that a company

intends to promote a new product through multiple media (e.g. online social

12

networks, email communication networks, and telephone communication networks)

by viral marketing. Then, if the company greedily selects the initial users for each

target network independently, it should be extremely time consuming and

expensive. On the other hand, if the company heuristically selects initial users, it

might be difficult to guarantee a high influence spread in a new target network,

where the company lacks enough preliminary knowledge about which types of

users should be most influential. To address such a cross-network IM problem

more effectively and efficiently, we propose a cross-network learning (CNL)

model to leverage the knowledge pre-learned from a smaller source network to

help maximize the influence in the new larger target networks. Specifically, we

address the cross-network IM problem from two perspectives, i.e., seed selection

and graph sparsification.

On one hand, we consider seed selection for IM across multiple networks as a

cross-network node prediction task. Here, the goal is to select the nodes most

likely to act as seeds for each target network, by leveraging the greedy seed

Figure 2.1: Illustration of cross-network seed selection in IM. The red nodes indicate seed nodes

and the blue nodes represent non-seed nodes.

1. Run a greedy algorithm

to select k seed nodes;
2. Based on topological features

& node labels (seed vs. non-seed);

Train
Prediction

Model

4. Apply on the topological features

of all the nodes in ;

5. Select top-k nodes with the highest

predicted probabilities to be seed.

3. Iteratively re-train by fuzzy self-training;

Given a smaller source network

Given a larger target network

13

selection knowledge pre-learned from a source network. Figure 2.1 illustrates the

main idea of the cross-network seed selection problem. Firstly, in a smaller source

network 𝐺𝑆, one can run a standard IM greedy algorithm to select k seed nodes.

Then, based on the topological structures and labels (i.e. seed or non-seed) of all

the nodes in 𝐺𝑆 , we can train a node prediction model 𝑃𝑁 to learn what

characterized nodes would be selected as seeds by the greedy algorithm. Then, the

prediction model 𝑃𝑁 is iteratively adapted to the larger target network 𝐺𝑇 to

heuristically select the nodes most likely to act as seeds for IM. Since the proposed

CNL model learns the knowledge from a highly effective greedy algorithm in the

source network, it is more reliable to achieve a high influence spread in the target

network, as compared to the conventional IM heuristic algorithms without the help

of greedy algorithms. In addition, since CNL heuristically selects seed nodes, it

runs much faster than the greedy algorithms in the target network. Thus, the CNL

model can achieve a good trade-off between efficiency and effectiveness of seed

selection in IM.

On the other hand, to tackle large-scale IM problem, some studies proposed to

employ graph sparsification as a pre-processing step, by removing a fraction of

edges to make the original network become more concise and tractable for IM.

Previous IM-based graph sparsification algorithms only leverage the information

in a single network, either using an unsupervised approach [21], [63], or requiring

a log of past influence propagation traces in the given network [64]. To the best of

our knowledge, we are the first to leverage cross-network information to conduct

graph sparsification for IM. Here, we consider graph sparsification as a

cross-network edge prediction task, with the goal of removing the edges least

likely to contribute to influence propagation in the target network, by leveraging

the influence propagation knowledge pre-learned from the source network. As

illustrated in Figure 2.2, we firstly simulate the influence propagation traces in a

14

smaller source network 𝐺𝑆, by running an influence cascade model. After that, we

label all the edges in 𝐺𝑆 as either active or inactive, where active edges indicate

that the influence has actually been propagated through them to maximize the

influence during simulations. Then, based on the explicit topological features and

labels of all the edges in 𝐺𝑆, we can train an edge prediction model 𝑃𝐸 to learn

what characterized edges would be helpful for influence propagation in IM. While

those unsupervised graph sparsification algorithms [21], [63] without any labeled

information would fail to do so. Next, we iteratively adapt the prediction model

𝑃𝐸 to a larger target network 𝐺𝑇 to predict the probability of each edge to be

active for influence propagation. By removing the edges least likely to be active,

we can make 1) existing IM greedy algorithm runs more efficiently; and 2) the loss

of influence spread of the greedy algorithm as small as possible, in the sparse

target networks.

The aforementioned cross-network seed selection and graph sparsification

problem can be regarded as a domain adaptation task, which aims to transfer the

Figure 2.2: Illustration of cross-network graph sparsification in IM. The red nodes indicate seed

nodes and the blue nodes represent non-seed nodes. The red lines indicate active edges during

influence propagation simulations, and the blue lines represent inactive edges.

3. Based on topological features

& edge labels (active vs. inactive);
1. Run a greedy algorithm

to select k seed nodes;

2. Run an influence cascade model

to simulate influence propagation;
Train

Prediction
Model

5. Apply on the topological features of

all the edges in ;

6. Remove a fraction f of edges with the

lowest predicted probabilities to be active.

4. Iteratively re-train by fuzzy self-training;

Given a smaller source network

Given a larger target network

15

knowledge pre-learned from a source domain to assist in solving the same task in a

target domain, in the condition that the source domain and the target domain share

an identical feature space but have different data distributions [14]. To address the

domain discrepancy between different networks, we employ a self-training for

domain adaptation (SEDA) algorithm [65] to iteratively retrain the prediction

model by leveraging not only the fully labeled data in the source network, but also

the most confident predictions in the target network. It is worth noting that the

predictions generated by different self-training iterations are with different levels

of confidence. Thus, directly utilizing the predicted binary labels to retrain the

prediction model might cause negative effect on the prediction performance when

the target network predictions become not confident enough. Fuzzy techniques are

advantageous in capturing the imprecise, uncertain and vague information during

knowledge transfer [66], [67], [68], [69]. Motivated by this, we propose a fuzzy

self-training algorithm to assign fuzzy labels to the most confident predicted target

network instances, when they are iteratively added to retrain the prediction model.

With the provision of fuzzy labels, we can easily differentiate the confidence

levels of the predictions generated by different self-training iterations during

retraining, thus, the negative effects caused by such not confident enough

predictions can be alleviated. The contributions of this work can be summarized as

follows:

1) We propose a CNL model to study two issues of the cross-network IM problem,

namely seed selection and graph sparsification, by viewing them as a

cross-network node prediction task and a cross-network edge prediction task,

respectively;

2) For seed selection, CNL leverages the greedy seed selection knowledge

pre-learned from a smaller source network, to heuristically select top-k nodes

most likely to act as seeds for IM in multiple larger target networks;

16

3) For graph sparsification, CNL leverages the influence propagation knowledge

previously acquired in a smaller source network to remove a fraction of edges

least useful for influence propagation in multiple larger target networks;

4) To address domain discrepancy, a fuzzy self-training approach is proposed to

iteratively adapt the prediction model to the target network, by utilizing fuzzy

labels to capture prediction uncertainty;

5) Extensive experiments in the real-world public datasets demonstrate that CNL

can achieve a good trade-off between efficiency and effectiveness of IM.

The rest of this chapter is organized as follows. Section 2.2 introduces the

related work about the IM algorithms and IM-based graph sparsification

approaches. Section 2.3 formulates the cross-network seed selection and

cross-network graph sparsification problem, respectively. Section 2.4 presents the

proposed CNL model. Section 2.5 discusses the experimental results in the

real-world datasets. Section 2.6 summaries this work.

2.2 Related Work

In this section, we review the standard IM algorithms and the graph sparsification

algorithms developed for IM.

2.2.1 Influence Maximization

Domingos et al. [70] are the first to study influence propagation in a social

network using a probabilistic algorithm. Then, Kempe et al. [50] proposed two

pioneering influence cascade models, namely Independent Cascade (IC) model

and Linear Threshold (LT) model. In an influence cascade model, each node is

associated with a status at a certain time, either active or inactive. In IC model,

each edge is associated with an influence probability p, which is set to be a

constant. Then, an inactive node becomes active if it is successfully influenced by

17

any of its active neighbors independently. While in LT model, an inactive node

would become active if the sum of the influence probabilities from all of its active

neighbors exceeds a given threshold. Given a certain influence cascade model, the

influence is propagated from seed nodes to all the other nodes in the network. The

goal of the IM problem is to maximize the influence spread in the given network

with the constraint that the seed set size is fixed to be a small value, say k.

Existing algorithms to address the IM problem can be grouped into two

families, namely greedy and heuristic methods. Originally, Kempe et al. [50]

proposed a greedy hill-climbing approach to iteratively add a new node to the seed

set which provides the largest marginal gain on the influence spread. This greedy

algorithm can guarantee a (1 − 1/𝑒) approximation of the optimal solution but

requires a rather high computation cost. To improve the efficiency of the general

greedy algorithm, the CELF [57] and CELF++ [58] greedy algorithms have been

proposed to reduce the number of evaluations on the influence spread estimation,

by exploiting the sub-modularity property of the influence spread function. In

addition, Chen et al. [59] proposed a NewGreedyIC algorithm to employ a breadth

first search (BFS) on a deterministic graph which is converted from the influence

probabilistic graph, to calculate the influence spread. To efficiently estimate

influence spread, a pruned BFS method [71] and a static greedy algorithm [72]

were proposed to reduce the number of Monte-Carlo simulations. Also, Wang et al.

[73] developed a community based greedy algorithm to select the most influential

nodes within each community rather than in the whole network. Instead of

utilizing Monte-Carlo simulations to estimate the influence spread, some recent

work [74], [75], [76] utilize the reverse influence sampling (RIS) method to select

seed nodes based on reverse reachability tests. The idea of RIS [74] is to randomly

sample a collection of reserve reachable (RR) sets from the given network and

then select the set of nodes which can cover the maximum number of RR sets as

18

seeds. Although such sampling can guarantee up to a (1 − 1/𝑒 − 𝜀)

approximation, [77] has shown that these sampling methods would incur a high

memory overhead in practice. Besides greedy algorithms, some heuristic

algorithms are also developed to tackle the IM problem. Degree and

centrality-based heuristics are the common metrics to estimate the influence of

nodes in a network. To improve the pure degree heuristic, Chen et al. [59]

proposed a DegreeDiscountIC algorithm to discount the degree contributed by the

nodes already in the seed set. Luo et al. [62] proposed a PageRank-based heuristic

which greedily selects seed nodes only from the nodes with high PageRank scores.

Chen et al. [60] developed a PMIA algorithm to approximate the influence spread

based on the maximum influence paths. Then, an IRIE algorithm [61] and an IPA

algorithm [78] were proposed to reduce the high memory overhead incurred by

PMIA. Besides, Tang et al. [77] designed a hop-based influence estimation

algorithm to compute the influence spread up to two hops, the idea is similar to the

time-constrained IM problem [79].

Although the IM problem has been extensively studied in the literature, very

little work focuses on the cross-network IM problem. In [80], [81], the influence

propagation across multiple aligned social networks has been studied, where some

common users must be shared by different networks. Besides, Hu et al. [20]

studies the cross-network IM problem in a more generalized scenario where the

source network and the target network do not share any common users. A Transfer

Influence Learning (TIL) method was proposed to transfer the influence across

multiple networks, by viewing seed selection for IM as a node classification task.

However, this TIL method does not consider domain discrepancy between

different networks.

19

2.2.2 Graph Sparsification

Many real-world networks are with massive number of nodes and edges,

hampering some promising IM greedy algorithms to work in practice. To tackle

the large-scale IM problem, one can construct a more succinct representation of

the original network by retaining fewer nodes or edges. Graph sparsification is one

technique to construct a sparse network by retaining all the nodes in the original

network, while removing a fraction of edges. Several graph sparsification

algorithms have been developed as a pre-processing step for IM. For example,

Wilder et al. [63] developed a Random Walk algorithm to preserve a subset of

edges by minimizing the Kullback-Leibler divergence [82] between a random walk

on the original network and the sparse network. Mathioudakis et al. [64] proposed

a SPINE algorithm to detect the “backbone” of an influence network, by

preserving the edges most important for influence propagation. However, the

SPINE algorithm requires the input of not only the topology structure, but also a

log of past influence propagation traces in the given network, which are

impracticable to obtain in most real-world applications. Purohit et al. [83]

proposed a COARSENET algorithm to merge a fraction of adjacent node pairs, by

minimizing the difference of the first eigenvalue of the adjacency matrix between

the original network and the coarsened network. In addition, Lamba et al. [21]

proposed a model independent approach to remove the least informative edges,

according to an overall ranking weighted by several topological features. To

aggregate multiple feature rankings, they measure the Kendall Tau distances [84]

between different rankings, and then assign higher weight to more unique feature

ranking.

20

2.3 Problem Formulation

In order to achieve a good trade-off between efficiency and effectiveness of IM,

we propose to leverage the cross-network information to address the seed selection

and graph sparsification tasks in IM. Let 𝐺𝑆 = (𝑉𝑆, 𝐸𝑆) be a smaller source

network with a set of nodes 𝑉𝑆 and a set of edges 𝐸𝑆, and 𝐺𝑇 = (𝑉𝑇, 𝐸𝑇) be a

larger target network with a set of nodes 𝑉𝑇 and a set of edges 𝐸𝑇. Next, we

formulate the cross-network seed selection and cross-network graph sparsification

problem, respectively.

2.3.1 Cross-network Seed Selection in IM

We consider cross-network seed selection as a cross-network node prediction task,

with the goal of selecting the nodes most likely to act as seed in 𝐺𝑇 by leveraging

the greedy seed selection knowledge pre-learned in 𝐺𝑆.

Firstly, in 𝐺𝑆, we run an IM greedy algorithm to select k seed nodes multiple

times. Then, a node 𝑣𝑆
𝑖 ∈ 𝑉𝑆 is labeled as seed if it is selected by the greedy

algorithm at least one time; otherwise, 𝑣𝑆
𝑖 is labeled as non-seed. Next, based on

𝐷𝑆 = {(𝑥𝑆
𝑖 , 𝑦𝑆

𝑖)}𝑖=1
|𝑉𝑆| , where 𝑥𝑆

𝑖 and 𝑦𝑆
𝑖 represent the set of explicit topological

features and the label of node 𝑣𝑆
𝑖 , we can train a node prediction model 𝑃𝑁.

In 𝐺𝑇, we compute the same set of topological features (as in 𝐺𝑆) for all the

nodes, i.e., 𝐷𝑇 = {𝑥𝑇
𝑖 }𝑖=1

|𝑉𝑇|. Then, we iteratively retrain 𝑃𝑁 by the proposed CNL

algorithm. After t iterations, we apply 𝑃𝑁 on 𝐷𝑇 to predict {�̂�𝑇
𝑖 }𝑖=1
|𝑉𝑇|, where �̂�𝑇

𝑖

denotes the predicted probability of 𝑣𝑇
𝑖 to be labeled as seed. Then, we rank

{�̂�𝑇
𝑖 }𝑖=1
|𝑉𝑇| and heuristically select top-k nodes with the highest predicted

probabilities as seeds, denoted as �̂� . In addition, we run the same greedy

algorithm (as in 𝐺𝑆) to select a set of k seed nodes in 𝐺𝑇, denoted as 𝐴, which is

21

treated as the ground-truth seed selection result. The aim of cross-network seed

selection is to make �̂� as similar as possible to 𝐴 such that the influence spread

achieved by �̂� can be approximately maximized in 𝐺𝑇.

2.3.2 Cross-network Graph Sparsification in IM

We consider cross-network graph sparsification as a cross-network edge prediction

task. Here, the goal is to remove the edges least likely to contribute to influence

propagation in 𝐺𝑇 , by leveraging the influence propagation knowledge

pre-learned in 𝐺𝑆.

In 𝐺𝑆, we firstly run an IM greedy algorithm to select k seed nodes. Then, we

run an influence cascade model multiple times to simulate the influence

propagation traces induced by the k seed nodes. In an influence cascade model

[50], [85], the influence is firstly propagated from the seed nodes to their inactive

neighbors. Then, if a neighbor has been successfully influenced to become active,

it can further influence its inactive neighbors with a specific probability. After

simulations, we can label all the edges in 𝐺𝑆 as either active or inactive as

follows:

In an undirected network, an edge e𝑖𝑗 is labeled as active, if during at least

one time of influence propagation simulation, node 𝑣𝑖 successfully influences

node 𝑣𝑗 or node 𝑣𝑗 successfully influences node 𝑣𝑖; otherwise, e𝑖𝑗 is labeled

as inactive. In a directed network, an edge e𝑖𝑗 is denoted as active, iff node 𝑣𝑖

successfully influences node 𝑣𝑗, during at least one time of influence propagation

simulation; otherwise, e𝑖𝑗 is labeled as inactive.

Next, based on 𝐷𝑆 = {(𝑥𝑆
𝑖𝑗
, 𝑦𝑆

𝑖𝑗
)}𝑖𝑗=1
|𝐸𝑆| , where 𝑥𝑆

𝑖𝑗
 and 𝑦𝑆

𝑖𝑗
 represent the set of

explicit topological features and the label of edge 𝑒𝑆
𝑖𝑗

, we can train an edge

prediction model 𝑃𝐸 . In 𝐺𝑇, we define the same set of topological features for all

22

the edges, i.e., 𝐷𝑇 = {𝑥𝑇
𝑖𝑗
}𝑖𝑗=1
|𝐸𝑇| . Then, we iteratively retrain 𝑃𝐸 by the CNL

algorithm for t iterations. Next, we apply 𝑃𝐸 on 𝐷𝑇 to predict {�̂�𝑇
𝑖𝑗
}𝑖𝑗=1
|𝐸𝑇| ,

where �̂�𝑇
𝑖𝑗

 denotes the predicted probability of 𝑒𝑇
𝑖𝑗

 to be labeled as active. Finally,

we rank {�̂�𝑇
𝑖𝑗
}𝑖𝑗=1
|𝐸𝑇| and remove a fraction f of the edges with the least predicted

probabilities to be active for influence propagation, denoted as 𝐼. In addition, we

define the ground-truth labels for all the edges in 𝐺𝑇, via the same approach as in

𝐺𝑆, and denote the set of ground-truth inactive edges in 𝐺𝑇 as 𝐼. The goal of

cross-network graph sparsification in IM is to make all the edges in 𝐼 are indeed

inactive, i.e., belonging to 𝐼. Thus, we would only remove the edges inactive for

influence propagation in the target network, which makes the loss of influence

spread as small as possible in the sparse target network.

It is worth noting that in the proposed CNL model, it is flexible to learn the

greedy seed selection and influence propagation knowledge from any IM greedy

algorithms and any influence cascade models in 𝐺𝑆. But the greedy algorithm and

the influence cascade model employed to define the ground-truth labels in 𝐺𝑇

should be the same as in 𝐺𝑆.

2.4 The Proposed Algorithm

In this section, we briefly introduce several topological features adopted in the

prediction model and then present the detailed framework of the CNL model.

2.4.1 Explicit Topological Features

As shown in the literature [21], [20], [86], the following topological features can

reflect the influence of a node in a network.

1) Degree. It calculates the number of edges adjacent to a node.

2) Weighted Degree. Different from degree, it calculates the number of edges

23

adjacent to a node by taking the weight of each edge into consideration.

3) Eigenvector Centrality. It evaluates a node’s influence in the scenario of

information diffusion. A node with high eigenvector centrality indicates it is

highly influential to spread the influence in the network [87].

4) HITS Hub. HITS algorithm [88] computes two values for each node, namely

HITS authority and HITS hub. The authority and hub values of a node are

estimated based on the incoming links and the outgoing links from the node,

respectively.

5) PageRank Score. PageRank algorithm [89] was originally designed to rank

page authority. By viewing each node as a page, it can be used to compute the

ranking of nodes based on the structure of the incoming links to the nodes.

6) Clustering Coefficient. It reflects the fraction of a node’s friends who are also

friends with each other. A node with high clustering coefficient indicates that

the node’s neighbors are likely to be connected with each other.

On one hand, for seed node prediction, we employ the aforementioned

topological features as node features. On the other hand, for inactive edge

prediction, we assume that the likelihood of an edge to be active for influence

propagation depends on the influence of two nodes on the edge. Thus, we

construct edge features based on the average topological feature values of the two

nodes on each edge. To make the feature values network independent, we rank the

absolute values of each feature ascendingly and map them into [0, 1]. All these

selected features can be efficiently measured by NetworkX1, thus making the

proposed CNL model more efficient for the IM task, as compared to the standard

greedy algorithms. In addition, it is flexible to employ other informative

topological features in the CNL model as long as they can effectively reflect a

node’s influence and also be efficiently computed in large-scale networks.

1 http://networkx.github.io/

24

2.4.2 Cross-Network Learning (CNL) Model

We apply the CNL model to address both cross-network seed selection and

cross-network graph sparsification problems. For seed selection, we treat seed

nodes as positive class and non-seed nodes as negative class. For graph

sparsification, we treat active edges as positive class while inactive edges as

negative class. Then, with positive instances labeled as “1” and negative instances

labeled as “0”, a supervised learning method can be devised to train a node or edge

prediction model via the logistic regression (LR) algorithm as follows:

 𝐽(𝜃) = −
1

𝑚𝑆
∑ (𝑦𝑆

𝑢 𝑙𝑜𝑔(ℎ𝜃(𝑥𝑆
𝑢)) + (1 − 𝑦𝑆

𝑢) 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑆
𝑢)))

𝑚𝑆
𝑢=1 (2.1)

where 𝑚𝑆 denotes the number of training examples in 𝐷𝑆; 𝑥𝑆
𝑢 = {𝑥𝑆,𝑗

𝑢 }𝑗=1
𝑛 is a

feature vector representing the topological feature values of instance u in 𝐷𝑆, and

n is the number of features; 𝑦𝑆
𝑢 is the label of instance u in 𝐷𝑆; 𝜃 = {𝜃𝑗}𝑗=1

𝑛
 is a

weight vector denoting the importance degree of different typological features for

the prediction task; ℎ𝜃(𝑥𝑆
𝑢) = 𝑃(𝑦𝑆

𝑢 = 1|𝑥𝑆
𝑢; 𝜃) refers to the predicted probability

of instance u to be labeled as positive. After 𝜃∗ = 𝑎𝑟𝑔min
𝜃
(2.1) has been learned

in 𝐷𝑆, one can firstly leverage it to estimate the probability of an instance u to be

positive in 𝐷𝑇, using a sigmoid function as:

 �̂�𝑇
𝑢 = (1 + 𝑒−(𝜃

∗)𝑇𝑥𝑇
𝑢
)−1 (2.2)

Due to its simplicity and high efficiency, LR was adopted as the prediction

algorithm in this work. However, the proposed CNL model is flexible to work with

other prediction algorithm, as long as it can work efficiently and also provide the

probabilities for its predictions.

2.4.2.1 Feature Incompatibility

Due to domain discrepancy, an identical feature might have different importance

25

degree for the same prediction task in different networks. To address this, we

measure the incompatibility of each feature 𝑋𝑗 between 𝐷𝑆 and 𝐷𝑇, following

the approach in [65] as below:

 𝐼𝐶(𝑋𝑗) = 1 − 𝑃𝑐𝑐(𝑋𝑆,𝑗, 𝑌𝑆)𝑃𝑐𝑐(𝑋𝑇,𝑗, �̂�𝑇) (2.3)

where 𝑃𝑐𝑐(𝑋𝑆,𝑗 , 𝑌𝑆) represents the Pearson correlation coefficient (PCC) between

the value of the j-th feature and the label of all the instances in 𝐷𝑆; 𝑃𝑐𝑐(𝑋𝑇,𝑗, �̂�𝑇)

indicates the PCC between the value of the j-th feature and the predicted

probability of all the instances to be positive in 𝐷𝑇 . The smaller the

incompatibility, the more similarly the feature performs between the source

network and the target network. Based on the feature incompatibility measure, a

regularization term is defined as:

 𝑅1(𝜃) = ∑ 𝐼𝐶(𝑋𝑗)
𝑛
𝑗=1 |𝜃𝑗| (2.4)

By minimizing 𝑅1(𝜃), lower absolute weights would be assigned to the

features with larger incompatibility (i.e. perform more differently between 𝐷𝑆 and

𝐷𝑇). In addition, a L2 regularization is defined to prevent overfitting as below:

 𝑅2(𝜃) =
1

2
∑ 𝜃𝑗

2𝑛
𝑗=1 (2.5)

By integrating the regularization terms (2.4), (2.5) and the cost function (2.1),

an overall loss function is developed as:

 𝐿(𝜃) = 𝐽(𝜃) +
𝜆1

𝑚𝑆
𝑅1(𝜃) +

𝜆2

𝑚𝑆
𝑅2(𝜃) (2.6)

where 𝜆1, 𝜆2 ≥ 0 are the trade-off parameters to balance the effects of the

regularizations (2.4) and (2.5). Next, gradient descent algorithm is employed to

find the parameters minimizing the overall loss function (2.6), as follows:

𝜕𝐿(𝜃)

𝜕𝜃𝑗
=

1

𝑚𝑆
{
∑ [(ℎ𝜃(𝑥𝑆

𝑢) − 𝑦𝑆
𝑢)𝑥𝑆,𝑗

𝑢𝑚𝑆
𝑢=1 + 𝜆1𝐼𝐶(𝑋𝑗) + 𝜆2𝜃𝑗], 𝑖𝑓𝜃𝑗 ≥ 0

∑ [(ℎ𝜃(𝑥𝑆
𝑢) − 𝑦𝑆

𝑢)𝑥𝑆,𝑗
𝑢𝑚𝑆

𝑢=1 − 𝜆1𝐼𝐶(𝑋𝑗) + 𝜆2𝜃𝑗], 𝑖𝑓𝜃𝑗 < 0
 (2.7)

26

 𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕𝐿(𝜃)

𝜕𝜃𝑗
 (2.8)

where 𝛼 > 0 denotes the learning rate.

2.4.2.2 Iterative Self-Training

So far, we have considered feature incompatibility between 𝐷𝑆 and 𝐷𝑇. However,

the training data are merely obtained from 𝐷𝑆. To make the prediction model also

consider the training data from 𝐷𝑇, one can employ a SEDA algorithm [65] to

leverage not only the fully labeled data from the source network but also the

unlabeled data from the target network to iteratively retrain the prediction model.

Specifically, at each self-training iteration, the top-c most confident predicted

positive samples with the pseudo binary label “1” and the top-c most confident

predicted negative samples with the pseudo binary label “0”, are moved from 𝐷𝑇

to 𝐷𝑆 to retrain the prediction model in the next self-training iteration. However,

in the IM application, the number of seed nodes should be much smaller than that

of non-seed nodes, and the number of active edges is generally smaller than that of

inactive edges. To tackle such imbalanced data, in the CNL model, we propose to

move the top-c most confident predicted positive instances, while the top-𝑐′ most

confident predicted negative instances from 𝐷𝑇 to 𝐷𝑆 at each self-training

iteration, where 𝑐′ = 𝑐 ∗ 𝑙 and 𝑙 > 1 denotes the ratio of the number of most

confident predicted negative instances over that of positive instances moved from

𝐷𝑇 to 𝐷𝑆.

2.4.2.3 Fuzzy Labels

In the SEDA algorithm [65], the most confident predicted positive (or negative)

instances generated by different self-training iterations are actually not with equal

likelihood to be positive (or negative). Thus, assigning predicted binary labels to

them would fail to differentiate the degree of their membership to be positive (or

27

negative). Moreover, when the self-training iteration becomes large or too large,

the most confident predictions in the target network might become not confident

enough. In such a case, if some wrongly predicted labeled instances in the target

network are employed to retrain the prediction model, the prediction performance

will be degraded. Fuzzy techniques have demonstrated high effectiveness to

handle imprecision, uncertainty and vagueness during knowledge transfer [66],

[90]. Motivated by this, we exploit the use of fuzzy labels to alleviate the

weakness of the SEDA algorithm, by differentiating the confidence levels of the

predictions generated by different self-training iterations. Here, the fuzzy labels

represent the degree of the membership of the instances predicted as positive. Note

that in the SEDA algorithm [65], when the most confident predictions in the target

network are iteratively added to 𝐷𝑆, they are also simultaneously removed from

𝐷𝑇 . Intuitively, as the self-training iteration increases, the most confident

predictions in 𝐷𝑇 will become less confident. Thus, we would assign higher

membership of positive to the most confident predicted positive instances, while

lower membership of positive to the most confident predicted negative instances,

generated by the earlier self-training iterations. Specifically, at the i-th iteration,

the fuzzy labels assigned to the top-c most confident predicted positive instances

are defined as:

 1 −
1−𝛼

𝑡−1
(𝑖 − 1) (2.9)

where t indicates the total number of self-training iterations and 1 ≤ 𝑖 ≤ 𝑡, 𝑡 > 1;

0.5 < 𝛼 < 1 denotes the fuzzy label (i.e. predicted membership to be positive)

assigned to the top-c most confident predicted positive instances, generated by the

last (i.e. t-th) self-training iteration. Note that if 𝛼 = 1, the fuzzy labels are

equivalent to binary labels; and if 𝑡 = 1, we do not assign fuzzy labels. On the

other hand, the fuzzy labels assigned to the top-𝑐′ most confident predicted

28

negative instances, generated at the i-th self-training iteration are defined as:

1−𝛼

𝑡−1
(𝑖 − 1) (2.10)

For simplicity, we only differentiate the confidence levels of the predictions

generated by different self-training iterations. While we treat all the top-c most

confident positive instances (and all the top-𝑐′ most confident negative instances)

generated by the same self-training iteration as equally confident.

Algorithm 2.1: Cross-network Learning (CNL)

Input: Source network 𝐷𝑆 = {(𝑥𝑆
𝑢, 𝑦𝑆

𝑢)}𝑢=1
𝑚𝑆 with 𝑚𝑆 labeled instances; Target

network 𝐷𝑇 = {𝑥𝑇
𝑢}𝑢=1

𝑚𝑇 with 𝑚𝑇 unlabeled instances; Number of self-training

iterations: t; Number of most confident predicted positive instances moved from 𝐷𝑇 to

𝐷𝑆 at each iteration: c; Ratio of the number of most confident predicted negative

instances over that of positive instances moved from 𝐷𝑇 to 𝐷𝑆: 𝑙.

1. 𝐷𝑇
′ = 𝐷𝑇;

2. On 𝐷𝑆, train a model to obtain 𝜃∗ = 𝑎𝑟𝑔min
𝜃
(2.1);

3. For i=1:t iterations, do:

3.1 Based on 𝜃∗, apply (2.2) on 𝐷𝑇 to predict {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 ;

3.2 Based on {(𝑥𝑆
𝑢, 𝑦𝑆

𝑢)}𝑢=1
𝑚𝑆 and {(𝑥𝑇

𝑢, �̂�𝑇
𝑢)}𝑢=1

𝑚𝑇 , measure feature incompatibility

between 𝐷𝑆 and 𝐷𝑇, via (2.3);

3.3 Rank {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 and move the top-c most confident predicted positive

instances with their fuzzy labels from 𝐷𝑇 to 𝐷𝑆:

𝐷𝑆 ∶= 𝐷𝑆 + {(𝑥𝑇
𝑢, 1 −

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 𝑐 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 };

𝐷𝑇 ∶= 𝐷𝑇 − {(𝑥𝑇
𝑢, 1 −

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 𝑐 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 };

3.4 Rank {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 and move the top-(𝑐 ∗ 𝑙) most confident predicted negative

instances with their fuzzy labels from 𝐷𝑇 to 𝐷𝑆:

𝐷𝑆 ∶= 𝐷𝑆 + {(𝑥𝑇
𝑢,

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 (𝑐∗𝑙) 𝑙𝑜𝑤𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 };

𝐷𝑇 ∶= 𝐷𝑇 − {(𝑥𝑇
𝑢,

1−𝛼

𝑡−1
(𝑖 − 1)) |�̂�𝑇

𝑢 ∈ 𝑇𝑜𝑝 (𝑐∗𝑙) 𝑙𝑜𝑤𝑒𝑠𝑡 {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 };

3.5 On new 𝐷𝑆, retrain the model to obtain updated 𝜃∗ = 𝑎𝑟𝑔 min
𝜃
(2.6);

 End for

4. Based on 𝜃∗, apply (2.2) on 𝐷𝑇
′ to predict {�̂�𝑇

𝑢}𝑢=1
𝑚𝑇 .

Output: Predicted probabilities of all the instances on 𝐷𝑇 to be positive: {�̂�𝑇
𝑢}𝑢=1

𝑚𝑇 .

29

Next, by iteratively moving the most confident predicted instances (i.e. both

feature vectors and predicted fuzzy labels) from 𝐷𝑇 to 𝐷𝑆, the prediction model

can be updated based on not only all the fully labeled data in the source network,

but also the newly added most confident predicted labeled data in the target

network. In addition, with the devised fuzzy labels, lower degree of membership

would be assigned to less confident predicted instances. Thus, we can lower the

negative effects caused by adding the less confident predicted target network

instances into the training set. Finally, after t self-training iterations, for

cross-network seed selection, we employ the latest trained node prediction model

to select the top-k nodes with the highest predicted probability to be positive (i.e.

act as seed for IM) in the target network. On the other hand, for cross-network

graph sparsification, we leverage the latest trained edge prediction model to

remove a fraction f of the edges predicted as least likely to be positive (i.e. active

for influence propagation in IM) in the target network.

2.5 Experiments

2.5.1 Datasets

The performance of the proposed CNL model was tested for both cross-network

seed selection and cross-network graph sparsification tasks on four public

real-world datasets, namely, NetHEPT2, Email-Enron3, Epinions4 and DBLP5.

These datasets were frequently employed to evaluate the IM performance in the

literature [21], [58], [59], [63]. Both NetHEPT [59] and DBLP [91] datasets are

collaboration networks, where each node represents an author and each link

connecting two nodes indicates the co-author relationship. The Email-Enron

2 https://www.microsoft.com/en-us/research/people/weic/
3 https://snap.stanford.edu/data/email-Enron.html
4 https://snap.stanford.edu/data/soc-Epinions1.html
5 https://snap.stanford.edu/data/com-DBLP.html

30

dataset [92] is an email communication network, where each node represents an

email address and each link connecting two nodes indicates the existence of

communication between them. The Epinions dataset [93] is a “who trust whom”

online social network generated from the Epinions site. Table 2.1 gives some

statistics of these datasets. To demonstrate the efficiency of the CNL model, we

employed the smallest NetHEPT network as the source network, while the other

three larger networks as the target networks.

Table 2.1: Statistics of real-world datasets.

Dataset Type Source/Target # Nodes # Edges

NetHEPT Undirected Source 15233 31398

Email-Enron Undirected

Target

36692 183831

Epinions Directed 75879 508837

DBLP Undirected 317080 1049866

2.5.2 Implementation Details

In the experiments, the IC model [50] with the influence probability p=0.01 was

employed as the influence propagation model in the IM task. On one hand, for

cross-network seed selection, the NewGreedyIC algorithm [59] was employed to

select 100 seed nodes in the source network over 10 times to learn node labels.

Next, in the CNL model, we set the weight of the feature incompatibility

regularization as 𝜆1 = 10 and divided it by a factor of 1.1 after each self-training

iteration, following the practice in [65]; and set the L2-regularization weight as

𝜆2 = 0.5. For self-training process, we set t=5, c=10, l=30 for all the datasets. It

means that at each of the 5 self-training iterations, the top-10 most confident

predicted seed nodes and top-300 most confident predicted non-seed nodes in the

target network would be iteratively moved to the training set to retrain the node

prediction model in the next self-training iteration. In addition, for fuzzy label

design, we set 𝛼 = 0.8, which indicates that at the last (i.e. 5-th) self-training

iteration, the top-10 most confident predicted seed nodes are with 80% of

31

membership to be seed, while the top-300 most confident predicted non-seed

nodes are with 80% of membership to be non-seed.

On the other hand, for cross-network graph sparsification, in the source

network, we run the IC model [50] 1000 times to simulate the influence

propagation traces induced by 50 seed nodes selected by NewGreedyIC [59] so as

to learn the edge labels. Then, in the CNL model, 𝜆1 was set with the same value

as that for cross-network seed selection. While 𝜆2 = 1, 0.1 and 1 were

experimentally adopted for the Email-Enron, Epinions and DBLP target network,

respectively. For self-training process, we set t=3, c=200, l=30, meaning that

during each of 3 self-training iterations, the top-200 most confident predicted

active edges and top-6000 most confident predicted inactive edges in the target

network would be moved to the training set to iteratively update the edge

prediction model. For fuzzy label design, we conducted a grid search on 𝛼 ∈

{0.6, 0.7, 0.8,0.9} and consequently set 𝛼=0.7, 0.7 and 0.8 for the Email-Enron,

Epinions and DBLP target networks, respectively.

2.5.3 Performance of CNL for Seed Selection

In this subsection, we report the performance of the proposed CNL model for seed

selection in three target networks.

2.5.3.1 Baselines

The following IM algorithms are benchmarked against the proposed CNL model.

1) NewGreedyIC [59]: It is a greedy IM algorithm which firstly converts the

influence probabilistic graph into a deterministic graph and then employs a

BFS on the deterministic graph to calculate the influence spread;

2) CELF [57]: It is a greedy IM algorithm which greatly reduces the number of

evaluations on influence spread by exploiting the sub-modularity property;

32

3) CELF++ [58]: It further exploits the sub-modularity property to avoid

unnecessary re-computations of marginal gains incurred by CELF;

4) EigenCen: It is a heuristic method based on Eigenvector Centrality which

reflects a node’s influence in information diffusion [87]. It heuristically selects

nodes with the highest eigenvector centrality to be seeds;

5) TIL [20]: It is most related to the proposed CNL model, which views seed

selection for IM as a cross-network node classification task. However, it

ignores domain discrepancy between the source network and the target

network.

2.5.3.2 Evaluation Metrics

For each of the compared IM algorithms, the same number of seed nodes from [10,

100] was assigned for each target network. We evaluate the cross-network seed

selection performance from two perspectives, i.e., the performance w.r.t. IM in the

target network and the performance w.r.t. cross-network node retrieval. Firstly, to

evaluate the IM performance in the target networks, we adopt two metrics as in the

IM literature [50], [57], [59], namely, influence spread and running time. The

higher the influence spread, the better the performance; while the shorter the

running time, the better the performance. Secondly, by considering seed selection

as a node prediction task, we let both TIL [20] and the proposed CNL model learn

the greedy seed selection knowledge from the same greedy algorithm (i.e.

NewGreedyIC [59] in the experiments) in the source network. Thus, in the target

networks, we should check whether TIL and CNL could obtain similar seed

selection results w.r.t. the greedy algorithm which they learned the knowledge

from. To evaluate it, we adopted the precision@k metric to measure the accuracy

of their top-k seed node retrieval results. Here, the ground-truth seed nodes in the

target networks should be the k seed nodes selected by the same greedy algorithm

33

(i.e. NewGreedyIC) as in the source network. The higher the seed node precision,

the better the performance.

2.5.3.3 Performance Analysis

Next, we report the performance of CNL when it is applied to three target

networks for seed selection. Firstly, as shown in Figure 2.3, CNL can always

achieve a good influence spread almost matched with NewGreedyIC in the three

target networks. In addition, as shown in Figure 2.3(a), in the Email-Enron target

network, both CNL and NewGreedyIC achieved lower influence spread than

CELF and CELF++ when selecting no more than 40 seed nodes; while achieving

higher influence spread than CELF and CELF++ when selecting at least 60 seed

nodes. In the Epinions target network, as shown in Figure 2.3(b), both CNL and

NewGreedyIC achieved lower influence spread than CELF and CELF++ when the

seed set size was smaller than 50, while achieving higher influence spread than

CELF and CELF++ if at least 50 seed nodes were selected. While in the DBLP

target network, as shown in Figure 2.3(c), both CNL and NewGreedyIC achieved

higher influence spread than CELF and CELF++ for any seed set sizes within [10,

100]. These results could be explained by the fact that in the experiments, CNL

learned the greedy seed selection knowledge from NewGreedyIC in the source

network, thus CNL would tend to match with the influence spread of

NewGreedyIC, rather than other greedy algorithms, such as CELF and CELF++.

On the other hand, as shown in Figure 2.3, the running time of CNL was much

shorter than all the greedy algorithms in all the three target networks. For example,

when selecting 100 seed nodes in the largest DBLP target network containing

millions of edges, the running time of NewGreedyIC, CELF and CELF++ was

about 36, 11, and 9 hours, respectively. While in the CNL model, it only took 4

minutes to measure all the topological features for all the nodes in the network and

34

another 4 minutes to train the prediction model via 5 self-training iterations. Since

Figure 2.3: Performance of CNL for seed selection for IM in three target networks. The higher the

influence spread, the better the performance; while the shorter the running time, the better the

performance.

390

490

590

690

790

890

10 20 30 40 50 60 70 80 90 100

In
fl

u
e
n

c
e

S

p
re

a
d

Seed Set Size k

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Seed Set Size k

(a) Email-Enron

190

290

390

490

590

690

790

890

10 20 30 40 50 60 70 80 90 100

In
fl

u
e
n

c
e

S

p
re

a
d

Seed Set Size k

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Seed Set Size k

(b) Epinions

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

In
fl

u
e
n

c
e

S

p
re

a
d

Seed Set Size k

NewGreedyIC CELF CELF++

EigenCen TIL CNL

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

R
u

n
n

in
g

 T
im

e
 (

m
in

)

Seed Set Size k

(c) DBLP

35

the selected topological features can be measured efficiently and the time taken to

train the prediction model via self-training was quite short, CNL can run much

more efficiently than the greedy algorithms. In addition, as shown in Figure 2.3,

although the EigenCen heuristic was fastest among all the comparing algorithms,

it failed to achieve a high influence spread in all the three target networks. Also,

we can see that although the greedy algorithms can achieve a high influence

spread, the running time was extremely long. In contrast, the proposed CNL model

can obtain a good trade-off between the efficiency and effectiveness of the IM

problem, i.e., greatly saving the running time while still achieving a good

influence spread almost matched with the greedy algorithm.

Next, we compare the performance of TIL and the proposed CNL model. As

shown in Figures 2.3(a) and 2.3(c), in the Email-Enron and DBLP target networks,

CNL always achieved higher influence spread than TIL for different seed set sizes

between [10, 100]. In the Epinions target network, as shown in Figure 2.3(b), CNL

achieved higher influence spread than TIL when selecting more than 30 seed

nodes. In addition, as shown in Figure 2.4, CNL always achieved much higher

seed node precisions than TIL, when retrieving any number of k seed nodes

between [10, 100] in all the three target networks. Both the higher influence spread

and the higher precisions of CNL over TIL demonstrates the importance and

necessity of addressing domain discrepancy between the source network and the

Figure 2.4: Performance of CNL for seed node prediction in three target networks, in terms of the

seed node precision at top-k retrieved most likely seed nodes. The higher the seed node precision,

the better the performance.

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

@
k

Seed Set Size k
(a) Email-Enron

CNL TIL

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

@
k

Seed Set Size k
(b) Epinions

CNL TIL

0.6

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

@
k

Seed Set Size k
(c) DBLP

CNL TIL

36

target network, for cross-network seed selection in IM.

Moreover, we observe an interesting phenomenon of IM in different types of

networks. As shown in Figure 2.3, when the same number of seed nodes, say 10,

was selected, the influence spread achieved by CNL in the DBLP collaboration

network was only 74; in the Epinion trust social network, it was 390; while in the

email communication network, it was 463. These reveal that the email

communication and online social networks are much easier to spread the

information effectively than the collaboration network.

2.5.4 Performance of CNL for Graph Sparsification

Next, we investigate the performance of the proposed CNL model for graph

sparsification in three target networks.

2.5.4.1 Baselines

We compete with the following graph sparsification algorithms.

1) Random Heuristic: It randomly selects a fraction of edges to remove;

2) RandomWalk [63]: It removes a fraction of edges such that the

Kullback-Leibler divergence between a random walk on the original network

and the sparse network can be minimized;

3) AggRanks [21]: It removes a fraction of edges according to an overall ranking

aggregated by multiple topological feature rankings. It assigns higher weights

to more unique feature rankings during aggregation.

2.5.4.2 Evaluation Metrics

For each of the compared graph sparsification algorithms, a fraction f of edges

chosen from [10%, 90%] were removed in the original network to extract the

sparse networks. Then, in both the original network and the sparse networks, the

NewGreedyIC algorithm [59] was employed to select the same number of (i.e. 50

37

in the experiments) seed nodes to maximize the influence. Next, we evaluate the

performance of the graph sparsification algorithms from two perspectives, namely

the performance w.r.t. IM and w.r.t. cross-network edge retrieval. To evaluate the

performance of graph sparsification as a pre-processing step for IM, we adopt two

metrics as in the related literature [9], [21], [63]. Firstly, we measure how much

influence spread will be lost in the sparse network, as compared to that in the

original network. The less the loss of influence spread, the better the performance.

In addition, we check how much running time of the greedy algorithm (i.e.

NewGreedyIC) could be saved in the sparse network, as compared to that taken in

the original network. Note that the running time of NewGreedyIC [59] depends on

the number of edges in the target network, rather than the topological structures of

the edges. Thus, after removing an equal fraction of edges by different graph

sparsification algorithms, the save of running time of NewGreedyIC would be the

same for different graph sparsification algorithms.

On the other hand, by viewing graph sparsification as a cross-network edge

retrieval task, both AggRanks [21] and the proposed CNL model aim to remove a

fraction f of edges most likely to be inactive (i.e. useless) for influence propagation.

Thus, we employ the precision@f metric to examine the accuracy of the top-f (%)

most likely inactive edges retrieved by the graph sparsification algorithms. To

learn the ground-truth edge labels in the target networks, we run the same

influence cascade model as in the source network (i.e. IC model) to simulate the

influence propagation traces. The detailed approach for edge label learning has

been introduced in section 2.3.2. The higher the inactive edge precision, the better

the performance.

2.5.4.3 Performance Analysis

Next, we report the performance of CNL for graph sparsification in the three target

38

networks. Firstly, as shown in Figure 2.5, we can see that among all the compared

graph sparsification algorithms, CNL always performed the best (i.e. achieved the

lowest influence spread loss) in all the sparse target networks with different edge

removal fractions between [10%, 90%]. In addition, if 40% of edges were

Figure 2.5: Performance of CNL for graph sparsification as a pre-processing step for IM in three

target networks. The lower the loss of influence spread, the better the performance. (NGIC is short

for NewGreedyIC)

0

20

40

60

80

10 20 30 40 50 60 70 80 90

L
o

ss
 o

f I
n

fl
u

en
ce

 S
p

re
ad

 (
%

)

Edge Removal Fraction f (%)

30

50

70

90

110

130

150

0 10 20 30 40 50 60 70 80 90

R
un

ni
ng

 T
im

e
of

 N
G

IC
 (

m
in

)

Edge Removal Fraction f (%)

(a) Email-Enron

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90

L
o

ss
 o

f I
n

fl
u

en
ce

 S
p

re
ad

 (
%

)

Edge Removal Fraction f (%)

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

R
un

ni
ng

 T
im

e
of

 N
G

IC
 (

m
in

)

Edge Removal Fraction f (%)

(b) Epinions

0

20

40

60

80

10 20 30 40 50 60 70 80 90

L
o

ss
 o

f I
n

fl
u

en
ce

 S
p

re
ad

 (
%

)

Edge Removal Fraction f (%)

Random RandomWalk AggRanks CNL

300

500

700

900

1100

0 10 20 30 40 50 60 70 80 90

R
un

ni
ng

 T
im

e
of

 N
G

IC
 (

m
in

)

Edge Removal Fraction f (%)

(c) DBLP

39

removed by CNL in the Email-Enron, Epinions and DBLP target networks, the

influence spread were just reduced by 8.07%, 6.37% and 0.84%, respectively,

while the running time of NewGreedyIC can be greatly saved by 34.7%, 56.2%

and 29.2% in return, respectively. In addition, as a graph sparsification algorithm

for IM, the proposed CNL model is with high efficiency and scalability. For

example, even in the largest DBLP target network, the time taken to measure all

the topological features and train the prediction model via 3 self-training iterations

was only about 15 minutes. These reveal that the proposed CNL model indeed acts

as an effective graph sparsification algorithm for IM, since it can obtain a good

trade-off between efficiency and effectiveness of IM, i.e., greatly speeding up the

greedy algorithm without causing a notable loss of influence spread in the sparse

networks.

Secondly, we look at the performance of the random heuristic and

RandomWalk algorithms. As shown in Figure 2.5, in all the three target networks,

both AggRanks and CNL can all achieve much lower influence spread loss than

the random heuristic and RandomWalk algorithms. This could be explained by the

fact that for the IM task, the influence tends to be propagated through those active

edges which are adjacent to the highly influential nodes, rather than the randomly

selected edges. Since the highly influential nodes are with discriminative

Figure 2.6: Performance of CNL for inactive edge prediction in three target networks, in terms of

the inactive edge precision at top-f(%) retrieved most likely inactive edges. The higher the inactive

edge precision, the better the performance.

0.15

0.35

0.55

0.75

0.95

10 20 30 40 50 60 70 80 90

P
re

c
is

io
n

@
f

Edge Removal Fraction f (%)
(a) Email-Enron

CNL

AggRanks

0.65

0.75

0.85

0.95

10 20 30 40 50 60 70 80 90

P
re

c
is

io
n

@
f

Edge Removal Fraction f (%)
(b) Epinions

CNL

AggRanks

0.85

0.90

0.95

1.00

10 20 30 40 50 60 70 80 90

P
re

c
is

io
n

@
f

Edge Removal Fraction f (%)
(c) DBLP

CNL

AggRanks

40

topological features w.r.t. randomly selected nodes. The active edges should also

be with discriminative topological structures w.r.t inactive edges. Thus, the

AggRanks and CNL algorithms based on the discriminative topological features

can significantly outperform the random-based approaches.

Next, we compare the performance of AggRanks and the proposed CNL

algorithms in the sparse target networks, in terms of the influence spread loss and

inactive edge precision. As shown in Figure 2.5, when removing less than 30%

edges in the target networks, these two algorithms would perform quite similarly,

i.e., only lead to a little loss of influence spread in the sparse target networks.

However, CNL can achieve lower influence spread loss than AggRanks, when the

edge removal fraction is more than 30% in the three target networks. On the other

hand, as shown in Figure 2.6(a), CNL achieved higher inactive edge precision than

AggRanks in the sparse Email-Enron target networks with the edge removal

fraction between [10%, 70%]. In addition, as shown in Figures 2.6(b) and 2.6(c),

CNL achieved higher precision than AggRanks when the edge removal fraction is

more than 10% and 20% in the Epinions and DBLP target networks, respectively.

It is worth noting that for fair comparison, we let both AggRanks and CNL

aggregate the same set of topological features to remove the edges least useful for

influence propagation. But when learning the feature weightings for aggregation,

AggRanks only leverages the topological information in a single network and

assigns higher weight to more unique feature in an unsupervised manner. However,

the more unique feature might not necessarily be more important for inactive edge

prediction. In contrast to AggRanks, the proposed CNL model employ a fuzzy

self-training approach to iteratively leverage the influence propagation knowledge

pre-learned in a source network to learn the feature weightings for the target

network. Thus, the better overall performance of CNL over AggRanks

demonstrates the advantage of leveraging the cross-network information w.r.t. the

41

single network information for inactive edge prediction in IM.

Finally, let us look at some interesting differences when graph sparsification is

applied to different types of networks. As shown in Figure 2.5, when removing

equal fraction of edges in the three target networks, the loss of influence spread is

lowest in the DBLP target network. On the other hand, as shown in Figure 2.6,

when giving the same edge removal fraction, the inactive edge precisions are

highest in the DBLP target network. These results reveal that the email

communication (i.e. Email-Enron) and trust social networks (i.e. Epinions) show

greater challenge to graph sparsification than the collaboration network (i.e.

DBLP). This could be explained by our previous observation in seed selection that

the email communication and trust social networks are much easier to spread the

information than the collaboration network. In other words, the fraction of active

edges should be smallest (i.e., most of the edges are inactive for influence

propagation) in the DBLP collaboration network. Thus, even though removing

quite a large fraction (e.g. 70%) of edges in the DBLP network, the influence

spread in the sparse network would not be substantially affected.

2.5.5 Parameter Sensitivity

In this subsection, we analyze the sensitivity of the parameters, i.e. 𝜆1, 𝜆2 , 𝑡, 𝑐, 𝑙, 𝛼

on the performance of CNL for seed node selection and inactive edge prediction.

Specifically, for seed selection, the sensitivity tests were conducted in the DBLP

target network when the seed set size is 50. For inactive edge prediction, the

sensitivity analyses were performed in the Email-Enron target network when the

edge removal fraction is 30%.

42

Parameter 𝝀𝟏 denotes the weight of the feature incompatibility regularization

(2.4) and parameter 𝝀𝟐 indicates the weight of the L2-norm regularization (2.5).

As shown in Figure 2.7, 𝜆1 > 0 generally yields higher precisions for both seed

node prediction and inactive edge prediction, as compared to 𝜆1 = 0 . This

demonstrates the effectiveness of incorporating (2.4) in CNL to assign lower

absolute weights to the features which perform less similarly between the source

network and the target network. In addition, as shown in Figure 2.7(a), when 𝜆1 ∈

{5, 10,15,20}, the seed node prediction performance of CNL is not sensitive to the

value of 𝜆2. On the other hand, for inactive edge prediction, as shown in Figure

2.7(b), when 𝜆1 = 10, the performance of CNL is also not sensitive to the value

of 𝜆2. However, when 𝜆1 ∈ {15, 20}, relatively smaller values of 𝜆2, i.e., 0.01 or

0.001, would lead to good performance of CNL for inactive edge prediction.

Parameter t denotes the total number of self-training iterations. As shown

Figure 2.8(a), for seed node prediction, setting 𝑡 = 5 leads to a significant

improvement over 𝑡 = 1 and 3. However, when 𝑡 > 5, the seed node precision

can only be slightly improved. In addition, note that the running time of CNL will

increase as t increase. Thus, in order to achieve a good prediction performance and

also save the running time, we fix t=5 for seed node prediction on all the datasets.

On the other hand, as shown in Figure 2.9(a), t=3 can significantly increase the

Figure 2.7: Impact of 𝜆1 and 𝜆2 on the performance of CNL for seed node prediction in the

DBLP target network when the seed set size is 50 and for inactive edge prediction in the

Email-Enron target network when the edge removal fraction is 30%.

(a) Seed node prediction (b) Inactive edge prediction

43

inactive edge precision w.r.t. t=1, however, when t>3, the inactive edge prediction

Figure 2.8: Parameter sensitivity of CNL over 𝑡, 𝑐, 𝑙, 𝛼 for seed node prediction in the DBLP

target network when the seed set size is 50. The default settings are 𝜆1 = 10, 𝜆2 = 0.5, 𝑡 = 5, 𝑐 =

10, 𝑙 = 30, 𝛼 = 0.8.

Figure 2.9: Parameter sensitivity of CNL over 𝑡, 𝑐, 𝑙, 𝛼 for inactive edge prediction in the

Email-Enron target network when the edge removal fraction is 30%. The default settings are 𝜆1 =

10, 𝜆2 = 1, 𝑡 = 3, 𝑐 = 200, 𝑙 = 30, 𝛼 = 0.7.

0.7

0.8

0.9

1

1 3 5 7 9

P
re

c
is

io
n

 @
 k

(a) # self-training iterations: t

0.7

0.8

0.9

1

0 10 20 30 40 50

P
re

c
is

io
n

 @
 k

(b) # pos. instances at each iteration: c

0.7

0.8

0.9

1

1 10 20 30 40 50

P
re

c
is

io
n

 @
 k

(c) Ratio of neg. over pos. instances: l

0.7

0.8

0.9

1

0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

 @
 k

(d) Value of fuzzy label: α

0.6

0.65

0.7

0.75

1 3 5 7 9

P
re

c
is

io
n

 @
 f

(a) # self-training iterations: t

0.6

0.65

0.7

0.75

0 100 200 300 400 500

P
re

c
is

io
n

 @
 f

(b) # pos. instances at each iteration: c

0.6

0.65

0.7

0.75

1 10 20 30 40 50

P
re

c
is

io
n

 @
 f

(c) Ratio of neg. over pos. instances: l

0.6

0.65

0.7

0.75

0.6 0.7 0.8 0.9 1

P
re

c
is

io
n

 @
 f

(d) Value of fuzzy label: α

44

performance will be degraded. This might be caused by the shortcoming of the

self-training approach [65], i.e., when t becomes too large, the most confident

predicted instances in the target network might become not confident enough.

Then, if some wrongly predicted labeled target network instances are utilized as

the training data to retrain the prediction model, the prediction performance will be

declined. Thus, we fix t=3 in the CNL model for cross-network graph

sparsification in all the target networks.

Parameter c indicates the number of most confident predicted positive

instances moved from the target network to the training set, at each iteration. As

shown in Figure 2.8(b), 𝑐 ∈ {10,20,30,40,50} all achieve much higher seed node

precision than c=0. Also, as shown in Figure 2.9(b), 𝑐 ∈ {100,200,300} yields

much higher inactive edge precision than c=0. These demonstrate the effectiveness

of the self-training approach to leverage the target network data to train the

prediction model. In addition, we assigned a larger value of c for inactive edge

prediction than that for seed node prediction. This is because the number of edges

is generally much larger than that of nodes in a target network. Intuitively, when

training an edge prediction model, we would require larger number of training

samples (i.e. larger c) than that for node prediction.

Parameter l represents the ratio of the number of most confident predicted

negative instances over that of positive instances moved from the target network to

the training set. As shown in Figure 2.8(c), 𝑙 ≥ 1 contributes to much higher seed

node precision than 𝑙 = 1. This is because the number of non-seed nodes are

much larger than that of seed nodes. If we just add the equal number of most

confident predicted seed nodes and non-seed nodes (i.e. 𝑙 = 1) in the target

network to the training set, the prediction model might fail to consider enough

negative training samples from the target network. Thus, it is effective to

incorporate the parameter 𝑙 to address the imbalanced data condition for seed

45

node prediction. In addition, as shown in Figure 2.9(c), 𝑙 ≥ 1 also leads to much

higher inactive edge precisions than 𝑙 = 1. In addition, as shown in Figures 2.9(b)

and 2.9(c), when c or l become too large, i.e., 𝑐 ≥ 400, 𝑙 = 50, the inactive edge

precision will significantly decrease. This is also caused by the weakness of the

self-training approach as we explained above, i.e., utilizing not confident enough

target network predictions to retrain the model would lead to negative effect on the

prediction performance.

Finally, we evaluate the effectiveness of incorporating fuzzy labels in the

iterative self-training algorithm for cross-network seed selection and graph

sparsification. Parameter 𝜶 denotes the degree of membership to be positive

assigned to the most confident predicted positive instances generated at the last

self-training iteration. Note that 0.5 < 𝛼 < 1 indicates that we incorporate fuzzy

labels, while 𝛼 = 1 indicates that we utilize binary labels instead of fuzzy labels.

As shown in Figures 2.8(d) and 2.9(d), 𝛼 ∈ {0.6, 0.7, 0.8, 0.9} all lead to both

higher seed node precisions and higher inactive edge precisions than 𝛼 = 1. This

confirms the effectiveness of incorporating fuzzy labels in the CNL model for both

cross-network seed selection and graph sparsification. In addition, as shown in

Figure 2.8(d), the performance of CNL w.r.t. seed node prediction is not sensitive

to the value of 𝛼, when 𝛼 ∈ {0.6, 0.7, 0.8}. While for inactive edge prediction, as

shown in Figure 2.9(d), 𝛼 ∈ {0.6, 0.7} can achieve much higher precisions than

𝛼 = 0.8. This could be explained by the fact that we utilize a larger number of

target network instances (i.e. larger value of c) to train the inactive edge prediction

model, as compared to that for seed node prediction. Such larger number of target

network instances might be more likely to include the predictions which are not

confident enough. Thus, for inactive edge prediction, we would assign lower

confident level (smaller value of 𝛼) to those most confident target network

predictions generated by the last self-training iteration.

46

2.6 Summary

Although the IM problem has been extensively studied, very little work addresses

this problem in a cross-network scenario. In this work, we propose an innovative

cross-network learning approach to study two issues of the cross-network IM

problem, i.e., cross-network seed selection and cross-network graph sparsification.

On one hand, we consider cross-network seed selection for IM as a cross-network

node prediction task, with the goal of selecting the nodes most likely to act as seed

for IM in the target network. On the other hand, we view cross-network graph

sparsification as a cross-network edge prediction task, aiming to remove the edges

least likely to contribute to influence propagation for IM in the target network. To

achieve such goals, a CNL model is proposed to leverage the knowledge

pre-learned from a smaller source network to help predict seed nodes and inactive

edges for multiple larger target networks. To address domain discrepancy, lower

weights would be assigned to the features which perform less similarly between

the source network and the target network. In addition, a fuzzy self-training

approach is employed to iteratively retrain the prediction model based on not only

the fully labeled data in the source network, but also the most confident predicted

labeled data in the target network with their predicted fuzzy labels. With the help

of fuzzy labels, we can differentiate the levels of prediction confidence at different

self-training iterations so as to reduce the negative effects of the less confident

target network predictions on iterative retraining. Experiments on the real-world

datasets demonstrate that the proposed CNL model can achieve a good trade-off

between the efficiency and effectiveness of the IM task in the target networks. On

one hand, by leveraging the cross-network seed selection knowledge, CNL can

achieve a satisfactory influence spread comparable to the greedy algorithm in the

target network while greatly saving the required running time. On the other hand,

47

by leveraging the cross-network influence propagation knowledge for graph

sparsification, CNL just causes a little loss of influence spread in the sparse target

networks, while significantly speeding up the IM greedy algorithms. A limitation

of the CNL model is that it requires the greedy algorithm and the influence

propagation model to be the same in the source network and the target network.

Otherwise, the topological features and node/edge labels might be incomparable

across networks and might cause negative transfer.

Some preliminary results for cross-network graph sparsification in IM without

the provision of fuzzy labels has been published in [9]. In addition, employing the

CNL model empowered by fuzzy labeling for both cross-network seed selection

and graph sparsification in IM are currently under review in [8]. In the future, we

plan to leverage the knowledge pre-learned from multiple source networks instead

of a single source network, to make predictions over seed nodes and inactive edges

for the target networks. In addition, we can apply the proposed fuzzy self-training

approach to address other domain adaptation tasks, i.e., not just limited to the IM

application.

48

Chapter 3

Asymmetry-Aware Deep Network

Embedding

3.

3.1 Introduction

Networks are ubiquitous in many real-world applications, such as social networks,

co-author networks, biological networks, word co-occurrence networks, and

communication networks. Mining the information behind complex networks is

important for a variety of graph analytics tasks, such as node classification,

network clustering, link prediction, node recommendation, and network

visualization. To address such graph mining tasks successfully, a set of

informative and discriminative feature vector representations should be predefined

for nodes or links. Network embedding aims to learn a low-dimensional feature

vector representation for each node in a given network such that the original

network structures can be well preserved by the embedding vectors. Then, one can

simply apply the vector-based machine learning techniques on the

low-dimensional latent vector representations to solve diverse graph mining

applications efficiently and effectively.

Network transitivity should be asymmetric in both directed and undirected

networks. For example, as shown in Figure 3.1, given two nodes 𝑣𝑖 and 𝑣𝑗 , due

to different local neighborhood structures, the transition probability from 𝑣𝑖 to 𝑣𝑗

can be rather different from that towards 𝑣𝑖 from 𝑣𝑗 , in both directed and

undirected networks. In addition, considering the asymmetric proximities is

important for various graph mining tasks. For example, in node classification, the

49

node pairs with bi-directional strong connections would be more likely to share the

same labels as compared to those with unidirectional strong connection. Also, for

link prediction in signed networks, the positive links would more tend to be

bi-directional than the negative links [51]. However, most existing network

embedding algorithms fail to capture such asymmetric relationships. The only few

asymmetric network embedding algorithms, namely HOPE [30] and APP [26],

employ the matrix factorization and random walk approaches, respectively, while

taking advantage of deep network embedding to capture asymmetric proximities

has not yet been studied. In the state-of-the-art deep network embedding models

[34], [11], [10], [4], when learning the latent vector representation of a specific

node, say 𝑣𝑖, the corresponding input raw vector would only consider 𝑣𝑖 as a

source role, thus, only the network transitivity outward from 𝑣𝑖 towards all the

other nodes would be captured, while the network transitivity inward towards 𝑣𝑖

from all the other nodes have been ignored.

The outward and inward network transitivity capture different neighborhood

structure of a specific node. If one network embedding model can well capture

both the associated outward and inward transitivity in each node’s input raw

vector space, then the learned embedding node vector representation should be

more comprehensive to preserve the original neighborhood structure. To this end,

we propose an asymmetry-aware deep network embedding (AsDNE) model with

Figure 3.1: Illustration of asymmetric network transitivity in both directed and undirected

networks. In a directed network (a), the 1-step transition probability from 𝑣𝑖 to 𝑣𝑗 is 0, while the

1-step transition probability towards 𝑣𝑖 from 𝑣𝑗 is 1. In an undirected network (b), the 1-step

transition probability from 𝑣𝑖 to 𝑣𝑗 is 0.33, while the 1-step transition probability towards 𝑣𝑖

from 𝑣𝑗 is 1.

（b）Undirected

（a）Directed

50

outward and inward proximity preservation. Unlike existing deep network

embedding models which employ one single stacked auto-encoder (SAE) as the

main building block, the proposed AsDNE model consists of two SAEs, i.e.,

SAE-Out and SAE-In. For each node, SAE-Out and SAE-In will learn an outward

and an inward vector representations, respectively, by considering the node as a

source role and a target role within its K-step network connections. Then, by

concatenating the outward and inward vector representations of each node, the

final node vector representation can well preserve the asymmetric network

proximities. In addition, we incorporate pairwise constraints into SAE-Out and

SAE-In to embed node pairs that are more strongly connected in the original

network closer to each other in the embedding space. To better capture the

asymmetric proximities, we impose stronger constraint on the node pairs with

bi-directionally strong connections, as compared to those with only

unidirectionally strong connection. Thus, the node pairs which can easily reach

each other bi-directionally would have more similar latent vector representations.

The network representation learning ability of AsDNE was evaluated on two graph

mining tasks, i.e., multi-label node classification and link sign prediction. The

distinctive features of AsDNE can be summarized as follows:

1) Two semi-supervised SAEs are employed to learn non-linear network

representations with asymmetric proximities preservation;

2) The designed pairwise constraints can distinguish bi-directionally strong

connections from unidirectionally strong connections so as to better capture

asymmetric relationships;

3) Extensive experiments in the real-world undirected and directed, unweighted

and weighted networks demonstrates that AsDNE can learn task-independent

network representations outperforming the state-of-the-art network embedding

algorithms.

51

The rest of this chapter is organized as follows. Section 3.2 reviews the

state-of-the-art network embedding algorithms. Section 3.3 introduces the detailed

framework of AsDNE. Section 3.4 reports the experimental results of AsDNE on

public real-world datasets. Section 3.5 summaries this work.

3.2 Related Work

In this section, we review the state-of-the-art network embedding algorithms,

which are categorized as random walk based, matrix factorization based, and deep

learning based.

3.2.1 Random Walk based Network Embedding Algorithms

The random walk based network embedding algorithms were inspired by word

embedding in NLP. DeepWalk [24] is a pioneer work in this family of algorithms

which utilizes a Depth-first Sampling (DFS) approach to generate a collection of

truncated random walks in the given network. Then, by viewing a network as a

document, a node as a word, and the sampled random walks as short sentences, the

Skip-Gram language model [41] was extended to learn the low-dimensional node

vector representations. Tang et al. [43] proposed a LINE algorithm to generate the

first-order and second-order neighborhood via a Breath-first Sampling (BFS)

strategy. Then, an objective function was carefully designed to learn the node

vector representations which can preserve the first-order and second-order

proximities between nodes in the network. Instead of defining rigid notions of

neighborhoods like DeepWalk [24] and LINE [43], Grover and Leskovec [23]

introduced a biased random walk sampling strategy interpolating between DFS

and BFS to generate the flexible neighborhood. Then, a node2vec algorithm which

employs Skip-Gram language model [41] and negative sampling [94] was

developed to learn the low-dimensional node vector representations, with the goal

52

of maximizing the likelihood of neighborhood preservation.

3.2.2 Matrix Factorization based Network Embedding

Algorithms

A family of low rank embedding algorithms has been proposed to linearly project

the representation space of the original network into a low rank space. For

example, Wang et al. [6] proposed a Modularized Nonnegative Matrix

Factorization (M-NMF) model to preserve both microscopic structure and

mesoscopic community structure in the network. To learn the low-dimensional

node representations, the NMF technique was adopted to factorize the adjacency

matrix of the given network. Cao et al. [29] proposed a GraRep algorithm to

factorize each k-step positive pointwise mutual information (PPMI) matrix via

SVD and then concatenate multiple k-step low-rank representations as the final

representation. The matrix factorization based network embedding models can be

seen as performing linear dimensionality reduction, thus, they might fail to capture

the highly non-linear properties of the complex network structures.

3.2.3 Deep Learning based Network Embedding Algorithms

Due to the recent success of deep learning in representation learning [95], [96],

several deep network embedding algorithms have been proposed. For example,

Tian et al. [4] utilized a sparse SAE to learn deep network representations for

network clustering. Instead of utilizing an unsupervised SAE, Yang et al. [5]

employed a semi-supervised SAE to reconstruct the modularity matrix of a given

network so as to learn the deep network representations for community detection.

A pairwise constraint was incorporated into the SAE to make the nodes belonging

to the same community have similar embedding vector representations. In SDNE,

Wang et al. [10] proposed a semi-supervised SAE to reconstruct the adjacency

53

matrix and map the directly connected node pairs closer to each other in the

embedding space. SDNE only captures the first-order and second-order

proximities between nodes in a network. To capture high-order proximities, Cao et

al. [34] developed a DNGR model which utilizes an unsupervised de-noising SAE

to reconstruct the PPMI matrix. Furthermore, to take advantage of the

semi-supervised approach and preserving high-order proximities, we proposed a

DNE-APP model [11] which employs a semi-supervised SAE to learn deep

network representations by reconstructing the aggregated K-th order proximity

matrix and mapping node pairs with higher aggregated proximities closer to each

other in the embedding space. Besides, some deep network embedding models

have been proposed to employ convolutional neural networks to learn deep

network representations [35], [36], [97].

Network transitivity and proximity should be asymmetric in both directed and

undirected networks. However, most existing network embedding algorithms fail

to capture such asymmetric properties. Only few studies focus on asymmetric

network embedding. Ou et al. [30] proposed a HOPE algorithm to factorize the

high-order Katz proximity matrix via SVD. Then, a source and a target vector

representations would be learned for each node so as to capture the asymmetric

network transitivity. Zhou et al. [26] designed an APP model based on random

walk sampling and Skip-Gram language model. By considering each node as a

source role and a target role in the sampled paths, a source and a target vector

representations would be learned for each node to capture the asymmetric network

proximities. However, taking advantage of deep network embedding to preserve

the asymmetric network proximities has not been exploited. To fill this gap,

instead of utilizing one SAE as existing deep network embedding models [10],

[34], [11], [4], [5], we employed two SAEs in the proposed AsDNE model to

simultaneously capture the asymmetric outward and inward network proximities.

54

In addition, the pairwise constraints incorporated in DNE-APP [11] and SDNE [10]

do not specifically consider the asymmetric proximities between connected nodes.

To better capture the asymmetric pairwise proximities, we devised the

asymmetry-aware pairwise constraints to judiciously make the bi-directionally

strongly connected node pairs possess more similar latent vector representations

than the unidirectionally strongly connected node pairs.

3.3 AsDNE Model

In this section, we elaborate the framework of the AsDNE model. Firstly, we

define the asymmetric outward and inward proximity matrices, then, we explain

how to employ two SAEs to preserve the asymmetric proximities, how to design

the asymmetry-aware pairwise constraints, and how to optimize the AsDNE model.

Table 3.1 summaries the frequently used notations and the corresponding

descriptions in this chapter.

Table 3.1: Frequently used notations and descriptions in Chapter 3.

Notations Descriptions

𝒜,𝒜𝑇 Aggregated outward and inward transition probability matrices

𝑂, 𝐼 Outward and inward proximity matrices

l Number of layers in SAE-Out and SAE-In

d(k) Dimensionality of the k-th hidden layer of SAE-Out and SAE-In

𝑊1
𝑂(𝑘)

,𝑊2
𝑂(𝑘)

 Encoding and decoding weight matrices of k-th layer of SAE-Out

𝐵1
𝑂(𝑘)

, 𝐵2
𝑂(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE-Out

𝑊1
𝐼(𝑘)

,𝑊2
𝐼(𝑘)

 Encoding and decoding weight matrices of k-th layer of SAE-In

𝐵1
𝐼(𝑘)

, 𝐵2
𝐼(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE-In

𝐻𝑂(𝑘) Outward matrix representation learned by k-th layer of SAE-Out

𝐻𝐼(𝑘) Inward matrix representation learned by k-th layer of SAE-In

𝑟
Ratio of pairwise constraint weight on bi-directionally strongly connected

node pairs over that of unidirectionally strongly connected node pairs

3.3.1 Asymmetric Outward and Inward Proximities

Given a network 𝐺 = (𝑉, 𝐸) with a set of nodes 𝑉 = {𝑣𝑖}𝑖=1
𝑛 and a set of edges

55

𝐸 = {𝑒𝑖𝑗}, the adjacency matrix 𝑆 is defined as: 𝑆𝑖𝑗 > 0 if 𝑣𝑖 can reach 𝑣𝑗

after exactly one-step; otherwise, 𝑆𝑖𝑗 = 0. Based on 𝑆, the one-step transition

probability matrix is computed as 𝐴1 = 𝐷−1𝑆 , where 𝐷 denotes the degree

matrix of network 𝐺. Then, any k-step (𝑘 ≥ 2) transition probability matrix can

be computed as 𝐴𝑘 = 𝐴𝑘−1𝐴1, where 𝐴𝑖𝑗
𝑘 represents the transition probability

from the source node 𝑣𝑖 to the target node 𝑣𝑗 after exactly k-steps. Alternatively,

in very large-scale networks, we can approximate the k-step transition probability

matrix based on the random walk sampling approach [25] or the random surfing

strategy [34]. After generating a series of k-step transition probability matrices up

to the maximum K-step, we can aggregate an overall transition probability matrix

by assigning higher weights to closer neighbors as: 𝒜 = ∑ 𝐴𝑘 𝑘⁄𝐾
𝑘=1 , where

𝒜𝑖𝑗 > 0 if 𝑣𝑖 can reach 𝑣𝑗 within 𝐾 steps; otherwise, 𝒜𝑖𝑗 = 0 . Due to

different local neighborhood structures, the overall transition probability matrix

𝒜 is asymmetric in both directed and undirected networks. In this work, we refer

to 𝒜 and 𝒜𝑇 as the outward and inward transition probability matrix,

respectively, where the i-th row of 𝒜 and 𝒜𝑇 capture the outward transition

probabilities from 𝑣𝑖 towards all the nodes, and the inward transition probabilities

towards 𝑣𝑖 from all the nodes, in network 𝐺.

The PPMI metric [98] has been typically employed by the state-of-the-art

network embedding algorithms [29], [11], [34] to measure node proximities based

on the outward transition probability matrix. However, the outward and inward

network transitivity play a rather different role in capturing the local neighborhood

structure of a specific node. Thus, in this work, we employ PPMI in both outward

and inward transition probability matrices to measure the asymmetric proximities

between node pairs. Specifically, if 𝑣𝑖 can reach 𝑣𝑗 within K steps, i.e., 𝒜𝑖𝑗 > 0,

the outward proximity from 𝑣𝑖 to 𝑣𝑗 is measured as:

56

 𝑂𝑖𝑗 = 𝑚𝑎𝑥 (𝑙𝑜𝑔
𝑂𝑃(𝑣𝑖,𝑣𝑗)

∑ 𝑂𝑃(𝑣𝑘,𝑣𝑗)𝑂𝑃(𝑣𝑘)
𝑛
𝑘=1

, 0) (3.1)

where 𝑂𝑃(𝑣𝑖 , 𝑣𝑗) = 𝒜𝑖𝑗 ∑ 𝒜𝑖𝑘
𝑛
𝑘=1⁄ indicates the normalized outward transition

probability from 𝑣𝑖 to 𝑣𝑗 within K steps; 𝑂𝑃(𝑣𝑘) denotes the probability of a

path randomly starting at 𝑣𝑘 , by assuming a uniform distribution, we set

𝑂𝑃(𝑣𝑘) = 1 𝑛⁄ , where 𝑛 is the number of nodes in network G. In addition, if

there is no connection from 𝑣𝑖 to 𝑣𝑗 within K steps, i.e., 𝒜𝑖𝑗 = 0, then we set

𝑂𝑖𝑗 = 0. To reduce noises, PPMI [98] replaces all the negative PMI [99] values by

0. Thus, even though 𝒜𝑖𝑗 is positive but not large enough, i.e., 𝑣𝑖 has a very

weak outward connection towards 𝑣𝑗 , then 𝑂𝑖𝑗 will still be 0. Therefore, 𝑂𝑖𝑗 > 0

iff there exists a strong outward connection from 𝑣𝑖 to 𝑣𝑗 within K steps.

Similarly, given an inward connection towards 𝑣𝑖 from 𝑣𝑗 within K steps, i.e.,

(𝒜𝑇)𝑖𝑗 > 0, the inward proximity towards 𝑣𝑖 from 𝑣𝑗 is computed as:

 𝐼𝑖𝑗 = 𝑚𝑎𝑥 (𝑙𝑜𝑔
𝐼𝑃(𝑣𝑖,𝑣𝑗)

∑ 𝐼𝑃(𝑣𝑘,𝑣𝑗)𝐼
𝑛
𝑘=1 𝑃(𝑣𝑘)

, 0) (3.2)

where 𝐼𝑃(𝑣𝑖, 𝑣𝑗) = (𝒜𝑇)𝑖𝑗 ∑ (𝒜𝑇)𝑖𝑘
𝑛
𝑘=1⁄ represents the normalized inward

transition probability towards 𝑣𝑖 from 𝑣𝑗; 𝐼𝑃(𝑣𝑘) = 1/𝑛 denotes the probability

of a path randomly ending at 𝑣𝑘; and if (𝒜𝑇)𝑖𝑗 = 0, we set 𝐼𝑖𝑗 = 0. Note that

𝐼𝑖𝑗 > 0 iff the inward connection towards 𝑣𝑖 from 𝑣𝑗 is strong enough.

In this work, we use 𝑂 and 𝐼 to denote the outward and inward proximity

matrices, respectively. The i-th row of 𝑂 and 𝐼 represent the proximities

associated with 𝑣𝑖, by viewing 𝑣𝑖 as a source role and a target role within its

associated K-step network connections, respectively.

3.3.2 SAE-Out and SAE-In

Next, we employ two SAEs, i.e., SAE-Out and SAE-In, to learn the

low-dimensional node vector representations with asymmetric proximities

57

preservation. Firstly, given the outward proximity matrix 𝑂 as the input to

SAE-Out (i.e. 𝐻𝑂(0) = 𝑂), the hidden representations can be learned

layer-by-layer as:

 𝐻𝑂(𝑘) = 𝑓 (𝐻𝑂(𝑘−1)(𝑊1
𝑂(𝑘)

)
𝑇

+ 𝐵1
𝑂(𝑘)

) , 𝑘 = 1,… , 𝑙 (3.3)

where 𝑓 is a non-linear encoding function; l indicates the number of layers of

SAE-Out; 𝑊1
𝑂(𝑘)

∈ 𝑅𝑑(𝑘)×𝑑(𝑘−1) and 𝐵1
𝑂(𝑘)

∈ 𝑅𝑛×𝑑(𝑘) denote the encoding

weight and bias matrices at the k-th layer of SAE-Out, and 𝑑(𝑘) indicates the

dimensionality of the k-th hidden layer of SAE-Out. The i-th row of the input

matrix, i.e., 𝑂(𝑖) ∈ 𝑅1×𝑛, captures the outward proximities from 𝑣𝑖 towards all

the nodes in a network. 𝐻𝑂(𝑘) ∈ 𝑅𝑛×𝑑(𝑘) represents the hidden matrix

representation learned by the k-th layer of SAE-Out. The i-th row of 𝐻𝑂(𝑘) ,

denoted as 𝐻𝑂(𝑘)(𝑖) ∈ 𝑅1×𝑑(𝑘), represents the latent vector representation of 𝑣𝑖

learned by the k-th layer of SAE-Out, which captures the outward proximities

associated with 𝑣𝑖.

Then, at the decoding step, giving �̂�𝑂(𝑙) = 𝐻𝑂(𝑙) , the input matrix can be

reconstructed in a reverse order as below:

 �̂�𝑂(𝑘−1) = 𝑓 (�̂�𝑂(𝑘)(𝑊2
𝑂(𝑘)

)
𝑇

+ 𝐵2
𝑂(𝑘)

) , 𝑘 = 𝑙, … ,1 (3.4)

where 𝑓 is a non-linear decoding function; 𝑊2
𝑂(𝑘)

∈ 𝑅𝑑(𝑘−1)×𝑑(𝑘) and 𝐵2
𝑂(𝑘)

∈

𝑅𝑛×𝑑(𝑘−1) refer to the decoding weight and bias matrices associated with the k-th

layer of SAE-Out; and �̂�𝑂(0) = �̂� is the reconstructed input matrix learned by

SAE-Out. In this work, we employed the sigmoid function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥)

as both the encoding and decoding function.

In general, the number of strongly connected node pairs are smaller than that

of weakly connected and disconnected node pairs, thus yielding a sparse outward

proximity matrix 𝑂. To address the sparsity issue, we modify the reconstruction

58

errors of SAE-Out by incorporating a penalty matrix 𝑃𝑂(1) ∈ 𝑅𝑛×𝑛, as in [10]:

 𝒥1
𝑂(1)

=
1

2𝑛
‖𝑃𝑂(1) ⊙ (�̂� − 𝑂)‖𝐹

2 (3.5)

where ⊙ denotes an element-wise Hadamard product; 𝑃𝑖𝑗
𝑂(1)

= 𝛽, if 𝑂𝑖𝑗 > 0

and 𝑃𝑖𝑗
𝑂(1)

= 1 , if 𝑂𝑖𝑗 = 0 . 𝛽 > 1 denotes the ratio of penalty on the

reconstruction errors of the positive outward proximities over that of the zero

outward proximities. Incorporating 𝛽 makes SAE-Out focus more on

reconstructing the strong outward connections than the weak or unobserved

outward connections. Similarly, we define the reconstruction errors for any k-th

(1 ≤ 𝑘 ≤ 𝑙) layer of SAE-Out as:

 𝒥1
𝑂(𝑘)

=
1

2𝑛
‖𝑃𝑂(𝑘) ⊙ (�̂�𝑂(𝑘−1) − 𝐻𝑂(𝑘−1))‖𝐹

2 (3.6)

where 𝑃𝑂(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1), 𝑃𝑖𝑗
𝑂(𝑘)

= 𝛽 , if 𝐻𝑂(𝑘−1) > 0 and 𝑃𝑖𝑗
𝑂(𝑘)

= 1 , if

𝐻𝑂(𝑘−1) = 0. Even though when 𝑘 ≥ 2, the input matrix 𝐻𝑂(𝑘−1) has become

dense, we still keep 𝑃𝑂(𝑘) in 𝒥1
𝑂(𝑘)

 by regarding 𝛽2 as the weight of the

reconstruction errors in the overall loss function introduced latter.

On the other hand, giving the inward proximity matrix 𝐼 as the input to

SAE-In, i.e., 𝐻𝐼(0) = 𝐼, the reconstruction errors at any k-th layer of SAE-In are

similarly defined as:

 𝒥1
𝐼(𝑘)

=
1

2𝑛
‖𝑃𝐼(𝑘)⊙ (�̂�𝐼(𝑘−1) − 𝐻𝐼(𝑘−1))‖𝐹

2 (3.7)

where 𝑃𝐼(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1), 𝑃𝑖𝑗
𝐼(𝑘) = 1, if 𝐻𝑖𝑗

𝐼(𝑘−1)
= 0 and 𝑃𝑖𝑗

𝐼 = 𝛽 > 1 , if

𝐻𝑖𝑗
𝐼(𝑘−1)

> 0. In addition, the i-th row of 𝐻𝐼(𝑘−1), i.e., 𝐻𝐼(𝑘−1)(𝑖) ∈ 𝑅1×𝑑(𝑘−1)

learned by the (k-1)-th layer of SAE-In, represents the hidden vector

representation of 𝑣𝑖 capturing its associated inward proximities.

59

3.3.3 Asymmetry-Aware Pairwise Constraints

Next, we incorporate pairwise constraints into SAE-Out and SAE-In to map node

pairs with higher proximities closer to each other in the low-dimensional

embedding space. Given two node pairs, (𝑣𝑖, 𝑣𝑗) and (𝑣𝑖, 𝑣𝑘), assume that 𝑂𝑖𝑗 +

𝑂𝑗𝑖 = 𝑂𝑖𝑘 + 𝑂𝑘𝑖. In addition, both 𝑣𝑖 and 𝑣𝑗 can easily reach each other within K

steps, while only 𝑣𝑖 can easily reach 𝑣𝑘 but 𝑣𝑘 fails to easily reach 𝑣𝑖 within K

steps. Then, according to the pairwise constraints designed in [10], [11], 𝑣𝑖 would

be mapped closely to 𝑣𝑗 and 𝑣𝑘 to the same extent. However, 𝑣𝑖 should be

considered as more similar to 𝑣𝑗 than 𝑣𝑘 , due to the bi-directionally strong

connections between 𝑣𝑖 and 𝑣𝑗 . To capture such asymmetric relationships, we

devise the following pairwise constraint for SAE_Out:

 𝒥2
𝑂(𝑘)

=
1

2𝑛
∑ 𝑅𝑖𝑗

𝑂(𝑂𝑖𝑗 + 𝑂𝑗𝑖)
𝑛
𝑖,𝑗=1 ‖𝐻𝑂(𝑘)(𝑖) − 𝐻𝑂(𝑘)(𝑗)‖2

2 (3.8)

where 𝑅𝑖𝑗
𝑂 = 𝑟 iff 𝑂𝑖𝑗 > 0 and 𝑂𝑗𝑖 > 0; otherwise, 𝑅𝑖𝑗

𝑂 = 1. 𝑟 > 1 denotes the

ratio of the weight of the pairwise constraint on the bi-directionally strongly

connected node pairs over that of the unidirectionally strongly connected node pairs.

Minimizing 𝒥2
𝑂(𝑘)

 yields an embedding space where the node pairs having

bi-directionally positive proximities are much closer, w.r.t. the node pairs having

unidirectionally positive proximity. Equation (3.8) can be written as 𝒥2
𝑂(𝑘)

=

𝑇𝑟((𝐻𝑂(𝑘))𝑇𝐿𝑂𝐻𝑂(𝑘)) 𝑛⁄ , where 𝑇𝑟(.) denotes the trace of a matrix; 𝐿𝑂 refers to

the Laplacian matrix of 𝑈𝑂 = 𝑅𝑂 ⊙ (𝑂 + 𝑂𝑇), i.e., 𝐿𝑂 = 𝐷𝑈𝑂 − 𝑈𝑂 and 𝐷𝑈𝑂 is

a diagonal matrix with the diagonal entries as the row summation of 𝑈𝑂, i.e.,

(𝐷𝑈𝑂)
𝑖𝑖
= ∑ 𝑈𝑖𝑗

𝑂𝑛
𝑗=1 . Similarly, for SAE-In, the pairwise constraint is devised as:

 𝒥2
𝐼(𝑘)

=
1

2𝑛
∑ 𝑅𝑖𝑗

𝐼 (𝐼𝑖𝑗 + 𝐼𝑗𝑖)
𝑛
𝑖,𝑗=1 ‖𝐻𝐼(𝑘)(𝑖) − 𝐻𝐼(𝑘)(𝑗)‖2

2 (3.9)

where 𝑅𝑖𝑗
𝐼 = 𝑟 > 1 iff 𝐼𝑖𝑗 > 0 and 𝐼𝑗𝑖 > 0; otherwise, 𝑅𝑖𝑗

𝐼 = 1.

60

Then, by combining the reconstruction errors 𝒥1
𝑂(𝑘)

 and the pairwise

constraint 𝒥2
𝑂(𝑘)

, the overall loss function of SAE-Out is defined as follows:

 𝒥𝑂 = ∑ 𝒥𝑂(𝑘) = ∑ 𝒥1
𝑂(𝑘)

+ 𝛼𝑘𝒥2
𝑂(𝑘)

+ 𝜆𝑘𝒥3
𝑂(𝑘)𝑙

𝑘=1
𝑙
𝑘=1 (3.10)

where 𝒥3
𝑂(𝑘)

= ‖𝑊1
𝑂(𝑘)‖𝐹

2 + ‖𝑊2
𝑂(𝑘)‖𝐹

2 refers to a L-2 norm regularization to

prevent over-fitting; 𝛼𝑘 , 𝜆𝑘 > 0 are the weights of 𝒥2
𝑂(𝑘)

 and 𝒥3
𝑂(𝑘)

 at the k-th

layer of SAE-Out. Similarly, the overall loss function of SAE-In is defined as:

 𝒥𝐼 = ∑ 𝒥𝐼(𝑘) = ∑ 𝒥1
𝐼(𝑘)

+ 𝛼𝑘𝒥2
𝐼(𝑘)

+ 𝜆𝑘𝒥3
𝐼(𝑘)𝑙

𝑘=1
𝑙
𝑘=1 (3.11)

where 𝒥3
𝐼(𝑘)

= ‖𝑊1
𝐼(𝑘)‖𝐹

2 + ‖𝑊2
𝐼(𝑘)‖𝐹

2 .

3.3.4 Optimization of AsDNE

To optimize AsDNE, we can optimize SAE-Out and SAE-In in parallel. Firstly, to

optimize each k-th layer of SAE-Out, one can employ back-propagation algorithm

to compute the “error” terms of its output layer 𝛿3
𝑂(𝑘)

 and hidden layer 𝛿2
𝑂(𝑘)

 as

follows:

𝛿3
𝑂(𝑘)

= (�̂�𝑂(𝑘−1) − 𝐻𝑂(𝑘−1)) ⊙ 𝑃𝑂(𝑘) ⊙𝑃𝑂(𝑘) ⊙𝑓′(𝑍3
𝑂(𝑘)

) (3.12)

𝛿2
𝑂(𝑘) = (𝛿3

𝑂(𝑘)
𝑊2

𝑂(𝑘)
+ 𝛼𝑘(𝐿

𝑂 + (𝐿𝑂)𝑇)𝐻𝑂(𝑘))⊙ 𝑓′(𝑍2
𝑂(𝑘)

) (3.13)

where 𝑍3
𝑂(𝑘)

= 𝐻𝑂(𝑘)(𝑊2
𝑂(𝑘)

)
𝑇

+ 𝐵2
𝑂(𝑘)

 , 𝑍2
𝑂(𝑘)

= 𝐻𝑂(𝑘−1)(𝑊1
𝑂(𝑘)

)
𝑇

+ 𝐵1
𝑂(𝑘)

and 𝑓′ denotes the derivative of the activation function. Based on 𝛿3
𝑂(𝑘)

 and

𝛿2
𝑂(𝑘)

, we can compute the partial derivatives of the overall loss function of the

k-th layer of SAE-Out w.r.t. the encoding weight 𝑊1
𝑂(𝑘)

, decoding weight 𝑊2
𝑂(𝑘)

,

encoding bias 𝐵1
𝑂(𝑘)

, and decoding bias 𝐵2
𝑂(𝑘)

 as follows:

𝜕𝒥𝑂(𝑘)

𝜕𝑊1
𝑂(𝑘) =

1

𝑛
(𝛿2

𝑂(𝑘))
𝑇

𝐻𝑂(𝑘−1) + 𝜆𝑘𝑊1
𝑂(𝑘)

 (3.14)

61

𝜕𝒥𝑂(𝑘)

𝜕𝑊2
𝑂(𝑘) =

1

𝑛
(𝛿3

𝑂(𝑘)
)
𝑇

𝐻𝑂(𝑘) + 𝜆𝑘𝑊2
𝑂(𝑘)

 (3.15)

𝜕𝒥𝑂(𝑘)

𝜕𝐵1
(𝑘) = 𝛿2

𝑂(𝑘) 𝑛⁄ (3.16)

𝜕𝒥𝑂(𝑘)

𝜕𝐵2
𝑂(𝑘) = 𝛿3

𝑂(𝑘)
𝑛⁄ (3.17)

To minimize the loss function 𝒥𝑂(𝑘), one can use stochastic gradient descent

(SGD) to iteratively update the parameters as follows:

 𝑊1
𝑂(𝑘)

= 𝑊1
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝑊1
𝑂(𝑘) (3.18)

 𝑊2
𝑂(𝑘)

= 𝑊2
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝑊2
𝑂(𝑘) (3.19)

 𝐵1
𝑂(𝑘)

= 𝐵1
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝐵1
𝑂(𝑘) (3.20)

 𝐵2
𝑂(𝑘)

= 𝐵2
𝑂(𝑘)

− 𝜂𝑘
𝜕𝒥𝑂(𝑘)

𝜕𝐵2
𝑂(𝑘) (3.21)

where 𝜂𝑘 indicates the learning rate of the k-th layer of SAE-Out. Next, we

greedily layer-wise optimize SAE-Out until reaching the deepest (i.e. l-th) layer

and learn the deepest hidden matrix representation with outward proximity

preservation, i.e., 𝐻𝑂(𝑙) . Similarly, with greedily layer-wise optimization of

SAE-In, we can learn the deepest hidden matrix representation with inward

proximity preservation, i.e., 𝐻𝐼(𝑙). Finally, we concatenate 𝐻𝑂(𝑙) and 𝐻𝐼(𝑙) to

get the final matrix representation 𝐻(𝑙). Note that the i-th row of 𝐻(𝑙), i.e.,

𝐻(𝑙)(𝑖) ∈ 𝑅1×𝑑, 𝑑 = 2 × 𝑑(𝑙), corresponds to the feature vector representation of

𝑣𝑖 , where the first half (i.e. 𝐻𝑂(𝑙)(𝑖) ∈ 𝑅1×𝑑/2) captures the outward network

transitivity from 𝑣𝑖 while the latter half (i.e. 𝐻𝐼(𝑙)(𝑖) ∈ 𝑅1×𝑑/2) preserves the

inward transitivity towards 𝑣𝑖.

The time complexity of AsDNE is O(nchi), where 𝑛 denotes the number of

nodes in a network, 𝑐 indicates the average number of strongly connected

neighbors (within K steps) per node, ℎ = 𝑑(1) represents the maximum hidden

dimensionality in SAE-Out and SAE-In, and i refers to the number of training

62

iterations. Since chi is independent of 𝑛, the overall time complexity of AsDNE is

linear to the number of nodes.

3.4 Experiments

3.4.1 Datasets

We evaluate the proposed AsDNE model in several real-world datasets, including

Algorithm 3.1: AsDNE

Input: Outward and inward proximity matrices within K steps, i.e., 𝑂 and 𝐼 ;

Parameters 𝑙, 𝛽, 𝛼, 𝑟, 𝜆.

1. Greedy layer-wised training for SAE-Out:

Set 𝐻𝑂(0) = 𝑂

For k=1: l

1.1 Leverage 𝐻O(𝑘−1) as input to k-th layer of SAE-Out;

1.2 Given 𝐻O(𝑘−1) and 𝑂, optimize k-th layer of SAE-Out by finding 𝜃𝑂(𝑘)∗ =

{𝑊1
𝑂(𝑘)∗

,𝑊2
𝑂(𝑘)∗

, 𝐵1
𝑂(𝑘)∗

, 𝐵2
𝑂(𝑘)∗

} = 𝑎𝑟𝑔min
𝜃𝑂(𝑘)

𝒥𝑂(𝑘) via SGD;

1.3 Leverage 𝜃𝑂(𝑘)∗ to learn 𝐻𝑂(𝑘);

End for

2. Greedy layer-wised training for SAE-In:

Set 𝐻𝐼(0) = 𝐼

For k=1: l

2.1 Leverage 𝐻𝐼(𝑘−1) as input to k-th layer of SAE-In;

2.2 Given 𝐻𝐼(𝑘−1) and 𝐼, optimize k-th layer of SAE-In by finding 𝜃𝐼(𝑘)∗ =

{𝑊1
𝐼(𝑘)∗,𝑊2

𝐼(𝑘)∗, 𝐵1
𝐼(𝑘)∗, 𝐵2

𝐼(𝑘)∗
} = 𝑎𝑟𝑔min

𝜃𝐼(𝑘)
𝒥𝐼(𝑘) via SGD;

2.3 Leverage 𝜃𝐼(𝑘)∗ to learn 𝐻𝐼(𝑘);

End for

Output: Concatenate 𝐻𝑂(𝑙) and 𝐻𝐼(𝑙) to get 𝐻(𝑙).

63

weighted and unweighted, directed and undirected networks. The statistics of the

datasets are shown in Table 3.2. Blogcatalog [100] is an online social network,

where each user can be associated with multiple interested groups. Cora [101] is a

paper citation network, where one paper can be labeled with multiple topics. Since

a citation reflects that the two associated papers tend to have similar topic, we

modeled citation as undirected relationship in the experiments. IMDb [102] is a

weighted movie co-stars network, where each movie can be associated with

multiple genres, and the weight of each edge represents the number of common

stars between two movies. We evaluated multi-label node classification on the

Blogcatalog, Cora and IMDb datasets.

In addition, Wiki [103], Slashdot [104] and Epinions [105] are directed signed

networks, where each directed edge is associated with a signed label, either

positive or negative. 78.43%, 76.18% and 89.55% of edges are positive in the

Wiki, Slashdot and Epinions datasets, respectively. We employed these three

datasets for link sign prediction.

Table 3.2: Statistics of the datasets.

Dataset # Nodes # Edges # Labels

Blogcatalog 10312 333983 39

Cora 11471 33416 10

IMDb 19359 362079 21

Wiki 7118 103675

2 Slashdot 7000 238029

Epinions 7000 451149

3.4.2 Baselines

AsDNE was benchmarked against the following state-of-the-art network

embedding algorithms, including random walks based, matrix factorization based,

and deep learning based.

1) DeepWalk [24]: It generates a collection of random walks via DFS, and then

64

employs Skip-Gram language model [41] to learn node vector representations.

2) LINE [43]: It utilizes a BFS strategy to generate the first-order and

second-order neighborhood and preserve the first-order and second-order

proximities.

3) GraRep [29]: It uses SVD to factorize each k-step PPMI matrix and then

concatenates all the k-step representations as the final representation.

4) SDNE [10]: It employs a semi-supervised SAE to reconstruct the adjacency

matrix and map the directly connected node pairs closer to each other. It

preserves the first-order and second-order proximities.

5) DNGR [34]: It adopts an unsupervised denoising SAE to reconstruct the PPMI

matrix. It can preserve high-order proximities.

6) DNE-APP [11]: It employs a semi-supervised SAE to reconstruct the

aggregated k-th order PPMI matrix and map nodes pairs with higher

aggregated proximities closer to each other.

7) APP [26]: It is a random walk based embedding algorithm based on Skip-gram

language model. Unlike DeepWalk, it can preserve asymmetric proximities by

learning a source and a target vector representations for each node.

8) HOPE [30]: It employs SVD to factorize the high-order Katz proximity matrix

and learns a source and a target vector representations for each node so as to

capture the asymmetric network transitivity.

3.4.3 Implementation Details

In the proposed AsDNE model, both SAE-Out and SAE-In were constructed as a

2-layer SAE, where the number of dimensions at the first hidden layer and the

second hidden layer were set as 𝑑(1) = 256 and 𝑑(2) = 128, respectively. By

concatenating the deepest hidden representations of SAE-Out and SAE-In, the

number of dimensions of our final node vector representation was 𝑑 = 2 × 𝑑(2) =

65

256. For all datasets, we set the ratio of the weight of pairwise constraint on the

bi-directionally strong connections over that of the unidirectionally strong

connections as r=4; and set the weight of pairwise constraint for different layers of

SAE-Out and SAE-In as 𝛼1 = 𝛼 = 0.5 and 𝛼𝑘 = 𝛼/2, ∀ 𝑘 ≥ 2. In addition, we

set the weight of regularization for different layers of SAE-Out and SAE-In as

𝜆1 = 0.05, 𝜆𝑘 = 0.01, ∀ 𝑘 ≥ 2. Also, we set the ratio of reconstruction penalty on

the strong connections over that of weak or unobserved connections as 𝛽 =5 on

the IMDb, Slashdot and Epinions datasets and 𝛽 =6 on the other datasets. In

addition, we set the maximum step K=6 for node classification in all datasets, while

set K as 1, 1 and 2 for link sign prediction in the Wiki, Slashdot and Epinions

datasets, respectively.

For fair comparisons, we fixed the same dimensionality of node vector

representations, i.e., d=256 for all the baselines. We also built a 2-layer SAE for all

the deep network embedding baselines (i.e. SDNE, DNGR and DNE-APP), where

the number of hidden dimensions at each layer of SAE was equal to that of the

concatenated hidden representations in our AsDNE model. The maximum K-step in

GraRep, DNGR and DNE-APP were set with the same values as in our AsDNE

model. For GraRep, the dimension of each k-step representation was set as

𝑟𝑜𝑢𝑛𝑑(𝑑/𝐾), i.e., 𝑑/𝐾 is rounded to the nearest integer. For APP and HOPE, the

dimensionality of the source and the target vector representation was set as d/2, as

in AsDNE. For DeepWalk, the number of walks started from each node was set as

40, and the walk length was set as 80. Note that DeepWalk only works in

undirected and unweighted networks, while node2vec is flexible to work in

weighted and directed networks. In addition, when setting the parameters as p=1,

q=1 in node2vec, DeepWalk can be a special case of node2vec [23]. Thus, in the

directed or weighted networks, we report the results of DeepWalk by running

node2vec with the specific parameter setting.

66

3.4.4 Multi-label Node Classification

For multi-label node classification, we randomly split all the nodes as a training set

and a testing set, where the training fraction ranges from 10% to 90%. Then, we

train a one-vs-rest LR classifier based on the labeled nodes in the training set and

then leverage the classifier to predict multiple labels for each testing node. We

repeated the random split 10 times for each network embedding algorithm and

report their average Macro-F1 and Micro-F1 scores [106] over the same 10 random

splits. The Macro-F1 metric computes F1 score by giving equal weight to each

class while the Micro-F1 metric gives equal weight to each sample.

Firstly, as shown in Figures. 3.2(a) and 3.2(b), AsDNE can achieve the highest

Micro-F1 and Macro-F1 scores among all the comparing algorithms, no matter

what percentage of labeled nodes were used for training in the Blogcatalog and

Cora networks. In addition, as shown in Figure 3.2(c), although DNE-APP

achieved higher Micro-F1 scores than AsDNE when using less than 40% of labeled

nodes for training in the IMDb network, AsDNE can achieve significantly higher

Macro-F1 scores than DNE-APP under all training percentages. It is worth noting

that both DNGR and DNE-APP adopt a single SAE to reconstruct the outward

proximity matrix. While in the AsDNE model, two SAEs are employed to

reconstruct the asymmetric outward and inward proximity matrices. The better

overall performance of AsDNE over DNGR and DNE-APP demonstrates that even

in undirected networks, considering both outward and inward proximities would

yield more informative node feature representations.

In addition, we can see that DNE-APP, DNGR, and DeepWalk achieved much

higher Micro-F1 and Macro-F1 scores than SDNE and LINE. Note that DNE-APP,

DNGR and DeepWalk can capture high-order proximities between different nodes

in the network, while SDNE and LINE are only able to capture the first-order and

67

second-order proximities. Thus, it demonstrates that capturing high-order

proximities is rather important and necessary for learning the informative feature

vector representations for node classification.

Figure 3.2: Micro-F1 and Macro-F1 scores of multi-label node classification on Blogcatalog, Cora

and IMDB networks. GraRep failed to work in the largest IMDb dataset in the experiments, due to

its high complexity.

0.13

0.19

0.25

0.31

10 20 30 40 50 60 70 80 90

M
a

c
ro

 -F
1

% of labeled nodes for trainning

0.62

0.66

0.7

0.74

0.78

10 20 30 40 50 60 70 80 90

M
ic

ro
 -F

1

% of labeled nodes for trainning

AsDNE APP HOPE

DNE-APP DNGR SDNE

GraRep DeepWalk LINE

0.27

0.32

0.37

0.42

10 20 30 40 50 60 70 80 90

M
ic

ro
 -F

1

% of labeled nodes for trainning

0.48

0.54

0.6

0.66

0.72

10 20 30 40 50 60 70 80 90

M
a

c
ro

 -F
1

% of labeled nodes for trainning

0.4

0.43

0.46

0.49

10 20 30 40 50 60 70 80 90

M
ic

ro
 -F

1

% of labeled nodes for trainning

0.14

0.16

0.18

0.2

0.22

10 20 30 40 50 60 70 80 90

M
a

c
ro

 -F
1

% of labeled nodes for trainning

(a) Blogcatalog

(b) Cora-L

(c) IMDb

68

3.4.5 Link Sign Prediction

For link sign prediction, we firstly utilize the unsigned version of the signed

networks to learn the low-dimensional node vector representations. Then, given an

edge 𝑒𝑖𝑗, its vector representation is constructed as 𝐻(𝑒𝑖𝑗) = 𝐻(𝑖) ⊙ 𝐻(𝑗), where

𝐻(𝑖) and 𝐻(𝑗) denote the deepest latent vector representations of node 𝑣𝑖 and

𝑣𝑗 , respectively. Next, we randomly sample a fraction of labeled edges to train a LR

classifier and employ the classifier to predict the signed labels of remaining edges.

Since the real-world signed networks are rather imbalanced, i.e., containing

overwhelmingly positive links, directly evaluating the accuracy on such datasets

will be misleading. Thus, we followed [107], [108], [109] to adopt the Area Under

ROC Curve (AUC) metric to evaluate the link sign prediction performance, which

is insensitive to the imbalanced data. The higher the AUC score, the better the

performance. For all the network embedding algorithms, we report the average

AUC scores over the same 5 random splits.

Firstly, as shown in Tables 3.3, 3.4, and 3.5, the proposed AsDNE model always

significantly outperforms all the baselines, i.e., achieves the highest AUC score in

all the three networks. For example, when using 20% of labeled edges for training

in the sparest Wiki dataset (as shown in Table 3.3), AsDNE can achieve a 6.4%

higher AUC score than the best baseline, i.e., DNE-APP.

Secondly, we can see that in all the three networks, both DNE-APP and SDNE

achieved much higher AUC scores than DNGR. Note that both DNE-APP and

SDNE employ a semi-supervised SAE for network embedding, while DNGR

adopts an unsupervised SAE. Thus, the better performance of DNE-APP and

SDNE over DNGR demonstrates the effectiveness of the semi-supervised

approach for learning network representations for link sign prediction. The same

findings were also observed in our previous work [11].

69

Thirdly, DeepWalk can preserve high-order proximities, while LINE only

Table 3.3: The AUC Scores of link sign prediction on the Wiki dataset.

Algorithms
% of labeled edges for training

20 40 60 80

AsDNE 0.7485 0.7535 0.7542 0.7529

DNE-APP 0.7036 0.7097 0.7108 0.7133

SDNE 0.7029 0.7084 0.7090 0.7105

DNGR 0.6773 0.6830 0.6851 0.6878

GraRep 0.5971 0.6065 0.6101 0.6120

LINE 0.6561 0.6634 0.6658 0.6690

DeepWalk 0.6222 0.6302 0.6305 0.6289

APP 0.6467 0.6555 0.6581 0.6610

HOPE 0.6043 0.6100 0.6137 0.6119

Table 3.4: The AUC Scores of link sign prediction on the Slashdot dataset.

Algorithms
% of labeled edges for training

20 40 60 80

AsDNE 0.8261 0.8274 0.8282 0.8283

DNE-APP 0.8079 0.8094 0.8104 0.8103

SDNE 0.8033 0.8045 0.8052 0.8052

DNGR 0.7376 0.7397 0.7405 0.7402

GraRep 0.6102 0.6139 0.6161 0.6162

LINE 0.7692 0.7714 0.7725 0.7726

DeepWalk 0.6728 0.6758 0.6764 0.6761

APP 0.7051 0.7075 0.7083 0.7082

HOPE 0.6401 0.6448 0.6482 0.6506

Table 3.5: The AUC Scores of link sign prediction on the Epinions dataset.

Algorithms
% of labeled edges for training

20 40 60 80

AsDNE 0.9121 0.9128 0.9129 0.9137

DNE-APP 0.8884 0.8895 0.8894 0.8897

SDNE 0.8843 0.8855 0.8856 0.8862

DNGR 0.8553 0.8566 0.8567 0.8571

GraRep 0.7809 0.7826 0.7830 0.7846

LINE 0.8818 0.8827 0.8827 0.8837

DeepWalk 0.7485 0.7503 0.7513 0.7524

APP 0.7904 0.7923 0.7927 0.7932

HOPE 0.7580 0.7605 0.7616 0.7623

70

preserves the first-order and second-order proximities. As shown in Figure 3.2, for

node classification, DeepWalk performs much better (i.e. achieves much higher

Macro-F1 and Micro-F1 scores) than LINE. However, as shown in Tables 3.3, 3.4,

and 3.5, in all the three networks, LINE would achieve much higher AUC score

than DeepWalk for link sign prediction. In addition, in the experiments, we found

that when the maximum step K becomes larger than 2, the prediction performance

will be all degraded for DNGR, GraRep, DNE-APP, and AsDNE. This is because

the high-order proximities are measured based on the transitive assumption which

suggests that “the friend of my friend is likely to be my friend” [110], [111].

However, the negative links are not transitive in the signed networks, since both

“the enemy of my enemy is my friend” and “the enemy of my enemy is my enemy”

can be observed in the signed networks [112], [51]. Thus, the high-order

proximities measured based on such a transitive assumption might be inaccurate in

the signed networks and would lead to noises for negative link prediction.

Conformably, we can see that SDNE which only captures the low-order proximity

performs much better in link sign prediction, as compared to its performance in

node classification. Thus, it reflects that preserving high-order proximities is rather

important for learning network representations for node classification, while

preserving low-order proximities yields better link sign prediction performance.

Next, we discuss the performance of the asymmetric network embedding

algorithms. Both APP and DeepWalk are random-walk based embedding

algorithms, however, APP always achieved much higher AUC score than

DeepWalk in all the three directed networks. In addition, both GraRep and HOPE

are matrix factorization based embedding algorithms. While HOPE can achieve

much higher AUC score than GraRep in the Wiki and Slashdot networks (as

shown in Tables 3.3 and 3.4). Moreover, SDNE, DNGR, and our DNE-APP and

AsDNE models are all deep network embedding models, while the AsDNE model

71

always performed significantly better than other deep network embedding

baselines, in all the three networks. The better performance of the

asymmetry-aware network embedding algorithms (i.e. APP, HOPE and AsDNE)

w.r.t. their corresponding category of asymmetry-unaware benchmarks

demonstrates that it is indeed necessary to capture the asymmetric proximities for

learning network representations for link sign prediction in directed networks.

3.4.6 Parameter Sensitivity

In this subsection, we examine how different values of the parameters

𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 would affect the performance of AsDNE. Figure 3.3 shows the

parameter sensitivity of AsDNE w.r.t. multi-label node classification when 50% of

labeled nodes were used for training on the Blogcatalog dataset. Figure 3.4 reports

the sensitivity of AsDNE w.r.t. link sign prediction when 20% of labeled links

were utilized for training on the Epinions dataset.

Parameter 𝜷 denotes the ratio of penalty on the reconstruction errors of

positive proximities (i.e. strong connections) over that of zero proximities (i.e.

weak or unobserved connections). As shown in Figures. 3.3(a) and 3.4(a), 𝛽 > 1

always leads to much higher Micro-F1 score for node classification and also much

higher AUC score for link sign prediction than 𝛽 = 1. This demonstrates that

imposing larger penalty to make the SAE-Out and SAE-In focus more on

reconstructing the strong connections than the weak or unobserved connections is

highly effective for learning informative feature representations for both node

classification and link sign prediction.

Parameter 𝜶 indicates the weight of pairwise constraint in the overall loss

function. As shown in Figures 3.3(b) and 3.4(b), 𝛼 > 0 always yields better node

classification and link sign prediction performance than 𝛼 = 0. This reflects that

incorporating the pairwise constraints into SAE-Out and SAE-In can learn more

72

informative network representations, as compared to the unsupervised SAEs. In

addition, in AsDNE, we incorporate the parameter 𝒓 to impose stronger

constraints on the bi-directionally strongly connected node pairs so as to map them

much closer than the unidirectionally strongly connected node pairs. As shown in

Figures 3.3(c) and 3.4(c), 𝑟 > 1 leads to higher Micro-F1 score for node

classification and higher AUC score for link sign prediction than 𝑟 = 1. This

Figure 3.3: Sensitivity of the parameters 𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 on the Micro-F1 score of AsDNE for

multi-label node classification, when 50% of labeled nodes were used for training on the

Blogcatalog dataset. The higher the Micro-F1 score, the better the performance.

Figure 3.4: Sensitivity of the parameters 𝛽, 𝛼, 𝑟, 𝐾, 𝑙, 𝑑 on the AUC score of AsDNE for link sign

prediction, when 20% of labeled links were used for training on the Epinions dataset. The higher

the AUC score, the better the performance.

0.41

0.42

0.43

1 2 3 4 6 8

M
ic

r
o

-F
1

(d) Value of Maximum step: K

0.13

0.23

0.33

0.43

1 4 5 6 7

M
ic

r
o

-F
1

(a) Ratio of reconstruction penalty:β

0.37

0.39

0.41

0.43

0 0.25 0.5 1

M
ic

r
o

-F
1

(b) Weight of pairwise constraint: α

0.4

0.41

0.42

0.43

1 2 3 4 5 6

M
ic

r
o

-F
1

(c) Ratio of constraint strength: r

0.4

0.41

0.42

0.43

1 2 3 4
M

ic
r
o

-F
1

(e) # layer of SAE: l

0.4

0.41

0.42

0.43

64 128 256 512

M
ic

r
o

-F
1

(f) # dimension: d

0.76

0.8

0.84

0.88

0.92

1 4 5 6 7

A
U

C

(a) Ratio of reconstruction penalty:β

0.89

0.9

0.91

0.92

0 0.25 0.5 1

A
U

C

(b) Weight of pairwise constraint: α

0.9

0.91

0.92

1 2 3 4 5 6

A
U

C

(c) Ratio of constraint strength: r

0.9

0.91

0.92

1 2 3 4 6 8

A
U

C

(d) Value of Maximum step: K

0.9

0.91

0.92

1 2 3 4

A
U

C

(e) # layer of SAE: l

0.88

0.9

0.92

64 128 256 512

A
U

C

(f) # dimension: d

73

demonstrates the effectiveness of our designed asymmetry-aware pairwise

constraints for different prediction tasks in the directed (i.e. Epinions) and even

undirected (i.e. Blogcatalog) networks.

Parameter 𝑲 refers to the maximum step of neighbor which is considered as

similar to a target node. As shown in Figure 3.3(d), a larger value of K would lead

to better node classification result. This indicates that capturing high-order

proximities is rather effective for learning the feature representations for node

classification. However, as shown in Figure 3.4(d), conversely, for link sign

prediction, the AUC score would decrease as K increases, especially when K is

larger than 2. This finding is consistent with the experimental results we have

discussed previously. The high-order proximities are recursively measured based

on the transitive assumption [110], [111], however, in the signed networks, the

positive links are transitive while the negative links are not [112], [51]. Thus, if a

K-step connection between two nodes contains any negative links, then the K-step

pairwise proximities measured based on the transitive assumption would be

inaccurate. Then, predicting the link signed labels based on such inaccurate

high-order proximities would degrade the performance. However, if one aims to

predict the existence of links in the unsigned networks without negative links,

preserving the high-order proximities might be useful.

Parameter 𝒍 indicates the number of layers in SAE-Out and SAE-In. We

constructed 4 SAEs for both SAE-Out and SAE-In, with the number of layer

differently set as 1, 2, 3, and 4, and fixing their deepest hidden dimensionality

equally as 128. As shown in Figures 3.3(e) and 3.4(e), as compared with a shallow

architecture (i.e. 1-layer SAE), a 2-layer SAE yields better node classification and

also better link sign prediction performance. However, a deeper architecture more

than 3 layers would yield even worse node classification results.

Parameter d is the dimensionality of the concatenated hidden vector

74

representations. As shown in Figure 3.3(f), for node classification, the Micro-F1

score significantly increases when d is increased from 64 to 128. After that, the

Micro-F1 score just slightly increases as d further increases. As shown in Figure

3.4(f), for link sign prediction, the AUC score keeps increasing as d increases.

3.5 Summary

In this chapter, we propose a deep network embedding model, AsDNE with

asymmetric proximities preservation. AsDNE consists of two semi-supervised

SAEs, i.e., SAE-Out and SAE-In, which are employed to learn the

low-dimensional outward and inward vector representations, by considering each

node as a source role and a target role, respectively, within its K-step network

connections. To better capture the asymmetric relationships, we devise pairwise

constraint to map the bi-directionally strongly connected nodes much closer than

the unidirectionally strongly connected nodes. Extensive experimental results

demonstrate that capturing asymmetric proximities can significantly improve

prediction over both nodes and links, in both undirected and directed networks.

Moreover, we found that capturing high-order proximities leads to better node

classification results, while introducing noises to degrade link sign prediction. As

the proposed AsDNE model can capture any K-th order proximities, it is flexible

to learn informative network representations for both node classification and link

sign prediction.

Some preliminary results of the proposed DNE-APP model were published in

[11]. In addition, the comprehensive results of the proposed AsDNE model are

currently under review in [42]. In the future, we can extend AsDNE for

heterogenous network embedding, which not only considers the network structure

but also utilizes the abundant content information associated with the nodes or

edges for learning network representations.

75

Chapter 4

Deep Network Embedding in

Signed Networks

4.

4.1 Introduction

The vast majority of existing network embedding algorithms are only designed for

unsigned networks, without considering the polarities of edges in the signed

networks. A signed network contains both positive and negative links, where

positive links indicate proximity or similarity, while negative links reflect

dissimilarity or distance [113]. Recent studies [51], [52] have shown that the

signed networks have properties substantially distinct from the unsigned networks.

For example, in unsigned networks, the homophily effect [111] and social

influence [110] theories suggest that the connected users tend to have similar

preferences. However, such theories are not applicable to the signed networks due

to the existence of negative links. For instance, in a signed network like Epinions6,

two negatively connected users reveal that they have rather opposite opinions

instead of similar preferences. In addition, the transitivity property of unsigned

networks which suggests that “the friend of my friend is likely to be my friend” is

also not true for the negative links in the signed networks as both “the enemy of

my enemy is my friend” and “the enemy of my enemy is my enemy” can be

observed in the signed networks [112]. Due to the substantially distinct properties

between signed networks and unsigned networks, existing network embedding

algorithms designed for unsigned networks cannot be directly applied to the signed

6 http://www.epinions.com/

76

networks. Thus, it is indeed necessary to design signed network embedding

algorithms to capture the specific properties of the signed networks. “Structural

balance” is one prevailing social property of the signed networks [114]. The

balance theory states that “a network is balanced if and only if all the edges are

positive; or all the nodes in the network can be grouped into two clusters where the

edges within the same cluster are all positive while across different clusters are all

negative” [115]. A weak balance theory [116] was proposed to generalize the

original balance theory from two-way clustering to k-way clustering. Recently,

Cygan et al. [117] further extended the structural balance theory as “the nodes

connected with positive links should sit closer than those connected with negative

links”.

Existing signed network embedding algorithms mostly employ the spectral

techniques [113], [44], [118], [119] to embed the representation space of the

original network into a low-dimensional space spanned by the top-k eigenvectors

of the characteristic matrix associated with the given network. It has been shown

that such spectral methods based on matrix decomposition techniques are with

limited representation learning ability to capture the highly nonlinear properties of

the complex network structure [34]. In addition, the spectral methods based on

Eigen Value Decomposition (EVD) are computationally highly expensive, i.e.,

even the fastest implementation of EVD requires a super-quadratic computational

complexity [4]. On the other hand, deep learning techniques have demonstrated

powerful ability to learn more complex and non-linear feature representations in

CV [120], [121], speech recognition [122] and NLP [48]. Thus, most recently,

several promising deep network embedding algorithms [4], [5], [10], [11], [34]

have been proposed to learn deep graph representations for unsigned networks.

However, very little deep network embedding work exists for the signed networks.

In this work, we propose a deep network embedding with structural balance

77

preservation (DNE-SBP) model to learn deep graph representations for the signed

networks. A stacked auto-encoder (SAE) is employed to learn the nonlinear hidden

node vector representations, by reconstructing the adjacency matrix of a given

signed network. As the real-world signed networks are generally overwhelmingly

positive [112], we impose larger penalty on the reconstruction errors of negative

links so as to make the SAE focus more on reconstructing the scarce negative links

as compared to the abundant positive links. In addition, we design the pairwise

constraints to map each positively connected node pair closer to each other (i.e.

having similar hidden vector representations), and to map each negatively

connected node pair more far apart from each other (i.e. having rather different

hidden vector representations), in the low-dimensional embedding space. Thus, the

important structural balance property of the signed networks can be well captured

by the embedding vector representations. Then, we apply vector-based machine

learning algorithms on the node vector representations learned by DNE-SBP to

carry out two important signed network mining tasks, namely, link prediction and

community detection. The contributions of this work can be summarized as

follows:

1) We propose a novel DNE-SBP model for signed network embedding, which

leverages a semi-supervised SAE to learn the low-dimensional nonlinear graph

representations;

2) By reconstructing the signed adjacency matrix, the learned hidden

representations can capture positive, negative and unobserved network

connections in the original network;

3) By designing the pairwise constraints to map the positively connected nodes

nearer than the negatively connected nodes, the structural balance property of

the signed networks can be well preserved by the embedding vector

representations;

78

4) To deal with the highly imbalanced data in the real-world signed networks, we

impose larger penalty and stronger pairwise constraint on negative links to

make them have very distinctive embedding vector representations w.r.t. the

positive links;

5) Extensive experiments on real-world datasets demonstrate the superiority of

the proposed DNE-SBP model over the state-of-the-art network embedding

algorithms for graph representation learning in the signed networks.

The rest of this chapter is organized as follows. Section 4.2 reviews the

state-of-the-art signed network embedding algorithms. Section 4.3 introduces the

detailed framework of DNE-SBP. Section 4.4 reports the experimental results of

DNE-SBP for link sign prediction and community detection in three public

real-world signed networks. Section 4.5 summaries this work.

4.2 Related Work

The state-of-the-art unsigned network embedding algorithms have been

comprehensively reviewed in section 3.2. Here, we focus on reviewing the signed

network embedding algorithms and the semi-supervised learning techniques.

4.2.1 Network Embedding for Signed Networks

Firstly, we review the spectral embedding algorithms designed for the signed

networks. Kunegis et al. [113] introduced a signed Laplacian matrix by extending

the conventional Laplacian matrix [123] designed for unsigned networks. Then, a

signed network can be embedded into a d-dimensional space spanned by the top-d

eigenvectors corresponding to the smallest eigenvalues of the signed Laplacian

matrix. Chiang et al. [114] proposed a multi-level clustering framework based on

the balanced normalized cut objective, which is proved to be mathematically

equivalent to the weighed kernel k-means clustering objective. However, this

79

framework only outputs the partitions of a network rather than an embedded map.

Zheng et al. [44] further proposed a spectral embedding algorithm for the signed

networks, by defining the simple normalized signed (SNS) graph Laplacian matrix

and the balanced normalized signed (BNS) graph Laplacian matrix. Then, the

top-d eigenvectors corresponding to the smallest non-zero eigenvalues of the SNS

and BNS Laplacian matrices, respectively, were employed to construct a

d-dimensional embedding space. Hsieh et al. [119] proposed to utilize Singular

Value Projection to complete the adjacency matrix of a given signed network.

Then, the top-d eigenvectors of the completed adjacency matrix were employed as

the low rank embeddings. However, a recent study [118] has shown that the

eigenvector encoding of the cluster structure does not necessarily correspond to

the smallest eigenvalues. Thus, the standard spectral clustering techniques based

on the top-k eigenvectors associated with the smallest eigenvalues might fail to

guarantee the recovery of the ground truth cluster structures. To address this issue,

Mercado et al. [118] proposed to use the geometric mean of the Laplacian matrices,

instead of the arithmetic mean used by the standard spectral clustering methods.

However, measuring the geometric mean of the Laplacian matrix is

computationally expensive, thus limiting this method to be scaled to the large

sparse networks.

Recently, Wang et al. [45] proposed a SiNE algorithm to utilize a deep learning

framework to learn embedding representations for the signed networks, based on

the extended structural balance theory [117]. Firstly, for each node 𝑣𝑖, a set of

triplets {(𝑣𝑖, 𝑣𝑗 , 𝑣𝑘)|𝑒𝑖𝑗 = 1, 𝑒𝑖𝑘 = −1} were randomly sampled from a given

signed network, where 𝑣𝑗 and 𝑣𝑘 denote a positive neighbor and a negative

neighbor of 𝑣𝑖, respectively. Then, based on the sampled triplets, the goal of SiNE

is to make the similarity between the hidden vector representations of a node and

80

its positive neighbor larger than that between the node and its negative neighbor.

Since SiNE learns the network representations based on the sampled triplets rather

than the whole network connections, some information in the original network

might be unavoidably missing. For example, for the nodes with a very large degree,

sampling a limited number of triplets might fail to get enough information to learn

informative feature representations. In addition, such sampled triplets only capture

the observed connections, while ignoring all the unobserved connections. Thus,

the network representations learned by SiNE would fail to easily distinguish the

disconnected nodes from the connected ones. In contrast to SiNE, our proposed

DNE-SBP model learns the network representation from the adjacency matrix,

which captures not only the positive and negative connections, but also the

unobserved connections. Thus, the network representations learned by DNE-SBP

can not only distinguish the positively connected nodes from the negatively

connected nodes, but also differentiate the connected nodes from the disconnected

ones.

4.2.2 Semi-Supervised Learning

In the real-world applications, acquiring the fully labeled data is generally very

expensive and time-consuming, while it is much easier to obtain the unlabeled data.

Semi-supervised learning is an effective technique to leverage both the limited

labeled data and the abundant unlabeled data to improve learning performance.

The semi-supervised learning techniques can be grouped into two categories, i.e.,

semi-supervised classification [124], [125] and semi-supervised clustering [126],

[127], [128]. On one hand, semi-supervised classification explores how to utilize a

large amount of unlabeled samples as the extra training data to improve the

classification performance, such as self-training and co-training [8], [9], [65]. On

the other hand, semi-supervised clustering studies how to incorporate the prior

81

information, such as pairwise constraints, to boost the clustering performance. For

example, Klein et al. [127] proposed a semi-supervised clustering algorithm by

incorporating the must-link (ML) and cannot-link (CL) pairwise constraints into

the clustering process. The ML pairwise constraint indicates that the two instances

are similar and should belong to the same cluster. While the CL pairwise constraint

reflects that the two instances are dissimilar and cannot be assigned to the same

cluster. Yu et al. [128] proposed a transitive closure based constraint propagation

approach, which fully utilizes the ML and CL pairwise constraints in an ensemble

framework for semi-supervised clustering. He et al. [126] developed a

semi-supervised clustering algorithm to propagate the ML and CL pairwise

constraints through multi-level random walks. In addition, in the recently proposed

deep network embedding models [10], [11], [42], [5], pairwise constraints have

been incorporated into SAEs to capture the proximities between different nodes,

which are similar to the ML constraints in semi-supervised clustering. However,

none of them have utilized the CL pairwise constraints to capture the dissimilarity

between the nodes. To well capture the structural balance property of the signed

networks, in the proposed DNE-SBP model, the ML and CL pairwise constraints

have been incorporated to target for the positively and negatively connected node

pairs, respectively.

4.3 Deep Network Embedding Model with Structural

Balance Preservation

In this section, we introduce how a SAE is employed to reconstruct the signed

adjacency matrix, how the pairwise constraints are designed and how the

DNE-SBP model can be optimized. Algorithm 4.1 represents the framework of the

DNE-SBP model. For clarity, we summary the frequently used notations and the

corresponding descriptions in Table 4.1.

82

Table 4.1: Frequently used notations and descriptions in Chapter 4.

Notations Descriptions

A Signed adjacency matrix of the network

l Number of layers in SAE

𝑑(𝑘) Dimensionality of k-th hidden layer of SAE

𝑋(𝑘), �̂�(𝑘) Input and reconstructed matrices of k-th layer of SAE

𝑊1
(𝑘)

,

𝑊2
(𝑘)

Encoding and decoding weight matrices of k-th layer of SAE

𝐵1
(𝑘)

, 𝐵2
(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE

𝐻(𝑘) Hidden matrix representation learned by k-th layer of SAE

𝛾
Ratio of reconstruction penalty and pairwise constraint on negative links over that

of positive links

Given a signed network 𝐺 = (𝑉, 𝐸) with a set of nodes 𝑉 = {𝑣𝑖}𝑖=1
𝑛 and a

set of edges 𝐸 = {𝑒𝑖𝑗} , the associated signed adjacency matrix 𝐴 ∈ 𝑅𝑛×𝑛 is

defined as below:

 𝐴𝑖𝑗 = {

= 1, 𝑖𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑣𝑖 , 𝑣𝑗) 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

= −1, 𝑖𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑣𝑖, 𝑣𝑗) 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 = 0, 𝑖𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝑣𝑖 , 𝑣𝑗) 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

Then, the signed adjacency matrix A can be broken into a positive part 𝐴+ ∈

𝑅𝑛×𝑛 and a negative part 𝐴− ∈ 𝑅𝑛×𝑛 as: 𝐴𝑖𝑗
+ = 𝑚𝑎𝑥(𝐴𝑖𝑗 , 0) , 𝐴𝑖𝑗

− =

−𝑚𝑖𝑛(𝐴𝑖𝑗 , 0), where 𝐴𝑖𝑗
+ , 𝐴𝑖𝑗

− ≥ 0 represent the absolute weight of positive link

and negative link, respectively.

4.3.1 Stacked Auto-Encoder

Next, we employ a SAE to reconstruct the signed adjacency matrix A to learn the

nonlinear hidden vector representations for all the nodes in the signed network G.

A SAE consists of l layers of basic auto-encoder is constructed as follows:

 𝐻(𝑘) = 𝑓 (𝑋(𝑘)(𝑊1
(𝑘)
)
𝑇

+ 𝐵1
(𝑘)
) , 𝑘 = 1,… , 𝑙 (4.1)

 �̂�(𝑘) = 𝑓 (�̂�(𝑘)(𝑊2
(𝑘)
)
𝑇

+ 𝐵2
(𝑘)
) , 𝑘 = 𝑙, … ,1 (4.2)

83

where (1) and (2) represent the encoding and decoding process at the k-th layer of

SAE, respectively. 𝐻(𝑘) ∈ 𝑅𝑛×𝑑(𝑘) denotes the hidden matrix representation

learned by the k-th layer of SAE, n is the number of nodes in network G, and 𝑑(𝑘)

represents the dimensionality of the k-th hidden layer of SAE. Specifically, the i-th

row of 𝐻(𝑘), i.e., 𝐻𝑖
(𝑘)

∈ 𝑅1×𝑑(𝑘) represents the hidden vector representation of

node 𝑣𝑖, learned by the k-th layer of SAE. 𝑋(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1) denotes the input

matrix of the k-th layer of SAE, 𝑋(1) = 𝐴 and 𝑋(𝑘) = 𝐻(𝑘−1), ∀ 𝑘 = 2,… , 𝑙

indicating that the hidden matrix representation learned by the (k-1)-th layer of

SAE are utilized as the input matrix to the k-th layer of SAE. 𝑊1
(𝑘)

∈

𝑅𝑑(𝑘)×𝑑(𝑘−1) and 𝐵1
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘) refer to the encoding weight and bias matrices

associated with the k-th layer of SAE, respectively. In addition, �̂�(𝑘) ∈ 𝑅𝑛×𝑑(𝑘−1)

and �̂�(𝑘) ∈ 𝑅𝑛×𝑑(𝑘) indicate the reconstructed matrices of 𝑋(𝑘) and 𝐻(𝑘) ,

respectively, where �̂�(𝑙) = 𝐻(𝑙) and �̂�(𝑘) = �̂�(𝑘+1), ∀ 𝑘 = 𝑙 − 1,… ,1 . 𝑊2
(𝑘)

∈

𝑅𝑑(𝑘−1)×𝑑(𝑘) and 𝐵2
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘−1) denote the decoding weight and bias

matrices associated with the k-th layer of SAE, respectively. 𝑓 is a non-linear

activation function, in the proposed DNE-SBP model, the tanh function 𝑓(𝑥) =

𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 is employed as the activation function for each layer of SAE.

Then, by minimizing the reconstruction errors ‖�̂� − 𝐴‖
𝐹

2
, we can learn the

low-dimensional hidden vector representations which can best preserve the

original network connections between different nodes. However, the connections

in the real-world networks are generally rather sparse, yielding much more zero

elements than non-zero elements in the adjacency matrix A. Then, directly

reconstructing matrix A would make the SAE more tend to reconstruct the zero

elements (i.e. unknown connections) than non-zero elements (i.e. observed

84

connections). However, reconstructing observed connections should be more

meaningful than reconstructing unobserved ones. To address the sparsity issue, we

follow the approach in [10] to add a larger penalty on the reconstruction errors of

non-zero input elements. Moreover, unlike SDNE [10] which lacks the

consideration about negative links, the proposed DNE-SBP model targets for the

signed networks. A recent study has shown that forming negative links requires

higher cost than forming positive links [112], which leads to the overwhelmingly

positive links in the real-world signed networks. To handle such highly imbalanced

data in the signed networks, we design the following penalty matrix 𝑃 ∈ 𝑅𝑛×𝑛 to

make the SAE focus more on reconstructing the scarce negative links than the

abundant positive links:

𝑃𝑖𝑗 = {

 1, 𝐴𝑖𝑗 = 0

 𝛽, 𝐴𝑖𝑗 > 0

𝛾 ∗ 𝛽, 𝐴𝑖𝑗 < 0

where 𝛽 ≥ 1 denotes the ratio of penalty on the reconstruction errors of observed

connections (i.e. non-zero input elements) over that of unobserved connections (i.e.

zero input elements); 𝛾 ≥ 1 indicates the ratio of penalty on the reconstruction

errors of negative links over that of positive links. By incorporating the penalty

matrix 𝑃, we have the modified reconstruction error as:

 𝒥1
(1)

=
1

2𝑛
‖(�̂� − 𝐴) ⊙ 𝑃‖

𝐹

2
 (4.3)

4.3.2 Pairwise Constraints

Next, we design a semi-supervised SAE by incorporating the ML and CL pairwise

constraints to capture the extended structural balance property of the signed

networks. For each k-th layer of SAE, the ML pairwise constraint 𝒥2
(𝑘)

 and the

CL pairwise constraint 𝒥3
(𝑘)

 are devised as follows:

85

 𝒥2
(𝑘)

=
1

2𝑛
∑ ∑ 𝐴𝑖𝑗

+‖𝐻𝑖
(𝑘) − 𝐻𝑗

(𝑘)‖
2

2
𝑛
𝑗=1

𝑛
𝑖=1 (4.4)

 𝒥3
(𝑘)

= −
1

2𝑛
∑ ∑ 𝐴𝑖𝑗

−‖𝐻𝑖
(𝑘) − 𝐻𝑗

(𝑘)‖
2

2
𝑛
𝑗=1

𝑛
𝑖=1 (4.5)

where 𝐻𝑖
(𝑘), 𝐻𝑗

(𝑘) ∈ 𝑅1×𝑑(𝑘) indicate the hidden vector representation of node 𝑣𝑖

and 𝑣𝑗 , respectively, learned by the k-th layer of SAE. On one hand, minimizing

the ML pairwise constraint 𝒥2
(𝑘)

 which is equivalent to minimizing the positive

ratio cut objective in signed network spectral clustering [114], we can push the

positively connected nodes close to each other in the embedding space. On the

other hand, via minimizing the CL pairwise constraint 𝒥3
(𝑘)

 which is equivalent to

maximizing the negative ratio cut objective [114], we can pull the negatively

connected nodes far away from each other in the embedding space. Moreover, to

handle the highly imbalanced data (i.e. overwhelming positive links) in the signed

networks, we also utilize the parameter 𝛾 to integrate 𝒥2
(𝑘)

 and 𝒥3
(𝑘)

, as follows:

𝒥2
(𝑘) + 𝛾𝒥3

(𝑘) =
1

𝑛
(𝑇𝑟 ((𝐻(𝑘))

𝑇
𝐿+𝐻(𝑘)) − 𝛾 𝑇𝑟 ((𝐻(𝑘))

𝑇
𝐿−𝐻(𝑘)))

 =
1

𝑛
𝑇𝑟 ((𝐻(𝑘))

𝑇
𝐿𝐻(𝑘)) (4.6)

where 𝐿+ ∈ 𝑅𝑛×𝑛 is the Laplacian matrix of 𝐴+, i.e., 𝐿+ = 𝐷+ − 𝐴+ and 𝐷+ ∈

𝑅𝑛×𝑛 denotes the diagonal degree matrix of 𝐴+, with the diagonal entries 𝐷𝑖𝑖
+ =

∑ 𝐴𝑖𝑗
+𝑛

𝑗=1 representing the positive degree of node 𝑣𝑖. Similarly, 𝐿− = 𝐷− − 𝐴−

is the Laplacian matrix of 𝐴−, and 𝐷− is the diagonal degree matrix of 𝐴−,

where 𝐷𝑖𝑖
− = ∑ 𝐴𝑖𝑗

−𝑛
𝑗=1 denoting the negative degree of node 𝑣𝑖 . In addition,

𝐿 = 𝐿+ − 𝛾𝐿−, where 𝛾 ≥ 1 indicates the ratio of weight of the CL pairwise

constraint targeting for the negative links over that of the ML pairwise constraint

targeting for the positive links. A larger value of 𝛾 would make DNE-SBP more

tend to enlarge the distance between the negatively connected nodes, w.r.t.

86

narrowing the distance between the positively connected nodes. Note that when

𝛾 = 1 minimizing (𝒥2
(𝑘)

+ 𝒥3
(𝑘)
) is analogous to minimizing the Rayleigh

quotient of SNS graph Laplacian in signed network spectral embedding [44]. This

reflects that our designed pairwise constraints are indeed able to capture the

extended structural balance property of the signed networks. In addition, in both

the pairwise constraint (4.6) and the penalty-modified reconstruction errors (4.3),

we set the same value to the parameter 𝛾 to make the DNE-SBP model easily

distinguish the scarce negative links from the abundant positive links.

Algorithm 4.1: DNE-SBP

Input: Signed adjacency matrix 𝐴; Parameters 𝑙, 𝛽, 𝛼, 𝛾, 𝜆.

Set 𝑋(1) = 𝐴

For k=1: l

1. Leverage 𝑋(𝑘) as input to k-th layer of SAE;

2. Given 𝑋(𝑘) and 𝐴 , optimize k-th layer of SAE by finding 𝜃(𝑘)∗ =

{𝑊1
(𝑘)∗,𝑊2

(𝑘)∗, 𝐵1
(𝑘)∗, 𝐵2

(𝑘)∗
} = 𝑎𝑟𝑔min

𝜃(𝑘)
𝒥(𝑘) via SGD;

3. Leverage 𝜃(𝑘)∗ to learn 𝐻(𝑘);

4. Set 𝑋(𝑘+1) = 𝐻(𝑘);

End for

Output: The deepest hidden matrix representation, 𝐻(𝑙).

4.3.3 Overall Loss Function

By integrating the reconstruction errors (4.3), the pairwise constraint (4.6), and a

L2-norm regularization term 𝒥4
(𝑘)

=
1

2
(‖𝑊1

(𝑘)
‖
𝐹

2

+ ‖𝑊2
(𝑘)
‖
𝐹

2

), the overall loss

function is defined as:

 𝒥 = ∑ 𝒥(𝑘) = ∑ (𝒥1
(𝑘)

+ 𝛼𝑘 (𝒥2
(𝑘)

+ 𝛾𝑘𝒥3
(𝑘)
) + 𝜆𝑘𝒥4

(𝑘)
)𝑙

𝑘=1
𝑙
𝑘=1 (4.7)

87

where l represents the number of layers in the SAE; 𝒥(𝑘) denotes the loss

function of the k-th layer of SAE; 𝛼𝑘, 𝜆𝑘 > 0 refer to the weights of the pairwise

constraint and the regularization term at the k-th layer of SAE, respectively. By

minimizing the overall loss function (4.7), we can learn the hidden node vector

representations which not only preserve the original network connections, but also

capture the structural balance property of the signed networks.

4.3.4 Optimization of DNE-SBP

Here, we explain how to obtain the optimized parameters minimizing the overall

loss function (4.7). Firstly, for each k-th layer basic auto-encoder in the SAE, with

the help of back-propagation algorithm, the “error” terms of its output layer

𝛿3
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘−1) and hidden layer 𝛿2
(𝑘)

∈ 𝑅𝑛×𝑑(𝑘) can be computed, respectively,

as follows:

 𝛿3
(𝑘)

= {
(�̂� − 𝐴)⊙ 𝑃⊙ 𝑃⊙ 𝑓′(𝑍3

(𝑘)), 𝑘 = 1

(�̂�(𝑘)−𝑋(𝑘)) ⊙ 𝑓′(𝑍3
(𝑘)), 𝑘 ≥ 2

 (4.8)

 𝛿2
(𝑘) = (𝛿3

(𝑘)
𝑊2

(𝑘)
+ 𝛼𝑘(𝐿 + 𝐿𝑇)𝐻(𝑘))⊙ 𝑓′(𝑍2

(𝑘)
) (4.9)

where 𝑍3
(𝑘)

= 𝐻(𝑘)(𝑊2
(𝑘)
)
𝑇

+ 𝑏2
(𝑘)

 , 𝑍2
(𝑘)

= 𝑋(𝑘)(𝑊1
(𝑘)
)
𝑇

+ 𝑏1
(𝑘)

 and 𝑓′

denotes the derivative of the activation function.

Next, the partial derivatives w.r.t. the encoding weight 𝑊1
(𝑘)

, decoding weight

𝑊2
(𝑘)

, encoding bias 𝐵1
(𝑘)

, and decoding bias 𝐵2
(𝑘)

, can be computed, respectively,

as follows:

𝜕𝒥(𝑘)

𝜕𝑊1
(𝑘) =

1

𝑛
(𝛿2

(𝑘))
𝑇

𝑋(𝑘) + 𝜆𝑘𝑊1
(𝑘)

 (4.10)

𝜕𝒥(𝑘)

𝜕𝑊2
(𝑘) =

1

𝑛
(𝛿3

(𝑘)
)
𝑇

𝐻(𝑘) + 𝜆𝑘𝑊2
(𝑘)

 (4.11)

𝜕𝒥(𝑘)

𝜕𝐵1
(𝑘) = 𝛿2

(𝑘) 𝑛⁄ (4.12)

88

𝜕𝒥(𝑘)

𝜕𝐵2
(𝑘) = 𝛿3

(𝑘) 𝑛⁄ (4.13)

To minimize the loss function 𝒥(𝑘), we use stochastic gradient descent (SGD)

to update the parameters as: 𝑊1
(𝑘)

= 𝑊1
(𝑘)

− 𝜂𝑘
𝜕𝒥(𝑘)

𝜕𝑊1
(𝑘); 𝑊2

(𝑘)
= 𝑊2

(𝑘)
− 𝜂𝑘

𝜕𝒥(𝑘)

𝜕𝑊2
(𝑘);

𝐵1
(𝑘)

= 𝐵1
(𝑘)

− 𝜂𝑘
𝜕𝒥(𝑘)

𝜕𝐵1
(𝑘) ; 𝐵2

(𝑘)
= 𝐵2

(𝑘)
− 𝜂𝑘

𝜕𝒥(𝑘)

𝜕𝐵2
(𝑘) , where 𝜂𝑘 denotes the learning

rate of the k-th layer basic auto-encoder in the SAE. Next, to optimize a SAE

consists of multiple layers of basic auto-encoder, we adopt a greedily layer-wised

training approach, as in [34], [129].

4.4 Experiments

4.4.1 Datasets

We evaluated the graph representation learning performance of the proposed

DNE-SBP model for link sign prediction and community detection in three

real-world signed networks, namely Epinions, Slashdot and Wiki. The Epinions

dataset [105] is a “who trust whom” online social network generated from the

Epinions site, where one user can “trust” (positive) or “distrust” (negative) another.

The Slashdot dataset [104] is a signed social network extracted from the

technology news site Slashdot, where users can form the relationships as friends

(positive) or foes (negative). The Wiki dataset [103] is extracted from the

Wikipedia site, which describes the votes “for” (positive) and “against” (negative)

the other in elections. In the experiments, we used the full Wiki dataset, and

extracting 7000 nodes with the largest degree and retaining all the edges between

the selected nodes, from the original Epinions and Slashdot datasets. Table 4.2

shows some statistics of the three datasets. Among the three networks, Wiki is the

sparsest one, Slashdot is second sparsest, while Epinions is the densest.

89

Table 4.2: Statistics of the signed networked datasets.

Datasets Epinions Slashdot Wiki

Users 7000 7000 7118

Links 451149 238029 103675

Positive links 404006 181354 81318

Negative links 47143 56675 22357

Table 4.3: Layer configuration of the SAE in three datasets for link sign prediction and

community detection.

Datasets
Dimensionality of each layer of SAE

Link Sign Prediction Community Detection

Wiki 7118-256-64 7118-512-256-128-64

Slashdot 7000-256-64 7000-512-256-128-64

Epinions 7000-256-64 7000-512-256-128-64

4.4.2 Implementation Details

For link sign prediction, we built a two-layer SAE in the DNE-SBP model. The

layer configurations of the SAEs for the three datasets are shown in Table 4.3. For

example, for Wiki dataset, the layer configuration “7118-256-64” indicates that

the 1-st layer basic auto-encoder and the 2-nd layer basic auto-encoder in the SAE

were configured with the dimensionality of each layer as 7118-256-7118 and

256-64-256, respectively. In addition, the batch sizes of the 1-st layer and the

deeper layers of SAE were set as 500 and 100, respectively, and the learning rates

were set as 𝜂1 = 0.025 and 𝜂𝑘 = 0.015, ∀𝑘 ≥ 2. Also, we set the weight of

L2-norm regularization as 𝜆1 = 0.05 and 𝜆𝑘 = 0.1, ∀𝑘 ≥ 2 in both Epinions

and Slashdot datasets; while set 𝜆1 = 0.05 and 𝜆𝑘 = 0.25, ∀𝑘 ≥ 2 in the Wiki

dataset. In addition, we set the weight of pairwise constraint at the 1-st layer and

the deeper layers of SAE as: 𝛼1 = 16, 14, 10 and 𝛼𝑘 = 0.4, 0.2, 0.2, ∀𝑘 ≥ 2 for

the Wiki, Slashdot and Epinions datasets, respectively. The ratio of penalty on the

reconstructing errors of non-zero input elements over that of zero input elements

were set as 𝛽= 25, 25 and 10 in the Wiki, Slashdot and Epinions datasets,

90

respectively. Besides, we set the ratio of penalty on the reconstructing errors of

negative links over that of positive links, and the ratio of the weight of the CL

constraint over that of the ML constraint as 𝛾1 = 𝑓𝑙𝑜𝑜𝑟 (
∑ ∑ 𝐴𝑖𝑗

+𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝐴𝑖𝑗
−𝑛

𝑗=1
𝑛
𝑖=1

), where

𝑓𝑙𝑜𝑜𝑟(𝑥) rounds 𝑥 to the nearest integer less than or equal to 𝑥. While we set

𝛾𝑘 = 1, ∀ 𝑘 ≥ 2, because after the first layer embedding, the larger penalty and

stronger pairwise constraint for negative links have already been imposed to learn

the hidden representations.

On the other hand, for community detection, a four-layer SAE was built for the

three datasets, respectively, as shown in Table 4.3. The parameter settings for

community detection are similar to those introduced for link sign prediction. Here,

we only report the differences. Firstly, in contrast to link sign prediction, we set a

larger batch size of 1000 for each layer of SAE. Secondly, we assigned a larger

weight to the pairwise constraint at the deeper layers of SAE, i.e., 𝛼𝑘 =

1.5, ∀ 𝑘 ≥ 2. This is because the structural balance theory [115], [116] was

originally proposed for network clustering, thus it should be more important and

necessary to preserve the structural balance property for the community detection

task, by assigning larger weight to the pairwise constraint. In addition, for both

link sign prediction and community detection, we employed the deepest hidden

vector representations learned by the last layer of SAE as the node vector

representations, with the dimensionality of d=64.

4.4.3 Analysis of Embedding Learned by DNE-SBP

Here, we analyze whether the network representations learned by the proposed

DNE-SBP model can preserve the extended structural balance property of the

signed networks, i.e., whether the positively connected nodes are sitting closer

than the negatively connected nodes in the embedding space. In this regard, we

adopt three distance measures introduced in [44], namely average edge ratio

91

(AER), median edge ratio (MER) and average node ratio (ANR). AER is defined

as the ratio of the average embedded distance between the positively connected

nodes over that between the negatively connected nodes:

(∑ ∑ 𝐴𝑖𝑗
+𝑛

𝑗=1
𝑛
𝑖=1 𝑑𝑖𝑗)/∑ ∑ 𝐴𝑖𝑗

+𝑛
𝑗=1

𝑛
𝑖=1

(∑ ∑ 𝐴𝑖𝑗
−𝑛

𝑗=1
𝑛
𝑖=1 𝑑𝑖𝑗)/∑ ∑ 𝐴𝑖𝑗

−𝑛
𝑗=1

𝑛
𝑖=1

, where 𝑑𝑖𝑗 indicates the Euclidean distance between

the hidden vector representations of node 𝑣𝑖 and 𝑣𝑗 . MER is computed as the

ratio of the median of the embedded distance between the positively connected

nodes over that between the negatively connected nodes:
𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑗|𝐴𝑖𝑗

+>0)

𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑗|𝐴𝑖𝑗
−>0)

. ANR is

computed as the ratio of the average embedded length of positive links over that of

negative links, from the perspective of nodes:
∑ (∑ 𝐴𝑖𝑗

+𝑑𝑖𝑗
𝑛
𝑗=1 /𝐷𝑖𝑖

+)/𝑛𝑝
𝑛
𝑖=1

∑ (∑ 𝐴𝑖𝑗
−𝑑𝑖𝑗

𝑛
𝑗=1 /𝐷𝑖𝑖

−)/𝑛𝑛
𝑛
𝑖=1

, where 𝑛𝑝

and 𝑛𝑛 indicate the number of nodes having at least one positive link and having

at least one negative link, respectively. As shown in Figure 4.1, all the three ratios

are smaller than 1 in the three datasets, indicating that the embeddings learned by

DNE-SBP can actually preserve the extended structural balance property.

Moreover, we can observe that the ratios measured in the embedding space learned

by the 2nd layer of SAE were smaller than that learned by the 1st layer of SAE.

This indicates that the hidden representations learned by the deeper layer of SAE

can better satisfy the extended structural balance condition.

Figure 4.1: The AER, MER and ANR ratios of the distances between the positively connected

nodes over that between the negatively connected nodes in the embedding spaces learned by the

1-st layer and the 2-nd layer of SAE in the DNE-SBP model.

0.3

0.4

0.5

0.6

0.7

0.8

AER MER ANR

R
a

ti
o

(a) Wiki

0.3

0.4

0.5

0.6

AER MER ANR

R
a

ti
o

(b) Slashdot

1st layer of SAE 2nd layer of SAE

0.1

0.2

0.3

0.4

AER MER ANR

R
a

ti
o

(c) Epinions

92

Moreover, we further compare the distances between the node pairs with

positive connections, negative connections, and unobserved connections in the

low-dimensional embedding space learned by the proposed DNE-SBP model. As

shown in Figure 4.2, the positively connected nodes would be mapped much

closer than the negatively connected nodes. In addition, the disconnected nodes

would be mapped closer than negatively connected nodes while more far apart

than positively connected nodes.

4.4.4 Baselines

The following state-of-the-art network embedding algorithms were employed to

benchmark against the proposed DNE-SBP model.

1) SL [113]: It is a spectral clustering algorithm, with a signed Laplacian matrix

defined as �̅� = �̅� − 𝐴, where �̅�𝑖𝑖 = ∑ |𝐴𝑖𝑗|
𝑛
𝑗=1 indicates the sum of positive

and negative degree of node 𝑣𝑖. The top-d eigenvectors of �̅� are selected as

the node vector representations.

2) SNS [44]: It is a spectral embedding algorithm defining the SNS Laplacian

matrix as 𝐿𝑆𝑁𝑆 = �̅�−1(𝐷+ − 𝐷− − 𝐴). The top-d eigenvectors of 𝐿𝑆𝑁𝑆 are

selected as the node vector representations.

Figure 4.2: The average distances between positively connected nodes, negatively connected nodes

and disconnected nodes in the embedding space learned by the 2-nd layer of SAE in the DNE-SBP

model.

0

2

4

6

8

10

12

Wiki Slashdot Epinions

A
ve

ra
g

e
 D

is
ta

n
c
e

Positive Disconnect Negative

93

3) BNS [44]: It is a spectral embedding algorithm with the BNS Laplacian matrix

defined as 𝐿𝐵𝑁𝑆 = �̅�−1(𝐷+ − 𝐴) . The top-d eigenvectors of 𝐿𝐵𝑁𝑆 are

selected as the node vector representations.

4) SiNE [45]: It is a deep network embedding model designed to preserve the

extended structural balance property of the signed networks. It randomly

samples a set of triplets containing the positive and negative neighbors of each

node in the given network. Then, it employs a deep learning framework to

learn the node vector representations based on the sampled triplets.

5) SDNE [10]: It is a deep network embedding model designed for unsigned

networks. It employs a semi-supervised SAE to map the connected node pairs

close to each other, without differentiating the positive and negative links.

Since the structural balance theory is naturally defined for undirected networks

[51], we evaluated all the comparing algorithms in undirected signed networks. To

guarantee the best performance of SiNE, we used the default settings in [45], i.e.,

building a 3-layer neural network with the dimensionality of each layer and the

node vector representations as d=20. For other baselines in link sign prediction, we

used the same dimensionality of node vector representation as in our DNE-SBP

model, i.e., d=64. In addition, note that the spectral embedding algorithms, i.e., SL,

SNS and BNS, assume that the top-k eigenvectors encode the corresponding k-way

clustering structure [113], [44]. Thus, for the community detection task, the

dimensionality of the node vector representations learned by these spectral

embedding algorithms were set as equal to the number of clusters in the given

network, i.e. d=k.

4.4.5 Experimental Results

In this subsection, we report the experimental results of the network embedding

algorithms for link sign prediction and community detection in three real-world

94

signed networks.

4.4.5.1 Link Sign Prediction

For a given signed network, we firstly randomly sampled a fraction 𝑓% of the

observed (positive and negative) connections from its signed adjacency matrix.

Then, we employed such sampled edges as the training set and the remaining

(1 − 𝑓)% of edges as the testing set. Based on all the edges in the training set,

one can construct a training signed adjacency matrix 𝐴, where 𝐴𝑖𝑗 = 1 if there is

one positive edge between 𝑣𝑖 and 𝑣𝑗 in the training set; 𝐴𝑖𝑗 = −1 if one

negative edge connecting 𝑣𝑖 and 𝑣𝑗 is in the training set; and 𝐴𝑖𝑗 = 0 if there is

no edge between 𝑣𝑖 and 𝑣𝑗 in the training set. Next, giving the training signed

adjacency matrix as the input, the network embedding algorithms can learn the

low-dimensional node vector representations. Based on the node vector

representations, four types of edge feature representations were built as follows:

L1: 𝐻(𝑒𝑖𝑗) = |𝐻𝑖 − 𝐻𝑗|

L2: 𝐻(𝑒𝑖𝑗) = |𝐻𝑖 − 𝐻𝑗|
2

Had: 𝐻(𝑒𝑖𝑗) = 𝐻𝑖 ⊙𝐻𝑗

Avg: 𝐻(𝑒𝑖𝑗) = (𝐻𝑖 + 𝐻𝑗)/2

where 𝐻(𝑒𝑖𝑗) indicates the feature vector of edge 𝑒𝑖𝑗; 𝐻𝑖 and 𝐻𝑗 denote the

low-dimensional feature vector representation of node 𝑣𝑖 and 𝑣𝑗 , respectively. A

LR classifier was trained based on the edge vector representations and the

(positive and negative) edge labels in the training set. Next, the classifier was

employed to predict the signed labels of edges in the testing set. As the signed

network datasets are overwhelmingly positive, directly evaluating the accuracy on

the highly imbalanced dataset will be misleading. Thus, following [107], [108],

95

[45], we adopt the AUC metric to evaluate the link sign prediction performance,

which is insensitive to the imbalanced data. The higher the AUC score, the better

the link sign prediction performance. In addition, we employ AP [130] as another

metric. To better reflect the link sign prediction performance in such highly

Table 4.4: AUC and AP of link sign prediction on the Wiki dataset. The highest AUC and AP

scores among all the comparing methods are shown in Boldface. * and ** indicate statistically

superior performance to SiNE (with its best suitable edge feature) at level of (0.05, 0.01) using

a paired t-test.

Algorithm
Edge

Feature

AUC AP

% of observed links for training % of observed links for training

20 40 60 80 20 40 60 80

DNE-SBP

L1 0.7337 0.8184 0.8431 0.8517 0.4662 0.5987 0.6346 0.6389

L2 0.7161 0.7991 0.8319 0.8431 0.4604 0.5805 0.6238 0.6321

Had 0.7937 0.8459
0.8626

**

0.8681

*
0.5210

0.6268

*

0.6595

**

0.6642

**

Avg 0.8038 0.8454 0.8562 0.8591 0.5311 0.6057 0.6267 0.6305

SiNE

L1 0.6143 0.6700 0.6818 0.7021 0.3005 0.3390 0.3601 0.3671

L2 0.6775 0.7092 0.7155 0.7001 0.3677 0.3952 0.3965 0.3682

Had 0.7961 0.8215 0.8053 0.8093 0.5212 0.5396 0.5047 0.5233

Avg 0.8080 0.8399 0.8537 0.8644 0.5492 0.5863 0.6130 0.6305

SL

L1 0.5726 0.5858 0.5900 0.6024 0.2771 0.2777 0.2795 0.2857

L2 0.5118 0.5046 0.5026 0.5012 0.2319 0.2205 0.2177 0.2164

Had 0.5000 0.5000 0.5000 0.5000 0.2156 0.2133 0.2142 0.2141

Avg 0.5001 0.5003 0.5038 0.5040 0.2232 0.2172 0.2162 0.2157

SNS

L1 0.6747 0.6928 0.7011 0.6951 0.3500 0.3665 0.3768 0.3734

L2 0.6497 0.6595 0.6571 0.6703 0.3367 0.3508 0.3558 0.3597

Had 0.5106 0.5028 0.4998 0.5018 0.2663 0.2529 0.2487 0.2635

Avg 0.5461 0.5252 0.5156 0.5141 0.2784 0.2741 0.2543 0.2513

BNS

L1 0.6541 0.6440 0.6505 0.6536 0.4073 0.3918 0.4044 0.4000

L2 0.5149 0.5078 0.5042 0.5025 0.2491 0.2323 0.2252 0.2199

Had 0.5000 0.5000 0.5000 0.5000 0.2146 0.2128 0.2137 0.2135

Avg 0.5122 0.5108 0.5037 0.5051 0.2504 0.2442 0.2328 0.2227

SDNE

L1 0.6032 0.6232 0.6353 0.6374 0.3027 0.3475 0.3899 0.4072

L2 0.6030 0.6223 0.6307 0.6380 0.3121 0.3594 0.3893 0.4090

Had 0.6494 0.6746 0.6825 0.6804 0.3456 0.3935 0.4223 0.4332

Avg 0.6507 0.6744 0.6940 0.6977 0.3365 0.3756 0.4228 0.4464

96

imbalanced datasets, we calculated the AP of the scarce class (i.e. negative links).

The higher the AP, the better the link sign prediction performance. Table 4.4

reports the AUC and AP scores of all the comparing algorithms with four types of

edge representation in the Wiki dataset. Tables 4.5 and 4.6 report the highest AUC

and AP scores each algorithm can achieve with its best suitable edge

representation, in the Slashdot and Epinions datasets. The reported AUC and AP

scores for each comparing algorithm were averaged over the same 5 random splits.

As shown in Table 4.4, when the given network is rather sparse, e.g., just

giving 20% of observed links in the sparest Wiki network, the SiNE algorithm

with the Avg edge representation can achieve the highest AUC and AP scores

among all the comparing algorithms. Except that, the proposed DNE-SBP model

Table 4.5: AUC and AP of link sign prediction on the Slashdot dataset.

Algorithm

Best

Edge

Feature

AUC AP

% of observed links for training % of observed links for training

20 40 60 80 20 40 60 80

DNE-SBP Had
0.8473

**

0.8855

**

0.8979

**

0.9058

**

0.6821

**

0.7571

**

0.7808

**

0.7957

**

SiNE Avg 0.8192 0.8467 0.8572 0.8623 0.5986 0.6427 0.6645 0.6713

SL Had 0.7824 0.8350 0.8500 0.8528 0.5117 0.6065 0.6432 0.6363

SNS L1 0.7654 0.7726 0.7215 0.7712 0.5213 0.5484 0.5191 0.5745

BNS L1 0.7761 0.8023 0.8167 0.8292 0.5250 0.5864 0.6278 0.6544

SDNE Avg 0.6672 0.7213 0.7429 0.7503 0.3813 0.4339 0.4627 0.4726

Table 4.6: AUC and AP of link sign prediction on the Epinions dataset.

Algorithm

Best

Edge

Feature

AUC AP

% of observed links for training % of observed links for training

20 40 60 80 20 40 60 80

DNE-SBP Had
0.9137

**

0.9288

**

0.9336

**

0.9373

**

0.7280

**

0.7686

**

0.7846

**

0.7925

**

SiNE Avg 0.9009 0.9127 0.9135 0.9114 0.6201 0.6432 0.6481 0.6491

SL Had 0.8811 0.8991 0.9076 0.9031 0.5911 0.6618 0.6932 0.6842

SNS L1 0.8381 0.7092 0.6792 0.8074 0.5417 0.3524 0.3905 0.5221

BNS L2 0.8494 0.8725 0.8817 0.8908 0.5170 0.5889 0.6311 0.6617

SDNE Avg 0.7248 0.7515 0.7635 0.7620 0.2622 0.2917 0.3101 0.3033

97

with the Had edge representation always achieves the highest AUC and AP scores

in the three signed networks, as shown in Tables 4.4, 4.5 and 4.6. This could be

explained by the fact that SiNE learns the network representations based on the

sampled triplets [45]. Then, if the given network is very dense (i.e. having a large

number of possible triplets), a limited number of samples would unavoidably lose

some information. Thus, SiNE would perform worse as the given network is

denser. In contrast to SiNE, our DNE-SBP model learns the network

representations based on the adjacency matrix of a given network. Thus, we can

take advantage of the whole network connections to learn more informative

network representations. In addition, we observe that both DNE-SBP and SiNE

outperform the spectral embedding algorithms in the three signed networks. This

demonstrates the higher effectiveness of deep learning techniques for graph

representation learning, as compared to the linear matrix decomposition methods.

Secondly, we discuss the performance of the spectral embedding algorithms,

i.e., SL, SNS and BNS. We can see that in the densest Epinions dataset (shown in

Table 4.6), SL with the Had edge representation can achieve the highest AUC

scores among all the spectral embedding baselines. However, conversely, on the

sparsest Wiki dataset (shown in Table 4.4), SL always achieved the lowest AUC

and AP scores, no matter what percentage of observed links were used for training.

This reflects that SL is rather unsuitable for the sparse networks, despite of the fact

that it can perform much better in the dense networks. In addition, as shown in

Table 4.4, SNS with the L1 edge representation can achieve the highest AUC

scores among all the spectral embedding methods on the Wiki dataset. While BNS

can achieve both higher AUC and AP scores than SNS on both Slashdot and

Epinions datasets, as shown in Tables 4.5 and 4.6. This reflects that BNS performs

better in the dense networks, while showing greater challenge when dealing with

the sparse networks.

98

Next, let us continue to evaluate the performance of the unsigned network

embedding algorithm, i.e., SDNE. As shown in Tables 4.5 and 4.6, SDNE always

achieved much lower AUC and AP scores than all the signed network embedding

algorithms on Slashdot and Epinions datasets. This is because that SDNE aims to

map the connected node pairs closer to each other based on the social theories

which suggest that the connected nodes tend to have similar preferences [111],

[110]. However, such theories are not applicable for the signed networks where

negative links indicate dissimilarity while positive links indicate similarity. Thus,

directly applying the unsigned network embedding algorithm to the signed

networks would fail to capture the important structural balance property [115],

[116], [117] which requires the positively connected nodes to sit closer than the

negatively connected ones.

Moreover, we can observe that all the network embedding algorithms achieve

the highest AUC scores on the Epinions dataset, while the lowest AUC scores on

the Wiki dataset. These could be explained by the previous findings in [107], [131]

that the structural balance condition is most satisfied in the Epinions network,

while least satisfied in the Wiki network. Thus, it should be easier to predict the

link signed labels based on the structural balance property for the Epinions dataset.

4.4.5.2 Community Detection

For community detection, a k-means algorithm was run on the node vector

representations learned by each network embedding algorithm to get the clustering

results. Unlike community detection in unsigned networks, the objective of signed

network clustering is to group the nodes into k clusters, where the connections

between the nodes within the same cluster should be mostly positive, while the

connections between the nodes belonging to different clusters should be mostly

negative [51], [114]. To evaluate the performance of signed network community

99

detection, we adopt the “error rate” metric, which is widely utilized in the related

literature [114], [119], [132]. The error rate E is defined as the sum of the number

of negative edges within the same cluster and the number of positive edges

between different clusters, normalized by the total number of edges in the network:

𝐸 =
∑ ∑ 𝐴𝑖𝑗

−𝛿(𝑐𝑖, 𝑐𝑗) + 𝐴𝑖𝑗
+ (1 − 𝛿(𝑐𝑖, 𝑐𝑗))

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ |𝐴𝑖𝑗|
𝑛
𝑗=1

𝑛
𝑖=1

where 𝑐𝑖 , 𝑐𝑗 indicate the community node 𝑣𝑖 and 𝑣𝑗 belonging to, respectively.

If 𝑣𝑖 and 𝑣𝑗 are assigned to the same community, then 𝛿(𝑐𝑖, 𝑐𝑗) = 1; otherwise,

𝛿(𝑐𝑖, 𝑐𝑗) = 0. The lower the error rate, the better the signed network clustering

performance.

Firstly, as shown in Table 4.7, the proposed DNE-SBP model always

outperformed all the baselines (i.e. achieved the lowest error rates) in all the three

datasets. This again proves that the network representations learned by our

DNE-SBP model can well capture and preserve the structural balance property of

signed networks. In addition, among all the spectral embedding algorithms, BNS

achieved the lowest error rates in all the three datasets. SNS achieved slightly

lower error rates than SL in the Slashdot and Epinions networks. Note that the

objective function of SNS is analogue to the pairwise constraint designed in our

DNE-SBP model. However, when learning the network representations, SNS

employs EVD to linearly project the original network into a low-dimensional

embedding space. In contrast, we take advantage of deep learning technique to

learn non-linear network representations. The significant outperformance of our

DNE-SBP model over SNS reflects that the deep learning techniques possess more

powerful feature representation learning ability to capture the complex underlying

network structure.

100

Secondly, we can see that SiNE achieved the highest error rates among all the

comparing algorithms in the Wiki and Epinions datasets. As the number of cluster

k increases, SiNE would perform even worse. It might be explained by the fact

that SiNE learns network representations based on the triplets only sampled from

the observed connections, while all the unobserved connections in the original

network have been ignored. Thus, the network representations learned by SiNE

would fail to distinguish the disconnected nodes from the connected nodes, which

is not desirable for community detection. In addition, the sampled triplets only

capture the local neighborhood structure, however, community detection also

requires the global structural information. Hence, SiNE performs rather badly

when learning the network representations for signed network community

Table 4.7: The error rates (%) of k-way Clustering in three signed networks. The lowest error

rates among all the comparing algorithms are shown in Boldface.

Dataset Algorithms
Number of cluster k

2 3 4 5 6 7 8 9 10

Wiki

DNE-SBP 15.64 15.66 15.74 15.71 15.71 15.71 15.71 15.70 15.69

SL 21.94 21.94 21.94 21.94 21.94 21.93 21.93 21.93 21.93

SNS 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94

BNS 21.86 21.80 21.77 21.76 21.74 21.72 21.72 21.71 21.70

SiNE 33.48 53.57 58.62 61.14 62.01 63.30 66.85 67.74 69.12

SDNE 26.01 33.67 42.16 42.69 44.97 55.81 56.03 55.70 55.84

Slashdot

DNE-SBP 18.54 18.19 18.15 18.17 18.15 18.23 18.22 18.23 18.23

SL 25.38 25.39 25.39 25.39 25.39 25.39 25.39 25.40 25.40

SNS 25.36 25.24 25.21 25.20 25.20 25.06 25.05 25.05 24.90

BNS 25.19 25.15 25.00 24.81 24.74 24.84 24.81 24.44 23.49

SiNE 40.38 47.65 51.18 57.00 55.89 56.16 58.37 62.35 63.72

SDNE 48.91 55.75 57.78 61.29 62.34 63.65 64.00 65.35 66.09

Epinions

DNE-SBP 7.95 8.25 8.20 8.29 8.30 8.33 8.31 8.31 8.32

SL 12.20 12.20 12.20 12.20 12.20 12.20 12.21 12.21 12.21

SNS 11.73 12.08 12.10 11.93 11.97 11.78 11.93 12.05 11.90

BNS 9.01 9.01 9.77 9.02 9.57 9.54 9.50 9.54 9.55

SiNE 40.70 48.03 56.43 61.87 66.58 68.21 69.64 70.82 71.61

SDNE 36.76 38.75 43.19 48.35 49.26 50.02 52.89 56.34 57.01

101

detection.

Moreover, we can see that SDNE performed significantly worse (i.e. achieved

much higher error rates) than all the spectral embedding algorithms developed for

the signed networks. This again confirms that the unsigned network embedding

algorithm fails to learn informative network representations for the signed

networks. Thus, it is indeed necessary to design the network embedding

algorithms targeting for the signed networks, which can well capture the important

structural balance property so as to easily distinguish the negative links from the

positive links.

4.4.6 Parameter Sensitivity

In this subsection, the sensitivities of the parameters 𝛽, 𝛾, 𝛼, 𝑙, 𝑑 on the

performance of DNE-SBP are reported. Figures 4.3 and 4.4 show the parameter

sensitivity of DNE-SBP for link sign prediction and community detection,

respectively.

Parameter 𝜷 denotes the ratio of the penalty on the reconstruction errors of

non-zero input elements over that of zero input elements. As shown in Figures

4.3(a) and 4.4(a), 𝛽 > 1 leads to much better link sign prediction (i.e. higher

AUC score) and also much better community detection (i.e. lower error rate) than

𝛽=1. This demonstrates that it is highly effective to assign larger penalty to make

the SAE more prone to reconstruct the observed connections than unknown

connections.

Parameter 𝜸 specifies the ratio of penalty on the reconstruction errors of

negative links over that of positive links, and the ratio of the weight of the

pairwise constraint targeting for the negative links over that of the positive links.

As shown in Figure 4.3(b), for link sign prediction, 𝛾 > 1 can achieve much

higher AUC scores than 𝛾 = 1. This demonstrates the significant effectiveness

102

and necessity of imposing larger penalty and stronger pairwise constraint on the

scarce negative links to handle the highly imbalanced data (i.e. overwhelming

positive links) in the real-world signed networks. Also, when 𝛾 ≤ 3, a higher

value of 𝛾 would lead to higher AUC score, while after that, the AUC scores will

Figure 4.3: Sensitivity of the parameters 𝛽, 𝛾, 𝛼, 𝑙, 𝑑 on the AUC score of DNE-SBP (with the

Had edge representation) for link sign prediction, when 40% of observed links were used for

training on the Wiki dataset. The higher the AUC score, the better the performance.

Figure 4.4: Sensitivity of the parameters 𝛽, 𝛾, 𝛼, 𝑙, 𝑑 on the error rate of DNE-SBP for 3-way

signed network community detection on the Wiki dataset. The lower the error rate, the better the

performance.

0.78

0.8

0.82

0.84

0.86

1 5 10 15 20 25 30

A
U

C

(a) Value of β

0.78

0.8

0.82

0.84

0.86

1 2 3 4 5

(b) Value of Ƴ

0.73

0.76

0.79

0.82

0.85

0 5 10 14 16 18

(c) Value of α1

0.84

0.845

0.85

0 0.2 0.4 0.6 0.8 1

A
U

C

(d) Value of αk (k>=2)

0.78

0.8

0.82

0.84

0.86

1 2 3 4 5

(e) # layers in SAE: l

0.83

0.84

0.85

32 64 128 256

(f) Embedding Dimension: d

0.15

0.16

0.17

0 5 10 14 16 18

(c) Value of α1

0.14

0.17

0.2

0 0.5 1 1.5 2 2.5

E
rr

o
r

ra

te

(d) Value of αk (k>=2)

0.14

0.15

0.16

0.17

0.18

1 5 10 15 20 25 30

E
rr

o
r

ra

te

(a) Value of β

0.15

0.16

0.17

1 2 3 4 5

(b) Value of Ƴ

0.14

0.17

0.2

0.23

1 2 3 4 5

(e) # layers in SAE: l

0.15

0.16

0.17

32 64 128 256

(f) Embedding Dimension: d

103

slightly decrease. Note that on the Wiki dataset, the ratio of the number of positive

links over that of negative links is 3.63. Thus, it indicates that setting 𝛾 =

𝑓𝑙𝑜𝑜𝑟(∑ ∑ 𝐴𝑖𝑗
+𝑛

𝑗=1
𝑛
𝑖=1 ∑ ∑ 𝐴𝑖𝑗

−𝑛
𝑗=1

𝑛
𝑖=1⁄) is reasonable for DNE-SBP to achieve a

good performance for link sign prediction. On the other hand, as shown in Figure

4.4(b), all different values of 𝛾 can achieve a satisfactory low error rate for signed

network clustering. It indicates that the performance of DNE-SBP for signed

network clustering is insensitive to the value of 𝛾.

Parameter 𝜶𝒌 denotes the weight assigned to the pairwise constraints at the

k-th layer of SAE. As shown in Figures 4.3(c) and 4.4(c), 𝛼1 > 0 would

contribute to better link sign prediction and also better signed network clustering

performance, as compared to 𝛼1=0. This demonstrates the effectiveness of

designing a semi-supervised SAE to capture the structural balance property for

signed network embedding. In addition, as shown in Figure 4.3(d), when 𝑘 ≥ 2,

the AUC scores of DNE-SBP are insensitive to the value of 𝛼𝑘. This indicates that

for link sign prediction, incorporating pairwise constraints to the first layer of SAE

is much more effective than doing that for the deeper layers of SAE. However, as

shown in Figure 4.4(d), when 𝑘 ≥ 2, 𝛼𝑘 > 0 can significantly reduce the error

rate achieved by 𝛼𝑘 = 0. Thus, in contrast to link sign prediction, incorporating

pairwise constraints at the deeper layers of SAE is more effective for community

detection than doing that at the first layer of SAE.

Parameter l denotes the number of layers in the SAE. We constructed five

SAEs, with the layer configuration setting as 7118-64, 7118-256-64,

7118-512-256-64, 7118-512-256-128-64 and 7118-1024-512-256-128-64,

respectively. The number of layers in these five SAEs are 1, 2, 3, 4 and 5,

respectively. Then, for all the five SAEs, we employ the deepest hidden

representations as node vector representations, which are with the same

104

dimensionality as d=64. As shown in Figure 4.3(e), 𝑙 > 1 contributes to much

higher AUC score than 𝑙 = 1. While when 𝑙 > 2, the AUC score does not further

increase as 𝑙 increases. This reveals that building a 2-layer SAE can contribute to

much better link sign prediction performance, as compared to a basic auto-encoder.

However, the link sign prediction performance cannot be further improved, even

though a deeper SAE is built. In contrast, as shown in Figure 4.4(e), for signed

network clustering, the error rate would keep decreasing as 𝑙 increases. This

indicates that the deeper SAE framework contributes to better signed network

community detection performance. Such interesting differences could be explained

by the fact that link prediction generally focuses on the concrete local

neighborhood structure, thus the more abstract feature representations might not be

more informative. However, community detection requires to capture the global

network structure which is more abstract, thus the deeper SAE framework would

be more powerful for learning the meaningful feature representations.

Parameter d indicates the dimensionality of the node vector representation

learned by the deepest layer of SAE. As shown in Figures 4.3(f) and 4.4(f), when

𝑑 ∈ {64, 128, 256}, DNE-SBP always achieves good performance for both link

sign prediction and signed network clustering.

4.5 Summary

Although several promising network embedding algorithms have been proposed

recently, the vast majority of them are only designed for unsigned networks,

without considering the polarities of the links in the signed networks. In this work,

we propose a DNE-SBP model to learn the nonlinear hidden vector representations

for nodes of a given signed network, which employs a semi-supervised SAE to

reconstruct the signed adjacency matrix. To handle the overwhelmingly positive

links in the real-world signed networks, we impose larger penalty on the

105

reconstruction errors of negative links to make the SAE focus more on

reconstructing the scarce negative links than the abundant positive links. In

addition, to capture the structural balance property of signed networks, we

incorporate the ML and CL pairwise constraints into the SAE to map the

positively connected nodes closer to each other and map the negatively connected

nodes more far apart from each other in the embedding space. Based on the

low-dimensional node vector representations learned by DNE-SBP, we apply

vector-based machine learning techniques to conduct link sign prediction and

signed network community detection. Comprehensive experimental results

demonstrate that the proposed DNE-SBP model significantly outperforms the

state-of-the-art network embedding algorithms for graph representation learning in

the signed networks.

This work is accepted in [12]. In the future, we can extend the signed network

embedding algorithm to capture other properties of the signed networks, such as

status theory [52]. In addition, we can apply DNE-SBP to recommender systems,

by modeling users and items as nodes, and the “like” and “dislike” relations as the

“positive” and “negative” links. Moreover, by integrating network structures and

rich content information (e.g. users/items features), we can extend DNE-SBP to

heterogeneous network embedding. Then, we can make recommendations for

users based on the link sign prediction results of DNE-SBP and conduct customer

segmentation according to the network clustering results of DNE-SBP.

106

Chapter 5

Cross-network Deep Network

Embedding

5.

5.1 Introduction

Domain adaptation, aiming to transfer the knowledge pre-learned from a source

domain to assist in solving the same task in a target domain, has received

significant attentions in recent years [14]. Domain adaptation has been widely

applied to computer vision (CV) [133], [134], [135] and natural language

processing (NLP) [49], [136]. However, applying domain adaptation to classify

nodes across networks has not been extensively investigated. In this chapter, we

address a cross-network node classification problem, where the source network

has fully labeled nodes while the target network has a very small fraction of

labeled nodes together with a large number of unlabeled nodes. Our aim is to

leverage the rich labeled information from the source network to help build an

accurate node classifier for the target network in a collaborative manner. Here,

following the assumption in domain adaption [14], the source network and the

target network should share the same set of node labels. In order to achieve good

performance in cross-network node classification, it is required to learn

appropriate feature vector representations which are not only discriminative for

different categories of nodes, but also invariant across different networks.

Network embedding is an effective method to learn the low-dimensional node

vector representations which can preserve the original network structures. The

homophily hypothesis [111] and social influence theory [110] suggest that the

107

connected nodes tend to have similar labels. Based on such theories, recent

state-of-the-art network embedding algorithms [29], [34], [24], [11], [10], [23], [43]

aim to preserve network proximities by learning similar latent feature vector

representations for nodes having connections in a given network. The

proximity-based network embedding algorithms have demonstrated promising

results for graph mining tasks involving one network. However, such proximities

are defined based on the similarity between the neighborhood of the nodes in a

given network, while the nodes from different networks do not have direct

network connections, i.e., do not share common neighborhood. Thus, the node

vector representations learned by the network embedding algorithms with

single-network proximity preservation would lack consistency across different

network and would be unsuitable for prediction tasks involving multiple networks

[53], [54]. To learn appropriate feature vector representations for cross-network

node classification, we need to preserve the proximities between nodes not only

within a single network but also across different networks. It is indeed challenging

to measure cross-network node proximities solely based on network topological

structures. At the same time, nodes in the real-world networks are often associated

with rich attributes, e.g., users in the social networks have profile information and

papers in the citation networks have titles and abstracts. Node attributes have been

shown to be generalized and comparable across different networks [54], [137]. For

example, the papers belonging to the same research area, say “Information

Security”, from two different citation networks, might be likely to include some

common keywords (textual attributes) in their titles, e.g., “Privacy, Verification,

Encipher, Encryption, Decryption, Cryptography”, while they might not have

similar network topological structures across different networks. Thus, it would be

beneficial to take advantage of network structures, node attributes and node labels

together to learn appropriate feature vector representations for cross-network node

108

classification.

In this regard, we propose an innovative cross-network deep network

embedding (CDNE) model to learn label-discriminative and network-invariant

node feature vector representations. Figure 5.1 illustrates the main ideas of the

proposed CDNE model. Two semi-supervised SAEs, namely SAE_s and SAE_t,

Figure 5.1: Illustration of the ideas of the CDNE model. 𝑣𝑖
𝑠 and 𝑣𝑖

𝑡 represent the i-th node in

𝒢𝑠 and 𝒢𝑡; 𝐴𝑠, 𝐴𝑡 denote node attribute matrices in 𝒢𝑠 and 𝒢𝑡; 𝑌𝑠 , 𝑌𝑡 indicate node label

matrices in 𝒢𝑠 and 𝒢𝑡. Different colors correspond to different labels. Full colors indicate

observed labels while gradient colors represent the predicted fuzzy labels of unlabeled target

network nodes. Firstly, in 𝒢𝑠, SAE_s maps the connected nodes closer to each other and maps

the same labeled nodes closer while different labeled nodes far apart from each other. Then, in

𝒢𝑡, SAE_t maps the connected nodes closer and also maps the labeled nodes in 𝒢𝑡 closer to

the nodes associated with the same labels in 𝒢𝑠.

Source Network:

1. Based on 𝐸𝑠 and 𝑌𝑠, SAE_s learns an
embedding space for 𝒢 𝑠

 𝟐

 𝟏

 𝟐

 𝟏

𝑉𝑠 =5

𝐸𝑠 =3

Target Network:

2. Based on 𝐴𝑠 , 𝐴𝑡 , 𝑌𝑠 𝑌𝑡, get predicted label matrix �̂�𝑡

3. Based on 𝐸𝑡 , 𝑌𝑠, �̂�𝑡, SAE_t learns a unified embedding
space for 𝒢 𝑠 and 𝒢𝑡

 𝟐

 𝟏

 𝟐

 𝟏

 𝟐

 𝟏

𝑉𝑡 =6

𝐸𝑡 =3

109

are employed to learn the low-dimensional feature vector representations for the

nodes in the source network and the target network, respectively. Firstly, in the

source network, we employ SAE_s to map more strongly connected nodes closer

to each other, and also map the nodes belonging to the same class closer while

belonging to different classes far apart from each other, in the embedding space.

Secondly, in order to successfully transfer the knowledge from the source network

to the target network, we need to minimize the difference of the marginal and

class-conditional distributions of the hidden node vector representations between

the source network and the target network. However, the target network just has

very limited labeled nodes, making it rather difficult to approximate its

class-conditional distribution. To address this, we leverage the available node

attributes and the labeled information from both the source network and the target

network to predict pseudo-labels for the unlabeled target network nodes. Since

such predictions might not be accurate, instead of utilizing binary labels, we

employ fuzzy labels to capture the prediction uncertainty. Then, with the limited

observed labels and the predicted fuzzy labels, we can easily estimate the

class-conditional distributions of the target network. Thirdly, we employ SAE_t to

learn more similar hidden vector representations for more strongly connected

target network nodes. In addition, by minimizing the cross-network

class-conditional distributions in SAE_t, we can make the labeled target network

nodes have similar hidden vector representations w.r.t. the source network nodes

associated with the same labels. Note that in SAE_s, different categories of source

network nodes have already been mapped separately in the embedding space. Thus,

the cross-network label-guided alignment in SAE_t would make the nodes

associated with same labels no matter within the target network or across the

source network and the target network have similar hidden vector representations,

while making the nodes associated with completely different labels within the

110

target network or across networks have rather different hidden vector

representations. Such properties yield label-discriminative and network-invariant

node vector representations, which can significantly benefit cross-network node

classification. The contributions of this work are summarized as follows:

1) We should be the first to take advantage of both deep network embedding and

domain adaptation to address the cross-network node classification problem;

2) We leverage network structures, node attributes and node labels to map similar

nodes no matter within a network or across different networks closer to each

other in the unified low-dimensional embedding space so as to learn

label-discriminative and network-invariant node vector representations;

3) Extensive experimental results in the real-world datasets demonstrate that the

proposed CDNE model significantly outperforms the state-of-the-art related

algorithms for cross-network node classification.

The rest of this chapter is organized as follows. Section 5.2 reviews the

network embedding algorithms and network transfer learning algorithms. Section

5.3 formulates the cross-network node classification problem. Section 5.4

introduces the detailed framework of CDNE. Section 5.5 reports the experimental

results of CDNE for cross-network node classification. Section 5.6 summaries this

work.

5.2 Related Work

In this section, we review the state-of-the-art single-network embedding

algorithms, cross-network embedding algorithms and network transfer learning

algorithms.

5.2.1 Single-network Embedding Algorithms

Recent network embedding algorithms aim to embed a given network into a

111

low-dimensional space where the original network properties can be well

preserved. The vast majority of network embedding algorithms are

proximity-based [29], [34], [24], [11], [10], [23], [43], with the goal of mapping

nodes with higher proximities closer to each other. Such proximities are defined in

terms of the neighborhoods between nodes, thus, these network embedding

algorithms can only preserve the proximities between connected nodes. If two

nodes are disconnected from each other in a network, then they would not have

similar hidden vector representations. In contrast to proximity-based network

embedding algorithms, Ribeiro et al. [138] proposed a struc2vec algorithm to

measure structural similarity between nodes independently of their positions in the

network. Thus, two disconnected nodes that are far apart from each other in the

network but are structurally similar would have similar latent feature

representations. struc2vec can achieve better node classification performance than

the proximity-based embedding algorithms when the node labels depend more on

structural identity while less on homophily. Both proximity-based and structural

identity-based network embedding algorithms just employ the pure network

topological structures to learn the latent node vector representations. While in the

real-world networks, nodes are often associated with rich attributes. In addition, it

has been shown that capturing the correlations between network structures and

node attributes can benefit graph mining applications [139]. Thus, recently, some

attributed network embedding algorithms have been proposed to incorporate node

attributes into network representation learning so as to preserve both network

topological proximity and node attribute affinity. For example, Chang et al. [35]

proposed a heterogenous network embedding framework to leverage deep learning

technique to learn node vector representations based on both node contents and

linkage structures in the network. Huang et al. [139] developed a LANE algorithm

to incorporate the label information into attributed network embedding and jointly

112

project node labels, network structures and node attributes into a unified

embedding space via EVD. Pan et al. [140] designed a TriDNR model which

utilizes a coupled neural network architecture to learn deep network

representations from node structures, node content and node labels.

5.2.2 Cross-network Embedding

Although the single-network embedding algorithms can well capture the properties

necessary for the graph mining tasks involving one network, they fail to learn

generalized and comparable network representations across different networks

[53], [54]. Recently, some cross-network embedding approaches have been

proposed to address the network alignment problem, which aims to find the

corresponding nodes across different networks. For example, in [141], [142], the

observed anchor links are utilized as the supervised information to learn a

cross-network embedding space based on the network structural information. Then,

the unknown anchor links across networks would be predicted in the unified

embedding space. In [54], Heimann et al. proposed to measure cross-network node

similarities based on the nodes’ structural and attribute identities, and then employ

SVD to factorize the cross-network similarity matrix so as to learn the

low-dimensional node vector representations. Next, they infer network alignment

based on the cross-network node vector representations, by finding the top-c most

similar nodes in one network given a query node in the other network.

However, to the best of our knowledge, leveraging cross-network embedding

to address the cross-network node classification task has not been investigated.

Cross-network node classification is different from network alignment in two

aspects. Firstly, network alignment assumes that some users should be

simultaneously involved in the two aligned social networks [137]. In contrast, in

cross-network node classification, the source network and the target network do

113

not share any common nodes. Secondly, the goal of network alignment is to infer a

node mapping between two networks, while cross-network node classification

aims to predict node labels in the target network by leveraging the abundant label

information from the source network. Thus, the existing cross-network embedding

algorithms developed for network alignment cannot be applied to the

cross-network node classification task.

5.2.3 Transfer Learning Across Networks

Network transfer learning aims to transfer the useful knowledge from a source

network to help predict node or edge labels in the target network. For example, Ye

et al. [15] proposed a transfer learning approach to predict the signed labels of

edges in a target network by leveraging the edge label information in the source

network. They construct the generalized edge features from two aspects, namely 1)

the explicit topological features, such as node degree, betweenness centrality, triad

count and edge embeddedness, and 2) the latent topological features learned by

projecting the adjacency matrices of the source network and the target network

into a common latent space via Nonnegative Matrix Tri-Factorization (NMTF)

[143]. Then, based on the constructed edge feature vector representations, they

adopt an AdaBoost [144] scheme for transfer learning by assigning higher weights

to the source edge instances which are more useful for edge label prediction in the

target network. In [13], Tang et al. aim to classify the type of social relationships

in a target network by borrowing the knowledge from a source network. They

manually defined the edge features based on the social theories, such as social

balance, structural hole and social status. Fang et al. [16] developed a network

transfer learning algorithm to predict node labels in the target network by

transferring the useful knowledge from the source network. To learn

domain-independent latent structural features, the NMTF [143] technique is

114

employed to project the label propagation matrices of the two networks into a

common latent space. Then, they predict node labels in the target network based

on the latent structural features, node content features and relational features. In

our previous work [9], [8], we proposed a CNL model to predict most likely seed

nodes and inactive edges in the target network, by leveraging the greedy seed

selection and influence propagation knowledge pre-learned from a source network.

The model selects a set of discriminative topological features as the node and edge

features and assigns higher weights to the features which perform more similarly

between the source network and the target network.

To effectively transfer the knowledge from a source network to a target

network for cross-network prediction, it is required to learn the feature vector

representations which are generalized and comparable across networks. Existing

literatures either manually define explicit topological features or learn the common

latent features by factorizing the associated characteristic matrices of the source

network and the target network into a common latent space. To the best of our

knowledge, we are the first to take advantage of deep network embedding to learn

generalized and comparable feature vector representations for cross-network

prediction.

5.3 Problem Statement

Given a target network with very limited labeled nodes and a source network with

fully labeled nodes, the goal of cross-network node classification is to leverage the

abundant labeled information from the source network to help classify unlabeled

nodes in the target network. In this chapter, we use superscripts s and t to denote

the source network and the target network, respectively. Table 5.1 lists the used

notations and corresponding descriptions.

115

Table 5.1: Frequently used notations and descriptions in Chapter 5.

Notations Descriptions

𝒢𝑠, 𝒢𝑡 Source network and target network

𝑛𝑠, 𝑛𝑡 Number of nodes in source network and in target network

𝐴𝑠, 𝐴𝑡 Node attribute matrices of source network and target network

𝑐 Number of node labels

𝑌𝑠 , 𝑌𝑡 Observable node label matrices of source network and target network

�̂�𝑡 Predicted node label matrix of target network

𝑋𝑠, 𝑋𝑡 Aggregated PPMI matrices of source network and target network

l Number of layers in SAE_s and SAE_t

𝑑(𝑘) The hidden dimensionality at the k-th layer of SAE_s and SAE_t

𝑊1
𝑠(𝑘)

,𝑊2
𝑠(𝑘)

 Encoding and decoding weight matrices of k-th layer of SAE_s

𝐵1
𝑠(𝑘)

, 𝐵2
𝑠(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE_s

𝐻𝑠(𝑘)
Hidden matrix representation of source network learned by k-th layer of

SAE_s

𝑄𝑠(𝑘)
i-th row represents average hidden vector representation of the source

network nodes associated with label i

𝑊1
𝑡(𝑘)

,𝑊2
𝑡(𝑘)

 Encoding and decoding weight matrices of k-th layer of SAE_t

𝐵1
𝑡(𝑘)

, 𝐵2
𝑡(𝑘)

 Encoding and decoding bias matrices of k-th layer of SAE_t

𝐻𝑡(𝑘)
Hidden matrix representation of target network learned by k-th layer of

SAE_t

𝑄𝑡(𝑘)
i-th row represents average hidden vector representation of the target

network nodes associated with label i

Let 𝒢𝑠 = (𝑉𝑠, 𝐸𝑠 , 𝑌𝑠, 𝐴𝑠) be a fully labeled source network, where 𝑉𝑠

denotes the set of all labeled nodes and 𝐸𝑠 indicates the set of edges. 𝑌𝑠 ∈ 𝑅𝑛
𝑠×𝑐

is a label matrix encoding the label information of all nodes in 𝒢𝑠, where 𝑛𝑠 =

|𝑉𝑠| is the number of nodes in 𝒢𝑠 and c is the number of labels. The entry in the

i-th row and k-th column of matrix 𝑌𝑠 , i.e., 𝑌𝑖𝑘
𝑠 = 1 if node 𝑣𝑖

𝑠 ∈ 𝑉𝑠 is

associated with label k; otherwise, 𝑌𝑖𝑘
𝑠 = 0. Here, a node can have multiple labels.

𝐴𝑠 ∈ 𝑅𝑛
𝑠×𝑤 is the associated attribute matrix representing the attribute values of

all nodes in 𝒢𝑠 , where 𝑤 indicates the number of attributes and 𝐴𝑖𝑘
𝑠 ≥ 0

indicates the k-th attribute value of node 𝑣𝑖
𝑠.

Let 𝒢𝑡 = (𝑉𝑡, 𝐸𝑡 , 𝑌𝑡 , 𝐴𝑡) be an insufficiently labeled target network with a set

116

of nodes 𝑉𝑡 = {𝑉𝑙
𝑡, 𝑉𝑢

𝑡} and a set of edges 𝐸𝑡 , where 𝑛𝑡 = |𝑉𝑡| denotes the

number of nodes in 𝒢𝑡, 𝑉𝑙
𝑡 indicates the set of a very small fraction of labeled

nodes and 𝑉𝑢
𝑡 represents the set of a large amount of unlabeled nodes in 𝒢𝑡. 𝑌𝑡 ∈

𝑅𝑛
𝑡×𝑐 is the observable node label matrix associated with 𝒢𝑡, where 𝑌𝑖𝑘

𝑡 = 1 if

node 𝑣𝑖
𝑡 ∈ 𝑉𝑡 has an observable label k; otherwise, 𝑌𝑖𝑘

𝑡 = 0. 𝐴𝑡 ∈ 𝑅𝑛
𝑡×𝑤 refers

to the associated node attribute matrix, where 𝐴𝑖𝑘
𝑡 ≥ 0 indicates the k-th attribute

value of node 𝑣𝑖
𝑡.

It should be noted that in the defined cross-network node classification

problem, the network dimensionality (i.e. number of nodes) and the distribution of

network connections are varied between the source network and the target network.

However, the two networks should share the same set of node labels and node

attributes, while the data distributions across networks are varied.

5.4 Cross-network Deep Network Embedding Model

In this section, we introduce the proposed CDNE model which is composed of two

semi-supervised SAEs, i.e., SAE_s and SAE_t. Algorithm 5.1 shows the

framework of the CDNE model. Firstly, we employ SAE_s to learn the

label-discriminative feature vector representations for nodes in the source network.

Next, we employ SAE_t to learn node vector representations for the target network,

which can match with the marginal and class-conditional distributions of the

source network. Before introducing SAE_s and SAE_t, we firstly compute the

aggregated k-step PPMI matrices for the source network and the target network,

denoted as 𝑋𝑠 and 𝑋𝑡, respectively. The approach of computing the PPMI matrix

can be refereed to Section 3.3.1.

117

5.4.1 SAE_s for Deep Network Embedding in Source Network

In SAE_s, we aim to map nodes with higher network proximities in the source

network closer to each other, and map nodes associated with more common labels

closer while mapping nodes not sharing any common labels far apart from each

other.

5.4.1.1 Penalty-modified Reconstruction Errors

Given the aggregated k-step PPMI matrix of the source network as the input,

i.e., 𝐻𝑠(0) = 𝑋𝑠, a l-layer SAE_s is constructed as follow:

 𝐻𝑠(𝑘) = 𝑓 (𝐻𝑠(𝑘−1)(𝑊1
𝑠(𝑘)

)
𝑇

+ 𝐵1
𝑠(𝑘)

) , 𝑘 = 1,… , 𝑙 (5.1)

 �̂�𝑠(𝑘−1) = 𝑓 (�̂�𝑠(𝑘)(𝑊2
𝑠(𝑘)

)
𝑇

+ 𝐵2
𝑠(𝑘)

) , 𝑘 = 𝑙, … ,1 (5.2)

where (5.1) and (5.2) represent the encoding and decoding process of SAE_s,

respectively. 𝐻𝑠(𝑘) ∈ 𝑅𝑛
𝑠×𝑑(𝑘) denotes the hidden matrix representation learned

by the k-th layer of SAE_s, with the i-th row (i.e. 𝐻𝑖
𝑠(𝑘) ∈ 𝑅1×𝑑(𝑘)) representing

the feature vector representation of 𝑣𝑖
𝑠 , and 𝑑(𝑘) indicates the hidden

dimensionality at the k-th layer of SAE_s. �̂�𝑠(𝑘) indicates the reconstructed

matrix of 𝐻𝑠(𝑘) and �̂�𝑠(𝑙) = 𝐻𝑠(𝑙) . In addition, 𝑊1
𝑠(𝑘)

∈ 𝑅𝑑(𝑘)×𝑑(𝑘−1), 𝐵1
𝑠(𝑘)

∈

𝑅𝑛
𝑠×𝑑(𝑘),𝑊2

𝑠(𝑘)
∈ 𝑅𝑑(𝑘−1)×𝑑(𝑘), 𝐵2

𝑠(𝑘)
∈ 𝑅𝑛

𝑠×𝑑(𝑘−1) refer to the encoding weight,

encoding bias, decoding weight and decoding bias matrices associated with the

k-th layer of SAE_s, respectively; 𝑓 is a non-linear activation function, in this

work, the sigmoid function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥) is utilized as the activation

function for each layer of SAE_s. The i-th row of the input matrix 𝑋𝑠, i.e., 𝑋𝑖
𝑠 ∈

𝑅1×𝑛
𝑠
 captures the neighborhood of 𝑣𝑖

𝑠 with the associated proximities, where

𝑋𝑖𝑗
𝑠 > 0 if 𝑣𝑗

𝑠 is a strong neighbor of 𝑣𝑖
𝑠 within K steps; otherwise, 𝑋𝑖𝑗

𝑠 = 0.

118

The nodes having similar neighborhood structure would have similar input raw

vectors. Then, by minimizing th3 reconstruction errors of SAE_s, we can learn

more similar hidden vector representations for nodes with more similar

neighborhood structure. In addition, to address the network sparsity issue, we

follow [10] to incorporate a penalty matrix 𝑃𝑠(1) ∈ 𝑅𝑛
𝑠×𝑛𝑠 into the reconstruction

errors as:

 ℛ𝑠(1) =
1

2𝑛𝑠
‖𝑃𝑠(1) ⊙ (�̂�𝑠 − 𝑋𝑠)‖

𝐹

2
 (5.3)

where 𝑃𝑖𝑗
𝑠(1)

= 𝛽 > 1, if 𝑋𝑖𝑗
𝑠 > 0 and 𝑃𝑖𝑗

𝑠(1)
= 1, if 𝑋𝑖𝑗

𝑠 = 0. Incorporating 𝛽 >

1 makes SAE_s focus more on reconstructing the strong connections (positive

proximities) than the weak connections or disconnections (zero proximities).

Although the input matrix (i.e. 𝐻𝑠(𝑘−1)) of the deep k-th (𝑘 ≥ 2) layer of SAE_s

is not sparse any more, we still incorporate the penalty matrix by regarding 𝛽2 as

the weight of the reconstruction errors in the overall loss function. Thus, the

reconstruction errors at any k-th (1 ≤ 𝑘 ≤ 𝑙) layer of SAE-s is defined as:

 ℛ𝑠(𝑘) =
1

2𝑛𝑠
‖𝑃𝑠(𝑘) ⊙ (�̂�𝑠(𝑘−1) − 𝐻𝑠(𝑘−1))‖

𝐹

2
 (5.4)

where 𝑃𝑠(𝑘) ∈ 𝑅𝑛
𝑠×𝑑(𝑘−1) , if 𝐻𝑖𝑗

𝑠(𝑘−1)
> 0 , 𝑃𝑖𝑗

𝑠(𝑘)
= 𝛽 > 1 ; if 𝐻𝑖𝑗

𝑠(𝑘−1)
= 0 ,

𝑃𝑖𝑗
𝑠(𝑘)

= 1.

5.4.1.2 Pairwise Constraint on Connected Nodes

Next, we design the following pairwise constraint on strongly connected node

pairs:

 𝒞𝑠(𝑘) =
1

2𝑛𝑠
∑ ∑ (𝑋𝑖𝑗

𝑠 + 𝑋𝑗𝑖
𝑠)‖𝐻𝑖

𝑠(𝑘) − 𝐻𝑗
𝑠(𝑘)‖

2

2
𝑛𝑠

𝑗=1
𝑛𝑠

𝑖=1

 =
1

𝑛𝑠
𝑇𝑟 ((𝐻𝑠(𝑘))

𝑇
𝐿𝑋𝑠𝐻

𝑠(𝑘)) (5.5)

where 𝐿𝑋𝑠 = 𝐷𝑋𝑠 − (𝑋𝑠 + (𝑋𝑠)𝑇) is the Laplacian matrix of 𝑋𝑠 + (𝑋𝑠)𝑇, and

𝐷𝑋𝑠 is a diagonal matrix with the diagonal entry computed as (𝐷𝑋𝑠)𝑖𝑖 =

119

∑ 𝑋𝑖𝑗
𝑠𝑛𝑠

𝑗=1 + ∑ 𝑋𝑗𝑖
𝑠𝑛𝑠

𝑗=1 . Minimizing 𝒞𝑠(𝑘) would map the more strongly connected

node pairs which are with higher aggregated proximities to have more similar

hidden vector representations.

5.4.1.3 Pairwise Constraint on Labeled Nodes

In addition, we devise the pairwise constraint on the labeled nodes in the source

network. Firstly, we define the following matrix 𝑂𝑠 ∈ 𝑅𝑛
𝑠×𝑛𝑠 to represent

whether two nodes in 𝒢𝑠 share common labels or not:

 𝑂𝑖𝑗
𝑠 = {

(𝑌𝑠(𝑌𝑠)𝑇)𝑖𝑗, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑌𝑠(𝑌𝑠)𝑇)𝑖𝑗 > 0

−1, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑌𝑠(𝑌𝑠)𝑇)𝑖𝑗 = 0

0, 𝑖𝑓 𝑖 = 𝑗

where 𝑂𝑖𝑗
𝑠 = −1 if 𝑣𝑖

𝑠 and 𝑣𝑗
𝑠 do not share any common labels; 𝑂𝑖𝑗

𝑠 ≥ 1

indicates the number of common labels shared by 𝑣𝑖
𝑠 and 𝑣𝑗

𝑠. Then, the pairwise

constrain is devised as:

 ℒ𝑠(𝑘) =
1

2𝑛𝑠
∑ ∑ 𝑂𝑖𝑗

𝑠 ‖𝐻𝑖
𝑠(𝑘) −𝐻𝑗

𝑠(𝑘)
‖
2

2
𝑛𝑠

𝑗=1
𝑛𝑠

𝑖=1 =
1

𝑛𝑠
𝑇𝑟 ((𝐻𝑠(𝑘))

𝑇
 𝐿𝑂𝑠𝐻

𝑠(𝑘)) (5.6)

where 𝑂𝑠 can be divided into a positive part 𝑂𝑠+ and a negative part 𝑂𝑠− as:

𝑂𝑠+ = 𝑚𝑎𝑥(𝑂𝑠, 0) and 𝑂𝑠− = −𝑚𝑖𝑛(𝑂𝑠, 0) . In addition, 𝐿𝑂𝑠 = 𝐿𝑂𝑠+ − 𝐿𝑂𝑠− ,

where 𝐿𝑂𝑠+ = 𝐷𝑂𝑠+ − 𝑂𝑠+ is the associated Laplacian matrix of 𝑂𝑠+ and 𝐷𝑂𝑠+

is a diagonal matrix of 𝑂𝑠+ with the diagonal entries as the row summation of

𝑂𝑠+, i.e., (𝐷𝑂𝑠+)𝑖𝑖 = ∑ 𝑂𝑖𝑗
𝑠+𝑛𝑠

𝑗=1 . Similarly, 𝐿𝑂𝑠− = 𝐷𝑂𝑠− − 𝑂𝑠− is the associated

Laplacian matrix of 𝑂𝑠− . Minimizing ℒ 𝑠(𝑘) would make the node pairs sharing

more common labels have more similar hidden vector representations, while

making the node pairs not sharing any common labels (i.e. belonging to

completely different classes) have rather different hidden vector representations.

120

5.4.1.4 Overall Loss Function of SAE_s:

By integrating the penalty-modified reconstruction errors (5.4), the pairwise

constraints on strongly connected nodes (5.5) and on labeled nodes (5.6), and a

L2-norm regularization term to prevent overfitting Ω𝑠(𝑘) =
1

2
(‖𝑊1

𝑠(𝑘)
‖
𝐹

2

+

‖𝑊2
𝑠(𝑘)

‖
𝐹

2

), the overall loss function of SAE_s is defined as:

 𝒥𝑠 = ∑ 𝒥𝑠(𝑘)𝑙
𝑘=1 = ∑ ℛ𝑠(𝑘) + 𝛼𝑠(𝑘) 𝒞𝑠(𝑘) + 𝜑𝑠(𝑘)ℒ 𝑠(𝑘) + 𝜆𝑠(𝑘)𝛺𝑠(𝑘)𝑙

𝑘=1 (5.7)

where 𝛼𝑠(𝑘), 𝜑𝑠(𝑘) and 𝜆𝑠(𝑘) are the trade-off parameters to balance the effect

of different terms in the overall loss function.

5.4.2 SAE_t for Deep Network Embedding in Target Network

Next, in SAE_t, we aim to learn node vector representations for the target network

which can match with the distributions of nodes in the source network. It is worth

noting that the number of layers of SAE_t and the hidden dimensionality at each

k-th (∀ 1 ≤ 𝑘 ≤ 𝑙) of SAE_t are set as the same as in SAE_s. However, the raw

input dimensionality between SAE_s and SAE_t are varied, since the number of

nodes in the source network and the target network can be rather different.

Given the aggregated k-step PPMI matrix of the target network as the input of

SAE_t, i.e., 𝐻𝑡(0) = 𝑋𝑡 ∈ 𝑅𝑛
𝑡×𝑛𝑡 , the penalty-modified reconstruction errors of

SAE_t are similarly defined as:

 ℛ𝑡(𝑘) =
1

2𝑛𝑡
‖𝑃𝑡(𝑘) ⊙ (�̂�𝑡(𝑘−1) − 𝐻𝑡(𝑘−1))‖

𝐹

2
 (5.8)

where 𝑃𝑡(𝑘) ∈ 𝑅𝑛
𝑡×𝑑(𝑘−1) , and 𝑃𝑖𝑗

𝑡(𝑘)
= 𝛽 > 1, if 𝐻𝑖𝑗

𝑡(𝑘−1)
> 0 and 𝑃𝑖𝑗

𝑡(𝑘)
= 1, if

𝐻𝑖𝑗
𝑡(𝑘−1)

= 0. In addition, similar to SAE_s, we define the pairwise constraint to

map more strongly connected nodes in the target network closer to each other as:

 𝒞𝑡(𝑘) =
1

𝑛𝑡
𝑇𝑟 ((𝐻𝑡(𝑘))

𝑇
𝐿𝑋𝑡𝐻

𝑡(𝑘)) (5.9)

where 𝐿𝑋𝑡 = 𝐷𝑋𝑡 − (𝑋𝑡 + (𝑋𝑡)𝑇) is the Laplacian matrix of 𝑋𝑡 + (𝑋𝑡)𝑇 , and

121

𝐷𝑋𝑡 is a diagonal matrix with the diagonal entry computed as (𝐷𝑋𝑡)𝑖𝑖 =

∑ 𝑋𝑖𝑗
𝑡𝑛𝑡

𝑗=1 + ∑ 𝑋𝑗𝑖
𝑡𝑛𝑡

𝑗=1 .

5.4.2.1 Matching Marginal and Conditional Cross-network Distributions

Next, we need to align the node vector representations learned for the target

network to that of the source network. In domain adaptation algorithms [134],

[145], [46] the nonparametric maximum mean discrepancy (MMD) [146] metric

have been widely employed to measure the difference of data distributions across

domains. Motivated by this, we utilize the MMD metric to measure the marginal

and conditional distributions of the embedding node vector representations

between the source network and the target network.

Firstly, the empirical marginal MMD between the source network and the

target network is defined as:

 ℳ𝑀
𝑡(𝑘)

=
1

2
‖
1

𝑛𝑠
𝟏 𝐻𝑠(𝑘) −

1

𝑛𝑡
𝟏 𝐻𝑡(𝑘)‖

2

2

 (5.10)

where 𝟏 ∈ 𝑅1×𝑛
𝑠
 and 𝟏 ∈ 𝑅1×𝑛

𝑡
 denote two ones-vectors. By minimizing

(5.10), the marginal distributions between the source network and the target

network can be matched.

Secondly, the class-conditional MMD [46] between the source network and the

target network is defined as:

 ℳ𝐶
𝑡(𝑘)

=
1

2
‖𝑄𝑡(𝑘) − 𝑄𝑠(𝑘)‖

𝐹

2
 (5.11)

where 𝑄𝑠(𝑘) = (𝑌𝑠(𝐷𝑌𝑠)
−1)

𝑇
𝐻𝑠(𝑘), 𝐷𝑌𝑠 ∈ 𝑅𝑐×𝑐 is a diagonal matrix with the

diagonal entries as the column summation of 𝑌𝑠, (𝐷𝑌𝑠)𝑖𝑖 = ∑ 𝑌𝑗𝑖
𝑠𝑛𝑠

𝑗=1 . The i-th row

of 𝑄𝑠(𝑘) , i.e., 𝑄𝑖
𝑠(𝑘)

∈ 𝑅1×𝑑(𝑘) represents the average feature vector

representation of all the nodes associated with label i in the source network.

In addition, we need to compute 𝑄𝑡(𝑘), i.e., the label-specific average feature

122

vector representations of the nodes in the target network. Unlike the nodes in the

source network which are with completely observable labels, the target network

nodes are just with very limited observable labels. Then, directly utilizing the

sparse observable label matrix 𝑌𝑡 to compute 𝑄𝑡(𝑘) would fail to obtain

sufficient statistics to update the weights of SAE_t, and thus cannot learn a good

cross-network embedding alignment. To address this, we take advantage of the

available node attributes in the source network and the target network to predict

labels for the unlabeled nodes in the target network. Since the original node

attributes might contain noises, we firstly employ Principal Components Analysis

(PCA) [147] to extract the low-dimensional (i.e. 128-D in the experiments) node

attribute vector representations. Then, we employ a one-vs-rest logistic regression

(LR) classifier to predict the labels of the unlabeled target network nodes based on

the low-dimensional attribute vector representations and all the observable labels

in the source network and the target network. Fuzzy labels have been shown to be

effective in capturing imprecise, uncertain and vague information during

knowledge transfer [67], [66]. Thus, instead of using binary labels, we utilize

fuzzy labels to capture the degree of the membership of each node belonging to a

specific class. Let �̂�𝑡 denotes the predicted label matrix of the target network,

where if 𝑣𝑖
𝑡 ∈ 𝑉𝑙

𝑡, �̂�𝑖𝑗
𝑡 = 𝑌𝑖𝑗

𝑡 ∈ {0,1}; and if 𝑣𝑖
𝑡 ∈ 𝑉𝑢

𝑡, 0 < �̂�𝑖𝑗
𝑡 < 1 represents the

predicted probability of 𝑣𝑖
𝑡 to be labeled as j. Next, we utilize �̂�𝑡 which includes

both limited observable binary labels and predicted fuzzy labels to compute the

average node feature vector representation of each class in the target network as

𝑄𝑡(𝑘) = (�̂�𝑡(𝐷�̂�𝑡)
−1)

𝑇
𝐻𝑡(𝑘), where 𝐷�̂�𝑡 is a diagonal matrix with the diagonal

entries as the column summation of �̂�𝑡, i.e., (𝐷�̂�𝑡)𝑖𝑖 = ∑ �̂�𝑗𝑖
𝑡𝑛𝑡

𝑗=1 ; and the i-th row

of 𝑄𝑡(𝑘) represents the average feature vector representations of all the target

network nodes associated with (observable or predicted) label i, learned by the k-th

123

layer of SAE_t.

By minimizing (5.11), we can align the true and pseudo labeled target network

nodes to the source network nodes which are associated with the same labels. Thus,

the same category of nodes across different networks would have similar hidden

vector representations. In addition, it should be noted that minimizing (5.6) in

SAE_s has already pulled the nodes belonging to different classes far apart from

each other. Therefore, minimizing (5.11) would simultaneously make different

categories of target network nodes have rather different feature vector

representations. In addition, by minimizing (5.10) and (5.11) at each layer of

SAE_t, we can match the cross-network marginal and class-conditional

distributions of the embedding node vector representations at each corresponding

layer of SAE_s and SAE_t. Then, with the narrowed cross-network distributions, it

is beneficial to leverage the abundant label information from the source network to

help classify unlabeled nodes in the target network.

5.4.2.2 Overall Loss Function of SAE_t

By integrating the penalty-modified reconstruction errors (5.8), the pairwise

constraints on strongly connected nodes (5.9), the marginal MMD (5.10), the

conditional MMD (5.11), and a L2-norm regularization 𝛺𝑡(𝑘) =
1

2
(‖𝑊1

𝑡(𝑘)
‖
𝐹

2

+

‖𝑊2
𝑡(𝑘)

‖
𝐹

2

), the overall loss function of SAE_t is defined as:

𝒥𝑡 =∑ 𝒥𝑡(𝑘)
𝑙

𝑘=1

 = ∑ ℛ𝑡(𝑘) + 𝛼𝑡(𝑘) 𝒞𝑡(𝑘) + 𝜇𝑡(𝑘)ℳ𝑀
𝑡(𝑘)

+ 𝛾𝑡(𝑘)ℳ𝐶
𝑡(𝑘)

+ 𝜆𝑡(𝑘)𝛺𝑡(𝑘)𝑙
𝑘=1 (5.12)

where 𝛼𝑡(𝑘), 𝜇𝑡(𝑘), 𝛾𝑡(𝑘) and 𝜆𝑡(𝑘) are the trade-off parameters to balance the

effect of different terms in the overall loss function.

On one hand, for a labeled node 𝑣𝑖
𝑡 ∈ 𝑉𝑙

𝑡 in the target network, minimizing

(5.11) would make 𝑣𝑖
𝑡 have a feature vector representation similar to the same

124

categories of nodes in the source network. On the other hand, for an unlabeled

node 𝑣𝑖
𝑡 ∈ 𝑉𝑢

𝑡 in the target network, if 𝑣𝑖
𝑡 has some network connection with any

labeled nodes in 𝑉𝑙
𝑡 within K steps, then minimizing (5.9) would make 𝑣𝑖

𝑡 have

similar hidden vector representation w.r.t. its labeled neighbors in the target

network. In addition, if an unlabeled target network node 𝑣𝑖
𝑡 ∈ 𝑉𝑢

𝑡 is disconnected

from all the labeled nodes in 𝑉𝑙
𝑡 within K steps, then minimizing (5.11) will make

𝑣𝑖
𝑡 have similar hidden vector representations w.r.t. the same labeled source

network nodes, according to the predicted fuzzy labels of 𝑣𝑖
𝑡 based on the

available node attribute information.

By simultaneously taking advantage of network connections, node attributes

and node labels, the proposed CDNE model can 1) make more strongly connected

nodes within a network have more similar hidden vector representations, and 2)

make nodes associated with same labels within a network or across networks have

similar hidden vector representations while making nodes associated with different

labels within a network or across networks have rather different hidden vector

representations. Thus, the proposed CDNE model can learn label-discriminative

and network-invariant feature vector representations for cross-network node

classification.

To optimize CDNE, SAE_s and SAE_t should be trained in sequence, as

shown in Algorithm 5.1. To optimize SAE_s or SAE_t, one can use stochastic

gradient descent (SGD) to optimize each k-th layer of a SAE and employ a greedy

layer-wise training approach [34], [129] until reaching the deepest l-th layer so as

to learn the deepest hidden matrix representation.

125

Algorithm 5.1: CDNE

Input: Source network 𝒢𝑠 = (𝑉𝑠, 𝐸𝑠, 𝑋𝑠, 𝑌𝑠, 𝐴𝑠) and target network 𝒢𝑡 =

(𝑉𝑡, 𝐸𝑡 , 𝑋𝑡 , 𝑌𝑡 , 𝐴𝑡).

1. Greedy layer-wised training for SAE-s:

Set 𝐻𝑠(0) = 𝑋𝑠

For k=1: l

1.1 Leverage 𝐻𝑠(𝑘−1) as input to k-th layer of SAE-s;

1.2 Given 𝐻𝑠(𝑘−1), 𝑋𝑠, 𝑌𝑠 , optimize k-th layer of SAE-s by finding 𝜃𝑠(𝑘)∗ =

{𝑊1
𝑠(𝑘)∗

,𝑊2
𝑠(𝑘)∗

, 𝐵1
𝑠(𝑘)∗

, 𝐵2
𝑠(𝑘)∗

} = 𝑎𝑟𝑔min
𝜃𝑠(𝑘)

𝒥𝑠(𝑘) via SGD;

1.3 Leverage 𝜃𝑠(𝑘)∗ to learn 𝐻𝑠(𝑘);

End for

2. Get predicted label matrix for 𝒢𝑡:

2.1 Convert 𝐴𝑠 and 𝐴𝑡 into low-dimensional attribute node vector

representations via PCA;

2.2 Predict fuzzy labels for nodes in 𝑉𝑢
𝑡 based on attribute vector representations

and obtain �̂�𝑡;

3. Greedy layer-wised training for SAE-t:

Set 𝐻𝑡(0) = 𝑋𝑡

For k=1: l

3.1 Leverage 𝐻𝑡(𝑘−1) as input to k-th layer of SAE-t;

3.2 Given 𝐻𝑡(𝑘−1), 𝑋𝑡 , �̂�𝑡 , 𝐻𝑠(𝑘−1), 𝑌𝑠, optimize k-th layer of SAE-t by finding

𝜃𝑡(𝑘)∗ = {𝑊1
𝑡(𝑘)∗,𝑊2

𝑡(𝑘)∗, 𝐵1
𝑡(𝑘)∗, 𝐵2

𝑡(𝑘)∗
} = 𝑎𝑟𝑔min

𝜃𝑡(𝑘)
𝒥𝑡(𝑘) via SGD;

3.3 Leverage 𝜃𝑡(𝑘)∗ to learn 𝐻𝑡(𝑘);

End for

Output: Discriminative and generalized hidden node vector representations for 𝒢𝑠 and

𝒢𝑡, i.e., 𝐻𝑠(𝑙) and 𝐻𝑡(𝑙).

126

5.5 Experiments

5.5.1 Datasets

We evaluated the proposed CDNE model in five real-world networked datasets.

The statistics of these datasets are shown in Table 5.2. BlogCatalog1 and

BlogCatalog2 are two disjoint subnetworks we extracted from the BlogCatalog

dataset [148]. In these two networks, a node represents a blogger and an edge

indicates friendship between two bloggers. In addition, each node is associated

with some attributes, which are the keywords extracted from the blogger’s

self-description. In the original BlogCatalog dataset [148], each node has only one

label, indicating the blogger’s interested group. Since the two networks were

extracted from the same original network, the attribute distributions between the

two networks are not varied enough. To enlarge the cross-network distribution

discrepancy, we randomly altered 30% of non-zero attribute values to be zeroes

and randomly altered 30% of zero attribute values to be “1” in each network so as

to simulate missing and inconsistent attribute values across different networks.

In addition, Citationv1, DBLPv7 and ACMv9 are the citation networks, where

each node denotes a paper and each edge indicates that one paper cites another. We

extracted Citationv1, DBLPv7 and ACMv9 from the datasets provided by

ArnetMiner7 [149], which were from different sources, i.e., Microsoft Academic

Graph, DBLP and ACM, respectively. The papers were labeled according to their

associated research areas and one paper can have multiple labels. The possible

labels include “Database, Artificial Intelligence, Computer Vision, Information

Security, and Networking”. For each paper, we adopted the bag-of-words features

extracted from its title as the attributes. Besides, we removed the attributes that are

7 https://www.aminer.cn/citation

127

not shared by the three networks so as to ensure a common set of attributes across

networks. In addition, the extracted papers we keep in Citationv1, DBLPv7 and

ACMv9 were published before year 2008, between year 2004 and 2008 and after

year 2010, respectively. Since the three citation networks were extracted from

different original sources and also formed in different time periods, there have

already existed varied cross-network distributions among them.

Table 5.2: Statistics of the networked datasets.

Dataset # Nodes # Edges # Attributes # Labels

BlogCatalog1 2300 33471
8189 6

BlogCatalog2 2896 53836

Citationv1 8935 15113

3092 5 DBLPv7 5484 8130

ACMv9 9360 15602

5.5.2 Implementation Details

In the proposed CDNE model, we built a 2-layer SAE for both SAE_s and SAE_t,

with the number of hidden dimensions as 𝑑(1) = 256 and 𝑑(2) = 128 for the

1-st layer and the 2-nd layer of SAE, respectively. We employed the deepest

hidden vector representations learned by SAE_s and SAE_t as the node vector

representations for the source network and the target network. For all the datasets,

we set the maximum step as K=6. In both SAE_s and SAE_t, we set the ratio of

penalty on the reconstruction errors of strong connections over that of weak

connections and disconnections as 𝛽 = 6 ; set the weight of L2-norm

regularization as 𝜆𝑠(𝑘) = 𝜆𝑡(𝑘) = 0.05; and set the weight of pairwise constraints

on strongly connected nodes as 𝛼𝑠(1) = 𝛼𝑡(1) = 𝛼 = 4 and 𝛼𝑠(𝑘) = 𝛼𝑡(𝑘) =

𝛼/2, ∀ 𝑘 ≥ 2. In addition, in SAE_s, we set the weight of pairwise constraints on

the labeled nodes as 𝜑𝑠(1) = 𝜑 = 2 and 𝜑𝑠(𝑘) = 𝜑/2, ∀ 𝑘 ≥ 2. In SAE_t, we set

the weight of marginal MMD as 𝜇𝑡(1) = 𝜇 = 2 and 𝜇𝑡(𝑘) = 𝜇/2, ∀ 𝑘 ≥ 2 for all

128

the datasets; and set the weight of conditional MMD as 𝛾𝑡(1) = 𝛾 = 60, 𝛾𝑡(𝑘) =

𝛾/2, ∀ 𝑘 ≥ 2 for the cross-network node classification task across BlogCatalog1

and BlogCatalog2, and set 𝛾 = 50 for cross-network node classification among

Citationv1, DBLPv7 and ACMv9.

5.5.3 Baselines

The proposed CDNE was benchmarked against two transfer learning algorithms.

In addition, since there is no existing cross-network embedding algorithm

developed for cross-network node classification, we compare CDNE with the

state-of-the-art single-network embedding algorithms.

1) NetworkTr [16]: It is a transfer learning algorithm specifically developed for

the networked data. It employs NMTF to project the label propagation

matrices of the source network and the target network into a common latent

space so as to learn the latent structural features shared by the two networks.

Then, it employs node attributes and latent structural features as the node

features for cross-network node classification.

2) TrAdaBoost [144]: It is an instance weighting transfer learning algorithm

which assigns higher weights to the source domain instances that are more

useful for prediction in the target domain. It requires the source domain and

the target domain to share the same set of pre-defined feature vector

representations. To tailor TrAdaBoost for cross-network node classification,

we employed the low-dimensional attribute vector representations extracted by

PCA as the node feature vector representations.

3) DeepWalk [24]: It is a random-walk based network embedding algorithm,

which exploits the network structure by generating a collection of truncated

random walks via DFS. Then, by regarding a node in a network as a word in a

129

document, it extends the Skip-Gram language model [41] to learn

low-dimensional node vector representations.

4) GraRep [29]: It is a matrix-factorization based network embedding algorithm,

which employs SVD to factorize each k-step PPMI matrix so as to learn the

low-dimensional node vector representations. Then, it concatenates all the

k-step representations as the final representations.

5) DNE-APP [11]: It is a deep network embedding algorithm which employs a

semi-supervised SAE to learn the low-dimensional node vector representations

from the aggregated k-step PPMI matrix. It incorporates pairwise constraint to

make the node pairs with higher aggregated proximities have more similar

hidden vector representations.

6) LANE [139]: It is an attributed network embedding algorithm, which aims to

preserve both network topological proximity and node attribute affinity by the

embedding vector representations. It incorporates label information into

attributed network embedding so as to capture the correlations among network

topological structures, node attributes and node labels.

Note that DeepWalk, GraRep, DNE-APP and LANE were originally

developed for a single-network scenario. To tailor them to cross-network node

classification, we construct a unified network containing all the nodes in the

source network and the target network. Then, by utilizing the unified network for

training, the cross-network proximities between nodes from the source network

and the target network can be directly captured in the unified network.

5.5.4 Cross-network Node Classification

For cross-network node classification, all the nodes in the source network have

observable labels, while in the target network, we randomly sample a very small

fraction of nodes to give them accessible labels. Then, we run each baseline to

130

learn the low-dimensional node vector representations with the same

Table 5.3: Cross-network node classification between the BlogCatalog1 and BlogCatalog2

networks when only 1% of labeled nodes are available in the target network. The training set as

“T” indicates that only leveraging the labeled nodes in the target network for training, while

“S+T” indicates that leveraging the labeled nodes from both the source network and the target

network for training. The highest Micro-F1 and Macro-F1 scores among all the comparing

algorithms are shown in Boldface.

𝓖 → 𝓖 BlogCatalog1→BlogCatalog2 BlogCatalog2→BlogCatalog1

Algorithms
Training

Set
Micro-F1 Macro-F1 Micro-F1 Macro-F1

CDNE S+T 0.6466 0.6452 0.6218 0.6192

NetworkTr S+T 0.5041 0.4965 0.5234 0.5162

TrAdaBoost S+T 0.4742 0.4532 0.4817 0.4630

DeepWalk
T 0.3272 0.2717 0.3434 0.2979

S+T 0.2856 0.2544 0.2483 0.2323

GraRep
T 0.4234 0.3850 0.4542 0.4303

S+T 0.3049 0.2650 0.2615 0.2475

DNE-APP
T 0.3531 0.2980 0.3676 0.3251

S+T 0.2721 0.2317 0.2879 0.2360

LANE
T 0.2221 0.1333 0.2202 0.1209

S+T 0.5278 0.5190 0.5318 0.5270

Table 5.4: Cross-network node classification between the Citationv1 and DBLPv7 networks

when only 1% of labeled nodes are available in the target network.

𝓖 → 𝓖 Citationv1→DBLPv7 DBLPv7→Citationv1

Algorithms Training Set Micro-F1 Macro-F1 Micro-F1 Macro-F1

CDNE S+T 0.7642 0.7420 0.8099 0.7904

NetworkTr S+T 0.6600 0.6207 0.6722 0.6443

TrAdaBoost S+T 0.6114 0.5673 0.6074 0.5761

DeepWalk
T 0.5787 0.4996 0.6773 0.6125

S+T 0.3130 0.2724 0.4847 0.4297

GraRep
T 0.6207 0.5541 0.6982 0.6439

S+T 0.4021 0.3495 0.5427 0.4796

DNE-APP
T 0.6165 0.5429 0.7128 0.6509

S+T 0.5517 0.4945 0.6107 0.5609

LANE
T 0.4280 0.2718 0.4674 0.3759

S+T 0.5961 0.5549 0.5728 0.5344

131

dimensionality as 128-D. Next, we train a one-vs-rest LR classifier based on the

fully labeled nodes in the source network and the scarce labeled nodes in the target

network, and leverage the classifier to predict the labels of the unlabeled nodes in

the target network. To evaluate the cross-network node classification performance,

we measure the Micro-F1 and Marco-F1 scores of the predictions for the testing

Table 5.5: Cross-network node classification between the Citationv1 and ACMv9 networks

when only 1% of labeled nodes are available in the target network.

𝓖 → 𝓖 Citationv1→ACMv9 ACMv9→Citationv1

Algorithms Training Set Micro-F1 Macro-F1 Micro-F1 Macro-F1

CDNE S+T 0.7899 0.7890 0.8263 0.8087

NetworkTr S+T 0.6406 0.6107 0.6643 0.6402

TrAdaBoost S+T 0.5637 0.5387 0.6199 0.5966

DeepWalk
T 0.5983 0.5903 0.6773 0.6125

S+T 0.3974 0.3721 0.4260 0.3635

GraRep
T 0.6308 0.6260 0.6982 0.6439

S+T 0.5384 0.5307 0.4833 0.4243

DNE-APP
T 0.6658 0.6625 0.7128 0.6509

S+T 0.5672 0.5566 0.6262 0.5644

LANE
T 0.4298 0.3222 0.4674 0.3759

S+T 0.5688 0.5337 0.6020 0.5656

Table 5.6: Cross-network node classification between the DBLPv7 and ACMv9 networks when

only 1% of labeled nodes are available in the target network.

𝓖 → 𝓖 DBLPv7→ACMv9 ACMv9→DBLPv7

Algorithms Training Set Micro-F1 Macro-F1 Micro-F1 Macro-F1

CDNE S+T 0.7829 0.7847 0.7543 0.7325

NetworkTr S+T 0.6171 0.5818 0.6364 0.6008

TrAdaBoost S+T 0.5396 0.5099 0.5957 0.5493

DeepWalk
T 0.5983 0.5903 0.5787 0.4996

S+T 0.3880 0.3407 0.4078 0.3502

GraRep
T 0.6308 0.6260 0.6207 0.5541

S+T 0.4355 0.4350 0.3754 0.2803

DNE-APP
T 0.6658 0.6625 0.6165 0.5429

S+T 0.5400 0.5332 0.4801 0.3776

LANE
T 0.4298 0.3222 0.4280 0.2718

S+T 0.5416 0.4832 0.6004 0.5435

132

nodes in the target network. The reported Micro-F1 and Macro-F1 scores are the

average over the same 5 random splits, for each comparing algorithm.

Firstly, as shown in Tables 5.3, 5.4, 5.5 and 5.6, the proposed CDNE model

always achieved the highest Micro-F1 and Macro-F1 scores for node classification

in all the target networks, among all the comparing algorithms. In addition, the

improvement of CDNE over the best baseline is rather significant. For example, as

shown in Table 5.3, for cross-network node classification from BlogCatalog1 to

BlogCatalog2, CDNE can achieve a 22.51% higher Micro-F1 score and also a

24.32% higher Macro-F1 score than the best baseline, i.e., LANE (S+T).

Secondly, we can see that among all the cross-network node classification

tasks, both CDNE and NetworkTr always achieve much higher Micro-F1 and

Macro-F1 scores than TrAdaBoost. Note that both CDNE and NetworkTr consider

network connections and node attributes for cross-network node classification,

however, TrAdaBoost only leverages the attribute information while ignoring

network connections. Thus, it reflects that it is indeed necessary to design the

network-specific transfer learning algorithms to consider the important network

structural properties during knowledge transfer across networks. In addition, the

proposed CDNE model always significantly outperforms NetworkTr for all the

cross-network node classification tasks. This could be explained by the fact that

we employ deep network embedding to learn a unified embedding space shared by

the source network and the target network, which is more powerful to capture the

non-linear properties of the complex underlying network structures than the

matrix-factorization approach utilized by NetworkTr. Moreover, NetworkTr does

not minimize the cross-network distribution discrepancy when learning the unified

latent space. In contrast, we incorporate conditional MMD constraint into the

overall loss function of CDNE to make the same labeled nodes across networks

closer to each other in the unified embedding space, which is rather beneficial for

133

cross-network node classification.

Thirdly, we found that the three state-of-the-art network embedding algorithms,

i.e., DeepWalk, GraRep and DNE-APP, are rather unsuitable for cross-network

node classification. As shown in Tables 5.3, 5.4, 5.5 and 5.6 when utilizing the

fully labeled source network nodes and the limited labeled target network nodes

together to train the classifier, DeepWalk (S+T), GraRep (S+T) and DNE-APP

(S+T) perform even much worse than DeepWalk (T), GraRep (T) and DNE-APP

(T) which only utilize 1% of the target network labeled nodes for training. This is

because these network embedding algorithms only preserve the topological

proximities between nodes within a single network, which makes the learned node

vector representations incomparable across different networks [53] and leads to

negative transfer. However, we can see that when leveraging the labeled nodes

from both the source network and the target network for training, LANE (S+T)

can always achieve much better performance than LANE (T) which just utilizes

the scarce target network labeled nodes for training. This might be because LANE

can capture the correlations among node attributes, network proximities and node

labels, and such correlations might be generalized across different networks.

In addition, as shown in Table 5.3, for node classification across BlogCatalog1

and BlogCatalog2, NetworkTr, TrAdaBoost and LANE (S+T) can achieve

significantly better performance than DeepWalk, GraRep and DNE-APP.

However, as shown in Tables 5.4, 5.5 and 5.6, when the target network is

Citationv1 or ACMv9, GraRep (T) and DNE-APP (T) can achieve even better

performance than NetworkTr, TrAdaBoost and LANE (S+T). Note that

NetworkTr, TrAdaBoost and LANE consider node attributes and network

connections when learning the hidden node feature vector representations, while

all of DeepWalk, GraRep and DNE-APP ignore the attribute information. The

different results in the BlogCatalog and the citation networks reflect that the

134

attribute information are more important and useful for node classification in

BlogCatalog. This might be explained by the fact that the node labels in the

citation networks are more perfectly satisfied with the homophily theory, i.e., the

cited papers are more likely to belong to the same research area. However, in the

dense BlogCatalog networks with abundant network connections, two connected

bloggers might be interested in different groups. In such a case, only leveraging

network connections to predict node labels might be misleading sometimes, while

leveraging node attributes as the complementary information would significantly

improve node classification performance.

Next, we vary the target network training fraction in

{0.5%, 1%, 3%, 5%, 10%} and test the performance of the algorithms. Since

DeepWalk, GraRep and DNE-APP are rather unsuitable for cross-network node

classification, we report their results for single-network node classification by only

utilizing the target network labeled nodes for training. As shown in Figure 5.2, as

the target network training fraction increases, the DeepWalk (T), GraRep (T) and

DNE-APP (T) algorithms will achieve significantly higher Micro-F1 and

Macro-F1 scores. In addition, as shown in Figure 5.2(b), when the training fraction

is more than 1% in the Citationv1 target network, GraRep (T) and DNE-APP (T)

can achieve even much better performance than NetworkTr and TrAdaBoost. This

is because the state-of-the-art single-network embedding algorithms can well

preserve the proximities between connected nodes within a single network, which

is necessary for learning informative node vector representations for node

classification in a single network. On the other hand, although NetworkTr can

learn the shared latent structural features across networks, it cannot guarantee such

latent features to be label-discriminative for node classification. In addition, we

can see that although LANE (S+T) achieved promising performance for

cross-network node classification from BlogCatalog1 to BlogCatalog2, it

135

performed the worst among all the comparing algorithms for the task from

ACMv9 to Citationv1. It might because the citation networks are rather sparse,

which makes the matrix factorization technique employed in LANE more

challenging in capturing the correlations among node attributes, network

proximities and node labels. The proposed CDNE model not only takes advantage

of deep network embedding to learn the informative and discriminative node

vector representations, but also incorporates MMD constraints to match the

Figure 5.2: Micro-F1 and Macro-F1 scores of predicting labels for unlabeled nodes in the target

network, with varied fractions of labeled nodes observed in the target network. (a) and (b)

show the results of the cross-network node classification task from BlogCatalog1 to

BlogCatalog2, and from ACMv9 to Citationv1, respectively.

0.25

0.35

0.45

0.55

0.65

0.5 1 3 5 10

M
ic

ro
-F

1

% of labeled nodes in target network

0.17

0.27

0.37

0.47

0.57

0.67

0.5 1 3 5 10

M
a
c
ro

-F
1

% of labeled nodes in target network

(a) From BlogCatalog1 to BlogCatalog2

0.54

0.64

0.74

0.84

0.5 1 3 5 10

M
ic

ro
-F

1

% of labeled nodes in target network

CDNE NetworkTr TrAdaBoost Deepwalk (T)

GraRep (T) DNE-APP (T) LANE (S+T)

(b) From ACMv9 to Citationv1

0.54

0.64

0.74

0.84

0.5 1 3 5 10

M
a
c
ro

-F
1

% of labeled nodes in target network

136

cross-network distributions. Thus, even with varied target network training

fractions, the proposed CDNE model always achieves significantly better

cross-network node classification results than the single-network embedding

algorithms and the transfer learning baselines without deep network embedding.

5.5.5 Parameter Sensitivity

In this subsection, we analyze the sensitivity of the parameters 𝐾, 𝛽, 𝛼, 𝜑, 𝜇, 𝛾 on

the performance of CDNE.

Parameter 𝑲 denotes the maximum step of neighbors utilized to measure the

aggregated PPMI matrix. As shown in Figure 5.3(a), as K increases, both the

Micro-F1 and Macro-F1 scores will increase. For example, setting K=6 yields a

6.51% higher Macro-F1 score and a 5.28% higher Micro-F1 score than K=1. This

indicates that preserving high-order proximities is indeed useful for learning

informative feature vector representations for node classification.

Parameter 𝜷 indicates the ratio of penalty on the reconstruction errors of

strong connections over that of weak connections and disconnections. As shown in

Figure 5.3(b), 𝛽 > 1 always yields much higher Micro-F1 and Macro-F1 scores

than 𝛽 = 1. Thus, adding larger penalty to make SAE_s and SAE_t focus more

on reconstructing strong connections is indeed helpful for learning informative

feature vector representations for node classification.

Parameter 𝜶 refers to the weight of pairwise constraint on strongly connected

nodes. As shown in Figure 5.3(c), 𝛼 > 0 always achieves better cross-network

node classification results than 𝛼 = 0. This demonstrates the effectiveness of

incorporating the pairwise constraint into SAE_s and SAE_t to map more strongly

connected nodes within a network closer to each other so as to well capture the

homophily effect.

137

Parameter 𝝋 denotes the weight of pairwise constraint on labeled nodes in the

source network. As shown in Figure 5.3(d), 𝜑 > 0 always leads to much higher

F1 scores than 𝜑 = 0. Thus, incorporating pairwise constraint to map nodes

sharing more common labels closer to each other, while mapping nodes belonging

to completely different categories far apart from each other is indeed effective for

learning discriminative feature vector representations for node classification.

Parameters 𝝁 and 𝜸 represent the weight of marginal MMD and conditional

MMD in the overall loss function of SAE_t, respectively. As shown in Figures

5.3(e) and 5.3(f), 𝜇 and 𝛾 with positive values would always lead to much better

performance than with zero values. This reflects that incorporating the MMD

constraints is indeed effective for learning network-invariant node vector

representations. Moreover, we can see that γ = 50 leads to a 25.5% higher

Micro-F1 score and a 43.7% higher Macro-F1 score than γ = 0 . Thus, it

demonstrates that incorporating the conditional MMD to map the same labeled

nodes across networks to have similar latent vector representations should play a

rather important role in achieving good performance in cross-network node

Figure 5.3: Sensitivity of the parameters, i.e., 𝐾, 𝛽, 𝛼, 𝜑, 𝜇, 𝛾 on the cross-network node

classification performance of CDNE, when the source network is ACMv9 and the target

network is dblpv7, and 1% of nodes in the target networks are with observed labels.

0.3

0.4

0.5

0.6

0.7

0.8

1 4 5 6 7

(b) Ratio of reconstruction penalty: β

0.7

0.72

0.74

0.76

0 2 4 6 8

(c) Weight of pairwise constraint on
connected nodes: α

0.67

0.7

0.73

0.76

1 2 3 4 6 8

F
1

(a) Value of Maximum step: K

0.68

0.7

0.72

0.74

0.76

0 1 2 3 4

F
1

(d) Weight of pairwise constraint on
labeled nodes: φ

0.71

0.73

0.75

0.77

0 1 2 3 4

(e) Weight of marginal MMD: μ

Micro-F1 Macro-F1

0.48

0.55

0.62

0.69

0.76

0 40 50 60 70

(f) Weight of conditional MMD: γ

138

classification.

5.6 Summary

In this work, we address a cross-network node classification problem. Given a

target network with scarce labeled nodes and a source network with fully labeled

nodes, we aim to leverage the abundant labeled information from the source

network to help classify unlabeled nodes in the target network. The state-of-the-art

single-network embedding algorithms can achieve promising results for node

classification involving one network, however, they fail to learn generalized and

comparable network representations across networks. To address this, we propose

a novel cross-network embedding model, i.e., CDNE, which is composed of two

semi-supervised SAEs, to embed the nodes from the source network and from the

target network into a unified low-dimensional latent space. To well capture the

homophily effect for each single network, we devise pairwise constraints to make

more strongly connected nodes within a network have more similar hidden vector

representations. In addition, to learn discriminative feature vector representations

for node classification, we devise pairwise constraints to make the source network

nodes sharing more common labels closer while those belonging to completely

different categories far apart from each other in the embedding space. Moreover,

to make the hidden vector representations comparable across networks, we

incorporate the marginal and class-conditional MMD constraints to minimize the

cross-network distribution discrepancy. Specifically, we employ the associated

node attributes to predict fuzzy labels for the unlabeled nodes in the target network.

Then, we leverage both the observable binary labels and the predicted fuzzy labels

to guide the cross-network label-aligned embedding so as to learn similar hidden

vector representations for the same category of nodes across networks. Extensive

experimental results demonstrate that the proposed CDNE model achieves

139

significant gains over the related algorithms for node classification in the target

network.

This work is now under review in [17]. There are several directions to extend

this work. Firstly, we can further exploit the abundant node attribute information

as one of the input components to learn the node vector representations. In

addition, we can address a more challenging task where nodes from the source

network and the target network do not share the same categories of node attributes,

and consequently how the CDNE model can be extended to select the commonly

useful node attributes across networks. Moreover, instead of leveraging all the

labeled nodes from the source network to help classify the unlabeled target

network nodes, we can design a scheme to filter the useless source network nodes

so as to achieve better cross-network node classification performance. Moreover,

it is interesting to adapt CDNE to a more generalized cross-network node

classification task, where the node labels in the source network and the target

network can be not fully identical.

140

Chapter 6

Conclusions and Future Work

6.

6.1 Conclusions

Complex networks are ubiquitous in many real-world scenarios, such as social

networks, publication networks, biological networks and transportation networks.

Mining information from complex networks is important for a wide variety of

applications. To effectively and efficiently address the canonical graph mining

tasks, such as node classification, node clustering, link prediction, node/link

retrieval, one should pre-define a set of informative and discriminative feature

vector representations for nodes or edges in the networks. Motivated by this, in

this thesis, we proposed four models to learn the informative node or edge feature

vector representations in the complex networks.

In Chapter 2, we proposed a cross-network learning (CNL) framework to

address the cross-network prediction tasks over nodes and edges in the IM

problem. Specifically, the proposed CNL model aims to leverage the greedy seed

selection and influence propagation knowledge pre-learned from a smaller source

network to help predict seed nodes and inactive edges in multiple larger target

networks. In the CNL model, we employed a feature engineering approach to

manually select explicit topological features which can reflect the influence of

nodes in the IM problem. In addition, to address domain discrepancy, we assign

lower weights to the features which perform less similarly between the source

network and the target network. Moreover, we proposed an innovative fuzzy

self-training for domain adaptation algorithm to iteratively retrain the prediction

141

model based on not only the fully labeled instances in the source network, but also

the most confident predicted instances in the target network with their predicted

fuzzy labels. On one hand, for seed selection, since the CNL model learns the

greedy seed selection knowledge from the source network, it can achieve a high

influence spread comparable to the greedy algorithms in the target networks. In

addition, since the CNL model heuristically selects seed nodes in the target

network, it can greatly save the running time. On the other hand, for graph

sparsification, by leveraging the influence propagation knowledge pre-learned

from the source network, the CNL model would only remove the edges least

useful for influence propagation in the target network. Thus, it would just cause a

little loss of influence spread in the sparse target networks, while significantly

speeding up the greedy algorithms.

In addition, motivated by the recent success of deep learning, we proposed

three state-of-the-art deep network embedding models to automatically learn the

low-dimensional node vector representations, which can tackle a wide variety of

graph mining tasks. These three deep network embedding models aim to address

the open issues in current network embedding research, namely asymmetric

network embedding, signed network embedding and cross-network embedding.

Most existing network embedding algorithms ignore the important asymmetric

relationships between nodes in a network. To address this, in Chapter 3, we

proposed an asymmetry-aware deep network embedding (AsDNE) model to

preserve the asymmetric outward and inward proximities between nodes, in both

directed and undirected networks. We employed two semi-supervised SAEs, i.e.,

SAE-Out and SAE-In, to learn the non-linear outward and inward node vector

representations, respectively. To well capture the asymmetric relationships, we

incorporated pairwise constraints into SAE-Out and SAE-In to map node pairs

with bi-directionally strong connections much closer than those with strong

142

connection in only one direction. Extensive experimental results in both directed

and undirected real-world networks demonstrate that the proposed AsDNE model

can learn task-independent network representations outperforming the

state-of-the-art network embedding algorithms.

In addition, the vast majority of existing network embedding algorithms are

developed for unsigned networks, while the signed networks have pretty distinct

properties from the unsigned networks. Thus, it is necessary to design the signed

network embedding algorithms to capture the distinct properties of the signed

networks. In this regard, in Chapter 4, we proposed a deep network embedding

with structural balance preservation (DNE-SBP) model to learn deep graph

representations for the signed networks. We employed a semi-supervised SAE to

reconstruct the adjacency connections of a signed network. To preserve the

structural balance property of the signed networks, we incorporated pairwise

constraints into the SAE to map positively connected nodes much closer than

negatively connected nodes. Extensive experimental results in the real-world

signed networks demonstrate the superiority of the proposed DNE-SBP model

over the state-of-the-art network embedding algorithms for graph representation

learning in signed networks.

Existing network embeddings are generally developed for a single network

while failing to capture the proximities between nodes across different networks.

In Chapter 5, we proposed a cross-network deep network embedding (CDNE)

model to learn label-discriminative and network-invariant node vector

representations. We should be the first to integrate deep network embedding and

domain adaptation to address the cross-network node classification task. We

employed two semi-supervised SAEs, i.e., SAE_s and SAE_t, to embed the nodes

from the source network and from the target network into a unified

low-dimensional latent space. In addition, we leveraged network structures, node

143

attributes and node labels to capture the proximities between nodes not only within

a network but also across different networks. Extensive experimental results in the

real-world networks demonstrate that the proposed CDNE model significantly

outperforms the state-of-the-art single-network embedding algorithms and the

traditional transfer learning algorithms (without deep network embedding), for

node classification in the target network.

In summary, in this thesis, we not only utilize a feature-engineering approach

to manually define explicit topological features for nodes or edges in the networks,

but also employ the state-of-the-art deep network embedding models to

automatically learn the low-dimensional latent feature vector representations. In

addition, we leverage the learned feature vector representations to address various

graph mining tasks within a single network, such as node classification, node

clustering, link prediction, and node/edge retrieval. Moreover, we are among the

first to incorporate the domain adaptation techniques in the graph mining tasks

across different networks, such as cross-network node classification and

cross-network link prediction. We believe that the innovative ideas and proposed

techniques in this thesis would inspire the research in complex network analysis,

graph mining, and graph representation learning within a single network and

across different networks.

6.2 Future Work

There are several directions to extend the existing network embedding work.

6.2.1 Signed Network Embedding

Existing signed network embedding algorithms [114], [113], [45], [44], [12] only

focus on preserving the structural balance properties of the signed networks.

However, the signed networks also have other distinct properties, as described in

144

[51]. For example, the nodes connected with positive links are with higher

clustering coefficients than those connected with negative links. In addition, the

positively connected nodes would have stronger tendency to form bi-directional

connections than those negatively connected ones. Moreover, the structural

balance theory is naturally defined for undirected networks [51]. Thus, existing

signed network embedding algorithms with structural balance preservation would

be problematic when applied to the directed signed networks. For example, in a

directed signed network, if node 𝑣𝑖 has a positive link towards 𝑣𝑗 , while 𝑣𝑗 has

a negative link towards 𝑣𝑖 , then according to 𝑒𝑖𝑗 = 1, 𝑣𝑖 and 𝑣𝑗 should be

mapped close to each other, while according to 𝑒𝑗𝑖 = −1, 𝑣𝑗 and 𝑣𝑖 should be

mapped far apart from each other. To address this issue, we can consider another

important property of the signed networks, i.e., status theory, which is relevant to

the directed signed networks [150], [52]. The status theory suggests that 𝑣𝑖 has a

higher status than 𝑣𝑗 , if there is a positive link from 𝑣𝑗 to 𝑣𝑖 or a negative link

from 𝑣𝑖 to 𝑣𝑗 . Thus, in the future work, we can design the signed network

embedding algorithms to capture other important properties of the signed

networks.

6.2.2 Cross-network Embedding

The proposed CDNE model should be the first cross-network deep network model

for learning label-discriminative and network-invariant feature vector

representations for cross-network node classification. Several issues can be further

investigated. Firstly, in the CDNE model, we leverage all the labeled nodes from

the source network to help classify the unlabeled target network nodes. In the

future research, it is better to design a scheme to filter the useless source network

nodes which might cause negative transfer. Also, we can design a scheme to

re-weight the latent features according to their generalization across networks. For

145

example, we can employ the proposed CNL model to address the feature

incompatibility between the source network and the target network and assign

lower weights to the features which perform less similarly between the two

networks. In addition, in the CDNE model, we assume that the nodes from the

source network and the target network share the same categories of node attributes.

A more challenging task can be addressed where the source network and the target

network do not share the identical node attributes, and by then, we need to design

algorithms to automatically select the commonly useful node attributes across

networks. Besides, most recently, several attributed network embedding

algorithms [151], [152], [97], [153] have been proposed to employ node attributes

as the main input for learning network representations, with the goal of preserving

both attributed affinity and network topological proximities. Thus, instead of

utilizing node attributes as the side information, we can exploit them as the main

input to learn the cross-network node vector representations. Moreover, instead of

utilizing SAEs as the main building block in the deep network model, we can also

try some other deep neural network architectures, such as convolutional neural

network, variational auto-encoder and generative adversarial networks.

6.2.3 Heterogeneous Network Embedding

In this thesis, we focus on network embedding in homogeneous networks.

However, in a heterogeneous network, there are more than one type of nodes or

more than one type of edges. For example, in a recommender system, nodes can be

users or items, and edges can be the relationships between two users, between one

user and one item, or between two items. Similarly, in a question answering

system, a node can be a question, an answer, or a user, and the edges can be any

relationships among different types or the same type of nodes. In the future work,

we can extend the ideas and the proposed models in this thesis to heterogeneous

146

network embedding. For example, we can extend our signed network embedding

model, i.e., DNE-SBP, to a recommender system, by modeling users and items as

two types of nodes. Then, we can model the “like” and “dislike” relationships

between users and items as the positive and negative links between users and items,

and model the “similar” and “dissimilar” relationships between two items as the

positive and negative links between items. Next, we can make recommendations

for users based on the link sign prediction results between users and items and

conduct customer segmentation according to the network clustering results of

users.

147

Bibliography

[1] N. R. Council, Network Science. Washington, DC: The National Academies Press, p.

124, 2005.

[2] G. Tsoumakas and I. Katakis, "Multi-label classification: An overview," International

Journal of Data Warehousing and Mining (IJDWM), vol. 3, no. 3, pp. 1-13, 2007.

[3] P. Radivojac, W. T. Clark, T. R. Oron, A. M. Schnoes, T. Wittkop, A. Sokolov, K. Graim,

C. Funk, K. Verspoor, and A. Ben-Hur, "A large-scale evaluation of computational

protein function prediction," Nature Methods, vol. 10, no. 3, p. 221, 2013.

[4] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, "Learning deep representations for

graph clustering," in Proceedings of the AAAI Conference on Artificial Intelligence, pp.

1293-1299, 2014.

[5] L. Yang, X. Cao, D. He, C. Wang, X. Wang, and W. Zhang, "Modularity based

community detection with deep learning," in Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI), pp. 2252-2258, 2016.

[6] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, "Community preserving network

embedding," in Proceedings of the AAAI Conference on Artificial Intelligence, pp.

203-209, 2017.

[7] Z. Wang, L. Dueñas-Osorio, and J. E. Padgett, "A new mutually reinforcing network

node and link ranking algorithm," Scientific Reports, vol. 5, p. 15141, 2015.

[8] X. Shen, S. Mao, and F.-l. Chung, "Cross-network learning with fuzzy labels for seed

selection and graph sparsification in influence maximization," under 3rd round review

by IEEE Transactions on Fuzzy Systems, 2018.

[9] X. Shen, F.-l. Chung, and S. Mao, "Leveraging cross-network information for graph

sparsification in influence maximization," in Proceedings of the ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 801-804, 2017.

[10] D. Wang, P. Cui, and W. Zhu, "Structural deep network embedding," in Proceedings of

the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 1225-1234, 2016.

[11] X. Shen and F.-l. Chung, "Deep network embedding with aggregated proximity

preserving," in Proceedings of the IEEE/ACM International Conference on Advances in

Social Network Analysis and Mining, pp. 40-44, 2017.

[12] X. Shen and F.-l. Chung, "Deep network embedding for graph representation learning

in signed networks," IEEE Transactions on Cybernetics, 2018.

[13] J. Tang, T. Lou, and J. Kleinberg, "Inferring social ties across heterogenous networks,"

in Proceedings of the ACM International Conference on Web Search and Data Mining,

pp. 743-752, 2012.

[14] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

148

[15] J. Ye, H. Cheng, Z. Zhu, and M. Chen, "Predicting positive and negative links in signed

social networks by transfer learning," in Proceedings of the International Conference

on World Wide Web, pp. 1477-1488, 2013.

[16] M. Fang, J. Yin, and X. Zhu, "Transfer learning across networks for collective

classification," in Proceedings of the IEEE International Conference on Data Mining

(ICDM), pp. 161-170, 2013.

[17] X. Shen, Q. Dai, S. Mao, and F.-l. Chung, "Network together: Node classification via

cross-network deep network embedding," submitted to ACM SIGIR Conference on

Research and Development in Information Retrieval, 2019.

[18] M. Fang, J. Yin, X. Zhu, and C. Zhang, "TrGraph: Cross-network transfer learning via

common signature subgraphs," IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no. 9, pp. 2536-2549, 2015.

[19] R. Niu, S. Moreno, and J. Neville, "Analyzing the transferability of collective inference

models across networks," in Proceedings of IEEE International Conference on Data

Mining Workshop (ICDMW), pp. 908-916, 2015.

[20] Q. Hu, G. Wang, and S. Y. Philip, "Transferring influence: Supervised learning for

efficient influence maximization across networks," in Proceedings of International

Conference on Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom), pp. 45-54, 2014.

[21] H. Lamba and R. Narayanam, "A novel and model independent approach for efficient

influence maximization in social networks," in Proceedings of International

Conference on Web Information Systems Engineering, pp. 73-87, 2013.

[22] P. J. Carrington, J. Scott, and S. Wasserman, Models and Methods in Social Network

Analysis. Cambridge University Press, 2005.

[23] A. Grover and J. Leskovec, "node2vec: Scalable feature learning for networks," in

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pp. 855-864, 2016.

[24] B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning of social

representations," in Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 701-710, 2014.

[25] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, "Don’t walk, skip! Online learning of

multi-scale network embeddings," in Proceedings of the IEEE/ACM International

Conference on Advances in Social Network Analysis and Mining, pp. 258-265, 2017.

[26] C. Zhou, Y. Liu, X. Liu, Z. Liu, and J. Gao, "Scalable graph embedding for asymmetric

proximity," in Proceedings of the AAAI Conference on Artificial Intelligence, pp.

2942-2948, 2017.

[27] Y. Dong, N. V. Chawla, and A. Swami, "metapath2vec: Scalable representation learning

for heterogeneous networks," in Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 135-144, 2017.

[28] S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear

149

embedding," Science, vol. 290, no. 5500, pp. 2323-2326, 2000.

[29] S. Cao, W. Lu, and Q. Xu, "Grarep: Learning graph representations with global

structural information," in Proceedings of ACM Conference on Information and

Knowledge Management (CIKM), pp. 891-900, 2015.

[30] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, "Asymmetric transitivity preserving graph

embedding," in Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 1105-1114, 2016.

[31] J. T. Pang, F. Nie, and J. Han, "Flexible orthogonal neighborhood preserving

embedding," in Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pp. 2592-2598, 2017.

[32] F. Nie, W. Zhu, and X. Li, "Unsupervised large graph embedding," in Proceedings of

the AAAI Conference on Artificial Intelligence, pp. 2422-2428, 2017.

[33] D. Zhu, P. Cui, Z. Zhang, J. Pei, and W. Zhu, "High-order proximity preserved

embedding for dynamic networks," IEEE Transactions on Knowledge and Data

Engineering, 2018.

[34] S. Cao, W. Lu, and Q. Xu, "Deep neural networks for learning graph representations,"

in Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1145-1152, 2016.

[35] S. Chang, W. Han, J. Tang, G.-J. Qi, C. C. Aggarwal, and T. S. Huang, "Heterogeneous

network embedding via deep architectures," in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 119-128,

2015.

[36] M. Niepert, M. Ahmed, and K. Kutzkov, "Learning convolutional neural networks for

graphs," in Proceedings of International Conference on Machine Learning, pp.

2014-2023, 2016.

[37] P. Goyal and E. Ferrara, "Graph embedding techniques, applications, and performance:

A survey," arXiv preprint arXiv:1705.02801, 2017.

[38] P. Cui, X. Wang, J. Pei, and W. Zhu, "A survey on network embedding," arXiv preprint

arXiv:1711.08752, 2017.

[39] D. Zhang, J. Yin, X. Zhu, and C. Zhang, "Network representation learning: A survey,"

arXiv preprint arXiv:1801.05852, 2017.

[40] H. Cai, V. W. Zheng, and K. Chang, "A comprehensive survey of graph embedding:

problems, techniques and applications," IEEE Transactions on Knowledge and Data

Engineering, 2018.

[41] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word

representations in vector space," Proceedings of International Conference on Learning

Representations, 2013.

[42] X. Shen, S. Mao, and F.-l. Chung, "Asymmetry-aware deep network embedding,"

under 2nd round review by IEEE Transactions on Knowledge and Data Engineering,

2018.

[43] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, "Line: Large-scale

150

information network embedding," in Proceedings of the International Conference on

World Wide Web, pp. 1067-1077, 2015.

[44] Q. Zheng and D. B. Skillicorn, "Spectral embedding of signed networks," in

Proceedings of the SIAM International Conference on Data Mining, pp. 55-63, 2015.

[45] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, "Signed network embedding in

social media," in Proceedings of the SIAM International Conference on Data Mining,

2017.

[46] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, "Transfer feature learning with joint

distribution adaptation," in Proceedings of the IEEE International Conference on

Computer Vision, pp. 2200-2207, 2013.

[47] F. Zhuang, X. Cheng, P. Luo, S. J. Pan, and Q. He, "Supervised representation learning:

Transfer learning with deep autoencoders," in Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI), pp. 4119-4125, 2015.

[48] X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment

classification: A deep learning approach," in Proceedings of International Conference

on Machine Learning, pp. 513-520, 2011.

[49] F. Wu and Y. Huang, "Sentiment domain adaptation with multiple sources," in

Proceedings of the Annual Meeting of the Association for Computational Linguistics,

pp. 301-310, 2016.

[50] D. Kempe, J. Kleinberg, and É. Tardos, "Maximizing the spread of influence through a

social network," in Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 137-146, 2003.

[51] J. Tang, Y. Chang, C. Aggarwal, and H. Liu, "A survey of signed network mining in

social media," ACM Computing Surveys (CSUR), vol. 49, no. 3, 2016.

[52] J. Leskovec, D. Huttenlocher, and J. Kleinberg, "Signed networks in social media," in

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.

1361-1370, 2010.

[53] M. Heimann and D. Koutra, "On generalizing neural node embedding methods to

multi-network problems," in Proceedings of Mining and Learning with Graphs

Workshop, 2017.

[54] M. Heimann, H. Shen, and D. Koutra, "Node representation learning for multiple

networks: The case of graph alignment," arXiv preprint arXiv:1802.06257, 2018.

[55] J. Nail, "The consumer advertising backlash," Forrester Research and Intelliseek

Market Research Report, 2004.

[56] I. R. Misner, The World's Best Known Marketing Secret: Building Your Business With

Word-Of-Mouth Marketing. Bard Press, 1994.

[57] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, N. Glance, and N. Glance,

"Cost-effective outbreak detection in networks," in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 420-429,

2007.

151

[58] A. Goyal, W. Lu, and L. V. S. Lakshmanan, "CELF++:optimizing the greedy algorithm

for influence maximization in social networks," in Proceedings of the International

Conference Companion on World Wide Web, pp. 47-48, 2011.

[59] W. Chen, Y. Wang, and S. Yang, "Efficient influence maximization in social networks,"

in Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 199-208, 2009.

[60] W. Chen, C. Wang, and Y. Wang, "Scalable influence maximization for prevalent viral

marketing in large-scale social networks," in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 1029-1038,

2010.

[61] K. Jung, W. Heo, and W. Chen, "IRIE: Scalable and robust influence maximization in

social networks," in Proceedings of the International Conference on Data Mining

(ICDM), pp. 918-923, 2011.

[62] Z. L. Luo, W. D. Cai, Y. J. Li, and D. Peng, A PageRank-based heuristic algorithm for

influence maximization in the social network. Springer Berlin Heidelberg, pp. 485-490,

2012.

[63] B. Wilder and G. Sukthankar, "Sparsification of social networks using random walks,"

in Proceedings of International Conference on Social Computation, 2015.

[64] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen, "Sparsification of

influence networks," in Proceedings of ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 529-537, 2011.

[65] M. Chen, K. Q. Weinberger, and J. Blitzer, "Co-training for domain adaptation," in

Proceedings of Advances in Neural Information Processing Systems, pp. 2456-2464,

2011.

[66] S. Kumar, A. K. Shukla, P. K. Muhuri, and Q. D. Lohani, "Atanassov intuitionistic

fuzzy domain adaptation to contain negative transfer learning," in Proceedings of the

IEEE International Conference on Fuzzy Systems, pp. 2295-2301, 2016.

[67] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, "Granular fuzzy regression

domain adaptation in takagi-sugeno fuzzy models," IEEE Transactions on Fuzzy

Systems, vol. 26, no. 2, pp. 847-858, 2017.

[68] J. Shell and S. Coupland, "Fuzzy transfer learning: methodology and application,"

Information Sciences, vol. 293, pp. 59-79, 2015.

[69] H. Zuo, G. Zhang, W. Pedrycz, V. Behbood, and J. Lu, "Fuzzy regression transfer

learning in Takagi-Sugeno fuzzy models," IEEE Transactions on Fuzzy Systems, vol. 25,

no. 6, pp. 1795-1807, 2017.

[70] P. Domingos and M. Richardson, "Mining the network value of customers," in

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pp. 57-66, 2001.

[71] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi, "Fast and accurate influence

maximization on large networks with pruned Monte-Carlo simulations," in Proceedings

152

of the AAAI Conference on Artificial Intelligence, pp. 138-144, 2014.

[72] S. Cheng, H. Shen, J. Huang, G. Zhang, and X. Cheng, "Staticgreedy: solving the

scalability-accuracy dilemma in influence maximization," in Proceedings of ACM

Conference on Information and Knowledge Management (CIKM) pp. 509-518, 2013.

[73] Y. Wang, G. Cong, G. Song, and K. Xie, "Community-based greedy algorithm for

mining top-K influential nodes in mobile social networks," in Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.

1039-1048, 2010.

[74] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, "Maximizing social influence in

nearly optimal time," in Proceedings of ACM-SIAM Symposium on Discrete Algorithms,

pp. 946-957, 2014.

[75] Y. Tang, X. Xiao, and Y. Shi, "Influence maximization: Near-optimal time complexity

meets practical efficiency," in Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 75-86, 2014.

[76] H. T. Nguyen, M. T. Thai, and T. N. Dinh, "Stop-and-stare: Optimal sampling

algorithms for viral marketing in billion-scale networks," in Proceedings of the ACM

SIGMOD International Conference on Management of Data, pp. 695-710, 2016.

[77] J. Tang, X. Tang, and J. Yuan, "Influence maximization meets efficiency and

effectiveness: A hop-based approach," in Proceedings of IEEE/ACM International

Conference on Advances in Social Network Analysis and Mining, pp. 64-71, 2017.

[78] J. Kim, S.-K. Kim, and H. Yu, "Scalable and parallelizable processing of influence

maximization for large-scale social networks," in Proceedings of IEEE International

Conference on Data Engineering, pp. 266-277, 2013.

[79] T. N. Dinh, H. Zhang, D. T. Nguyen, and M. T. Thai, "Cost-effective viral marketing for

time-critical campaigns in large-scale social networks," IEEE/ACM Transactions on

Networking, vol. 22, no. 6, pp. 2001-2011, 2014.

[80] Y. Shen, T. N. Dinh, H. Zhang, and M. T. Thai, "Interest-matching information

propagation in multiple online social networks," in Proceedings of the ACM

International Conference on Information and Knowledge Management, pp. 1824-1828,

2012.

[81] Q. Zhan, J. Zhang, S. Wang, S. Y. Philip, and J. Xie, "Influence maximization across

partially aligned heterogenous social networks," in Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 58-69, 2015.

[82] S. Kullback, "Letter to the Editor: The Kullback-Leibler Distance," American

Statistician, vol. 41, 1987.

[83] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian, "Fast

influence-based coarsening for large networks," in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 1296-1305,

2014.

[84] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, "Rank aggregation methods for the

153

web," in Proceedings of the International Conference on World Wide Web, pp. 613-622,

2001.

[85] X. Yi, X. Shen, W. Lu, T. S. Chan, and F.-l. Chung, "Persuasion driven influence

analysis in online social networks," in Proceedings of the International Joint

Conference on Neural Networks, pp. 4451-4456, 2016.

[86] M. Newmann, Networks. Oxford University Press, 2010.

[87] M. E. Newman, "The mathematics of networks," The New Palgrave Encyclopedia of

Economics, vol. 2, no. 2008, pp. 1-12, 2008.

[88] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," Journal of the

ACM, vol. 46, no. 5, pp. 604-632, 1999.

[89] L. Page, S. Brin, R. Motwani, and T. Winograd, "The PageRank citation ranking:

bringing order to the web," Stanford Info Lab, Technical Report,1999.

[90] V. Behbood, J. Lu, G. Zhang, and W. Pedrycz, "Multistep fuzzy bridged refinement

domain adaptation algorithm and its application to bank failure prediction," IEEE

Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 1917-1935, 2015.

[91] J. Yang and J. Leskovec, "Defining and evaluating network communities based on

ground-truth," Knowledge and Information Systems, vol. 42, no. 1, pp. 181-213, 2015.

[92] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, "Community structure in

large networks: Natural cluster sizes and the absence of large well-defined clusters,"

Internet Mathematics, vol. 6, no. 1, pp. 29-123, 2009.

[93] M. Richardson, R. Agrawal, and P. Domingos, "Trust management for the semantic

web," in Proceedings of International Semantic Web Conference, pp. 351-368, 2003.

[94] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed

representations of words and phrases and their compositionality," in Proceedings of

Advances in Neural Information Processing Systems, pp. 3111-3119, 2013.

[95] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, "A hierarchical fused fuzzy deep neural

network for data classification," IEEE Transactions on Fuzzy Systems, vol. 25, no. 4, pp.

1006-1012, 2017.

[96] S. Mao, X. Shen, and F.-l. Chung, "Deep domain adaptation based on multi-layer joint

kernelized distance," in Proceedings of the ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 1049-1052, 2018.

[97] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional

networks," in Proceedings of International Conference on Learning Representations,

2017.

[98] O. Levy and Y. Goldberg, "Neural word embedding as implicit matrix factorization," in

Proceedings of Advances in Neural Information Processing Systems, pp. 2177-2185,

2014.

[99] K. W. Church and P. Hanks, "Word association norms, mutual information, and

lexicography," Computational Linguistics, vol. 16, no. 1, pp. 22-29, 1990.

[100] L. Tang and H. Liu, "Relational learning via latent social dimensions," in Proceedings

154

of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 817-826, 2009.

[101] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, "Automating the construction

of internet portals with machine learning," Information Retrieval, vol. 3, no. 2, pp.

127-163, 2000.

[102] S. Nandanwar and M. N. Murty, "Structural neighborhood based classification of nodes

in a network," in Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 1085-1094, 2016.

[103] J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg, "Governance in social media: A

case study of the Wikipedia promotion process," in Proceedings of the International

AAAI Conference on Weblogs and Social Media, pp. 98-105, 2010.

[104] J. Kunegis, A. Lommatzsch, and C. Bauckhage, "The slashdot zoo: mining a social

network with negative edges," in Proceedings of the International Conference on World

Wide Web, pp. 741-750, 2009.

[105] P. Massa and P. Avesani, "Controversial users demand local trust metrics: An

experimental study on epinions. com community," in Proceedings of the AAAI

Conference on Artificial Intelligence, pp. 121-126, 2005.

[106] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to Information Retrieval.

Cambridge University Press, 2008.

[107] J. Leskovec, D. Huttenlocher, and J. Kleinberg, "Predicting positive and negative links

in online social networks," in Proceedings of International Conference on World Wide

Web, pp. 641-650, 2010.

[108] G. Beigi, J. Tang, S. Wang, and H. Liu, "Exploiting emotional information for

trust/distrust prediction," in Proceedings of SDM International Conference on Data

Mining, pp. 81-89, 2016.

[109] J. Wang, J. Shen, P. Li, and H. Xu, "Online matrix completion for signed link

prediction," in Proceedings of the ACM International Conference on Web Search Data

Mining, pp. 475-484, 2017.

[110] P. V. Marsden and N. E. Friedkin, "Network studies of social influence," Sociological

Methods & Research, vol. 22, no. 1, pp. 127-151, 1993.

[111] M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of a feather: Homophily in

social networks," Annual Review of Sociology, vol. 27, no. 1, pp. 415-444, 2001.

[112] J. Tang, X. Hu, and H. Liu, "Is distrust the negation of trust?: the value of distrust in

social media," in Proceedings of the ACM Conference on Hypertext and Social Media,

pp. 148-157, 2014.

[113] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. De Luca, and S. Albayrak,

"Spectral analysis of signed graphs for clustering, prediction and visualization," in

Proceedings of SIAM International Conference on Data Mining, pp. 559-570, 2010.

[114] K.-Y. Chiang, J. J. Whang, and I. S. Dhillon, "Scalable clustering of signed networks

using balance normalized cut," in Proceedings of ACM Conference on Information and

155

Knowledge Management (CIKM), pp. 615-624, 2012.

[115] F. Harary, "On the notion of balance of a signed graph," The Michigan Mathematical

Journal, vol. 2, no. 2, pp. 143-146, 1953.

[116] J. A. Davis, "Clustering and structural balance in graphs," Human Relations, vol. 20, no.

2, pp. 181-187, 1967.

[117] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, "Sitting closer to friends

than enemies, revisited," in Proceedings of International Symposium on Mathematical

Foundations of Computer Science, pp. 296-307, 2012.

[118] P. Mercado, F. Tudisco, and M. Hein, "Clustering signed networks with the geometric

mean of Laplacians," in Proceedings of Advances in Neural Information Processing

Systems, pp. 4421-4429, 2016.

[119] C.-J. Hsieh, K.-Y. Chiang, and I. S. Dhillon, "Low rank modeling of signed networks,"

in Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 507-515, 2012.

[120] K. Zeng, J. Yu, R. Wang, C. Li, and D. Tao, "Coupled deep autoencoder for single

image super-resolution," IEEE Transactions on Cybernetics, vol. 47, no. 1, pp. 27-37,

2017.

[121] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, "Stacked convolutional

denoising auto-encoders for feature representation," IEEE Transactions on Cybernetics,

vol. 47, no. 4, pp. 1017-1027, 2017.

[122] S. M. Siniscalchi and V. M. Salerno, "Adaptation to new microphones using artificial

neural networks with trainable activation functions," IEEE Transactions on Neural

Network and Learning System, vol. 28, no. 8, pp. 1959-1965, 2017.

[123] M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding

and clustering," in Proceedings of Advances in Neural Information Processing Systems,

pp. 585-591, 2002.

[124] Z. Yu, Y. Lu, J. Zhang, J. You, H.-S. Wong, Y. Wang, and G. Han, "Progressive

semisupervised learning of multiple classifiers," IEEE Transactions on Cybernetics,

2017.

[125] Z. Yu, Y. Zhang, J. You, C. P. Chen, H.-S. Wong, G. Han, and J. Zhang, "Adaptive

semi-supervised classifier ensemble for high dimensional data classification," IEEE

Transactions on Cybernetics, 2017.

[126] P. He, X. Xu, K. Hu, and L. Chen, "Semi-supervised clustering via multi-level random

walk," Pattern Recognition, vol. 47, no. 2, pp. 820-832, 2014.

[127] D. Klein, S. D. Kamvar, and C. D. Manning, "From instance-level constraints to

space-level constraints: Making the most of prior knowledge in data clustering," in

Proceedings of the International Conference on Machine Learning, pp. 307-314, 2002.

[128] Z. Yu, Z. Kuang, J. Liu, H. Chen, J. Zhang, J. You, H.-S. Wong, and G. Han, "Adaptive

ensembling of semi-supervised clustering solutions," IEEE Transactions on Knowledge

and Data Engineering, vol. 29, no. 8, pp. 1577-1590, 2017.

156

[129] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of

deep networks," in Proceedings of Advances in Neural Information Processing Systems,

pp. 153-160, 2007.

[130] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, "The pascal

visual object classes (voc) challenge," International Journal of Computer Vision, vol.

88, no. 2, pp. 303-338, 2010.

[131] G. Facchetti, G. Iacono, and C. Altafini, "Computing global structural balance in

large-scale signed social networks," Proceedings of the National Academy of Sciences,

vol. 108, no. 52, pp. 20953-20958, 2011.

[132] A. Amelio and C. Pizzuti, "Community mining in signed networks: a multiobjective

approach," in Proceedings of the IEEE/ACM International Conference on Advances in

Social Network Analysis and Mining, pp. 95-99, 2013.

[133] Y. Chen, S. Song, S. Li, L. Yang, and C. Wu, "Domain space transfer extreme learning

machine for domain adaptation," IEEE Transactions on Cybernetics, 2018.

[134] Y.-H. Hubert Tsai, Y.-R. Yeh, and Y.-C. Frank Wang, "Learning cross-domain

landmarks for heterogeneous domain adaptation," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 5081-5090, 2016.

[135] J. Li, K. Lu, Z. Huang, L. Zhu, and H. T. Shen, "Transfer independently together: A

generalized framework for domain adaptation," IEEE Transactions on Cybernetics,

2018.

[136] F. Wu, Z. Yuan, and Y. Huang, "Collaboratively training sentiment classifiers for

multiple domains," IEEE Transactions on Knowledge and Data Engineering, vol. 29,

no. 7, pp. 1370-1383, 2017.

[137] S. Zhang and H. Tong, "Final: Fast attributed network alignment," in Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pp. 1345-1354, 2016.

[138] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, "struc2vec: Learning node

representations from structural identity," in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 385-394,

2017.

[139] X. Huang, J. Li, and X. Hu, "Label informed attributed network embedding," in

Proceedings of the ACM International Conference on Web Search and Data Mining, pp.

731-739, 2017.

[140] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, "Tri-party deep network representation,"

in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

pp. 1895-1901, 2016.

[141] T. Man, H. Shen, S. Liu, X. Jin, and X. Cheng, "Predict anchor links across social

networks via an embedding approach," in Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), pp. 1823-1829, 2016.

[142] L. Liu, W. K. Cheung, X. Li, and L. Liao, "Aligning users across social networks using

157

network embedding," in Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), pp. 1774-1780, 2016.

[143] C. Ding, T. Li, W. Peng, and H. Park, "Orthogonal nonnegative matrix t-factorizations

for clustering," in Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 126-135, 2006.

[144] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, "Boosting for transfer learning," in Proceedings

of the International Conference on Machine Learning, pp. 193-200, 2007.

[145] X. Wang, Y. Ma, Y. Cheng, L. Zou, and J. J. Rodrigues, "Heterogeneous domain

adaptation network based on autoencoder," Journal of Parallel and Distributed

Computing, 2017.

[146] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, "A kernel

method for the two-sample-problem," in Proceedings of Advances in Neural

Information Processing Systems, pp. 513-520, 2007.

[147] A. Mackiewicz and W. Ratajczak, "Principal components analysis (PCA)," Computers

and Geosciences, vol. 19, pp. 303-342, 1993.

[148] J. Li, X. Hu, J. Tang, and H. Liu, "Unsupervised streaming feature selection in social

media," in Proceedings of the ACM International on Conference on Information and

Knowledge Management, pp. 1041-1050, 2015.

[149] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, "Arnetminer: extraction and

mining of academic social networks," in Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pp. 990-998,

2008.

[150] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, "Propagation of trust and distrust,"

in Proceedings of the International Conference on World Wide Web, pp. 403-412, 2004.

[151] H. Gao and H. Huang, "Deep attributed network embedding," in IJCAI, pp. 3364-3370,

2018.

[152] Z. Yang, W. Cohen, and R. Salakhudinov, "Revisiting semi-supervised learning with

graph embeddings," in International Conference on Machine Learning, pp. 40-48,

2016.

[153] Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and C. Wang, "ANRL:

Attributed network representation learning via deep neural networks," in IJCAI, pp.

3155-3161, 2018.

