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Abstract

In the past decades, the development of information technology has reshaped

how customers obtain product related information, and has revolutionized the

ways organizations relate to the marketplace. Meanwhile, progress in behav-

ioral research has deepened our understanding of customer behavior. It shows

that customers are not passive receiving end but active decisions makers. Those

changes in technology and knowledge have created a new world of opportunities

and challenges for all aspects of the enterprise. In this thesis, we research into

their impacts on the operations of service facilities.

In the first topic, we consider the new challenges associated with the devel-

opment of information technology. Social media and word-of-mouth forums are

shown to have great influence on customers’ purchase decisions, and have made

the buyer-generated content non-negligible. We consider a typical situation where

a service provider serves two types of customers, sophisticated and naive. Sophis-

ticated customers are well-informed about service-related information and make

their joining-or-balking decisions strategically, whereas naive customers do not

have such information and rely on online rating information to make such de-

cisions. We demonstrate that under certain conditions a service provider can

increase its profitability by simply ‘dancing’ its price, that is, replacing the static

pricing strategy with a cyclic high-low pricing strategy. The success of this strat-

egy relies on two key conditions: the potential market size is large enough so that

congestion is a key concern in the service system and the rating provides the aver-

age price and average utility information. We also show that when customers are

loss averse and the rating serves as a reference point for them, the loss aversion

behavior dilutes the effectiveness of cyclic pricing strategy. Finally we show that
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the cyclic pricing strategy is never socially optimal.

In the second topic, we incorporate new understandings of customer behav-

ior with their equilibrium queueing decisions in health care service context. We

investigate the patient’ doctor shopping behavior when they seek diagnostic ser-

vice. When a patient’ belief about her health status is inconsistent with a doctor’s

diagnosis, cognitive dissonance may arise. The patient may seek more doctoral

opinions to mitigate such dissonance without referrals, that is, the patient is

engaged in doctor shopping. We derive the patient’ optimal “doctor shopping”

stopping time by adopting the simple ‘one-stage look-ahead’ rule and Bayesian

updating. We show that a patient stops the doctor shopping process whenever

two successive diagnostic results are consistent with each other. Doctor shopping

always results in a highly system congestion. Interestingly, we find that the pa-

tients’ doctor shopping may not necessarily undermine the social welfare. Doctor

shopping improves patients’ psychological gains. Doctor shopping shall always be

tolerated when the accuracy of the diagnosis is not very high. When the accuracy

of the diagnosis is high, doctor shopping may be also tolerated if the policy maker

cares about the patients’ psychological gains.
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Chapter 1

Introduction

The advance of information technology in the past decade has fundamentally

changed how we communicate and consume. Meanwhile, it has revolutionized

the ways organizations relate to the marketplace, creating a new world of possi-

bilities and challenges for all aspects of the enterprise (Aral et al. 2013). For ex-

ample, the prosperous of the Internet forums, such as word-of-mouth websites like

Yelp.com and Dianping.com, and social media, have allowed customers to easily

share their consumption experiences through posting reviews and ratings. This

buyer-generated contend has become a new peer-to-peer channel for customers

to obtain service-related information. According to the latest global report on

www.pwc.com,1.1 78% of respondents say that social media has influenced their

purchase decisions.

Knowing the value of buyer-generated information, some retailers resort to fo-

rum manipulation to boost sales. Even though some researchers, such as Mayzlin

et al. (2014), Dellarocas (2006), Mayzlin (2006), suggest that forum manipulation

does not necessarily lead to less informative ratings and reviews, it raises con-

cerns of the customers and causes ethical and legal issues. The concerns of the

customers spurs the emergence of websites like www.fakespot.com, which help

customers to spot dodgy product reviews/ratings. From the perspective of online

retailing platforms, protecting customer welfare matters not only the images of

the platforms, but also their prosperity. Two online retailing giants, US-based

1.1The information can be accessed at https://www.pwc.com/gx/en/industries/

retail-consumer/global-total-retail/global-key-findings.html.
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Amazon and China-based Alibaba, have promised to fight against forum manip-

ulation.

However, we shall demonstrate that a service firm can rip off uninformed

customers by utilizing the rating information without raising legal and ethical

issues. It can strategically manage the ratings by simply “dancing” its price, that

is, replace the static pricing strategy with a cyclic pricing strategy. Towards this

end, in Chapter 2, we consider a monopoly service provider serving two types of

customers who are heterogeneous in information access, namely, sophisticated and

naive customers. Sophisticated customers are aware of service-related information

such as service rate and service reward, and they make strategic decisions by

taking into consideration the joining-and-balking decisions made by others. Naive

customers, however, do not have such service-related information, so they rely on

buyer-generated information to make the decisions; they join if price is not higher

than the average rating and balk otherwise.

We propose a cyclic pricing strategy for the service provider to strategically

manage buyer-generated information and to generate high profit with the service

facilities. The cyclic pricing strategy requires that the congestion effect plays a

profound role; otherwise, it does not work. One extreme case is the goods market,

in which delay is not an issue and how much a customer enjoys a goods item is

determined merely by her idiosyncratic features. Moreover, the cyclic pricing

strategy is never socially optimal.

Other than the challenges led by the advance of technology, new understand-

ings of the customer behavior is also challenging how the service facilities shall

be managed. Conventional service operations research treats customers as the

passive receiving end. This thinking has helped us to understand the process of

most categories of services we encounter in daily life. However, under certain

circumstances, customers are joint decision makers, along with the providers. A

typical situation is medical consultation, which is a kind of credence service ren-

dered by experts. Customers, i.e., patients, have little knowledge about their

needs, and hence cannot assess the quality of the service they received. On the
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other hand, they usually have biased opinions on their own situation, and are con-

stantly found visiting multiple medical practitioners during a single illness episode

without referrals, namely, engaging in doctor shopping behavior (Kasteler et al.

1976).

Despite that doctor shopping behavior is widely observed in numerous health

care systems, most medical practitioners believe that doctor shopping causes un-

necessary and repetitive consultations and tests and shall be avoided on cost

ground. In Chapter 3, we investigate the dynamics of doctor shopping behavior

and its effect on the health care system. We consider a stream of patients facing

with a similar set of symptoms but having different illness perceptions. An indi-

vidual’s illness perception measures her prior belief about on what probability she

is sick; it is generally not consistent with the doctor’s belief (which is consistent

with reality). Both the doctor and the patient update their beliefs according to

Bayes rule upon obtaining a diagnostic result. The doctor decides whether to

dismiss a patient or send her to further treatment; the patient decides whether

to follow the doctor’s advice or seek a second opinion.

We show that whether a patient seeks the service and how many visits a

patient pays in one illness episode are jointly determined by her own illness per-

ception, the costs associated with each visit and the doctor’s diagnosis quality

(that is, the degree of accuracy). Whenever two successive diagnostic results

are consistent with each other, the patient stops doctor shopping. Moreover,

although repetitive diagnoses (due to patients’ doctor shopping) help little in

improving the objective reward of the diagnostic service, it may patients’ psy-

chological gains. A welfare-maximizing social planner, when taking into account

patients’ psychological gains, shall tolerate a certain level of doctor shopping.

3
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Chapter 2

Dancing Service Price When
Customers Queue with Rating
Information

2.1 Introduction

When customers seek service, they make their joining-or-balking decisions based

on the information they have access to. Customers have varying accesses to

information; some are aware of service-related information such as service quality

and service rate, whereas others are not. Instead of making blind decisions,

customers who are not aware of service-related information often rely on buyer-

generated information, such as customer ratings and reviews online, to make their

decisions. In fact, buyer-generated information has reshaped customers’ habits.

Checking ratings/reviews before making consumption decisions has become a

ritual for many of today’s customers.

The cyclic pricing strategy is often adopted by service providers. For exam-

ple, in the US, many theme parks offer discounts from March to October, the

high tourist season.2.1 Similarly, many tourist cities of China offers discounts on

entrance fees to some tourist destinations from July to September. For example,

in 2018, the tourism bureau of Guizhou province, China, published advertisement

on several portal websites announcing that a 50% discount would be offered to

tourists to several popular tourist destinations in the province.2.2

2.1See https://www.moneysavingexpert.com/deals/cheap-theme-parks/#longleat.
2.2See, for example http://www.sohu.com/a/236603031_395859.

5

https://www.moneysavingexpert.com/deals/cheap-theme-parks/#longleat
http://www.sohu.com/a/236603031_395859


In this work, we will demonstrate that, the cyclic pricing strategy, together

with rating-dependent customers, can achieve a higher profit than the static pric-

ing strategy. To illustrate the mechanism behind this, we consider a monopoly

service provider serving two types of customers who are heterogeneous in informa-

tion access, namely, sophisticated and naive customers. Sophisticated customers

are aware of service-related information, such as service rate and service reward,

and they make strategic decisions by taking into consideration the joining-and-

balking decisions made by others. Naive customers are those one-time shoppers,

and they do not have such service-related information. They rely on buyer-

generated information to make the decisions; they join if price is not higher than

the average rating and balk otherwise. For example, local residents often know

the food quality (service reward) and the probable waiting times of their nearby

restaurants, whereas tourists generally do not know such information, and they

have to rely on reviews/ratings posted on websites such as Dianping.com and

Yelp.com to decide whether to join.

The proportion of each type of customer, that is, the customer type compo-

sition parameter, is known to the service provider. For example, according to a

report on Variety.com,2.3 local visitors account for 39% of the total attendance

at Hong Kong Disneyland, while tourists (mainland Chinese and international)

comprise the other 61% (41% and 20%, respectively, for mainland Chinese and

international visitors). The interaction between the service provider and cus-

tomers is modeled as an M/M/1 queue. The queue length is unobservable to

the customers. In the main part, we assume that customers, after obtaining the

service, posts a rating equal to her consumption utility (service reward less the

waiting cost). The average rating on consumption utility is then advertised to

future arriving customers (we assume that incoming customers do not realize the

whole history of rating information). We also extend our study to other infor-

mation scenarios where the server reveals the average rating on the net utility

(consumption utility less the price) and the average price to incoming customers.

2.3The details can be found at http://variety.com/2016/biz/asia/

hong-kong-disneyland-in-loss-1201706466/.
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We illustrate that the mechanism still works in the second information scenario.

We show that the optimal pricing strategy, if is cyclic, must be of high-low

type: sophisticated customers join during the high-price phase and obtain a net

utility of zero, while naive customers join during the low-price phase and obtain

a negative utility. Recall that a customer’s consumption utility is determined

by the congestion level of the system. The system is less congested during the

high-price phase; hence, the ratings on consumption utility are higher. Ratings

from both sophisticated and naive customers are averaged, and the average rating

is advertised to incoming customers. The service provider just needs to charge a

price equal to the average rating to lure naive customers into joining, which turns

out to be higher than their expected consumption utility. In short, the high-

price phase uplifts the average rating, which then allows the service provider to

rip off naive customers during the low-price phase. Numerical studies show that

the profit increment brought about by cyclic pricing is around 5%. Maybe this

incremental amount is not regarded as high, but it could be particularly important

for entertainment parks like Hong Kong Disneyland that are struggling to break

even financially.2.4

The intriguing thing about this mechanism of improving profit with cyclic

pricing is that it fully assumes honest feedbacks from customers who have expe-

rienced the service, without any distortion of their ratings. This feature makes it

easy to be implemented, without worrying about the ethical issues. It is worth

mentioning that the adoption of the cyclic pricing strategy requires the potential

market size to be above a certain threshold value so that congestion is a signifi-

cant factor affecting customers’ patronizing decision. A customer’s consumption

utility is affected by the congestion of the system, which, in turn, is determined

by effective arrival rates controlled by the prices. When the potential arrival rate

is small, or the service capacity is very large, the congestion effect does not play

a profound role. Thus, the aforementioned cyclic-pricing mechanism does not

work; instead, static pricing is preferred. One extreme case is the goods mar-

2.4Please refer to http://www.scmp.com/news/hong-kong/economy/article/2133962/

hong-kong-disneyland-falls-further-red-losses-double-2017-hit for the details.
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ket, in which delay is not an issue, and in which how much a customer enjoys a

goods item is determined merely by her idiosyncratic features. In such a case,

our ‘dancing price’ strategy does not work.

In the extension part, we consider another information scenario where cus-

tomers post ratings on their net utility, namely consumption utility less the price.

The extra condition for cyclic pricing strategy to work is that the average price

shall be provided to incoming customers. If this is the case, the incoming customer

can still nail down the rating on the consumption utility if their utility function is

linear, and hence the above cyclic pricing mechanism still works. However, if cus-

tomers’ utility function is nonlinear, cyclic pricing still works in some situations

but its effect is dampened.

We consider a typical situation for non-linear customer utility where customers

are loss averse: they treat the rating information as their reference points, and

their feeling of loss when their actual experienced quality is below this reference

point is stronger than the equal-sized gain when their experienced quality is higher

than the reference point. Such behavior results in a kinked utility function, which

is nonlinear. We extend our analysis to this case and numerically show that such

loss-averse behavior reduces the effectiveness of the cyclic pricing strategy: the

more loss-averse customers are, the less effective the cyclic pricing strategy is.

This is because that as the server rips off the naive customers by revealing only

aggregate rating information, those customers may feel a big loss after finding

out that the actual quality is much lower than the rating and hence will likely

post a very low score online. Hence, when managers consider the cyclic pricing

and using the average rating strategy to boost their profit, they shall take into

considerations of the system’s congestion level and whether customers are loss

averse or not.

Finally, we examine whether cyclic pricing strategy is socially desired; that

is, whether it can maximize the sum of service provider’s profit and customers’

surplus. In the classic queueing literature with unobservable queues and identical

customers, all customer surplus is internalized through pricing and goes to the
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service provider. Therefore, welfare- and profit-maximization are equivalent; see

Hassin and Haviv (2003). However, in our model, customers differ on information

access. We show that the welfare-maximizing pricing strategy is always static and

hence a high-low cyclic pricing strategy is never socially optimal. The key rational

behind is that cyclic pricing strategy allows the firm to rip off naive customers

because when they are lured to join the system by the rating information, they

do not consider the negative externality of their joining behavior on others and

the system is too congested, causing welfare loss. In fact, we show that, when

the cyclic pricing strategy is adopted, naive customers always obtain a negative

expected utility during the low-price phase, which renders that the profit of the

service provider is higher than the social welfare it offers. Welfare-maximization

prefers even workloads across the time periods, whereas high-low pricing brings

about uneven workloads. In most cases, the system is heavily congested during

the low-price phase and underutilized during the high-price phase. Interestingly,

in certain situations where the market size is not large while at least half of the

population is sophisticated customers, welfare loss is caused by underutilization

during both phases.

The remainder of this chapter is organized as follows. In Section 2.2, we

review the related literature. We introduce basic assumptions and the model

setup in Section 2.3. In Section 2.4, we analyze the provider’s optimal pricing

strategies. We compare the pricing strategies and equilibrium outcomes of the

pricing strategies in Section 2.5. Moreover, we check the performance of the

cyclic pricing strategy under the scenario that customers are reference-dependent

in Section 2.6. Section 2.7 concludes this chapter. All the proofs are relegated to

the online Appendix.

2.2 Literature Review

Our work belongs to the stream of study on customers’ strategic queueing be-

havior and the provider’s information disclosure. Pioneering work on this can

be traced back to Naor (1969), who studies the equilibrium joining strategies
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of customers under observable queues and proposes regulating the demand rate

by imposing fees or tolls. Edleson and Hildebrand (1975) extend the analysis

to an unobservable M/M/1 queue. Many studies have been conducted along

these lines since then; see Hassin and Haviv (2003) and Hassin (2016) for the

comprehensive surveys of studies in this field. In the following, we shall review

the most closely related works, which we classify into the following three streams

of research: information disclosure in queues, customers’ bounded rationality in

making queueing decisions, and service pricing.

Studies concerning information disclosure in queues can be further classified

according to information content: waiting time, service reward, and service rate.

A number of papers consider whether queue length information should be released

for free, including Hassin (1986), Whitt (1999), Armony and Maglaras (2004),

Dobson and Pinker (2006), Guo and Zipkin (2007), Allon et al. (2011) and some

others. Another group of studies considers offering customers the choice of paying

a fee to inspect queue length, including Hassin and Haviv (1994), Hassin and

Roet-Green (2011, 2013). All these papers assume that customers are strategic

and that they have the same access to the service information. In our work,

however, only a proportion of customers are aware of such information; others

simply follow the online rating information.

Our model is closely related to the work of Hu et al. (2017), who consider

the effect of customer information heterogeneity on waiting time. In their model,

some customers are informed of a real-time delay (informed customers) and oth-

ers (uninformed customers) make their joining/balking decisions based on past

experiences. They find that a certain level of information heterogeneity leads to

more efficient outcomes. Similar to Hu et al. (2017), we consider customers’ in-

formation heterogeneity. In our model, a proportion of customers (sophisticated

customers) are aware of service-related information such as service reward and

service rate, whereas others (naive customers) do not have such information. Dif-

ferent from Hu et al. (2017), the queue length under our setting is unobservable

to both types of customers. We find that a profit-maximizing provider can make

10



higher profits by taking advantage of information heterogeneity, but it never leads

to higher social welfare.

A second stream of literature on information disclosure in queues considers

imperfect service reward information; these studies include Veeraraghavan and

Debo (2009, 2011), Debo et al. (2012), and Guo et al. (2015). The study by

Veeraraghavan and Debo (2009) shows how information externalities due to con-

gestion affect customers’ choice between two servers. In their model, customers

have private information about service quality and queue length. They find that

information externalities lead to cycles during which one server is thriving and

the other is not. Veeraraghavan and Debo (2011) study the herding behavior of

customers choosing between two congested services with unknown service qual-

ities in which customers observe an imperfect private signal on service qualities

and queue lengths before making their choices. They characterize the equilibrium

joining behavior and the extent of customer learning from the queue information.

Debo et al. (2012) examine customers’ queueing strategy when the service reward

is known only by a proportion of customers, and find that uninformed customers

adopt a “hole” strategy, i.e., they balk when the queue is at a certain length

(called the “hole”) and behave the same as informed customers otherwise. Guo

et al. (2015) examine two competing servers with unknown qualities. They show

that under certain conditions, the low-quality server has a higher incentive to

reveal queue length. In contrast to these models in which customers are always

strategic, only a portion of customers in our model are strategic, with others

being naive.

A third stream of work on information disclosure in queues focuses on the

information about service rate and arrival rate, including Guo et al. (2011), Debo

and Veeraraghavan (2014), Cui and Veeraraghavan (2014), and Afeche and Ata

(2011). Guo et al. (2011) and Debo and Veeraraghavan (2014) assume that

customers do not know the service rate but have information on its distribution.

Cui and Veeraraghavan (2014) consider “blind queues”, in which customers only

know some vague information on service rate. Afeche and Ata (2011) propose the
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“learning-and-earning” problem where customers are classified into patient and

impatient customers but the proportion of each type is unknown.

Our work is related to studies on the bounded rationality of customers, in-

cluding Huang et al. (2013), Huang and Chen (2015), and Li et al. (2016). In

these studies, customers make their decisions without fully assessing service qual-

ity and waiting time due to limited cognitive ability or a lack of opportunities.

Huang et al. (2013) demonstrate that strategically taking advantage of the cus-

tomer bounded rationality may lead to significant increases in both revenue and

social welfare. Li et al. (2016) consider customer-intensive services and find that

revenue-maximizing firms do not always exploit customers’ bounded rational-

ity and may leave positive net utility to customers under certain circumstances.

Huang and Chen (2015) consider anecdotal reasoning customers, who rely on a

limited sample to make queueing decisions. They find that with anecdotal reason-

ing, customers are less price-sensitive, and that revenue and welfare maximization

lead to different pricing strategies. Similar to these models, the naive customers

in our model are boundedly rational. However, customers in our system consist

of both sophisticated and naive customers, whereas most of the above studies

just consider a single type of customers.

Our model is also related to the pricing strategy for service facilities. Dewan

and Mendelson (1990) first propose a joint optimization of capacity and pricing.

Stidham (1992) shows that even for a simple M/M/1 system, the joint pricing

and capacity problems have multiple local optima. Numerous studies on capacity

investment and admission control have been conducted; see Stidham (2009) for

a comprehensive review.

In addition, much research has been conducted on vacation queueing systems,

in which a service shuts down when no customers are present and resumes when

the queue reaches a critical length (Guo and Hassin 2011, 2012, Guo and Li

2013, Guo and Zhang 2013, Wang and Li 2008, Zhang et al. 2013, Economou et

al. 2011). Similar to these vacation queueing systems, the system in our study

oscillates between high- and low-arrival states when the provider adopts a cyclic
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pricing strategy.

Lastly, our model relates to the research on consumer ratings/reviews. Nu-

merous researches have explored how rating and review information can affect a

firm’s pricing and information disclosure strategies in the retailing business, and

what information a potential consumer is likely to gain from this buyer-generated

information. Two of these works are closely relevant to our own work. The first

is Crapis et al. (2016), which analyzes the social learning mechanism and its ef-

fect on a seller’s pricing decision. In their model, customers, after consumption,

rate the product as either “like” or “dislike”; later-arriving customers observe

the rating profile (the proportion of “like” and “dislike”) and infer how much

they are likely to enjoy the product. They compare two pricing strategies– a

static price and one with a single price change– and suggest that pricing policies

that account for social learning may increase revenues. The second is Shin and

Zeevi (2017), which studies a fluid model and investigates a monopolist’s opti-

mal dynamic pricing strategy over a finite horizon. In both models, customers

have private information on their preferences, and the demand function evolves

in conjunction with the review profile/dynamics. As far as we know, our work is

one of the first works on customer ratings in the context of service/queueing.

2.3 Model Setup and Preliminaries

Consider a monopoly service provider (he) whose service times are i.i.d and ex-

ponentially distributed with rate µ. Potential customers arrive according to a

Poisson process with rate Λ. Once served, a customer (she) receives a service

reward R, and incurs a price p and a waiting cost that is proportional to her

waiting time in the system (the sum of the waiting time in the queue and the

service time) with a unit-time cost c. Those customers who have joined the

queue form an arrival process with rate λ(p), which is called the effective arrival

rate. The service system can hence be modeled as an M/M/1 queue, and the

waiting time W is an exponential random variable with parameter µ− λ(p), i.e.,

W ∼ exp(µ− λ(p)). Clearly, E(W ) = 1/(µ− λ(p)).
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There are two types of customers: θ proportion of them are sophisticated

and have the knowledge about the service rate µ and the service reward R; the

rest 1 − θ proportion are naive and do not have such information, representing

those one-time customers. For example, local residents generally are aware of

service-related information such as the probable waiting times and food quality

of a restaurant whereas tourists have no such information. We assume that

the customer type composition parameter θ is common knowledge. Denote the

potential market size, i.e., the potential arrival rates, of sophisticated and naive

customers by Λs and Λn, respectively. Then,

Λs = θΛ and Λn = (1− θ)Λ.

For the pricing strategy, we consider a general cyclic pricing strategy. The

time horizon is divided into periods with length T . Each period is divided into N

phases indexed by i. The price in phase i is denoted as pi and the corresponding

phase length is denoted as Tpi . The general cyclic pricing strategy p can be

captured by a finite sequence of N combinations of prices pi and the phase length

that price pi continues for (Tpi), i.e., p = {(pi, Tpi)|i = 1, 2, ...N}. Clearly, T =∑i=N
i=1 Tpi . When N = 1, the cyclic pricing strategy degenerates into a static one.

We assume that the cycle length T is long enough compared to the expected

waiting time such that the time of the transient process to the steady states is

negligible in each pricing circle. For example, for typical service providers on

yelp.com, such as restaurants, dentists and optometrists, the waiting time per

service episode is normally no more than 1 hour, whereas the cyclic length is one

month (Yelp.com displays a “Monthly Trend”, which shows the average rating of

each month). Hence, the transient process within each pricing circle is negligible.

The service provider decides on his pricing policy p to maximize his long-run

average profit per unit of time as follows:

max
p

Π =
1

T

[
N∑
i=1

piλ(pi)Tpi

]
,

where λ(pi) is the effective arrival rate of customers when the service provider

charges a price pi, which includes both naive and sophisticated customers. This
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objective function is in principle equivalent to maximizing the “profit rate” as

in the queueing literature (see, for example, the comprehensive review of Hassin

and Haviv (2003)), where the provider’s objective is generally to maximize pλ(p),

where λ(p) is an arrival rate. Define Lpi as follows:

Lpi =
Tpi
T
.

In other words, Lpi represents the proportion of time the price pi is charged by the

service provider in a cycle. Then, we can rewrite the provider’s long-run average

profit as

max
p

Π =
N∑
i=1

piλ(pi)Lpi .

2.3.1 Average Rating and Equilibrium Arrival Rates

After the service, each customer, regardless of her type, honestly rates her con-

sumption utility, R− cw, where w is the actual waiting time she has experienced.

Ratings accumulate over time and the average rating on the consumption utility

is advertised to incoming customers by the server. Customers are also informed

about the current period price upon arrival. By simply comparing the average

rating on the consumption utility with the posted current-period price, naive

customers decide to join or not.

As our goal is to illustrate the effect of cyclic pricing in the long run, we directly

consider the performance of the system during the stable states and ignore the

transient process leading up to them. Given a pricing strategy p = {(pi, Tpi)|i =

1, 2, ...N}, the average rating converges to a constant number in the long run, and

is a function of p, which we denote as η(p). The online Appendix B illustrates

such a convergence process if customers adopt exponential smoothing to aggregate

all ratings. Here, we shall not expand our discussion on this as it is not our focus.

Instead, we directly move on to solve the long-run performance; that is, for a

given pricing strategy p, the average rating η(p) and equilibrium arrival rates

in each phase λ(pi)’s, i = 1, 2, ...N , can be obtained through solving multiple

equations. Given arrival rates λ(pi)’s, we can determine the average rating η(p);
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given the average rating η(p), we can derive the equilibrium arrival rates in each

phase. Below, we illustrate these two steps in details.

Step 1: Determine the average rating η(p) given arrival rates.

η(p) is determined by customers’ queueing behavior through the whole pricing

cycle, and can be written as

η(p) :=

∑i=N
i=1 v(pi)λ(pi)Tpi∑i=N

i=1 λ(pi)Tpi
=

∑i=N
i=1 v(pi)λ(pi)Lpi∑i=N

i=1 λ(pi)Lpi
, (2.1)

where

v(pi) := R− cE[W (pi)] = R− c

µ− λ(pi)
(2.2)

is the expected consumption utility of a customer who joins at price pi.

Step 2: Determine arrival rates given average rating η(p).

A customer arriving during phase i observes the current price pi and the av-

erage rating η(p). She then makes the joining-or-balking decision to maximize

her utility. Denote δn(pi) and δs(pi) as the joining decisions of the naive and

sophisticated customers, respectively, when faced with the price pi.

As naive customers do not have information about service-related parameters

R and µ, they are incapable of anticipating their expected utility. Instead, they

rely on the online rating information to decide whether to join or to balk. A

naive customer joins if pi ≤ η(p) and balks otherwise. Note that the assumption

of customer joining when pi = η(p) (the break-even case) is not critical, as the

service provider can always reduce the price by an infinitesimal amount to lure

naive customers to join in practice. The joining decision of a naive customer is

hence captured by a binary variable:

δn(pi) =

{
1, if pi ≤ η(p)

0, if pi > η(p)
. (2.3)

As all naive customers have the same information access, they all join (δn(pi) = 1)

or all balk (δn(pi) = 0). Note that this scenario is different from the no-

information case referred to in some queueing strategy literature (see Guo and

Zipkin (2007)). There, the queue is unobservable but customers still know other

information about the system, such as potential arrival and service rates; thus,
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uninformed customers can still make a strategic queueing decision, that is, by

adopting a mixed-strategy in joining. Here, the herding behavior of naive cus-

tomers results from lacking information. The system capacity is assumed to be

large enough such that when naive customers join collectively, their expected

consumption utility is non-negative i.e., R− c
µ−(1−θ)Λ ≥ 0.

Sophisticated customers are strategic in making their queueing decisions.

They choose a joining probability δs(pi) to maximize their expected utility

R − cE[W (pi)] − pi, in which they also take naive customers’ joining decision

δn(pi) into consideration:

U(pi) = max {R− cE[W (pi)]− pi, 0} = max

{
R− c

µ− λ(pi)
− pi, 0

}
, (2.4)

where the effective arrival rate is

λ(pi) = δs(pi)Λs + δn(pi)Λn. (2.5)

Clearly, if the potential market size is large enough, δs(pi) in equilibrium simply

solves the equation

R− c

µ− λ(pi)
− pi = 0.

We thus have the following proposition regarding the joining/balking decisions of

the two types of customers.

Proposition 2.1 Given that the service provider charges a price pi ∈ p, the

equilibrium arrival rates are as follows.

1. If pi > η(p), naive customers all balk, i.e., δn(pi) = 0. Only

sophisticated customers join, and they join with probability δs(pi) =

min
{

1
Λs

(
µ− c

R−pi

)
, 1
}

. The effective arrival rate is λ(pi) =

min
{
µ− c

R−pi ,Λs

}
.

2. If pi ≤ η(p), all the naive customers join, i.e., δn(pi) = 1, whereas sophisti-

cated customers’ joining probability is determined by the magnitude of η(p)

and Vn:
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I. if η(p) ≥ Vn and Vn ≤ pi ≤ η(p), all the sophisticated customers balk,

i.e., δs(pi) = 0. The effective arrival rate is λ(pi) = Λn = (1− θ)Λ;

II. otherwise, sophisticated customers join with probability

δs(pi) = min

{
1

Λs

(
µ− Λn −

c

R− pi

)
, 1

}
.

The effective arrival rate is λ(pi) = min
{
µ− c

R−pi ,Λ
}

.

Proposition 2.1 implies that naive customers join only when the price is not high

(pi ≤ η(p)). Sophisticated customers, however, always choose a positive joining

probability, except that the price falls into an intermediate range of Vn ≤ pi ≤

η(p) provided that η(p) ≥ Vn, because in this case naive customers all join, and

they gain a non-positive expected utility, as the price charged is higher than their

expected consumption utility Vn.

2.3.2 A Benchmark Case: θ = 1

Before proceeding with the detailed analysis, we first introduce a benchmark case

where all the customers are sophisticated, i.e., θ = 1. This case has been widely

studied in the literature on customers’ strategic queueing behavior (see Chapter 3

of Hassin and Haviv (2003)). Here, we briefly review the result of this traditional

setting where the queue length is unobservable.

Consider a monopoly service provider, modeled as an M/M/1 queue, who

decides on his profit-maximizing price p. As customers are all strategic, the

effective arrival rate λ must solve R− p− c/(µ− λ) = 0. The profit-maximizing

provider’s problem is to maximize pλ, subject to 0 ≤ λ ≤ Λ and R−p−c/(µ−λ) =

0. It can be easily shown that the optimal price

p∗ =

{
pb := R−

√
cR
µ
, if Λ > µ−

√
cµ
R
,

R− c
µ−Λ

, otherwise.
(2.6)

For ease of notation, denote

λb := µ−
√
cµ

R
. (2.7)
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That is, when all the customers are strategic, if Λ ≤ λb, it is optimal to admit

all the customers into the system; if Λ > λb, some customers balk, and the

equilibrium effective arrival rate is λb. Note that under this benchmark setting,

the optimal decision of a profit-maximizing provider is the same as that of a

welfare-maximizing provider.

2.4 Optimal Pricing Decision

In this section, we first present the results on welfare maximization, then show the

results about profit maximization and finally compare the system performance

under these two scenarios. For the purpose of easy notations, let

Vs := R− c

µ− Λs

and Vn := R− c

µ− Λn

.

Note that Vs (Vn, respectively) represents the expected consumption utility when

only the sophisticated (naive, respectively) customers join the service system.

2.4.1 Welfare Maximization

Anticipating the customers’ joining decisions stated in Proposition 2.1, the service

provider decides his optimal pricing strategy p = {(pi, Tpi)|i = 1, 2, ..., N}. For a

welfare-maximizing service provider, the price transfer between the customer and

the provider is internalized. Maximizing the long-run average social welfare is

equivalent to maximizing the expected total consumption utility given as follows:

max
p
SW =

∑
pi∈p

v(pi)λ(pi)Lpi (2.8)

s.t.
N∑
i=1

Lpi = 1, Lpi ≥ 0,

where λ(pi) is obtained from Proposition 2.1, and v(pi) is given in (2.2).

For ease of notation, let

Λ =
λb

max{(1− θ), θ}
, Λ =

λb
min{(1− θ), θ}

,

and

Λ̂ =
1

2θ(1− θ)

(
µ−

√
µ
[
µ− 4θ(1− θ)

(
µ− c

R

)])
.
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It can be easily shown that Λ and Λ̂ increase (decrease, respectively) in θ while Λ

decreases (increases, respectively) in θ when θ < 1
2

(θ ≥ 1
2
, respectively). Then,

we have the following proposition.

Proposition 2.2 The welfare-maximizing pricing strategy is static, i.e., N = 1.

1. When Λ < Λ < Λ and θ < 1
2
, the optimal price is as follows:

(a) If Λ < Λ ≤ Λ̂, p∗sw = Vn = R − c
µ−(1−θ)Λ . All naive customers join

while all sophisticated customers balk, that is, δs = 0 and δn = 1;

(b) If Λ̂ < Λ < Λ, p∗sw = Vs = R − c
µ−θΛ . All sophisticated customers join

while all naive customers balk, i.e., δs = 1 and δn = 0.

2. Otherwise, the service provider always sets the price equal to that under the

benchmark case in which all customers are sophisticated, that is, p∗sw = p∗,

where p∗ is given by (2.6). In particular,

(a) If Λ ≤ λb = µ −
√

cµ
R

, p∗sw = R − c
µ−Λ

. Both naive and sophisticated

customers join, i.e., δs = δn = 1;

(b) If λb < Λ ≤ Λ, or if Λ < Λ < Λ and 1
2
≤ θ < 1, p∗sw = R −

√
cR
µ

.

Naive customers all join, i.e., δn = 1, whereas sophisticated customers

join with probability δs = λb−Λn
Λs

;

(c) If Λ ≥ Λ, p∗sw = R −
√

cR
µ

. Naive customers all balk, i.e., δn = 0,

whereas sophisticated customers join with probability δs = λb
Λs

.

Proposition 2.2 shows how market conditions affect the market equilibrium

under welfare maximization (see Figure 2.1). If the potential market size is either

small (Λ ≤ Λ) or large (Λ ≥ Λ), the welfare-maximizing provider charges a price

that is the same as when all customers are sophisticated; naive customers are

served when Λ ≤ Λ, while only sophisticated customers are served when Λ ≥ Λ.

When the potential market size is in an intermediate range (Λ < Λ < Λ), the

customer type composition parameter θ plays a critical role in the provider’s

admission strategy. If θ ≥ 0.5, the provider admits all naive customers into the
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Figure 2.1: Equilibrium Pricing and Customer Joining Behavior under the Wel-
fare Maximization: R = 40, c = 180, µ = 12

system since the potential market size of naive customers is small, i.e., Λn < λb.

However, when θ < 0.5, the potential market size of naive customers is larger

than (whereas that of sophisticated customers is smaller than) what the welfare-

maximizing provider desires; that is, Λs < λb < Λn. As naive customers join

or balk collectively, the welfare-maximizing provider can serve only one type of

customers. Specifically, the provider serves only naive customers when Λ < Λ < Λ̂

and only sophisticated customers when Λ̂ < Λ < Λ.

To summarize, Proposition 2.2 implies that the service provider serves all

the customers when the potential market size is small (Λ ≤ λb), and ideally, if

possible, serves λb customers by taking into consideration the herding behavior

of the naive customers.

Figure 2.2 shows how the potential market size Λ and the customer type

composition parameter θ affect both social welfare and optimal price. The solid

line and the dashed line correspond to the cases θ = 0.4 and θ = 0.5, respectively.

Figure 2.2(a) confirms that social welfare increases in the potential market size

Λ when Λ is small, and reaches its peak at Λ = λb, the socially-desired arrival

rate. A further increase of Λ harms social welfare when θ < 0.5 and Λ < Λ < Λ

due to naive customers’ herding behavior, which makes the effective arrival rate

λb = 4.65 unachievable. Figure 2.2(b) shows that the optimal price decreases in

Λ when it is smaller than what is socially desired (Λ ≤ λb = 4.65), and remains
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Figure 2.2: Social Welfare and Optimal Price under the Welfare Maximization:
R = 40, c = 180, µ = 12

unchanged when the potential market size Λ is beyond the socially desired λb as

long as λb is achievable. Note that when θ = 0.4 and Λ = 7.7 < Λ < 11.6 = Λ,

λb = 4.65 cannot be achieved. Figure 2.2(b) shows that in this range, the optimal

price first decreases, then jumps up at Λ̂ = 9.2 and then decreases again as the

market size Λ increases. This is due to the switch from serving naive customers

only to serving sophisticated customers only.

2.4.2 Profit Maximization

The optimization problem of the profit-maximizing provider is very similar to

that of the welfare-maximizing provider, except that v(pi)’s are replaced by pi’s

in the objective function. Thus, his optimization problem is given as follows:

max
p

Π =
∑
pi∈p

piλ(pi)Lpi

s.t.
N∑
i=1

Lpi = 1, Lpi ≥ 0,

where λ(pi) is also obtained from Proposition 2.1. We obtain the following result:

Proposition 2.3 The profit-maximizing pricing strategy satisfies the following

properties.

1. There exists a threshold Λ̃ on the potential market size above which the cyclic

pricing strategy is preferred by the service provider, while below which the
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static pricing strategy makes the service provider better off and he behaves

exactly like that under welfare maximization.

2. The optimal cyclic pricing strategy is high-low cyclic, which can be simply

denoted as p = {(ph, L), (pl, 1−L)} where ph and pl represent the high and

low price, respectively, and L represents the proportion of time the high price

remains. Under the optimal cyclic pricing strategy, sophisticated customers

join during the high-price phase and naive ones join during the low-price

phase.

3. The optimal low price satisfies p∗l = η(p), and the other two decision vari-

ables, (p∗h, L
∗), are given as follows.

I. If θ < 1
2

and Λ̃ < Λ < Λ̈ (Λ̈ is given by (A.35)), p∗h = Vs and L∗ = Lb,

where Lb solves (A.34). Here, δs = δn = 1.

II. If θ < 1
2

and Λ ≥ Λ̈, or if θ ≥ 1
2

and Λ > Λ̃, p∗h = p0
h > Vs and L∗ = L0,

where (p0
h, L

0) solves (A.28) and (A.36) simultaneously. Moreover,

δs < 1 and δn = 1.

The detailed expressions of (A.28), (A.34), (A.35) and (A.36) can be found

in the online Appendix. Moreover, p∗h > R−
√

cR
µ

.
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Figure 2.3: Equilibrium Pricing and Customer Joining Behavior under the Profit
Maximization: R = 40, c = 180, µ = 12

Proposition 2.3 shows that only when the potential market size Λ is above a

certain value will the cyclic pricing strategy be preferred by the service provider
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over the static pricing strategy (see Figure 2.3). As illustrated in Figure 2.3, at the

left side of the red line Λ = Λ̃, the profit-maximizing provider adopts exactly the

same static pricing strategy as the welfare-maximizing provider does (see Figure

2.1); while at the right side of the red line, the cyclic pricing strategy is adopted.

Under the optimal cyclic pricing, sophisticated customers join only within the

high-price phase and they obtain a net utility of zero; naive customers join only

within the low-price phase and their expected consumption utility is Vn. Since

the optimal low price p∗l equals the long-run average rating and is higher than Vn,

naive customers’ net utility, Vn−p∗l , is always negative. Therefore, although naive

customers are offered a lower price, the price is not low enough to guarantee a

non-negative utility. This overcharging is possible due to higher ratings generated

from sophisticated customers, which boost up the average rating. Figure 2.3 also

shows that Λ̃ increases with θ, the proportion of sophisticated customers in the

market. That is, when the market comprises a larger proportion of sophisticated

customers, static pricing is favored.

To thoroughly understand the mechanism underlying the profit gain, we now

turn to the comparison between the static and cyclic pricing strategies. Under

a static pricing strategy, all customer surplus is internalized through pricing and

goes towards the service provider’s profit; thus, maximizing profit is the same as

maximizing welfare. The classic pricing literature in queueing systems has shown

that the objective function of a profit-maximizing service provider is concave in

the effective arrival rate, and that λb is the best demand level that a monopoly

provider should maintain whenever it is achievable. According to Proposition

2.2, the optimal arrival rate λb can be achieved under the static pricing strategy

when more than half of the customers are sophisticated (θ ≥ 0.5). One might

believe that the average arrival rate under the cyclic pricing strategy should be

equal to this one and, therefore, if the demand rate during the high-price phase

is smaller than λb, the one in the low-price phase should be larger than λb. Does

this belief hold water? The following corollary provides a different answer.

Corollary 2.1 When θ ≥ 0.5 and Λ̃ < Λ < Λ, the effective arrival rates under
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the optimal cyclic prices are always less than that under the static one, specifically,

λ(p∗h) < λ(p∗l ) < λ(p∗sw).

Corollary 2.1 shows that, under the cyclic pricing strategy, a service provider may

deliberately serve a number of customers less than λb during both low- and high-

price phases and achieve a higher profit. Why not lower both high and low prices

to attract more customers? Why does the original price and demand tradeoff not

work here? A closer investigation of the cyclic pricing strategy reveals that the

server cannot do that. During the low-price phase, naive customers all join and

obtain a negative expected utility. Sophisticated customers know that and hence,

they will never join then. Therefore, demand cannot be increased by lowering the

price unless naive customers can obtain a non-negative expected utility. During

the high-price phase, demand can be increased by lowering the price; however,

this results in more congestion, which will reduce the ratings on consumption

utility and jeopardize the strategy of ripping off naive customers during the low-

price phase. Consequently, due to a higher profit margin from ripping off naive

customers, the original price-demand tradeoff is twisted, and fewer customers are

served in both phases.
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Figure 2.4: Profit Performance between Cyclic Pricing and Static Pricing: R =
40, c = 180, µ = 12, Λ̃ = 7.62 when θ = 0.4 and Λ̃ = 8.66 when θ = 0.5

Next, we numerically examine the benefit brought about by the cyclic pricing

strategy. Let the customer type composition parameter θ change from 0.3875 to

0.6125 with a step length 0.0125. For each given θ, we vary the potential market
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size Λ to find the highest profit increment brought about by the cyclic pricing

strategy over the static one. The aggregated numerical results show that the

highest increment amount is around 5.19% on average but can reach as high as

11.22%. See Figure 2.4 for an illustration of the results when θ = 0.4 and θ = 0.5,

respectively.
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Figure 2.5: Optimal Pricing Strategy under Profit Maximization: R = 40, c =
180, µ = 12, Λ̃ = 7.62 when θ = 0.4 and Λ̃ = 8.66 when θ = 0.5

We also numerically investigate how market size affects the optimal cyclic

pricing strategy; see Figure 2.5. Figures 2.5(a) and 2.5(b) depict the optimal

high and low prices when the customer type composition parameter θ equals 0.4

and 0.5, respectively. They show that for a given customer type composition

parameter, both optimal prices decrease in the potential market size Λ. For the

sake of comparison, we also plot the optimal static price (that is, the welfare-

maximizing price) with a black dashed line in both Figures 2.5(a) and 2.5(b). We
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find that under both cases, when the market size is not large, both high and low

prices adopted in the cyclic pricing strategy are larger than the static one. This

observation implies that the conclusion in Corollary 2.1 might be generally true

for a small size market and not necessarily just restricted to the case of θ ≥ 0.5,

but we are unable to prove this for the general case. Figure 2.5(c) shows that

L∗, the proportion of time that the high price shall be charged, increases in the

potential market size Λ. That is, as Λ increases, the service provider charges the

high price for a longer time.

2.5 Comparison between Profit Maximization

and Welfare Maximization

So far, we have derived the service provider’s optimal pricing strategies under

both welfare and profit maximization. Recall that the profit-maximizing provider

behaves exactly as a welfare-maximizing provider when the potential market size

Λ is below the threshold Λ̃ (see Proposition 2.3). Thus, the system performances

under these two objectives are the same when Λ ≤ Λ̃. Hereafter, we focus on

comparing the system performance under these two objectives when Λ > Λ̃, that

is, when the service provider adopts static pricing under welfare maximization

but cyclic pricing under profit maximization. We examine how the cyclic pricing

strategy affects the system’s welfare. We define welfare loss of the system under

profit maximization as

SW∗ − SWpm

SW∗
,

where SWpm denotes the social welfare under the optimal cyclic pricing strategy.

SWpm is given as follows:

SWpm = v(p∗h)λ(p∗h)L
∗ + VnΛn(1− L∗) = p∗hλ(p∗h)L

∗ + VnΛn(1− L∗),

where p∗h and L∗ are the optimal high price and the corresponding proportion of

time the high price remains under the cyclic pricing strategy, respectively.

Figure 2.6 illustrates the impact of market condition on welfare loss when the

customer type composition parameter θ = 0.4, 0.5. An interesting observation
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Figure 2.6: Optimal Cyclic Pricing Strategy’s Social Efficiency: R = 40, c = 180,
µ = 12, Λ̃ = 7.62 when θ = 0.4 and Λ̃ = 8.66 when θ = 0.5

is that welfare loss is not monotone in the market size. For the case of θ =

0.4, the optimal pricing strategy is cyclic only when the potential market size

Λ > Λ̃ = 7.62. Starting from Λ = 7.62, the welfare loss first increases, then

decreases and finally increases again in Λ. Specifically, when Λ falls into the

range between Λ̃ = 7.62 and Λ̂ = 9.19, the welfare loss first increases, then

decreases and reaches 0 at Λ = Λ̂ = 9.19. In this range, the welfare maximization

requires that only naive customers be served, and the socially optimal price is

p∗sw = Vn. Thus, the maximal social welfare is SW∗ = VnΛn. However, under

the cyclic pricing strategy, only sophisticated customers are served at the high

price p∗h = Vs (see Case I of Proposition 2.3), and all naive customers are served

at the low price. Therefore, the difference in welfare only occurs during the

high-price phase. In short, when Λ ∈ [7.62, 9.19), the welfare loss is caused by

underutilization of the system during the high-price phase, due to the fact that

the number of sophisticated customers is less than that of naive customers. Such

welfare loss can be expressed as

SW∗ − SWpm

SW∗
=

(VnΛn − VsΛs)

VnΛn

· L∗. (2.9)

We can see that welfare loss is the product of two terms, VnΛn−VsΛs
VnΛn

and L∗. We

now consider the impact of marker size on these two terms. One can check that

VnΛn − VsΛs

VnΛn

= 1− θ

1− θ
· Vs
Vn
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is decreasing in Λ. As the market size increases, the number of sophisticated cus-

tomers increases proportionally and the underutilization effect is reduced. Mean-

while, L∗ is increasing in Λ, because the proportion of high-price phase must be

lengthened to balance the negative reviews from an increased number of naive

customers. When Λ is very small, the second effect (the increasing monotonicity

of L∗) dominates, and as Λ further increases, the first effect (the diminishing effect

of underutilization) dominates. These two effects jointly drive the product term

in (2.9) to first increase and then decrease in Λ. Note that when Λ = Λ̂ = 9.19,

VnΛn = VsΛs. Hence, the welfare loss stated in (2.9) becomes 0. For the range

Λ ≥ Λ̂ = 9.19, welfare maximization requires that only sophisticated customers

should be served, whereas cyclic pricing admits all naive customers during the

low-price phase. This indicates that when Λ > 9.19, the welfare loss is mainly

caused by over-utilization of the system during the low-price phase. As the po-

tential market size increases, welfare loss becomes larger due to the increased

over-crowdedness of the system.

When θ = 0.5, the cyclic pricing strategy is adopted by the profit-maximizing

provider when the potential market size Λ ≥ Λ̃ = 8.66. Figure 2.6 shows that

when Λ ≥ 8.66, welfare loss first decreases and then increases, reaching the min-

imum at Λ = Λ = 9.30. This observation can be explained as follows. According

to Proposition 2.2, when θ ≥ 0.5, the socially optimal price is p∗sw = p(λb), where

λb is the socially desirable effective arrival rate defined in (2.7). Also, according

to Case II of proposition 2.3, the optimal high price satisfies p∗h > p(λb). Hence,

under profit maximization, compared with what is socially desirable, the system

is always under-utilized during the high-price phase. In addition, the provider

always serves all the naive customers during the low-price phase. When Λ is

small such that Λn < λb, the system is also under-utilized during the low-price

phase. This observation is also consistent with the conclusion in Corollary 2.1:

cyclic pricing could cause underutilization in both phases. It contradicts our con-

ventional belief that welfare loss caused by cyclic pricing is due to the uneven

workloads in the two phases– the underutilization in the high-price phase and
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over-utilization in the low-price phase. Thus, when Λn < λb, increasing Λ re-

duces the effect of underutilization and thus, mitigates welfare loss. Welfare loss

reaches its minimum when Λn = λb, i.e., Λ = Λ = 9.30. When Λn > λb, the

system is over-utilized during the low-price phase. In this range, increasing Λ

further increases the level of crowdedness and thus, enlarges the welfare loss.

Recall that welfare is the sum of server’s profit and all customers’ utilities.

The price becomes internal transfer between the two parties and hence does not

appear on the welfare expression. Only the amount of served customers and

each customer’s consumption utility matter in determining the social welfare.

Tradeoff between the amount of served customers and consumption utility per

customer determines an optimal congestion level. The foregoing analysis shows

that welfare loss is mainly caused by the uneven workloads during two phases

— over-congestion during the low-price phase and underutilization during the

high-price phase. However, in a situation where the market size is not large

and sophisticated customers comprise not less than half of the population, cyclic

pricing can cause underutilization in both phases, also resulting in welfare loss.

In the latter case, two few customers are served, which is also not socially desired.

2.6 Extension: Ratings on Net Utility

In this section, we consider another information scenario where customers rate

on the net utility R − cw − p rather than the consumption utility R − cw; in

other words, they take price into consideration in their rating. If only such rating

information is available, incoming customers cannot differentiate whether a low

score is caused by high congestion or a high price, and hence naive customers

cannot make a correct decision on joining; our cyclic pricing strategy does not

work in this pure rating over net utility case. In practice, websites, such as

dianping.com, allow a customer to have ratings on multiple classified items such

as experience, dining and cost-effectiveness, which make it possible for incoming

customers to infer the consumption utility from such classified ratings. Below we

examine such a case with both the rating over net utility and the average price
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revealed to customers.

If customers’ utility function is linear, incoming customers can infer the ex-

pected consumption utility by simply adding the rating score on the expected net

utility with the average price. To see this equivalence, let η′(p) be the average

rating on the net utility. Then,

η′(p) =

∑i=N
i=1 (v(pi)− pi)λ(pi)Lpi∑i=N

i=1 λ(pi)Lpi

=

∑i=N
i=1 v(pi)λ(pi)Lpi∑i=N

i=1 λ(pi)Lpi
−
∑i=N

i=1 piλ(pi)Lpi∑i=N
i=1 λ(pi)Lpi

= η(p)− p̄.

Consequently, incoming customers can still obtain the average rating on the con-

sumption utility by adding the average rating on the net utility η′(p) with the

average price p̄, and all the rationales with the scenario of rating over the con-

sumption utility hold here.

One rationale for the cyclic pricing to generate a higher profit is that, even

though naive customers are unsatisfied with service and post low scores, the over-

all ratings can still be uplifted by high ratings posted by sophisticated customers.

Clearly, this mechanism requires an underlying assumption that these naive cus-

tomers are one-time customers, not returned customers. Another situation which

could dampen the effect of cyclic pricing is that customers take the average rat-

ing as their reference point when joining and compare their experience with this

reference point: if the experienced quality is higher than the rating, they feel a

gain and otherwise they feel a loss. Furthermore, behavior literature often assume

that customers are loss averse, i.e., losses are more painful than equal-sized gains

being pleasant; see, e.g., Baron et al. (2015). We now extend our study to such

loss-averse customers, with the overall utility of a customer can be expressed as

the sum of her original net utility and the gain-loss utility.

Specifically, for two components of the customers utility function, namely the

net utility term measured by R − cw and monetary term measured by the price

p, customers obtain a gain-loss utility along both dimensions by comparing their

actual outcomes with the reference points on the two dimensions. A customer
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determines her joining decision based on the information she has access to upon

observing that the current price is pi (i = h, l for the cyclic pricing strategy, and

the subscript shall be left out for the static pricing strategy). Denote the joining

probability as δs and δn, for sophisticated and naive customers, respectively.

The gain-loss utility function with loss-averse customers can be formulated as

follows, following Baron et al. (2015). Denote k = (kv, kp) as the two dimensional

outcomes with kv measures the consumption utility and kp measures the price.

The actual consumption outcome can be either (V (pi),−pi) when a customer joins

or (0, 0) when the customer balks. Denote r = (rv, rp) ∈ {(V̂ (pi),−pi), (0, 0)} as

their reference point. Due to different information accesses, the reference points

for sophisticated and naive customers are different; that is, V̂ (pi) is different for

the two types of customers, which will be discussed shortly. The gain-loss utility

for an outcome k by comparing with a reference point r is given as

vgl(k|r) = (kv − rv)+ + α(kv − rv)− + (kp − rp)+ + α(kp − rp)−, (2.10)

where x+ = max{x, 0} and x− = min{x, 0}. The parameter α > 1 measures

the degree of loss-averse behavior. The range α > 1 implies that the customer

feels losses being more painful than the equal-sized gain being pleasant. The

term (kv − rv)+ measures the gain due to the consumption utility being larger

than the reference point on that; the term α(kv − rv)− measures the loss due

to the consumption utility being less than the reference point on that. Similar

interpretations hold for the two terms on the price dimension: (kp − rp)+ and

α(kp − rp)−. The overall utility of a consumption outcome k conditional on a

reference point r is the sum of actual net utility and the gain-loss utility, i.e.,

u(k|r) = kv + kp + vgl(k|r).

Clearly, this utility function with loss-averse customers is no longer linear in the

price and consumption utility. It is kinked at the reference point. Furthermore,

as the reference points are endogenous, the overall function form is not even

piecewise linear.

For sophisticated customers, they adopt a mixed strategy to join or to balk;
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that is, they choose to join in probability δs and balk in probability 1 − δs.

Since they know service related information R and µ, their reference point on

the consumption utility is fully endogenized as their rational expectations of the

outcomes. That is, sophisticated customers reference point on the consumption

utility, V̂ (pi), is stochastically equivalent to the actual outcome V (pi), and they

follow the same distribution. The expected utilities of a sophisticated customer,

to choose to join and to balk, are respectively given as follows:

U(join) = δsE[u((V (pi),−pi)|(V̂ (pi),−pi))] + (1− δs)E[u((V (pi),−pi)|(0, 0))],

U(balk) = δsE[u((0, 0)|(V̂ (pi),−pi))] + (1− δs)E[u((0, 0)|(0, 0))].

The detailed expressions for U(join) and U(balk) can be derived following Yang

et al. (2018) and the equilibrium joining probability can be obtained by solving

equation U(join) = U(balk). For example, note that V (pi) = R − cw and w

is drawn from an exponential waiting time distribution with rate µ − λ(pi), the

expectation

E[u((V (pi),−pi)|(V̂ (pi),−pi))] = R− c

µ− λ(pi)

α + 1

2
− pi.

For naive customers, as they do not have information on system performances,

still they sum over the average rating over the overall utility with the average price

to obtain a gain-loss based consumption utility, and they compare this rating score

with the current price to determine whether or not to join. After the service, they

also post a rating on their overall feeling, i.e., the sum of their net utility and the

gain-loss utility. As naive customers have no other information besides ratings

when they arrive, we can naturally assume that their reference points are such

rating score, i.e., V̂ (pi) = η′(p) and rp = p̄. Therefore, a naive customer’s ex

post utility is given as u((R− cw,−pi)|(η′(p),−p̄)). As different customers have

different ex-post utility, the average one posted by them is the expectation of

their ex-post utility, i.e.,

E[u((R− cw,−pi)|(η′(p),−p̄))]

= (1 + α)

(
R− c

µ− λ(pi)

)
− 2pi + p̄− αη′(p)
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+(α− 1)
c

µ− λ(pi)
e−(µ−λ(pi))

R−η′(p)
c

After analyzing the joining decisions and the ratings of the two types of cus-

tomers, we move on to numerical studies of the optimal decision of both cyclic

and static pricing strategy of the service. Figure 2.7 illustrates the performance

of the cyclic pricing strategy in comparison to the static pricing strategy given

that θ = 0.4. Figure 2.7(a) shows the case with α = 1.2. We observe that the

cyclic pricing strategy is more profitable than the static pricing strategy if the

potential market size satisfies Λ ≥ 6.4. When α = 1.5, which is shown in Figure

2.7(b), the preferred interval is shrank into (6.50, 9.00). As α increases to 1.8

and 2.0, the preferred range is further shrank into (6.80, 8.00) and (7.00, 7.80),

respectively; see Figures 2.7(c) & 2.7(d), respectively. Clearly, as α increases,

the size of the preferred range is reduced and hence cyclic pricing strategy is less

likely to be chosen by the provider. We observe similar phenomena by changing

parameter θ.

Why is the cyclic pricing strategy less preferred when customers are more loss

averse (α is larger)? When customers become more loss averse, naive customers

suffer from a larger loss if they find that their actual experienced utility is below

the rating and hence will likely post a very low score. The average rating will

likely be lowered down, making the cyclic pricing strategy less attractive for the

server. Therefore, when a server considers to adopt cyclic pricing strategy, he

shall take customers’ behavior into consideration: the strategy does not work if

customers are very loss averse.

2.7 Conclusion

In this chapter, we consider a typical service situation where customers are het-

erogeneous in information accesses: some customers know the service-related in-

formation, whereas others do not; the latter relies on buyer-generated information

to make their queueing decisions. We demonstrate that a cyclic pricing strategy

can be used to improve the profitability of a service provider without distorting

customers’ ratings. Under the optimal high-low cyclic pricing strategy, sophisti-
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(b) α = 1.5
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(c) α = 1.8
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(d) α = 2.0

Figure 2.7: The Profit of the Cyclic Pricing Strategy When Customers are Loss-
Averse: R = 40, c = 180, µ = 12, θ = 0.4
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cated customers join at the high price and naive customers join at the low price.

During the high-price phase, the system is less congested, and the ratings are

relatively high, which boosts the average rating and allows the provider to charge

a price higher than naive customers’ expected consumption utility during the

low-price phase. The interesting part is that, even though naive customers feel

unsatisfied and post low scores after consumption, the average rating can still be

maintained by getting high rating scores in the high-price phase, which allows

the server to obtain a higher profit than that under a static pricing strategy.

The validity of this strategy requires the potential market size to be above

a certain threshold value such that congestion is a significant factor in affecting

customers’ joining decision. We further extend the analysis to the non-linear

utility case. Specifically, we consider that naive customers treat historical rating

as their reference point and compare their actual experienced utility with this

benchmark value. They feel a loss if the experienced utility is below the rating

and a gain if otherwise; furthermore, the loss is more painful than an equal-size

gain being pleasant. We find that such reference-dependent and loss-aversion

behavior dilute the attractiveness of cyclic pricing strategy; the more loss averse

customers are, the less attractive the cyclic pricing is.

We also show that although the cyclic pricing strategy can improve profitabil-

ity, it harms social welfare. Welfare maximization prefers even workloads across

periods, and hence prefers the static pricing strategy. However, the system can be

either over- or under-utilized under the cyclic pricing strategy, leading to welfare

loss.

Our study’s main takeaway is to show that, even without manipulating cus-

tomer ratings, a service provider can still rip off uninformed customers by imple-

menting a cyclic pricing strategy and advertising the average rating to incoming

customers. Nevertheless, the limit of this mechanism heavily depends on the con-

gestion of the system and the degree of customers’ loss-averse behavior. From

the viewpoint of these naive customers, they shall take in the aggregated rating

information with caution: when the products are service goods, an average rat-
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ing in the past does not mean that they can get the same consumption utility if

they join. How to protect naive customers’ welfare remains to be an interesting

research question.
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Chapter 3

Modeling Patients’ Illness
Perception and Equilibrium
Analysis of the Doctor Shopping
Behavior

3.1 Introduction

Patients often cannot assess the quality of the health care service, a kind of cre-

dence service offered by experts (i.e., doctors) (Pac and Veeraraghavan 2010).

As patients lack the knowledge or expertise to judge the doctor’s diagnosis or

treatment plan, they may actively seek opinions from multiple doctors during a

single illness episode without referrals; that is, patients engage in doctor shop-

ping (Kasteler et al. 1976). Field studies reveal that doctor shopping is quite

common. For example, the prevalence of doctor shopping was nearly 40% in

the government out-patient departments in Hong Kong (Lo et al. 1994), 18%

in Canada (Macpherson et al. 2001), 23% in Japan (Sato et al. 1995) and 48%

among high-income families in the United States (Kasteler et al. 1976).

The reasons for doctor shopping include patient dissatisfaction with or distrust

of the doctor (Billinghurst and Whitfield 1993, Guo et al 2002, Harris 2003) and

a lesser understanding of doctors’ explanations and disbelief of diagnosis and

treatment (Sato et al. 1995). The patients’ doctor shopping incentive is also

affected by the factors related with the health care system such as the waiting

time, the charged fees and the reputation of the doctor (Billinghurst and Whitfield
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1993, Yeung et al. 2004, Leung et al. 2006, Lo et al. 1994). Patients often hold

prior beliefs about their own medical conditions; that is, they have their illness

perceptions (Petrie et al. 2007). When a doctor’s diagnosis contradicts a patient’s

belief, a patient may encounter cognitive dissonance; he/she may further seeks

second opinion from another doctor (Donkin et al. 2006, Hagihara et al. 2005).

Undoubtedly, in a diagnostic healthcare system, patients’ doctor shopping

results in repeated consultations and examinations, which increases the doctor

workload. Most medical practitioners believe that patients’ doctor shopping be-

havior should be controlled (Katon et al. 1992). Does patients’ doctor shopping

really hurt the system’s performance? This requires us to conduct a thorough

analysis of the implications of patients’ doctor shopping. Specifically, we aim to

analytically examine the patient’s doctor shopping behavior and its impact on

the diagnostic healthcare system by addressing the following research questions

that have not been investigated in the existing literature:

• How does the patients’ illness perception affect their doctor shopping deci-

sion?

• How does the patients’ doctor shopping behavior affect the diagnostic

healthcare system’s performance in terms of the waiting time, the effec-

tive arrival rate and the social welfare?

• Understanding the effects brought by the patients’ doctor shopping behav-

ior, what measures can the social planner take to prohibit such shopping

(seeking multi-doctors’ diagnostic opinions) behavior?

To tackle the above questions, we consider a public diagnostic healthcare

system facing a stream of delay-sensitive patients. Patients exhibit the similar

symptoms but hold their own illness perceptions. A patient’s illness perception

measures her belief about the likelihood she is sick, which, however, is necessarily

an indicator of her physical status (Petrie et al. 2007). The doctor, based on the

diagnostic result, decides whether to dismiss a patient or refer her for further

treatment. The patient then decides whether to take the doctor’s advice or seek
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a second opinion from another doctor. In each visit, the patient incurs a fixed

copayment charge, which, however, does not fully cover the cost of the public

diagnostic service. A patient decides whether to further seek doctors’ opinions

by adopting the One-Stage Look-Ahead rule. We show that whether a patient

seeks the service and how many visits a patient pays in one illness episode are

jointly determined by her own illness perception, the costs associated with each

visit and the doctor’s diagnosis quality (that is, the degree of accuracy). We show

that whenever two successive diagnostic results are consistent with each other,

the patient stops doctor shopping. We show that increasing the per-visit copay-

ment fee can be an effective means to mitigate patients’ doctor shopping and

thus reduce the system congestion. When the copayment charge is high enough,

no patients can afford doctor shopping. Although repetitive diagnoses (due to

patients’ doctor shopping) help little in improving the objective reward of the

diagnostic service, it may patients’ psychological gains. A welfare-maximizing

social planner, when taking into account patients’ psychological gains, shall tol-

erate a certain level of doctor shopping.

The remainder of this chapter is organized as follows. Section 3.2 reviews the

related literature. Model setup is discussed in Section 3.3. In Section 3.4, we

analyze the patients’s doctor shopping behavior by taking into account the cost

associated with their visits. In Section 3.5, we investigate the impact of patient

doctor shopping on the system performance. Concluding remarks are provided

in Section 3.6. All the proofs are relegated to the appendix.

3.2 Literature Review

This study is related to the stream of the research that investigates the accuracy-

congestion trade-off in diagnostic systems (Hasija et al. 2005, Wang et al. 2010,

de Vericourt and Sun 2009, Alizamir et al. 2013). Hasija et al. (2005) examine

the optimal staffing levels and referral rates. They utilize a gatekeeper model

that incorporates staffing, customer waiting times and mistreatment costs so as

to minimize total costs. Wang et al. (2010) study patient behaviors in a call
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center composed of triage nurses, where service is provided via telephone to help

patients choose the appropriate care based on their symptoms. They find that the

diagnostic accuracy affects the effective arrival to the call center and increasing

capacity may actually increase congestion. de Vericourt and Sun (2009) propose

several cognitive heuristics adapted to congestion. They find that simple fixed

threshold rules appears to be very robust and judgments based only on the most

relevant piece of information performs reasonably well. Alizamir et al. (2013)

consider a diagnostic process consisting of sequential tests. They study how

the service provider’s belief about a customer being positive affects its service

provision. In this chapter, we also consider diagnostic service. Different from the

aforementioned studies, we investigate patients’ service seeking decision in which

patients actively decide whether she should continue to seek more diagnosis or

not. Patients updates their beliefs of being positive upon observing the doctor’s

diagnosis.

Pac and Veeraraghavan (2010) consider a kind of diagnostic service where

the expert identifies the problem and prescribes the proper service to customers.

The expert may cheat the customer by prescribing a service more (over-provision)

or less (rationing) than she needs. They find that expert cheating is mitigated

when the system is constrained by capacity and congestion. Similar to this re-

search, we consider a diagnostic service which customers have no/little knowledge

about. However, we do not consider the moral hazard issue. Instead, we consider

customers’ doctor shopping behavior: customers may seek multiple episodes of

service due to their limited knowledge.

Our study is also related to the studies that consider the readmission reduc-

tion in the service provision systems (de Vericourt and Zhou 2005, Chan et al.

2011, 2014, Yom-Tov and Mandelbaum 2014, Guo et al. 2016). de Vericourt and

Zhou (2005) consider the routing issue in a call center with service failure. The

call resolution probability and the service time are service-provider dependent.

They investigate the optimal routing policy to minimize the average total time of

call resolution. Chan et al. (2011) study the impact of different discharge strate-
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gies on the total readmission load under uncertainty in a capacity-constrained

intensive care unit via empirical data. They also show that their index policy

for discharge is optimal in certain regimes. Chan et al. (2014) consider a state-

dependent queuing network where the provider may speed up service in order to

temporarily alleviate congestion. They identify scenarios where speedup should

not be used. Yom-Tov and Mandelbaum (2014) analyze a time-varying Erlang-

R queue that accommodates reentrant customers. Guo et al. (2016) consider

the readmission problem in a public healthcare system. They examine how the

two payment schemes, fee-for-service and bundled payment, affect the healthcare

provider service time decision and thus the readmission rate.

Patients’doctor shopping under our study is similar in spirit to readmission.

Both doctor shopping and readmission increase the workload of the service sys-

tem and exacerbate congestion. However, their fundamental driving forces are

different. In our model, a patient doctor-shops (i.e., reenters ) the diagnostic ser-

vice system due to her anxiety from dealing with conflicting information between

her belief and the doctor’s diagnosis, rather than due to the treatment failure

(Guo et al. (2016), Chan et al. (2014), Yom-Tov and Mandelbaum (2014)) or

the premature discharge (Chan et al. (2011)). We model the dynamics of how

patients updates their beliefs, and explain the inner incentives of the patients

engaging in doctor shopping.

Other related studies include Guo et al. (2014) and Qian et al. (2017). Guo

et al. (2014) investigate the Downs-Thomson paradox in the healthcare systems,

wherein improvements in the public facilities may not reduce congestion. Qian

et al. (2017) suggest that the public sector can cooperate with the private sec-

tor through some subsidy schemes; the cooperation can help avoid the Downs-

Thomson paradox and offer quick remedies to the excessive waiting without re-

quiring large investments.
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3.3 Model Setup

Consider a public diagnostic service system (he) that faces a stream of delay-

sensitive customers (she). A public healthcare system usually consists of mul-

tiple stations (i.e., hospitals and clinics) and each station consists of multiple

servers (i.e., doctors). These stations and servers are often under the supervision

of a common government department. For example, in Hong Kong, the Hospital

Authority manages all the public hospitals and clinics, and offers over 80% in-

patient service as of 2016 3.1. The Hospital Authority allocates resources under

“same service, same funding” principle 3.2. In China, all hospitals, regardless

of government-owned or privately-owned, are managed under a 3-grade 10-level

system by the National Health and Family Planning Commission; hospitals rated

at the same level are generally considered similar in their service quality. In our

model, we consider a public diagnostic service system that consists of the facil-

ities rated at the same level. Thus, hereafter, we use a representative service

provider/doctor to represent the system.

The doctor provides diagnostic service which determines the patients’ need

and offers medical advice rather than treatments. The service times are inde-

pendent and identically distributed exponential random variables with rate µ. A

stream of patients exhibiting the similar symptoms arrive to seek the diagnostic

service according to a Poisson process with an exogenous rate Λ. Λ represents

the potential demand rate of the patients. The doctor, based on the diagnostic

results, decides whether to dismiss the patient or recommend the patient to seek

further specific treatments. The patients are served based on the First-Come

First-Served rule.

The patient decides whether to take the doctor’s advise or to seek a second

opinion from another doctor by comparing the reward of stopping at the current

state with the expectation that can be achieved after paying another visit. Given

that a patient’s true type is i (i = 0, 1), she gains a value Vi (Vi > 0) if correctly

3.1Please refer to http://www.ha.org.hk/haho/ho/stat/HASR15_16.pdf, Section 1
3.2http://www.legco.gov.hk/yr13-14/english/panels/hs/papers/

hs0120cb2-671-5-e.pdf

44

http://www.ha.org.hk/haho/ho/stat/HASR15_16.pdf
http://www.legco.gov.hk/yr13-14/english/panels/hs/papers/hs0120cb2-671-5-e.pdf
http://www.legco.gov.hk/yr13-14/english/panels/hs/papers/hs0120cb2-671-5-e.pdf


identified, and suffers a loss Li if misidentified. In other words, each patient’s

decision is an optimal stopping problem, where a decision to terminate the visiting

process involves two scenarios: leaving reassured as healthy and leaving to seek

cure. Therefore, the optimal stopping set takes forms of

S = {α|0 < α ≤ α, α ≤ α < 1}. (3.1)

We derive α and α shortly. We interpret the stopping set twofold: first, if a patient

decides to join, she terminates the visiting process and follows the doctor’s advice

once her illness perception falls into the stopping set. Second, an individual whose

initial illness perception is in the stopping set will not join the diagnostic system.

For example, those whose illness perception fall below α usually do not feel the

need to see a doctor, while those whose illness perception lie above α will be too

assertive about being positive; they need neurologies more often than not.

3.3.1 Diagnostic Quality and Accuracy

Consider that each patient is one of the following two types (denoted by t):

positive/ill (t = 1) or negative/healthy (t = 0). The diagnosis, however, is not

perfect; it may produce false outcomes. Let s be the doctor’s diagnostic result

(signaling type s), where s = 1 indicates a positive diagnosis outcome while

s = 0 indicates a negative outcome. Depending on the patient’s true type t, the

diagnostic quality can be expressed as

Q =

[
q(s = 0|t = 0), q(s = 1|t = 0)
q(s = 0|t = 1), q(s = 1|t = 1)

]
.

where q(s = j|t = i) denotes the probability that a patient of type i is identified

as type j, i, j ∈ {0, 1}. For simplicity, let q(s = j|t = i) := qij. Note that when

i = j, the diagnostic result is correct. However, when i 6= j, the diagnosis is false;

the doctor either misidentifies a healthy patient (t = 0) to be sick (s = 1) or a

sick patient (t = 1) to be healthy (s = 0).

We assume that 0 < q10 ≤ q01 < 1
2
, or equivalently, 1

2
< q00 ≤ q11 < 1.

This assumption indicates that a false positive diagnosis is equally or more likely

to occur than a false negative diagnosis, which has been verified by the studies
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in several fields and adopted in the operations management literature; see, e.g.,

Alizamir et al. (2013). This assumption also ensures that the likelihood that

the diagnosis is correct is greater than 50%. We assume that the diagnostic

process, even though not perfect, is reliable enough for doctors to base their

recommendations on; that is, the doctor would recommend a patient further

medical treatments if a positive diagnostic outcome is observed but dismiss the

patient if the diagnosis outcome is negative.

Moreover, medical studies define the accuracy of a diagnosis as the percentage

of accurate diagnoses among all diagnoses; see, for example, a review of Linnet

(1994). Let α0 denote the prevalence of the disease; it measures the probability

of a patient being positive (or the base rate of type 1) among the patients with

the set of symptoms. We assume that α0 ∈ (α, α). We can express the accuracy

of the diagnosis as

Accuracy = q11α0 + q00(1− α0).

3.3.2 Patients’ Illness Perceptions and Decision Rules

Each patient holds an illness perception α towards her symptoms; it measures

the patient’s belief about on what probability that she is positive. Since patients

generally perceive the similar (or the same) medical condition differently, and they

hold different beliefs on their medical condition from doctors (Petrie et al. 2007),

it is reasonable to assume that a patient’s illness perception is not an indicator

of her physical status, or her true type. We assume that each α is independently

drawn from a uniform distribution, U(0, 1).

A patient’s illness perception evolves according to Bayes’ rule; a posterior

illness perception serves as the prior at the next visit. Denote g1(α) and g0(α) as

the (updated) illness perception of the patient after receiving a positive (s = 1)

and negative (s = 0) diagnostic result, respectively, given that her current illness

perception is α. Then,

g1(α) =
q11α

q11α + q01(1− α)
, (3.2)

g0(α) =
q10α

q10α + q00(1− α)
. (3.3)
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It can be easily shown that g1(α) and g0(α) are both increasing in α.

The patient pays a fee f (f ≥ 0) and incurs a waiting cost that is proportional

to her waiting time in the system W (from the time she makes an appointment to

the time she gets served) with a unit-time cost c associated with each visit. We

assume that the waiting time will not worsen the symptoms. W is an exponential

random variable with parameter µ−λ, i.e., W ∼ exp(µ−λ), where λ denotes the

effective arrival rate of the patients. Thus, the expected overall cost associated

with each patient visit is

Cp := E[f + cW ] = f + c/(µ− λ) := f + cw.

The effective arrival rate λ is an aggregated result of the patient population’s

joining-and-balking/stopping-and-continuing decisions. Denoting N as the visit-

ing times of a patient in one illness episode, λ is given as

λ = ΛE[N ]. (3.4)

We will derive E[N ] shortly. We assume that f and c are not very large so as

to ensure that some patients indeed join the diagnostic service system; that is,

λ > 0.

Consider a typical patient whose illness perception is α. Her stopping-and-

continuing decision is based on her (likely biased) present illness perception α. Let

r(α) denote the reward of stopping at state α. If she leaves and identifies herself

as negative (t = 0), her gain is (1− α)V0− αL1; otherwise, it is αV1− (1− α)L0.

Hence, r(α) is denoted as

r(α) = max{αV1 − (1− α)L0, (1− α)V0 − αL1},

which is equivalent to

r(α) =

{
(1− α)V0 − αL1 if α < α̂

αV1 − (1− α)L0 if α ≥ α̂
, (3.5)

where

α̂ :=
V0 + L0

V0 + V1 + L1 + L0

. (3.6)
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Cognitive hierarchy theory suggests that untrained individuals generally make

decisions based on limited depth of strategic thinking. For example, Camerer et

al. (2004) found that the average number of steps individuals look ahead is 1.5

for many games. Due to the reason of traceability, we assume that the patients’

stopping-and-continuing decision is based on the One-Step Look-Ahead (OSLA)

rule. In other words, a patient continues if and only if there is an advantage in

paying one more visit and then stopping; she applies the OSLA rule repeatedly at

successive states visited by the random process until it reaches the stopping set

S. Let v(α) denote her maximum expected reward net of costs. The optimality

equation based on the OSLA rule is simplified as follows:

v(α) = E [max {r(α),−(f + cW ) + p(s = 1|α)r(g1(α)) + p(s = 0|α)r(g0(α))}] ,

which leads to that a patient with illness perception α continues if and only if

r(α) < −Cp + p(s = 1|α)r(g1(α)) + p(s = 0|α)r(g0(α)), (3.7)

where p(s = 1|α) and p(s = 0|α) denote her illness perceptions upon obtaining a

positive (s = 1) and a negative (s = 0) diagnostic result, respectively. We have

p(s = 1|α) = q01(1− α) + q11α, (3.8)

p(s = 0|α) = q00(1− α) + q10α. (3.9)

Obviously, p(s = 1|α) + p(s = 0|α) = 1.

3.3.3 Classification of Patients

Since the diagnosis is reliable, if the patient’s current illness perception is the

same as the doctor’s belief, i.e., if α = α0, she would follow the doctor’s advice.

That is,

g0(α0) ≤ α and g1(α0) ≥ α.

Considering the continuity of g1(α) and g0(α), there exists a small interval [α0, α0]

around α0 (α0 ≤ α0 ≤ α0) such that if the patient’s current illness perception
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satisfies α ∈ [α0, α0], she will pay one visit and follow the doctor’s advice, where

g1(α0) = α and g0(α0) = α, respectively. It can be easily shown that

α0 =
αq01

αq01 + (1− α)q11

. (3.10)

α0 =
αq00

αq00 + (1− α)q10

, (3.11)

We call a patient whose illness perception falls within interval [α0, α0] a neutral

patient, whose illness perception falls in (α0, α) a pessimistic patient, and whose

illness perception falls in (α, α0) an optimistic patient. Obviously, a pessimistic

(optimistic, respectively) patient will leave the system immediately after a posi-

tive (negative, respectively) diagnostic result.

Figure 3.1: Illustration of Illness Perceptions

3.4 Patients’ Optimal Stopping Problem

In this section, we first investigate each individual patient’s optimal stopping

problem, and then the aggregated result of the patients’ optimal stopping prob-

lem. Now we derive the stopping set S.

Lemma 3.1 A sufficient condition of a patient paying a visit is that her illness

perception satisfies α < α̂ and g1(α) > α̂, or α > α̂ and g0(α) < α̂, where α̂ is

given by (3.6).

Based on Lemma 3.1, we obtain the following result.
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Proposition 3.1 The patients’ thresholds of continuing/stopping on the illness

perception are given as follows:

α =
q01(L0 + V0) + Cp

q11(L1 + V1) + q01(L0 + V0)
; (3.12)

α =
q00(L0 + V0)− Cp

q00(L0 + V0) + q10(L1 + V1)
. (3.13)

If the results of two successive diagnoses are consistent, any patient would termi-

nate the visiting process.

Proposition 3.1 shows that the patients’ optimal stopping-and-continuing de-

cision depends on the gain of being correctly identified (i.e., V1 and V0), the loss

of being misidentified (i.e., L0 and L1), the quality of the diagnosis Q, and her

expected cost associated with a visit Cp. In most occasions, V1, V0, L0 and L1 are

determined by the properties of the disease, which are unlikely to be changed;

the quality of the diagnosis Q is usually determined the available technology and

the qualification of the doctors, both of which are unlikely to be improved in the

short run. The only factor the policy maker can have some influence on is the

patient’s expected cost associated with a visit Cp. The higher Cp is, less patients

join, and hence less congestion.

The thresholds α and α determine the stopping set S. After obtaining the

thresholds, we investigate the behavior of the joining patients. We consider a

worst-case scenario, where an optimistic (pessimistic, respectively) patient firstly

obtains a negative (positive, respectively) result, and in the following visits, none

of any successive diagnoses consists with each other. We obtain the following

result.

Lemma 3.2 Provided that 1
2
< q00 < q11 < 1, we have the following three cases.

1. If

α(1− α)

α(1− α)
≥ q01

q11

, (3.14)

there is no doctor shopping patients, and all the visiting patients visit once.

Otherwise,
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2. If

q10

q00

≤ α(1− α)

α(1− α)
<
q01

q11

; (3.15)

there are neutral and optimistic patients, but no pessimistic patients; an

optimistic patient visits at most twice and a neural patient visits once;

3. If

α(1− α)

α(1− α)
<
q10

q00

, (3.16)

there are pessimistic, neutral, and optimistic patients. A pessimistic patient

(α0 < α < α) pays no more than 2n+ 1 visits whereas an optimistic patient

(α < α < α0) pays at most 2n + 2 visits, where n is an integer determined

by

n = min

{
j ≥ 0 :

α(1− α)

α(1− α)
≥
(
q10

q00

)k (
q11q10

q00q01

)j
, j ∈ Z

}
. (3.17)

where α is the individual’s illness perception and

k =

{
0 if α < α < α0

1 if α0 < α < α
.

Lemma 3.2 offers insights on how a patient’s illness perception evolves when

she faces contradicting information. It shows that an optimistic patient visits an

even number of times, and a pessimistic patient visits an odd number of times

under the worst-case scenario. We find that in the groups of pessimistic and

optimistic patients, the visit times of a patient under the worst-case scenario

is weakly increasing with her illness perception, respectively, and that the most

visiting times of the patients is determined by the discrepancy between α and α.

We can obtain from Lemma 3.2 that when q11 > q00, pessimistic and opti-

mistic patients can be further categorized into several sub-groups according to

their visiting times in the worst-case scenario. We can easily obtain through

simply algebra transformation of (3.17) that a pessimistic patient whose illness

perception falls into interval (α2n−1, α2n+1] pays at most 2n + 1 times, and that
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an optimistic patient whose illness perception falls into interval (α2n−2, α2n] pays

at most 2n times, where

α2n =
α

(1− α)
(
q11q10
q00q01

)n
+ α

, (3.18)

α2n+1 =
α

(1− α) q10
q00

(
q11q10
q00q01

)n
+ α

. (3.19)

We obtain the following result.

Proposition 3.2 When (3.14) is satisfied, the expected visiting times of a patient

is E[N ] = α− α; otherwise, if q00 = q11,

E[N ] =α− α +

(
1− q2

11

1− q11q10

α0 +
q00(2− q00)

1− q00q01

(1− α0)

)
(α− α0)

+

(
q11(2− q11)

1− q11q10

α0 +
1− q2

00

1− q00q01

(1− α0)

)
(α0 − α);

(3.20)

If q00 < q11, we have the following two cases.

1. When (3.15) is satisfied,

E[N ] = (α− α) + [α0q11 + (1− α0)q01](α0 − α). (3.21)

2. When (3.16) is satisfied,

E[N ] =α0

(
α + q11α0

)( 1 + q10

1− q11q10

− q10(1 + q11)

1− q11q10

(q11q10)m
)

+ α0(1 + q11)
m−1∑
i=0

(q11q10)i (α2i − q10α2i+1)

+ α0(1 + q11)(q11q10)mα2m

+ (1− α0)
(
α + q01α0

)( 1 + q00

1− q01q00

− q00(1 + q01)

1− q01q00

(q01q00)m
)

+ (1− α0)(1 + q01)
m−1∑
i=0

(q01q00)i (α2i − q00α2i+1)

+ (1− α0)(1 + q01)(q01q00)mα2m,

(3.22)

where m := maxn and n is defined by (3.17).

α0, α0, α, α, α2i, and α2i+1 are given by (3.10), (3.11), (3.12), (3.13), (3.18),

and (3.19), respectively.
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Proposition 3.2 shows that E[N ] is jointly given by α0, α0, α, α, α2i, α2i+1,

and the quality of the diagnosis Q, which is indexed by q11 and q00. Note that α0,

α2i, and α2i+1 are determined by α0 (see (3.11), (3.18), and (3.19), respectively),

and that α0 is determined by α (see (3.10)). Moreover, Proposition 3.1 shows that

α, and α are determined by Q and the cost associated with a visit Cp, whereas

Cp consists of a direct charge f and a waiting cost cw. The waiting cost cw is an

aggregated result of the patient population’s joining-and-balking/stopping-and-

continuing decisions; that is, it is determined by the effective arrival rate to the

system λ, where λ is given by (3.4). In a word, the joining-and-balking/stopping-

and-continuing decisions of the patients are determined by the quality of the

diagnosis Q, (or equivalently, by q11 and q00) in the end. Figure 3.2 shows how

the accuracy of the diagnosis affects the thresholds, including α, α, α0, and α0,

and the expected number of visits a patient pays during one illness episode E[N ].
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Figure 3.2: Thresholds and Expected Visiting Times of the Patients: V0 = V1 =
160, L1 = L0 = 80, µ = 3, Λ = 2, c = 15, q11 = q00, α0 = 0.50, f = 0

Figure 3.2(a) shows that as the accuracy of the diagnosis increases, α de-

creases, and α increases, indicating that more patients join the diagnostic sys-

tem. Meanwhile, α0 decreases, and α0 increases (except the region of α = α0

and α = α0), indicating that more patients tend to believe in the diagnosis.

Also noted that the discrepancy between α and α0, as well as that between

α and α0, widens as the accuracy of the diagnosis increases in the interval of

0.55 < Accuracy < 0.91, which indicates that more patients tend to doctor shop.
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As it continues increase to Accuracy > 0.91, α0 increases (α0 decreases, respec-

tively) faster than α (α, respectively). That is, when the accuracy of the diagnosis

is high, a further increase in diagnosis quality makes the patients less likely to

doctor shop.

Figure 3.2(b) shows that as the quality of the diagnosis increases, i.e., as the

accuracy of the diagnosis increases, the expected visiting time of the patients first

increases, and then decreases; it reaches the maximum around Accuracy = 0.91.

In the interval of 0.53 < Accuracy < 0.91, the increases in the accuracy of

the diagnosis leads to patients more likely to join and doctor shop, and hence

E[N ] increases. A further increase in the accuracy of the diagnosis when 0.91 <

Accuracy < 1, even though the probability of a patient joining increases, that of

a patient doctor shopping dramatically decreases, which leads to lower E[N ].

In the aforementioned works which give statistics about doctor shopping be-

havior, including Macpherson et al. (2001), Sato et al. (1995), Lo et al. (1994),

Kasteler et al. (1976), doctor shopping rate is given as the proportion of patients

who visit more than one doctor in one illness episode without referrals among all

surveyed patients. Following them, doctor shopping rate can be expressed as

DS Rate =
λ− (α− α)Λ

λ
.

Figure 3.3 shows the accuracy of the diagnosis affects the doctor shopping rate

and the effective arrival rate. We can see from Figure 3.3(a) that as the accuracy

of the diagnosis increases, the doctor shopping rate of the patients first steeply

increases, next slowly decreases, and then steeply decreases. Figure 3.3(a) also

compares the two scenarios, i.e., the symmetric diagnosis with q11 = q00 and the

asymmetric diagnosis q11 > q00. It shows that under the asymmetric diagnosis

the doctor shopping rate is slightly lower than under the symmetric diagnosis.

Because of this, the asymmetric diagnosis also leads to slightly lower effective

arrival rate, as shown in Figure 3.3(b).

In most occasions, the quality of the diagnosis Q is usually determined the

available technology and the qualification of the medical practitioners; V1, V0, L0

and L1 are determined by the properties of the disease. All of them are unlikely
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Figure 3.3: Doctor Shopping Rate and Effective Arrival Rate: V0 = V1 = 160,
L1 = L0 = 80, µ = 3, Λ = 2, c = 15, α0 = 0.50, f = 0

to be changed in the short run. The only manageable factor is the direct charge f ,

which regulates the effective arrival rate to the system via affecting the patient’s

expected cost associated with a visit Cp. The higher Cp is, the higher α is and

the lower α is; that is, lower effective arrival rate, and hence less congestion. The

following result demonstrates how the direct charge f affects the cost associated

with a visit Cp and the waiting cost cw.

Proposition 3.3 A lower direct charge f leads to decreased the total cost of the

patients associated with a visit Cp, which induces larger coverage of the system

and higher doctor shopping rate of the patients.

A higher direct charge f is associated with a decreased waiting cost cw. Propo-

sition 3.3 indicates that the effect of increasing the direct charge f dominates that

of decreased waiting cost cw. Due to this, a higher f leads to increased total cost

of the patients associated with a visit Cp. Figure 3.4(a) illustrates how cw changes

corresponding to f : as f increases, cw decreases due to less arrival; the decreas-

ing slope is less than −1, verifying that the effect of increasing the direct charge

f dominates that of decreased waiting cost cw. Moreover, the direct charge f

affects the workload of the system twofolds. On the one hand, higher f leads

to higher Cp, which results in lower coverage of the system (lower α and higher

α; see Proposition 3.1). On the other hand, a larger range of patients joins the

system indicates the joining patients visit more times in each illness episode on
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average; see Lemma 3.2. In other words, a higher f is associated with a lower

doctor shopping rate; see Figure 3.4(b). Hence, a higher f follows decreased

waiting cost of the patients and decreased waste caused by repetitive diagnoses.
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Figure 3.4: The Effect of The Direct Charge on Waiting Cost and Doctor Shop-
ping Rate: V0 = V1 = 160, L1 = L0 = 80, µ = 3, Λ = 2, c = 15, α0 = 0.50

Moreover, Figure 3.4(a) shows that with other conditions unchanged, the

waiting cost under the symmetric-error scenario, i.e., q11 = q00, is slightly higher

than that under the asymmetric-error scenario, i.e., q11 > q00, when 0 ≤ f ≤

22.5, and it is slightly lower than that under the asymmetric-error scenario when

22.5 < f ≤ 32.5. This is because the doctor shopping rate under the symmetric-

error scenario is higher when 0 ≤ f ≤ 22.5 and is lower when 22.5 < f ≤ 32.5.

Under the symmetric-error scenario, doctor shopping patients disappear when

f = 29.5, whereas under the asymmetric-error scenario, there are three types of

patients among all visiting patients when 0 ≤ f ≤ 22.5, two types of patients, i.e.,

optimistic and neutral, when 22.5 < f ≤ 32.5, and merely neutral patients when

f > 32.5. It leads to that the doctor shopping rate decreases slower under the

asymmetric-error scenario when 22.5 < f ≤ 32.5 than that under the symmetric-

error scenario. It results in a higher arrival rate under the asymmetric-error

scenario, and hence a higher waiting cost.
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3.5 The Effect of Doctor Shopping Behavior

Even though doctor shopping behavior of the patients is common and prevalent in

many health care system, in some countries/regions, such as the United Kingdom,

Singapore, and South Korea, there are well-functioned gatekeeper systems, and

referrals are required to see specialists in the public sector, which effectively

prevent doctor shopping behavior of the patients. In this section, we investigate

how doctor shopping of the patients affect the health care system and how the

policy maker shall respond to it.

The policy makers’ vision on the role of their health care system is a reflec-

tion of the nation’s values, politics, and economy. NHS (England), the England

health care supervision agent, “strongly believe in health and high quality care

for all”3.3, indicating that the English system aims for universal coverage, whereas

Hospital Authority (HA), the Hong Kong supervision agent, describes her version

as “committing ourselves to the health of our community” 3.4, which indicates

that the Hong Kong system stresses on maximizing social welfare.

Based on Proposition 3.1, we infer that in order to achieve universal coverage,

it requires a lowest possible Cp, patient cost associated with a visit. It partially

explains why the English system does not impose any direct charge and requires

referrals. In this section, we investigate how a welfare-maximizing policy maker

like HA shall respond to doctor shopping.

3.5.1 Doctor Shopping Behavior on the Overall Reward
and Congestion

In order to understand the effects of the patients’ doctor shopping behavior on

the health care system, we shall understand a benchmark case, i.e., the perfor-

mance of the system when doctor shopping is prohibited. Denote Ru
ds and Ru

as the service reward from the perspective of an unbiased observer when doctor

shopping is allowed and prohibited, respectively. Denote Rp
ds and Rp as the per-

3.3https://www.england.nhs.uk/about/about-nhs-england/
3.4http://www.ha.org.hk/visitor/ha_visitor_index.asp?Content_ID=10009&Lang=

ENG&Dimension=100&Parent_ID=10004
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ceived reward of the patients when doctor shopping is allowed and prohibited,

respectively. Hereafter, we refer to Ru and Ru
ds as objective rewards, and Rp and

Rp
ds as perceived rewards.

Under the scenario that doctor shopping is prohibited, each visiting patient

has to terminate the visiting process after the first visit. The visiting patient, re-

gardless of her individual illness perception, is diagnosed as positive and negative

with probabilities of p(s = 1|α0) and p(s = 0|α0), respectively, where p(s = 1|α)

and p(s = 0|α) are given by (3.8) and (3.9), respectively. Each patient gains a

reward of r(g1(α0)) (r(g1(α)), respectively) and r(g0(α0)) (r(g0(α)), respectively)

after the visit from the perspective of the unbiased observer (from the perspective

of the patient with illness perception α, respectively), provided that she obtains

a positive and negative result, respectively. Therefore,

Ru = [p(s = 1|α0)r(g1(α0)) + p(s = 0|α0)r(g0(α0))](α− α). (3.23)

Rp =

∫ α

α

[p(s = 1|α0)r(g1(α)) + p(s = 0|α0)r(g0(α))]dα. (3.24)

Following the same line of thoughts, we can obtain Ru
ds and Rp

ds. However, note

that the derivation of Ru
ds and Rp

ds requires an explicit knowledge on each individ-

ual’s optimal stopping problem; the detailed derivation of Ru
ds and Rp

ds is shown

in Appendix B.

Before we investigate how a welfare-maximizing policy maker shall respond to

doctor shopping, we need to understand how doctor shopping affect the health

care system, like the service rewards, the congestion of the system, and patients’

welfare. We start with how doctor shopping behavior affects the reward of the sys-

tem. We assume that only joining patients brings reward to the system whereas

balking ones do not. By looking into the perspective of an unbiased observer, we

obtain the following result.

Proposition 3.4 Given that the patients’ cost associated with a visit Cp stays

constant, when q11 = q00, doctor shopping always improves the objective reward,

and when q11 > q00 and α(1−α)
α(1−α)

≥ q10
q00

, doctor shopping improves the objective
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reward if

α0 <
q00q01(V0 + L0)

q00q01(V0 + L0) + q11q10(V1 + L1)
. (3.25)

Proposition 3.4 compares how doctor shopping affects the objective reward

when the patients’ cost associated with a visit Cp is given. It shows that allow-

ing doctor shopping leads to lower objective reward under certain circumstances.

For general cases, Cp is a result of the aggregated result of the patients’ joining

decisions; we conduct numerical experiment to show how doctor shopping behav-

ior affects both the objective and the perceived rewards when patients incur no

direct charge, which is illustrated by Figure 3.5.
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Figure 3.5: Doctor Shopping on Rewards: V1 = V0 = 160, L1 = L0 = 80, µ = 3,
Λ = 2, c = 15, f = 0

Figure 3.5(a) shows that when the accuracy of the diagnosis falls into

(0.53, 0.88), doctor shopping leads to higher objective reward, and when the

accuracy is higher than 0.88, doctor shopping behavior would lead to decreased

objective reward. The increment in the objective reward led by doctor shopping

behavior reaches the maximum, which is 7.4%, when the accuracy is 0.68. We can

also see that when the accuracy of the diagnosis is high (Accuracy = 0.88), the

decrement in the objective reward led by doctor shopping behavior is lower under

the asymmetric-error scenario than that under the symmetric-error scenario.

Figure 3.5(b) shows that how the perceived reward of the patients are affected

by the accuracy of the diagnosis. It shows that allowing doctor shopping always
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leads to increased the perceived reward under the asymmetric-error scenario, and

decreased the perceived reward under the symmetric-error scenario. Under the

asymmetric-error scenario, where q11 > q00, patients becomes more optimistic

when they receive inconsistent diagnostic results (see B.4), leading that any pa-

tients would terminate the visiting process after a finite number of visits. Here,

the increment in perceived reward led by doctor shopping reaches as high as 21%.

However, inconsistent diagnostic results under the symmetric-error scenario do

not help patients change mind (see (B.4)), but only lead to increased congestion,

which induces higher patients cost and hence more balking patients. Therefore,

doctor shopping behavior of the patients leads to decreased the perceived reward

under the symmetric-error scenario.

Next, we show how shopping behavior affects the congestion of the system;

see Figure 3.6. Let wn to denote the expected waiting time of the patient in each

visit under the scenario that doctor shopping behavior is prohibited. It shows

that comparing with the scenario that doctor shopping behavior is prohibited,

doctor shopping behavior leads to increased congestion in the system, and the

increment reaches as high as 46%. As the accuracy of the diagnosis increases, the

increment led by doctor shopping behavior increases, and it reaches the maximum

at Accuracy = 0.88. As the accuracy of the diagnosis further increases, the

increment led by doctor shopping behavior then decreases. Figure 3.6 also shows

that the increment led by doctor shopping behavior under the asymmetric-error

scenario is always no higher than that under the symmetric-error scenario. It

can be explained by Figure 3.3, which shows that given the same accuracy, both

doctor shopping rate and the effective arrival rate to the system are slightly

lower under the asymmetric-error scenario than those under the symmetric-error

scenario.

Comparing Figure 3.5 and 3.6, we can see that doctor shopping behavior leads

to slightly increased rewards (to at most 7.4% on objective reward and 20.8%

on perceived reward), but hugely increased congestion (to as much as 46%).

Therefore, we can easily infer that when there is no direct charge incurred by
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the patients, the increased congestion dominates the increased reward, resulting

decreased social welfare. However, a policy maker is usually able to mitigate the

congestion effect by imposing fees. Next, we explore the policy maker’s optimal

decision of imposing fees and how it is affected by the accuracy of the diagnosis.

3.5.2 The Policy Maker’s Optimal Decision

In this section, we investigate the relations between patients’ doctor shopping

behavior and social welfare, and examine its effect on public health policy. We

consider a welfare-maximizing policy maker, who takes both the objective reward

of the system and perceived reward of the patients into consideration. It is similar

to the settings in in health economics studies where doctors are imperfect agent of

their patients, that is, they consider the patients’ needs as well as other concerns;

see, for example, a comprehensive review of Chandra et al. (2011). Here the

policy maker lays different weights on the objective reward and the patients’

perceived reward. The objective of the policy maker is to maximize social welfare

via controlling the direct charge f , and is given as follows:

SW = max
f

[θRu + (1− θ)Rp]Λ− cwnλn,

SWds = max
f

[θRu
ds + (1− θ)Rp

ds]Λ− cwλ,

where 0 ≤ θ ≤ 1. Higher θ indicates that the policy maker attaches more

importance to the objective quality and less to the patients’ perceived quality.
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Specifically, if θ = 0, the policy maker fully represents the patients, and if θ = 1,

he merely represents the unbiased observer (doctors). The transfer of the direct

charge f is endogenized. Our numerical experiment shows that the optimal direct

charge f ∗ shall always be 0.

We show that as far as the patients concern, their perceived welfare is highly

dependent on the probabilities of the errors. Under the asymmetric-error scenario,

i.e., if q11 > q00, doctor shopping leads to higher perceived welfare; see Figure

3.7(a). Under the symmetric-error scenario, i.e., if q11 = q00, allowing doctor

shopping leads to decreased perceived welfare of the patients; see Figure 3.7(b).

Moreover, comparing Figure 3.7(a) & 3.7(b), we can see that given the same

accuracy, the perceived welfare of the patients is lower under the symmetric-error

scenario. The underlying reason can be explained by Figure 3.5(b).

From the perspective of an unbiased observer (like a doctor), when the accu-

racy of the diagnosis is not high (≤ 0.75), it does not make any difference in terms

of social welfare regardless of whether doctor shopping is allowed or not. When

the accuracy is high, however, doctor shopping shall be prohibited for leading to

welfare decrement; see Figure 3.7(c). Moreover, Figure 3.7(d) shows whether a

policy maker would allow doctor shopping behavior under different θ and accura-

cies; doctor shopping will be tolerated beneath the dashed line. We can see that

as the diagnosis becomes more accurate, the policy maker is less likely to tolerate

doctor shopping behavior of the patients.

3.6 Conclusion

We research into the problem of providing diagnostic service with the prevalence

of doctor shopping behavior. Patients perceive the illness differently from doctors

and differently from one another. They are active decision makers and determine

whether to follow a doctor’s advice based on their individual illness perception.

Whether a patient will join the public system and how many times to visit in

one illness episode are jointly determined by her illness perception, the quality

of diagnosis, and the cost associated with a visit she will incur. Whenever two

62



0.53 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Accuracy

0

50

100

150

200

250

P
e
rc
e
iv
e
d
W
e
lf
a
re

No DS

DS

(a) Perceived Welfare: θ = 0, q11−q00 = 0.04

0.53 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Accuracy

0

50

100

150

200

P
e
rc
e
iv
e
d
W
e
lf
a
re

No DS

DS

(b) Perceived Welfare: θ = 0, q11 = q00

0.53 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Accuracy

0

50

100

150

200

O
b
je
c
ti
v
e
W
e
lf
a
re

No DS

DS

(c) Objective Welfare: θ = 1, q11−q00 = 0.04

0.53 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Accuracy

0

0.2

0.4

0.6

0.8

1

θ

(d) Doctor Shopping or not

Figure 3.7: Doctor Shopping on Social Welfare and Whether it shall be Allowed:
V1 = V0 = 160, L1 = L0 = 80, µ = 3, Λ = 2, c = 15, α0 = 0.50

63



successive diagnostic results are consistent, the patient terminates the visiting

process.

Existing research on doctor shopping behavior is overwhelmingly carried out

from the perspective of medical practitioners and believes doctor shopping shall

be avoided since it exaggerates congestion, but help little, or even adversely,

in improving the objective reward. Meanwhile, doctor shopping increases the

psychological gains of the patients. Therefore, a certain level of doctor shopping

rate shall be tolerated under most circumstances from the perspective of welfare

maximization. Our model captures the dynamic updating process of patients’

illness perceptions and provides useful managerial insights and suggestions for

policy makers to make appropriate decisions on health care service.
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Chapter 4

Conclusion and Future Work

We deal with two topics in this thesis. First, the advance of information tech-

nology in the past decade has reshaped our consumption habits. Strategically

managing buyer-generated information, such as ratings and reviews online, is an

important part of today’s business. In the first model, we consider a typical ser-

vice situation where customers are heterogeneous in information accesses: some

customers know the service-related information, whereas others do not; the lat-

ter relies on buyer-generated information to make their queueing decisions. We

demonstrate that a service firm can strategically manage the ratings and improve

the profitability by simply “dancing” its price, that is, replace the static pricing

strategy with a cyclic pricing strategy.

The optimal cyclic pricing strategy is high-low cyclic. Under the optimal

high-low cyclic pricing strategy, sophisticated customers join at the high price,

and naive customers join at the low price. The system is less congested during

the high-price phase, and the ratings are relatively high. The higher ratings

boost the average rating and allow the provider to charge a price higher than

naive customers’ expected consumption utility during the low-price phase. Even

though naive customers feel unsatisfied and post low scores after consumption,

the average rating can still be maintained by getting high rating scores in the

high-price phase. Hence, the cyclic pricing strategy allows the server to obtain a

higher profit than that under a static pricing strategy.

The validity of this strategy requires the potential market size to be above

a certain threshold value such that congestion is a significant factor in affecting
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customers’ joining decision. We further consider reference-dependent customers

and find that the loss-aversion behavior dilute the attractiveness of cyclic pricing

strategy; the more loss averse customers are, the less attractive the cyclic pricing

is.

There are other issues calling for further study. First, we consider the stable

states of the system, but the transient process to reach such stable states is left

out. The transient process of the system is particularly important for short-

life-cycle service products, and studying such transient process remains as an

interesting future research question. Second, in our work, naive customers rely on

the average rating information. In practices, they might use anecdotal reasoning,

that is, they draw on a sample of the ratings and reviews and make their joining-

or-balking decisions based on this limited sample. So a pricing strategy based on

customer anecdotal reasoning could be an interesting research question. Third,

learning over the service rate is not critical in our study as incoming customers

only care about the rating on the consumption utility. It would be an interesting

extension of our current study into the healthcare setting where the service quality

is related with the service rate. In that setting, learning over the service rate

would also be very critical. We leave it as a future research question

In the second topic, we look into the issue of how new understandings of the

customer behavior is challenging how the service facilities shall be managed. We

consider healthcare context in particular. We investigate the dynamics of doctor

shopping behavior and its effect on the health care system. Customers, i.e.,

patients, are not the passive receiving end, but are joint decision makers along

with the providers. In fact, patients perceive the illness differently from doctors

and differently from one another. They are active decision makers and determine

whether to follow a doctor’s advice based on their individual illness perception.

We research into the problem of providing diagnostic service with the prevalence

of doctor shopping behavior.

We find that whether a patient will join the public system and how many

times to visit in one illness episode are jointly determined by her illness percep-
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tion, the quality of diagnosis, and the cost associated with a visit she will incur.

Moreover, whenever two successive diagnostic results are consistent, the patient

terminates the visiting process. Existing research on doctor shopping behavior

is overwhelmingly carried out from the perspective of medical practitioners. It

is believed that doctor shopping shall be avoided since it exaggerates congestion,

but help little, or even adversely, in improving the objective reward. However,

from the perspective of the patients, doctor shopping increases the psychological

gains. In fact, a certain level of doctor shopping rate shall be tolerated under

most circumstances from the perspective of welfare maximization.

Our model captures the dynamic updating process of patients’ illness percep-

tions and provides useful managerial insights and suggestions for policy makers

to make appropriate decisions on health care service. It can be extended in two

ways. First, we consider a representative policy maker. Some health care systems

adopt a tiered structure, and the service qualities are different between tiers. In-

vestigating the doctor shopping behavior between different tiers might offer useful

insights. Second, even though current for-profit health care facilities take up a

very small share in the health care sector, it is steadily increasing in almost ev-

ery country. Future work can also explore the competition/interaction between

the for-profit and not-for-profit facilities, and its effect on the optimal stopping

decisions and doctor shopping behaviors of the patients.

67



68



Appendix A

Proofs and Supplement for
Chapter 2

A.1 Proofs of Propositions and Corollaries

A.1.1 Proof of Proposition 2.1

Recall that the overall effective arrival rate at price pi is given by (2.5).

First, if pi > η(p), all naive customers balk according to (2.3), i.e.,

δn(pi) = 0. Sophisticated customers maximize their expected utility accord-

ing to (2.4), which is simplified as U = max
{
R− c

µ−δs(pi)Λs − pi, 0
}

. Then,

δs(pi) = min
{

1
Λs

(
µ− c

R−pi

)
, 1
}

. Consequently, λ(pi) = min
{
µ− c

R−pi ,Λs

}
.

Next, consider pi ≤ η(p). According to (2.3), naive customers all join, i.e.,

δn(pi) = 1. The pricing is classified into two cases:

1. If Vn < pi ≤ η(p), R − c
µ−Λn

− pi = Vn − pi < 0. Sophisticated customers

know that joining leads to a negative consumption utility, and therefore,

according to (2.4), they all balk, i.e., δs(pi) = 0. Consequently, λ(pi) =

Λn = (1− θ)Λ.

2. If pi < min{Vn, η(p)}, sophisticated customers decide δs(pi) > 0 to

maximize the expected utility: U = max
{
R− c

µ−(δs(pi)Λs+Λn)
− pi, 0

}
.

They keep joining until U = 0 or until all customers have joined. That

is, δs(pi) = min
{

1
Λs

(
µ− Λn − c

R−pi

)
, 1
}

, and consequently, λ(pi) =

min
{
µ− c

R−pi ,Λ
}

69



A.1.2 Proof of Proposition 2.2

When the queue is unobservable, a welfare-maximizing provider is not worse off

by leaving customers an expected utility of zero (Hassin and Haviv 2003). We

can simply let v(pi) = pi without reducing social welfare. Hence, the objective

function (2.8) can be written as

max
p
SW =

∑
pi∈p

v(pi)λ(pi)Lpi =
∑
pi∈p

pi

(
µ− c

R− pi

)
Lpi .

One can show that pi

(
µ− c

R−pi

)
Lpi is concave in pi. Hence, there exists a pk

maximizing the term pi

(
µ− c

R−pi

)
. Clearly, the optimal pricing strategy is to set

Lpk = 1 because pk

(
µ− c

R−pk

)
≥
∑

pi∈p pi

(
µ− c

R−pi

)
Lpi . In short, the optimal

pricing strategy is static.

After showing that the optimal welfare-maximizing pricing strategy is static,

we next obtain the optimal price. Now, we can drop the subscript and simplify

the objective function of the welfare-maximizing provider (2.8) as follows:

max
p
SW = p

(
µ− c

R− p

)
.

There exists a one-to-one mapping between p and λ(p). Since it is more straight-

forward to use λ(p) as the variable, we can rewrite the above objective function

as

max
λ(p)
SW = λ(p)

(
R− c

µ− λ(p)

)
.

Based on Proposition 2.1, we can see that the provider inherently decides whether

he wants to serve naive customer in the long run. If he does not, λ(p) < Λn; oth-

erwise, λ(p) ≥ Λn. In the following analysis, we can solve the above optimization

problem under these two constraints separately. We then compare the results to

obtain the optimal pricing strategy.

We first consider the case of λ(p) < Λn. It can be easily obtained that

λ(p) =

{
Λs, if Λ ≤ λb

θ

λb, if Λ > λb
θ

, i.e., p =

{
Vs, if Λ ≤ λb

θ

pb, if Λ > λb
θ

.
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The corresponding joining probabilities of the customers are as follows:

(δs(p), δn(p)) =

{
(1, 0), if Λ ≤ λb

θ(
λb
Λs
, 0
)
, if Λ > λb

θ

.

The social welfare is

SW|λ(p)<Λn =

{
VsΛs, if Λ ≤ λb

θ

pbλb, if Λ > λb
θ

. (A.1)

Next, we consider the case of λ(p) ≥ Λn. We obtain

λ(p) =


Λ, if 0 < Λ ≤ λb

λb, if λb < Λ < λb
1−θ

Λn, if Λ ≥ λb
1−θ

, i.e., p =


R− c

µ−Λ
, if 0 < Λ ≤ λb

pb, if λb < Λ < λb
1−θ

Vn, if Λ ≥ λb
1−θ

.

The corresponding joining probabilities of the customers are

(δs(p), δn(p)) =


(1, 1), if 0 < Λ ≤ λb(
λb−Λn

Λs
, 1
)
, if λb < Λ < λb

1−θ

(0, 1), if Λ ≥ λb
1−θ

.

The corresponding social welfare is

SW|λ(p)≥Λn =


Λ
(
R− c

µ−Λ

)
, if 0 < Λ ≤ λb

pbλb, if λb < Λ < λb
1−θ

VnΛn, if Λ ≥ λb
1−θ

. (A.2)

Last, the provider compares (A.1) and (A.2) to obtain the optimal pricing

strategy. We start with the case θ < 1
2
:

SW|p≥Vn − SW|p<Vn =


VsΛs − Λ

(
R− c

µ−Λ

)
< 0, if 0 < Λ ≤ λb

VsΛs − pbλb < 0, if λb < Λ ≤ Λ = λb
1−θ

VsΛs − VnΛn, if Λ < Λ ≤ Λ = λb
θ

pbλb − VnΛn > 0, if Λ > Λ

Since both SW|p≥Vn and SW|p<Vn are continuous, SW|p≥Vn − SW|p<Vn is con-

tinuous. It is worth mentioning the following two points here: at Λ = Λ,

ΛsVs−ΛnVn = ΛsVs−λbpb < 0; while at Λ = Λ, ΛsVs−ΛnVn = λbpb−ΛnVn > 0.

We then look into the interval Λ < Λ < Λ:

ΛsVs − ΛnVn = (2θ − 1)Λ

(
R− cµ

(µ− θΛ)(µ− (1− θ)Λ)

)
.
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Define gst(Λ) as follows:

gst(Λ) := R− cµ

(µ− θΛ)(µ− (1− θ)Λ)
. (A.3)

Function gst(Λ) is continuous in Λ. As (2θ− 1)Λ < 0, the sign of ΛsVs −ΛnVn is

opposite to that of gst(Λ). Therefore, gst(Λ) > 0 and gst(Λ) < 0. Moreover,

dgst(Λ)

dΛ
= − cµ(µ− 2(1− θ)θΛ)

(µ− θΛ)2(µ− (1− θ)Λ)2
< 0; (A.4)

that is, gst(Λ) is monotonically decreasing in Λ. Therefore, gst(Λ) crosses 0 once

at Λ = Λ̂, where Λ̂ ∈ (Λ,Λ). We can easily obtain that

Λ̂ =
1

2θ(1− θ)

(
µ−

√
µ
[
µ− 4θ(1− θ)

(
µ− c

R

)])
.

Thus, when θ < 1
2
, the optimal price and the corresponding social welfare are,

respectively,

p∗sw =



R− c
µ−Λ

, if 0 < Λ ≤ λb

pb, if λb < Λ ≤ Λ

Vn, if Λ < Λ ≤ Λ̂

Vs, if Λ̂ < Λ ≤ Λ

pb, if Λ > Λ

and

SW∗ =



Λ
(
R− c

µ−Λ

)
, if 0 < Λ ≤ λb

pbλb, if λb < Λ ≤ Λ

VnΛn, if Λ < Λ ≤ Λ̂

VsΛs, if Λ̂ < Λ ≤ Λ

pbλb, if Λ > Λ

. (A.5)

For the case of θ ≥ 1
2
,

SW|p≥Vn − SW|p<Vn =


VsΛs − Λ

(
R− c

µ−Λ

)
< 0, if 0 < Λ ≤ λb

VsΛs − pbλb < 0, if λb < Λ ≤ Λ = λb
θ

0, if Λ < Λ ≤ Λ = λb
1−θ

pbλb − VnΛn > 0, if Λ > Λ

.

Then, it can be easily derived that the optimal price and social welfare are,

respectively,

p∗sw =

{
R− c

µ−Λ
, if 0 < Λ ≤ λb

pb, if Λ > λb
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and

SW∗ =

{
Λ
(
R− c

µ−Λ

)
, if 0 < Λ ≤ λb

pbλb, if Λ > λb
. (A.6)

A.1.3 Proof of Proposition 2.3

The Optimal Cyclic Pricing Strategy is High-Low Cyclic

A profit-maximizing provider does not leave any positive utility to the customers,

and he charges a price as high as possible as long as the customers’ joining deci-

sions remain unaffected; that is, v(pi) ≤ pi , where “=” holds whenever sophis-

ticated customers join. According to Proposition 2.1, we consider the following

two regions based on the magnitudes of Vn and η(p) and derive the local optima

in each region.

Region 1: η(p) ≤ Vn. According to Proposition 2.1, the effective arrival rate is

as follows:

λ(pi) =

{
min{µ− c

R−pi ,Λs} if η(p) ≤ Vn < pi or η(p) < pi ≤ Vn;

min{µ− c
R−pi ,Λ} if pi ≤ η(p) < Vn.

Since sophisticated customers join with positive probability at any price pi in this

region, the equilibrium arrival rate must satisfy v(pi) = pi. Hence, the profit-

maximizing provider’s optimization problem is the same as that of the welfare-

maximizing provider, which indicates that the (local) optimal pricing strategy is

static in this region.

Region 2: η(p) > Vn. By Proposition 2.1, the effective arrival rate at each price

pi is

λ(pi) =


min

{
µ− c

R−pi ,Λs

}
, if pi > η(p);

Λn = (1− θ)Λ, if Vn < pi ≤ η(p);

min
{
µ− c

R−pi ,Λ
}
, if pi ≤ Vn.

Since sophisticated customers join with positive probability when pi > η(p) or

pi ≤ Vn, we have v(pi) = pi in these two price sets. Hence, in the price sets

of pi > η(p) (labelled ‘set A’) and pi ≤ Vn (labelled ‘set C’), λ(pi) = µ − c
R−pi

and thus, pi

(
µ− c

R−pi

)
is concave. There exists a unique optimal price in each
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of these two sets, which we denote as pA and pC , respectively. Moreover, in the

price set of Vn < pi ≤ η(p) (labelled ‘set B’), the arrival rate is constant as Λn,

and hence there also exists a unique optimal price in this set, which we denote

as pB. Then, the server’s profit-maximizing problem can be simplified as

max
pi, Lpi ,i=A,B,C

Π = pAλ(pA)LpA + pBΛnLpB + pCλ(pC)LpC

s.t. pA > η(p),

Vn < pB ≤ η(p),

pC ≤ Vn,

LpA + LpB + LpC = 1, Lpi ≥ 0,

where

η(p) =
pAλ(pA)LpA + VnΛnLpB + pCλ(pC)LpC

λ(pA)LpA + ΛnLpB + λ(pC)LpC
. (A.7)

The Lagrangian function is as follows:

L(p,α) = pAλ(pA)LpA + pBΛnLpB + pCλ(pC)LpC

+ α1(pA − η(p))− α2(Vn − pB)− α3(pB − η(p))− α4(pC − Vn)

− α5(LpA + LpB + LpC − 1) + α6LpA + α7LpB + α8LpC .

We then obtain the following Kuhn-Tucker conditions:

∂L
∂pA

=
d(pAλ(pA))

dpA
LpA + α1

(
1− ∂η(p)

∂pA

)
+ α3

∂η(p)

∂pA
= 0; (A.8)

∂L
∂pB

= ΛnLpB − α1
∂η(p)

∂pB
+ α2 − α3

(
1− ∂η(p)

∂pB

)
= 0; (A.9)

∂L
∂pC

=
d(pCλ(pC))

dpC
LpC − α1

∂η(p)

∂pC
+ α3

∂η(p)

∂pC
− α4 = 0; (A.10)

∂L
∂LpA

= pAλ(pA)− (α1 − α3)
∂η(p)

∂LpA
− α5 + α6 = 0; (A.11)

∂L
∂LpB

= pBΛn − (α1 − α3)
∂η(p)

∂LpB
− α5 + α7 = 0; (A.12)

∂L
∂LpC

= pCλ(pC)− (α1 − α3)
∂η(p)

∂LpC
− α5 + α8 = 0; (A.13)

74



α1(pA − η(p)) = 0; α2(Vn − pB) = 0;

α3(pB − η(p)) = 0; α4(pC − Vn) = 0;

pA − η(p) > 0; pB − Vn > 0; pB − η(p) ≤ 0; pC − Vn ≤ 0;

α5(LpA + LpB + LpC − 1) = 0; α6LpA = 0;

α7LpB = 0; α8LpC = 0;αi ≥ 0 (i = 1, 2...8)

LpA + LpB + LpC − 1 = 0;

0 ≤ LpA ≤ 1; 0 ≤ LpB ≤ 1; 0 ≤ LpC ≤ 1;

where

λ = λ(pA)LpA + ΛnLpB + λ(pC)LpC
∂η(p)

∂pA
=

1

λ

(
d(pAλ(pA))

dλ(pA)
− η(p)

)
dλ(pA)

dpA
LpA ; (A.14)

∂η(p)

∂pB
= 0;

∂η(p)

∂pC
=

1

λ

(
d(pCλ(pC))

dλ(pC)
− η(p)

)
dλ(pC)

dpC
LpC ; (A.15)

∂η(p)

∂LpA
=
λ(pA)

λ
(pA − η(p)); (A.16)

∂η(p)

∂LpB
=

Λn

λ
(Vn − η(p)); (A.17)

∂η(p)

∂LpC
=
λ(pC)

λ
(pC − η(p)). (A.18)

Note that pA − η(p) > 0 and pB − Vn > 0 imply that α1 = α2 = 0. As ∂η(p)
∂pB

= 0

and α1 = α2 = 0, (A.9) is simplified as ∂L
∂pB

= ΛnLpB − α3 = 0, according to

which the pricing strategy is classified into two cases: (1) LpB = 0 and α3 = 0;

(2) LpB > 0 and α3 > 0.

Case 1: LpB = 0 and α3 = 0. In this case, pB becomes irrelevant. The provider

allocates the pricing circle between pA and pC , and sophisticated customers join

at both prices, indicating that v(pA) = pA and v(pC) = pC . Hence, maximizing

profit becomes the same as maximizing welfare; thus, the optimal pricing strategy

is static.

Case 2: LpB > 0 and α3 > 0. Since α3(pB − η(p)) = 0, we have p∗B = η(p).
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Then, (A.8) and (A.10) are simplified as

∂L
∂pA

=

(
1 +

α3

λ

)
d(pAλ(pA))

dpA
LpA −

α3

λ

dλ(pA)

dpA
η(p)LpA = 0,

∂L
∂pC

=

(
1 +

α3

λ

)
d(pCλ(pC))

dpC
LpC −

α3

λ

dλ(pC)

dpC
η(p)LpC − α4 = 0,

by inserting (A.14) and (A.15), respectively. Then, we have

LpC
∂L
∂pA

− LpA
∂L
∂pC

=

[(
R +

α3(R− η(p))

λ

)(
c

(R− pC)2
− c

(R− pA)2

)
LpC + α4

]
LpA = 0.

(A.19)

As pC < pA, c
(R−pC)2

< c
(R−pA)2

. Thus, (A.19) implies one of the following two

cases: (2-i) LpA = 0; (2-ii) LpA > 0 and α4 > 0.

Case 2-i: If LpA = 0, the provider decides how to allocate the pricing circle

between pB and pC . Recall that pC ≤ Vn. Then from (A.7), we have η(p) ≤ Vn,

i.e., the aforementioned Region 1 case. Thus, according to the discussion there,

the optimal pricing shall be static pricing.

Case 2-ii: If LpA > 0 and α4 > 0, by α4(pC−Vn) = 0, we have pC = Vn. Based

on (A.16) and (A.18), taking the difference between (A.11) and (A.13) yields

pAλ(pA)− pCλ(pC) + α3

(
∂η(p)

∂LpA
− ∂η(p)

∂LpC

)
+ α6 − α8

=

(
1 +

α3

λ

)
(pAλ(pA)− pCλ(pC))− α3(λ(pA)− λ(pC))η(p)

λ
+ α6 − α8

Next, we consider the sign of
(

1 + α3

λ

)
(pAλ(pA)− pCλ(pC)), based on which we

further have three sub-cases:

1.
(

1 + α3

λ

)
(pAλ(pA) − pCλ(pC)) < 0. Then, α6 > 0. By α6LpA = 0, it

indicates LpA = 0. This is the same as Case 2-i stated above. That is, the

optimal pricing shall be static pricing.

2.
(

1 + α3

λ

)
(pAλ(pA) − pCλ(pC)) > 0. Then, α8 > 0. By α8LpC = 0, it

indicates LpC = 0. Thus, the two prices of the cyclic pricing strategy

satisfy pA > η(p) and pB = η(p).
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3.
(

1 + α3

λ

)
(pAλ(pA) − pCλ(pC)) = 0. Then, α6 = α8. We further consider

the difference between (A.12) and (A.13). Based on (A.17) and (A.18), and

considering pC = Vn, we then have

pBΛn − pCλ(pC) + α3

(
∂η(p)

∂LpB
− ∂η(p)

∂LpC

)
+ α7 − α8

= (pB − Vn)Λn

(
1 +

α3

λ

)
+ α7 − α8 = 0.

As pB > Vn, the above equation indicates α8 > 0. Since here α6 = α8, this

implies α6 > 0. By α6LpA = 0 and α8LpC = 0, we then have LpA = 0 and

LpC = 0. Therefore, LpB = 1; that is, the optimal pricing strategy becomes

static pricing.

In summary, there are at most two prices in the optimal pricing strategy, namely,

the optimal pricing strategy is either static or high-low cyclic. Provided that

it is high-low cyclic, hereafter we can simplify the notations by denoting the

higher price as ph and the lower price as pl. The two prices satisfy ph > η(p)

and pl = η(p). Otherwise, the optimal pricing strategy always reduces to static

pricing.

The Optimal Profit-Maximizing Pricing Strategy

If the profit-maximizing provider adopts a static pricing strategy, i.e., N = 1,

since p = v(p), his optimization problem shall be equivalent to that of the welfare-

maximizing provider. Thus, the optimal profit-maximizing static price shall be

the same as that under welfare maximization, which is given in Proposition 2.2. In

the following analysis, we focus on obtaining the optimal cyclic pricing strategy.

We drop the subscript of Lpi (i = h, l) and use L and 1 − L to denote the

proportion of time remaining at ph and pl, respectively. Then,

p = {(ph, L), (pl, 1− L)}.

Since we have shown above that under the optimal cyclic pricing strategy, pl =

η(p), the provider’s decision under a cyclic pricing strategy becomes deciding ph
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and L. Therefore, his optimization problem under the cyclic pricing strategy can

be simplified as follows:

max
ph,L

Πcy = ph

(
µ− c

R− ph

)
L+ Λnη(p)(1− L),

s.t. ph > η(p), (A.20)

µ− c

R− ph
≤ Λs, (A.21)

0 < L < 1,

where

η(p) =
v(ph)λ(ph)L+ VnΛn(1− L)

λ(ph)L+ Λn(1− L)

=
ph

(
µ− c

R−ph

)
L+ VnΛn(1− L)(

µ− c
R−ph

)
L+ Λn(1− L)

. (A.22)

Since there exists a one-to-one mapping between λ(ph) = µ− c
R−ph

and ph, decid-

ing λ(ph) is equivalent to deciding ph. Hereafter, we use λ(ph) as a direct decision

variable since it is more straightforward. Moreover, (A.20) and (A.21) can be

simplified as: {
λ(ph) ≤ Λs if θ < 1

2

λ(ph) < Λn if θ ≥ 1
2

.

Scenario θ < 1
2
. The Lagrangian function can be written as

L(ph, L, α1, α2, α3) = phλ(ph)L+ Λnη(p)(1− L)

−α1(λ(ph)− Λs) + α2L− α3(L− 1).

The Kuhn-Tucker conditions are as follows:

∂L
∂λ(ph)

=
d(λ(ph)ph)

dλ(ph)
L+

∂η(p)

∂λ(ph)
Λn(1− L)− α1

=
∂Πcy

∂λ(ph)
− α1 = 0; (A.23)

∂L
∂L

= λ(ph)ph − Λnη(p) +
∂η(p)

∂L
Λn(1− L) + α2 − α3 = 0; (A.24)

λ(ph) ≤ Λs; α1(λ(ph)− Λs) = 0; (A.25)

0 < L < 1; α2L = 0; α3(L− 1) = 0;α1, α2, α3 ≥ 0,
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where

∂η(p)

∂λ(ph)
=

L

Λn(1− L) + λ(ph)L

(
d(λ(ph)ph)

dλ(ph)
− η(p)

)
; (A.26)

∂η(p)

∂L
=

λ(ph)(ph − η(p)) + Λn(η(p)− Vn)

Λn(1− L) + λ(ph)L

=
λ(ph)Λn(ph − Vn)

(Λn(1− L) + λ(ph)L)2
. (A.27)

A solution (λ(p∗h), L
∗) that maximizes the provider’s profit shall satisfy all above

conditions. Note that in order to make a cyclic pricing strategy viable, we shall

have 0 < L < 1; that is, it requires α2 = α3 = 0. Otherwise, cyclic pricing

degenerates into static pricing.

We start with the requirements of α2 = α3 = 0, under which (A.24) is simpli-

fied as:

∂L
∂L

=
∂Πcy

∂L
= λ(ph)ph − Λnη(p) +

∂η(p)

∂L
Λn(1− L) = 0. (A.28)

Moreover,

∂2η(p)

∂L2
= 2

Λn − λ(ph)

Λn(1− L) + λ(ph)L

∂η(p)

∂L
;

∂2L
∂L2

=
∂2Πcy

∂L2
= −2Λn

∂η(p)

∂L
+
∂2η(p)

∂L2
Λn(1− L)

= − 2Λnλ(ph)

Λn(1− L) + λ(ph)L

∂η(p)

∂L
< 0, (A.29)

since ∂η(p)
∂L

> 0 (see (A.27)) whenever θ < 1
2
, as λ(ph) ≤ Λs < Λn implies

ph > Vn. This implies that ∂Πcy
∂L

(∂L
∂L

) decreases in L. Moreover, by (A.22),

limL→1 η(p) = ph, limL→0 η(p) = Vn. Moreover, by (A.27),

lim
L→1

∂η(p)

∂L
=

Λn

λ(ph)
(ph − Vn), lim

L→0

∂η(p)

∂L
=
λ(ph)

Λn

(ph − Vn).

If we define the following function

φ(L,Λ) :=
∂Πcy

∂L
= λ(ph)ph − Λnη(p) +

∂η(p)

∂L
Λn(1− L),

then φ(L,Λ) decreases in L, and

φ(0,Λ) = λ(ph)(2ph − Vn)− VnΛn; (A.30)

φ(1,Λ) = ph(λ(ph)− Λn).
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Thus, to ensure that equation (A.28) has a solution satisfying 0 < L < 1 (the

cyclic pricing requirement), φ(0,Λ) > 0 and φ(1,Λ) < 0 are required. Note that

φ(1,Λ) < 0 always holds. We only need to determine the market condition under

which φ(0,Λ) > 0 holds.

Next, consider the requirement on α1. By (A.23), we have α1 = ∂Πcy
∂λ(ph)

, and

hence,

∂α1

∂λ(ph)
=

∂2Πcy

∂λ(ph)2

=
L

Λn(1− L) + λ(ph)L

[
(2Λn(1− L) + λ(ph)L)

d2(phλ(ph))

dλ(ph)2

− 2Λn(1− L)L

Λn(1− L) + λ(ph)L

(
d(phλ(ph))

dλ(ph)
− η(p)

)]
<

2Λn(1− L)L

(Λn(1− L) + λ(ph)L)2

[
(Λn(1− L) + λ(ph)L)

d2(phλ(ph))

dλ(ph)2

− L
(
d(phλ(ph))

dλ(ph)
− η(p)

)]
<

2Λn(1− L)L2

(Λn(1− L) + λ(ph)L)2

(
λ(ph)

d2(phλ(ph))

dλ(ph)2
− d(phλ(ph))

dλ(ph)
+ η(p)

)
<

2Λn(1− L)L2

(Λn(1− L) + λ(ph)L)2

(
λ(ph)

d2(phλ(ph))

dλ(ph)2
− d(phλ(ph))

dλ(ph)
+ ph)

)
= − 2Λn(1− L)L2

(Λn(1− L) + λ(ph)L)2

cλ(ph)(µ+ λ(ph))

(µ− λ(ph))3
< 0.

(A.31)

The first and second “<” follow d2(phλ(ph))
dλ(ph)2

= − 2cµ
(µ−λ(ph))3

< 0, and the third follows

η(p) < ph. Thus, α1 decreases in λ(ph).

Whenever the cyclic pricing strategy is feasible, by (A.23) and (A.26), we have

d(phλ(ph))

dλ(ph)
|(p∗h, L∗)

=

(
Λn(1− L)η(p)

λ(ph)L+ 2Λn(1− L)
+

Λn(1− L) + λ(ph)L

λ(ph)L+ 2Λn(1− L)

α1

L

)
|(p∗h, L∗).

(A.32)

As α1 ≥ 0 and 0 < L < 1, d(phλ(ph))
dλ(ph)

|(p∗h, L∗) > 0. Recall that d(pλ(p))
dλ(p)

|λ(p)=λ(pb) = 0,

where pb = R−
√

cR
µ

. Therefore, λ(p∗h) < λ(pb). This implies that p∗h > pb.

We consider the following three cases according to whether λ(ph) ≤ Λs is

binding or not.

Case 1: α1 > 0. It indicates λ(ph) = Λs, or equivalently, p∗h = Vs. Then, through
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some simple algebra, (A.30)can be simplified as:

φ(0,Λ) = (2θ − 1)Λ

(
R− c(µ+ θΛ)

(µ− θΛ)(µ− (1− θ)Λ)

)
.

Define

gcy(Λ) := R− c(µ+ θΛ)

(µ− θΛ)(µ− (1− θ)Λ)
. (A.33)

It is easy to show gcy(Λ) is continuous and decreasing in Λ whenever Vn ≥ 0. Let

gcy(Λ̇) = 0. We obtain

Λ̇ =
1

2θ(1− θ)

µ+
cθ

R
−

√(
µ+

cθ

R

)2

− 4θ(1− θ)µ
(
µ− c

R

)
on its domain. Since gcy(Λ) is decreasing and gcy(Λ̇) = 0, gcy(Λ) < 0 when Λ > Λ̇.

Also, considering that (2θ − 1)Λ < 0 (θ < 1
2
), the sign of φ(0,Λ) is opposite to

that of gcy(Λ). Therefore, φ(0,Λ) > 0 when Λ > Λ̇. In other words, only if Λ > Λ̇

will there be a feasible cyclic pricing strategy.

Denote the optimal pricing decisions provided α1 > 0 and Λ > Λ̇ as (p∗h, L
∗) =

(Vs, Lb). Then Lb solves ∂Πcy
∂L
|p∗h=Vs = 0 where Λ > Λ̇; specifically,

VsΛs +
Λn(1− Lb)(VsΛs − VnΛn)

Λn(1− Lb) + ΛsLb
− ΛsΛn(VsΛsLb + VnΛn(1− Lb))

(Λn(1− Lb) + ΛsLb)2
= 0.(A.34)

Case 2: α1 = 0 and λ(ph) = Λs = θΛ. This captures the “binding but irrele-

vant” case, under which the optimal solution is (p∗h, L
∗) = (Vs, Lb), where Lb

is determined by (A.34). Plugging (p∗h, L
∗) = (Vs, Lb) into α1 = ∂Πcy

∂λ(ph)
and let

α1|Λ=Λ̈ = 0, we get(
R− cµ

(µ− Λs)2
− Λn(1− Lb)

2Λn(1− Lb) + ΛsLb

VsΛsLb + VnΛn(1− Lb)
Λn(1− Lb) + ΛsLb

)
|Λ=Λ̈ = 0.(A.35)

Similar to the aforementioned analysis, we can show that the cyclic pricing strat-

egy is feasible only when Λ > Λ̇. Recall that α1 decreases in λ(ph). As λ(ph) = θΛ,

α1 decreases in Λ. In the above case 1, α1|λ(ph)=θΛ̇ > 0 and here α1|λ(ph)=θΛ̈ = 0.

These imply that Λ̇ < Λ̈. The optimal solution is indeed feasible. Moreover, since

λ(p∗h) = θΛ̈ < λ(pb) = λb, Λ̈ < λb
θ

. As Λ = λb
θ

if θ < 1
2
, we can see Λ̈ < Λ.

Case 3: α1 = 0 and λ(ph) < Λs. This captures the unbinding case, where

λ(ph) = µ − c
R−ph

< Λs. As α1|λ(ph)=θΛ̈ = 0 and α1|λ(ph)=µ− c
R−ph

<θΛ = 0, we get
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that Λ > Λ̈ is required. The optimal solution, if existing, shall be obtained in the

interior, solving (A.28) and the following equation simultaneously:

∂L
∂λ(ph)

=
d(λ(ph)ph)

dλ(ph)
L+

∂η(p)

∂λ(ph)
Λn(1− L) = 0. (A.36)

Denote the interior solution as (p0
h, L

0).

Last, we check the Kuhn-Tucker conditions on L. We derive from (A.30) that

∂φ(0,Λ)

∂λ(ph)
= 2

d(λ(ph)ph)

dλ(ph)
− Vn.

Under the unbinding case, by (A.32) and α1 = 0, the effective arrival rate at the

high price always satisfies

d(phλ(ph))

dλ(ph)
=

Λn(1− L)η(p)

λ(ph)L+ 2Λn(1− L)
>
Vn
2
.

Therefore, ∂φ(0,Λ)
∂λ(ph)

> 0. Besides, from the above analysis, we have that gcy(Λ)

decreases in Λ and gcy(Λ̇) = 0. As Λ̈ > Λ̇, gcy(Λ̈) < gcy(Λ̇) = 0. Consequently,

it can be shown that φ(0, Λ̈) > φ(0, Λ̇) = 0. Since φ(0,Λ) is increasing in λ(ph)

and λ(ph) weakly increases in Λ, we have φ(0,Λ) > 0 when Λ > Λ̈. This ensures

that indeed there exists an optimal L0 ∈ (0, 1). Thus, the interior solution exists

when Λ > Λ̈.

Scenario θ ≥ 1
2
. The Kuhn-Tucker conditions remain the same as those of

Scenario θ < 1
2

except that the constraints in (A.25) change to

λ(ph)− Λn < 0; α1(λ(ph)− Λn) = 0.

Hence, it requires α1 = 0. Below we consider the following two cases: binding but

irrelevant and unbinding.

Under binding but irrelevant case, α1 = 0 and λ(ph) = Λn. (A.24) then can

be simplified as:

∂L
∂L

= α2 − α3 = 0,

which requires α2 = α3. As 0 < L < 1, α2L = 0 and α3(1 − L) = 0 are

required, we then have α2 = α3 = 0. The Kuhn-Tucker conditions on L are all
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satisfied. Next, consider the Kuhn-Tucker conditions on ph (A.23). By (A.23)

and λ(ph) = Λn,

α1 = L

(
(2− L)

(
R− cµ

(µ− Λn)2

)
− Vn(1− L)

)
:= Lψ(Λ, L).

As 0 < L < 1, solving α1 = 0 is equivalent to solving ψ(Λ = Λ̆, L) = 0, from

which we get

Λ̆ =
1

1− θ

µ+
c(1− L)

R
−

√(
c(1− L)

2R

)2

+
cµ(2− L)

R

 .

We can also show that

∂ψ(Λ, L)

∂L
=

cΛn

(µ− Λn)2
> 0;

∂ψ(Λ, L)

∂Λ
= − c (1− θ)

(µ− Λn)2

(
(2− L)

2µ

µ− Λn

− (1− L)

)
< 0.

Then, by the implicit function theorem, we have:

dΛ̆

dL
= −

∂ψ(Λ,L)
∂L

∂ψ(Λ,L)
∂Λ

∣∣∣∣
Λ=Λ̆

> 0.

That is, Λ̆ increases in L. Furthermore, when L → 1, Λ̆ → 1
1−θ

(
µ−

√
cµ
R

)
= Λ,

as θ ≥ 1
2
. Therefore, Λ̆ < Λ.

Next, consider the unbinding case, where α1 = 0 and λ(ph) < Λn. Similar to

the analysis of Case 3 under Scenario θ < 1
2
, here we can show that to ensure

that λ(ph) < Λn holds, Λ > Λ̆ is required. Besides, since λ(ph) = Λn when Λ = Λ̆

as shown above, it can be easily obtained that φ(0, Λ̆) = 0 (see (A.30)). When

α1 = 0, recall that as shown in Case 3 of Scenario θ < 1
2
, ∂φ(0,Λ)
∂λ(ph)

> 0 and λ(ph)

weakly increases in Λ. Thus, φ(0,Λ) > 0 when Λ > Λ̆. This ensures that indeed

there exists an optimal L0 ∈ (0, 1). All the optimization conditions are satisfied.

Thus, the interior solution does exist when Λ > Λ̆.

To summarize, we show that the cyclic pricing strategy is feasible, and

1. if θ < 1
2

and Λ̇ < Λ ≤ Λ̈ (Λ̈ < Λ), it is determined by a corner solution

(p∗h, L
∗) = (Vs, Lb), where Lb is determined by (A.34) and p∗h > pb.
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2. if θ < 1
2

and Λ > Λ̈, or if θ ≥ 1
2

and Λ > Λ̆, it is determined by an interior

solution (p∗h, L
∗) = (p0

h, L
0), where p0

h and L0 are determined by (A.28) and

(A.36) simultaneously.

Then, it can be easily shown that the interior solution (p0
h, L

0) is obtained when-

ever Λ ≥ Λ, regardless of the magnitude of θ as Λ̈ < Λ and Λ̆ < Λ . Note that the

above solution offers a necessary condition for the optimal cyclic pricing strategy.

Considering ∂2Πcy
∂λ(ph(Λ))2

< 0 and ∂2Πcy
∂L2 < 0 (see (A.29) and (A.31), respectively),

the solution we obtain from the above Lagrangian method is unique. Also, note

that the static pricing strategy is actually a boundary case of the cyclic pric-

ing strategy with L = 0 or 1. Following the technique used by Chen and Wan

(2003) and Yang et al. (2018), if the cyclic pricing strategy we obtain from the

above Kuhn-Tucker conditions outperforms the boundary cases (i.e., the static

pricing strategy), it indicates that it is indeed optimal. Below, we identify mar-

ket conditions under which the cyclic pricing strategy we obtain from the above

Lagrangian method outperforms the static pricing strategy and hence is indeed

optimal.

Define Π∗cy(Λ) as the profit under the cyclic pricing strategy, i.e.,

Π∗cy(Λ) = Πcy(p
∗
h(Λ), L∗(Λ)).

Function Π∗cy(Λ) is continuous in Λ. Taking the first- and second-order derivatives

of Π∗cy(Λ) with respect to Λ, we obtain

dΠ∗cy(Λ)

dΛ
=

∂Πcy(p
∗
h(Λ), L∗(Λ))

∂L∗(Λ)

dL∗(Λ)

dΛ
+
∂Πcy(p

∗
h(Λ), L∗(Λ))

∂λ(p∗h(Λ))

dλ(p∗h(Λ))

dΛ

+
∂Πcy(p

∗
h(Λ), L∗(Λ))

∂Λn

dΛn

dΛ
,
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d2Π∗cy(Λ)

dΛ2
=
∂2Πcy(p

∗
h(Λ), L∗(Λ))

∂L∗(Λ)2

(
dL∗(Λ)

dΛ

)2

+
∂Πcy(p

∗
h(Λ), L∗(Λ))

∂L∗(Λ)

d2L∗(Λ)

dΛ2

+
∂2Πcy(p

∗
h(Λ), L∗(Λ))

∂λ(p∗h(Λ))2

(
dλ(p∗h(Λ))

dΛ

)2

+
∂Πcy(p

∗
h(Λ), L∗(Λ))

∂λ(p∗h(Λ))

d2λ(p∗h(Λ))

dΛ2

+
∂2Πcy(p

∗
h(Λ), L∗(Λ))

∂Λ2
n

(
dΛn

dΛ

)2

+
∂Πcy(p

∗
h(Λ), L∗(Λ))

∂Λn

d2Λn

dΛ2
.

(A.37)

Obviously, Λn = (1− θ)Λ, and hence d2Λn
dΛ2 = 0. Moreover,

∂Πcy(p
∗
h(Λ), L∗(Λ))

∂Λn

=

(
η(p)(1− L) + Λn(1− L)

∂η(p)

∂Λn

) ∣∣∣∣
(p∗h,L

∗)

,

∂2Πcy(p
∗
h(Λ), L∗(Λ))

∂Λ2
n

=

(
2(1− L)

∂η(p)

∂Λn

+ Λn(1− L)
∂2η(p)

∂Λ2
n

) ∣∣∣∣
(p∗h,L

∗)

< 0,(A.38)

where

∂η(p)

∂Λn

=
1− L

Λn(1− L) + λ(ph)L

(
R− cµ

(µ− Λn)2
− η(p)

)
< 0, (A.39)

∂2η(p)

∂Λ2
n

=
1− L

Λn(1− L) + λ(ph)L

(
− 2cµ

(µ− Λn)3
− 2

∂η(p)

∂Λn

)
.

The “<” in (A.39) and (A.38) follows from the fact that R− cµ
(µ−Λn)2

< R− c
µ−Λn

=

Vn and the requirement of Vn < η(p) for the cyclic pricing strategy to be feasible.

In addition, we have

∂Πcy(p
∗
h(Λ), L∗(Λ))

∂L∗(Λ)
= 0 and

∂2Πcy(p
∗
h(Λ), L∗(Λ))

∂L∗(Λ)2
< 0;

see (A.28) and (A.29). When a corner solution is obtained, λ(p∗h(Λ)) = θΛ,

indicating
d2λ(p∗h(Λ))

dΛ2 = 0, whereas when an interior solution is obtained,

∂Πcy(p
∗
h(Λ), L∗(Λ))

∂λ(p∗h(Λ))
= 0.

Moreover, from (A.31), we have

∂2Πcy(p
∗
h(Λ), L∗(Λ))

∂λ(p∗h(Λ))2
< 0.
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Therefore, we simplify (A.37) as:

d2Π∗cy(Λ)

dΛ2
=
∂2Πcy(p

∗
h(Λ), L∗(Λ))

∂L∗(Λ)2

(
dL∗(Λ)

dΛ

)2

+
∂2Πcy(p

∗
h(Λ), L∗(Λ))

∂λ(p∗h(Λ))2

(
dλ(p∗h(Λ))

dΛ

)2

+
∂2Πcy(p

∗
h(Λ), L∗(Λ))

∂Λ2
n

(
dΛn

dΛ

)2

< 0.

(A.40)

That is, Π∗cy(Λ) is concave in Λ.

We have obtained that the interior solution (p0
h, L

0) is obtained whenever

Λ ≥ Λ, regardless of the magnitude of θ. Moreover, recall that we have obtained

in Proposition 2.2 that when Λ ≥ Λ, Π∗st(Λ) = pbλb regardless of the magnitude

of θ. Therefore, when Λ ≥ Λ, we have

Π∗cy(Λ) = Πcy(p
0
h(Λ), L0(Λ)) > max

ph
Πcy(ph(Λ), 1) = pbλb = Π∗st(Λ). (A.41)

That is, the cyclic pricing strategy is always preferred when Λ ≥ Λ.

When Λ < Λ, we consider the following two cases according to the magnitude

of θ.

Case 1: θ < 1
2

and Λ̇ < Λ < Λ

Comparing gcy(Λ) defined in (A.33) with gst(Λ) defined in (A.3), we can easily

obtain that gcy(Λ) < gst(Λ). Thus, gcy(Λ̇) = 0 indicates gst(Λ̇) > 0. Recall that

gst(Λ) decreases in Λ (see (A.4)) and gst(Λ̂) = 0. Thus, Λ̇ < Λ̂. Moreover, it can

be easily shown that Λ̇ > λb. That is, λb < Λ̇ ≤ Λ̂.

From (A.5), we can show that in the interval (λb, Λ), the profit under the

optimal static pricing strategy Π∗st(Λ), equal to the corresponding social welfare,

first (weakly) decreases and then increases in Λ. Recall that Π∗cy(Λ) is concave

in Λ; see (A.40). Hence, Π∗st(Λ) and Π∗cy(Λ) cross each other at most twice when

Λ̇ < Λ ≤ Λ. Recall that φ(0, Λ̇) = 0 when θ < 1
2
, which implies L∗ = 0 at Λ = Λ̇.

Thus, based on (A.5) and by λb < Λ̇ ≤ Λ̂, we have:

lim
Λ→Λ̇−

Π∗cy(Λ) = lim
Λ→Λ̇−

Πcy(p
∗
h(Λ), L∗(Λ))

= Πcy(Vs, 0) = VnΛn ≤ lim
Λ→Λ̇−

Π∗st(Λ) = Π∗st(Λ̇).
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We also show in (A.41) that when Λ ≥ Λ, Π∗cy(Λ) > Πst(Λ). Thus, considering

the continuity of Πcy(Λ), we obtain

lim
Λ→Λ

+
Π∗cy(Λ) = Π∗cy(Λ) > lim

Λ→Λ
+

Π∗st(Λ) = Π∗st(Λ).

Hence, we can see that Π∗cy(Λ) crosses Π∗st(Λ) once from below. Therefore, when

θ < 1
2
, there exists a Λ̇ < Λ̃ < Λ such that Πcy(Λ) ≥ Πst(Λ) when Λ̃ < Λ < Λ

and Πcy(Λ) < Πst(Λ) when Λ̇ < Λ < Λ̃.

Case 2: θ ≥ 1
2

and Λ̆ < Λ < Λ

When θ ≥ 1
2
, the optimal static profit is given by (A.6), which is weakly increasing

and concave in Λ. Since Π∗cy(Λ) is also concave in Λ; see (A.40), Π∗st(Λ) and Π∗cy(Λ)

cross each other at most twice. Recall from the analysis of Scenario θ ≥ 1
2

above,

λ(p∗h(Λ)) = Λn when Λ = Λ̆. Thus,

lim
Λ→Λ̆−

Π∗cy(Λ̆) = max
L

Πcy(p
∗
h(Λ̆), L) = ΛnVn ≤ lim

Λ→Λ̆−
Π∗st(Λ) = Π∗st(Λ̆).

At the same time, by the continuity of Πcy(Λ) and using (A.41), we have:

lim
Λ→Λ

+
Π∗cy(Λ) = Π∗cy(Λ) > lim

Λ→Λ
+

Π∗st(Λ) = Π∗st(Λ).

Therefore, when θ ≥ 1
2
, there exists Λ̆ < Λ̃ < Λ such that Πcy(Λ) ≥ Πst(Λ) when

Λ̃ ≤ Λ < Λ and Πcy(Λ) < Πst(Λ) when Λ̆ < Λ < Λ̃.

Proposition 2.3 is thus completely proved.

A.1.4 Proof of Corollary 2.1

When θ ≥ 0.5, we have Λ̃ < Λ (see Proof of Proposition 2.3). Clearly, λ(p∗h) <

λ(p∗l ). And the effective arrival rate at the low price phase satisfies λ(p∗l ) = Λn =

(1− θ)Λ < (1− θ)Λ = λb.

A.2 Supplement

A.2.1 Discussion on the Average Rating and How it is
Formed

In this model, we directly assume that incoming customers are informed about the

average rating of the system, which is static in the long run. Here, we relax this
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assumption and illustrate that the average rating can still be achieved through a

convergence process when customers adopt exponential smoothing to aggregate

the recent review data with historical data. We have the following assumptions

about customers:

1. A customer observes all the rating information up to her arrival time and

adopts an exponential smoothing method to compute the “average rating”.

2. All customers, regardless of their types, understand the randomness embed-

ded in the service process; thus, naive customers will not consider joining

a service until a considerable number of ratings have been accumulated so

that the fluctuation in the service process is averaged out.

Customers adopt an exponential smoothing method in calculating their ex-

pected rating. Consider a customer arriving at t. She divides all the historical

ratings up to t into two parts. The first part consists of ratings within the time

period [t− T, t], where T is the same as the aforementioned pricing cycle length,

and the second part includes ratings in the time period [0, t−T ]. In the example

of Yelp.com, the pricing cycle length is one month.

In this continuous-time model, at any time t, the average rating for the current

time period [t − T, t] is always the ratings of an intact pricing circle; see Figure

A.1 for the illustration.

M Ht - T pL

T

T

mHt pL

M Ht pL

Figure A.1: An Illustration of Average Rating Computation

Denote the average rating during the time period [t− T, t] by m(t|p) and the

average rating up to time t by M(t|p). Then, we have

M(t|p) = αm(t|p) + (1− α)M(t− T |p), (A.42)
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where α (0 < α < 1) is the smoothing factor and represents the weight the

customer puts on the recent rating information.

Now we can show that the long-run average rating M(t|p) converges to the

average rating in a pricing circle η(p). For a customer arriving at any time t,

the first part of the average rating she observes m(t|p) equals η(p), the expected

average rating in each pricing circle. According to (A.42),

M(t|p) = αη(p) + (1− α)M(t− T |p)

= αη(p) + (1− α)(αη(p) + (1− α)M(t− 2T |p))

= ...

=
αη(p)(1− (1− α)n)

1− (1− α)
+ (1− α)nM(t− nT |p)

= η(p) + (1− α)n[M(t− nT |p)− η(p)].

(A.43)

As t → ∞, n → ∞, and thus, (1 − α)n → 0. Then, limt→∞M(t|p) = η(p).

Hence, the long-run average rating M(t|p) at any given time t converges to η(p),

where η(p) is determined by p and is given by (2.1).

A.2.2 Algebra in Extensions

Each realized waiting time w is independently drawn from W , an exponential

random variable with parameter µ− λ(pi), i.e., W ∼ exp(µ− λ(pi)). Denote its

CDF as F (·).

First, we show the following integration:

∫ ∞
0

(r − w)−dF (r) =

∫ w

0

(r − w)dF (r)

=
1

µ− λ(pi)
− w − 1

µ− λ(pi)
e−(µ−λ(pi))w

(A.44)

∫ ∞
0

(r − w)+dF (r) =

∫ ∞
w

(r − w)dF (r)

=

∫ ∞
0

(r − w)dF (r)−
∫ w

0

(r − w)dF (r)

=
1

µ− λ(pi)
e−(µ−λ(pi))w

(A.45)
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Similarly, we have∫ ∞
0

(R− cw)−dF (w) = R− c

µ− λ(pi)
+

c

µ− λ(pi)
e−(µ−λ(pi))

R
c (A.46)∫ ∞

0

(R− cw)+dF (w) = − c

µ− λ(pi)
e−(µ−λ(pi))

R
c (A.47)

Let

X(w) := vgl((V (pi),−pi)|(V̂ (pi),−pi))

=

∫ ∞
0

[(R− cw)− (R− cr)]+dF (r)

+ α

∫ ∞
0

[(R− cw)− (R− cr)]−dF (r)

=

∫ ∞
0

c(r − w)+dF (r) + α

∫ ∞
0

c(r − w)−dF (r)

= α

(
c

µ− λ(pi)
− cw

)
− (α− 1)

c

µ− λ(pi)
e−(µ−λ(pi))w

(A.48)

The last “=” follows (A.44) and (A.45). We further obtain

E[X(w)] =

∫ ∞
0

X(w)dF (w)

= −(α− 1)
c

µ− λ(pi)

∫ ∞
0

e−(µ−λ(pi))wdF (w)

= −α− 1

2

c

µ− λ(pi)
.

(A.49)

Since u(k|r) = kv + kp + vgl(k|r), we can re-write U(join) as

U(join) = E[V (pi)− pi] + δsE[vgl((V (pi),−pi)|(V̂ (pi),−pi))]

+ (1− δs)E[vgl((V (pi),−pi)|(0, 0))]

= E[V (pi)− pi] + δsE[X(w)]− (1− δs)αpi

+ (1− δs)
(∫ ∞

0

(R− cw)+dF (w) + α

∫ ∞
0

(R− cw)−dF (w)

)
.

By (A.46), (A.47), and (A.49), we obtain

U(join) = R− c

µ− λ(pi)
− pi − δs

α− 1

2

c

µ− λ(pi)

+(1− δs)
[
α

(
R− c

µ− λ(pi)

)
+ (α− 1)

c

µ− λ(pi)
e−(µ−λ(pi))

R
c − αpi

]
.
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Similarly, we can simplify U(balk) as

U(balk) = δsE[vgl((0, 0)|(V̂ (pi),−pi))]

= δs

(∫ ∞
0

[−(R− cw)]+dF (w) + α

∫ ∞
0

[−(R− cw)]−dF (w) + pi

)
= −δs

(∫ ∞
0

(R− cw)−dF (w) + α

∫ ∞
0

(R− cw)+dF (w)

)
+ δspi

= −δs
(
R− c

µ− λ(pi)
− (α− 1)

c

µ− λ(pi)
e−(µ−λ(pi))

R
c

)
+ δspi.

The last “=” follows (A.46) and (A.47). Let ggl(δs) := U(join) − U(balk). We

obtain that

ggl(δs) = (1 + δs + α− αδs)
(
R− c

µ− λ(pi)
− pi

)
− (α− 1)

c

µ− λ(pi)

(
δs
2

+ (1− 2δs)e
−(µ−λ(pi))

R
c

)
.

(A.50)

Calculations for customer ratings.

For sophisticated customers,

E[u((R− cw,−pi)|(V̂ (pi),−pi))] = E[R− cw − pi +X(w)]

= R− c

µ− λ(pi)

α + 1

2
− pi.

It follows (A.48) and (A.49).

For naive customers,

E[u((R− cw,−pi)|(η′(p),−p̄))]

= E[R− cw − pi + vgl((R− cw,−pi)|(η′(p),−p̄))]

= R− c

µ− λ(pi)
− pi + (−pi + p̄)+ + α(−pi + p̄)−

+

∫ ∞
0

(R− cw − η′(p))+dF (w) + α

∫ ∞
0

(R− cw − η′(p))−dF (w)

= (1 + α)

(
R− c

µ− λ(pi)

)
− 2pi + p̄− αη′(p)

+(α− 1)
c

µ− λ(pi)
e−(µ−λ(pi))

R−η′(p)
c .
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Appendix B

Proofs and Supplement for
Chapter 3

B.1 Proofs of Propositions and Lemmas

B.1.1 Proof of Lemma 3.1

We start with a patient whose illness perception satisfies α < α̂. Her illness

perceptions after a negative and positive diagnostic result are g0(α) and g1(α),

respectively (see (3.2) and (3.3)). Obviously, g0(α) < α < α̂. According to (3.5),

we have

r(α) = (1− α)V0 − αL1; (B.1)

r(g0(α)) = (1− g0(α))V0 − g0(α)L1. (B.2)

We assume that her illness perception α satisfies g1(α) ≤ α̂. Based on (3.5),

her reward of stopping after a positive diagnosis is

r(g1(α)) = (1− g1(α))V0 − g1(α)L1. (B.3)

Inserting (B.1), (B.2), and (B.3) into the continuing condition (3.7), it is simplifies

as

Cp
V0 + L1

≤ p(s = 1|α)(g1(α)− α)− p(s = 0|α)(α− g0(α)).

Moreover, recall that the patient’s beliefs on obtaining positive diagnostic

result (i.e., signal) and negative diagnostic result are p(s = 1|α) and p(s = 0|α),
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given in (3.8) and (3.9), respectively. We obtain

p(s = 1|α)(g1(α)− α)− p(s = 0|α)(α− g0(α))

= [q01(1− α) + q11α]

(
q11α

q11α + q01(1− α)
− α

)
− [q00(1− α) + q10α]

(
α− q10α

q10α + q00(1− α)

)
= 0.

Since Cp
V0+L1

> 0, the continuing condition (3.7) is violated, which indicates that

given that a patient currently identifies herself as negative, i.e., α < α̂, she would

not pay one more visit if g1(α) ≤ α̂. Similarly, we can show that for a patient

whose illness perception satisfies α > α̂, she would not consider one more visit if

g0(α) ≥ α̂.

B.1.2 Proof of Proposition 3.1

We consider the scenario of α < α̂ and g1(α) > α̂, where

r(α)− p(s = 0|α)r(g0(α))− p(s = 1|α)r(g1(α)) + Cp

= (1− α)V0 − αL1 − p(s = 0|α)[(1− g0(α))V0 − g0(α)L1]

− p(s = 1|α)[g1(α)V1 − (1− g1(α))L0] + Cp

= q01(1− α)(V0 + L0)− q11α(V1 + L1) + Cp.

By the continuing condition (3.7), we can see that the patients continues if and

only if

q01(1− α)(V0 + L0)− q11α(V1 + L1) + Cp < 0,

i.e.,

α ≥ q01(L0 + V0) + Cp
q11(L1 + V1) + q01(L0 + V0)

,

which indicates the lower bound is

α =
q01(L0 + V0) + Cp

q11(L1 + V1) + q01(L0 + V0)
,
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which is (3.12). Similarly, we look into the case of α > α̂ and g0(α) < α̂, where

r(α)− p(s = 1|α)r(g1(α))− p(s = 0|α)r(g0(α)) + Cp

= αV1 − (1− α)L0 − p(s = 1|α)[g1(α)V1 − (1− g1(α))L0]

− p(s = 0|α)[(1− g0(α))V0 − g0(α)L1] + Cp

= −q00(1− α)(V1 + L1) + q10α(V0 + L0) + Cp.

By the continuing condition (3.7), the patients continues if and only if

−q00(1− α)(V1 + L1) + q10α(V0 + L0) + Cp < 0,

which is

α ≤ q00(L0 + V0)− Cp
q00(L0 + V0) + q10(L1 + V1)

.

Thus, we obtain the upper threshold as

α =
q00(L0 + V0)− Cp

q00(L0 + V0) + q10(L1 + V1)
,

which is (3.13).

Recall that the illness perceptions of the patient after obtaining a positive

and negative diagnostic result are given by (3.2) and (3.3), respectively. It can

be easily shown that if q00 = q11, g1(g0(α)) = g0(g1(α)) = α, and if q00 < q11,

g1(g0(α)) = g0(g1(α)) < α. That is,

g1(g0(α)) = g0(g1(α)) ≤ α (B.4)

for any α.

First, we consider the special case of α = α, the most pessimistic patient who

will visit the doctor. By (B.4), we have g1(g0(α)) ≤ α, which indicates g0(α) ≤ α0;

considering that g0(α) is increasing in α, we have the following relation:

g0(α) < g0(α) ≤ α0, (B.5)

from which we have

g0(g0(α)) < g0(g0(α)) ≤ g0(α0) = α.
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That is, any pessimistic patient will cease the visiting process after obtaining two

negative results successively.

Next, consider a scenario where an optimistic patient obtains two positive

results successively. Her illness perception becomes

g1(g1(α)) =
q2

11α

q2
11α + q2

01(1− α)
. (B.6)

Moreover,

g1(g1(α))− α =
q2

11α(1− α)− q2
01α(1− α)

q2
11α + q2

01(1− α)

=
q2

11α(1− α)

q2
11α + q2

01(1− α)

(
α(1− α)

α(1− α)
− q2

01

q2
11

)
.

Using the expressions of α and α, given by (3.12) and (3.13), respectively, we

obtain

α(1− α)

α(1− α)
=

(q01(L0 + V0) + Cp)(q10(L1 + V1) + Cp)

(q00(L0 + V0)− Cp)(q11(L1 + V1)− Cp)
>
q01q10

q00q11

. (B.7)

We then have

g1(g1(α))− α > q2
11α(1− α)

q2
11α + q2

01(1− α)

q01

q11

(
q10

q00

− q01

q11

)
.

As q11 ≥ q00, q10
q00
− q01

q11
≥ 0, which indicates g1(g1(α)) − α ≥ 0. Therefore, the

most pessimistic patient will cease the visiting process after obtaining two positive

results successively. Again, considering that g1(α) is increasing in α, we have

g1(g1(α)) > g1(g1(α)) ≥ α. (B.8)

Proposition 3.1 is proved.

B.1.3 Proof of Lemma 3.2

α0 and α0 are determined by α and α, respectively (see (3.10) and (3.11) ), and

α− α0 =
α(1− α)q10 − α(1− α)q00

αq00 + (1− α)q10

, (B.9)

α0 − α =
α(1− α)q01 − α(1− α)q11

αq01 + (1− α)q11

. (B.10)
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If there were doctor-shopping patients in the population, at least one of the

following conditions is required: (1) α0 < α and (2) α0 > α, which are equivalent

to

α(1− α)

α(1− α)
<
q10

q00

and
α(1− α)

α(1− α)
<
q01

q11

,

respectively. We then have the following three cases according to the magnitudes

of q10
q00

, q01
q11

, and α(1−α)
α(1−α)

. Since q11 > q00, q10
q00

< q01
q11

. We have the following three

cases.

Case 1:

α(1− α)

α(1− α)
≥ q01

q11

,

which is (3.14). Obviously, α0 > α and α0 ≤ α; everyone is neutral, and hence

each visits once. We look into Case 2 and Case 3 in the following proof.

Case 2:

q10

q00

≤ α(1− α)

α(1− α)
<
q01

q11

,

which is (3.15). In this case, α0 ≥ α and α0 > α; there are neutral and optimistic

patients, but no pessimistic ones.

Case 3:

α(1− α)

α(1− α)
< min

{
q10

q00

,
q01

q11

}
=
q10

q00

,

which is (3.16). Here α0 < α and α0 > α; there are three types of patients,

namely, pessimistic, neutral, and optimistic.

Then, we look into Case 2 illustrated by (3.15), where there are two types

patients, neutral and optimistic. Obviously, an optimistic patient would leave

after the first visit if she obtains a negative result. If she obtains a positive result

at the first visit, (1) by (B.8), we have g1(α) > α0; (2) by α < α < α0, g1(α) < α.

Since α < α0 in Case 2, we have the following relation

α0 < g1(α) < α0;

that is, the non-neutral patient becomes neutral if she obtains a positive result,

and hence she would leave after another visit.
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Last, we look into Case 3, where there are three types of patients, illustrated

by (3.16). We start with the worst-case scenario for a pessimistic patient (i.e.,

α0 < α < α), where she first obtains a negative result, and in the following

visits, none of any successive diagnoses consists with one another. Recall that a

pessimistic patient would become optimistic after obtaining a negative diagnostic

result, i.e., α < g0(α) < α0 (see (B.5)). By (B.8), it can be easily concluded

that an optimistic patient would become neutral or pessimistic upon obtaining a

positive diagnosis; that is, α0 < g1(g0(α)) < α. Obviously, if α0 < g1(g0(α)) < α0,

she would leave after a third visit; otherwise, her illness perception would swing

back and forth for multiple times until it falls into interval (α0, α0), and then pay

one last visit. The illness perception evolves as follows:

α...→ g0 ◦ (g1 ◦ g0)i−1(α)→ (g1 ◦ g0)i(α)...

Since g1(g0(α)) = g0(g1(α)) < α, we have

(g1 ◦ g0)i−1(α) > (g1 ◦ g0)i(α),

g0 ◦ (g1 ◦ g0)i−1(α) > g0 ◦ (g1 ◦ g0)i(α),

where i = 1, 2.... We then infer that after some 2nth (n = 1...) visit she becomes

neutral instead of pessimistic under this worst-case scenario. Obviously, n is

determined by the smallest integer satisfying the following relations:

(g1 ◦ g0)n(α) ≤ α0. (B.11)

In other words, she needs 2n+ 1 visits in total before she eventually leaves in the

worst-case scenario. It is easy to verify that

(g1 ◦ g0)n(α) = (g0 ◦ g1)n(α) =
(q11q10)nα

(q11q10)nα + (q00q01)n(1− α)
, (B.12)

Through some simple algebra, (B.11) can be rewritten as

α(1− α)

α(1− α)
≥ q10

q00

(
q11q10

q00q01

)n
; (B.13)

that is,

n = min

{
j ≥ 1 :

α(1− α)

α(1− α)
≥ q10

q00

(
q11q10

q00q01

)j
, j ∈ Z

}
. (B.14)
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Obviously, α(1−α)
α(1−α)

decreases in α. Meanwhile, since 1
2
< q00 < q11 < 1, q11q10

q00q01
< 1,

and hence
(
q11q10
q00q01

)j
decreases in j. Hence, n ∈ Z is non-decreasing in α. It

indicates that any pessimistic patient would never pay more visits than the most

pessimistic patient in the worst-case scenario.

As for the optimistic patients, i.e., α ∈ (α, α0), we have shown that g1(α) ∈

(α0, α) (see (B.8)). first, when g1(α) ∈ (α0, α), we just substitute g1(α) for α in

(B.12), and we obtain

α(1− α)

α(1− α)
≥
(
q11q10

q00q01

)n
.

In other word, under the worst-case scenario, given that an optimistic patient’s

illness perception satisfies g1(α) ∈ (α0, α), she becomes pessimistic after the first

visit, and then she needs 2n more visits to becomes neutral; she needs one more

visit to leave after becoming neutral. That is, she needs 2n + 2 visits in total,

where n = 1, 2... Moreover, when g1(α) ∈ (α0, α0), it is easy to verify that

α(1−α)
α(1−α)

≥
(
q11q10
q00q01

)0

; it also satisfies 2n + 2 with n = 0. Hence, for the optimistic

patients, n is determined by

n = min

{
j ≥ 0 :

α(1− α)

α(1− α)
≥
(
q11q10

q00q01

)j
, j ∈ Z

}
. (B.15)

Similar to the analysis following (B.14), we can show that any optimistic patient

would never pay more visits than the most pessimistic patient in the optimistic

patient population in the worst-case scenario. Combining (B.14) and (B.15), we

obtain (3.17).

B.1.4 Proof of Proposition 3.2

Recall that whenever two successive diagnostic results are consistent (not restrict

to this), the patient leaves the system; see Proposition 3.1. Since whenever (3.14)

is satisfied, every joining patient is neutral and visits once (see Proof of Lemma

3.2), and hence, E[N ] = α−α. When (3.14) is not satisfied, we have two scenarios,

that is, the symmetric-error scenario with q00 = q11 and the asymmetric-error

scenario, i.e., q00 < q11.
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We first look into the symmetric-error scenario, i.e., q00 = q11, where q10
q00

= q01
q11

.

If

α(1− α)

α(1− α)
≥ q10

q00

=
q01

q11

,

α0 ≥ α and α0 ≤ α, which indicates every joining patient is neutral. If

α(1− α)

α(1− α)
<
q10

q00

=
q01

q11

,

α0 < α and α0 > α; there are three types of patients, namely, pessimistic, neutral,

and optimistic. Moreover, g1(g0(α)) = g0(g1(α)) = α, which indicates that under

the worst-case scenario, a non-neutral patient’s illness perception will transits

back and forth between two states, α and g1(α) if she is optimistic, and α and

g0(α) if she is pessimistic. Considering the results we obtain in Proposition 3.1,

we can see that when q01 = q10, the pessimistic and optimistic patients leave the

system if and only if two successive diagnoses are consistent with each other.

Consider a patient whose illness perception falls into interval (α0, α].

1. If N = 2i+1 (i = 0, 1, 2, ...), she first obtains a negative result and becomes

optimistic; then she obtains a positive result and becomes pessimistic. This

pattern repeats i times (i = 0 represent the scenario that she obtains a

positive diagnosis at the first visit and leaves), i.e., she becomes optimistic

for i times and pessimistic for i times. Before the last visit, she is pessimistic;

she obtains a positive result at this last visit and leaves. That is,

P (N = 2i+ 1|α ∈ (α0, α]) = q11(q11q10)iα0 + q01(q00q01)i(1− α0);

2. If N = 2i+ 2 (i = 0, 1, 2, ...), her illness perception transits back and forth

between α and g0(α) for i times, and then she obtains two negative results

successively and leaves. That is,

P (N = 2i+ 2|α ∈ (α0, α]) = (q10)2(q11q10)iα0 + (q00)2(q00q01)i(1− α0).

That is, for i = 0, 1, 2, ...,{
P (N = 2i+ 1|α ∈ (α0, α]) = q11(q11q10)iα0 + q01(q00q01)i(1− α0),

P (N = 2i+ 2|α ∈ (α0, α]) = (q10)2(q11q10)iα0 + (q00)2(q00q01)i(1− α0).
(B.16)
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Similarly, we obtain the probability mass of the patient whose illness perception

falls into interval [α, α0) as follows:{
P (N = 2i+ 1|α ∈ [α, α0)) = q10(q11q10)iα0 + q00(q00q01)i(1− α0),

P (N = 2i+ 2|α ∈ [α, α0)) = (q11)2(q11q10)iα0 + (q01)2(q00q01)i(1− α0).
(B.17)

By (B.16) and (B.17), we obtain

E[N |α ∈ (α0, α]] =
2− q11

1− q11q10

α0 +
1 + q00

1− q00q01

(1− α0), (B.18)

E[N |α ∈ [α, α0)] =
1 + q11

1− q11q10

α0 +
2− q00

1− q00q01

(1− α0), (B.19)

respectively. We further obtain

E[N ] = E[N |α ∈ [α0, α0)](α− α0) + (α0 − α0) + E[N |α ∈ [α, α0)](α0 − α)

= (α− α) + (E[N |α ∈ [α0, α0)]− 1) (α− α0)

+
(
E[N |α ∈ [α, α0)]− 1

)
(α0 − α).

Inserting (B.18) and (B.19) into the above equation, we obtain (3.20)

Next, we look into the asymmetric-error scenario, i.e., q00 < q11. The case

illustrated (3.15) is easy, where the joining patients are either optimistic or neu-

tral. Here an optimistic patient pays at most two visits, and the second visit

is needed only if she obtains a positive diagnosis (the probability of which is

α0q11 + (1− α0)q01) at the first visit. Therefore, the expected visiting times of a

patient E[N ] as follows (3.21).

Now we focus on the case illustrated (3.16). We start with the scenario

that the patient is pessimistic and her illness perception falls into interval

(α2n−1, α2n+1], where n ≥ 1.

1. If N = 2i+ 1 < 2n+ 1 (i = 0, 1, ...n− 1), she first obtains a negative result

and becomes optimistic; then she obtains a positive result and becomes

pessimistic. This pattern repeats i times, i.e., she becomes optimistic for i

times and pessimistic for i times. Before the last visit, she is pessimistic;

she obtains a positive result at this last visit and leaves. That is,

P (N = 2i+ 1|α ∈ (α2n−1, α2n+1]) = q11(q11q10)iα0 + q01(q00q01)i(1− α0);
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2. If N = 2n+1, this is the worst case. Same as the case of N = 2i+1 < 2n+1,

her mind swings back and forth between optimistic and pessimistic for n

times; different from the case of N = 2i+ 1 < 2n+ 1, she becomes neutral

after the swinging, and follows whatever advice the last doctor gives. That

is,

P (N = 2n+ 1|α ∈ (α2n−1, α2n+1]) = (q11q10)nα0 + (q00q01)n(1− α0);

3. If N = 2i + 2 < 2n + 1 (i = 0, 1, ...n− 1), her mind swings back and forth

between optimistic and pessimistic for i−1 times, and then she obtains two

negative results successively and leaves. That is,

P (N = 2i+2|α ∈ (α2n−1, α2n+1]) = (q10)2(q11q10)iα0+(q00)2(q00q01)i(1−α0).

To sum up, for i = 0, 1, ...n− 1,

P (N = 2i+ 1|α ∈ (α2n−1, α2n+1])

= q11(q11q10)iα0 + q01(q00q01)i(1− α0),

P (N = 2n+ 1|α ∈ (α2n−1, α2n+1])

= (q11q10)nα0 + (q00q01)n(1− α0),

P (N = 2i+ 2|α ∈ (α2n−1, α2n+1])

= (q10)2(q11q10)iα0 + (q00)2(q00q01)i(1− α0).

(B.20)

Similarly, we obtain when α ∈ (α2n−2, α2n], i.e., the patient is optimistic,

P (N = 2i+ 1|α ∈ (α2n−2, α2n])

= q10(q11q10)iα0 + q00(q00q01)i(1− α0),

P (N = 2i+ 2|α ∈ (α2n−2, α2n])

= (q11)2(q11q10)iα0 + (q01)2(q00q01)i(1− α0),

P (N = 2n+ 2|(α2n−2, α2n])

= q11(q11q10)nα0 + q01(q00q01)n(1− α0),

(B.21)

where i = 0, 1, ...n− 1. By (B.20) and (B.21), we obtain

E[N |α ∈ (α2n−1, α2n+1]] =
α0

1− q11q10

(1 + q10 − q10(1 + q11)(q11q10)n)

+
1− α0

1− q01q00

(1 + q00 − q00(1 + q01)(q01q00)n) ,
(B.22)

and

E[N |α ∈ (α2n−2, α2n]] =
α0(1 + q11)

1− q11q10

(1− (q11q10)n)

+
(1− α0)(1 + q01)

1− q01q00

(1− (q01q00)n) ,

(B.23)
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respectively, where n ≥ 1. Moreover, since m = maxn, we obtain m as follows

through some easy algebra transformation:

m =

{
j ≥ 0 :

q10

q00

(
q11q10

q00q01

)j
≤ α(1− α)

α(1− α)
≤ q01

q11

(
q11q10

q00q01

)j
, j ∈ Z

}
. (B.24)

It can be easily shown that m is weakly increasing in α and weakly decreasing in

α. Remember that when α ∈ (α0, α0), the patient visits only once. We have

E[N ] =
m−1∑
n=1

E[N |α ∈ (α2n−1, α2n+1]](α2n+1 − α2n−1)

+ E[N |α ∈ (α2m−1, α2m+1]](α− α2m−1) + α0 − α0

+
m∑
n=1

E[N |α ∈ (α2n−2, α2n]](α2n − α2n−2)

+ E[N |α ∈ (α2m, α2m+2]](α0 − α2m),

based on which we further obtain (3.22).

B.1.5 Proof of Proposition 3.3

We obtain from (3.12) and (3.13)

dα

dCp
=

1

q11(L1 + V1) + q01(L0 + V0)
, (B.25)

dα

dCp
= − 1

q00(L0 + V0) + q10(L1 + V1)
, (B.26)

respectively; that is, if the waiting time decreases, α decreases and α increases.

In other words, more patients join if the waiting time is reduced. Moreover, from

(3.10) and (3.11), we have, respectively,

dα0

dα
=

q11q01

(αq01 + (1− α)q11)2
> 0, (B.27)

dα0

dα
=

q00q10

(αq00 + (1− α)q10)2
> 0. (B.28)

We have obtained that for the case illustrated by (3.14), there is no doctor

shopping patients, and E[N ] = α− α. Here,

dE[N ]

dCp
=

(
dα

dCp
− dα

dCp

)
< 0, (B.29)
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When (3.14) is not satisfied and q00 = q11, E[N ] is given by (3.20), where

1− q2
11

1− q11q10

α0 +
q00(2− q00)

1− q00q01

(1− α0) > 0,

q11(2− q11)

1− q11q10

α0 +
1− q2

00

1− q00q01

(1− α0) > 0.

We have

dE[N ]

dCp
=

(
dα

dCp
− dα

dCp

)
+

(
1− q2

11

1− q11q10

α0 +
q00(2− q00)

1− q00q01

(1− α0)

)(
dα

dCp
− dα0

dα

dα

dCp

)
+

(
q11(2− q11)

1− q11q10

α0 +
1− q2

00

1− q00q01

(1− α0)

)(
dα0

dα

dα

dCp
− dα

dCp

)
<0.

(B.30)

For the asymmetric-error scenario, i.e., q00 < q11, there are two cases. One is

illustrated by (3.15), where E[N ] is given by (3.21). It can be easily shown that

dE[N ]

dCp
=

(
dα

dCp
− dα

dCp

)
+ [α0q11 + (1− α0)q01]

(
dα0

dα

dα

dCp
− dα

dCp

)
< 0.(B.31)

Last, we check the asymmetric-error scenario is illustrated by (3.16). From

(3.18) and (3.19), we obtain, respectively,

∂α2n

∂α
=

K1

[(1− α)K1 + α]2
, (B.32)

∂α2n+1

∂α
=

K2

[(1− α)K2 + α]2
. (B.33)

From (B.22), we can see that the expected visiting time of a patient whose illness

perception falls into interval α ∈ (α2n−1, α2n+1] is determined by n, where α2n−1 is

determined by (3.19), which is determined by α. Obviously, for n′ > n, E[N |α ∈

(α2n′−1, α2n′+1]] > E[N |α ∈ (α2n−1, α2n+1]].

We next check how E[N |α ∈ (α2n−1, α2n+1]] changes in respond to the changes

of α. Suppose that the lower bound increases from α to α′. Denote the new

interval within which a patient visit at most 2n+ 1 times as (α′2n−1, α
′
2n+1]. Since

dα2n+1

dα
> 0 (see (B.33)), α′2n−1 > α2n−1 and α′2n+1 > α2n+1. First, suppose that

Cp decreases a value such that m determined by (B.24) stays the same. Then,

α2n−1 < α′2n−1 < α2n+1 < α′2n+1. Now, we can see that upon the reduced waiting
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time, patients in interval (α′2n−1, α2n+1] visit 2n + 1 times, where as patients in

interval [α2n−1, α
′
2n−1] visit 2(n − 1) + 1 times. Obviously, the expected visiting

time in interval (α2n−1, α2n+1] decreases as lower bound increases from α to α′;

namely,

∂

∂α
{E[N |α ∈ (α2n−1, α2n+1]](α2n+1 − α2n−1)} < 0. (B.34)

Similarly, we can show that the above relation also holds when m increases.

Similar to the above analysis of (B.34), by (B.23) and (B.32), it can also be

shown that

∂

∂α
{E[N |α ∈ (α2n−2, α2n]](α2n − α2n−2)} < 0. (B.35)

By (B.34), (B.35), and (B.25), we can see that

∂E[N ]

∂α
< 0. (B.36)

Moreover, By (3.22), we have

∂E[N ]

∂α
=α0

(
1 + q11

dα0

dα

)(
1 + q10

1− q11q10

− q10(1 + q11)

1− q11q10

(q11q10)m
)

+ (1− α0)

(
1 + q01

dα0

dα

)(
1 + q00

1− q01q00

− q00(1 + q01)

1− q01q00

(q01q00)m
)
,

where
dα0

dα
> 0 and is given by (B.27). Obviously, ∂E[N ]

∂α
> 0. Moreover, by (B.36)

and (B.26), we have

dE[N ]

dCp
=
∂E[N ]

∂α

dα

dCp
+
∂E[N ]

∂α

dα

dCp
< 0; (B.37)

that is, as the waiting time is reduced, averagely the patients pay more visits in

each illness episode.

Now we have shown that dE[N ]
dCp

< 0 for all of the scenarios we categorized in

Lemma 3.2, respectively in (B.29), (B.30), (B.31), and (B.37), and hence we have

dλ

dCp
=
dE[N ]

dCp
Λ < 0. (B.38)

Now we look into the relations between Cp and the direct charge f . We have

dCp
df

= 1 + c
dw

df
,
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where
dw

df
=

1

(µ− λ)2

dλ

dCp

(
1 + c

dw

df

)
= w2 dλ

dCp

(
1 + c

dw

df

)
.

We then obtain the following equations:

dw

df
=

w2 dλ
dCp

1− cw2 dλ
dCp

,
dCp
df

=
1

1− cw2 dλ
dCp

. (B.39)

By (B.38), we can see that

−1 < c
dw

df
< 0, 0 <

dCp
df

< 1.

Proposition 3.3 is proved.

B.1.6 Proof of Proposition 3.4

By Lemma 3.1, it can be easily shown that g1(α0) > α̂ and g0(α0) < α̂, where

g1(· ), g0(· ), and α̂ are given by (3.2), (3.3), and (3.6), respectively. Moreover, by

(3.5), we obtain

r(g1(α0)) = g1(α0)V1 − (1− g1(α0))L0,

r(g0(α0)) = (1− g0(α0))V0 − g0(α0)L1.

Therefore, (3.23) is simplified as

Ru = [q11α0V1 − q01(1− α0)L0 + q00(1− α0)V0 − q10α0L1](α− α).

Let

R := q11α0V1 − q01(1− α0)L0 + q00(1− α0)V0 − q10α0L1;

R is a constant. Define a function as follows: G(x, y) := R(y − x). Obviously,

Ru = G(α, α).

Since when (3.14) is satisfied, no patient doctor shops, and hence Ru = Ru
ds.

In the following analysis, we focus on the condition that (3.14) is not satisfied,

where there are doctor-shopping patients.

First, we consider the symmetric-error scenario, i.e., q11 = q00. We take

a pessimistic patient as an example. Denote v(N |α ∈ (α0, α)) and v0(N |α ∈
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(α0, α)) as the perceived and objective reward of the patients starting from α

and reaching to the stopping set after N visits, respectively. The probability

mass function is given in (B.16). We can easily show that the corresponding

v0(N |α ∈ (α0, α)) is given as
v0(N = 2i+ 1|α ∈ (α0, α))

= g1 ◦ (g1 ◦ g0)i(α0)V1 − (1− g1 ◦ (g1 ◦ g0)i(α0))L0

v0(N = 2i+ 2|α ∈ (α0, α))

= (1− g0 ◦ g0 ◦ (g1 ◦ g0)i(α0))V0 − g0 ◦ g0 ◦ (g1 ◦ g0)i(α0)L1

,

where i ≥ 0. Since g1 ◦ g0(α) = α, we can simplify the above equation as{
v0(N = 2i+ 1|α ∈ (α0, α)) = g1(α0)V1 − (1− g1(α0))L0

v0(N = 2i+ 2|α ∈ (α0, α)) = (1− g0 ◦ g0(α0))V0 − g0 ◦ g0(α0)L1

. (B.40)

Similarly, we obtain the objective reward of an optimistic patient, v0(N |α ∈

(α, α0)), where{
v0(N = 2i+ 1|α ∈ (α, α0)) = (1− g0(α0))V0 − g0(α0)L1

v0(N = 2i+ 2|α ∈ (α, α0)) = g1 ◦ g1(α0)V1 − (1− g1 ◦ g1(α0))L0

, (B.41)

where i ≥ 0. The corresponding probability are given by (B.16) and (B.17),

respectively. By (B.16), (B.17), (B.40), and (B.41), we have

Ru
ds = G(α0, α0) +

∞∑
N=0

v0(N |α ∈ (α0, α))P (N |α ∈ (α0, α))(α− α0)

+
∞∑
N=0

v0(N |α ∈ (α, α0))P (N |α ∈ α ∈ (α, α0))(α0 − α)

= G(α0, α0)

+(α− α0) (g1(α0)V1 − (1− g1(α0))L0)

(
q11α0

1− q11q10

+
q01(1− α0)

1− q00q01

)
+(α− α0) ((1− g0 ◦ g0(α0))V0 − g0 ◦ g0(α0)L1)

(
q2

10α0

1− q11q10

+
q2

00(1− α0)

1− q00q01

)
+(α0 − α) ((1− g0(α0))V0 − g0(α0)L1)

(
q10α0

1− q11q10

+
q00(1− α0)

1− q00q01

)
+(α0 − α) (g1 ◦ g1(α0)V1 − (1− g1 ◦ g1(α0))L0)

(
q2

11α0

1− q11q10

+
q2

01(1− α0)

1− q00q01

)
.

and g1(·), g0(·), and g1 ◦ g1(·) are given in (3.2), (3.3), and (B.6), respectively.

Moreover,

g0 ◦ g0(α) =
q2

10α

q2
10α + q2

00(1− α)
.
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The above Ru
ds can be written as

Ru
ds = G(α0, α0)

+(α− α0)
q11α0V1 − q01(1− α0)L0

q11α0 + q01(1− α0)

(
q11α0

1− q11q10

+
q01(1− α0)

1− q00q01

)
+(α− α0)

q2
00(1− α0)V0 − q2

10α0L1

q2
10α0 + q2

00(1− α0)

(
q2

10α0

1− q11q10

+
q2

00(1− α0)

1− q00q01

)
+(α0 − α)

q00(1− α0)V0 − q10α0L1

q10α0 + q00(1− α0)

(
q10α0

1− q11q10

+
q00(1− α0)

1− q00q01

)
+(α0 − α)

q2
11α0V1 − q2

01(1− α0)L0

q2
11α0 + q2

01(1− α0)

(
q2

11α0

1− q11q10

+
q2

01(1− α0)

1− q00q01

)
By q11 = q00,

Ru
ds =G(α0, α0)

+
α− α0

1− q11q10

[q11α0V1 − q01(1− α0)L0 + q2
00(1− α0)V0 − q2

10α0L1]

+
α0 − α

1− q11q10

[q00(1− α0)V0 − q10α0L1 + q2
11α0V1 − q2

01(1− α0)L0]

.(B.42)

Taking difference between Ru, given by (B.42), and Ru
ds, given by (3.23), we

obtain

Ru
ds −Ru =

q11q10

1− q11q10

(α− α0)[q11α0(V1 + L1)− q10(1− α0)(V0 + L0)]

+
q11q10

1− q11q10

(α0 − α)[q11(1− α0)(V0 + L0)− q10α0(V1 + L1)]

=
q11q10[α(1− α)q10 − α(1− α)q11]

1− q11q10

X

where it follows (B.9) and (B.10) from the first “=” to the second “=”, and

X =
q11α0(V1 + L1)− q10(1− α0)(V0 + L0)

αq11 + (1− α)q10

+
q11(1− α0)(V0 + L0)− q10α0(V1 + L1)

αq10 + (1− α)q11

.

By (3.12) and (3.13), we have

X =
q11α0(V1 + L1)− q10(1− α0)(V0 + L0)

q11q10(L0 + V0 + L1 + V1) + (q11 − q10)Cp
(q11(L1 + V1) + q10(L0 + V0))

+
q11(1− α0)(V0 + L0)− q10α0(V1 + L1)

q11q10(L0 + V0 + L1 + V1) + (q11 − q10)Cp
(q11(L0 + V0) + q10(L1 + V1)).

=
(q11 − q10)(α0(V1 + L1)2 + (1− α0)(V0 + L0)2)

q11q10(L0 + V0 + L1 + V1) + (q11 − q10)Cp
> 0.
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The sign of Ru
ds − Ru is the same as that of X, and hence, Ru

ds − Ru > 0. That

is, doctor shopping improves objective reward under this scenario.

When q11 > q00 and α(1−α)
α(1−α)

≥ q10
q00

, the patients whose illness perceptions fall

into interval [α0, α) visit only once, whereas optimistic patients whose illness

perceptions fall into interval (α, α0) pay a second visit if they obtain positive

results at the first visit, and they terminate the visiting process if they obtain

negative results. We obtain

Ru
ds =G(α0, α) + p(s1 = 0|α0)r(g0(α0))Λ(α0 − α)

+ p(s1 = 1, s2 = 1|α0)r(g1 ◦ g1(α0))Λ(α0 − α)

+ p(s1 = 1, s2 = 0|α0)r(g1 ◦ g0(α0))Λ(α0 − α)

where

p(s1 = 1, s2 = 1|α0) =q2
11α0 + q2

01(1− α0),

p(s1 = 1, s2 = 0|α0) =q11q10α0 + q00q01(1− α0)

By Lemma 3.2, an optimistic patient would leave being reassured as not sick after

a positive and a negative result at the first and the second visit, respectively, and

hence, the reward she brings to the system is

r(g1 ◦ g0(α0)) = (1− g1 ◦ g0(α0))V0 − g1 ◦ g0(α0)L1;

moreover,

r(g1 ◦ g1(α0)) = g1 ◦ g1(α0)V1 − (1− g1 ◦ g1(α0))L0.

Remember that g1 ◦ g0(· ) and g1 ◦ g1(· ) are given by (B.12), with n = 1, and

(B.8), respectively. Taking difference between Ru and Ru
ds, we obtain

Ru
ds −Ru

= [p(s1 = 1, s2 = 1|α0)r(g1 ◦ g1(α0)) + p(s1 = 1, s2 = 0|α0)r(g1 ◦ g0(α0))

− p(s1 = 1|α0)r(g1(α0))](α0 − α)

= [(q2
11α0V1 − q2

01(1− α0)L0) + (q00q01(1− α0)V0 − q11q10α0L1)

− (q11α0V1 − q01(1− α0)L0)](α0 − α)

= [q00q01(1− α0)(V0 + L0)− q11q10α0(V1 + L1)](α0 − α).

Therefore, if q00q01(1− α0)(V0 + L0)− q11q10α0(V1 + L1) > 0, which is equivalent

to (3.25), Ru
ds −Ru > 0.
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B.2 Supplement: Derivation of Ru
ds and Rp

ds

Following the thought of Proof of Proposition 3.3, we categorize patients accord-

ing to the maximum visits they need until they leave the system eventually un-

der the worst-case scenario. Since the patients apply OSLA rule repeatedly until

there is no advantage of paying another visit, we denote v(N |α ∈ (α2n−1, α2n+1))

as the perceived reward of the pessimistic patients starting from α (where

α ∈ (α2n−1, α2n+1)) and reaching to the stopping set after N visits; the objective

reward is hence v0(N |α ∈ (α2n−1, α2n+1)). Similar for the optimistic patients.

First, consider the objective reward Ru
ds. Specially, we consider a pessimistic

patient whose illness perception satisfies α ∈ (α2n−1, α2n+1), where n = 1, ...m,

and m is given in (B.24). By using the results of Proof of Proposition 3.2, we

obtain

v0(N = 2i+ 1|α ∈ (α2n−1, α2n+1))

= g1 ◦ (g1 ◦ g0)i(α0)V1 − (1− g1 ◦ (g1 ◦ g0)i(α0))L0

v0(N = 2n+ 2|α ∈ (α2n−1, α2n+1))

= (1− g0 ◦ g0 ◦ (g1 ◦ g0)i(α0))V0 − g0 ◦ g0 ◦ (g1 ◦ g0)i(α0)L1

v0(N = 2n+ 1,+|α ∈ (α2n−1, α2n+1))

= g1 ◦ (g1 ◦ g0)n(α0)V1 − (1− g1 ◦ (g1 ◦ g0)n(α0))L0

v0(N = 2n+ 1,−|α ∈ (α2n−1, α2n+1))

= (1− g0 ◦ (g1 ◦ g0)n(α0))V0 − g0 ◦ (g1 ◦ g0)n(α0)L1

, (B.43)

where 0 ≤ i < n, and the third and fourth rows of (B.43) are the rewards of the

patient when she leaves as positive and negative after 2n + 1 visits, the worst-

case scenario, respectively. Moreover, the probabilities of the patient visiting

N = 2i, 2i+ 1, 2n+ 1 times are given in (B.20).

Similarly, we obtain the reward of the optimistic patients, which is

v0(N = 2i+ 1|α ∈ (α2n−2, α2n))

= (1− g0 ◦ (g1 ◦ g0)i(α0))V0 − g0 ◦ (g1 ◦ g0)i(α0)L1

v0(N = 2i+ 2|α ∈ (α2n−2, α2n))

= g1 ◦ g1 ◦ (g1 ◦ g0)i(α0)V1 − (1− g1 ◦ g1 ◦ (g1 ◦ g0)i(α0))L0

v0(N = 2n+ 2,+|α ∈ (α2n−2, α2n))

= g1 ◦ g1 ◦ (g1 ◦ g0)n(α0)V1 − (1− g1 ◦ g1 ◦ (g1 ◦ g0)n(α0))L0

v0(N = 2n+ 2,−|α ∈ (α2n−2, α2n))

= (1− (g1 ◦ g0)n+1(α0))V0 − (g1 ◦ g0)n+1(α0)L1

,(B.44)
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where 0 ≤ i < n, and the third and fourth rows of (B.44) are the rewards of the

patient when she leaves as positive and negative after 2n+2 visits, the worst-case

scenario, respectively. The probabilities of each visiting times of the optimistic

patients are given in (B.21). Moreover,

Ru
ds = G(α0, α0)

+
m∑
n=1

2n+1∑
N=1

v0(N |α ∈ (α2n−1, α2n+1)) ∗ P (N |α ∈ (α2n−1, α2n+1))(α2n+1 − α2n−1)

+
m+1∑
n=1

2n∑
N=1

v0(N |α ∈ (α2n−2, α2n)) ∗ P (N |α ∈ (α2n−2, α2n))(α2n − α2n−2).

Next, we consider Rp
ds. By substituting α0 with α in (B.43) and (B.44),

we obtain v(N |α ∈ (α2n−1, α2n+1)) and v(N |α ∈ (α2n−2, α2n)), respectively .

Moreover,

Rp
ds = F (α0, α0)

+
m∑
n=1

∫ α2n+1

α2n−1

[
2n+1∑
N=1

v(N |α ∈ (α2n−1, α2n+1)) ∗ P (N |α ∈ (α2n−1, α2n+1))

]
dα

+
m+1∑
n=1

∫ α2n

α2n−2

[
2n+2∑
N=1

v(N |α ∈ (α2n−2, α2n)) ∗ P (N |α ∈ (α2n−2, α2n))

]
dα.

where

F (x, y) =
q01(1− α0) + q11α0

q11 − q01

(q11V1 + q01L0)(y − x)

− q01(1− α0) + q11α0

q11 − q01

q11q01(V1 + L0)

q11 − q01

ln

(
q01 + (q11 − q01)y

q01 + (q11 − q01)x

)
+
q00(1− α0) + q10α0

q00 − q10

(q00V0 + q10L1)(y − x)

+
q00(1− α0) + q10α0

q00 − q10

q00q10(V0 + L1)

q00 − q10

ln

(
q00 − (q00 − q10)y

q00 − (q00 − q10)x

)
.

Through simple algebra transformation of (3.24), we can obtain that Rp =

F (α, α). Moreover, when q11 = q00,

Rp
ds = F (α0, α0) +

(
q11α0

1− q11q10

+
q01(1− α0)

1− q00q01

)∫ α

α0

q11αV1 − q01(1− α)L0

q11α + q01(1− α)
dα

+

(
q2

10α0

1− q11q10

+
q2

00(1− α0)

1− q00q01

)∫ α

α0

q2
00(1− α)V0 − q2

10αL1

q2
10α + q2

00(1− α)
dα

111



+

(
q10α0

1− q11q10

+
q00(1− α0)

1− q00q01

)∫ α0

α

q00(1− α)V0 − q10αL1

q10α + q00(1− α)
dα

+

(
q2

11α0

1− q11q10

+
q2

01(1− α0)

1− q00q01

)∫ α0

α

q2
11αV1 − q2

01(1− α)L0

q2
11α + q2

01(1− α)
dα.
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