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ABSTRACT 

A multivariate spatial time series (MSTS) consists of a collection of values by a 

set of geographical coordinates accompanied by a set of multivariate time series 

(MTS). An MTS is composed of a number of temporally interrelated variables 

monitored over a period of time at successive time instants spaced at uniform 

time intervals. MTS data are generated massively due to recent developments in 

sensor and satellite technologies, medical measurements, climate informatics, 

and bioinformatics. These large-scale data encode important information about 

complex relations among individual time series. Many of these MTS are spatio-

temporal by nature in which they are collected together with spatial location 

information such as latitude and longitude. For example, climate data are from 

sensors located in different regions, each of which collects periodic readings of 

variables such as humidity, wind speed, temperature, and rainfall intensity. A 

computational technique that is able to discover interesting patterns in MSTS 

data can lead to many applications in diverse areas of research and be helpful to 

society as well as to the economy. MSTS can be represented as a set of MTSs 

each of which is associated with a spatial location. Conventional time series 

analysis methods which consider only the time domain are often adopted to 

analyze MTS, but the spatial and temporal relationships associated with the 

individual time series in MSTS are usually ignored, or treated separately, during 

the pattern discovery process. For this reason, new effective techniques are 

required. In this thesis, we proposed some such techniques, in particular, that can 

be used to address the problems of identifying interesting patterns in MSTS and 

the classification and clustering of them. 
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One of the classical examples of MTS is spatial trajectory data with x coordinate 

and y coordinate forming the different components of the MTS. In many cases, 

such data is also spatio-temporal as it may be associated with many spatio-

temporal parameters such as velocity and direction etc. Mining spatial 

trajectories can have many applications in a variety of research areas. For 

example, in traffic data, finding patterns of driving behavior of moving objects 

can provide insight into many real applications such as auto insurance and 

vehicle safety checks. In this regard, we propose in this thesis a technique that 

can discover association patterns from the feature space characterizing the spatial 

trajectories. These discovered association patterns, treated as the driving 

behavior on the road, could be used for the classification of drivers. A 

classification algorithm has been developed based on the proposed technique to 

consider the variable length of multiple spatial trajectories of each driver to 

determine the class membership that exists between association patterns of these 

trajectories and the class. Integrated with an information theoretic measure, this 

classifier is able to predict and identify uniquely a driver based on driving 

patterns of unlabeled trajectories that are for or against a certain class 

membership. For performance evaluation, we have used it to solve problems in 

driver classification using their spatial trajectory data. 

According to empirical studies on spatial data analysis, mining of MSTS should 

consider the spatial nature of the objects to be analyzed, their characteristics of 

the feature space and the uncertainty between the spatial units and their complex 

features. The proposed technique, to discover association patterns in MSTS, 

should consider both spatial and temporal information. This proposed technique 

not only can uncover the temporal and spatial association relationships of MSTS 
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but also can tackle supervised and unsupervised learning tasks. This technique 

incorporates an initial MTS pattern mining algorithm to detect temporal 

association relationships from frequent patterns in a set of MTSs for each 

location. We have developed an algorithm to detect co-occurrence of the 

discovered temporal patterns across locations by mining a transformed spatio-

temporal pattern matrix (STPM) that characterizes the feature space to form 

spatio-temporal patterns. That is to say, if the frequency of co-occurrence of the 

respective temporal patterns in different spatial units is significantly higher, the 

co-occurrence of the temporal patterns across locations is the spatial association 

patterns of interest. To determine if the frequency of their co-occurrences is 

significantly higher, we apply a statistical significance test to measure how 

significantly the observed frequency of the co-occurrences deviates from its 

expected frequency. Furthermore, we effectively integrate this spatio-temporal 

pattern-mining algorithm for classification and clustering by an information 

theoretic measure. If the set of MSTS is labeled, the discovered patterns can be 

weighted to support or against a certain class membership for the construction of 

a classifier. If the set of MSTS is unlabeled, the discovered patterns in one 

location are compared against those discovered in the others so that, by taking 

the spatial contiguity between locations into consideration, MSTS that have 

similar discovered patterns and are closer to each other are grouped together into 

the same cluster. To evaluate the performance of the algorithms, we have tested 

them on both synthetic and real-world data sets. We have also applied them to 

tackle several practical problems in some case studies. Both experimental results 

and findings from practical case studies show the proposed techniques to be 

promising for MSTS analysis. 
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1 INTRODUCTION 

Multivariate spatial time series (MSTS) data consist of a collection of 

values by a set of geographical coordinates accompanied by a set of multivariate 

time series (MTS). An MTS is composed of a number of temporally interrelated 

variables monitored over a period of time at successive time instants spaced at 

uniform time intervals. MTS data are generated massively due to recent 

developments in sensor and satellite technologies, medical measurements, 

climate informatics, and bioinformatics. These large-scale data encode important 

information about complex relations among individual time series. Many recent 

works on multivariate time series (MTS) pattern discovery focus mainly on 

extracting temporal association patterns and features (Zhuang, Li & Wong, 2014; 

Zhou & Chan, 2015; MacEachren, Wachowicz, Edsall, Haug & Masters, 1997). 

Many of these MTS are spatio-temporal by nature in which they are collected 

together with spatial location information such as latitude and longitude. For 

example, climate data are from sensors located in different regions, each of 

which collects periodic readings of variables such as humidity, wind speed, 

temperature, and rainfall intensity. A computational technique that is able to 
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discover interesting patterns in MSTS data can lead to many applications in 

diverse areas of research and be helpful to society as well as to the economy. 

MSTS can be represented as a set of MTSs each of which is associated with a 

spatial location. Conventional time series analysis methods which consider only 

the time domain are often adopted to analyze MTS (Rosén & Yuan, 2001; Yang 

& Shahabi, 2004; Singhal & Seborg, 2005; Yoon, Yang & Shahabi, 2005; 

Owsley, Atlas & Bernard, 1997; Coppi, D’Urso & Giordani, 2010; Zuur, Fryer, 

Jolliffe, Dekker & Beukema, 2003) but the spatial and temporal relationships 

associated with the individual time series in MSTS are usually ignored, or treated 

separately, during the pattern discovery process. For this reason, new effective 

techniques are required. In this thesis, we will propose some such techniques, in 

particular, that can be used to address the problems of identifying interesting 

patterns in MSTS and the classification and clustering of them. 

One of the classical examples of MTS is spatial trajectory data with x 

coordinate and y coordinate forming the different components of the MTS. In 

many cases, such data is also spatio-temporal as it may be associated with many 

spatio-temporal parameters such as velocity and direction etc. Mining spatial 

trajectories can have many applications in a variety of research areas (Zheng, 

2015). For example, in traffic data, finding patterns of driving behavior of 

moving objects can provide insight into many real applications such as auto 

insurance and vehicle safety checks. In this regard, we start with an attempt to 

propose in this thesis a technique that can discover association patterns from the 

feature space characterizing the spatial trajectories. These discovered association 

patterns, treated as the driving behavior on the road, should be able for the 

classification of drivers. 
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According to empirical studies on spatial data analysis (Coppi, D’Urso & 

Giordani, 2010), mining of MSTS should consider the spatial nature of the 

objects to be analyzed, their characteristics of the feature space and the 

uncertainty between the spatial units and their complex features. In this regard, 

the proposed technique should discover association patterns in MSTS using both 

spatial and temporal information. This proposed technique not only should 

uncover the temporal and spatial association relationships of MSTS, but also 

should tackle supervised and unsupervised learning tasks. We attempt to 

combine both temporal and spatial information in the MSTS data for the analysis 

and address the challenges that exist in the literature. Hence, this proposed 

technique will incorporate an initial MTS pattern-mining algorithm to detect 

temporal association relationships from frequent patterns in a set of MTSs for 

each location. Then, to detect co-occurrence of the discovered temporal patterns 

across locations, we will mine a transformed spatio-temporal pattern matrix 

(STPM) that characterizes the feature space to form spatio-temporal patterns. 

Furthermore, we will investigate how this spatio-temporal pattern-mining 

algorithm can be integrated for classification and clustering by an information 

theoretic measure.  

The rest of this chapter is organized as follows. Section 1.1 introduces the 

motivations behind the introduction of pattern-mining problems in spatial 

trajectory data and multivariate spatial time series data. Section 1.2 introduces 

the objectives of this thesis that will lead to the research and development of the 

proposed approaches to tackle the spatio-temporal pattern-mining problems by 

the application of pattern discovery techniques. Section 1.3 presents the 

organization of this thesis. 
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1.1 Motivations 

Spatio-temporal data come from a database that manages both space and 

time information. This database captures the spatial and temporal aspects of data. 

Many real-world applications contain and generate a vast amount of digital 

spatio-temporal information constantly so there is a great need to reveal new 

insights which previously remain hidden from the data in spatio-temporal nature 

such that useful information could be well extracted, effectively structured and 

further arranged for analysis including but not limited to clustering, 

classification, visualization, and interpretation. A number of approaches have 

been developed to tackle pattern-mining problems in this area of research. Most 

of them, such as PCA-based approach (Rosén & Yuan, 2001; Singhal & Seborg, 

2005; Yoon, Yang & Shahabi, 2005), SVD-based approach (Yang & Shahabi, 

2004), HMM-based approach (Owsley, Atlas & Bernard, 1997), Fuzzy c-means 

based approach (Coppi, D’Urso & Giordani, 2010), EM-based approach (Zuur, 

Fryer, Jolliffe, Dekker & Beukema, 2003), may find patterns between different 

multivariate time series data sets or within a single data set, focusing on time 

domain. However, for a set of multivariate spatial time series data, it may be 

interested in both finding temporal patterns within a multivariate time series and 

finding those across spaces, focusing on time as well as space domain. Moreover, 

conducting further correlation analysis over such spatio-temporal patterns might 

be able to unveil more useful knowledge. 

The aforementioned methods have been used to obtain useful analytical 

knowledge, to some extent, to build models for classification and prediction tasks 

effectively but, however, it still poses some challenges that motivate us to 

develop the methodology in this thesis to tackle them as follows. 
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First, classical spatial analysis studies entities using their topological, 

geometric or geographic properties. Most algorithms performing the task of 

discovering relationship such as autocorrelation from spatial units emphasizes 

more on some predefined topological properties while analysis on both spatial 

and temporal information associated with multivariate spatial time series are not 

many. As such, important temporal dependence across multiple spatial units that 

might be meaningful cannot be discovered. 

Second, traditionally, analytical techniques favor the spatial definition of 

objects as points. Some important attribute information, such as discriminative 

features hidden in the spatial trajectories and related temporal associations 

hidden in multiple spatial time series, may not be fully utilized for many pattern 

mining algorithms. Therefore, some interesting spatio-temporal patterns that 

possess significant co-occurrences may not be identified effectively. 

Third, conventional approaches capture spatial and temporal dependency 

to provide information on spatio-temporal relationships in variable level. For 

example, the method proposed by Shumway (2014) detects clusters by 

segmenting a distance matrix that measures the pairwise distance between two 

sets of multivariate time series data. The entries in the distance matrix are 

obtained by comparing the binary difference of two distance measures. The 

strength of attribute values that might determine the class and cluster 

membership may not be fully utilized by this kind of methods. Without attribute-

value level information, this may degrade the quality of the classification and 

clustering model. 
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1.2 Objectives 

The objectives of this thesis are motivated by the aforementioned 

practical needs derived from the real-world application and are particularly listed 

as follows. 

I. To discover statistically significant association patterns from i) a spatial 

trajectory database and ii) a multivariate spatial time series database: For a 

large spatial trajectory database, different trajectories may contain common 

and/or different features. These features can be formed association patterns. 

For a large multivariate spatial time series database, different time series in 

different spatial locations may also contain temporal and spatial 

dependencies. These spatio-temporal dependencies can also be formed 

association patterns. Each pattern of these types could represent certain 

characteristics of real-world events. Whether spatial trajectories or 

multivariate time series are labeled, or unlabeled, statistically significant 

association patterns should be discovered first in order for further pattern 

analysis. 

II. To transform i) a spatial trajectory database and ii) a multivariate spatial 

time series database based on the discovered patterns into a relational 

database for further analysis: once the spatio-temporal features are 

extracted and discretized, the original i) spatial trajectory database and ii) 

multivariate spatial time series database will be processed based on the 

extracted characteristics to construct the transformed database similar to a 

relational database with discrete attributes. 

III. To apply pattern discovery approach on a transformed database: Once i) the 

spatial trajectory data and ii) the multivariate spatial time series data from 
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the spatio-temporal databases are transformed into discrete interval events, 

an effective pattern discovery method on categorical data could be applied 

to discover significant association patterns. The patterns discovered in the 

general form of a subset of discrete data attributes will then become explicit 

and will be available for the cluster and classification analysis. 

1.3 Organization of this Thesis 

This thesis interpolates material from four papers published by the author 

(Wu, Chen, Zhu & Chan, 2013; Wu & Chan, 2017, 2018a, 2018c) and one paper 

submitted to the journal (Wu & Chan, 2018b). Some material from each of these 

papers has also been incorporated into this introductory Chapter and Chapter 2. 

Meanwhile, Chapter 3 is based on the references of Wu and Chan (2017, 2018a, 

2018b, 2018c). Chapter 4 uses material from references of Wu and Chan (2017, 

2018a). Finally, Chapter 5 is based on the reference of Wu and Chan (2018b, 

2018c). The thesis consists of six chapters and is organized as follows. 

Chapter 1 introduces the motivation, objective and organization of this 

work. 

Chapter 2 introduces the related knowledge, including the background to 

spatial trajectory data, trajectory classification and clustering, multivariate spatial 

time series and pattern discovery through a literature review. 

Chapter 3 presents the problem definitions of mining patterns in spatial 

trajectory data and multivariate spatial time series data. The overview of the 

proposed mining approach is also given. This approach is composed of a 

collection of techniques, including a trajectory classification and clustering 
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algorithm and an unsupervised pattern discovery algorithm for multivariate 

spatial time series data. 

Chapter 4 proposes a new approach to classify and cluster spatial 

trajectory data based on the discovered association pattern. The proposed 

approach begins with data transformation based on the extracted features to 

convert the original spatial trajectory data to a transformed feature matrix. 

Instead of mining directly from the original spatial trajectory data, we mine 

association patterns from the transformed feature matrix. From the patterns 

discovered in the transformed feature matrix, these patterns are further used for 

training a classifier for classification and prediction if the original spatial 

trajectory data is labeled or for clustering if the data is unlabeled. To evaluate the 

effectiveness, the proposed approach is first applied on a synthetic data set and 

then on a number of real-world data sets including GPS tracks data set of 

physical exercises, a human location history data set and a driver telematics data 

set. The experimental results show that the proposed approach is effective and 

efficient in achieving a good accuracy in the prediction of the class labels of the 

spatial trajectory data based on the transformed set of attributes and can produce 

meaningful clustering results. 

Chapter 5 defines the problem of supervised and unsupervised pattern 

discovery for multivariate spatial time series data and introduces a methodology 

for solving it. The proposed method, utilizing a statistical significance measure to 

detect associations and optimizing some information measures, such as mutual 

information and weight of evidence, between attributes of the transformed data 

matrix, groups spatial locations into groups/clusters. By applying the proposed 

algorithm to the multivariate spatial time series database, meaningful patterns 
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that capture associations in a single and/or multiple time series across spaces are 

discovered. The matrix representation for the transformed MSTS stores 

important spatio-temporal pattern information to reveal the statistical 

significance, available for further clustering and classification. To evaluate the 

performance, we applied these proposed techniques and algorithms on a 

synthetic data set and several real-world data sets. The experimental results of 

the data mining tasks prove that they are capable of revealing interesting spatio-

temporal patterns and building very accurate and insightful classification and 

clustering models. 

Chapter 6 concludes the thesis, which summarizes its contributions, and 

proposes further work. 
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2 BACKGROUND AND 
RELATED WORK 

Spatio-temporal data are generated massively due to advances in 

location-based service and mobile computing (Zheng, 2015). To discover 

patterns in spatio-temporal data, several algorithms have been proposed. In this 

thesis, we are particularly interested to tackle the data mining problems 

associated with spatial trajectory data and multivariate spatial time series data. In 

the literature, some problems and computational algorithms are related to the 

research interests in this thesis. These algorithms can be categorized according to 

the specific problems and properties that are considered, the specific techniques 

that are applied, and the specific applications of the algorithms. In this section, 

the state-of-the-art algorithms related to problems of discovering patterns in 

spatial trajectory data and multivariate spatial time series data are introduced 

sequentially. 
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2.1 Overview of the Era of Big Spatio-Temporal Data 

Applying big data methods on spatio-temporal data is a relatively new 

topic, and a growing number of related applications have proved the potential 

application value of the huge data sets provided by millions of operating devices 

including smartphones, medical devices, telematics devices, space telescopes, 

environment sensors, etc. The emerging spatio-temporal data, as well as their 

important value for a number of fields (e.g. weather forecast, epidemic analysis, 

mobility analysis, social media analysis, etc.), have motivated a lot of researchers 

to develop powerful and scalable systems for processing and analyzing them. 

Nevertheless, due to its nature, spatio-temporal data sets are always very large 

and hard to analyze, making it a challenge to develop an efficient method for 

representing and mining general spatio-temporal data. 

Vehicle telematics data is one of the important sources of spatial 

trajectory data. In the field of vehicle or automobile insurance, telematics data 

mining has been gradually showing its value. It greatly enhances the idea and 

applicability of usage-based insurance (UBI), which customizes the insurance 

plan for individual drivers according to driving features. The way telematics data 

are applied is that the data returned by a telematics device on the driver’s vehicle 

get analyzed through some analytical models. These models will either analyze 

the locations and distance covered by the vehicle or decide the driver’s driving 

style by studying the data, conclude with a driving pattern for the specific driver, 

and generate a customized insurance plan according to the property of the 

discovered patterns. This innovative approach to insurance premium pricing is 

getting more and more welcomed by most of the car insurers, making it the most 

widely realized application of big data on telematics devices. Baecke and Bocca 
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(2017) in their recent study prove the value of telematics-based data in the risk 

selection process of an insurance company. They compared the performance of 

three models in this context: a logistic regression, random forests and artificial 

neural networks model. Their research illustrates the importance of industry 

knowledge in the variable creation process. 

Applications also include the topic of crime control and reduction. As 

technology advances, the even greater focus has been placed on the clear 

identification of crime hotspots together with the strategy of crime reduction or 

detection so as to combat organized crime, as a result of the growing role of 

intelligence-led policing. For a number of places, crime hotspots are getting 

critical to policing strategy, as they allow police force to focus on the areas of 

highest priority. Crime hotspot identification and analysis could greatly benefit 

from mining criminal data, which are represented as multivariate spatial time 

series in this thesis and by nature are spatio-temporal, resulting in lifting the 

efficiency of the police department (Ratcliffe, 2014). 

Movement study and prediction are the new perspectives one could 

benefit from mining spatial trajectory data coming from medical devices, 

smartphones, and accessories (wristbands, watches etc.) or tracker system 

installed on wildlife. The development of wearable smart devices has become a 

hot topic. By making use of the collected data, the application concerns 

movement study and prediction, enhancing the research on many medical and 

zoology topics. For example, researchers have claimed that mining data from 

smart wearable devices could boost the study of human motor patterns (Bonato, 

Mork, Sherrill & Westgaard, 2003). In recent years, Liew, Wah, Shuja and 

Daghighi (2015) have surveyed some emerging application areas for personal 



 14 

data mining using smartphones and wearable devices with an extensive review 

on recent literature and a detailed taxonomy in terms of data generation, design 

choices, application models and algorithms. Mardonova and Choi (2018) have 

reviewed the latest trend in wearable device technology that includes the 

classification of wearable devices with some examples of their utilization in 

various industrial fields as well as the features of sensors used in wearable 

devices. 

Spatio-temporal data mining could also be applied in the field of urban 

planning and building smart road systems. Combining the traffic information 

with discovered patterns in mining spatial trajectory data from vehicles could 

result in a number of interesting findings, which may include a better 

understanding of traffic blockages, the behavioral patterns of a driver with 

respect to traffic status, etc. Results drawn from related studies could also 

provide guidance in planning and build a more intelligent and efficient traffic 

system. There are already some existing research studies in this area. For 

instance, an existing US patent uses vehicle telematics data to provide traffic 

forecasts and driving guidance for freeway drivers (U.S. Patent No. 6,401,027, 

2002). 

 

2.1.1 Data collection motivation. Spatio-temporal data collection has 

experienced explosive growth in recent years. Advances in instrumentation and 

computation have boosted the number of electronic devices that record petabytes 

of data into various databases, while also bringing up a big but promising 

challenge of mining these data efficiently. As stated in the survey conducted by 
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Eldawy and Mokbel (2015), while an explosive growth of spatio-temporal data 

has been happening during recent years, a lack of efficient systems to extract 

meaningful patterns from the spatio-temporal data set is hampering the growing 

need of managing and analyzing such data. As mentioned in previous sections, 

recognized patterns of spatio-temporal data could be applied to a variety of 

fields, including movement study and prediction, vehicle insurance, and many 

others. 

A good representative of spatio-temporal data, which is being analyzed in 

this thesis, is spatial trajectory data and multivariate spatial time series data. 

Benefited from the high penetration rate of GPS devices installed on vehicles as 

well as the advancement of remote sensing technologies and location recording 

accuracy and frequency, together with the popularity of personal tracking devices 

such as smart wristbands and smart sensors, the quantity and quality of moving 

objects data and sensor data has been growing significantly over the years, 

unlocking potential value in mining these types of data.  

With more and more cloud-based telematics devices emerging, an 

enormous amount of data is being stored into cloud databases every second. The 

newly opened market for personal trackers has also enriched the sources of 

moving objects’ data. Users’ data are recorded first inside the device, then 

synchronized through wireless mediums and uploaded to the database. Type and 

amount of data collected may vary largely among producers, but in general that 

basic data types, such as certain coordinates at different timestamps, should 

always be present. 

If proper data representations and corresponding mining algorithms are 

developed, analysts can get rather useful patterns from the mining results. For 
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example, in the case of mining driver telematics data, questions such as each 

driver’s driving habit could be answered, which might have a great impact on the 

vehicle insurance industry. 

2.2 Knowledge Discovery and Data Mining in Related Area 

According to Fayyad, Piatetsky-Shapiro, and Smyth (1996), knowledge 

discovery in databases (KDD) or data mining can be defined as the nontrivial 

extraction process of implicit, previously unknown, and potentially useful 

information from data. This implicit, previously unknown, and potentially useful 

information which is referred to as knowledge is hidden in the databases and is 

usually in the form of relationships among data items. These relationships can be 

in the form of functional, or partial functional dependencies. Their discovery 

analysis and characterization may involve the use of various techniques. The 

process of applying KDD in a general situation consists of the following phases 

according to Han, Pei, and Kamber (2011): 

1. Understanding the Application domain: This includes the understanding 

of the relevant prior knowledge and the goals of the application. 

2. Extracting the target data set: This includes the selection of a data set or 

focusing on a subset of variables. 

3. Data preprocessing and transformation: This phase improves the quality 

of the actual data for data mining. It also increases the efficiency of data 

mining by reducing the computational effort for mining the preprocessed 

data. Data preprocessing involves data cleaning, data transformation, data 

integration and data reduction or compression. Data cleaning consists of 

some basic operations such as normalization, noise removal, handling of 
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missing data, reducing redundancy etc. Data integration includes 

integrating multiple and heterogeneous data sets from different data 

sources. Data reduction finds useful features to represent the data by 

means of dimensionality reduction, feature selection, discretization etc. 

4. Data mining: This phase constitutes one or more of the following 

functions including classification and prediction, association analysis, 

cluster analysis etc. 

5. Pattern interpretation and evaluation: This phase includes interpreting the 

discovered patterns and the possible visualization of them. Visualization 

is important in that it increases understandability from the perspective of 

humans. The mined patterns can be evaluated automatically or semi-

automatically to identify the interestingness or usefulness of them. 

6. Using discovered knowledge: This phase incorporates the discovered 

knowledge into the expert system and actions can be taken based on this 

knowledge. 

KDD or data mining techniques have been practically applied in a wide 

spectrum of areas that benefits from discovering patterns over the data sets. In 

the following subsections, some categories of common data mining algorithms 

related to this thesis will be discussed. 

2.2.1 Association, classification, and clustering. In the below, we will 

introduce the three common classes of data mining tasks. Association analysis 

mines or generates rules from the data. Association rule mining refers to 

discovering associations among different attributes (Cheung et al. 1996; Agrawal 

& Srikant, 1994). It tries to describe the relationship among data items. A 
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population application of association rules mining is the analysis of supermarket 

transaction data, helping the planning of marketing strategies. Popular algorithms 

include AIS (Agrawal, Imielinski & Swami, 1992), SETM (Houtsma & Swami, 

1993), and Apriori (Agrawal & Srikant, 1994). 

Classification analysis classifies a data item into one of several 

predefined categorical classes. Based on the predefined classes in the training 

objects, the general approach involves a systematic search for minimal 

descriptions, which can distinguish between members of different classes. In 

machine learning terminology, this is called supervised learning (Tou & 

Gonzalez, 1974), i.e. learning is done with explicit training examples. Popular 

algorithms include k-nearest neighbor (k-NN) (Dasarathy, 1991), decision-tree 

generators (ID3 by (Quinlan, 1987), C4.5 by (Quinlan, 1993), CART by 

(Breiman et al., 2017)), neural networks (Aleksander & Morton, 1990; Beale & 

Jackson, 1990) and genetic algorithms (Davis ,1991; Holland & Goldberg, 1989; 

Holland, 1987). 

Cluster analysis maps a data item into one of several clusters, where 

clusters are natural groupings of data items based on distance measure (as known 

as similarity measure). In general, the resulting clusters should exhibit high 

within-cluster homogeneity and high between-cluster heterogeneity. Clustering is 

dependent on the distance measure to be applied. In machine learning 

terminology, this is a type of unsupervised learning (Tou & Gonzalez, 1974), i.e. 

learning is done without explicit training examples. Commonly, clustering 

algorithms can be classified into two broad categories: (1) hierarchical and (2) 

non-hierarchical. Hierarchical clustering involves the construction of a hierarchy 

or tree structure. Popular hierarchical clustering algorithms include 
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agglomerative (Milligan, 1980), Chameleon (Karypis, Han & Kumar, 1999), 

DIANA (Kaufman & Rousseeuw, 1990), AGNES (Kaufman & Rousseeuw, 

1990) and BIRCH (Zhang, Ramakrishnan & Livny, 1996). Non-hierarchical 

clustering does not involve the construction of the tree structure while it first 

selects a cluster center or seed and then all objects or data points within a pre-

specified threshold distance are included in the resulting cluster. Popular non-

hierarchical clustering algorithm includes k-means (Forgy, 1965; MacQueen, 

1967), CLARA (Kaufman & Rousseeuw, 2009), CLARANS (Ng & Han, 2002), 

CLIQUE (Agrawal et al., 1998) and SOM (Kohonen, 2012). 

2.2.2 Discretization of continuous data. In data mining and machine 

learning, data discretization techniques can be used to reduce the number of 

unique values for a given continuous attribute by dividing the range of the 

attribute into intervals (Han & Kamber, 2001). “Discretization is a technique to 

partition continuous attributes into a finite set of adjacent intervals in order to 

generate attributes with a small number of distinct values” (Tsai, Lee, & Yang, 

2008, p. 715). In short, a continuous attribute (a.k.a variable) can be discretized 

into a finite number of discrete intervals (Kurgan & Cios, 2004). Interval labels 

can be applied to replace actual value. There are several reasons to perform 

discretization as a data preprocessing step for data analysis. The obvious reason 

is it reduces and simplifies the original data, leading to a concise, easy-to-use, 

and knowledge-level representation of the data and mining results. In data 

mining algorithms, many of the effective ones have been developed to handle 

categorical attributes such as AQ (Kaufman & Michalski, 1999; Michalski, 

Mozetic, Hong, & Lavrac, 1986), CLIP (Cios & Kurgan, 2002; Cios & Kurgan, 
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2004) and CN2 (Clark & Niblett, 1989), while others can deal also with 

continuous attributes but have better performance on categorical attributes (Wu 

et al., 2006). Since continuous data can be discretized into a finite set of discrete 

intervals, discretization can be performed before the learning process (Chan, 

Ching, & Wong, 1992). A good discretization algorithm can produce a concise 

summarization of continuous attributes but also facilitate learning faster and 

more accurately (Liu, Hussain, Tan, & Dash, 2002). For many real-world data 

sets, attributes may be in a combination of discrete and continuous types. Back in 

the late 1980s, there was no common and fully integrated approach to inductive 

learning (IL) which can handle both mixed-mode continuous and discrete data 

simultaneously (Wong & Chiu, 1987). Ching, Wong, and Chan (1995) have 

proposed a class attribute dependent discretization (CADD) method to partition 

continuous data attributes. Basically, two important decisions must be made for 

discretization. Firstly, the number of discrete intervals or bins must be selected. 

Secondly, the width of the intervals must be determined. Their method can 

automatically determine the most preferred number of intervals to make the first 

decision and seeks to maximize the mutual dependence between the discrete 

intervals and class attribute to make the second decision. Later, optimal class 

dependent discretization (OCDD) method applies a dynamic programming 

technique to search for global optimum discretization scheme to efficiently 

partition the continuous attributes in a supervised setting (Liu, Wong, & Wang, 

2004). Our previous work mixed-mode attribute clustering algorithm (MACA) 

and a fuzzy version of it (FMACA) was proposed to extend CADD and OCDD 

for maximizing the interdependence among attributes to break down attributes 

into attribute clusters for further processing such as discretization and 
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classification (Wong et al., 2010; Wu, Chan, & Wong, 2011). The discretization 

procedure in MACA separately applies on each attribute cluster to locally 

optimize the partitioning by treating the most representative attribute, which is 

referred to as mode and is with the highest total interdependency to all the other 

member attributes, in the attribute cluster as the class. Therefore, using the mode, 

it drives the discretization of other continuous attributes in the attribute cluster 

using class attribute dependent discretization method, i.e. OCDD. From the 

experiments, there are some circumstances that the class attribute is not always 

the mode. In this regard, if class attribute is absent in the data set, MACA can 

still operate the clustering of attributes and then discretize the continuous 

attributes by the modes of attribute clusters. This shows MACA is capable to 

cope with both supervised and unsupervised situations. 

According to Liu et al. (2002), the discretization algorithms can be 

classified into five axes: supervised versus unsupervised, static versus dynamic, 

global versus local, top-down (splitting) versus bottom-up (merging), and direct 

versus incremental. Out of the five axes, Tsai, Lee, Yang (2008) summarize them 

as follows. 

1. Supervised methods discretize attributes with the 

consideration of class information, while unsupervised 

methods do not. 

2. Dynamic methods consider the interdependence among the 

attributes and discretize continuous attributes when a classifier 

is being built. On the contrary, the static methods consider 

attributes in an isolated way and the discretization is 

completed prior to the learning task. 
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3. Global methods, which use total instances to generate the 

discretization scheme, are usually associated with static 

methods. On the contrary, local methods are usually 

associated with dynamic approaches in which only parts of 

instances are used for discretization. 

4. Bottom-up methods start with the complete list of all 

continuous values of the attribute as cut-points and remove 

some of them by merging intervals in each step. Top-down 

methods start with an empty list of cut-points and add new 

ones in each step. 

5. Direct methods, such as Equal Width and Equal Frequency 

(Chiu, Wong, & Cheung, 1991), require users to decide on the 

number of intervals k and then discretize the continuous 

attributes into k intervals simultaneously. On the other hand, 

incremental methods begin with a simple discretization 

scheme and pass through a refinement process although some 

of them may require a stopping criterion to terminate the 

discretization. (p. 715) 

A more detailed discussion about the five axes mentioned above can be 

found in the paper of Liu et al. (2002). In this section, the discussion of 

discretization algorithms will follow the axis of top-down versus bottom-up. 

Class-Attribute Contingency Coefficient (CACC) by Tsai, Lee, and Yang 

(2008) is one of the latest top-down discretization algorithms. The main 

contribution of it is that it can generate a good discretization scheme and its 

discretization scheme can lead to the improvement of classifier accuracy like that 
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of C5.0. The quality of a discretization scheme can be measured by Class-

Attribute Interdependence Redundancy (CAIR) proposed by Ching, Wong, and 

Chan (1995). According to Tsai, Lee, and Yang (2008), the general goals of a 

discretization to achieve include: 1) a high-quality discretization scheme to help 

users understand the data easily, 2) the scheme should lead to the improvement 

of accuracy and the efficiency of a learning algorithm which is the training time 

and the number of rules generated to reach the classification accuracy, and 3) the 

discretization process should be as fast as possible. Class-attribute 

Interdependence Maximization (CAIM) by Kurgan and Cios (2004) is another 

top-down discretization algorithm with good performance in comparison with 

seven state-of-the-art top-down discretization algorithms. On average, 

experiments show that CAIM obtains high CAIR value, and using it as a 

preprocessor for classification algorithm, it produces the least number of rules 

and reaches the highest classification accuracy (Kurgan & Cios, 2004). Later, 

MACA was developed to flexibly deal with the effect of the class attribute by 

investigating the relationship of the class attribute and other attributes. Since 

their finding reveals that some attributes are not highly dependent on the class 

attribute, the objective to optimize the CAIR value in the discretization might not 

be the best objective. This rationale leads to the discretization being done 

separately by each attribute cluster where the objective of discretization in each 

attribute cluster is to optimize the CAIR by treating the most representation 

attribute as the class attribute of each attribute cluster. Their experiments using 

simulated data, repository data and real data showed that the classification 

accuracy can be enhanced in comparison to the other discretization methods. 
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Top-down (splitting) and bottom-up (merging) discretization algorithms 

consist of unsupervised and supervised ones. Two typical unsupervised top-down 

algorithms are Equal Width and Equal Frequency (Chiu, Wong, & Cheung, 

1991). Other the state-of-the-art supervised top-down algorithms are Paterson-

Niblett (Paterson & Niblett, 1987), maximum entropy (Wong & Chiu, 1987), 

information entropy maximization (Fayyad & Irani, 1993), class-attribute 

dependent discretizer (CADD) (Ching, Wong, & Chan, 1995), class-attribute 

interdependence maximization (CAIM) (Kurgan & Cios, 2004), fast class-

attribute interdependence maximization (FCAIM) (Kurgan & Cios, 2003) and 

class-attribute contingency coefficient (CACC) (Tsai, Lee, & Yang, 2008). 

FCAIM has been proposed as a faster version of CAIM extension. The 

discretization criterion, the stopping criterion and the time complexity between 

them are the same while the only difference is the initialization of the boundary 

point. FCAIM was faster than CAIM with similar C5.0 classification accuracy 

where CAIM obtained a slightly better CAIR value (Kurgan & Cios, 2003). 

Experiments showed that CAIM and CACC are superior to other top-down 

discretization algorithms as their discretization schemes can generally maintain 

higher interdependence between target class (also called class label or class 

attribute) and discretized attributes, generate lesser number of rules to attain 

higher classification accuracy (Kurgan & Cios, 2004; Tsai, Lee, & Yang, 2008). 

That the abovementioned supervised discretization algorithms aim at seeking a 

local optimal solution, optimal class dependent discretization (OCDD) searches 

for global optimum discretization scheme which is proven to be an effective 

approach experimentally (Liu, Wong, & Wang, 2004). It is based on the concept 

of dynamic programming which searches for the best partition from all possible 
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settings for each iteration. Our current work in this thesis adopts this kind of 

class dependent approaches in some of the experiments to optimize the 

dependency of the attributes toward the class attribute in the partitioning, 

showing good results towards the improvement of the classification accuracy. 

Four famous bottom-up algorithms are ChiMerge (Kerber, 1992), Chi2 

(Liu & Setiono, 1997), Modified Chi2 (Tay & Shen, 2002) and Extended Chi2 

(Su & Hsu, 2005). Since bottom-up (merging) algorithms start with all 

continuous values and recursively remove points by merging intervals, the 

computational complexity is generally higher than top-down (splitting) 

algorithms. To merge adjacent intervals, the significance test is performed to test 

whether or not two adjacent intervals should be merged. Another basic 

requirement is that some parameters need to be specified by users such as the 

significance level, maximal and minimal intervals and etc. Using these bottom-

up approaches as preprocessors for C5.0 classification, experiments by Su and 

Hsu (2005) showed that Extended Chi2 outperformed the other bottom-up 

discretization algorithms as its discretization scheme can reach the highest 

accuracy on average.  

In this thesis, we adopt both supervised and unsupervised discretization 

techniques when developing the mining algorithms so as to cope with different 

situations in a flexible manner. To the best of our knowledge, supervised 

discretization algorithms are generally with better performance, which can 

improve the classification accuracy and simplify the classification rules, than 

unsupervised discretization algorithms due to the reason that the supervised one 

is benefited from a priori knowledge. 
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2.2.3 Dimensionality reduction and attribute clustering. Since the 

introduction of machine learning, researchers have targeted a relatively small set 

of attributes. Our previous research study (Wong, Wu, Wu, & Chan, 2010) has 

found that “as the size of databases and the diversity of attributes increased, the 

performance of data clustering was challenged although the classification 

problems were not seriously affected yet their effectiveness was diminishing”. In 

supervised learning, the problems were partly solved through dimensionality 

reduction and feature engineering that use domain knowledge of the data to 

create features making machine learning work. Dimensionality reduction can be 

categorized mainly into feature extraction and feature selection (Tang, Aleyani & 

Liu, 2014). Subsequently in the late 1980s, when data mining and pattern 

discovery became an independent discipline and prominent in the database 

community, the solutions to tackle dimensionality problems have been being 

developed. Nowadays, the performance of many state-of-the-art clustering 

algorithms are heavily dependent on the quality of data pre-processing and 

preparation due to the nature of large-scale mixed-mode database with a large 

number of attributes. In many machine learning algorithms and pipelines, data 

preparation is always the first step to begin with. The gathering of all relevant 

data and the aggregation of different data sources to extract raw attributes that 

might have predictive power will easily grow the dimensions of the data. In 

unsupervised learning, attribute clustering was employed to tackle the 

dimensionality problems. In supervised learning, class-dependent discretization 

can also be used to convert the continuous data into interval data (Au, Chan, 

Wong, & Wang, 2005). To cluster or select attributes, the t-value method is 

widely used (Agrawal et al., 1992). Au et al. (2005) argue that the t-value can 
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only be used when the samples are pre-classified. If no class information is 

provided, it cannot be used for attribute selection. So, the attribute clustering 

algorithm (ACA) was proposed to cluster attributes (Au et al., 2005). In ACA, 

continuous data must be converted into interval data before the application of 

attribute clustering. MACA (Wong et al., 2010) and FMACA (Wu, Wong & 

Chan, 2011) extended ACA so that it is able to deal with mixed-mode data by 

introducing attribute interdependence redundancy measures between attributes of 

various attribute types and a multiple interdependence measure (Alon et al., 1999; 

Wong, Chiu, & Huang, 2002) for selecting attributes with the highest correlation 

with the rest of attributes within an attribute cluster. A method using a Chi 

square-based discretization method for feature selection that eliminates some 

irrelevant and/or redundant attributes can be adopted as well (Liu & Setiono, 

1997). This method discretizes numeric attributes repeatedly until some 

inconsistencies are found. Feature extraction approaches transform features into 

new feature space with reduced dimensionality. Some approaches combine the 

transformed features with original features. Common feature extraction 

approaches are principal component analysis (PCA), linear discriminant analysis 

(LDA) and canonical correlation analysis (CCA). Feature selection approaches 

choose a subset of features from the original set of features that minimize 

redundancy and maximize relevance to the class attribute. Feature selection can 

be supervised, unsupervised or semi-supervised. A comprehensive review of 

unsupervised methods and supervised methods can be found in the paper of 

Alelyani, Tang and Liu (2013) and Tang, Aleyani and Liu (2014) respectively. 

Basically, supervised methods include filter models that separate feature 

selection from classifier learning relying on measures of training data such as 
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fisher score (Duda, Hart & Stork, 2001) and information gain (Peng, Long & 

Ding, 2005), wrapper models that use the predictive accuracy of a selected 

learning algorithm to assess the quality of selected features and embedded 

models that perform feature selection during the training of a classifier. 

However, these methods rely on the quality of the labeled data. Unsupervised 

methods, similarly, include filter models that evaluate the score of each feature 

according to certain criteria such as information entropy (Dash, Choi, 

Scheuermann & Liu, 2002) and dependency measure (Talavera, 1999), wrapper 

models that utilizes a clustering algorithm to evaluate the quality of selected 

features and hybrid models that combine filter and wrapper models. While 

unsupervised feature selection methods do not require class information, an 

evaluation of the relevance of features is difficult. To overcome the drawback of 

supervised and unsupervised feature selection methods, we, in this thesis, 

propose a unified framework to benefit from the efficient feature extraction, and 

better classification and clustering quality from the attribute clustering and 

feature selection models. 

After dimensionality reduction and transforming all data attributes, 

pattern discovery (Wong & Wang, 2003), pattern clustering (Wong & Li, 2008; 

Wong & Li, 2010) and pattern summarization (Wong & Li, 2008; Wong & Li, 

2010) can then be applied to the data set. 

2.2.4 Pattern discovery. Pattern discovery for intelligent decision support, 

knowledge-based reasoning, and data analysis applies more and more to large-

scale complicated systems and problem domains (Chiu, Wong, & Cheung, 

1991). In most of the existing systems, data preprocessing, such as data 
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cleansing, filtering and attribute reduction, is the first step to remove noises, to 

bring out more relevant information from the data and to reduce the search space 

(Wong et al., 2010). They point out that, 

However, they often depend on prior knowledge, such as parameters and 

preconceived classificatory framework. Thus, they sometimes could be 

very biased to the application area and usually involve long iterative 

search and examination process. To respond to these needs, a data-driven 

pattern discovery approach has been advanced (Wang & Wong, 1979). It 

is able to discover, in an unbiased manner, statistically significant events 

automatically from a relational table, and to generate decision rules for 

categorization and prediction. (p. 860) 

In general, pattern discovery can be defined as, being a subfield of data mining, 

extracting previously unknown patterns, which can be a set of items, 

subsequences, or substructures that occur frequently together or are correlated 

strongly, and regularities in the data by exploring a space of possible patterns to 

determine which are present in a set of reference data (Agrawal, Imieliński & 

Swami, 1993; Wong & Wang, 2003). It is a useful tool for categorical data 

analysis (Agresti, 2003). One of our early works (Wu, Chen, Zhu & Chan, 2013) 

was to successfully apply the pattern discovery approach to extract patterns from 

the relational database of a mobile application advertising service to learn a 

predictive model to optimize the click-through rates. This optimization task is a 

simplified problem of this thesis that aims at dealing with raw spatio-temporal 

data. Although the data of this problem is also spatio-temporal, the complexity of 

it is rather simple. It demonstrated the practicality of pattern discovery approach. 

Pattern discovery theory forms the foundation for many data mining tasks such 
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as association, sequential pattern mining, cluster analysis, classification, pattern 

analysis in spatiotemporal, multimedia, time series and stream data and so on 

(Han, Pei & Kamber, 2011). 

In many real-world problems, one of the drawbacks of applying a pattern 

discovery approach is that it typically produces an overwhelming number of 

patterns, resulting in a very difficult and time-consuming effort for problem 

comprehension and interpretation. To combine fragments of information from 

individual patterns to produce more generalized forms of information and to use 

them to further explore or analyze the data, pattern clustering (Wong & Li, 2008; 

Li, 2010) is developed to simultaneously cluster the discovered patterns and their 

associated data. Pattern pruning and summarization can be applied as pattern 

post-processing method to select from the discovered patterns a most 

representative subset which could be considered as the summary of the pattern 

cluster, rendering a small number of patterns that retain the most crucial 

information (Wong & Li, 2008; Li, 2010; Zhou, Li & Wong, 2016). As a 

consequence, the important local patterns are retained, and the pattern groups are 

rendered in the original data space globally. 

 

2.3 Overview of Spatial Trajectory Data Mining Problems 
and Algorithms: A Survey of Related Work 

The main difficulty of applying big data techniques to spatial trajectory 

data set lies in the lack of efficient and effective algorithms for mining the data 

sets. Analyzing and extracting meaningful patterns from spatial trajectory data 

sets are considered as challenging, mainly due to the often large-in-size and 
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sometimes noisy nature of spatial trajectory data. A number of existing data 

representation and mining methods are modified to deal with spatial trajectory 

data sets, while researchers are still devoting effort to find more generic and 

computationally and time efficient algorithms on representing and mining such 

data sets. 

2.3.1 Spatial trajectory clustering. Yuan et al. (2017) have conducted a 

comprehensive survey on trajectory clustering algorithms. They summarized the 

research areas into three aspects. The first attempts to extract features from full 

trajectories such as speed, direction, acceleration, and others and discover 

movement patterns. The proposed approach on spatial trajectory data mining in 

this thesis falls into this aspect. The second attempts to find suitable distance 

measurements between trajectories. The third attempts to develop scalable 

algorithms in runtime and storage. They further divided the algorithms into 5 

categories, namely spatial-based, time-depended, partition- and group-based, 

uncertainty-based, and semantic-based. We do not adopt this categorization as 

some of the aspects and algorithms are beyond the scope of this work. The 

following will present an overview of the related work. 

Mamoulis, Cao, Kollios, Hadjieleftheriou, Tao and Cheung (2004) 

developed a novel method for mining historical spatial trajectory data. 

Considering the specific data type used in this thesis as a sample data set, which 

is spatial trajectory data, most of the related methods are based on k-means 

algorithm. A research project by Ashbrook and Starner (2002) applied a variant 

of k-means algorithm for clustering the GPS data. However, existing approaches 

that use k-means require a reasonable estimation of the number of clusters k, 
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which might be difficult to obtain (Cao, 2009). 

Another approach to cluster spatial trajectory data uses a hybrid-

clustering algorithm that combines hierarchical method with grid-based method. 

Hierarchical clustering is particularly useful when it is difficult to determine the 

best clustering from optimizing certain scoring functions. The general idea is to 

create an initial clustering by putting all data point into a disjoint set of clusters. 

The proximity is calculated based on the distance between cluster centroids. 

Then at each step, clusters that are nearest are successively merged together, 

reducing the number of clusters. The iteration stops when there is no merging 

possible. This approach, however, is not so practical when applied to large-scale 

data sets, and improvements using pre-grouping and indexing the data have been 

introduced to reduce the complexity of the algorithm (Cao, 2009). 

2.3.2 Spatial trajectory classification. The aim of trajectory classification is 

to differentiate between trajectories of different status, such as moving behaviors, 

styles, and purposes. A class label can be assigned to a raw trajectory and it can 

lead to many practical applications, including, but not limited to, ride sharing, 

map navigation, and context-aware pervasive systems. Here, we summarize the 

relevant background of trajectory classification based on Zheng (2015) and the 

motivation for the current work as below. 

A typical trajectory classification follows three steps from trajectory 

segmentation, to feature extraction from each segment and then model building 

to classify each segment. Some existing sequential pattern mining methods (e.g. 

Hidden Markov Model, Dynamic Bayesian Network, Conditional Random Field) 

can be applied by treating a trajectory as a sequence. An early work from Krumm 
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and Horvitz (2004) uses an HMM to classify trajectories into binary statuses. 

Later, some other work in (Sohn et al., 2006; Zhu et al., 2011) attempt to classify 

the user mobility and taxi status into 3 statuses according to GPS trajectories 

based on point-based detection method and geographic data such as road 

networks and points of interest. Some more recent approaches (Dong, Li, Yao, 

Li, Yuan & Wang, 2016; Endo, Toda, Nishida & Kawanobe, 2016) consider 

using deep learning for feature extraction to avoid handcrafted features. In the 

experiment section, deep learning based methods will be assessed for 

performance comparison. The current work is capable to deal with a class with 

multiple possible values and does not require to rely on domain knowledge of 

geography. 

To classify a trajectory with multiple possible values of a class during a 

single trip, a trajectory is partitioned into segments and is extracted speed-related 

features to feed into a Decision Tree classifier with graph-based post-processing 

step to enhance the inference (Zheng, Liu, Wang & Xie, 2008). This method is 

tailored to tackle a situation where the moving object can change modes in a 

single trip. The current work considers diverse types of features including route, 

speed, turning and stop point in feature generation step and considers both local 

and global information in pattern mining and classifier training step. 

Some promising algorithms for location-based activity recognition and 

popular place discovery are proposed by Liao, Fox, and Kautz (2007) and 

Patterson, Liao, Fox, and Kautz (2003). They divided a GPS trajectory into 10-m 

segments based on corresponding street patches by using the CRF-based map-

matching algorithm. Then, the model classifies a GPS sequence into an activity 
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sequence and identify popular places of a person based on the extracted street 

features. 

A recent survey by Eldawy and Mokbel (2015) categorized the existing 

work in the area of big spatial data in three dimensions – implementation 

approach, underlying architecture, and spatial components. For the 

implementation approach, more than half of the existing approaches apply an 

existing system for non-spatial trajectory data as a black box and rely on user-

defined functions to query these systems. The drawback is these systems are not 

optimized to deal with spatial trajectory data. Some of them introduced spatial 

trajectory data elements to the existing system rather than building from scratch 

to improve the performance but still, the core algorithms are not optimized to 

deal with the integration. For underlying architecture and spatial components, 

since most of the approaches are based on existing systems, their architecture and 

spatial components follow the existing systems. MapReduce-based system is 

commonly used (Dean & Ghemawat, 2008). Some may use a resilient distributed 

data set (RDD) (Zaharia, et al., 2012), key-value stores (Chang et al., 2008). To 

the best of our knowledge, we cannot find any notable work that utilizes column-

oriented databases such as Vertica (Stonebraker et al., 2005), Dremel (Melnik et 

al., 2010) and Impala (Bittorf et al., 2015). The reason for not utilizing them is 

due to the core of the existing systems not designed for spatial trajectory data, the 

scalability and powerful feature of processing points and polygons of spatial data 

by them hence cannot be integrated and activated. To query these systems such 

as basic search operations, join queries, computational queries, and data mining 

queries, most of them rely on iterative processing algorithms such as kNN and k-

means, that is the solution is refined in each iteration until a solution which meets 
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certain accepting criteria is found. The performance of these algorithms is largely 

dependent on the computing framework. Hadoop (Bu, Howe, Balazinska & 

Ernst, 2010) although dominates the area of big data processing is not suitable to 

operate iterative algorithms because of the large overhead for each iteration. 

Therefore, we cannot find notable work in spatial trajectory data mining that uses 

Hadoop. k-means algorithm is often implemented straightly in the MapReduce 

framework so that each iteration is processed by a separate MapReduce job 

(Zhao, Ma & He, 2009). The performance is bad as the overhead of Hadoop in 

each iteration consumes a lot of resources. Spark is well suited to machine 

learning algorithms as it allows to load data into a cluster’s memory and query it 

repeatedly (Zaharia, Chowdhury, Franklin, Shenker & Stoica 2010). However, to 

the best of our knowledge, we cannot find any notable work that uses Spark for 

spatial trajectory data mining tasks. It is worth to investigate the feasibility and 

practicality of using Spark as the implementation of the mining algorithms. 

This section surveyed the state-of-the-art work in the area of big spatial 

trajectory data. The existing approaches, architectures, and components are 

studied. It is true that a number of significant studies have recently been done on 

how data scientists and engineers tackle spatial trajectory data from adopting 

existing data analysis approaches and systems, but the question of how those 

systems and approaches integrate spatio-temporal components and patterns has 

rarely been considered. Consequently, we identify some research gaps from 

which to develop an integrated algorithm to the spatial trajectory data mining. 

2.4 Data Mining Techniques for Multivariate Spatial Time 
Series: A Survey of Related Work 

Recently, there have been some data mining and statistical techniques 
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available for use in MSTS data analysis. In the following sub-sections, we briefly 

review some existing tools, techniques, and databases developed specifically for 

tackling MSTS analysis problems. In below sections, the related works that lead 

to the development of this thesis will be provided. 

2.4.1 Overview of multivariate time series data mining problems and 

approaches. Time series value is numeric. In the real world, it is unusual to find 

time series behave independently of others. Analyzing multiple time series 

simultaneously is an important task and is referred to as MTS analysis. MTS, 

which may carry a class label (Xing, Pei & Keogh, 2010), can be considered as a 

collection of vectors. In the spatio-temporal context, MTS can exist in various 

locations and be referred to as MSTS. For example, climate data is MSTS 

recorded from several sensors to describe the weather by meteorological 

variables such as temperature, precipitation, humidity, wind speed at a given 

location, and may come from multiple locations of either arid or semiarid climate 

types, labeled as “dry arid” and “dry semiarid”. 

Although quite a number of studies have been conducted on time series 

data analysis and mining methods, only a few of them focus on those with 

multivariate nature. Fu (2011) gave a comprehensive review on time series data 

mining and mentioned some recent research issues related to MTS. We 

incorporate some of these relevant issues in this subsection and summarize the 

current development. A primitive approach proposed by Sankoff (1983) aims to 

find the longest common subsequence shared by MTS, but the algorithm grows 

exponentially in time with respect to the number of sequences concerned, 

making this approach undesirable against most of the possible applications. 
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Later, Oates (1999) came up with a method to discover “distinctive 

subsequence”, in other words, “abnormal” pattern occurrences in an MTS. In 

their study, they randomly sampled the time series with length L sub-sequences 

and tried to discover patterns by clustering these subsequences based on 

Dynamic Time Warping. However, this study was restricted to discover 

distinctive subsequences, but also did not consider the possible relations between 

different variables in the data set. 

A number of studies on MTS tried to utilize principle component analysis 

(PCA) to reduce the number of dimensions of the feature space in the data set. 

PCA extracts principle components, which represent the most distinctive features 

of an MTS data set. In 2001, Rosén and Yuan (2001) utilized dynamic PCA to 

obtain principle components from different MTS and then used fuzzy c-means to 

cluster the results obtained by PCA. This approach has been used by a lot of 

researchers for mining MTS and is effective when they treat a set of MTSs as a 

single item and aim to cluster a number of these items. However, it lacks the 

ability to find patterns between variables in an MTS. Based on this, Yang and 

Shahabi (2004) proposed a variant that uses PCA and singular value 

decomposition (SVD) to raise the precision of similarity measure between 

different MTS. Similar optimizations over PCA based clustering have been 

proposed by others, such as Singhal and Seborg (2005), using similarity factors 

based on PCA and Mahalanobis distance between data sets for the similarity 

measure. Some work adopted Euclidean distance for similarity measure. PCA is 

also used in feature selection, as a preprocessing step in MTS analysis by Yoon 

et al. (2005). 



 38 

Hidden-Markov models (HMM) were used by Owsley et al. (1997) to 

cluster MTS. This method focuses on clustering different MTS data sets and 

requires well-established a priori information of initial classes. Zhou and Chan 

(2014) proposed a model-based clustering algorithm to cluster MTS based on the 

discovered temporal patterns in each MTS and compare them with those 

discovered in the others so that MTS that exhibit similar patterns can be grouped 

together in the same cluster. This method discovers temporal patterns using 

confidence value a.k.a lift ratio to represent the relationship between different 

variables. It is application independent and can perform without any domain 

knowledge about relevant features or any assumption about underlying data 

models. 

2.4.2 Multivariate spatial time series pattern mining and clustering. 

Technological advancement in remote sensing technology such as telematics, 

climatology is considered to be one of the most promising factors for allowing 

the large-scale collection of multivariate spatial time series data. An MSTS is a 

complex data type that consists of MTS in multiple locations. A better 

understanding of MSTS may hence result in better understanding of how 

regional variables are inter-related and changed temporally and how this local 

information is correlated globally to other locations spatially. Unfortunately, 

since mining MSTS involves the consideration of high dimensions of time 

domain in the time series or sequence with each interacting with one or more 

other time series in the same or across space domain, the task of mining spatio-

temporal patterns from MSTS is very difficult. In an attempt to handle this 

problem, some researchers and practitioners have developed some algorithms, 
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including model-based approach (Owsley et al., 1997; Zhou & Chan, 2014), and 

similarity-based approach (Singhal & Seborg, 2005; Yang & Shahabi, 2004; 

Yoon et al., 2005). Some of them are summarized briefly in the previous section. 

Other than the above approach, some more attempts have been done to analyze 

MSTS using data mining techniques. Given a data set, the data mining goal is to 

discover hidden regularities and structure inherent in it. It is different from 

hypothesis-based approaches that look for known and pre-specified patterns in 

the data set. Data mining/pattern discovery approach is data-driven. The obvious 

difference is that pattern mining does not require patterns to be known ahead of 

the time, but the search process automatically detects and extracts patterns 

hidden in the data set. 

For MSTS analysis, several pattern-mining approaches have been 

proposed in the literature. If the data sets of interest contain spatial information, 

one could obtain more interesting results by mining such information. Coppi, 

D’Urso, and Giordani (2010) altered the fuzzy c-means to incorporate spatial 

influence while clustering MTS. This method introduced a term called a spatial 

penalty, influenced by the contiguity between different spatial units. Data sets 

that represent neighbors in space are more likely to be classified into the same 

cluster by this term. An application of clustering Italian provinces proved the 

effectiveness of it. 

Shumway (2014) used Kullback-Leibler discrimination and Chernoff 

information measure to calculate the disparity between 2 sets of MTS. They 

calculated the distance matrix based on the discrimination results of these 2 

methods and used it for k-means clustering. A method of measuring linear and 

non-linear dependence between groups of MTSs was proposed by Pascual-
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Marqui (2007). Our study in this thesis will also reference other methods to 

measure the relation between univariate time series. 

Längkvist, Karlsson, and Loutfi (2014) give a review of the recent 

developments in deep learning and unsupervised feature learning for time-series 

problems. They argue that since these deep learning techniques have shown 

promise for modeling image data and static, applying them to time series data is 

getting more and more attention. Here we summarize the important models and 

techniques that are related to the current work. Having the major advantage of 

learning features from the data without the need to engineer handcrafted features, 

they present models and techniques that are used for modeling temporal 

relations. These models and techniques include Restricted Boltzmann Machines 

(RBM) (Hinton, Osindero & Teh, 2006; Hinton & Salakhutdinov, 2006; Lee, 

Ekanadham & Ng, 2008), Conditional RMB (cRBM), Gated RBM (GRBM) 

(Memisevic & Hinton, 2007), auto-encoder (Poultney, Chopra & Cun, 2006; 

Bengio, Lamblin, Popovici & Larochelle, 2007; Bengio, 2007), Recurrent Neural 

Network (RNN) (Hüsken and Stagge, 2003), deep learning, convolution and 

pooling, temporal coherence, Hidden Markov Model (HMM) (Rabiner & Juang, 

1986). RBM is a generative probability model between input units and latent 

units connected with a weight matrix and bias vectors. cRBM is an extension of 

RBM that models multivariate time series data. It consists of auto-regressive 

weights that model short term temporal structure and connections between past 

visible units to the current hidden units. GRBM is another extension of the RBM 

that models the transition between two input vectors. It models a weight tensor 

between the input, the output, and the latent variables. Auto-encoder was 

originally introduced as a dimensionality reduction algorithm whose basic linear 
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version learns the same representation as a Principal Component Analysis 

(PCA). The layers of visible units, hidden units, and the reconstruction of the 

visible units are connected via weighted matrices and the hidden layer and 

reconstruction layer have bias vectors. RNN is used for modeling sequential data. 

It is obtained from the feedforward network by connecting the neuron’s output to 

their inputs. The short-term time-dependency is modeled by the hidden-to-hidden 

connections without using any time delay-taps. They are usually trained 

iteratively via a procedure known as back-propagation-through-time (BPTT). 

RNNs can be seen as very deep networks with shared parameters at each layer 

when unfolded in time. The goal of a deep network is to build features at the 

lower layers that will disentangle the factors of variations in the input data and 

then combine these representations at the higher layers. Convolution is a 

technique that is particularly interesting for high-dimensional data, such as 

images and time-series data. In a convolutional setting, the hidden units are not 

fully connected to the input but instead divided into locally connected segments. 

Convolution has been applied to both RBMs and auto-encoders. Pooling is an 

operator used together with convolution which combines nearby values in input 

or feature space through a max, average or histogram operator. The purpose of it 

is to achieve invariance to small local distortions and reduce the dimensionality 

of the feature space. Temporal coherence here refers to techniques that capture 

temporal coherence in data such as smoothness penalty on the hidden variables 

in the regularization. HMM is a popular model for modeling sequential data 

driven by two probability distributions, namely transition distribution, which 

defines the probability of going from one hidden state to the next hidden state, 

and observation distribution, which defines the relation between observed values 
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and hidden states. A recent attempt by Tian, Zhou, and Guan (2017) has 

proposed a general framework to integrate traditional clustering methods into 

deep learning (DL) models. They claimed that most existing DL based clustering 

techniques have separate feature learning (via DL) and clustering (with 

traditional clustering methods), their proposed framework simultaneously learns 

feature representation and does cluster assignment under the same framework. It 

is a general and flexible framework that can employ different networks and 

clustering methods. In their demonstration, they integrated k-means and Gaussian 

Mixture Model (GMM) into deep networks. Based on the insight from this 

framework, in our experiment, we will train a deep network by inputting the 

clustering assignment for performance comparison. 

While most of the studies reviewed above focus on clustering different 

MTS data sets, some studies emphasize discovering patterns within a single data 

set. Bünau, Meinecke, Király, and Müller (2009) came up with a method, which 

breaks down an MTS data set into stationary and non-stationary parts. Being 

named “stationary subspace analysis”, this method extracts stationary sources 

from non-stationary time series and was successfully applied to EEG data for 

extracting stationary patterns of brain activity. As for discovering common trends 

in MTS, Zuur, Fryer, Jolliffe, Dekker, and Beukema (2003) proposed a method 

using EM algorithm to perform dynamic factor analysis which models data as 

trends, explanatory variables and noise. This method could handle data set with 

missing values or few data points, so it claimed to achieve superior applicability 

over its precedents. Another area in MTS analysis is the change point problem, 

which finds out the timestamps when the covariance structure of the series 
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changes abruptly. Lavielle and Teyssiere (2006) proposed a method to solve this 

problem, which outperforms previous methods. 

There are studies conducted over other MTS topics. Tsay, Peña, and 

Pankratz (2000) tried to characterize and identify outliers. Frenzel and Pompe 

(Frenzel & Pompe, 2007) applied partial mutual information to analyze coupling 

between time series data sets. Amiri-Simkooei (2009) analyzed noise in 

multivariate GPS time-series. 

In summary, previous studies on MTS focus on either finding patterns 

between different MTS data sets or within a single data set. However, for a set of 

MSTS, it may be interested in both finding temporal patterns within an MTS and 

finding those across space. Moreover, conducting further correlation analysis 

over such spatio-temporal patterns might be able to unveil more useful 

knowledge. 
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3 THE PROPOSED 
APPROACH 

In this chapter, the problems of mining of spatio-temporal patterns in i) 

spatial trajectory database and ii) multivariate spatial time series database are 

defined. A new theoretical framework handling the mining of these data is 

proposed. The proposed approach consists of a collection of techniques for 1) 

discovering statistically significant patterns from spatial trajectory database and 

multivariate spatial time series database automatically; 2) using the discovered 

patterns from i) spatial trajectory database and ii) multivariate spatial time series 

database to construct a transformed relational database to represent the original 

database for further analysis; 3) applying a pattern discovery approach to a 

transformed database for clustering and classification. Based on this theoretical 

and systematic framework design, this chapter will describe how these 

techniques are integrated into the proposed approach. 
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3.1 A Formal Problem Description and Technical 
Preliminaries 

Before we introduce the theoretical framework for pattern discovery for 

spatial trajectory data and multivariate spatial time series data, let us begin with 

some of the conventions, terminologies, and definitions that will be used within 

the entire thesis. 

3.1.1 Notation and mining problems of spatial trajectory. Let’s assume 

a set of trips in a moving object database D that captures the movement of 

multiple objects over a lengthy period of time. Each object is tracked as a set of 

trips. A trip or a trajectory T is a trace created by a moving object in 

geographical space over a period of time !! → !! → ⋯ → !! → ⋯ → !!. We 

consider both terms, trip and trajectory, as interchangeable hereafter. Each trip 

can be identified by a trip ID and can be labelled with a class label. A formal 

definition and the relationship of these notations will be presented in section 4.2 

in details. 

3.1.1.1 Pattern discovery from features of spatial trajectory. Before 

classifying spatial trajectories, a trajectory can be transformed into several 

continuous and discrete features in order to effectively extract spatial and 

temporal information to characterize the trajectory. In order to pre-process the 

data for the efficient and effective use of pattern discovery techniques, the 

continuous values should be properly discretized to categorical values. In pattern 

discovery, the goal is to identify interesting patterns with ! different orders 

(number of the variables of attributes they span). 
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3.1.1.2 Classification of spatial trajectory. Now each trip is associated 

with a class label so in supervised learning, this can be treated as a classification 

problem of identifying to which of a set of classes !  a new trip !! belongs, on 

the basis of a training set of moving object database ! containing trips whose 

class is known. Therefore, the formulation of the classification problem is for 

each moving object, we train a classifier using its own trips and then predict 

whether or not a trip, which can be from its own or from other moving objects, 

belongs to this moving object. 

3.1.1.3 Clustering of spatial trajectory. We also argue that in some 

scenarios, the class label ! is unknown in the entire moving object database ! so 

in unsupervised learning, this can be treated as a clustering problem of grouping 

a set of trips in such a way that trips in the same group are more similar to each 

other than to those in other group. This is to partition these trips, 

!!,… ,!! ,… ,!! , into ! clusters: 

!"#$%&' = {!"#$%&'!,… , !"#$%&'!} 

according to the similarities of these trips. The proposed system is able to deal 

with both scenarios whereas class information is available or unavailable. 

3.1.2 Notation and mining problems in multivariate spatial time 

series. We are also concerned with mining a set of Multivariate Spatial Time 

Series (MSTS) data to reveal patterns in both time and space domain. Suppose 

there are multiple spatial locations ! = !!,… , ! ! , each of which is represented 

by a region label and its set of geographic coordinates !  so that 

! = !!,!! ,… , ! ! ,! !  where each set of geographic coordinates ! contains 
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longitude ! and latitude ! coordinates. !  is the number of locations in the study 

area. There are totally ! distinct regions ! = !!,… , !! ,… , !!  which partition 

the locations of the study area. ! !,!  is a function to retrieve the region label !! 

for a given longitude !  and latitude ! . To represent neighborhood between 

regions, let ! be an adjacency matrix that assigns equal weights to all neighbors 

of regions, that is, ! !,! = 1 if region !! and !! share a common border or 0 

otherwise. For each location, there exists at least 1 MSTS. A MSTS is associated 

with a longitude ! and latitude !. With !(!,!), a MSTS can be converted to a 

MTS associated with a region label !! , ! ∈ {1…!} . A MTS consists of ! 

individual time series !" = {1,… ,!}. A time series !" is a finite sequence of 

real values !!, !!,… , !!  containing !  observations with unique time points 

!" = {1,… ,!}. A symbol sequence ! is a sequence of characters !!, !!,… , !! 

over an alphabet set !, where each !! ∈ !. ! is a set of distinct characters with 

size ! . !  is the length of ! . ! !, !  is its substring from index !  to ! . Each 

character represents an event so !  can be called an event sequence. After 

discretization, a !" can be transformed into a symbol sequence !. SAX (Lin, 

Keogh, Wei & Lonardi, 2007), a well-known discretization method for time 

series data mining practitioners, is adopted here for discretization. Therefore, a 

MTS can be transformed into a set of multiple symbol sequences !!, !!,… , !!. A 

pattern !  is a short sequence of consecutive characters !!,!!,… ,! !  over ! 

where !  is the length of the pattern. A pattern ! is always associated with a 

symbol sequence !. ! occurs in an interval !, !  in ! if and only if ! = ! !, ! . !! 

denotes the occurrence of !. All occurrences of ! are recorded in its occurrence 

list !! so !!  is the number of occurrences of ! in !. A frequent pattern is a 
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pattern with its number of occurrences !! > !"#! where !"#! specifies the 

minium number of occurrences required. 

3.1.2.1 Temporal association of frequent patterns. A temporal 

association pattern TP is an association of frequent patterns occurring 

sequentially in time. Each pattern !! is a block of a !". It implies !!!! occurs 

within a certain specified time delay !!  after !!  occurs for ! = 1,… , !" − 1. 

There are totally !" blocks for a !" and we call !" level of !". !"#!" specifies 

the maximum level of !". When all frequent patterns of a !" are from the same 

sequence, !" is called an auto association pattern or intra pattern. Otherwise, it is 

called cross association pattern or inter pattern. !"  is total number of temporal 

association patterns. 

3.1.2.2 Spatial association of temporal patterns. A spatial association of 

temporal pattern, a.k.a spatio-temporal pattern, !" is an association of multiple 

temporal association patterns co-occurring in multiple regions. Each !"! is a 

building block of !". It implies that !"!!! occurs in a region !! other than the 

region !! of !"! where !! ≠ !!. There should be at least 2 !"#, i.e. 2 blocks, in a 

!". Otherwise, every !" is a !". There are totally !" blocks for !" and we call 

!" the level of !". !"#!" specifies the maximum level of !". !"  is the total 

number of spatial association patterns. 
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3.2 The Solution 

Given a data set of spatial trajectory and/or multivariate spatial time 

series, we propose to use a new data mining approach for the discovery of 

patterns. To solve the problems of i) classification and clustering of spatial 

trajectory / multivariate spatial time series data, and ii) association discovery of 

spatio-temporal patterns for them, the proposed approach comprises of a 

collection of techniques for multiple phases: 1) feature generation and 

discretization on spatial trajectories as pre-processing, 2) frequent pattern mining 

and temporal association pattern discovery on MSTS in order to obtain temporal 

pattern sets as pre-processing, 3) interesting association pattern discovery from 

transformed data, 4) clustering and re-clustering to summarize information, and 

5) classification to describe important classes or to predict class labels. Figure 1 

shows the general framework for the proposed data mining approach and how 

these techniques are integrated to form the data mining system. 
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Figure 1. The General Framework of The Proposed Data Mining Approach. 

 

 

Pattern Mining 

Predictive Modeling 
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The proposed data mining approach is comprised of two systems, namely 

pattern mining and predictive modeling. It is able to deal with two spatio-

temporal data types – spatial trajectory and multivariate spatial time series. In the 

pattern mining system, the algorithm firstly performs feature engineering to pre-

process the data. For spatial trajectory data, it generates low-level features from 

each trip and discretizes the feature values of continuous type into categorical 

values. These features characterize the trajectories and retain the important 

spatial and temporal information. After the discretization, the transformed feature 

matrix represents the original spatial trajectory data. For MSTS, after multiple 

time series of a region are discretized into time sequences, frequent sequential 

patterns based on a threshold value are extracted for the discovery of temporal 

association patterns. The discovered temporal patterns associated with a 

statistical significance value are treated as the features to characterize the region. 

This transformed feature matrix represents the original MSTS data. The next 

phase is an association discovery process on the transformed feature matrix 

based on a statistical significance test to search for interesting spatio-temporal 

patterns with different orders inherent in the data. 

In the predictive modeling system, the algorithm takes the discovered 

patterns as rules to build a classifier based on an information theoretic measure to 

detect the association between these discovered patterns and the class label. If the 

original data set is unlabeled, an initial clustering phase using the-state-of-the-art 

algorithm will be performed to generate the cluster labels that will be treated as 

the class labels for building the classifier in the re-clustering phase. Once the 

classification model is built, to deploy and use it, when unseen or new data of 
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spatial trajectory type or multivariate spatial time series type are put into the 

system, the classifier is able to automatically predict the class of them. 
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4 PATTERN DISCOVERY FOR 
SPATIAL TRAJECTORY 

4.1 Background 

In this chapter, a series of algorithms that constitute a pattern-mining 

system for identifying interesting patterns, classification and clustering in spatial 

trajectory is proposed. A good pattern-mining system for spatial trajectory should 

not store all the exact location information of users but should extract useful 

patterns for predictive modeling and this has not been widely discussed in the 

literature. Our study proposes a pattern discovery approach to extract interesting 

driving patterns to characterize the driving trip data set for further classification 

analysis in a supervised learning setting. We perform experiments on a number 

of real data sets of spatial trajectories to compare the classification accuracy to 

show the effectiveness of the representation of the driving data. We also 

investigate the clustering of spatial trajectory data using a transformed feature set 

in an unsupervised learning setting. We develop algorithms and evaluate the 

performance by comparing the proposed techniques with different traditional 

clustering techniques. The major contribution of this approach includes 1) we 
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define the characteristics of labeled and unlabeled trajectory data with its 

associated attributes (features) and the classification and clustering problem of it. 

2) We propose a general model for classifying and clustering feature-based 

trajectories. 3) We incorporate the pattern discovery approach to discover 

statistically significant patterns for feature-based trajectories. 4) We apply the 

proposed algorithms and pattern discovery approach to evaluate and compare the 

results of different traditional clustering methods on a real-time ridesharing data 

set. To demonstrate the effectiveness of the representation of the trajectory data, 

we perform experiments on a number of real data sets of spatial trajectories, 

which include a synthetic data set, real physical exercise data set, GeoLife data 

set and a case study on a driver telematics data set, to compare the classification 

accuracy using famous classifiers such as C4.5 decision tree, random forest, 

logistic regression, support vector machine and convolutional neural network. 

In this section, we introduced the background of pattern discovery for 

spatial trajectory. The rest of this chapter will examine methodically in detail the 

process for the proposed system. Section 4.2 describes the technical 

preliminaries that will restate the notations and definition of spatial trajectory 

that are used in the proposed algorithms. Section 4.3 to section 4.6 describes and 

explains each step of the proposed pattern mining system for spatial trajectory 

with relevant mathematical notations to formally define the solution methods. 

Section 4.7 discusses the computational complexity of the proposed algorithm. 

Section 4.8 reports the experimental results obtained from both synthetic data set 

and real-world data set. This chapter ends with a summary in section 4.9. 
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4.2 Technical Preliminaries 

Given a moving object database !  that captures the movement of 

multiple objects over a lengthy period of time. Each object is tracked as a set of 

trips. A trip or a trajectory !  is a trace created by a moving object in 

geographical space over a period of time. The proposed algorithm models the 

spatial trajectory as trip ! from the moving object database !, which has been 

briefly defined in Chapter 3. Let’s formally define them as follows. 

Definition 4.1. A trip ! is a trajectory of a moving object represented by a 

set of time ordered points, e.g. !:!! → !! → ⋯ → !! → ⋯ → !!  where each 

point ! consists of a geospatial coordinate set and a timestamp that is 

 ! = (!"#$%&'(), !"#$#%&', !"#$%!&#'). Thus, ! can be denoted by: 

 ! = { !!,!!, !! , !!,!!, !! ,… , !! ,!! , !! ,…  , !!,!!, !! }, such that  !! < !!!! 

for all ! !{1,… ,!} and each !! ,!! , !!  is the object’s location in longitude and 

latitude at time !! . A special property of ! is !!,!!  = 0,0  as during data 

collection process, all trips are all centered to start at (0, 0) with the direction 

randomly rotated from the start of the trip for trajectory anonymization purpose. 

To emphasize, this special property is to preserve the privacy of the trips and 

moving objects. We also assume that the trip data are equally spaced, so the 

points are sampled in a regular way of the same time length. 

Definition 4.2. Let ! be a set of trips in a moving object database. The 

cardinality of !, ! , is the number of trips. Thus, ! can be denoted by: 

! = {(!!, !!), (!!, !!),… , (!! , !!) ,…  , (!! , ! ! )}. Each trip ! in ! has a unique 

trip ID and is associated with a class label ! ∈ {!!, !!,… , ! ! } (a class label is 

also known as moving object ID who is used to identify the unique object), and 
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we assume that there are totally !  distinct class labels in !. To clarify the 

definition of class label a.k.a moving object ID, the number of classes of the 

database will be equal to the number of moving objects. A moving object as 

identified by its moving object ID may have many trips. There exists a one-to-

many relationship between moving objects and trips. 

Figure 2 demonstrates an example of a trip in a moving object database. 

Let’s assume in Figure 2 the trips are associated to the same moving object, 

filtered by a class label, and are all centered to start at (0, 0) with the direction 

randomly rotated from the start of the trip for the reason of anonymousness. The 

timestamp value is for demonstration purpose only. This moving object database 

that stores various temporally ordered trips, which are measured in 2-

dimensional coordinates at each timestamp, of multiple moving objects can be 

seen as the database about moving ‘points’, which shall well represent one kind 

of spatio-temporal databases. 

Figure 2. Schematics of Trips in Moving Object Database. 

The proposed system goes through the following steps. 
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• It firstly generates low-level features from each trip and discretizes the 

features of continuous type.  

• Then, it discovers the statistically significant patterns from the discretized 

attributes data set and detects higher-order patterns from the lower ones. 

Based on the discovered patterns, it can construct the graph 

representation for efficient retrieval and effective visualization of 

patterns.  

• If class information is available, a classifier can be trained using the 

discovered patterns.  

• If class information is unavailable, a cluster model by a 2-step clustering 

can be trained. 

4.3 Feature Generation and Discretization 

In the proposed system, we assume that the locations of objects are 

recorded over a long history, so each moving object may contain many trips. 

Each trip is tracked as a set of GPS coordinates per time interval (i.e. second). 

Some might argue that the position of a moving object is sampled as point-based 

data and not as interval-based due to many reasons such as energy saving and 

communication loading (Zheng, 2015) but, however, it leads to an object’s 

movement between sampling points uncertain. To avoid this, due to 

technological advances in sensor technology and communication bandwidth, the 

sampling rate is increased to a level that can neglect the uncertainty of the 

positions between two sampling points with high energy efficiency. Based on the 

information of space (positions) and time, we can describe each trip by 4 

categories of spatio-temporal attributes as the features: 
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a) Route-related attributes 

b) Speed-related attributes 

c) Turning-related attributes 

d) Stop points-related attributes 

A full list of attributes is shown in Table 4.1 to describe the 4 categories. Notice 

that different spatial and temporal attributes can be generated based on the nature 

of the data source and the actual application. To demonstrate the practicality of 

the proposed feature generation method, we use a particular set of attributes to 

represent the characteristics of recorded GPS data, which shall be seen as a 

specific application of a more general approach. 

Table 1 

Full List of Extracted Attributes 

Type Attribute Description 

Number of 

generated 

attributes 

a Total distance 

traveled 

The total distance that an object 

traveled in this trip. 

1 

a Traveling 

duration 

The total time duration that an object 

spent on this trip. 

1 

b Speed 

distribution 

The 0th, 10th…90th, 100th, percentile of 

the speed along the trip. 

11 

b Acceleration The 0th, 10th…90th, 100th, percentile of 11 
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Type Attribute Description 

Number of 

generated 

attributes 

distribution the acceleration along the trip. 

b Derivative of 

acceleration 

distribution 

The 0th, 10th…90th, 100th, percentile of 

the derivative of acceleration. 

11 

b Total energy The energy is assumed to be 

proportional to the absolute difference 

of squared velocity for adjacent time 

points. The total energy is the sum of 

all the energy spent at each time point. 

1 

c Turning angle 

distribution 

The 0th, 10th…90th, 100th, percentile of 

the turning angle along the trip. 

11 

c Distribution of 

(turning angle * 

speed) 

The 0th, 10th…90th, 100th, percentile of 

the (turning angle*speed) along the 

trip. 

11 

d Number of stop 

points 

The number of stop points along the 

trip. 

1 

d Post-stop 

acceleration 

distribution 

The 0th, 10th…90th, 100th, percentile of 

the acceleration while an object starts 

moving after each stop. 

11 

d Pre-stop The 0th, 10th…90th, 100th, percentile of 11 
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Type Attribute Description 

Number of 

generated 

attributes 

deceleration 

distribution 

the deceleration while an object tries 

to stop moving. 

Total number of generated attributes: 81 

 

Let ! = {!!,!!,… ,!!} be the attribute set. For each trip, we calculate an 81-

dimension vector (i.e. ! = 81) as its attribute set to represent the feature of a 

trip. After the feature generation, the data set is represented by a feature matrix 

(FM) sized !× !  of which each vector !! , where ! = 1,… ,! , is then 

characterized by ! continous attributes (Figure 3). 

 
Figure 3. Feature Matrix Representation for Spatial Trajectory after Feature 

Generation. 

 !! … !! … !! 

!! !!! … !!! … !!! 

…
 … … … … … 
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With FM, a discretization method is applied to these vectors to discretize 

the continuous attribute values to categorical values, in order to pre-process the 

data for the efficient and effective use of pattern discovery techniques. There are 

several reasons to support the discretization. First, it greatly reduces the 

computational complexity for pattern discovery and later the classification task 

for which categorical data classification is more efficient. Second, the 

visualization of the patterns using categorical labels is more human readable and 

user-friendly, especially using graph representation to visualize the patterns. 

Next section will introduce the pattern representation and visualization. The 

experiment section will compare the classification accuracy with algorithms 

using continuous attributes without discretization. The result indicates that the 

accuracy will not be worsened significantly so the benefits of discretization here 

outweigh the drawback of data loss. Discretization rules can be predefined 

subject to the user’s understanding of the data set. Each discretization rule takes 

one or more continuous type of attributes and outputs a categorical value. 

Therefore it can summarize the continuous attributes into categorical attributes. 

Table 2 demonstrates the sample discretization rules. 
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Table 2 

Sample Rules for Discretization of Continuous Attribute Values 

Rule  Logic 

TripLength If the trip length > median(all trips’ length) and trip 

duration > median(all trips’ duration) then return 1 

else return 0. 

MedianSpeed If the median speed of the trip > median(the median 

speed of all trips) then return 1 else return 0. 

SpeedyTurning If the median of (speed * angle) > median(the 

median (speed * angle) of all trips) then return 1 

else return 0. 

PostStopAcc If the maximum of post-stop acceleration > 

median(maximum of post-stop acceleration of all 

trips) then return 1 else return 0. 

PreStopAcc If the maximum of pre-stop deceleration > 

median(maximum of pre-stop deceleration of all 

trips) then return 1 else return 0. 

StopPoints If the number of stop points > median(number of 

stop points of all trips) then return 1 else return 0. 
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This set of discretization rules in Table 2 as an example expands the 

generated attributes in Table 1Table 1 to further characterize the trips. An 

alternative unsupervised discretization approach, namely Mixed-mode Attribute 

Clustering Algorithm (MACA), proposed by our previous studies (Wong, Wu, 

Wu, & Chan, 2010; Wu, Chan, & Wong, 2011) can also be applied to the 

generated continuous features if these features are highly correlated. Since class 

information is available, an additional discretization step can be applied using 

supervised discretization described in MACA and CAIM by Kurgan and Cios 

(2004). Discretization is beyond the scope of this study, so we will not further 

focus on it. After the discretization, the data set is represented by a transformed 

feature matrix (TFM) sized !× ! of which each vector !!, where ! = 1,… ,!, is 

then characterized by !  categorical attributes and the pattern discovery 

technique can readily be applied. 

4.4 Discovery of Interesting Patterns 

In pattern mining, the main task is to generate interesting patterns with ! 

different orders (number of the variables of attributes they span). After feature 

generation and discretization, we discover interesting patterns from the 

transformed feature matrix (TFM) produced in section 4.3. Pattern discovery 

starts by searching the second order patterns (! = 2) from the first order patterns 

and statistically significant patterns (interesting patterns) will be retained to 

search for third order patterns and so on. Detail mathematical proof of the 

methods can be found in (Chan & Wong, 1990; Wong & Wang, 1997). The 

discovery process detects patterns by a statistical significance test defined in 

definition 4.3 based on adjusted residual. Let’s consider a simple real-world 
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example to illustrate the discovered interesting patterns based on statistical 

significance. The XOR, pronounced as Exclusive OR, problem is a digital logic 

gate that gives a true output when the number of true inputs is odd. It involves 3 

binary variables, !, !, and, ! = !⨁!, i.e. ! is true when either ! or !, but not 

both, is true. For a real world situation, when there is a narrow bridge in a road 

with only a single lane, and two vehicles ! and ! in the opposite sides. The 

result is a vehicle passing through the bridge !. If ! does not try to cross 

{! = !} and ! does not try to cross {! = !}, there is not car crossing at all 

{! = !}. If both try to cross at the same time {! = !,! = !}, then there will not 

be possible for any car crossing at all {! = !}. Only if one car crosses and the 

other remains still {! = !,! = !}  or {! = !,! = !} , then it can be a car 

crossing {! = !}. In this example, we assume that without domain knowledge, 

nobody knows it is the XOR problem. We would like to discover interesting 

patterns to see whether or not the occurrence of the association pattern, or simply 

pattern, {! = !,! = !,! = !}  is just a random happening. If the observed 

frequency of this pattern deviates significantly from the random assumption, we 

know this happening is not random given that we can estimate its frequency of 

occurrences under the random assumption. This happening is referred to as an 

interesting pattern in the statistical sense. To illustrate, considering an XOR 

database contains 10,000 samples in which each value of a variable, i.e. {! = !}, 

occurs 5,000 times. The expected frequency of occurrences of the pattern 

{! = !,! = !,! = !} under the independence assumption is 50% x 50% x 50% 

x 10,000 = 1,250. Let’s say its observed frequency of occurrences is 2,500, we 

are going to detect whether or not the difference between the observed frequency 

of occurrences and expected frequency of occurrences (i.e. 2,500 – 1,250) is 
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significant enough to conclude that the pattern is not a random happening. To 

test this, we introduce to apply a statistical significance test based on adjusted 

residual analysis. Given a significant level, if the statistical significance test is 

passed, then the observed frequency of the pattern is signficantly greater than the 

expected frequency, thus not a random happening. 

Definition 4.3 Let ST be a statistical significance test. If the frequency of 

occurrences of a pattern !! is significantly deviated from its expectation based on 

a default probabilistic model, we say that !! is a statistically significant pattern, 

or an interesting pattern of order !. 

Let us denote the observed occurrences of pattern as !!! and its expected 

occurrences as !!!. !!! is computed by: 

!!! = ! !(!!)
!∈!,!!∈!! 

 (4.1) 

where P(!!) is estimated by the proportion of the occurrence of !! to the sample 

size ! , which is the number of trips. 

To test whether or not !! is a statistically significant pattern, standardized 

residual !!!  defined in (Haberman, 1974) is used to measure the deviation 

between !!! and !!!: 

!!! =
!!! − !!!

!!!
 (4.2) 

where !!! is considered to be of normal distribution only when the asymptotic 

variance of !!! is close to one. Otherwise, it has to be adjusted by its variance 

(Wong & Wang, 1997). 
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To normalize !!! for a more precise analysis, the adjusted residual !!! is 

defined as: 

!!! =
!!!
!!!

 (4.3) 

where !!! is the maximum likelihood estimate of the variance of !!!. 

For a pattern !!  of a pattern candidate set !"! , we construct the 

contingency table to count the occurrences of it and compute the adjusted 

residual. Based on 5% significant level, if the adjusted residual is greater than 

1.96, which is the predefined minimum threshold, then observed frequency of the 

pattern is significantly greater than the expected frequency. The significant level 

is a user input parameter. Some common settings include 1%, 5% and 10%, with 

significance threshold values 2.575, 1.96 and 1.645 respectively. The higher the 

adjusted residual value indicates the pattern is more deviated from expectation. 

The default significant level we adopt in our proposed pattern mining algorithm 

is 5% whose significance threshold value is 1.96 by convention. In this case, !! 

is referred to as a statistically significant pattern. 

The first order patterns are all composed of discretized attributes and are 

stored in pattern candidate set !"!. To discover the 2nd order patterns for each 

object, we construct a pattern candidate set !"! , which contains all the 

combinations of the first order patterns. For each combination, we perform the 

statistical significance test described above to search for a set of statistically 

significant 2nd order patterns, !!. 

To search for higher-order patterns !!!! and avoid the exhaustive search, 

we construct the next candidate set !"!!! based on only statistically significant 
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patterns in one order lower and apply the statistical significance test to filter out 

insignificant patterns in !"!!!. A user input parameter !"#$"!"# is required for 

limiting the max order for the search operation. The operation terminates after 

! + 1 = !"#$"!"# iteration. Thus, the method is efficient since the search 

space for the next order of patterns will be greatly reduced by previous iterations. 

Combining both steps, we give the pseudo-code as Figure 4. 
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Figure 4. The Pseudo-Code of the Proposed Pattern Discovery Algorithm. 

In order to represent and manipulate the interesting patterns efficiently, 

we need a simple but powerful pattern representation structure to encode the 

discovered patterns. Attributed hypergraph (AHG) representation (AHR) 

proposed by (Wang & Wong, 1996) is a lucid structure and general enough to 

encode different order patterns. It provides a simple and direct transformation 

from pattern retrieval to graph manipulation where a number of mature graph 

algorithms could be adopted. In this paper, we use an attributed hypergraph to 

Input:  
  ! = {(!!, !!),… , (!|!|, !|!|)} (original database) 
  !"#$"!"# (max order for detecting patterns) 
  !"# (significance threshold value) 
Output:  
  ! (set of discovered patterns) 
Variables:  
  ! = {!!, !!,… , !!} (attribute set) 
  !!! (adjusted residual of pattern !!) 
  !"! (pattern candidate set of patterns of order !) 
Algorithm: 
  ! = ∅ 
  For each trip !! ∈ ! 
    transform it into a set of attributes ! 
  For iterator ! = 2: !"#$"!"# 
    If ! = 2  
      initialize !"! based on all possible combination of ! 
    Else 
      initialize !"! based on all possible combination of !"!!! 
    For each pattern !! in !"! 
      calculate !!! 
      If !!! >  !"# 
        insert !! into ! (!! is statistically significant) 
      Else 
        remove !! from !"! (!! is not statistically significant) 
    End 
  End 
  Return ! 
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represent interesting patterns on a spatio-temporal data set for the sake of 

visualization, efficiency, and implementation. The below definition 4.4 to 4.8 

defines the notation of this representation. To clearly explain and illustrate 

definition 4 to 8, Figure 5 which is also the top 3 discovered patterns from the 

case study visualizes the attributed hypergraph representation (AHR). 
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Figure 5. Illustration of A
ttributed H

ypergraph R
epresentation. 

 



 73 

 

Definition 4.4 An attribute pair !! ,!!  is an ordered pair where !! is 

the attribute name and !! is the attribute value. 

For example, an attribute pair can describe the total distance traveled on a 

trip. The attribute name !! can be assigned to “total distance travelled” and the 

!! is the measure of the total distance, i.e. total distance, 100 . 

Definition 4.5 An attribute set is an m tuple < !!,  !!, !!,… ,!! ,… ,!! > 

where each element is an attribute pair. 

In the spatio-temporal context, the attribute set is used to describe the 

properties of a trip or relation between two trips. For example, an attribute set for 

describing a trip can be: 

< total distance, 100 , time duration, 600 , number of stops, 10 > 

Definition 4.6 A pattern !!  is a realization of attribute values on an 

attribute set. The order of the pattern is the number of tuples ! in the attribute set. 

Definition 4.7 An attributed vertex is a vertex with an associated attribute 

set. An attributed hyperedge ! is a set of attributed vertices, associated with a 

pattern. 

In the proposed system, each trip is represented by an attributed vertex 

with discretized attributes as its attribute set. The relation among a group of trips 

is represented by an attributed hyperedge. For example, trip 1, trip 2 and trip 3 all 

contain the same 2nd order pattern 

< distance: long , average speed:high > 

Then the hyperedge connecting them should be 
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! = trip1, trip2, trip3  

with attribute set  

< (distance: long), (average speed:high) >. 

Definition 4.8 An attributed hypergraph is an ordered pair ! = (!,!) 

where ! = {!!, !!,… , !!} is a set of attributed vertices and ! = !!, !!,… , !!  is 

a set of attributed hyperedges such that   !!  ≠  ∅ ! = 1,2,3…! ,  and 

!!!
!!! = !. 

Using the results of feature generation and discretization stage, we can 

construct the attributed vertices each of which represents a trip described by an 

attribute set. Based on the definition of attributed hyperedge, each element in 

 !!!
!!!   defines an attributed hyperedge. We assign each attributed vertex to the 

hyperedge if the attributes of the attributed vertex satisfy the corresponding 

patterns of the attributed hyperedge. 

After we construct all the attributed hyperedges ! and attributed vertices 

!, then the attributed hypergraph is generated, denoted as !(!,!). In the spatio-

temporal data context, if the attributed graph is generated using only the trips of 

the same moving object, this is treated as the moving object signature of this 

object. 

4.5 Classification for Spatial Trajectory 

Once the interesting patterns are generated in section 4.4, these patterns 

can be used for further analysis. If class information is available, we can train a 

classification model based on the interesting patterns discovered from the 

transformed feature matrix (TFM) produced in section 4.3. Let !!  be an 
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interesting pattern discovered from class !,  c!. In a supervised manner, if the 

interesting pattern !! is conditioned by the class label  c!, it can be treated as a 

classification rule (Wang & Wong, 2003), i.e. if {antecedent or left-hand-side or 

LHS} then {consequent or right-hand-side or RHS}. The weight of evidence 

measure ! in information theory (Wang & Wong, 2003) is used to quantify the 

evidence of the joined significant rules to support or against a certain class 

membership. An example rule for the moving object data set is if { distance =

long and average speed = high } then { class = 1} with a weight of evidence 

of a certain value. 

Definition 4.9 The weight of evidence measure provided by a pattern !! 

for or against the classification of a trajectory ! into class  !! is defined as: 

!! ! !! =! ! ∈ !!  / ! ∉ !!  ! is characterized by !!) 

                    = ! ! ∈ !! ∶  ! is characterized by !!  

                        –  ! ! ∉ !! ∶  ! is characterized by !!  

                    = log! ! ∈ !!   ! is characterized by !!)
! ! ∈ !!

  

                        –  log! ! ∉ !!   ! is characterized by !!)
!(! ∉ !!)

 

                    = log!  ! is characterized by !!  ! ∈ !!)
!  ! is characterized by !!  ! ∉ !!)

 

 

(4.4) 

where !( )  is the mutual information. It is positive if !!  provides positive 

evidence supporting ! is classified to  c!, otherwise, it is negative, or zero. 
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!  ! is characterized by !!  ! ∈ !!) is the probability that a trajectory ! 

contains a pattern !! given that ! belongs to !!. It is computed by counting the 

occurrence of trajectories in the database containing pattern !!and belonging to 

class !! divided by the number of trajectories belonging to class !!. 

!  ! is characterized by !!  ! ∉ !!) is the probability that a trajectory ! 

contains a pattern !!  given that ! does not belong to !! . It is computed by 

counting the occurrence of trajectories in the database containing pattern !! and 

not belonging to class !! divided by the number of trajectories not belonging to 

class !!. 

!! ! !!  can be interpreted as a measure of the difference in the gain in 

information when a trajectory ! containing !! is classified into  c! as opposed to 

other classes. !! ! !!  is positive if !! provides positive evidence supporting 

the classification of ! into  c!, otherwise, it is negative. 

Given the interesting patterns ! = {!!!,… ,!!! ,… ,  !!!
|!|}, discovered for 

each corresponding |!| classes,  c!,… ,  c!,… ,  c|!|, an unseen trajectory !! can be 

classified by matching it against the patterns in each of classes. An unseen 

trajectory !! is first transformed to a list of attributes using the proposed feature 

generation and discretization approach to construct a set of patterns !!  for 

matching. Then for every pattern !!!  that !!  matches, there is some evidence 

!! !! !!!  provided by it for or against the classification of !!  into  c! . 

Assuming that !! matches with !! ≤ !! patterns in ! of  c!, we calculate a total 

weight of evidence measure for  !! to classified into c!. 
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Definition 4.10 The total weight of evidence provided by each of 

individual patterns is a measure for !! to be classified into c! and is defined as: 

!!(!!) 

=!  !! ∈ !!  !! ∉ !!      !! is characterized by !!! ,… ,!!! ,… ,!!!
! ) 

= !   !! ∈ !!  !! ∉ !!      !! is characterized by !!!)
!!

!!!
 

(4.5) 

The task of classification is to maximize !!(!!). The major steps are 

given in Figure 6. The total weight of evidence for !! to be classified into each 

of !!, !!,… , ! !  is computed and !! is assigned to the class that can give the 

highest total weight of evidence. This measure is able to differentiate the case 

that when some identical trajectories refer to different classes in the training set 

as the class assignment of !! is by the highest total weight of evidence. 
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Figure 6. The Pseudo-Code of The Proposed Classification Algorithm. 

 

4.6 Clustering and Re-Clustering for Spatial Trajectory 

If class information is not available, we can perform cluster analysis after 

transformed the raw spatial trajectories to the Feature Matrix (FM) and 

Input:  

  !! (an unseen trajectory) 
Output:  

  !! (assigned class of !!) 
Variables:  

  ! = {(!!, !!),… , (!|!|, !|!|)} (original database) 

  ! = {!!!,… ,!!! ,… ,  !!!
|!|} (set of discovered patterns) 

  ! = {!!, !!,… , !|!|} (set of classes) 
  !!!!!!!!, ! = 1,… ,!! (set of weight of evidences) 

  !! (set of patterns from !! for matching) 
  !!(!!) (set of total weight of evidences) 
Algorithm: 

  !! = transform !! into a set of patterns for matching 

  For each discovered pattern !!! ∈ ! 

    For each pattern for matching !! ∈ !! 

      If !!! matches !! 

        For each class !! ∈ |!| 
          !!(!!) = !!(!!) + !!!!!!!!! 
        End 
      End 
    End 
  End 

  !! = class !! with max(!!(!!)) 
  Return !! 
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transformed feature matrix (TFM) in section 4.3. We treat FM as the input with 

each vector characterized by ! continuous attributes as an object. The clustering 

approach consists of two steps, namely initial clustering and re-clustering. The 

initial clustering adopts the state-of-the-art clustering algorithm to assign cluster 

labels to the objects. It locally optimizes the clustering by extracting local 

information using a pair-wise distance measure between objects. A good 

clustering result should generate good cluster label, so we treat the cluster label 

as the class label to perform classification in order to globally partition the 

objects. The re-clustering step is essentially to apply a classification algorithm 

described in section 4.5 on TFM with the cluster labels treated as the class labels. 

It extracts global information through the discovery of interesting associations 

between objects and cluster labels. 

In the initial clustering phase, given ! objects, !!,… , !! ,… , !!, from FM 

we adopt a popular agglomerative hierarchical clustering algorithm (Sibson, 

1973) to repeatedly group the most similar pair of clusters into a new cluster 

until forming a single cluster with all objects. This process prefers to leave 

uncertain objects ungrouped instead of forcing them into one of the cluster 

groups that make the discovered clusters less reliable. The output of this process 

is a dendrogram that displays the grouping results after each iteration of merging. 

The objects going to a specific branch in a dendrogram form a cluster. It is 

optional to apply a suitable cutoff level to obtain a specific number of clusters, 

i.e. {!"#$%&'!,… , !"#$%&'!}, based on prior knowledge. If there is no domain 

knowledge to specify the number of clusters or inspecting the dendrogram to see 

if it suggests a particular number of clusters is considered subjective, one can 

apply some heuristics to determine the optimal number of clusters. There are two 
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major groups of methods namely direct methods and statistical testing methods. 

Direct methods such as average silhouette method optimize criteria, which 

measures the quality of a clustering, by running a clustering algorithm for 

different values of the number of clusters k and select the k with the best quality, 

i.e. highest average silhouette value. Average silhouette method by Kaufman and 

Rousseeuw (1990) computes the average silhouette of observations for different 

values of k. The optimal number of clusters k is the one that maximize the 

average silhouette over a range of possible values for k. Statistical testing 

methods are made up of comparing evidence against the null hypothesis. One of 

the methods in this group is gap statistic by Tibshirani, Walther, and Hastie 

(2001). The gap statistic compares the total within intra-cluster variation for 

different values of k with their expected values under the null reference 

distribution of the data. The estimate of the optimal clusters will be a value that 

maximizes the gap statistic (i.e. that yields the largest gap statistic). In addition to 

the above methods, there are more than 30 other methods that have been studied 

to determine the optimal number of clusters. Charrad, Ghazzali, Boiteau, and 

Niknafs (2012) have published and provided software package, NbClust, in R 

that implements these methods for this problem and cluster validity. However, 

determining the optimal number of clusters is beyond the scope of this thesis so 

we will not discuss it in further. As mentioned above, leaving uncertain objects 

ungrouped instead of forcing them into one of the cluster groups that make the 

discovered clusters less reliable produces a set of reliable initial clusters. Pearson 

correlation coefficient is used for the distance measure rather than Euclidean 

distance as it is known to be better in dealing with noise (Ma, Chan & Chiu, 
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2005). For a pair of objects !! and !! with values of ! continuous attributes in 

FM, the similarity measure is defined as: 

!"# !! ,!! = ! !!"!!"!
!!! − !!"!

!!! !!"!
!!!

! !!"! − (!!)!!
!!! ! !!"! − (!!)!!

!!!

 (4.6) 

In re-clustering phase, objects that are not assigned to any cluster in the 

initial clustering phase will be assigned and those that have assigned will be re-

evaluated to decide whether or not they should be re-assigned to a different 

cluster. Treating the assigned cluster label in the initial clustering as the class 

label, we can apply the classification algorithm described in section 4.5 using the 

objects that have assigned to clusters from TFM to train a classifier. Let !! be a 

set of objects that are not assigned to any cluster in the initial clustering phase, 

and !!! be a set of objects that have assigned to clusters in the initial clustering 

phase. The union of !! and !!! is !. To assign a class label to !! and to re-

evaluate !!!, the trained classifier will be used to predict the cluster labels for 

them. Figure 7 provides the details for this re-clustering step. 
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Figure 7. The Pseudo-Code of Re-Clustering Spatial Trajectory. 

 

Input:  

  !! (!! ∈ {!!,!!!} an object from !! and !!!) 
Output:  

  !"#$%&'! (an assigned cluster labels to !!) 
Variables:  

  ! = {!!!,… ,!!! ,… ,  !!!
|!|} (set of discovered patterns) 

  !"#$%&' = {!"#$%&%'!, !"#$%&%'!,… , !"#$%&%'|!|} (set of clusters) 
  !!!!!!!!, ! = 1,… ,!! (set of weights of evidence) 

  !! (set of patterns from !! for matching) 
  !!(!!) (set of total weights of evidence) 
Algorithm: 

  !! = transform !! into a set of patterns for matching 

  For each discovered pattern !!! ∈ ! 

    For each pattern for matching !! ∈ !! 

      If !!! matches !! 

        For each !"#$%&'! ∈ !"#$%&' 

          !!(!!) = !!(!!) + !!!!!!!!! 
        End 
      End 
    End 
  End 

  !"#$%&'! = !"#$%&'! with max(!!(!!)) 
  Return !"#$%&'! 
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4.7 Complexity Analysis 

Let !  be the number of trips in the database, !  be the number of 

discretized attributes, ! be the number of discovered interesting patterns,  ! be 

the number of distinct class labels, and ! be the number of distinct cluster labels. 

Feature generation and discretization step loops over all the ! trips to apply the 

rules, for which the computational complexity is ! !" . 

Discovery of interesting pattern step computes the contingency table for 

all !
!  pairs of discretized attributes, so the computational complexity is 

!(!!!). For ! > 2, to generate !!! order patterns, the computational complexity 

is !(!!!). For higher order patterns, the candidate set is greatly reduced by 

previous iterations as the algorithm only considers growing statistically 

significant patterns, so all pattern candidate set should be much less than all 

possible combinations of i!" order patterns, i.e. !"! < !!. If we predefine the 

number of discretized attributes, the overall computational complexity is linear in 

terms of ! . Suppose there exist !!!
!!! = !  interesting patterns after the 

pattern discovery process, the computational complexity of constructing the 

attributed hypergraph covering ! trips is !(!"). 

Classification step calculates the weight of evidence of all individual 

interesting patterns supporting or refusing the classification of a trip into a class. 

Given ! interesting patterns and ! discint class labels, it calculates the weights of 

evidence !" times. Each time of the calculation scans through the entire database 

of !  trips. Consequently, it takes !"#  operations to obtain all weights of 

evidence between each interesting pattern and each class. Hence, its 

computational complexity is !(!"# ). For the classification of an unseen trip, it 
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requires the generation of ! discretized attributes and match them against ! 

interesting patterns to look for the highest total weight of evidence to support the 

classification into a certain class. As a result, it takes !"# operations in total for 

which the computational complexity is !(!"# ). 

Clustering and re-clustering step scans through the entire !× ! feature 

matrix once in the initial clustering, so the computational complexity of 

calculating the pair-wise similarity is !(!!!). Given ! interesting patterns and 

! discint cluster labels, it calculates the weight of evidence measure !" times. 

Each time scans through the entire database of ! trips. Consequently, it takes 

!"#  operations to obtain all weights of evidence between each interesting 

pattern and each cluster. Hence, its computational complexity is !(!"#). The 

re-evaluation and assignment of ungroup objects requires the generation of ! 

discretized attributes and match them against ! interesting patterns to look for 

the highest total weight of evidence among ! discint cluster labels to support the 

assignment into a certain cluster. As a result, it takes !"# operations in total for 

which the computational complexity is !(!"#). 

4.8 Experimental Results 

To evaluate the performance of the proposed algorithms on spatial 

trajectory data mining tasks, we carried out a number of experiments using 

synthetic data, real data and conducted a case study. In the first experiment, we 

embedded some association relationships in a synthetic data set and then tested 

whether or not the proposed algorithms were able to discover the patterns hidden 

in the underlying association relationships. In the second experiment, we 

classified a small-scale real data set of GPS tracks of our own physical exercise 
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data to verify the effectiveness of the proposed algorithms. In the third 

experiment, a large-scale publicly available spatial trajectory data set was tested 

against the proposed algorithms and other the-state-of-the-art algorithms for the 

performance comparison. In the fourth experiment, we conducted a case study 

using a real driver telematics data set provided by an insurance company to 

reveal driving patterns and test whether or not the proposed algorithms were able 

to discriminate drivers based on the discovered patterns. 

The proposed system for spatial trajectory data is implemented by 

realizing the corresponding methods in the above sections of this chapter. Fig. 

3.1 shows the basic structure of the system for such data. The spatial trajectory 

pattern discovery system reads input data for each moving object from a given 

database, and then detects interesting association patterns for each trip of a 

moving object. After all interesting patterns are obtained, the system builds a 

classifier by calculating all weights of evidence provided by each of interesting 

patterns for or against the classification of a trip into a moving object. For 

simplicity, we, by default, applied equal frequency algorithm with the number of 

bins = 10 to guide the discretization of features/attributes and construct the 

patterns up to the 3rd order with predefined minimum adjusted residual threshold 

= 1.96 (i. e. based on 5% significance level), unless otherwise stated. The system 

is implemented in the programming language Python 3.6 with NumPy, a package 

for scientific computing, and Pandas, a software library for data manipulation. It 

will first generate a feature set for each trip and discretize the continuous values 

into discretized attributes according to the predefined rules as shown in Table 2 

of section 4.3. The experiments are carried out on a personal computer 

(MacBook Pro) with 2.9 GHz Intel Core i5 processor and 16 Gb RAM running 
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macOS version 10.13. Partial results described in this chapter have been 

published in Wu and Chan (2017, 2018a). 

 

4.8.1 Synthetic data set. In this experiment, we test the proposed algorithms 

for effectiveness when it is used to distinguish the physical exercise types using 

the discovered patterns from the simulated GPS tracks data. We generated 1,000 

trips using a GPS generator that is publicly available (http://www.gpsies.com/). 

Some association relationships were embedded in the generated trips for our 

algorithms to test whether or not we can discover the patterns hidden in the 

underlying association relationships. The first type of physical exercises is 

cycling, and the second type is running with the following embedded association 

patterns: 

IF {“max acceleration” = “high” and “average speed” = “high”} THEN {“type” 

= “cycling”} 

IF {“distance” = “long” and “average cosine of turning angles” = “high”} THEN 

{“type” = “cycling”} 

IF {“max acceleration” = “low” and “average speed” = “low”} THEN {“type” = 

“running”} 

IF {“distance” = “short” and “average cosine of turning angles” = “low”} THEN 

{“type” = “running”} 

The characteristics and routes of both types of physical exercises are 

shown in Table 3 and Figure 8 respectively. The cycling route is one of the 

famous cycling routes in Hong Kong, from Tai Wai to Tai Mei Tuk with cycling 
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track along the Shing Mun River. The running route is in a standard oval running 

track with 400 meters length. Their spatial difference allows us to make sense of 

embedding the association patterns for the selected physical activities. 

Table 3 

The Characteristics of the Synthetic Data of GPS Tracks 

Characteristics Cycling Running 

Max acceleration 0.4m/s2 0.25m/s2 

Average speed 25km/h 10km/h 

Distance 23km 5km 

Average cosine of turning angles 0.9949 0.8879 

 

Figure 8. Routes of The Synthetic Data of GPS Tracks. 

Each type of physical exercises contains 500 trips. To further examine the 

performance of the proposed algorithm in the presence of uncertainty, 10% of 

noise, which is 50 trips of each type of exercises, was added randomly to the data 

  
a) Cycling route b) Running route 
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sets by removing 30% records of the latitude and longitude of the randomly 

chosen consecutive time intervals, i.e. increasing the average speed by 30%. We 

applied the proposed algorithms to generate the feature matrix (FM) from the 

synthetic GPS trajectory data and discretize the values of the FM for pattern 

discovery. As a result, the proposed algorithms discovered 454 interesting 

association patterns from the FM. The top 10 discovered patterns and rules 

together with adjusted residuals and weight of evidence are given in Table 4. 

Table 4 

Top 10 Discovered Patterns and Rules in Synthetic Data of GPS Tracks 

IF {pattern} THEN {outcome} 
Adjusted 

residual 

Weight of 

evidence 

IF {“30th percentile of acceleration” = “low” and 

“30th percentile of cosine of turning angle” = “low”} 

THEN {“type” = “running”} 

9.036962 infinity 

IF {“50th percentile of speed” = “low” and “70th 

percentile of acceleration” = “low”} THEN {“type” 

= “running”} 

9.017009 infinity 

IF {“50th percentile of acceleration” = “low” and 

“30th percentile of cosine of turning angle” = “low”} 

THEN {“type” = “running”} 

8.502651 infinity 

IF {“30th percentile of acceleration” = “low” and 

“average speed” = “low”} THEN {“type” = 

“running”} 

7.951466 infinity 
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IF {“20th percentile of acceleration” = “high” and 

“average speed” = “100th percentile of acceleration 

derivative” = “high”} THEN {“type” = “cycling”} 

7.534125 infinity 

IF {“40th percentile of acceleration” = “low” and 

50th percentile of acceleration” = “low”} THEN 

{“type” = “running”} 

7.42295 infinity 

IF {“90th percentile of cosine of turning angle” = 

“high” and “average speed” = “100th percentile of 

cosine of turning angle” = “high”} THEN {“type” = 

“cycling”} 

7.289175 infinity 

IF {“30th percentile of acceleration” = “low” and 

40th percentile of acceleration” = “low”} THEN 

{“type” = “running”} 

6.97137 infinity 

IF {“70th percentile of speed” = “high” and “average 

speed” = “80th percentile of cosine of turning angle” 

= “high”} THEN {“type” = “cycling”} 

6.970406 infinity 

IF {“30th percentile of cosine of turning angle” = 

“low” and “100th percentile of cosine of turning 

angle” = “low”} THEN {“type” = “running”} 

6.885303 infinity 

 

For further experimentation, we used the transformed feature matrix to train 

classifiers, except deep learning which uses the raw trajectory data, to predict the 

type of physical exercise and compared their classification accuracy in Table 5. 
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10-fold cross validation over records is adopted so the synthetic data set is 

partitioned into 10 equal sized sub data set. Of the sub data sets, a single sub data 

set is treated as the testing set to validate the classification model and the 

remaining ones are treated as the training set to build the classifier. The cross-

validation is repeated 10 times, with each of the 9 sub data sets used exactly once 

as the testing set. The 10 classification results are averaged to produce the final 

result. For comparison, we trained classifiers using the-state-of-the-art 

algorithms including C4.5 Decision Tree (Quinlan, 1993), Random Forest 

(Breiman, 2001), Logistic Regression (Le Cessie & Van Houwelingen, 1992), 

Support Vector Machine with Polynomial kernel (Platt, 1998) with the default 

parameters and deep learning based on Convolutional Neural Network (CNN) 

(Schmidhuber, 2015). Note that for CNN, we train the classifier using the raw 

trajectory data without feature engineering (i.e. no transformed feature matrix) as 

CNN can learn an internal representation of the trajectory data. The recent 

literature reported deep learning model based on CNN could have achieved 

comparable performance to models fit on a version of the data set with 

engineered features. Therefore, we implemented a one-dimensional 

convolutional neural network (1D CNN) model for comparison. Since CNN 

cannot handle time series of various length directly, padding zeros are inserted at 

the end of each time series. The network architecture is defined as having two 1D 

CNN layers, followed by a dropout layer for regularization, and then a pooling 

layer. The rectified linear unit (ReLU) function is chosen as the activation 

function that is a de-facto standard in recent deep learning models. Each type of 

activation function has its pros and cons (Gu, Wang, Kuen, Ma, Shahroudy, 

Shuai & Cai, 2015). It is common to define CNN layers in groups of two in order 
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to give the model a good chance of learning features from the input data. 

Practically, CNNs learn very quickly, so the dropout layer is intended to help 

slow down the learning process and hopefully result in a better final model. The 

pooling layer reduces the learned features to 1/4 their size, consolidating them to 

only the most essential elements. After the CNN and pooling, the learned 

features are flattened to one long vector and pass through a fully connected layer 

before the output layer used to make a prediction. The fully connected layer 

ideally provides a buffer between the learned features and the output with the 

intent of interpreting the learned features before making a prediction. For this 

model, we will use a standard configuration of 64 parallel feature maps and a 

kernel size of 3. The feature maps are the number of times the input is processed 

or interpreted, whereas the kernel size is the number of input time steps 

considered as the input sequence is read or processed onto the feature maps. The 

efficient Adam version of stochastic gradient descent will be used to optimize the 

network, and the categorical cross entropy loss function will be used given that 

we are learning a multi-class classification problem. The model is fit for a fixed 

number of epochs, in this case, 10, and a batch size of 32 samples will be used, 

where 32 windows of data will be exposed to the model before the weights of the 

model are updated. 

As displayed in Table 5, the proposed classifier based on the weight of 

evidence measure using the discovered patterns and rules outperforms the other 

classifiers. In general, the other classifiers trained using the transformed feature 

matrix are able to obtain good accuracy (> 85%) so it is concluded that the 

transformed feature matrix representation can provide high-quality data summary 

to characterize the original spatial trajectory data for building a classifier. 
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Table 5 

Experimental Results on Prediction of Physical Exercise Type on Synthetic Data 

Classifier Classification accuracy 

C4.5 Decision Tree 95.2381% 

CNN (raw trajectory) 85% 

Logistic Regression 90.4762% 

Random Forest 95.2381% 

Support Vector Machine 94.2381% 

The Proposed Classifier 97.5000% 

 

To further examine the proposed clustering approach, we removed the 

ground truth that is to exclude the physical exercise type (the class attribute) 

from the synthetic data set to learn a clustering model by setting the number of 

clusters = 2. Then, we add back the class attribute to calculate the error 

percentage of the group assignment based on the majority value of the class 

attribute within each cluster. To compare the effectiveness of the learned 

representation, we trained clustering models using a number of traditional 

clustering algorithm including expectation maximization (Dempster, 1977), k-

means (MacQueen, 1967), hierarchical clustering (Sibson, 1973) and cobweb 

(Fisher, 1987). Table 6 shows the clustering results. Obviously, the clustering 

result does correspond to the binary types of the physical exercise in the data set. 

The proposed clustering model is superior to the other clustering models. It is 

important to note that the proposed approach is a meta-algorithm that consists of 
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an initial clustering done by hierarchical clustering and then a re-clustering step 

that treats the assigned cluster label as a class label to train a classifier and 

predict the labels as the final clustering results. Therefore, a good initial 

clustering result that locally optimizes the distance between groups can be further 

enhanced by the classifier based on the weight of evidence measure that globally 

optimizes the assignment of clustering label by taking into consideration the 

statistical significance of the patterns inherent in the training set. 

Table 6 

Clustering Results on Synthetic Spatial Trajectory Data 

Clustering model Error percentage 

Expectation maximization 4.76% 

k-means 4.76% 

Hierarchical 4.76% 

Cobweb 9.52% 

The proposed 2-step 4.28% 
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4.8.2 Real physical exercise data set. This experiment aims at testing the 

effectiveness of the proposed algorithms when dealing with real-data with the 

presence of variation in every single spatial trajectory. The previous experiment 

using synthetic data cannot fully validate the classification power of the extracted 

features, as the spatial difference between trajectories of the same type of 

activities is very minimal. 

In this experiment, we use our own physical exercise data to train a 

classifier to predict the type of exercises based on the discovered patterns. This 

GPS track data set consists of two types of physical exercises - hiking and 

running. Some routes of the same exercise type are in different areas. Even some 

routes in the same area are not completely identical as it is impossible to move 

along with the exact same route every time and there exists noise in the data 

during data collection due to signal interference, changing sampling rate and 

GPS accuracy of the smartphones. 

The data is collected from September 2016 to June 2018 with 60 

trajectories, i.e. 30 running routes and 30 hiking routes. We used a mobile 

application “MapMyRun“ to track the GPS during workout sessions and the 

route data can be downloaded after signing in www.MapMyRun.com. Route data 

are available in 3 formats: a GPS Exchange (GPX) of route information, a 

Keyhole Markup Language (KML) of the geographic path taken during the 

route, and a Training Center XML (TCX) with additional data with each track 

point such as heart rate. We opted to convert points from TCX files to extract 

latitude, longitude, and timestamp of each point along a route using Python 

(Python Software Foundation. Python Language Reference, version 3.6 available 

at www.python.org). For running, the routes contain different running routes in 
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New Territories, Hong Kong and Downtown Core, Singapore. For hiking, the 

recorded trajectories include hiking trails in New Territories and Kowloon, Hong 

Kong. Figure 9 and Figure 10 present five representative routes of both physical 

activity types. It is noteworthy to mention that for each type of physical 

activities, the route structure of each workout session can be very different even 

in the same district. Therefore, using the area and shape of the map to learn a 

classifier to predict the types is not an effective way but also poses some security 

and privacy concerns with the application of classification algorithms in the 

networking services storing personally identifiable information. 
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Figure 9. Representative Routes of Running Exercise. 

  

 
(a) Downtown Core, Singapore 

 
(b) Riviera Gardens, Hong Kong 

 
(c) Tsuen Wan West, Hong Kong 

 
(d) Approach Beach, Hong Kong 

 
(e) Sham Tseng, Hong Kong 
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Figure 10. Representative Routes of Hiking Exercise. 

  

 
(a) Lion Rock 

 
(b) Tai Mo Shan 

 
(c) Shing Mun Reservoir 

 
(d) Yuen Tsuen Ancient Trail 

 
(e) Kam Shan 
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To assess the proposed algorithms’ ability to deal with uncertainty, an 

appropriate amount of noise (10%) was added to the data set. We picked 3 

trajectories from each type of exercises and re-label them with the wrong types. 

We used the proposed algorithms to pre-process the trajectories and generated a 

feature matrix with discretized attributes. The proposed algorithm mined 2,397 

statistically significant patterns and 1,995 rules. Top 10 patterns and rules with 

their adjusted residuals and weights of evidence are shown in Table 7. To 

investigate if the discovered patterns and rules are able to differentiate the types 

of exercises, we build classifiers using the proposed algorithms, Support Vector 

Machine (SVM) (Platt, 1998) and Random Forest (RF) (Breiman, 2001) with 

default parameters. 10-fold cross validation is adopted to validate the result. The 

classification accuracy is listed in Table 8.  

Table 7 

Top 10 Discovered Patterns and Rules in Real Physical Exercise Data Set 

IF {pattern} THEN {outcome} 
Adjusted 

residual 

Weight of 

evidence 

IF {“30th percentile of speed” = “high” and “70th 

percentile of speed” = “high”} THEN {“type” = 

“running”} 

11.051264 infinity 

IF {“average acceleration derivative without stop” = 

“high” and “average acceleration derivative with 

stop” = “high”} THEN {“type” = “hiking”} 

11.051264 infinity 

IF {“100th percentile of cosine of turning angle” = 11.036207 infinity 
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“high” and “average speed without stop” = “high”} 

THEN {“type” = “running”} 

IF {“average acceleration derivative without stop” = 

“low” and “average acceleration derivative with stop” 

= “low”} THEN {“type” = “running”} 

11.022704 infinity 

IF {“40th percentile of acceleration derivative” = 

“low” and “70th percentile of acceleration derivative” 

= “low”} THEN {“type” = “running”} 

11.010663 infinity 

IF {“40th percentile of acceleration derivative” = 

“high” and “number of turning points” = “high”} 

THEN {“type” = “hiking”} 

10.633763 infinity 

IF {“50th percentile of speed” = “high” and “100th 

percentile of cosine of turning angle” = “high”} 

THEN {“type” = “running”} 

10.591856 infinity 

IF {“average speed without stop” = “high” and 

“average acceleration derivative with stop” = “low”} 

THEN {“type” = “running”} 

10.547291 infinity 

IF {“average acceleration derivative with stop” = 

“low” and “stop points per km” = “low”} THEN 

{“type” = “running”} 

10.498896 infinity 

IF {“10th percentile of speed” = “high” and “average 

acceleration derivative with stop” = “low”} THEN 

{“type” = “running”} 

10.122051 infinity 
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Table 8 

Experimental Results on Prediction of Physical Exercise Type on Real Physical 

Exercise Data 

Classifier Classification accuracy 

Random Forest 86.7998% 

SVM 83.7410% 

The Proposed Classifier 90.9100% 

 

It is interesting to note that all these classifiers can achieve high 

classification accuracy (> 80%) although noise is present in the real data set. The 

proposed classifier slightly outperforms the other two classifiers. It can be 

attributed to the positive influence of using the statistically significant patterns to 

be the rules to train the classifier. 

4.8.3 GeoLife data set. In the previous 2 sets of experiments, the 

effectiveness to extract interesting patterns and to classify the trajectories with 

the presence of uncertainty and variation of records from the same class has been 

assessed and validated using a synthetic data set and a small-scale real data set. 

In addition to testing the practicality, in this experiment, we applied the proposed 

algorithms on GeoLife data set published by Microsoft Research. Researchers 

can follow the instruction from the project website to obtain a copy of the data 

set for research purposes (Zheng, Liu, Wang, & Xie, 2008). The project team in 
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Microsoft Research maintained the website and data set and published several 

versions of the data set. This is a large-scale data set with multiple years of user-

contributed records. According to the latest version (version 1.3 released on 1 

August 2012 covering April 2007 to August 2012) of the published data, the 

GPS trajectories in the data set were basically positioned every 1 to 3 seconds, 

and 69 users annotated labels of transportation modes. To prepare the data, user 

data with less than 10 annotations were excluded and eventually selected the data 

of 54 users for our experiments. The preparation method is in consistency with 

Endo, Toda, Nishida, and Kawanobe (2016) to make comparison possible. Each 

annotation contains a transportation mode, as well as beginning and ending times 

of the transportation. We labeled and extracted the section of GPS trajectories 

between the beginning and ending times with an annotation of transportation 

modes and used them as the selected data set for the experiments. Although there 

are eleven types of annotations, we used only seven types (walking, bus, car, 

bike, taxi, subway, and train), because the other four contains too few 

trajectories, i.e. less than 100 trajectories among all users of these four types. We 

also removed some trips that are too short, i.e. less than 10 GPS tracks. After the 

data selection, 8,764 trajectories are obtained for experimentation. 

To evaluate the effectiveness of the proposed methods, we use the 

following methods to i) pre-process the data set and ii) train classifiers using the 

state-of-the-art algorithms to compare with the proposed algorithms. 

i) Data pre-processing: 

• Basic Feature (BF) extraction (Zheng, Liu, Wang & Xie, 2008): 10-

dimensional features are extracted such as velocity, distance and time. 
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• BF + Advanced Feature (AF) extraction (Zheng, Li, Chen, Xie & Ma, 

2008; Zheng, Chen, Li, Xie & Ma, 2010): 13-dimensional features are 

extracted including BF and advanced features such as stop rate and 

velocity change rate. 

• Bag of Visual Words (BoVW) extraction: Image features are extracted 

from trajectory images using the method proposed by Vedaldi and 

Fulkerson (2010).  

• SDNN (Endo, Toda, Nishida & Kawanobe, 2016): Deep features are 

extracted simply from vectors of a series of latitude, longitude and time 

stamp by Deep Neural Network (DNN). 

• IDNN (Endo, Toda, Nishida & Kawanobe, 2016): Deep features are 

extracted by DNN from trajectory images. 

• BF + AF + IDNN (Endo, Toda, Nishida & Kawanobe, 2016): Features 

are aggregated by BF, AF, and IDNN. 

• FM + UMACA: The proposed feature matrix (FM) is discretized by the 

Unsupervised version of Mixed-mode Attribute Clustering Algorithm 

(UMACA) by our previous study (Wong, et al., 2010; Wu, Chan, & 

Wong, 2011). 

• FM + SMACA: The proposed feature matrix (FM) is discretized by the 

Supervised version of Mixed-mode Attribute Clustering Algorithm 

(SMACA) by our previous study (Wong, et al., 2010; Wu, Chan, & 

Wong, 2011). 

• CNN: A deep neural network architecture based on Convolutional Neural 

Network described and implemented in section 4.8.1 to learn the 

classifier from raw GPS trajectory !! ,!! , !!  without feature 
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transformation. This is treated as a baseline method to assess the 

classification accuracy without data transformation. 

ii) Classification: The above pre-processed data in i), except CNN, are fed into 3 

classification models, including logistic regression (LR) (Le Cessie & Van 

Houwelingen, 1992), support vector machine (SVM) with Polynomial kernel 

(Platt, 1998), and C4.5 decision tree (DT) (Quinlan, 1993), with default 

parameters.  

To demonstrate the flexibility of the proposed method, we applied the 

proposed algorithm to generate the feature matrix (FM) from the GeoLife data as 

a pre-processing step and then fed it into the above 3 described classifiers. Also, 

the FM, whose attribute values are continuous, can be discretized using 

supervised and unsupervised discretization methods, namely SMACA and 

UMACA, by our previous study (Wong, et al., 2010; Wu, Chan, & Wong, 2011). 

We conducted experiments on both 2 sets of discretized FM and 1 set of FM with 

continuous values for performance comparison. 5-fold cross validation over 

records is adopted to validate the classification models. The experimental results 

are given in Table 9. As shown in Table 9, the best accuracy can be obtained by 

logistic regression model trained by the data of the proposed FM with supervised 

discretization. It can be attributed to the improvement of the classification 

performance by the supervised discretization. If no supervised information is 

used, the proposed FM can still achieve high accuracy better than most of the 

other pre-processing methods, except IDNN that takes trajectory image features 

extracted by DNN. The use of trajectory images is sensitive to some areas of 

application as trajectory images can contain the precise series of GPS 

coordinates, leading some security concerns about unknowingly disclosing 
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private information, such as the location of their home and office. It is interesting 

to show that simply treating raw GPS data as three-dimensional signal inputs 

!! ,!! , !!  for deep learning algorithms performs poorly (41.935% accuracy 

only). A practical and promising way of transforming GPS trajectories into an 

easier consumable feature matrix for characterizing driving style and 

classification needs to be developed. This finding is consistent to the empirical 

studies in (Dong, Li, Yao, Li, Yuan & Wang, 2016) which is the first attempt of 

extending deep learning to driving behavior analysis based on GPS data. 

To further evaluate the performance of our pattern mining and 

classification approach, we applied our pattern-mining algorithm on the 2 sets of 

discretized FM to discover a set of interesting patterns. As a result, the proposed 

algorithm discovered 4,815 interesting association patterns. Finally, we made use 

of the discovered patterns to train a classifier to predict the mode of 

transportation by calculating the weights of evidence and compared the 

classification accuracy to the other selected approaches with the highest accuracy 

according to Table 9. The results are reported in Table 10. As displayed in Table 

10, the proposed classifier based on the weight of evidence measure using the 

discovered patterns on FM discretized in a supervised manner outperforms the 

other classifiers. In general, the proposed classifier trained by unsupervised 

discretization and other classifiers trained by the FM can obtain comparable 

accuracy. Therefore, it is interesting to conclude that the transformed feature 

matrix representation can provide high-quality data summary to characterize the 

original spatial trajectory data for building a classifier. 
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Table 9 

GeoLife Data Set Classification Results using Different Pre-Processing Methods 

and Classification Models 

Classifier 

Features 
LR SVM DT 

Classifier with the 

highest accuracy 

BoVW 57.9000% 60.2000% 54.8000% SVM 

SDNN 38.6000% 38.6000% 36.2000% LR 

BF 45.8000% 47.9000% 63.2000% DT 

BF + AD 48.3000% 52.4000% 64.8000% DT 

IDNN 66.3000% 64.9000% 62.6000% LR 

BF + AF + 

IDNN 
67.9000% 66.0000% 65.9000% LR 

FM + SMACA 68.6715% 68.2908% 65.1409% LR 

FM without 

Discretization 
60.3238% 46.1636% 64.6271% DT 

FM + UMACA 65.1602% 66.7788% 64.2685% SVM 

CNN 41.9350% CNN 
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Table 10 

GeoLife Data Set Classification Results of the Proposed Classifier and Other 

Selected Classifiers 

(Pre-processing) + classification model Classification accuracy 

(BoVW) + SVM 60.2000% 

(SDNN) + LR 38.6000% 

(BF) + DT 63.2000% 

(BF + AD) + DT 64.8000% 

(IDNN) + LR 66.3000% 

(BF + AF + IDNN) + LR 67.9000% 

(FM + SMACA) + LR 68.6715% 

(FM without Discretization) + DT 64.6271% 

(FM + UMACA) + SVM 66.7788% 

CNN 41.935% 

(FM + SMACA) + Proposed classifier 68.7200% 

(FM + UMACA) + Proposed classifier 66.7900% 

 

4.8.4 Case study on driver telematics data set. In this case study, we will 

investigate 1) the execution time of the whole pipeline against data samples of 

different input size, 2) analyze the output 2nd order patterns, and 3) compare the 
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classification accuracy of the proposed system with other classification methods 

which take the data pre-processed by the proposed system. 

An insurance company provides a large driver telematics data set. In the 

data set, 3,000 drivers’ telematics data are collected. Each driver is recorded with 

200 driving trips. Totally, there are 600,000 driving trips. This is considered the 

largest real-world data set among the experiments. The trips are recordings of the 

vehicle’s GPS position in meters every second. Among these 200 trips for each 

driver, there may be a random number of trips not belonging to a driver due to 

transmission noise and error. Nevertheless, it is guaranteed that most of the trips 

in each driver are from the same driver. Without being told which false trips and 

the amount of them are, one goal is to identify them based on their telematics 

features to avoid using them to form interesting patterns. The ground truth of the 

data set is provided for the verification of the classification algorithm. Each 

driver and each driving trip is treated as a moving object and a trip of a moving 

object in the proposed algorithm respectively. 

The result of execution time against different input size is shown in 

Figure 11 and Table 11. The input size is sampled following a geometric series 

by its first term 1 and its common ratio 2 and also adding an interval per every 

hundred or thousand in between until 20,000, which is good enough to show if 

the algorithm is said to run in linear time. Figure 11 is a scattered plot of the data 

in Table 11 with a linear trend line. In effect, the execution time of the proposed 

system increases linearly per the input data size. It verified the analytical result in 

the complexity analysis. The proposed algorithms for discretization and pattern 

discovery are based on the pair-wise computation of attribute values and pattern 

occurrence counting so these operations can be parallelized to run in a distributed 
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computing environment. We believe that the proposed system can deal with large 

input data size without increasing the execution time exponentially. 

 

Figure 11. The Plot of Execution Time against Data Input Size. 

Table 11 

Execution Time against Data Input Size 

Input size 
(# trip) 

200 400 500 800 1000 

Time 
(s) 

19.003491 19.146416 19.037805 19.03937 19.246096 

Input size 
(# trip) 

1600 3200 5000 6400 10000 

Time 
(s) 

19.456244 20.42157 21.315115 21.961753 23.598002 

Input size 
(# trip) 

12800 15000 20000   

Time 
(s) 

24.896966 26.064321 28.404084   
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From the output of all 2nd order patterns, we extract and discuss the top 3 

interesting patterns ranked by their adjusted residual values. One prominent 

pattern detected for a driver is: 

< ′MedianSpeed!, 1 , ′StopPoints!, 0 > 

which means for a driver whose trips contain this pattern tends to drive very fast 

with few stop points. This may imply that this type of drivers usually takes the 

highway route, which is usually in high speed with no traffic lights to pause the 

drivers. Whereas for another type of drivers, the prominent pattern is: 

< ′PostStopAcc!, 1 , (′PreStopAcc′, 1) > 

which means his or her driving trips usually have high acceleration after a 

stopping point and high deceleration for stop purpose. This may imply he or she 

may be a reckless driver with a hard brake before the stop and rushing out after 

stopping points. Most drivers have a common pattern: 

< ′MedianSpeed!, 1 , (′MedianSpeedyTurning′, 1) > 

which means these drivers driving at a high speed are reluctant to slow down 

before turning. 

To assess the classification power of the feature extraction and the 

proposed sample discretization rules from the raw trajectory data described in 

Table 2 of section 4.3 and the proposed classifier, we generated two data sets and 

fed them to different classification algorithms to compare the accuracy. Dataset 

A contains only the 81 extracted attributes and these attributes are discretized by 

MACA. Dataset B is a combined data set of Dataset A and the discretized 

attributes by using the proposed sample discretization rules. These data sets are 

then fed into 4 classifiers including the proposed classifier using the weight of 
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evidence measure, Random Forest (RF) (Breiman, 2001), support vector 

machines (SVM) with Polynomial kernel (Platt, 1998) with default parameters 

and an ensemble model based on RF and SVM with each coefficient = 0.5. 

The classification task is for each driver, we train a classifier using his or 

her own driving trips and then predict whether or not a trip, which can be from 

him/her or from others, belongs to this driver. For each data set of a driver, we 

add the same number of trips randomly selected from the other drivers as noise. 

10-fold cross validation is adopted to assess the quality of the model. We 

completed this classification task for every driver in our data set, of which these 

classification accuracy results are averaged to produce an overall accuracy for 

comparison purpose. The results are reported in Table 12. Random Forest 

achieved the best accuracy with Dataset A where SVM is the worst. Generally, 

the accuracy can be further enhanced using the proposed discretized rules to 

generate more attributes as shown in results on Dataset B. One interesting note is 

that RF performed better even without the additional discretized attributes. It 

might be due to its’ ability to have an internal unbiased estimate of the 

generalization error as the forest building progresses. It is interesting to see that 

the performance of different classifiers is not varied significantly with only less 

than 8.3% difference in accuracy. Overall, the classificatory power of the 

generated features that characterize the trajectories can be revealed based on the 

positive experimental results. 
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Table 12 

The Accuracy of Different Classification Algorithms and Data Sets with Different 

Pre-Processing 

Data set 

Classification algorithm 

Proposed 

algorithm 
RF SVM Ensemble 

A) Only extracted 

attributes 
80.08% 81.46% 73.18% 78.98% 

B) Combined A) and 

attributes discretized 

by proposed 

discretization rules 

81.86% 81.37% 77.32% 80.16% 

For further experimentations, we cluster the driver telematics data after 

removing the driver label. The clustering goal is to cluster the trips so that trips 

in the same cluster are more likely from the same drivers. To evaluate re-

clustering, since the cluster label is known, we can calculate i) F1-measure, 

defined as ! !! ,!! = !! !!,!! ! !!,!!
! !!,!! !! !!,!!

, where ! !! ,!! = !"#!!,!!
!"#!!

, 

! !! ,!! = !"#!!,!!
!"#!!

, !"#!!,!!is the count of records with cluster label !! in the 

assigned cluster !!, !"#!! is the count of records with cluster label !!, and !"#!! 

is the count of records in the assigned cluster !!, and ii) clustering accuracy, 

defined as !" = !"#!!
!
!!!

!"#!" !"#$%& !" !"#$!%&, where !"#!! is the count of records in the 

ith cluster and k is the number of clusters. To assess the clustering power, we 
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perform an initial clustering by hierarchical clustering algorithm on (Feature 

Matric) FM to generate cluster labels and insert them into Transformed Feature 

Matrix (TFM). We argue that a good representation of driving behaviors from 

the transformed trajectory inputs facilitates the learning of a good cluster model. 

This TFM is fed into 4 classification algorithms (the proposed classifier, Random 

Forest (RF), Support Vector Machines (SVM) and an ensemble model based on 

RF and SVM. We selected 2 subsets of the data to conduct 2 experiments (small-

scale and large-scale). The small-scale data set randomly picks 50 drivers so it 

contains 10,000 trips while the large-scale one randomly picks 1,000 drivers so it 

contains 200,000 trips. The clustering task is for each data set, we cluster it into k 

clusters where k = number of drivers. In re-clustering step, we adopt 10-fold 

cross validation to assess the quality. The results are shown in Table 13 and 

Table 14. Generally, the accuracy can be further enhanced using the proposed 

approach. It is due to the weight of evidence measure to precisely measure the 

information uncertainty on the interesting patterns voting the class assignment. 

SVM and RF do not consider the interestingness of patterns so noise in the data 

set that cannot be filtered affects the performance. RF performed slightly better 

even with the presence of noise. It might be because of its ability to have an 

internal unbiased estimate of the generalization error as the forest building 

progresses. The performance of different classifiers in the re-clustering step is 

competitive with less than 10% difference of accuracy. It shows that a good 

representation of the transformed data can yield high quality clustering results by 

the-state-of-the-art methods. 
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Table 13 

The Accuracy of Different Classification Algorithms for Re-Clustering on 10,000 

Driving Trips 

Method Accuracy (%) F1-measure 

The proposed 77.5 0.72 

SVM 70.3 0.64 

RF 76.7 0.69 

Ensemble 73.5 0.67 

 

Table 14 

The Accuracy of Different Classification Algorithms for Re-Clustering on 

200,000 Driving Trips 

Method Accuracy (%) F1-measure 

The proposed 62.8 0.59 

SVM 57.5 0.52 

RF 60.3 0.56 

Ensemble 58.9 0.54 

 

In terms of the system design, the proposed system can well summarize 

low level telematics features and derive meaningful high-level features without 

losing too much information for further knowledge discovery processes such as 
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clustering and prediction using the state-of-the-art classification algorithms while 

preserving the privacy of individual drivers’ location information as the 

algorithms does not require using the trajectory images. These experiments have 

also demonstrated that the proposed system can efficiently, effectively and 

flexibly encode telematics data and transform them into attributed hypergraph 

representation (Figure 5 which depicts the top 3 discovered pattern) for pattern 

visualization which is human readable. 

4.9 Summary of the Chapter 

An extensive set of experiments conducted illustrates the overall 

algorithmic design and demonstrates the feasibility and practicality by the 

experimental results. Some system components and parameters can be 

configured to adjust the performance according to the application domains, such 

as the selection of a threshold for discretization rules and the significant level of 

the statistical significance test. The suggested direction for further research in 

this area will be discussed in the future work. 

The proposed pattern discovery system for spatial trajectory data follows 

the basic structure of the contemporary data mining and pattern discovery system 

but possesses some very important and positive differences. The contemporary 

methods normally make use of a single attribute type of spatiotemporal data for 

pattern generation. To ensure a good representation of the object as well as the 

movements, we support to use multiple attribute types through the application of 

discretization in both supervised and unsupervised manners. For instance, route-

related attributes are more correlated to speed-related attributes. This attribute 

combination is believed to provide better mining capabilities as multiple attribute 
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types can describe an object more effectively and comprehensively. Since the 

mixed mode nature of attributes requires a reliable discretization method that can 

capture the correlated information inherent in the attribute set, we experimented 

using different discretized data sets to train classifiers and realized the positive 

effect contributed by that. 

We have proposed a pattern discovery and representation method for 

spatial trajectory data, adopting an AHR that contains various possible objects, 

each of which provides both generalization within the object (i.e. moving 

attributes in vertices) and good inter-object relationship (i.e. interesting patterns 

in hyperedges). Further, the method shall require only a small training set for 

pattern and rule generation to characterize the data and train a classifier. It can 

also deal with large growing unsupervised data that may be inserted into the 

proposed system by updating the weights of evidence of the discovered rules at 

any time. Thus, the proposed system is developed to be able to learn new moving 

behaviors to optimize the existing classifier on the fly. The statistical back and 

the algorithmic design of the underlying techniques of the proposed system has 

been the foundation of the current research and development. The discussion of 

the experimental results demonstrated the feasibility and practicality of the 

proposed approach. The current system can be expanded and modified to tackle 

more pattern mining problems. In the next chapter, we will describe the pattern 

discovery approach to mine multivariate spatial time series data. 
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5 PATTERN DISCOVERY FOR 
MULTIVARIATE SPATIAL 
TIME SERIES 

5.1 Background 

In this chapter, we propose to develop a pattern discovery approach 

consisting of some algorithmic techniques for discovering patterns from 

multivariate spatial time series (MSTS) and learning inference model. The 

approach targets to mine spatio-temporal patterns from MSTS and is able to 

tackle classification and clustering tasks based on the discovered patterns. We 

implement the proposed algorithms for performance evaluation and validation. 

To compare the performance, we benchmark the proposed algorithms with 

different traditional pre-processing techniques, a deep learning model (CNN) and 

clustering algorithms, including TARM, PCA, ARMA, k-means, HMM, on a 

simulated data set and a real data set. This proposed approach has also been 

applied to 3 case studies to demonstrate the applicability and practicability. Our 

major contribution is three-fold. 1) Classical spatial analysis studies entities 
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using their topological, geometric or geographic properties. We define the MSTS 

data structure, its associated temporal attributes, and its clustering problem. 2) 

Traditionally, analytical techniques favor the spatial definition of objects as 

points. We propose a more general model to characterize MSTS. 3) Conventional 

approaches capture spatial dependency to provide information on spatial 

relationships in variable level. Our approach goes deeply to the attribute-value 

level. 

Let’s begin with a simple illustrative example of a multivariate spatial 

time series (MSTS) with 3 regions (i, j, k) containing patterns {ABC, GC, HC}, 

{AEB, BK} and {BBC, CDE} as shown in Figure 12. The symbols in the 

patterns are from the alphabet set ε due to the transformation of the time series 

(TS) in sequences (S). Here from Figure 12, this MSTS can be referred to as 3 

multivariate time series (MTS) across 3 spatial locations. In region i, every 

pattern repeats 2 times and thus has occurrences of 2. A pattern is made up of a 

collection of blocks in which each block contains a local part of the pattern 

occurring in a univariate time series. Pattern {ABC, GC, HC} has 3 blocks, 

pattern {AEB, BK} has 2 blocks and pattern {BBC, CDE} has 2 blocks. The first 

and second patterns known as intra-patterns are along individual time series 

while the third pattern known as inter-pattern is across time series. There are 

some varying time delays between the blocks in the patterns. These patterns 

occurring sequential in time are referred to as temporal association patterns (TP). 

Thus, the number of blocks in a TP is also called the levels of TP (LT). Consider 

some temporal association patterns are also detected in region j and k. Among 

region i, j and k, pattern {ABC, GC, HC} span across them. This pattern is 

referred to as spatial association pattern (SP). 
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Figure 12. Schem
atic of M

ultivariate Spatial Tim
e Series. 
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In this section, we introduced the background of pattern discovery for 

multivariate spatial time series. The rest of this chapter will systematically 

explain and illustrate the process for the proposed system. Section 5.2 describes 

the technical preliminaries that will restate the notations and definition of MSTS 

that are used in the proposed algorithms. Section 5.3 to section 5.6 formalizes the 

proposed pattern mining steps for MSTS with relevant mathematical notations to 

formally define the solution methods. Section 5.7 discusses the computational 

complexity of the proposed algorithm. Section 5.8 reports the experimental 

results obtained from both the synthetic data set and real-world data sets. This 

chapter ends with a summary in section 5.9. 

5.2 Technical Preliminaries 

In this section, we present technical preliminaries for mining MSTS. 

Given a set of MSTS, the proposed approach incorporates an effective initial 

multiple time series pattern-mining algorithm (Zhuang, Li, & Wong, 2014) to 

detect temporal patterns in a set of MTS for each location. Then, we propose a 

new algorithm to detect co-occurrence of the discovered temporal patterns across 

locations by mining a transformed spatio-temporal pattern matrix (STPM) that 

characterizes the space to form spatio-temporal patterns. Furthermore, we 

effectively integrate this spatio-temporal pattern-mining algorithm for 

classification and clustering. If the set of MSTS is labeled, the discovered 

patterns can be weighted to support or against a certain class membership for the 

construction of a classifier. If the set of MSTS is unlabeled, the discovered 

patterns in one location are compared against those discovered in the others so 

that MSTS that have similar discovered patterns are grouped together into the 

same cluster. In this work, we focus on spatio-temporal pattern discovery and the 
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clustering to validate the effectiveness of the STPM representation, assuming 

MSTS is unlabeled. If the MSTS is labeled, the proposed approach can plug it 

into the clustering algorithm, as the clustering algorithm is made up of a 

classification algorithm in the second phase. 

Definition 5.1 Multiple spatial locations. Suppose there are multiple 

spatial locations ! = !!,… , ! ! , each of which is represented by a region label 

and its set of geographic coordinates !  so that ! = !!,!! ,… , ! ! ,! !  

where each set of geographic coordinates ! contains longitude ! and latitude ! 

coordinates. !  is the number of locations in the study area. There are totally ! 

distinct regions ! = !!,… , !! ,… , !!  which partition the locations of the study 

area. ! !,!  is a function to retrieve the region !! for a given longitude ! and 

latitude !. To represent neighborhood between regions, let ! be an adjacency 

matrix that assigns equal weights to all neighbors of regions, that is, ! !,! = 1 if 

region !! and !! share a common border or 0 otherwise. For each location, there 

exists at least 1 MSTS. 

Definition 5.2 Multivariate spatial time series (MSTS). A !"#" =

{ !"#!, !!,!! ,… , !"#! , !! ,!! } consists of ! number of multivariate time 

series (MTS) each of which is associated with a longitude ! and latitude !. With 

!(!,!), a MSTS can be converted to a MTS with a region label !! , ! ∈ {1…!} 

so that !"#" = { !"#!, !! ,… , !"#! , !! }. 

Definition 5.3 Multivariate time series (MTS). An MTS consists of ! 

individual time series !" = {1,… ,!}. A time series !" is a finite sequence of 

real values !!, !!,… , !!  containing !  observations with unique time points 

!" = {1,… ,!}. 
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Definition 5.4 Sequence. A symbol sequence ! is a sequence of characters 

!!, !!,… , !!  over an alphabet set ! , where each !! ∈ ! . !  is a set of distinct 

characters with size ! . ! is the length of !. ! !, !  is its substring from index ! to 

!. Each character represents an event so ! can be called an event sequence. After 

discretization, a !" can be transformed into a symbol sequence !. SAX (Lin, 

Keogh, Wei & Lonardi, 2007), a well-known discretization method for time 

series data mining practitioners, is adopted here for discretization. Therefore, a 

MTS can be transformed into a set of multiple symbol sequences !!, !!,… , !!. 

Definition 5.5 Pattern. A pattern ! is a short sequence of consecutive 

characters !!,!!,… ,! !  over ! where !  is the length of the pattern. A pattern’s 

length should be at least 2. Otherwise, each symbol in the alphabet set ! is a 

pattern. 

Definition 5.6 Pattern occurrence. A pattern ! is always associated with 

a symbol sequence !. ! occurs in an interval !, !  in ! if and only if ! = ! !, ! . 

!!  denotes the occurrence of ! . All occurrences of !  are recorded in its 

occurrence list !! so !!  is the number of occurrences of ! in !. 

Definition 5.7 Frequent pattern. A frequent pattern is a pattern with its 

number of occurrences !! > !"#! where !"#! specifies the minimum number 

of occurrences required. 

Definition 5.8 . Temporal association of patterns. A temporal association 

pattern TP is an association of patterns occurring sequentially in time. Each 

pattern !! is a block of a !". It implies !!!! occurs within a certain specified 

time delay !!  after !!  occurs for ! = 1,… , !" − 1. There are totally !" blocks 

for a !" and we call !" level of !". !"#!" specifies the maximum level of !". 
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When all frequent patterns of a !" are from the same sequence, !" is called an 

auto association pattern or intra pattern. Otherwise, it is called cross association 

pattern or inter pattern. !"  is total number of temporal association patterns. 

Definition 5.9 Temporal pattern occurrence. The set of occurrences of 

!" in the MTS is denoted by !!". !!"  is the total number of occurrences. 

Definition 5.10 Spatial association of patterns. A spatial association 

pattern !"  is an association of multiple temporal association patterns co-

occurring in multiple regions. Each !"! is a building block of !". It implies that 

!"!!! occurs in a region !! other than the region !! of !"! where !! ≠ !!. There 

should be at least 2 !"#, i.e. 2 blocks, in a !". Otherwise, every !" is a !". 

There are totally !"  blocks for !"  and we call !"  the level of !" . !"#!" 

specifies the maximum level of !". !"  is the total number of spatial association 

patterns. 

Definition 5.11 Spatial association occurrence. The set of occurrences of 

!" in all MTS in different regions is denoted by !!". !!"  is the total number of 

occurrences. 

Definition 5.12 Statistical significance. The statistical significance based 

on adjusted residual (Wong & Wang, 1997) !! measures how significantly the 

observed frequency of occurrences of an association pattern !! , which can be a 

!" and/or a !", deviates from its expected frequency !! adjusted by its variance 

!!. It is given below. 

!! =
( !! − !!)/ !!

!!
,! ∈ {!", !"} (5.1) 
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Definition 5.13 Weight of evidence. The weight of evidence measure 

provided by a pattern !! for or against the classification of an object ! into class 

 !! is defined as: 

!! ! !!  =  ! ! ∈ !!/! ∉ !!  ! is characterized by !!) 

                 = ! ! ∈ !!: ! is characterized by !!   

                      – ! ! ∉ !! ∶  ! is characterized by !!  

                 = log ! !∈!!  ! !" !"#$#!%&$'(&) !" !!)
! !∈!!

  

                      – log! ! ∉ !!   ! is characterized by !!)
! ! ∉ !!

 

                    = log!  ! is characterized by !!  ! ∈ !!)
!  ! is characterized by !!  ! ∉ !!)

 

(5.2) 

where !( )  is the mutual information. It is positive if !!  provides positive 

evidence supporting ! is classified to  c!, otherwise, it is negative, or zero. 

!  ! is characterized by !!  ! ∈ !!) is the probability that an object ! contains 

a pattern !! given that ! belongs to !!. It is computed by counting the occurrence 

of objects in the database containing pattern !!and belonging to class !! divided 

by the number of objects belonging to class !!. 

!  ! is characterized by !!  ! ∉ !!) is the probability that an object ! 

contains a pattern !!  given that ! does not belong to !! . It is computed by 

counting the occurrence of objects in the database containing pattern !! and not 

belonging to class !! divided by the number of objects not belonging to class !!. 
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!! ! !!  can be interpreted as a measure of the difference in the gain in 

information when an object ! containing !! is classified into  c! as opposed to 

other classes. !! ! !!  is positive if !! provides positive evidence supporting 

the classification of ! into  c!, otherwise, it is negative. 

Given the interesting patterns ! = {!!!,… ,!!! ,… ,  !!!
|!|}, discovered for 

each corresponding |!| classes,  c!,… ,  c!,… ,  c|!|, an unseen object !!  can be 

classified by matching it against the patterns in each of classes. An unseen MSTS 

object !! is first transformed to a list of attributes using the proposed STPM to 

construct a set of patterns !! for matching. Then for every pattern !!!  that !! 

matches, there is some evidence !! !! !!!  provided by it for or against the 

classification of !! into  c!. Assuming that !! matches with !! ≤ !! patterns in 

! of  c!, we calculate a total weight of evidence measure for !! to be classified 

into c!. 

Definition 5.14 Total weight of evidence. The total weight of evidence 

provided by each of individual patterns is a measure for !! to be classified into 

c! and is defined as: 

!!(!!) 

= !  !! ∈ !!  !! ∉ !!   !! is characterized by !!! ,… ,!!! ,… ,!!!
! ) 

= !   !! ∈ !!  !! ∉ !!      !! is characterized by !!!)
!!

!!!
 

(5.3) 
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5.3 Temporal Association Pattern Discovery 

After SAX transformation of MTS into multiple symbol sequences, we 

discover frequent patterns (definition 5.7) from each sequence. To reduce the 

number of frequent patterns, we prune them by adopting the algorithms proposed 

by Zhuang, Li, and Wong (2014) to effectively extract closed and non-redundant 

patterns. 

Once all non-redundant patterns are extracted, a hierarchical clustering 

algorithm, which repeatedly groups the most similar pair of clusters into a new 

cluster until forming a single cluster with all objects, with an appropriate priority 

queue to improve the runtime is used to group similar patterns to further reduce 

the number of patterns. After this, by updating the occurrence list !!", a new 

occurrence list !!  is created for each cluster of patterns by taking the union of all 

occurrences of patterns in the cluster. 

After all pattern clusters, treated as the building blocks for each sequence, 

are discovered, we can detect temporal associations (definition 5.8) among them 

based on statistical significance (definition 5.12). It forms pattern clusters for 

each sequence first to yield intra-patterns and grows temporal associations level 

by level to yield inter patterns. To compute the statistical significance !!" for 

temporal association patterns and given the above definitions to count the 

observed frequency of occurrences of association patterns, we want to estimate 

the expected frequency of occurrences of association patterns and its variance. 

Let !"! as the temporal association composed of !" − 1 blocks of !" and !!" 

as the last block of !". Assuming that the last block occurs randomly at a 

position in its respective sequence with probability estimated as ! = |!!!"|
|!| , for 
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temporal association of patterns, we take the association of !"! with !!" as the 

estimate of the expected frequency of occurrences of TP. Then, the expected 

frequency of occurrences !!" for TP is calculated as !" (!′ ∨ ρ!")  ∙ !!"!  and 

variance !!" = !!" ∙  (1− !" (!! ∨ ρ!")), where !′ is an occurrence of !"!, ρ!" 

is an occurrence of !!" and !" (!′ ∨ ρ!") is the probability that !′ is associated 

with ρ!" . !" (!′ ∨ ρ!")  is calculated as 1− (1− !)!!!! . After all temporal 

association patterns in a region !! are discovered, the above procedure repeats 

until all regions ! are processed. 

5.4 Spatio-Temporal Pattern Matrix Representation (STPM) 

For all regions ! = !!,… , !! , putting all temporal association patterns 

together, we can form the final group of M temporal association patterns, where 

! = !×!′ and !′ is the number of discovered TP in each region !!. Here, !!" 

refers to as statistical significance !! of TP. We can generate a M-dimensional 

feature space and transform each region !! into a vector !! in the M-dimensional 

feature space. Each vector !!, where ! = 1,… ,!, is then characterized by ! 

attributes, denoted as ! = {!!,… ,!! ,… ,!!}, whose values !!!,… ,!!" ,… ,!!", 

where !!"  (definition 3.1.12) represents the amount and the statistical 

significance of association patterns found in the !!! attribute in region !. We call 

this representation a spatio-temporal pattern matrix (STPM) that characterizes 

the region by the discovered TP. To better visualize STPM, a table formatted 

with N rows and M columns (Table 15) is used. The discovered TP of each 

region (record) are the columns (attributes) in the Table 15. Sorting the column 

by !!" values can rank them based on their statistical significance.  
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Table 15 

Spatio-Temporal Pattern Matrix (STPM) 

!!" !! … !! … !! 

!! !!! … !!! … !!! 

… … … … … … 

!! !!! … !!" … !!" 

… … … … … … 

!! !!! … !!" … !!" 

 

5.5 Spatial Association Pattern Discovery 

After transforming the MSTS into STPM, we detect interesting 

associations between temporal associations across regions. To do so, we first 

discretize the values of !!" based on the unsupervised algorithm described in 

Wong et al. (2010) and Wu, Chan and Wong (2011), which uses an information 

measure that reflects interdependence to group attributes and identify the 

representative attribute in each attribute group to drive the discretization. For 

now, each attribute !!  contains only interval event values denoted as !! =

{!!! ! = 1,… ,!} where B is the number of bins. Optimizing the discretization is 

not the issue addressed here, so we will not further discuss it. 
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To detect an association, we construct a contingency table to count 

occurrences of values between 2 attributes i.e. !!! is pth value of jth attribute and 

!!!!  is kth value of !!!!  attribute, ! ≠ !! . Let !!"  be the total number of 

occurrences when !! = !!!  and !!! = !!!! ; !!" = !
! !!"!

!!! !!"!!
!!!  where 

!!"!
!!!  is the total number of counts when !! = !!!, !!"!!

!!!  is the total number 

of counts when !!! = !!!! , and ! is the number of records. With !!" and !!", we 

can detect whether or not !!"  is significantly different from !!"  by adjusted 

residual (definition 5.12 and equation 5.1) substituting !! , !! and !!" by !!", 

!!" and !!" respectively to obtain the following equation: 

!!" =
(!!!!!!")/ !!"

!!"
 . (5.4) 

To reveal statistical significance, at 95% confidence level, if !!" > 1.96, we can 

conclude it is a positive association; if !!" < -1.96, it is a negative association; if 

-1.96 < !!" < 1.96, it is random. Table 16 visualizes the contingency table. 

According to definition 5.10, for !!"  > 1.96, !!!  and !!!!  should come from 

different regions for their association to be considered as a SP.  Combining the 

step from section 5.3 to section 5.5, Figure 13 illustrates the algorithm by the 

pseudo-code. This SP and its occurrences !!" will be added to !!" (definition 

5.11). 
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Table 16 

Contingency Table of !! and !!! 

!! 

!!! 
!!! … !!! … !!! Total 

!!!!  
!!! 

(!!!) 
… 

!!! 

(!!!) 
… 

!!! 

(!!!) 
!!! 

… … ... ... ... ... ... 

!!!!  
!!! 

(!!!) 
… 

!!" 

(!!") 
… 

!!" 

(!!") 
!!! 

… … ... ... ... ... ... 

!!!!
!
 

!!!! 

(!!!!) 
… 

!!!! 

(!!!!) 
… 

!!!! 

(!!!!) 
!!!! 

Total !!! … !!! … !!! !"#$% 
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Input:  
  !"#" = { !"#!, !!,!! ,… , !"#! , !! ,!! } (original database) 
  !  (size of alphabet set ! for SAX) 
  !"#! (min number of occurrences for frequent patterns) 
  !! (max time delay for temporal association !") 
  !"#!" (max level of temporal association !") 
  !"#!" (max level of spatial association !") 
  !"# (significance threshold value) 
Output:  
  ! (set of discovered spatio-temporal patterns) 
Algorithm: 
  ! = ∅; ! = ∅ (let ! be an empty set to store all !") 
  For each !"#! ∈ !"#" 
    Convert all !" ∈ !"#! into a set of sequences ! by SAX with !  
    Construct suffix tree !" for ! 
    Traverse !" to discover a set of frequent pattern !" with !"#! 
    Initialize ! by assigning !" as 1st level of !" 
    While max level of ! <= !"#!" 
      For each pair !"! and !"! ∈ ! with time delay between them < !! 
        Let !"! be the candidate pattern of associating !"! and !"! 
        Calculate !!"! after obtaining !!"! (for detecting association) 
        Evaluate statistical significance by checking !!"! > !"# 
        If !!"! > !"# 
          Add !"! to ! 
        End 
      End 
    End 
  End 
    Add ! to attribute set ! 
  Construct STPM using !"#"! , ! = {1…!} and !! ,! = {1…!}  
  Initialize !"! candidate set of spatio-temporal patterns of order ! 
  For iterator ! = 2: !"#!" 
    If ! = 2  
      Initialize !"! based on all possible combination of ! 
    Else 
      Initialize !!! based on all possible combination of !"!!! 
    End 
    For each pattern !! ∈ !"! 
      Calculate !!! 
      If !!! >  !"# 
        Insert !! into ! (!! is statistically significant) 
      Else 
        Remove !! from !"! (!! is not statistically significant) 
      End 
    End 
  End 
  Return ! 

Figure 13. The Pseudo-Code of Spatio-Temporal Pattern Discovery Algorithm. 
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5.6 Clustering, Re-clustering, and Classifying Spatio-
Temporal Pattern Matrix 

With STPM, it is readily available to perform cluster analysis on the set 

of !!" by treating each vector !!, characterized by ! attributes, as an object by 

the state of the art clustering algorithm. The proposed clustering approach 

consists of 2 stages, initial clustering and re-clustering. The initial clustering 

stage, which locally optimizes the clustering, assigns cluster labels to the objects. 

We believe a good clustering result should generate good cluster label so we treat 

the cluster label as the class label to perform classification so as to globally 

partition the objects. This re-clustering stage basically is to fit a clustered STPM 

into a classifier we previously proposed in chapter 4’s section 4.5. Therefore, if 

the MSTS is labeled, we can perform classification analysis directly by skipping 

the initial clustering stage. 

For initial clustering, we adopt a popular agglomerative hierarchical 

clustering to repeatedly group the most similar pair of clusters into a new cluster 

until forming a single cluster with all objects. It is optional to apply a suitable 

cutoff level to obtain a specific number of clusters based on prior knowledge. If 

there is no domain knowledge to specify the number of clusters or inspecting the 

dendrogram to see if it suggests a particular number of clusters is considered 

subjective, one can apply some heuristics to determine the optimal number of 

clusters. Section 4.6 discussed such heuristics. Pearson correlation coefficient is 

used for distance measure rather than Euclidean distance so as to be better in 

dealing with noise (Ma, Chan & Chiu, 2005). For a pair of objects !! and !! with 

values of ! attributes, the similarity measure is defined as: 
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!"# !! ,!! = ! !!"!!"!
!!! ! !!"!

!!! !!"!
!!!

! !!"!!(!!)!!
!!! ! !!"!!(!!)!!

!!!
 . (5.5) 

 

To reflect the contiguity between different spatial units, we introduce !!,! 

(definition 5.1) and add it as a term to !"# !! ,!!  as the spatial penalty. This 

forms a new similarity measure !"#′ !! ,!! , defined as: 

!"#′ !! ,!! = !"# !! ,!! +!!,!, (5.6) 

for clustering. Treating the assigned cluster label in initial clustering as the class 

label, let !! be an interesting pattern discovered from class !,  !!. In a supervised 

manner, if the interesting pattern !! is conditioned by the class label  !!, it can be 

treated as a classification rule (Wang and Wong, 2003), i.e. if {antecedent or left-

hand-side or LHS} then {consequent or right-hand-side or RHS}. The weight of 

evidence measure ! (definition 5.13) in information theory (Wang and Wong, 

2003) is used to quantify the evidence of the joined significant rules to support or 

against a certain class membership. An example rule for classifying a MTS is if 

{temporal pattern 1 = high and temporal pattern 2 = low} then {class = 1} 

with a weight of evidence of a certain value. 

The task of classification is to maximize the total weight of evidence 

!!(!!) (definition 5.14). The total weight of evidence for !! to be classified 

into each of !!, !!,… , ! !  is computed and !! is assigned to the class that can 

give the highest total weight of evidence. This measure is able to differentiate the 

case that when some identical objects refer to different classes in the training set 

as the class, assignment of !!  is by the highest total weight of evidence. 

Combining the above steps, the pseudo-code is given in Figure 14. 
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Figure 14. The Pseudo-Code of Re-Clustering and Classification Algorithm for 

STPM. 

 

5.7 Complexity Analysis 

For the temporal association pattern discovery method of each region, the 

runtime and space complexity is !(!!"!!"!!!!!"!!) where ! is the number of 

time series, ! is the number of time points, !" is the level of the associations, 

and !!  is the time delay. Now, for the spatio-temporal association pattern 

discovery, we have the STPM for all regions ! = !!,… , !!  forming a !×!′ 

matrix and let !  be the number of distinct cluster labels. To compute the 

Input:  
  !! 
Output:  
  !"#$!! (an assigned cluster or class label to !!) 
Variables:  
  ! = {!!!,… ,!!! ,… ,  !!!

|!|} (set of discovered patterns from STPM) 
  !"#$% = {!"#$!!, !"#$!!,… , !"#$!|!|} (set of cluster labels or class labels) 
  !!!!!!!!, ! = 1,… ,!! (set of weights of evidence) 
  !! (set of patterns from !! for matching) 
  !!(!!) (set of total weights of evidence) 
Algorithm: 
  !! = transform !! into a set of patterns for matching 
  For each discovered pattern !!! ∈ ! 
    For each pattern for matching !! ∈ !! 
      If !!! matches !! 
        For each !"#$!! ∈ !"#$% 
          !!(!!) = !!(!!) + !!!!!!!!! 
        End 
      End 
    End 
  End 
  !"#$!! = !"#$!! with max(!!(!!)) 
  Return !"#$!! 
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contingency table for all !!
!  pairs of discretized attributes, the computational 

complexity is !(!!"!) . For ! > 2 , to generate !!! order spatio-temporal 

patterns, the computational complexity is !(!!!!). For higher order patterns, 

the candidate set is greatly reduced by previous iterations as the algorithm only 

considers growing statistically significant patterns, so all pattern candidate set 

should be much less than all possible combinations of !!! order patterns, i.e. 

!"! < !!!. If we predefine the number of discretized attributes, the overall 

computational complexity is linear in terms of !. The initial clustering scans 

through the entire feature matrix once, so the computational complexity of 

calculating the pair-wise similarity is !(!′!!) . For the re-clustering, it 

calculates the weight of evidence of all individual interesting patterns supporting 

or refusing the classification of an object into a class. Given !  interesting 

patterns and ! distinct cluster labels, it calculates !" times. Each time scans 

through the entire database of ! regions. Consequently, it takes !"# operations 

to obtain all weights of evidence between each interesting pattern and each class. 

Hence, its computational complexity is !(!"#). The classification of an unseen 

MSTS requires the generation of !′ discretized attributes from its MTS and 

match them against ! interesting patterns to look for the highest total weight of 

evidence to support the classification into a certain class. As a result, it takes 

!"′! operations in total for which the computational complexity is !(!"′!) for 

the prediction of class. 
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5.8 Experimental Results 

In this experiment section, we have performed both an experimental and 

case study using the proposed algorithms. Extensive experiments on synthetic 

data, real data and case studies have been conducted. Partial results described in 

this chapter have been published in Wu and Chan (2018c) and submitted to a 

journal (Wu & Chan, 2018b). In all of the below experiments and case studies, 

we set !  = 10, !! to 6, !"#!" = 2, and !"#!" = 5 unless we re-specify these 

values. These values are chosen based on the domain knowledge and experiment 

setting. Other parameters will be specified in each experiment section. The 

proposed algorithms in the system are implemented in the programming 

language Python 3.6 with NumPy, a package for scientific computing, and 

Pandas, a software library for data manipulation. The experiments are carried out 

on a personal computer (MacBook Pro) with 2.9 GHz Intel Core i5 processor and 

16 Gb RAM running macOS version 10.13. 

5.8.1 Synthetic data set. In this experiment, we generated MSTS for each of 

60 regions, i.e. 60 MSTS, which belong to 3 clusters {!!,… ,!!} each of which 

contains 20 MTS. For MSTS in the same cluster, they share common borders, 

i.e. ! !,! = 1 for region !! and !! sharing a common border and in the same 

cluster or 0 for region !! and !! in a different cluster. For each location, there 

exists at least 1 MSTS. Each MTS consists of 4 TS, i.e. {!"!,… ,!"!}. For each 

TS in each cluster, intra-patterns and inter-patterns are embedded so that MTS 

within the same cluster contains more similar patterns than those from others. 

Each TS contains 200 time points and can take on real values from 0 to 1. For !!, 

!"!’s values are uniformly distributed within [0, 1]; !"!’s values are uniformly 
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distributed within [0.18, 0.44] in every 5 time point interval stochastically or 

otherwise uniformly distributed within [0, 1]; !"! takes on values uniformly 

distributed within [0.03, 0.39]; !"! takes on values uniformly distributed within 

[0.32, 0.49] if !"!’s value falls into [0.18, 0.44]. For !! , !"!’s values are 

uniformly distributed within [0, 1]; if !"!’s value falls into [0.18, 0.44], the 

corresponding value in !"! is uniformly distributed within [0.53, 0.86]; if !"!’s 

value falls into [0.40, 0.66], the corresponding value in !"!  is uniformly 

distributed within [0.23, 0.41] at the next time point in 60% chance and the 

corresponding value in !"! is uniformly distributed within [0.05, 0.49] at the 

next time point in 40% chance. For !!, values of !"! and !"! are uniformly 

distributed within [0, 1]; if !"!’s value falls into [0.03, 0.22], the corresponding 

value in !"! is uniformly distributed within [0.53, 0.92]; if !"!’s value falls into 

[0.70, 0.90] at every six time points, !"! takes on a value uniformly distributed 

within [0.13, 0.47] at the next time point. Figure 15 shows the MSTS of the 3 

clusters with the implanted patterns highlighted. In this experiment, we set !"#! 

to 10 based on the observation of the generated data. 

 

   

(a) MSTS in Cluster 1 (b) MSTS in Cluster 2 (c) MSTS in Cluster 3 
 

Figure 15. Synthetic MSTS with Implanted Patterns Highlighted. 
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Table 17 

Top Ranked Spatio-Temporal Patterns in Synthetic Data 

Pattern 

   

Location 58, 59 1, 4 4, 8 

Statistical 

Significance 

7.935 7.91 7.28 

Cluster 3 1 1 

Pattern 

   

Location 7, 18 52, 57 40, 56 

Statistical 

Significance 

7.255 6.905 5.58 

Cluster 1 3 3 

Pattern 

   

Location 25, 28 47, 49 25, 39 

Statistical 

Significance 

5.085 5.075 3.255 

Cluster 2 3 2 
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This set of experiments aims at demonstrating the ability in recovering 

the embedded spatio-temporal association patterns. A good pattern discovery 

algorithm should produce, not too many, high-quality patterns that can find the 

implanted associations. Therefore, to compare the number of generated 

association patterns, we use the approach developed by Tatavarty, Bhatnagar, 

and Young (2007), namely TARM, to generate temporal association patterns. 

With these generated temporal patterns, the STPM is constructed so we can 

discover spatio-temporal patterns for comparison. Secondly, we also believe that 

a good representation of the transformed data can lead the clustering algorithms 

to produce promising clustering results so we applied 3 different model-based 

approaches to transform the MSTS to STPM for cluster analysis. 

After TARM is run and then the construction of the STPM, we detect the 

generated spatio-temporal association patterns and compare it with the one 

generated by the proposed algorithms. The proposed algorithm generated 73,587 

temporal associations and completely captures the implanted temporal 

associations. The discovered temporal associations by the proposed approach and 

TARM are ranked by statistical significance and confidence respectively. TARM 

generated 1,177,424 temporal associations and only up to the 74,976th ranked 

association captures 12 occurrences of the implanted association. Therefore, the 

STPM based on the patterns generated from TARM is very sparse and is not 

feasible for further cluster analysis. The proposed method outperforms TARM by 

generating a smaller number of temporal associations with a better ranking of the 

discovered temporal patterns that cover the embedded ones. We go on searching 

the spatio-temporal associations from the STPM. For the proposed approach, 710 

spatio-temporal association patterns are detected. Ranked by the statistical 
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significance, the top 9 patterns are depicted in Table 17 for reference. For the top 

399 out of 710 patterns, it is interesting to note that none of them are associated 

with different clusters so they are likely to describe the characteristics and the 

cluster relationship without relying on too much on the spatial contiguity 

information. For the STPM prepared by TARM’s temporal patterns, it detected 

11,360 spatio-temporal associations. Among these patterns, only up to the 224th 

ranked pattern is associated with the same cluster. 

To evaluate the performance by clustering the generated STPM, given 

known cluster membership, we can calculate i) F1-measure, defined as 

! !! ,!! = !! !!,!! ! !!,!!
! !!,!! !! !!,!!

, where ! !! ,!! = !"#!!,!!
!"#!!

, ! !! ,!! = !"#!!,!!
!"#!!

, 

!"#!!,!! is the count of records with cluster label !! in assigned cluster !!, !"#!! 

is the count of records with cluster label !!, and !"#!! is the count of records in 

the assigned cluster !! , and ii) clustering accuracy, defined as 

!" = !"#!!
!
!!!

!"!"# !"#$%& !" !"#$!%&, where !"#!! is the count of records in ith cluster and 

k is the number of clusters. 

To compare to the state of the art algorithms, we applied 3 model-based 

approaches to transform the MSTS to STPM, namely a) PCA and ARMA, b) 

PCA and equal frequency binning and c) lift ratio, and then perform clustering 

using k-means and HMM. PCA is used for feature extraction. These features are 

a) modeled by ARMA to calculate the top 8 LPC coefficients or b) discretized 

into 3 intervals to form STPM. STPM is clustered by k-means (k = 3) using 

Euclidean distance or by HMM using log-likelihood value. We also applied d) a 

deep learning model based on CNN, which does not require data transformation, 

described and implemented in section 4.8.1 to classify the MSTS by inputting the 
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cluster label given the known cluster membership in this synthetic data set. 

Neural network classifier can be modified to fit a clustering model if a clustering 

algorithm such as k-means generates the cluster label initially and be it fed into 

the neural network’s input layer. We split the data along the spatial dimension 

into 90 percent training set and 10 percent testing set. The results reported in 

Table 18 show the proposed approach outperforms the others. The first 2 

approaches result in poor performance due to high information loss after 

dimensionality reduction. In c), the relationship between time series is 

considered so the hidden intra and inter patterns are revealed, significantly 

boosting the performance. In d) given the ground truth cluster label as an input 

for CNN to learn a classifier, it is very robust to capture the temporal relationship 

that can yield better accuracy than a) and b). However, there is still a room for 

improvement such as integrating different clustering methods into the network 

architecture while most existing deep learning based clustering techniques have 

separate feature learning (via deep learning) and clustering (with traditional 

clustering methods). A recent attempt (Tian, Zhou & Guan, 2017) is to 

simultaneously learn feature representation and does cluster assignment under 

the same deep learning framework on handwritten digit data sets and text data 

sets. However, it is not yet able to apply on multivariate spatial time series data. 

The proposed approach in e) not only considers important local associations 

between patterns temporally but also characterizes the space using only 

significant patterns globally, to produce high-quality matrix representation. 

Therefore, the noise from less significant patterns is filtered effectively and 

Pearson correlation coefficient, rather than Euclidean distance, is used for more 

effective clustering. Utilizing the information provided by the spatial penalty 
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term, it also optimizes the proposed clustering algorithm to cluster the objects 

that share the common boundaries. Also, patterns hidden in each cluster are 

explicitly revealed and presented for easy interpretation even by a layperson. 

 

Table 18 

Modeling and Clustering Comparison 

Approach F1-measure !! 

a) PCA + ARMA + k-means 0.503 51.1% 

b) PCA + binning + HMM 0.428 46.67% 

c) Lift ratio + k-means 0.792 86.67% 

d) CNN 0.761 73.89% 

e) Proposed 0.833 92.38% 

 

5.8.2 North America comprehensive climate data set. Comprehensive 

climate data set (CCDS) is a collection of climate records with 125 observation 

locations using a 2.5 × 2.5 degree grid for latitudes in (30.475, 50.475) and 

longitudes in (−119.75, −79.75) from North America that contains monthly 

observations of 18 variables, including carbon dioxide (CO2), methane (CH4), 

carbon monoxide (CO), hydrogen (H2), wet days (WET), cloud cover (CLD), 

vapor (VAP), precipitation (PRE), frost days (FRS), diurnal temperature range 

(DTR), minimum temperature (TMN), average temperature (TMP), maximum 
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temperature (TMX), global solar radiation (GLO), extraterrestrial radiation 

(ETR), extraterrestrial normal radiation (ETRN), direct solar radiation (DIR), 

UV aerosol index (UV), spanning from 1990 to 2002. The data set can be 

obtained from Liu (2015) and is a representative data set used in the spatial data 

mining field. In particular, the predictability of these variables has been revealed 

in the literature. These variables can be categorized as primary climate variables, 

and some human and natural variables such as solar irradiance and greenhouse 

gases as these are known to affect the climate. For further detail of these 

variables, please refer to this article (Lozano, Li, Niculescu-Mizil, Liu, Perlich, 

Hosking & Abe, 2009). 

In this experiment, we would like to extract the spatio-temporal patterns 

to characterize the CCDS by the STPM and then plot it on map (Figure 16) by 

the discovered patterns’ statistical significance in order to demonstrate the ability 

to visualize them on different locations according to the strength of these patterns 

hidden in their climate measurements. Based on domain knowledge, we 

understand that past values of climate measurements in some specific locations 

to predict the future values of other time series are more predictive than the 

others. As a qualitative study, we will compare the strength of the discovered 

patterns by the proposed approach with the map of most predictive regions 

produced by Liu (2015). For the parameter setting, we set !"#! to 5 based on the 

size of the data set. We applied the proposed algorithms to form the STPM and 

extracted 31,256 spatio-temporal patterns to represent the locations. To plot the 

map of most discriminative regions, we also define the aggregate pattern 

statistical significance of each region as d! ! = !!"!
|!"|!
!  where |!"|! is the 

total number of patterns belonging to region !  and !!"!  is the statistical 
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significance of the !!! pattern in region !. Based on the ground truth, two regions 

are believed to be the most predictive regions that are the southwest and the 

southeast. The southwest region reflects the impact of the Pacific Ocean. Both 

color maps show the color level of the southwest region, deep red in (a) and deep 

blue in (b), is stronger than other neighborhood regions. The southeast region 

frequently experiences relative sea level rise, hurricanes, and storm surge in the 

Gulf of Mexico. Again, on both color maps, the color level of southeast region 

suggests the past values are able to predict the future values of climate 

measurements and its discovered patterns are strongly discriminative than the 

neighborhood regions. The proposed approach can also reveal the interesting 

region in Colorado with both color maps showing high intensity of the values. It 

is because the Rocky Mountain valleys act as a funnel for winds from the west to 

provide locally divergent wind patterns. In short, this experiment can confirm the 

findings from the literature. It indicates the meaningfulness of the discovered 

spatio-temporal patterns that quantifies the temporal dependence between 

variables across different locations. 
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(a) Map of the most predictive regions by Liu (2015) 

 

(b) Map of the most discriminative regions by the proposed algorithm 

Note. In (a), red indicates highly predictive whereas blue indicates lowly 
predictive. In (b), deep light blue indicates weekly discriminative whereas deep 
blue and red indicate strongly discriminative. 

Figure 16. Map of the Most Predictive Regions by Liu (2015) and Map of the 

Most Discriminative Regions by the Proposed Algorithm from CCDS. 
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5.8.3 Case study on Greater Bay Area (GBA) meteorological data 

set. Meteorological data set (MET) is a collection of meteorological records 

taken from 5 different surface stations in Greater Bay Area (GBA) in China that 

contains hourly observations over a one-year-long period of 8 attributes, 

including total cloudiness, lower cloudiness, dry bulb temperature, dew point 

temperature, relative humidity, site pressure, wind direction and wind speed. 

These 5 surface stations denoted by the alphabets S = {A, B, C, D, E} are located 

in the great urban region of GBA in China as shown in Figure 17. Station A, B, 

C, D, and E is Guangzhou metropolis, Foshan city, Shenzhen city, Dongguan 

city and Zhongshan city respectively. The description of data collected by each 

station and some example data is listed in Table 19 and Table 20 respectively. 

Based on the domain knowledge from Wong et al. (2010), all those 

meteorological variables have an internal relationship according to the 

geographic location of the surface stations and might be governed by local 

terrain and land use. 
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Table 19 

Data Description of MET 

Attribute Name Type 

S1 Total Cloudiness Discrete 

S2 Lower Cloudiness Discrete 

S3 Dry Bulb Temperature Continuous 

S4 Dew Point Temperature Continuous 

S5 Relative Humidity Continuous 

S6 Site Pressure Continuous 

S7 Wind Direction Continuous 

S8 Wind Speed Continuous 

Note. S = {A, B, C, D, E} corresponds to a set of 5 surface stations: 

A = Guangzhou Metropolis; B = Foshan City; C = Shenzhen City; 

D = Dongguan City; E = Zhongshan City. 

Figure 17. Great Urban Region of Greater Bay Area (GBA) in China. 
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Table 20 

Some Example Data of MET 

Surface Station A (Guangzhou) Surface Station B (Foshan) 
A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B8 
J J 10 9999 22 1021 23 3 A A 11.2 9999 30 1024 17 5 
J J 9.6 9999 19 1021 24 3.8 A A 10.8 9999 27 1024 6 4.5 
J J 9.3 9999 20 1021 20 3.4 A A 10.2 9999 26 1024 9 3.6 

  
Surface Station C (Shenzhen) Surface Station D (Dongguan) 

C1 C2 C3 C4 C5 C6 C7 C8 D1 D2 D3 D4 D5 D6 D7 D8 
D D 10.2 9999 35 1024 0 1.7 J J 10.9 9999 31 1025 35 2.9 
D D 9.7 9999 32 1022 6 1.8 J J 10.4 9999 30 1025 43 3 
D D 9.5 9999 29 1021 2 2.4 J J 10.2 9999 31 1025 31 3.3 

  
    Surface Station E (Zhongshan)     
    E1 E2 E3 E4 E5 E6 E7 E8     
    A A 8.8 9999 28 1022 17 2.5     
    A A 8.4 9999 28 1022 23 2.8     
    A A 8.2 9999 28 1022 26 3.2     
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We first removed attribute 2 for all surface stations as it is a redundant 

attribute of attribute 1. Attribute 4 for all surface stations are also removed as all 

of them have identical values. In this case study, we set !"#! to 300 based on the 

observation of the data set. The proposed algorithms extracted 31,955 spatio-

temporal patterns. Ranked by their statistical significance, we are able to reveal 

the patterns that are consistent to the attribute clustering from Wong et al. (2010) 

in which the top ranked patterns can distinguish the attribute cluster items. The 

attribute clustering by Wong et al. (2010) and Wu, Chan and, Wong (2011) is 

able to identify the interdependence between attributes but is not able to make 

the temporal dependence hidden in the attributes across spaces explicit. The 

proposed algorithms can further uncover the movement of the values in the 

spatio-temporal dimension. Table 21 shows the top ranked spatio-temporal 

patterns for each attribute group formed according to Wong et al. (2010). From 

the clusters labeled by domain experts, we understand that the grouping is based 

on the interdependence among similar characteristics of attributes within each 

cluster formed. The 2nd, 3rd and 4th patterns in which the location and attribute are 

exactly matched with the attribute clustering items reflect the regional (global) 

characteristics of the correlated meteorological parameters. For instance, an intra 

pattern in “A7” sensor for detecting wind direction in Guangzhou station 

significantly co-occurs in that in Foshan station. The 1st and 5th patterns reflect 

the local characteristics that are significantly influenced by the local 

geographical feature such as land use and land coverage. The 5th pattern is an 

inter pattern that consists of 2 different sensors for detecting dry bulb 

temperature and wind speed in Dongguan city and Zhongshan city. Comparing 

the values of statistical significance of the top 5 patterns, stations A, B and, C are 
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in a relatively stronger position than station D and E for the weather condition 

analysis. We normalize the aggregate pattern statistical significance defined in 

section 5.8.2 by the number of regions that also contain the patterns from region 

i, that is normalized aggregate pattern statistical significance !!(!) = !!(!)
!!  where 

!!(!) is the aggregate pattern statistical significance which is the sum of all 

patterns’ statistical significance in region i and ni is the number of regions that 

also contain the patterns from region i. The normalized aggregate pattern 

statistical significance for stations A, B, C, D, and E is 17.51, 17.51, 15.95, 

14.87, and 14.87 respectively. This finding is corresponding to the claim in the 

work by Wong et al. (2010) that the representative attributes in these attribute 

clusters are from only stations A, B and C. 

Table 21 

Top Ranked Spatio-Temporal Patterns for each Attribute Group of MET 

Pattern 

   
Location A, B, C, D, E A, B, D, E A, B, C, D, E 

SS 23.744 22.195 14.548 

ACI 
 

A3, A4, C6, B3, C3, 
D3, E3, A8, B8, C8, 

D8, E8 (Dry Bulb 
Temperature & Wind 

Speed) 

A6, B6, D6, E6 (Site 
Pressure) 

B5, A5, C5, D5, E5 
(Relative Humidity) 
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Pattern 
 

  

 

Location A, B, C, D, E D, E  
SS 9.554 4.3  

ACI C7, A7, B7, D7, E7 
(Wind Direction) 

A3, A4, C6, B3, C3, 
D3, E3, A8, B8, C8, 
D8, E8 (Dry Bulb 

Temperature & Wind 
Speed) 

 

Note. SS – Statistical Significance. ACI – Attribute Cluster Items by Wong et al. 
(2010). Bold items indicate the spatio-temporal pattern covering the attribute 
cluster items. 

 

5.8.4 Case study on London crime data set. This section presents a case 

study on how our proposed approach has been used to assist police officers to 

analyze crime data. In the United Kingdom, police reported crimes are made 

publicly available via the police.uk website. The London crime data set consists 

of monthly occurrences of 14 crime types, including anti-social behavior, bicycle 

theft, burglary, criminal damage and arson, drugs, other crime, other theft, 

possession of weapons, public order, robbery, shoplifting, theft from the person, 

vehicle crime, violence and sexual offences, across 35 locations for latitudes in 

(51.499, 51.531) and longitudes in (−0.227, 0.554) in City of London spanning 

from September 2012 to August 2017. These 35 locations are formed according 

to the Lower Layer Super Output Area (LSOA) which is a geographic area built 

from groups of contiguous clusters of adjacent unit postcodes in the United 

Kingdom and is automatically generated to be as consistent in population size as 
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possible. The LSOA codes and names are maintained by the Office for National 

Statistics in the United Kingdom. We will use the LSOA name to label the area 

in this case study. 

In this case study, we set !"#! = 5 and !  = 3 based on the size of the 

data set. The proposed algorithms discovered 9,041 significant spatio-temporal 

association patterns in the study area. Ranked by the patterns’ statistical 

significance, we plot the color map of the top 5 ranked patterns based on the 

values of the aggregate pattern statistical significance in Figure 18. The intensity 

of the color reflects the strength of the discovered patterns in the respective 

areas. From the color plot, it is obvious to identify some strong patterns as 

indicated by the red and yellow color. To further demonstrate the insight, we plot 

the transformed time series and highlight the association for the 1st ranked spatio-

temporal pattern in Figure 19. This pattern consists of 2 crime types, violence 

and sexual offences as well as vehicle crime, across 4 LSOAs, namely City of 

London 001A, City of London 001B, City of London 001C and Tower Hamlets 

015B. It reveals an interesting phenomenon that in these areas a moderate 

number of occurrences of vehicle crime and a low number of occurrences of 

violence and sexual offences are significantly correlated. By looking into the 

figures ending June 2017 from a report published by the Office for National 

Statistics (“Crime in England and Wales”, 2017), we found that vehicle-related 

thefts have increased in the City of London but sexual offences declined. This 

kind of insight suggests police force work closely with partners in these areas 

with enforcement activity. 
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(a) Crime type: violence and sexual 

offences, vehicle crime 
LSOA: City of London 001A, City of 
London 001B, City of London 001C, 

Tower Hamlets 015B 

 
(b) Crime type: other theft, vehicle 

crime 

LSOA: City of London 001A, City of 
London 001B, City of London 001C, 

Tower Hamlets 015B 
  

 
(c) Crime type: theft from the person, 

vehicle crime 
LSOA: City of London 001B, City of 

London 001C 

 

 
(d) Crime type: public order, vehicle 

crime 
LSOA: City of London 001B, City of 
London 001C, City of London 001G 

  

 
(e) Crime type: criminal damage and arson, vehicle crime 

LSOA: City of London 001B, Tower Hamlets 015B 
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Note. Red color indicates the pattern occurrence is significantly frequent and the 
spatio-temporal association pattern is strongly discriminative. Green color 
indicates the pattern occurrence is also significantly frequent but the pattern is 
weakly discriminative. Yellow color indicates the pattern’s strength is between 
those in red and green. 

 

Figure 18. The Color Map Plot of Top 5 Ranked Patterns from London Crime 

Data. 

 

 

 

 

 

 

 

 
Figure 19. The 1st Ranked Spatio-Temporal Association in London Crime Data. 
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5.9 Summary of the Chapter 

This chapter proposed a pattern mining approach to discover spatio-

temporal associations for multivariate spatial time series data. These associations 

capture patterns occurring sequentially with varying time delays in single and 

multiple time series across spaces. The matrix representation for the transformed 

MSTS stores important spatio-temporal pattern information to reveal the 

statistical significance, available for further clustering and classification. We 

have performed both an experimental and case study using the proposed 

approach with a synthetic data set and real data sets. The proposed approach is 

able to uncover the embedded patterns in the synthetic data set and reveal the 

clustering relationship effectively. The experimental results using real data sets 

have been consistent with the findings reported by the literature and show the 

proposed approach is able to uncover the relations among time series in multiple 

locations. The findings in the case studies may also provide previously unknown 

relations that could introduce interesting insight for subject matter experts. In 

addition, an aggregate statistical significance is introduced for ranking and 

visualizing the discovered patterns. 
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6 CONCLUSION 

In this thesis, we presented several techniques for spatial trajectory data 

and multivariate spatial time series data based on pattern discovery approach. 

Each technique is tested against synthetic and real data sets and compared to the 

state of the art algorithms for performance analysis. Our experimental results 

show that the proposed approaches outperform the others most of the time in 

many situations where class information is unavailable. When class information 

is available, pre-processing in discretization can utilize the class dependence on 

the attributes to partition the attributes and subsequently, this can boost the 

performance of classification in terms of accuracy. 

For spatial trajectory, we first presented the feature generation and 

discretization methods that extract some basic, advanced and derived features 

and discretize these features for pattern discovery using simple rule-based, 

unsupervised and supervised discretization techniques. Empirically, we showed 

that these generated features are able to assist in building good classifiers that 

can effectively predict the class attribute in terms of accuracy. To discover high 

order patterns for spatial trajectory, we utilize the generated feature matrix to 
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perform association pattern discovery. Higher order association patterns are 

generated based on statistically significant lower-order association patterns to 

avoid the exhaustive search. The significance of the association of patterns is 

evaluated by a statistical significance test by adjusted residual measure. Since 

each pattern is assigned an adjusted residual value, we can rank them according 

to their values and use them to train a classifier based on the rule set that is to use 

the discovered patterns to predict the class attribute by weight of evidence 

measure. As each rule is assigned a weight of evidence value, summing the 

weights of evidence of rules of the same class yields the total weight of evidence 

for which the class with the highest total weight of evidence to be assigned to the 

unseen data record. The adjusted residual value and weight of evidence value 

suggest how statistically significant the occurrence of the discovered patterns is 

and how much these patterns contribute to the predictiveness of the class 

attribute. Consequently, top-ranked patterns and rules can be chosen as the 

selected features. Our extensive experiments on real-world data sets indicate that 

the proposed techniques outperform other feature selection methods, such as 

basic feature (BF), advanced feature (AF) and deep neural network (DNN) on 

trajectory coordinate and time, in terms of the classification accuracy. Moreover, 

the processing time is linear to the size of the data set. 

For multivariate spatial time series, a simple but effective feature matrix 

representation has been developed. The technique first vectorizes each 

multivariate time series of all regions by a temporal association pattern discovery 

algorithm to be used as features for clustering and classification and produces a 

spatio-temporal pattern matrix (STPM). The temporal association patterns are the 

statistically significant associations of frequent sequential patterns after multiple 
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time series are transformed by SAX into multiple sequences. Since the 

association is detected by a statistical significance test based on adjusted 

residual, the temporal patterns are statistically significant if their values of 

adjusted residual are greater than the significance threshold at a certain 

confidence level. Based on the test, the proposed pattern mining algorithm 

eliminates temporal patterns that fail the test and retains the ones passing the test 

as the features for clustering and classification. The re-clustering technique 

summarizes the local clustering information by a classification algorithm that 

accounts for the global information using the weight of evidence measure to 

assess how the information of interesting spatio-temporal patterns contributes to 

the predictiveness of the class attribute. The experimental results on a synthetic 

data set show that the embedded patterns can be uncovered from the generated 

feature matrix and the feature matrix that is used for training a cluster model 

consistently produces high-quality clustering results in terms of accuracy 

computed after restoring the ground truth. Moreover, the case study results find 

some important insights that are commensurate to the literature and survey 

report. Empirically, we showed that the proposed techniques that take spatial and 

temporal information into consideration during the mining process perform better 

than other mining techniques that ignore the temporal and spatial dependence in 

terms of classification accuracy and F1-measure. 
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6.1 Summary of Contributions 

6.1.1 Theoretical contributions. In this thesis, we have two primary 

theoretical contributions to the development and practice of the data mining 

technology in the proposed algorithms. 

1. Theoretical framework for pattern discovery for spatial trajectory and 

multivariate spatial time series (Wu & Chan, 2017, 2018a, 2018b, 

2018c): A systematic theoretical foundation is proposed for mining such 

data types. A transformation method based on feature extraction and 

selection using pattern discovery techniques is developed to produce a 

feature matrix to represent and to characterize the very complex original 

data structure. Thus, the theoretical framework proposed as a unified 

framework is able to model common data mining tasks, such as clustering 

and classification, by handling these two forms of spatio-temporal data. 

2. Demonstration of the necessity of mining patterns for clustering and 

classification in big databases of spatial trajectory and multivariate spatial 

time series (Wu & Chan, 2017, 2018a, 2018b, 2018c): From experimental 

results on extensive experiments using both synthetic data set and real 

data sets, the thesis forms a basis with supportive evidence that in big 

database of these types of data, strongly correlated and frequently co-

occurring events across spatio-temporal domains do exist to form 

statistically significant association patterns. This leads to our thought to 

utilize the information of how attributes of spatio-temporal types are 

naturally associated to conduct supervised and unsupervised learning. 

The revealed effective clustering and/or classification models trained 

based on the discovered interesting patterns reconfirms the class attribute 
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and patterns relationship by introducing the spatio-temporal pattern 

matrix and thus allowing for i) the optimization of the interdependence 

between attributes of patterns using attribute clustering, ii) further pattern 

analysis and model learning, and iii) knowledge representation and 

interpretation. This concept using the interesting patterns that are 

interpretable and human readable to summarize the complex data 

structure furnishes the overall solution framework to conduct further 

predictive analytics using the-state-of-the-art techniques possible. Not 

only does it contribute to state a new research problem, but it also leads to 

an area of research to develop computational solutions using a set of new 

algorithms to deal with these data mining tasks. 

6.1.2 Methodological contributions. There are two important 

methodological contributions in this thesis as follows. 

1. A statistical approach to extract spatio-temporal patterns in spatial 

trajectory and multivariate spatial time series (MSTS) based on the 

statistical significance test (Wu & Chan, 2017, 2018a, 2018b, 2018c): 

Based on the discretized attributes extracted and transformed from the 

original data, an association discovery technique is incorporated to detect 

statistical significant temporal patterns with time delay. The spatio-

temporal pattern matrix (STPM) that characterizes the raw data makes 

conducting clustering and classification analysis possible by a unified 

pattern discovery framework. 

2. A flexible algorithmic approach to pre-process and post-process the 

transformed data (Wu & Chan, 2017, 2018a, 2018b, 2018c): In both 
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settings of supervised and unsupervised learning, the experiments have 

shown the effectiveness and flexibility of the proposed solution to cope 

with different situations. In practice, spatial trajectory and MSTS data 

may come with noise, missing data and incorrectly marked labels will 

mix with the data sets. In this thesis, different discretization methods are 

employed and implemented for the data pre-processing, i.e. MACA using 

the mode to drive the discretization in unsupervised learning while in 

supervised learning, use the class attribute to drive the discretization by 

optimizing the interdependency between the class attribute and the other 

attributes. In the post-processing, if data are unlabeled, an initial 

clustering using the-state-of-the-art clustering technique locally optimizes 

the assignment of cluster label and then the re-clustering step, or the 

classification step if data are labeled, makes use of the weight of evidence 

measure to quantify the information contributed by the interesting 

patterns of each category to globally predict the class membership. 

6.1.3 Application contributions. In summary, we contribute to the area of 

the application domain in four major aspects. 

1. Discovery of transportation modes of commuters from GPS trajectories in 

China on a large scale real data set (Wu & Chan, 2018b): Discovering 

patterns from GPS trajectories is regarded as a classification problem 

when the transportation mode of each trip are annotated by users and 

solved as a pattern mining problem by transforming each trip into 

features for training a classifier. However, since the dimensionality of the 

spatial trajectory is very high, extracting discriminative and useful 
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features for further predictive analysis becomes difficult. For a database 

with a large number of spatial trajectories, we first pre-process each 

trajectory into a set of basic, advanced and derived features. Then, we 

apply MACA to break the feature set into groups. In each group, we use 

the representative feature, one with the highest interdependence with 

others in the group, to drive the discretization of the values of other 

features. Treating intervals as discrete events, association patterns can be 

discovered. To demonstrate the flexibility of the proposed method, we 

fed the discretized feature matrix into multiple classifiers for performance 

comparison. The results show the transformed feature matrix 

representation can provide high-quality data summary to characterize the 

original spatial trajectory data for building a classifier. 

2. Discovery and prediction of driver telematics fingerprint using the mined 

driving behavior over multiple various length driving trips distinguishing 

the driver identity (Wu & Chan, 2017): Due to privacy concern, user 

location data in the moving object trajectory are to be anonymized before 

publishing. To classify the privacy-preserving driving trips in a set of 

recorded GPS tracks, an information theoretic approach to characterize 

them based on their occurrences of frequently detected patterns is 

developed and applied. The interesting patterns that are discovered 

through a statistical significance test are treated as driver telematics 

fingerprints for training a classifier using the weight of evidence measure. 

This application validates the classificatory power of the discovered 

interesting patterns. The result indicates the approach is effective and 

efficient in achieving a good accuracy in the prediction of the class labels 
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of the different driving trips with varying length based on the transformed 

set of attributes. 

3. Discovery and ranking of meteorological pattern relationship from 

weather sensors and surface stations over two large study areas, through 

experiments on a) MET data from Greater Bay Area in China and b) 

Comprehensive Climate data from North America, rendering subtle 

relations for regional weather monitoring (Wu & Chan, 2018b): The 

discovery of the spatio-temporal patterns from the multivariate spatial 

time series weather data can reflect the regional and global characteristics 

of the correlated meteorological parameters. Based on domain 

knowledge, we understand that past values of climate measurements in 

some specific locations to predict the future values of other time series 

are more predictive than the others. To demonstrate the ability to 

visualize the predictability on different locations according to the strength 

of these patterns hidden in their climate measurements, we defined the 

aggregate pattern statistical significance of each region for plotting a heat 

map to show the intensity of the values for the prediction. The result 

indicates the meaningfulness of the discovered spatio-temporal patterns 

that quantifies the temporal dependence between variables across 

different locations. The top-ranked patterns are also found to be the 

representative characteristics of the correlated meteorological parameters 

that are consistent with the literature. 

4. Discovery and grouping of interesting crime occurrence patterns in 

multiple London districts revealing criminal characteristics (Wu & Chan, 

2018b): This application described how our proposed approach has been 
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used to assist police officers to analyze crime data. The pattern discovery 

and grouping experiment on a large set of a publicly available London 

crime data set yields some important relationships among crime types and 

groups of contiguous clusters of adjacent unit postcodes in the United 

Kingdom. From identified spatio-temporal patterns, some interesting 

phenomena, such as different levels of occurrences of some crime types 

strongly correlated across regions, are highlighted. These useful findings, 

including vehicle-related thefts increased in the City of London while 

sexual offenses declined, correspond to the national statistics report 

published by the government department. Such findings show the 

usefulness and effectiveness of the proposed method in revealing subtle 

crime patterns for the suggestion of police force working closely with 

partners in these areas with enforcement actions. 

6.2 Future Work 

There are several promising directions for our future work in developing 

effective methods for different components of spatial trajectory and MSTS data 

analysis. The future development of the individual components is listed below. 

In spatial trajectory, if a moving object can be labeled as a good or bad 

object per their properties, what is the characteristic of the movement of them? 

This can be answered by analyzing the interesting patterns of multiple good 

objects. One of the current trends in computational movement data analysis is to 

relate the movement to its embedding context (Laube, 2014; Long, Weibel, 

Dodge & Laube, 2018). In this direction, we can extend the feature matrix to 

model also the embedding context for context-aware pattern mining for selected 
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application problems. 

After showing our techniques perform better than other techniques, we 

can explain why our techniques work better in order to explore the theoretical 

analysis of our techniques. It is anticipated that the next step is to generate 

models and knowledge for further exploration of the new data type if we get 

more insights into why our techniques perform well. 

Another direction is to generalize for other comparable techniques to 

handle more forms of spatio-temporal data, such as multimedia spatio-temporal 

data stream, in particular, to generate the feature matrix structure that can 

effectively and efficiently represent and retrieve the data without losing too much 

of information from the raw data for further analysis. 
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