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I 

Abstract 

In future smart grid, electric vehicles (EVs) would play a vital role to reduce 

air pollution and carbon emissions caused by conventional transportations while 

EV batteries could contribute to the power system dispatch as distributed energy 

storage devices. However, large-scale uncoordinated EV charging would bring 

challenges and difficulties to the control and operation of a power system due to 

the rapid growth of charging load demand, additional energy losses, deterioration 

of power quality, decrease of power grid economic efficiency, etc.  

Considering the infrastructure development of EV charging stations (CSes) as 

one of the key factors to the widespread use of EVs, this thesis conducts studies 

from the aspects of the planning and operation of EV CSes to meet the rapidly 

growing charging demand of EVs and eliminate any potential threats as a result. 

Because EV load prediction is the precondition of the planning and operation of 

CSes and distribution system (DS), the forecast methodology of EV demand is 

also one of the concerns of this thesis.  

The forecasting of EV load can be divided into long-term forecast and short-

term forecast according to the time duration. For the long-term prediction, grey 

system forecasting theory model and nonlinear autoregressive (NAR) neural 

network model are firstly utilized in this thesis to forecast the annual growth in the 

number of EVs including electric buses (EBs) and non-EBs (including private 

electric cars, electric taxis, etc.). The effectiveness, rationality, precision and 

adaptability of the two models are evaluated and compared. Simulation results 

show that the NAR neutral network model has a better performance in long-term 

forecasting of EVs than the grey system forecasting model. Moreover, the deep 

belief network (DBN) method is firstly applied for accurate EV demand 

forecasting, the effectiveness of which is proved by comparing with other typical 
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algorithms. For short-term forecasting, EV charging load is difficult to forecast 

accurately due to the non-stationary feature of traffic flow (TF) and erratic nature 

of charging procedures. In this thesis, TF is predicted by a novel deep learning 

based convolutional neural network (CNN) approach, and the model and data 

uncertainties are evaluated to formulate the prediction intervals (PIs). EVs’ arrival 

rate is calculated based on the historical data and the proposed mixture model, and 

the EV charging process is studied by a novel probabilistic queuing model 

considering charging service limitations and drivers’ behaviors. The proposed 

methods are assessed by using real TF data and the results demonstrate that the 

errors of the proposed method are reduced by about 30% compared to other 

widely-used approaches, and the probabilistic forecasting approach has better 

reliability and sharpness indices than other methods, which leads to high potential 

for practical use. 

According to the forecasting results, sufficient number of CSes should then be 

planned to meet the future charging demand of EVs while new feeders in the DS 

should be timely constructed to provide the required supply to the CSes. It is a 

common assumption in the present work that the CS planning and power system 

planning are managed by a single entity to carry out centrally, which is quite 

contrary to the reality. In fact, in the deregulated environment, DS and EV CS 

owners / operators are independent market participants and responsible for their 

own planning with different or even conflicting interests and objectives. Therefore, 

coordination of these interests and objectives is a critical and complicated problem 

for extensive integration of EVs in the liberalized market environment. In addition, 

the electricity market mechanism should be fully studied in the planning strategy 

making process. In this thesis, Nash bargaining theory is employed to formulate 

the cooperative planning for CSes and DS for the first time. A negotiated planning 

model of CSes and DS is established to achieve the most fair and Pareto-efficient 

payoff allocation for the two independent participants. Additionally, a novel 

locational marginal price (LMP) model to alleviate DS congestions with 
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consideration of schedulable EV charging and flexible demands is proposed to 

model the real market environment while the deep belief network (DBN) method 

is firstly applied for the accurate forecasting of TF. Simulation results of a 38-node 

DS with high penetration of EVs and flexible demands have demonstrated that the 

realistic negotiated planning process and the consideration of DS market 

mechanism would improve the DS gain payoffs by 8.21% than those in the 

centralized plan, and the payoff gap between DS and CS is also reduced by 10.73%, 

which would boost the planning enthusiasm and lead to a more fair planning 

solution. 

Once CSes are constructed, the operation of CSes should be investigated to 

ensure the high efficiency and reliability of CSes and DS. In this thesis, the 

application potential of EVs in CSes are accounted in the electric power dispatch, 

especially with several conflicting and competing objectives such as providing 

vehicle-to-grid (V2G) service and coordinating with wind power. Further, to solve 

this firstly proposed highly constrained multi-objective optimization problem 

(MOOP) with the consideration of uncertainties of EVs and wind power, a 

decomposition based multiple group search optimization (MGSO/D) is proposed 

to efficiently reduce the computational complexity and innovatively incorporate 

the producer-scrounger model to effectively improve the diversity and spanning of 

the Pareto-optimal front (PF) while uncertainties are accounted by the estimation 

error punishment. The performance of MGSO/D and the effectiveness of the 

uncertainty model are investigated using the IEEE 30-bus and 118-bus system with 

wind farms and CSes. Four indices, namely convergence metric, span metric, 

spacing metric and lmax/lmin metric, are utilized to measure the solution quality 

of MGSO/D and other three well-established Pareto heuristic methods. The PF 

solutions obtained by the proposed MGSO/D in both small-size and large-scale 

cases show its superiority over other three algorithms on all 4 indices and 

demonstrate that it can propagate the search to obtain the uniformly distributed and 

diverse PF more effectively. 
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Furthermore, a battery schedule framework is studied in this thesis to dispatch 

batteries between battery charging stations (BCS) and battery-swapping station 

(BSS) efficiently. Compared with the battery-swapping technology, fast charging 

technology has disadvantages that it takes a relatively long time and shortens the 

battery life much faster. The EV battery-swapping technology is a promising 

method to avoid the inconvenience of fast charging because of its flexibility. In 

this thesis, to improve the effectiveness of battery dispatch between BCS and BSS, 

an original two-direction battery dispatch mechanism to reduce the transportation 

cost are established and solved by the particle swarm optimization algorithm (PSO) 

method. The simulation results demonstrate that the optimized battery travel 

distance is reduced about 50% compared with the random travel. Moreover, 

considering the serving ability limitations, the K-means clustering algorithm is 

innovatively utilized to pre-partition the BCS and BSS to make the battery dispatch 

more efficient for the large-scale system, and the simulation results confirm the 

travel distance could be further shortened up to 15% by the pre-partition method. 
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Chapter I 

Introduction 

1.1 Background and Literature Review 

Worsening global environmental problems have accelerated the development 

of electric vehicles (EVs). The widespread use of EVs will reduce vehicular fossil 

fuel consumption and contribute to environmental sustainability [1]. It has been 

estimated by the Electric Power Research Institution that EVs could reduce 

energy-related greenhouse gas (GHG) emissions approximately 163–612 million 

metric tons per year by 2050 [11]. Currently, several countries [2-4] have actively 

promoted the development of the EV industry, and various EV models are being 

rolled out to the market by auto manufacturers [5]. From 2009 to 2016, the global 

sales of EVs reached approximately two million [8]. It is predicted by the 

International Energy Agency (IEA) that global EV sales could reach five million 

per year by 2020, and the EV industry could obtain 50% of the automobile market 

share by 2050 [9]. The growing EV population has required massive investments 

in charging facilities in recent years. For example, in China, 4.8 million distributed 

charging piles and more than 12,000 fast charging stations (FCSes) are planned 

for construction by 2020 [10-11]. 

The rapid development of EVs brings new opportunities and challenges for the 

power system. EVs could benefit the power system dispatch if EV batteries could 

be utilized as distributed energy storage devices. For instance, casual charging 

could be shifted to a valley load period to relieve the peak generation [19]. Due to 

advances in V2G technologies [91-92], EV batteries now have more flexibility that 

can allow them to provide contributions to the operation of the system. As 

presented in [92], EVs with V2G can be utilized as portable power plants to 
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improve the reliability as well as reserves of power systems, and decrease system 

dependencies on expensive units. In [93] a joint optimization model for generators 

and EVs with V2G modes is developed to demonstrate the potential for EVs to 

participate in power dispatch. Furthermore, the integration of renewable energy 

with EV charging stations (CSes) has become a recent hot research topic. In [12], 

it is demonstrated that coordinated EV charging can promote the integration of 

photovoltaic power plants. Voltage rise problems caused by photovoltaic power 

plants could also be alleviated by coordinated EV charging [13]. A virtual power 

plant composed of a wind power plant and a fleet of EVs is proposed in [14], and 

the profit of this virtual plant could be maximized by dispatching the output power 

of the virtual plant and the energy storage of EVs. 

Alternately, uncoordinated charging of a large amount of EVs would have 

significant adverse impacts on the secure and economically feasible operation of 

power systems [15], and reduce the widespread use of EVs. Harmonic currents 

generated by EV charging loads could harm the stable operation of substations 

[16], and harmonic voltages that result from EV charging would be problematic 

for the stable operation of distribution systems [17]. Due to the uncertain nature of 

EV charging behavior, power losses and voltage deviations brought on by a high 

penetration of EVs are also the concerns of system operators, and these issues need 

to be properly addressed to mitigate their negative impacts [89]. In addition, 

inconveniences associated with EV charging are another problem that significantly 

limits the popularization of EVs. Long charging times and the lack of charging 

facilities significantly reduce consumers’ willingness to purchase EVs [19] [45]. 

The development of CSes is one of the critical factors needed to accelerate the 

industrialization and large-scale development of EVs. So far, a majority of the 

attention of the researchers has been placed on how to eliminate the threats caused 

by EVs and to promote the adoption of EVs by improving the planning and 

operation of EV CSes. Moreover, because accurate forecasts of EV charging loads 

are essential for the planning and operation of charging facilities [18-19], the 
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forecasting of EV charging loads has attracted much attention as well. The current 

state of the research regarding EV demand forecasting, planning and operation of 

CSes is summarized as follows. 

(1) For long-term forecasting of EV load, parametric technologies such as the 

autoregressive integrated moving average (ARIMA) [173] are commonly used 

to forecast the number of EVs while nonparametric methods such as artificial 

neural networks (ANN) [38] and support vector regression (SVR) [174] are 

also widely used. For short-term EV load forecasting, historical data is often 

used in existing literature [25-26]. In [25], an EV sales forecasting model is 

established and it was based on consumer preferences in EVs that were 

extracted from historical data. Then, a daily EV load curve is forecasted based 

on EV charging behaviors. In [26], EV loads are forecasted in terms of the 

number of EVs connected to the power grid using historical data from the 

National Renewable Energy Laboratory and the Idaho National Laboratory. 

Meanwhile driving behavior needs to be considered in the EV load forecasting 

process [25-29] to account for the EV mobility characteristics. A queuing 

theory based on an EV charging demand stochastic model is proposed in [26], 

and a more accurate forecast result is obtained using real-time data and proper 

analysis of uncertainties. The number of EVs using charging facilities during 

different hours, charging start time, travel distance, and the charging duration 

are considered for the study of load demand forecasting for battery-swap 

stations in [27]. The half-hourly V2G capacity is estimated using dynamic real-

time EV scheduling based on an accurate EV load model that considers 

constraints on meeting demand while ensuring EV charging ability in [28]. 

Due to the stochastic nature of EV charging behavior, the Monte Carlo 

simulation is frequently utilized for forecasting EV demand [29]. 

(2) Due to the ever-increasing penetration of EVs, adequate charging facilities and 

a charging distribution system needs to be coordinately planned and developed 

to support the successful deployment of charging scheduling and cooperative 
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control. However, research regarding coordinated planning of charging 

facilities and charging DS is still in the early stages with the focus currently 

primarily on the planning of CSes [45-52]. In [45], a multi-objective model is 

developed for rapid CS planning that considered traffic constraints in the 

planning schedule. A two-step screening method with a service radius for EV 

CSes and environmental factors is proposed in [46] to identify CS sites. In [47], 

a probabilistic method is proposed to optimize the locations and capacities of 

EV parking lots that considered uncertain parameters in EV owner driving 

patterns. In [45] and [48], a data envelopment analysis of CS planning is 

utilized to evaluate different objectives and obtain the size and location of CSes. 

CS planning methods in urban areas and around freeways are studied in [49] 

and [50], respectively. Customer behavior, such as charging preferences and 

demand response, is another important factor that influences CS planning 

results, and these were discussed in [51] and [52]. The existing power grid 

without additional investments will limit the integration of a large number of 

EVs in the future [53-55]. Environmental considerations are considered in an 

analysis of the potential for the system to support a large amount of EV 

charging, and it is found that the reliability of a power grid would be 

jeopardized if EV penetration is high [53-54]. Emissions and system costs are 

assessed by distribution system operators (DSOs) to accommodate a high 

penetration of EVs in [55]. However, studies regarding power system planning 

to accommodate the fast growing use of EVs are relatively sparse [56-59]. It is 

concluded in [56] that the transmission capacity would need to be properly 

expanded to accommodate high EV electricity consumption. A scenario-based 

planning approach for DS that considers the uncertainties of EV penetration is 

presented in [57], and it indicates that coordinated charging would defer DS 

planning and improve investment efficiency. Co-planning of charging 

facilities and the power system has also been proved effective in 

accommodating EV integration [58-59]. A load density method to determine 
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the optimal capacity of CSes is proposed in [58], and the DSs and CSes are co-

planned to minimize the overall cost of investment, operation, and 

maintenance. A collaborative planning model for DS and CSes to minimize 

the cost of investment and energy losses while maximizing charging service 

abilities is developed in [59]. 

(3) In addition to the issue of CS planning, the optimized operation of CSes is also 

critical to guarantee the efficiency, stability, and reliability of CSes and the DS. 

So far researchers have devoted large amount of effort to EV charging demand 

management. EV demand response to the load shift in a smart grid is presented 

in [60]. A layered and distributed charging load dispatch mechanism for large 

populations of EVs, is proposed in [61] to directly reduce generation cost. In 

[98], an optimal economic dispatch model for EVs and wind power based on 

an enhanced particle swarm optimization algorithm (PSO) that considers 

uncertainties is proposed. A summary of the existing dynamic approaches for 

static EV charging and their suitability is addressed in [62]. In [63], a 

distributed EV charging control method based on energy demand forecasting 

is developed to smooth the daily grid load profile while satisfying the charging 

demand of EVs. A novel cooperative charging strategy for a smart charging 

station is proposed in [64]. In [65], two queueing-based optimization 

frameworks are proposed for CSes to maximize system revenue. The demand-

side management of plug-in hybrid EV charging at low-voltage transformers 

in a smart grid is studied in [66]. Optimization models were proposed in [67-

68] to maximize the unilateral payoffs of the distribution system and EV 

owners. In addition, future smart grids will have high penetration of REs due 

to their advantages in reducing the pollution of conventional generators [94]. 

Coordinated dispatch of EVs and REs shall therefore be investigated. In [70], 

cooperative dispatch with renewable generation (RE) has been investigated 

extensively to promote the integration of EVs in modern smart grid. While cost 
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reduction is frequently discussed for power grid with both EVs and REs [95], 

it is often considered together with reduction of emissions [96]. 

(4) Different from FCSes, BSSes provide a battery swapping service for EV 

owners instead of battery charging. Compared to fast charging technology, the 

battery-swapping technology has the advantage that it reduces the service time 

and the battery transportation cost. The battery swapping method is promising 

because it may overcome the difficulties of long charging time and the lack of 

charging facilities, thereby achieving the high EV charging efficiency [71]. 

Moreover, BSSes have shown better performance for smoothing the load 

profile than FCSes due to their flexible battery charging characteristics [72]. 

Research on the optimal operation of BSSes has begun in recent years. A 

charging power dispatch model is established in [73] to reduce fluctuations and 

peak-valley differences in load demand in the distribution system. A two-stage 

optimal charging model with the objectives of charging cost minimization and 

charging power smoothing is studied in [74] that considered bus running 

operation and battery discharging characteristics. Unit commitment and 

economic dispatch problems of the smart grid with BSSes are investigated in 

[75] and [76]. 

1.2 Incentives of Thesis 

To eliminate any negative impacts caused by EVs and increase the penetration 

of EVs, infrastructure development of EV CSes is a critical factor. Many studies 

have investigated the planning and operation of CSes. Moreover, the forecasting 

of EV charging loads is a precondition for the planning and operation of CSes. 

Therefore, this thesis focuses on accurate forecasting of EV charging demands 

(long-term and short-term), and the cooperative planning and multi-objective 

operation of CSes to overcome the following difficulties currently faced to 

promote the wide adoption of EVs. 
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1) The grey system forecasting theory has been used for population forecasting 

[20] and power system load forecasting [21]. Also, the nonlinear autoregressive 

(NAR) neutral network has been used in the establishment of the aquaculture water 

nitrite prediction model and for the classification and prediction of audience rating 

[22-24]. Both of them are effective long-term forecasting methods, but they have 

never been applied to forecast growth in the number of EVs. Therefore, it is the 

first incentive of this thesis to first apply and benchmark those two models to 

forecast the annual growth in the number of EVs using history data. 

2) It is a common practice to obtain the EV numbers in the CS indirectly from 

the traffic flow (TF) information [18][59][113][131]. Therefore, the accurate 

forecast of TF at the candidate CS locations is the first and important step for the 

planning and operation of CS and DS. Generally, this forecast could be influenced 

by different factors such as charging infrastructure, socioeconomic level and the 

government policy, many of which are not easy to be quantified. Multilayer neural 

network (NN) solves problems in a way similar to the human brain and is quite 

efficient in dealing with incomplete ambiguous data without strong regularity 

[156]. It is thus well suited for complicated forecasting problems. However, it is 

difficult to optimize the weights (neurons) in most kinds of multilayer NNs and 

limits their forecasting performance. If the initial weights are too large, only poor 

local minima could be found. If the initial weights are too small, the gradients in 

the early layers are tiny when training with back propagation (BP), making it 

infeasible to obtain the optimal weights in the multilayer NNs [156]. In comparison, 

the core characteristics of the proposed deep belief network (DBN) method lies in 

that the composition of visible and hidden layers results in a fast-unsupervised 

process by pre-training a multilayer NN, thus the neurons in the hidden layer could 

be efficiently optimized to recognize different TF characteristics. Then, the 

supervised fine-tuning is utilized to adjust the learned features for better prediction. 

Therefore, the second incentive is applied DBN to predict TF in the CS 

construction planning horizon. 
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3) Queuing theory [30] is an effective approach for studying aggregated EV 

charging behaviors, and it accounts for various uncertainties in the EV charging 

process. The V2G capacity for regulation was estimated using the queuing theory 

in [31]. Charging demand can also be forecasted based on the queuing model [28], 

[32-33]. However, the proper application of queuing theory needs to consider EV 

mobility and aggregative characteristics, and this has rarely been done. Traffic 

flow (TF) theory [34] is a promising method to solve this problem, and its use has 

rapidly progressed in recent years. The spatial and temporal dynamics of EV 

charging loads in a highway charging station (CS) was studied in [35] using 

queuing theory and the TF model. The arrival rate was estimated using the TF 

model in [36], and the CS capacity was obtained using the forecasted arrival rate 

and proposed queuing model. There are a large number of TF forecasting studies 

due to the rapid development of smart traffic technologies. Parametric 

technologies, such as the autoregressive integrated moving average [26] and other 

time-series methods [37], have been often used for TF predictions. Nonparametric 

methods, such as artificial neural networks (ANN) [38] and the support vector 

machine (SVM) [39], have also been widely used due to their excellent ability to 

present TF stochastic characteristics [40]. However, the complicated nonlinear 

features of TF data cannot be fully extracted using these methods. Therefore, this 

problem inspires the application of deep learning methods for TF forecasting due 

to their good performance for discovering various structures in traffic data [41-44]. 

Deep learning methods, such as stacked autoencoders (SAE) [41-42] and the deep 

belief network [43-44], can represent the inner features of TF without any prior 

knowledge, and they have superior performance for TF predictions. However, 

there are two major disadvantages of the existing deep learning-based forecasting 

methods. First, the performance of the proposed approaches is still not satisfactory. 

Second, the charging procedures that are needed to utilize the proposed approaches 

to solve EV load forecasting problems are not well considered. Consequently, the 

third incentive for this thesis is to address a novel deep learning based 
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convolutional neural network approach to reveal the low-dimensional and 

nonlinear structure of TFs and achieve a higher forecasting performance. The 

incorporated behavior considered queuing models will simulate charging 

procedures properly. 

4) In the deregulated environment, DS and EV CS owners are independent 

market participants and responsible for DS and CS planning with different or even 

conflicting interests and objectives. However, most current studies [45-59] assume 

that charging facility planning and power system planning are managed by a single 

entity and carried out in a centralized manner, which is not really the case in 

practice. In fact, coordination of these interests and objectives is a critical and 

complicated problem for extensive integration of EVs in a liberalized market 

environment. Additionally, the electricity market mechanism needs to be taken 

into consideration in the planning process. Unfortunately, so far, this is still absent 

from many systematic investigations. Nash bargaining, which assumes that game 

players bargain directly with each other to come to binding agreements [77], is 

innovatively utilized in this work to analyze the agreement binding process to 

determine the planning schedules of CSes and DSs. Nash bargaining theory has 

been applied for solving transmission investment cost sharing [77-80] and 

transmission cost allocation [81-83] problems. Different from non-cooperative 

games [85], Nash bargaining focuses on the payoff allocation and is very suitable 

for CS and DS co-planning in a deregulated market environment. As the fourth 

incentive of this thesis, Nash bargaining is first applied to formulate cooperative 

planning for CSes and DSs, then a novel locational marginal price (LMP) model 

to alleviate DS congestion that considers schedulable EV charging and flexible 

demands in order to represent real market conditions. 

5) Owing to the variety of system participants and complexity of system 

operation, power dispatch involved in both REs and EVs in CSes should be 

beneficial to model as MOOPs, and the uncertainties of REs and EVs in CSes 

should be properly handled. However, research that has considered those aspects 
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is rare. Optimal dispatch models that accounted for the uncertainties in both REs 

and EVs were formulated in [19] and [98], but not solved in a multi-objective 

manner. A microgrid operation scheduling framework with EVs and REs was 

proposed and solved using a mixed integer linear programming (MILP) based 

multi-objective optimization (MOO) method in [99], but the uncertainties of REs 

and EVs were not mentioned. However, there are many barriers to applying the 

Pareto optimization algorithms into MOOP with REs and EVs. The use of a 

weighted sum is a common approach [100], but many trials are claimed by 

adjusting the weights, and this is not efficient for obtaining non-convex Pareto-

optimal front (PFs). The Pareto-based MOO algorithms, such as the non-

dominated sorting genetic algorithm-II (NSGA-II) [101] and the strength 

evolutionary algorithm (SPEA) [102], have been utilized in two-objective MOOPs 

to achieve the compromise between fuel costs and air pollutant emissions. A two-

objective MOOP that considered the uncertainties of REs and PHEVs was solved 

using NSGA-II in [103]. Nevertheless, the broadening of these algorithms to adapt 

to more optimization objectives for EVs in CSes and REs is still insufficient. 

Therefore, there is a need to set up an innovative multi-objective dispatch model 

that considers the uncertainties of EVs and wind power, and there is a need to 

efficiently solve the highly constrained MOOPs with large dimension objectives 

using advanced algorithms. Group search optimization (GSO) is a recently 

proposed algorithm based on the producer-scrounger model inspired by animal 

searching behavior [104]. It was improved to become a multi-objective GSO 

algorithm (MGSO) in [105] for large-scale MOOPs that shows superiority in 

convergence and span metrics compared with NSGA-II and SPEA-II. Another up-

to-date widely used algorithm is the multi-objective evolutionary algorithm (EA) 

based on decomposition (MOEA/D) that combines the advantages of weighted 

sum methods and EAs. It has been shown that MOEA/D performed better than 

NSGA-II in many benchmark problems [106]. Therefore, the fifth incentive of the 

thesis is to propose a complicated MOOP that considers the uncertainties of EVs 
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in CSes and REs and solves this using a novel MGSO/D inspired by the merits of 

the producer-scrounger model and decomposition. 

6) Although some progress has been obtained in the research of BSS, in-depth 

studies of BSS operation are rather underdeveloped [72-75]. Most existing 

research treats BSS as a special kind of load and ignores its difference from 

common loads. Since the battery charging process occurs separately from the 

vehicle in the battery swapping mode, the battery swapping charging network is 

usually consisted of BSS and battery charging stations (BCS) independently. In 

this mode, the logistics between BSS and BCS becomes an urgent problem to solve 

to ensure the economic and safe operation of a battery swapping charging network. 

However, studies regarding battery transportation between BCS and BSS are 

insufficient. The last incentive for this thesis is to propose an original two-direction 

battery dispatch mechanism between BSSes and BCSes to reduce the 

transportation cost based on the K-means clustering algorithm. 

1.3 Primary Contributions 

1) Two promising forecasting approaches based on grey system forecasting 

and the NAR neutral network respectively are first used to establish the forecasting 

models for the annual growth of EV number in the future. Their effectiveness is 

fully evaluated and simulation results show a better performance of the NAR 

neutral network model in long-term forecasting of EVs than the grey system 

forecasting model. 

2) DBN method is first applied for accurate forecast of TF in the CS 

construction planning horizon. And its superior effectiveness is confirmed by 

comparing with other typical long-term forecasting algorithms. 

3) A comprehensive ensemble method is developed to address the complicated 

EV load forecasting problems. First, TF is forecasted using an original deep-

learning based convolutional neural network (CNN) method in which an ensemble 
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approach that considers both model and data uncertainty is employed to effectively 

formulate TF prediction intervals (PIs). Therefore, the complicated nonlinear 

features of TF are learned more effectively, and superior forecasting performance 

is obtained. Second, a mixture model-based method is used to approximate the 

arrival rate of EVs according to the historical data. Third, an advanced MMCK 

queuing model is formulated for the first time to predict the EV charging load in 

the CSes, which accounts for CS service limitations and the inherent randomness 

of EV driver behaviors. The proposed probabilistic forecasting methods are 

assessed using real TF data, and case study results show that uncertainties in the 

EV charging load can be learned comprehensively using the proposed methods. 

Compared with other widely-used approaches, the proposed approach resulted in 

better reliability and sharpness indices, giving it a high potential for practical 

utilization. 

4) A cooperative game-theory (Nash bargaining) based planning model is 

proposed to reflect a more realistic process of DS and CS planning to reach a 

negotiated solution for profit sharing, cost recovery, and nondiscriminatory 

benefits. This approach is based on an efficient deep belief network (DBN) method 

for forecasting the future growth of EV demand. The use of Nash bargaining 

theory is more accurate than simply assuming this system is managed by a single 

utility. Then, a novel DS-based locational marginal price (LMP) model capable of 

alleviating congestion and promoting responses in EV charging is modeled to 

simulate a deregulated market environment. Simulation results show that the 

proposed model can obtain a fair planning solution and boost planning enthusiasm, 

and is proved for its immediate and far-reaching significance to promote the 

development of CSes and EVs. 

5) The complicated MOOP considering uncertainties of EVs and REs is 

proposed for the first time and solved using a novel MGSO/D inspired by the 

merits of the producer-scrounger model and decomposition. The MGSO/D 

explicitly decomposes the MOOP into several scalar subproblems that leads the 
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proposed algorithm to lower computational complexity at each generation. Then, 

the subproblem is optimized based on the innovatively incorporated producer-

scrounger model that only uses information from its several adjacent subproblems. 

Therefore, the resulting PFs would have better diversity and spanning metrics than 

other well-established evolutionary algorithms. Furthermore, the cost functions of 

wind generators and V2G power supplies of EVs are derived according to the 

probability distributions to study the probabilistic behaviors of REs and EVs. Case 

studies have illustrated that these uncertainties have significant impacts on 

simulation results, and MGSO/D has a superior solution searching ability to solve 

high-dimensional MOOPs with complex constraints and objectives. This 

demonstrates its large potential to accommodate similar problem characteristics. 

6) A bi-direction battery dispatch between the BCS and BSS models is 

proposed to reduce battery transportation costs, and the K-means clustering 

algorithm is innovatively utilized to pre-partition the BCS and BSS to make the 

battery dispatch more efficient in a large-scale system that considers serving ability 

limitations. The feasibility and efficiency of the proposed model is demonstrated 

in an urban battery logistics case. The results show that compared with random 

transportation, optimal dispatch of EV batteries is feasible and efficiently reduces 

battery transportation costs, which will contribute to the development of battery 

swapping technologies and the wide application of EVs in the future. 
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1.4 Thesis Layout 

The forecasting of 

EV load (Chapter 

II)

A comparison study on EV growth 

forecasting based on grey system 

theory and NAR neural network; 

Accurate TF forecasting based on 

DBN method

Long-term 

forecast

Short-term 

forecast

The cooperative 

planning of EV 

CSs (Chapter III)

A deep learning based approach for 

probabilistic forecasting of EV 

charging load

Negotiated planning of distribution 

system and EV CSs in deregulated 

electricity markets

The multi-

objective 

operation EV CSs 

(Chapter IV&V)

Multiple group search optimization 

based on decomposition for multi-

objective dispatch with EV and 

wind power uncertainties

Optimal dispatch of EV batteries 

between battery swapping stations 

and CSs

Conclusion and Suggestions for Further Research (Chapter VI)

Introduction (Chapter I)

 

Fig. 1.1 Illustration of overall organizational structure of the thesis 

The rest of this thesis consists of five chapters. Chapter II first presents a 

comparison study on EV growth forecasting based on the grey system theory and 

the NAR neural network. Second, DBN method is applied to the accurate TF 

forecasting. Then, a deep learning-based approach for probabilistic forecasting of 

EV charging load is proposed. Chapter III outlines a negotiated planning approach 

for a distribution system and EV charging stations in a deregulated electricity 

market. Chapter IV presents an improved multiple group search optimization 

method based on decomposition for multi-objective dispatch that considers 
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electric vehicle and wind power uncertainties. Chapter V investigates the optimal 

dispatch of electrical vehicle batteries between battery swapping stations and 

charging stations. Finally, the conclusions of the thesis are discussed in Chapter 

VI with suggestions for future work. The overall organization of this thesis is 

shown in Fig. 1.1. 
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Chapter II 

Probabilistic Forecasting of Electric Vehicle Charging 

Load 

2.1  Introduction 

Accurate forecasting of EV charging demand is important for the unit 

commitment (UC), economic dispatch, optimal power flow (OPF) and electric 

power market transaction in power systems. Furthermore, EV demand forecasting 

is the precondition for the planning and operation of CSes. It is therefore necessary 

to establish an efficient method for the forecasting of EV load by establishing 

reasonable models. 

According to the time duration, the forecasting of EV charging load can be 

divided into long-term forecast and short-term forecast. Grey system forecasting 

theory and NAR neutral network are methodologies for long-term forecasting [20-

24] which can be applied for EV charging demand forecasting. In this chapter, they 

are explored to establish two separate models to forecast the annual growth in the 

number of EVs from the history data. Their rationality, effectiveness, precision 

and adaptability are evaluated and compared. Moreover, DBN method is 

innovatively applied for accurate TF forecasting in the CS construction planning 

horizon. And its effectiveness is compared with other typical long-term forecasting 

algorithms. 

For short-term forecasting, due to the non-stationary feature of traffic flow (TF) 

and erratic nature of charging procedures, it is hard to forecast the EV charging 

load accurately. In this chapter, a deep learning based approach for probabilistic 
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forecasting of EV charging load is proposed. In this forecast model both the driver 

behaviors and FCS service would be considered, and the EV charging load in the 

FCSes are predicted with the following steps. The first step is to predict TF by a 

novel deep-learning based CNN method. Then the TF PIs are formulated by 

evaluating the model and data uncertainties. EV arrival rates are calculated based 

on historical data and the proposed mixture model. The EV charging process is 

studied using a novel probabilistic queuing model that takes into consideration 

charging service limitations and driver behaviors. At last, a novel probabilistic 

queuing model is proposed to predict the EV charging load in the CSes . 

2.2  Long-term Forecasting Models 

2.2.1  Grey System Forecasting Theory Based Model 

EV number growth data are complicated, orderly and have overall 

functionality. Grey system forecasting theory tries to find inherent laws in the 

seemingly disorganized data. Grey forecasting theory firstly distinguishes 

differences in trends of factors, and then finds hidden laws in history data in certain 

time horizon after processing the data. After that, grey system theory generates 

data sequence with regularity and forecasts the trend of data by setting up several 

differential equations. 

GM (1, 1) is the most widely used grey model, which is a first-order differential 

model to forecast one variable. The mathematical model of GM (1, 1) is as follows 

[107]: 

1) The general form of GM (1, 1) 

A time series is used to reflect the character of the prediction object to structure 

the GM (1, 1) model, which forecasts the features at a specific time in the future 

or the time when a feature increases to a certain value. In general, the raw time 

series   can be written as follows: 

                                (2.1) 

(0)
Xi

(0) (0) (0) (0)

1 2{ } 1,2,3=Xi nx x x i = , ,n
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At first,   is generated by first-order accumulation and eliminating the 

randomness and volatility of the data: 

                              (2.2) 

Among them, 

                                                 (2.3) 

The first-order differential is 
(1)

(1)dx
ax

dt
+ =                                              (2.4) 

2) Identification algorithm  

Let grey number parameter series be , ,  can be solved by the 

least square method: 

                                            (2.5) 

In the equation, B is the matrix after processing and Yn is a data column. 

                                  (2.6) 

                                     (2.7) 

The GM (1,1) model are as above.  

The results of the GM (1, 1) model, the predicted value are: 

                                   (2.8) 

or 

                                 (2.9) 

3) The transformation of the predicted value 

The result of the GM (1, 1) model is the first-order cumulative result. To obtain 

the result on the time k {n+1, n+2,…},  in the GM (1,1) model should be 

transformed to  as follows: 
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                                       (2.10) 

2.2.2  Nonlinear Autoregressive Neural Network Based Model 

NAR neural network theory model could be defined as:  

                               (2.11) 

In the formula, x is the input data; y is the output data; n is a time series; f is a 

nonlinear function. 

In the model, although these data are the factors influencing the predictable 

number of electric vehicles, there are default input data, such as socio-economic 

level, charging infrastructure, policies and regulations, which cannot be quantified. 

Therefore, the history output is taken as the input data, and the model is constructed 

as follows: 

                                (2.12) 

where k is the autoregressive order, which is a constant and εn is a random variable 

following a Gaussian distribution.  

The output of each y in the NAR model will be the input data in the next 

calculation as the adjustment parameters for the next output, completing the 

adjustment of the neural network [22]. 

In the neural network training for the model, a neural network is firstly created, 

then the autoregressive order k should be set. Input sequence is ,

. And the target output is , . For each input sample, 

the network output and the target output comparison algorithm will automatically 

adjust the network parameters to minimize the mean square error. In MATLAB 

implementation, fitness function is used to construct the network. 

Next, network parameters of NAR neural network should be determined. NAR 

neural network is mainly composed of input layer, output layer and hidden layer. 

Because the model sample of our prediction model has only one output variable, 

the number of neurons in the output layer is set to 1. The order of auto-regression 

and the number of the hidden layer neurons are determined by a variety of factors. 
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At present, there is no mature theoretical basis. The most reasonable approach is 

selecting a reasonable set of parameters to test in a number of comparative ways, 

and deciding the final parameters according to the test results. 

2.2.3  Performance Criterions of Grey System Forecasting Theory Based Model 

and NAR Neural Network Theory Based Model 

The performance of the proposed approach could be comprehensively assessed 

via different indices. 

1) Residual error: This index is the difference value between the actual value 

and the forecasted value 

                                               (2.13) 

where the ek is the residual error, while Xk and  is the actual value and the 

forecasted value, respectively. 

2) Relative error: The relative error could be stated as    

                                   (2.14) 

3) The mean value of the residual error: 

                                             (2.15) 

4) The mean value of the original data: 

                                             (2.16) 

5) The standard deviation of the original data: 

                                        (2.17) 

6) The standard deviation of the residual error: 

                                        (2.18) 

7) Rariance ratio： 

                                               (2.19) 
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2.2.4  Deep Belief Network Based Forecasting 

 
Fig. 2.1 The DBN framework for EV growth forecasting 

DBN consists of restricted Boltzmann machines (RBMs) layer by layer for pre-

learning and a logistic regression layer for prediction, as shown in Fig. 2.1. The 

historic EV data is the input and firstly trained by the stacked RBMs in an 

unsupervised way. The purpose of each RBM is to extract a probability distribution 

P(v, h) from visible layer vi to hidden layer hj to learn the unobservable patterns in 

the training data, which could be obtained by solving the following optimization 

according to the Bayesian theory [124]. 

( , )max log ( , ) log( / )E v h

v S v S

P v h e Z−

 

=                          (2.20) 

where S is the training data; Z is the partition function for normalization; and E(v, 

h) is the energy function assigned to the state of the network: 

,

1 1 1 1

( , )
v h v hn n n n

i i j j j j i i

i j i j

E v h a v b h h W v
= = = =

= − − −                        (2.21) 

in which ai and bj are the visible unit offset and the bias weight of the hidden unit, 

respectively, and Wj,i is the matrix of connection weights of visible and hidden 

units. The size of Wj,i is nv×nh.  All the parameters could be acquired during the 

solving process of (3.1) by stochastic gradient ascent algorithm [125]. The learning 

of RBMs works well even it is not exactly following the gradient of the log 

probability of the training TF data [157]. Besides, adding more layers always 

improves the lower bound on the log probability and ensures the weights are 

initialized correctly [123]. Therefore, the DBN is very effective to pre-train the 

hidden

..
.

..
.

...

Stacked RBM Predictor

visible visible visible

hidden hidden
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weights and makes it an efficient way to reveal low-dimensional, nonlinear 

structure of the TFs to achieve higher forecasting performance than other 

technologies. 

In the final stage of the whole network, the fine-tuning is utilized as the 

predictor to coordinate the parameters of the DBN, which could be solved by well-

known back propagation (BP) in a supervised manner [124]. As a summary, the 

flowchart of the proposed DBN method is shown in Fig. 2.2. 

Start

Establish the DBN network

Recognize the first RBM in the DBN

Obtain the units in the visible layers and hidden layers

Solving (3.1) by the gradient ascent algorithm
and update the parameters of the selected RBM

Generate the new RBM

All hidden layers updated?

NO

Coordinate the parameters of the DBN with BP

YES

TF forecast using DBN

Denormalization and output the forecast results

End

Input and normalize the training samples

Input and normalize 
the test samples  

Fig. 2.2 The flowchart of the proposed DBN framework for forecasting 

The purpose of implementing the DBN model is to predict the typical hourly 

TF in the planning horizon by studying the hourly TF data of the past few years 

and finding the patterns of TF variations. Meanwhile, the general growth trends of 

the previous years could be used to improve the DBN training results [158]. 

Therefore, the forecasting procedures are summarized as follows: 
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Step 1) Growth trends prediction: In this step, the average monthly TF of the 

coming year is forecasted by the past 3-year’s data by the proposed DBN method. 

Step 2) Hourly prediction: For each hour of the future typical day, the historical 

data of the past 3 years is trained by the DBN to obtain the daily TF patterns. 

Step 3) Ensemble: the hourly-predicted curve is modified by the growth trends 

obtained by the Step 1 according to the ensemble approach [159] to get the more 

accurate results. 

2.3  Deep Convolutional Neural Networks with PIs 

Due to the chaotic nature of TF, EV charging loads possess high volatility and 

variability. Therefore, a deep convolution neural network (DCNN) based 

comprehensive approach is proposed here to reduce the influence of uncertainties 

on charging demand accuracy. The prediction is a hybrid of wavelet 

decomposition (WT), DCNN, PI construction, and queuing-based charging 

demand forecasting. The raw TF data are first normalized and decomposed into 

couples of frequencies. DCNNs are then designed for each frequency and trained 

to predict the behavior of each frequency. Consequently, wavelet reconstruction 

and anti-normalization are used to synthesize prediction frequencies to obtain a 

deterministic point forecast of TF. PIs are formulated according to model and data 

uncertainties. Finally, charging load forecasting is conducted based on the 

proposed data estimation and queuing model. The flowchart of the DCNN 

implementation is shown in Fig. 2.3, and the details are elaborated below. 
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Frequency 2 Frequency JFrequency 1

...Frequency 1 Frequency 2 Frequency J

Establish a DCNN

Training the DCNN

Establish a DCNN

Training the DCNN

Establish a DCNN

Training the DCNN

Normalization and Wavelet Decomposition

Input the TF training samples

Wavelet Reconstruction 

Deterministic TF Forecasting

Anti-Normalization

Probabilistic TF Forecasting Considering Model and Data Uncertainties

Start

End

TF forecast using DCNN TF forecast using DCNN TF forecast using DCNN

Input the TF testing samples

Normalization and Wavelet Decomposition

Charging Load Forecasting based on Data Estimation and Queuing Model

 

Fig. 2.3 The flowchart of the DCNN implementation 

2.3.1  Convolutional Neural Network Layer 

CNN is a type of feed-forward artificial neural networks (ANN) that has gained 

popularity in face recognition and language processing applications. As shown in 

Fig. 2.4, a pair of convolution and pooling layers in succession is referred to as 1 

CNN layer [108]. It can be seen in Fig. 2.4 that either the convolution or the 

pooling layer consists of several maps, and each map has several neurons that share 

the same neuron kernel (also called weight). The data processed by the CNN are 

converted to 2-dimensional maps and gives a compact representation of a large set 

of hidden features. This ability makes CNN learn in an effective way to extract 

nonlinear structures in TF. 
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Fig. 2.4 Basic structure of a CNN layer 

 (1) Convolution Layer: The convolution layer handles small local receptive 

fields of input data in a sliding-map manner. At the current convolution layer l, the 

previous (l-1) layer’s feature maps are convolved with learnable kernels and 

passed through the activation function to form the output feature map before being 

transmitted to the pooling layer. This process is described in general as follows: 

                      1= ( )
j

l l l l

j i ij j

i M

f b−



 +y x k                                     (2.22) 

where y
l 

j  is the output of the jth map in layer l; 1l

i

−
x is the input of the ith map in 

layer l-1; Mj represents a selection of input maps;  denotes the convolutional 

operation; and kij and bj rep-resent the weight and bias of the corresponding 

convolutional layer, respectively. Learning in an NN progresses by incrementally 

adjusting the biases and weights. The vector of weights and bias are defined as a 

filter and represents some feature of the input such as a kind of shape. The filter 

works in a sliding-window fashion on small local receptive fields of data. In this 

work, the sigmoid function S(x)=1/(1+ePPPP

-x
PPPP) is utilized as the activation function f(·), 

and the weight kRij is trained with the well-known back-propagation algorithm 

[175]. 

A convolution layer is quite different from the fully connected hidden layer of 

other learning methods. Each convolutional unit represents some features of a local 

region of the input since it receives input only from a local area. The units of the 

convolution layer can be self-structured into a few feature maps, where all units in 

the same feature map share the same weights but receive inputs from different 
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lower layer locations [107]. The unique feature of CNNs of many weights sharing 

the same filter improves performance significantly by reducing both the memory 

footprint and the number of parameters to be estimated [109]. This is because a 

single bias and a single vector of weights is used across all the receptive fields that 

share that filter, rather than each receptive field using its own bias and vector of 

weights [176]. This indicates that the CNN learns the filter in an easy and efficient 

way without too much pre-processing, and this independence from prior 

knowledge in feature design is a major advantage of CNNs. Therefore, the 

architecture of the CNN involves more connections that weights and presents some 

degree of translation invariance [177], making it much easier to train. The CNN 

also has fewer parameters to be estimated compared with other NNs. 

(2) Pooling Layer: A pooling layer generates several down-sampled versions 

of the input maps according to the following rules: 

1 1 1= ( down( ) )l l l l

j j j jf c+ + ++z y                                 (2.23) 

Each output map has its own multiplicative bias β and an additive bias c. And 

down(·) represents a sub-sampling function. Also, the average function is adopted 

in this work 

, , , , ,

,

i j k p q i p j q k

p q

+ +=z y                                     (2.24) 

where yi,j,k and zi,j,k represent each element of y and z, respectively, and αRRRRp,qRRRR is the 

average filter with size p×q.  

Pooling layers intersperse convolution layers to reduce the computational 

burden and build up spatial and configural invariance. The pooling operation has 

2 main advantages. First, it reduces the dimensionality of the convolutional layer 

output. Furthermore, the pooling summarizes the neighboring feature activations, 

leading to the robustness of the forecast by the translation of input data [110].   

2.3.2  Deep CNN Architecture 
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A DCNN is composed of multiple CNN layers [108]. Due to the complications 

of the TF series, a novel modified DCNN forecasting strategy is proposed in this 

study, and Fig 2.5 shows a simple DCNN architecture with wavelet decomposition 

(WT), 2 convolution layers, and 1 final fully connected layer. First, original TF 

data series are usually nonlinear and non-stationary, and this will deteriorate the 

accuracy of traffic forecasting accuracy. The idea used to overcome this obstacle 

is to decompose the data series into several frequencies with better behavior of the 

data variance and outliers. In the beginning of the DCNN, a fast-discrete WT 

algorithm [111] is adopted for data decomposition to obtain a better forecast 

performance. The WT W(m, n) of signal g(x) with respect to a mother wavelet ϕ(x) 

is defined as 

( ) ( ) ( ) ( )
1/2

0
, 2 2 2

Tm m m

t
W m n g t t n

−−

=
 = −
               (2.25) 

where m and n denote 2 integer variables that determine the parameters of scaling 

and translation of ϕ, t is the discrete time index, and T is the length of the signal 

g(t). 

 

Fig. 2.5 Architecture of the DCNN 

Next, the normalized and wavelet decomposed training samples are fed into 

the DCNN containing consecutive multiples CNNs, the structure of which has 

been discussed in Section 2.3.1. At the end of the DCNN, several fully-connected 

hidden layers are added on top of the final DCNN layer to combine the features 

across all maps before feeding to the output layer. The fully connected layer is 

stated as 

1= K bl l l l− +y x                                         (2.26) 

where KPPPP

l is the weight from layer l-1 to layer l; and bl is the additive bias. 
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2.3.3  PIs Formulation 

(1) An Overview of PI formulation 

The overall PIs formulation framework is illustrated in Fig. 2.6. The estimated 

regression, ˆ( )iy x , model uncertainty variance, σ
2 

m, and data uncertainty variance, 

σ
2 

d , are obtained using forecasters based on CNN training to formulate PIs and are 

elaborated as follows. 

 (2) Estimated regression 

The ith true forecast target, ti, can be described as ti = y(xi) + ε(xi), where xi is 

the vector of the input data; y(xi) is the true regression mean; and ε(xi) is the noise. 

According to the definition of mean value, the estimated regression, ˆ( )iy x , of the 

trained DCNN is the mean value of targets conditioned on xi, E[ti | xi] [178], which 

can be considered as an estimation of the true regression, y(xi):  

1

ˆ ˆ( ) [ | ] (1/ ) ( )
EN

i i i E q i

q

y E t N y
=

= = x x x                              (2.27) 

where q is the number of DCNN models. Then values of E[ti | xi] can then be 

derived based on the trained NE  DCNNs with the target ti. An ensemble of DCNN 

models with a larger number, NE , can achieve a less biased estimate, ˆ( )iy x , of the 

true forecast target, ti. 

 

Fig. 2.6 An overview of PIs formulation 

(3) Model uncertainty variance and data uncertainty variance 
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There are two major types of uncertainties in DCNN prediction: model 

uncertainty and data uncertainty. Model uncertainty usually originates from the 

erroneous specification of the DCNN structure and parameters, local minimum of 

the training process, and finite training samples. Meanwhile, data uncertainty 

usually comes from the stochastic nature of the data noise, such as the noise caused 

by chaotic weather conditions.  

The total forecast error, σ
 

p(xi), is the difference between the forecast target, ti, 

and the estimated regression, ˆ( )iy x : σ
 

p(xi) = ti − ˆ( )iy x = [y(xi) − ˆ( )iy x ] + ε(xi), 

and [y(xi) − ˆ( )iy x ]  is the error involved in the estimation of the true regression, 

y(xi), which accounts for model uncertainty. According to the variance definition 

discussed by [111], the variance of the model uncertainty can be evaluated from 

the variance in the outputs of the trained NE DCNN models according to the 

following equation: 

2 2

1

ˆ ˆ( ) (1/ ( 1)) ( ( ) ( ))
EN

m i E q i i

q

N y y
=

= − −x x x                         (2.28) 

By contrast, the error involved in the true forecast targets, ti, accounts for the 

data uncertainty, which is difficult to estimate since there is only 1 observation of 

TF at each time point. Therefore, it is presumed in this work that the mean and 

variance of data uncertainty are also conditioned on xi.  The variance of the 

measured target ti conditioned on xi are defined as the variance of data, σ
2 

d (ti | xi), 

which is expressed as follows, according to the variance definition [112]: 

2 2( | ) [( [ | ]) | ]d i i i i i it E t E t = −x x x                              (2.29) 

According to (2.27), E[ti | xi] could be replaced with ˆ( )iy x  and the output of σ
2 

d (xi) 

could be further stated as  

2 2ˆ ˆ( | ) ( ) [( ( ) ) | ]d i i i i i it r E y t = = −x x x x                           (2.30) 

Similar to the process for obtaining E[ti | xi], E[( ˆ( )iy x −ti)
2 | xi] can be derived by 

training the DCNN with the target ( ˆ( )iy x −ti)
2 PPPP, the regression of which is denoted 

as ˆ( )ir x . σ
2 

d (xi) in (2.30) can then be derived. 
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To reduce the bias of data uncertainty, NS DCNNs with the regression, ˆ( )ir x , 

are ensemble-trained, and the estimated noise variance is: 

2

1

ˆ ˆ( | ) (1/ ) ( )
SN

d i i S l i

l

t N r
=

= x x                                    (2.31) 

The variance of ˆ( )ir x model uncertainty is: 

2 2

ˆ

1

ˆ ˆ( ) (1/ ( 1)) ( ( ) ( ))
SN

r i S l i i

l

N r r
=

= − −x x x                          (2.32) 

Hence, the data noise variance is the combination of (2.31)- (2.32) 

  2 2 2

ˆ
ˆ( ) ( | ) ( )d i d i i r it  = +x x x                                   (2.33) 

Based on the variance of model uncertainty, PIs could be obtained σ
2 

m(xi) in 

(2.28), and the variance of data uncertainty, σ
2 

d (xi) in (2.33), the variance of the 

total forecast errors is: 

2 2 2( ) ( ) ( )p i m i d i  = +x x x                                     (2.34) 

(4) PIs formulation based on forecast errors 

Therefore, the 100(1-α)% PI nominal confidence (PINC) of ti, which is an 

interval denoted as Iα(xi)=[Lα(xi), U
α(xi)], can be formulated using the lower bound, 

Lα(xi), and upper bound, Uα(xi). 

2

1 /2
ˆ( ) ( ) ( )i i p iL y z

 −= −x x x                                (2.35) 

2

1 /2
ˆ( ) ( ) ( )i i p iU y z

 −= +x x x                               (2.36) 

(2.35) and (2.36) are the mathematical expressions of confidence intervals, 

meaning that the target, ti, is within the confidence interval [Lα(xi), U
α(xi)] with a 

probability of 100(1-α)%. z1-α/2 is the critical value of the standard normal 

distribution and depends on the required PINC level 100(1-α)%. 

2.3.4  Evaluation of Forecasting Performance 

Mean absolute error (MAE), mean absolute percentage error (MAPE), and root 

mean square error (RMSE) are employed to evaluate the deterministic forecast 

performance as follows 
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1

ˆMAE = (1/ ) | ( ) |
N
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i

N t y
=

− x                                   (2.37) 
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

x
                               (2.38) 

2

1

ˆRMSE = (1/ ) | ( ) |
N

i i

i

N t y
=

− x                                  (2.39) 

where N is the number of training samples. PI coverage probability (PICP) and 

average coverage error (ACE) are employed as reliability indices to evaluate how 

well the probabilistic forecast results match the observed values: 

1

PICP = (1/ ) 100%
N

i

i

N r

=

                                  (2.40) 

ACE = PICP PINC−                                       (2.41) 

where r
α 

i  is the PI coverage probability indicator 
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 
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                                       (2.42) 

The interval sharpness (IS) is used to measure the sharpness of the PI by 

encouraging narrower PIs 
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                (2.43) 

where δPPPP

α
PPPP(xi) is the width of PI and calculated as UPPPP

α
PPPP(xi)－L PPPP

α
PPPP(xi). 

2.4  Probabilistic EV Load Forecasting 

Experiments indicate that high temperature caused by large charging power is 

unfavorable for the lifetime of batteries [179], thus refueling via charging posts at 

home or in parking lots leads to less battery degradation. However, EV owners 

will also choose to charge using FCSes when their vehicle urgently needs charging 

or they are reluctant to wait for an extended period. Uncertainties are involved in 

this EV charging process. As shown in Fig. 2.7, a practical estimation method for 

the arrival rate is proposed using the daily travel distance distribution and travel 
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patterns. Then, an EV queuing model is established for EV load forecasting that 

considers various uncertainties and constraints. 

Daily Travel Distance Distribution

Driving in Progress Distribution Calculate SOC before FCS

Obtain Arrival Rate of FCS

Forced Leave Probability

Refuse to Join Probability

Impatient Leave Probability Solving Balance Equation

Obtain Charging EV Number

FCS Charging Load

SOC Criteria

Forecast the Traffic Flow

Arrival Rate Estimation            

EV Charging Queueing Model          

  
Fig. 2.7 Flowchart of the FCS charging load determination 

2.4.1  EV Arrival Rate Estimation 

Only a small part of EVs in the TF will go to the FCS on their travel path to 

receive the charging service, and the number of EVs arrive to the FCS in one time 

interval is denoted as the average EV arrival rate, λ. As an important input for the 

charging load forecasting, the FCS charging load cannot be precisely determined 

if the EV arrival rate is not properly estimated [28][36]. Generally, EV drivers’ 

willingness to go to an FCS on their travel path determines the arrival rate and is 

highly related to an EV’s state-of-charge (SOC) condition, SOC, while the 

charging duration time, μ, is determined by the SOC and the charging power. It is 

straightforward to understand that the travel distance, Dev, is the key data source 

used to estimate EV SOCs, which has been applied in [18], [29], [113] and [114]. 

The relationship between them is briefly represented as 

1 /ev ev evSOC p D E= −                                       (2.44) 
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where Eev is an EV’s battery capacity; and pev is an EV’s driving consumption 

power. Due to the variations in EV types, EV parameters and TF data are first 

normalized to the standard passenger car unit (pcu) in this work. The biggest 

barrier in the current research is that FCSes are still in the primary stage of 

development, thus real data of travel distance before FCS Dev is difficult to obtain 

directly. Therefore, the data of daily travel distance, D
T 

ev, and driving in progress 

distribution, g(t), which are much more easily obtained from historical data [115], 

are used as the indirect data source for estimating the travel distance of EVs when 

arriving at the FCS, Dev. From D
T 

ev and g(t), the SOC and arrival rate can be 

determined. 

(1) Daily travel distance distribution estimation based on the mixture model: 

Most of the previously mentioned studies assumed that D
T 

ev  follows a simple 

probability density function (PDF), such as a normal distribution, which does not 

reflect the actual and cannot reflect the complexity of EV charging behaviors. The 

EV daily travel distance data in this study is obtained by interview surveys to EV 

users, which is a common practice when investigating daily vehicle miles traveled 

(VMT) [182]. As shown in Fig. 2.8, daily travel distance distribution curve is more 

complicated and several peaks can be seen. To get a more general results, the 

mixture model based approach is used to analyze the complicated D
T 

ev distribution 

p(X|Θ). The mixture model is able to model random variables using a combination 

of selected PDFs: 

1

( | ) ( | )
M

m m m

m

p p x 
=

=X  
1

0 1, 1
M

m m

m

 
=

  =                    (2.45) 

where X = {x1, x2, …, xm} is the random variable set; Θ is the PDF parameter; πm 

is the weight coefficient of the mth PDF pm; and M is the PDF number. 

The Expectation-maximization (EM) algorithm [116] is adopted by using a 2-

step iteration to obtain the parameters of the mixture model, which maximizes the 

expectation of the likelihood,  
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,

11

( | , ) ( | )
N M

m i m m i m

mi

L y p x 
==

= X Y                            (2.46) 

where N is the number of data samples; Y is an auxiliary variable set marking 

where the data sample belongs to which PDF in the mixture model.  

 

Fig. 2.8 The distribution of EV daily travel distances 

Before applying the EM algorithm, the parameters Θ and the auxiliary 

variables Y are initialized using the K-means clustering method [117]. The PDF 

number M is another critical index that can be obtained using the Akaike 

information criterion (AIC) and the Bayes information criterion (BIC). These are  

expressed, respectively, as follows: 

 ln( ) 2ln arg max ( | )BIC M N L= − X


                                (2.47) 

 =2 2ln arg max ( | )AIC M L− X


                                    (2.48) 

The optimal M is selected by increasing M one by one until BIC(M)-BIC(M+1) 

and AIC(M)-AIC(M+1) are smaller than a pre-set terminating criterion.  

The EM algorithm is carried out iteratively, and in the qth iteration, the 

calculation of the expectation of the likelihood function (2.46) under the current 

estimation of Θ PPPP

(q)
PPPP is the first step: 

 ( ) ( )( | ) [ln ( | , ) | ( , ]q qQ E L= X Y Y                           (2.49) 

Determining the parameters to maximize the expectation in this iteration is the 

second step: 
( +1) ( )arg max ( | )q qQ=


                                (2.50) 
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The 2-step algorithm is executed iteratively until the pre-set stopping criterion 

is reached, and the distributions p(X) are obtained with the parameters optimally 

estimated using the proposed mixture model. It should be noted the proposed 

method is universally applicable and not limited to specific distributions. 

(2) Driving in Progress Distribution: Travel patterns vary with time  over the 

course of a day, and can be represented as the driving in progress distribution, g(t). 

This is also a critical distribution for obtaining the arrival rate at FCSes. As shown 

in Fig 2.9 [118], g(t) is formulated to demonstrate the probability that the EV is 

currently driving. For instance, g(5) = 8% indicates that the EV has a probability 

of 8% of being on the road. Based on the definition of g(t),  D
T 

ev is estimated using 

the mean travel distance of EVs at time t , Dev,t, where 

 
0

, ( )
t

T

ev ev t
t

D D g h dh=                                          (2.51) 

It is assumed that EV drivers prefer to charge when the SOC is below to the 

criterion SOCmin, and their mean SOC is SOCm (0≤SOCm≤ SOCmin). According 

to (2.44) and (2.51), the daily travel distance of EVs arriving to the FCS Dev at 

time t D
T 

ev,t is estimated as 

0
, ( (1 )) ( ( ) )

t
T

ev t ev m ev
t

D E SOC p g h dh= −                               (2.52) 

The probability that an EV passing by an FCS at time t will choose to charge, Pt, 

is determined using the daily travel distance distribution p(X) as 

 
, 1

,

( )
T
ev t

T
ev t

D

t
D

P p x dx
−

=                                            (2.53) 

Therefore, the arrival rate at time t λt is 

t t tP f =                                                 (2.54) 

where ς is the penetration rate of EV during the total TF; and ft is the forecasted 

TF at time t. 
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Fig. 2.9 Trips in progress by time of day in UK [118] 

2.4.2  EV Charging Queuing Model that considers Driver Behaviors 

The capacity of an FCS K is the maximum number of EVs the FCS can 

accommodate. Currently, most countries are still in the early stages of EV 

development, and the service ability of FCSes is facing a serious shortage. 

Meanwhile, many FCSes are built in downtown areas or near the expressways. 

Therefore, the capacity of an FCS is very limited. Thus, the limitations of FCS 

capacity deserve full consideration. As shown in Fig. 2.10, an EV charging process 

is set up as a Markov MMCK model. MMCK is the Kendall notation [184]: It 

assumes the FCS has C servers and can accommodate a maximum of K EVs; The 

arrival of EVs is governed by a Markovian-Poisson process [181], in which the 

arrival EV number, n, in a given time interval follows a Poisson distribution, P(n), 

with an average EV arrival rate, λ, in each time interval. 

( ) ( ( !))n EVP n e n n −=                                (2.55) 

Also, the charging duration time tRRRRcRRRR of EVs follows an exponential distribution: 

( ) ct

cf t e
 −

=                                               (2.56) 

where μ is the average EV leave rate for each time interval, which is the number 

of EVs that finish charging and leave the FCS. Here the subscript t is omitted in 

order to simplify the expression. 
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Fig. 2.10 Capacity constrained queuing model considering drivers’ behaviors 

As shown in Fig. 2.10, sometimes EVs leave the FCS without getting charged. 

Such EV driver behavior may result from the insufficiency of total number of 

available chargers, the limitation of FCS capacity, et al., and we categorize the 

underlying causes of EV leaving behaviors into 3 types: forced leave, refuse to 

join, and impatient leave. Category 1: Forced leave. If the FCS has accommodated 

K EVs already, other EVs are forced to leave the FCS because there is no space in 

the queue. Category 2: Refuse to join. When arriving to the FCS, the EV finds the 

waiting line is too long and thus refuses to join the queue, even if the total EV 

number in the FCS is less than K. Based on categories 1 and 2, the probability that 

an EV will choose to queue is relevant to the EV number in the FCS, w, and is 

assumed to be 

 
( )

1

0,

0

w C

w

w C

e C w K

w K

 − −




=   
 =

                                 (2.57) 

where the exponential function indicates that the probability decreases faster for 

EVs choosing to queue when w increases, and σ is the parameter that defines the 

probability decrease rate. Category 3: Impatient leave. Even if the waiting line is 

not too long, the queuing EVs may still choose to leave the FCS when they get too 

impatient. The number of EVs left in the queue during each time interval is 

relevant to w and assumed to be 

0

ln( 1) 0,w

w C
b

w C C w K 


= 

− +   
                        (2.58) 
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where the logarithm function suggests the number of EVs that leave grows as w 

increases, and δ is the parameter that defines the probability of leaving the FCS.  

According to (2.57) and (2.58), the average arrival rate and the average leaving 

rate, considering categories 1-3, can be stated as λw=αwλ and μw =μ-bw, respectively. 

2.4.3  Stochastic Process Analysis for EV Load Determination 

Based on the described queuing model, FCS EV charging loads can be 

obtained using the stochastic Markov chain analysis. According to the stochastic 

process theory, Pw, the steady-state probability of the Markov chain being in state 

w, should satisfy the balance equation [119]: 

1, ,w w wv v vw

w S v S v S

P P q P q w S w v
  

= =                         (2.59) 

(2.59) means that the sum of all state probabilities should be 1. Also, the 

probability in and out of each state should be equal, and qwv is the transition rate 

from state w to v. S is the state space. 

Fig. 2.11 State transition diagram of the Markov chain that considers EV behaviors 

The Markov chain of FCS is shown in Fig. 2.11. The state transitions in the FCS 

only belong to the following 2 types: arrives and leaves. Therefore, based on (2.59), 

the FCS balance equation can be expressed as: 

1 1 1 1( )w w w w w w wP P P   − − + ++ = +                                       (2.60) 

By solving (2.57)-(2.60) (the detailed solving process is shown in the appendix), 

the probability that the FCS has w EVs is 

0 1 2 C-1 C K-1 K

λ λ λ λ

μ 2μ 3μ (C-1)μ

λ

Cμ Cμ+ln2 Cμ+ln(K-C) Cμ+ln(K-C+1)

λ e-(K-C-2)σ 
λ e-(K-C-1)σλ
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The P0 in (2.61) could also be obtained by solving (2.57)-(2.60) 
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where ρ=λ/μ and η=δ/μ are defined for conciseness. Hence, the charging EV 

number in an FCS can be expressed as 
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                       (2.63) 

and the charging load of the FCS, PFCS, can be determined using Nch  and the power 

of the charging post for each EV, pEV: 

FCS ch EVP N p=                                                  (2.64) 

2.5  Case Studies 

2.5.1  Forecasting Results of Grey System Theory 

The total EV number in Shenzhen, Guangdong province, China from 2006 to 

2015 is utilized as the test database for long-term prediction , which is summarized 

in Table 2.1. The EVs are classified as electric buses (EBs) and non-EBs (including 

private electric cars, electric taxing, et al.) because they have obvious different 

application purposes and developing characteristics. From the Table 2.1 it is 

noticeable for the fast growth rate of EVs in recent years. 

In the proposed forecasting model based on the grey system theory, every three 

years data of EV number is used to forecast the future EV number in the next year, 

and the forecasted number is compared by the actual EV number to verify the 
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effectiveness of the proposed model. The forecasted results of EBs and non-EBs 

are plotted in Fig. 2.12 and Fig. 2.13, respectively. 

Table 2.1 The EB and Non-EB number in Shenzhen from 2006-2015 

Year EB number Non-EB number 

2006 500 1000 

2007 900 1250 

2008 1200 3500 

2009 1700 6200 

2010 2100 7320 

2011 2500 9300 

2012 3100 10800 

2013 4200 13500 

2014 5400 19000 

2015 7000 27500 

 

It could be roughly observed in Fig. 2.12 and Fig. 2.13 that the forecasting 

result is quite acceptable. To ensure that the established model has enough 

prediction accuracy in the practical application, three index, residual error, degree 

of association and variance ratio is calculated to check out the effectiveness of the 

proposed method. The residual error of EBs and non EBs is shown in Table 2.2 

and Table 2.3, respectively. And the association degree and variance ratio of EB 

and non EB forecasting is demonstrated in Table 2.4. According to the accuracy 

inspection level, which is shown in Table 2.5, the forecasting relative error belongs 

to level 4, and the association rate belongs to level 1, while the variance ratio 

belongs to level 1, which indicates that the grey system method is suitable to 

forecast the EV numbers in Shenzhen, but the accuracy is not good enough for 

some situations. 
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Fig.2.12 The forecasted results of EBs by the grey system theory 

 

Fig. 2.13 The forecasted results of non-EBs by the grey system theory 
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Table 2.2 The EB forecasting result residual error 

Year 
Actual EB 

number 

Forecasted 

EB number 

residual 

error e 

relative 

error % 

2006 500 722 -222 44.4 

2007 900 926 -26 2.9 

2008 1200 1187 13 1.1 

2009 1700 1523 177 7 

2010 2100 1953 147 7 

2011 2500 2505 -5 0.2 

2012 3100 3202 -112 3.6 

2013 4200 4119 81 1.9 

2014 5400 5283 117 2.2 

2015 7000 6775 225 3.2 

Table 2.3 The non EB forecasting result residual error 

Year Actual non-

EB number 

Forecasted 

non-EB 

number 

residual 

error e 

relative 

error % 

2006 1000 2068 -1068 106.8 

2007 1250 2742 -1492 119.4 

2008 3500 3635 -135 3.9 

2009 6200 4820 1380 22.3 

2010 7320 6390 930 12.7 

2011 9300 8472 828 8.9 

2012 10800 11232 -432 4.0 

2013 13500 14891 -1391 10.3 

2014 19000 19741 -741 3.9 

2015 27500 26172 1328 4.8 

Table 2.4 The association degree and variance ratio of grey system method 

 EB forecasting Non EB forecasting 

association degree 0.599 0.556 

variance ratio C 0.066 0.136 

Table 2.5 Accuracy level reference table 

Accuracy 

level 

relative 

error % 

association 

degree  

variance 

ratio C 

Level 1 0.01 0.90 0.35 

Level 2 0.05 0.80 0.50 

Level 3 0.10 0.70 0.65 

Level 4 0.20 0.60 0.80 
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2.5.2  Forecasting Results of Nonlinear Autoregressive Neural Network 

Then the nonlinear autoregressive neural network is applied to forecast growth 

of EV number using the same historical data in Table 2.1. The autoregressive 

process order is set to 3 and the hidden neuron number is set to 10 in this case. The 

forecasting setting interface of EBs and non-EBs are demonstrated in Fig. 2.14 and 

Fig. 2.15. The forecasted results of EBs and non-EBs are demonstrated in Fig. 2.16  

and Fig. 2.17, respectively. The residual error of EBs and non EBs is shown in 

Table 2.6 and Table 2.7. 

Comparing the forecasting results of two models, residual errors of the model 

based on the NAR network is shown to be less than those of the model utilizing 

the grey system theory. It could be concluded that the NAR method has a better 

performance in the forecasting of EV numbers than the grey system theory. 

 

Fig. 2.14 The forecasting setting interface of EBs 
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Fig. 2.15 The forecasting setting interface of non-EBs 

Table 2.6 The EB forecasting result residual error of NAR 

Year Actual EB 

number 

Forecasted EB 

number 

residual 

error e 

relative 

error % 

2009 1700 1697 3 0.2 

2010 2100 2098 2 0.1 

2011 2500 2470 30 1.2 

2012 3100 3108 -8 0.3 

2013 4200 4221 -21 0.5 

2014 5400 5407 -7 0.1 

2015 7000 7111 -111 1.6 
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Table 2.7 The non EB forecasting result residual error of NAR 

Year Actual non-

EB number 

Forecasted non-

EB number 

residual 

error e 

relative error % 

2009 6200 8323 -2123 34 

2010 7320 7320 0 0 

2011 9300 9300 0 0 

2012 10800 10800 0 0 

2013 13500 13500 0 0 

2014 19000 19118 -118 1 

2015 27500 27500 0 0 

 

Fig. 2.16 The forecasted results of EBs by NAR 

 

Fig. 2.17 The forecasted results of non EBs by NAR 
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2.5.3  DBN method Forecasting Results Analysis 

As shown in Fig. 2.18, an urban area in UK coupled distribution and 

transportation system is employed to demonstrate the effectiveness of the DBN 

forecasting model. This frequently used 11-kV 38-node system represents a typical 

UK DS, the load of which is proportional (0.01%) to that of the UK [169]. The 

traffic flow on the roads of the system could be obtained from the official website 

of Highways England [167-168]. The traffic flow on nodes 33-37 in 2022 should 

be forecasted because they are candidate locations for the constructions of CSes. 

The data for DBN based forecasting is classified as monthly data and hourly 

TF data. The monthly data comprises aggregated TF of each calendar month, and 

the monthly data from 2015 to 2018 is obtained in [168] for growth trends 

forecasting. The utilized hourly TF data is sampled in 15-min intervals and is 

distributed in the period from May 2016 to May 2018 [167]. The number of total 

data points used for training is around 350,000. Four 15-min intervals over 1 hour 

are averaged to get the hourly TF data used in this work. The TF data in the past 3 

years is divided into a training dataset and a testing dataset. The training dataset 

covers the first 2 years. The data of the rest 1 year comprises the testing dataset. 

The TF passing by the candidate CSes in the planning horizon has first to be 

forecasted as an important precondition for the EV CS planning. Table 2.8 firstly 

verifies the performance of the DBN based TF forecasting on node 33 and 37 

compared with the Back Propagation Neural Network (BPNN), Support Vector 

Machine (SVM), Auto-Regressive and Moving Average Model (ARMA), and 

Morlet Wavelet Neural Network (MWNN). It is clear that the DBN method has 

lower MAE, MAPE and RMSE values than other methods, which indicates that 

the DBN method has a better performance in forecasting the TFs.  Fig. 2.19 

demonstrates the forecasting curves of different methods on node 37. It could be 

found that the forecasted result by the DBN method is closest to the actual data 

among the 4 methods, which verifies its good performance.  
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Fig. 2.18  The graphic display of the test system (green node: candidate CS, red 

node: existing substation (O) and candidate substation (S), blue node: existing 

node, yellow node: wind power, red line: candidate feeder, blue line: existing 

feeder, yellow line: major roads). 

Table 2.8 TF Forecasting Error Comparison at Node 33 and 37  

Location Error BPNN SVM ARMA MWNN DBN 

 MAE 114.63  107.48  122.07  122.72  106.81  

Node 37 RMSE 151.21  150.83  165.58  162.69  144.61  

 MAPE(%) 11.88 11.14 12.65 12.72 11.07 

 MAE 53.89  39.61  45.18  52.09  37.29  

Node 33 RMSE 93.70  54.64  71.86  68.12  48.47  

 MAPE(%) 14.45 10.62 12.11 13.96 10.00 

 

Fig. 2.19  Forecasting results by different methods on node 37 

2.5.4  DCNN TF Forecasting Results Analysis 

The proposed deep learning method is tested using TF data from the M42 

motorway between sites J5 and J6 (GPS Ref: 417049:278576-419805:283048) in 

England, UK  [120]. The TF data with 15 minute temporal resolutions from Jan to 
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Dec 2014 are analyzed. Factors such as weather conditions and travel purposes 

vary significantly during different days or seasons and lead to prominent 

uncertainties in TF. By considering the seasonal and weekly differences and 

diversity, the proposed approach is tested using TF data from weekdays and 

weekends during the  4 different seasons. The data for the first 2 months of each 

season are chosen as the training dataset, and the remaining 1 month of data are 

chosen as the testing dataset. The input data are decomposed using the WT method 

into 1 approximation frequency and 3 detail frequencies. The building blocks 

consisted of 4 convolution layers and 4 pooling layers for each frequency. The 

obtained results are compared using the back-propagation neural network (BPNN), 

support vector machine (SVM), SAE, time-delayed neural network (TDNN), 

and recurrent neural network (RNN) methods. 

Parameters and hyper parameters of different methods should be properly set 

to obtain good forecasting results for comparison. These parameters are chosen by 

the validation test in a trail-and-error manner. For example, as shown in Fig. 2.20 

and Fig. 2.21, the performance of BPNN and SAE is assessed by the MAPE. 41 

hidden neurons are chosen by the BPNN to reach the smallest MAPE, and the SAE 

with 5 hidden layers can ensure the optimal MAPE. Kernel function type is critical 

for the performance of SVM, and it can be seen in Table 2.9 the SVM with radial 

basis function (RBF) will have the best MAE, RMSE and MAPE compared with 

other typical kernel functions. 

 

Fig. 2.20 Validation test for BPNN with different number of hidden neurons 
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The seasonal deterministic 1-hour ahead forecast absolute residuals of the 

different methods are shown in Fig 2.22 and Fig 2.23. Residual is the difference 

between the actual value and the forecasted value. It can be observed from the two 

 

Fig. 2.21 Validation test for SAE with different number of hidden layers 

Table 2.9 Validation Test for SVM with Different Kernel Function Types 

Kernel function type MAE RMSE MAPE 

Linear 363.7714 506.7461 13.29% 

Polynomial 534.6109 739.4766 19.21% 

RBF 228.1530 348.2298 8.20% 

Sigmoid 272.3463 360.3255 9.45% 

figures that the forecasted results of the proposed method have the smallest 

residuals, indicating that, among the 6 methods, the forecasted TF curve is closest 

to the actual TF curve. Therefore, the comparative results visually demonstrate the 

effective forecast capability of the proposed approach. The results can be 

explained by the greater ability of the DCNN method to extract the complexity and 

non-smoothness of the TF series. Forecast performance evaluation indices are 

illustrated in Table 2.10. The indices of MAE, RMSE and MAPE during the 

different seasons in Table 2.10 also show that the errors of the proposed method 

are approximately half those obtained using other methods, indicating that the 

DCNN provided the best point forecast performance over the benchmarks. 
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Table 2.10 Deterministic One-hour Ahead TF Forecasting Error 

Season Error BPNN SVM SAE 

Spring MAE 296.5926 229.8162 265.6717 

RMSE 416.6938 341.5507 382.4075 

MAPE 10.56% 8.18% 9.46% 

Summer MAE 291.2690 238.1329 271.2713 

RMSE 398.1834 369.2117 382.9356 

MAPE 10.08% 8.24% 9.39% 

Fall MAE 337.7184 263.1371 312.5201 

RMSE 482.9903 412.7680 464.0448 

MAPE 12.61% 9.83% 11.67% 

Winter MAE 273.3713 181.5259 258.1541 

RMSE 372.9150 269.3890 351.7644 

MAPE 9.88% 6.56% 9.33% 

Average MAE 299.7378 228.1530 276.9043 

RMSE 417.6956 348.2298 395.2880 

MAPE 10.78% 8.20% 9.96% 

Season Error TDNN RNN DCNN 

Spring MAE 359.9786 260.8728 93.4223 

RMSE 535.3427 331.3600 118.3225 

MAPE 12.87% 9.23% 3.29% 

Summer MAE 291.2655 267.3694 94.2701 

RMSE 433.1820 324.6583 120.6187 

MAPE 10.14% 9.20% 3.26% 

Fall MAE 336.8291 307.9589 107.1443 

RMSE 498.2443 371.3890 140.9987 

MAPE 12.63% 11.46% 3.97% 

Winter MAE 291.2980 232.2863 83.3157 

RMSE 392.0209 297.3276 110.2241 

MAPE 10.61% 8.33% 3.05% 

Average MAE 319.8428 267.1219 94.5381 

RMSE 464.6975 331.1837 122.5410 

MAPE 11.56% 9.56% 3.39% 
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Fig. 2.22 Deterministic TF forecast absolute residual in summer at J5-J6 M42 

 

Fig. 2.23 Deterministic TF forecast absolute residual in winter at J5-J6 M42 

Compared with the deterministic forecast, probabilistic forecast evaluates the 

impacts of data uncertainty and model uncertainty in the forecast procedures. PICP, 

ACE, and IS, as shown in Table 2.11, are  used as the indices to evaluate the 

probabilistic performance. PI nominal confidence (PINC) levels of 90%, 95% and 

99% are used since high reliability is desired for FCS operation and control.  The 

PICP is supposed to be the closest to PINC for reliable PIs. Meanwhile, the 

difference between the PICP and PINC, which is defined as ACE, is supposed to 

be as close to zero as possible. It can be seen from the PICP index that the proposed 

method has the most reliable PIs of the measured TF. For example, at the 

confidence level with PINC = 95%, the DCNN approach generates PICPs of 
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Table 2.11 Probabilistic One-hour Ahead Forecasting Error 

Season Spring Summer 

                    PINC 90% 95% 99% 90% 95% 99% 

BPNN 

PICP 87.50% 91.11% 94.44% 87.50% 92.22% 96.11% 

ACE -2.50% -3.89% -4.56% -2.50% -2.78% -2.89% 

IS -392.53 -254.72 -94.43 -353.59 -233.02 -96.97 

SVM 

PICP 97.50% 98.61% 99.72% 96.11% 97.78% 99.44% 

ACE 7.50% 3.61% 0.72% 6.11% 2.78% 0.44% 

IS -391.40 -242.33 -63.37 -429.39 -252.26 -65.27 

SAE 

PICP 88.89% 93.06% 96.67% 90.83% 94.17% 96.94% 

ACE -1.11% -1.94% -2.33% 0.83% -0.83% -2.06% 

IS -383.54 -240.65 -87.73 -345.91 -215.25 -70.13 

TDNN 

PICP 92.72% 94.40% 97.48% 91.04% 94.40% 96.64% 

ACE 2.72% -0.60% -1.52% 1.04% -0.60% -2.36 

IS -526.28 -322.06 -89.36 -353.28 -212.99 -63.12 

RNN 

PICP 93.06% 96.39% 97.78% 86.11% 91.67% 95.83% 

ACE 3.06% 1.39% -1.22% -3.89% -3.33% -3.17% 

IS -226.49 -140.14 -44.03 -232.61 -148.19 -60.35 

DCNN 

PICP 90.48% 95.49% 99.25% 90.48% 95.24% 98.25% 

ACE 0.48% 0.49% 0.25% 0.48% 0.24% -0.75% 

IS -176.06 -102.68 -28.64 -191.72 -108.51 -23.91 

Season Fall Winter 

                    PINC 90% 95% 99% 90% 95% 99% 

BPNN 

PICP 88.61% 92.22% 96.11% 88.06% 92.50% 95.83% 

ACE -1.39% -2.78% -2.89% -1.94% -2.50% -3.17% 

IS -412.37 -266.90 -104.85 -557.25 -340.52 -109.12 

SVM 

PICP 90.56% 94.44% 97.22% 99.44% 100% 100% 

ACE 0.56% 0.56% 1.78% 9.44% 5.00% 1.00% 

IS -398.32 -241.41 -72.52 -404.19 -239.13 -62.95 

SAE 

PICP 89.17% 92.50% 96.11% 85.00% 90.56% 96.94% 

ACE -0.83% -2.50% -2.89% -5.00% -4.44% -2.06% 

IS -449.23 -286.78 -108.37 -341.63 -199.79 -58.14 

TDNN 

PICP 91.88% 93.00% 96.36% 91.32% 94.68% 96.36% 

ACE 1.88% -2.00% -2.64% 1.32% -0.32% -2.64% 

IS -421.49 -264.43 -89.70 -360.11 -232.58 -91.14 

RNN 

PICP 86.67% 90.83% 96.67% 88.61% 93.89% 98.61% 

ACE -3.33% -4.17% -2.33% -1.39% -1.11% -0.39% 

IS -248.07 -154.94 -46.74 -209.69 -123.70 -33.97 

DCNN 

PICP 90.40% 95.47% 99.20% 89.72% 95.24% 98.75% 

ACE 0.40% 0.47% 0.20% -0.28% 0.24% -0.25% 

IS -170.34 -99.94 -27.05 -201.04 -121.04 -30.64 
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Fig. 2.24 Probabilistic one-hour ahead TF forecast results during the spring, 

summer, fall, and winter of 2014. 

95.49%, 95.24%, 95.47% and 95.24% for 4 seasons, and outperform all other 

approaches. Although the PICP is only a bit better than that of other methods, the 

indices of ACE and IS are only half those of the other methods, and the 

improvements are significant. In all 4 seasons, the ACEs of the proposed method 
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are smaller than 1%, showing the lowest deviations from the nominal confidence 

levels, and prove the least reliability errors and highest forecast reliability among 

the benchmarks. A small absolute IS means higher interval sharpness, and the IS 

index in Table 2.11 also indicates that the proposed approach outperformed the 

other 5 methods from the perspective of interval sharpness. E.g., the DCNN 

approach generates PIs with absolute IS index of 28.64 and 23.91 in spring and 

summer at the confidence level 99%, which are the smallest compared to all other 

methods. 

Fig. 2.24 shows the actual TF, the forecasted TF, as well as the established PIs 

with PINC 90% for the 4 seasons. It is obvious that the curves in the 4 graphs 

fluctuate widely, indicating the nonlinear and non-stationary features of TF data 

during the  4 seasons. It can be seen that in each graph, the shapes of the lower and 

upper bounds, as well as the actual and forecasted TF curves, are very similar to 

each other. This shows that the actual and forecasted TF are perfectly enclosed by 

the constructed upper and lower bound, indicating that the probabilistic 

performance of the proposed approach is satisfactory for the construction of high-

performance PIs. 

2.5.5  Charging Load Forecasting Results Analysis 

In the simulation, the FCS has the rated power of P
FCS 

r = 0.88 MW combined 

with C = 22 chargers of EV = 40 KW, and could accommodate a maximum of 

K=30 EVs. The average charging duration time is tc=20 minutes. The default 

parameters of EVs are set to be ς=20%, σ=1 and δ=1. 

The distribution of EV daily travel distances are estimated using the mixture 

model, in which the normal distributions are chosen as the selected PDFs; and the 

results are shown in Fig. 2.25. It is clear that the curve estimated using the mixture 

model closely follows the trend of the actual data, which graphically confirms the 

effectiveness of the proposed model. Based on the TF forecast results and the 

established model in Section. 2.4, the forecasted charging load and the 90% 
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Fig. 2.25 The PDF of EV daily travel distance estimated using the mixture model 

Table 2.12 Correlation coefficients of TF and charging demand 

Season Pearson Kendall Spearman 

Spring 0.9414 0.8041 0.9490 

Summer 0.9321 0.8298 0.9373 

Fall 0.9274 0.8303 0.9504 

Winter 0.9533 0.8455 0.9584 

confidence PIs during the different seasons are visually presented in Fig. 2.26, 

which demonstrates that the trend of the charging load curve is not the same as the 

TF and fluctuates more significantly. This is due to the significant stochasticity of 

EV charging behavior, as well as the nonlinearity and complexity of the charging 

load dataset. It is also found that the PI of charging load is much narrower than 

that of the TF. This is due to the FCS parameters, as well as to the nonlinear 

relationship of charging load and the influence of TF on the construction of 

charging load PIs. However, the forecasted curve is still within the constructed PIs 

by a large percentage. Therefore, it can be concluded the probabilistic performance 

of the proposed approach is satisfactory for the operation and control of FCS. To 

further explore the trend differences between TF curve and charging load curve as 

shown in Fig. 2.24 and Fig. 2.26, their correlations are studied. Table 2.12 gives 

the Pearson (linear), Kendall, and Spearman correlation coefficients [120] of TF 

and charging load during the different seasons. All the coefficients range between 

0.8 to 1 and show that, although there is a strong relationship between the 2 time 

series, the trend differences should not be neglected. Fig. 2.27 further clarifies the  
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Fig. 2.26 Probabilistic one-hour ahead charging load forecast results during the 

spring, summer, fall, and winter of 2014 
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Fig. 2.27 The Pearson (linear) correlation between TF and charging load in 

different seasons 

 

 

Fig. 2.28 The charging load for different values of C or K 

 

 

Fig. 2.29 Forecasted charging load for different values of σ or δ 
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increasing monotonic trend between TF and charging load. This relationship is not 

strictly linear, however, due to the complicated nonlinear transformation 

associated with the proposed queuing model. 

It is assumed in this study that driver behaviors have a significant influence on 

the charging load forecast results, and are classified roughly as forced leave, refuse 

to join, and impatient leave. Fig. 2.28 shows that the charging load becomes larger 

when the charging post number, C, or capacity, K, of the FCS increases, since 

fewer EVs will be forced to leave due to limitations of FCS service capability. 

Clearly, the shortages of charging posts and charging capacity impose restrictions 

on the wide use of EVs, and the installation of enough charging facilities, which 

can effectively enhance EV driver charging convenience, will make EVs more 

popular. Driver sensitivity to charging wait time is another factor that can influence 

the charging load.  Fig. 2.28 demonstrates that if drivers are more sensitive to 

waiting time, which translates to a larger “refuse to join” probability parameter, σ, 

or a larger “impatient leave” probability parameter, δ, the charging load decreases 

accordingly. From the curves shown in Fig. 2.29, it can also be seen that the 

charging load reduction becomes particularly evident during rush hour, when there 

is higher charging demand. This indicates that flexible strategies should be taken 

in the FCS operation process in order to promote service capabilities, such as the 

establishment of appropriate time-of-use (TOU) prices for charging power and 

other  strategies. 

2.6  Summary 

In this chapter, both long-term forecasting and short-term forecasting of EV 

charging demand are studied. For long-term prediction, the grey system 

forecasting theory and the NAR neutral network are applied to the forecasting of 

EV charging demand. The simulation results show that the prediction accuracy of 

the grey system forecasting model is high only when the original EV demand data 
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increases exponentially. Otherwise, the prediction appears a larger deviation. In 

comparison to the grey system forecasting theory, it is shown that the NAR neural 

network model has a good performance in future practical application. 

Additionally, the DBN method is firstly used to predict TF in CS construction 

planning horizon and case studies show that it outperforms other four typical 

algorithms which are BPNN, SVM, ARMA and MWNN. 

For short-term prediction, a probabilistic deep learning forecast model, that 

considered FCS service limitations and driver behaviors is developed for the 

prediction of EV charging loads. In the established model, the TF is forecasted 

using the DCNN approach, while the model and data uncertainties are considered 

when constructing the forecast PIs. To obtain the EV charging load forecast results, 

mixture models are used to analyze the historic data and a novel MMCK queuing 

model is proposed. Simulation results are presented to demonstrate the 

effectiveness of the employed method and model. The proposed approach will be 

beneficial for the future planning and operation of FCSes. 
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Chapter III 

Negotiated Planning of Distribution System and EV 

Charging Stations in Deregulated Electricity Markets 

3.1  Introduction 

According to the forecasting results, sufficient number of CSes should then be 

planned to meet the increasing charging demand of EVs. Further DS should be 

expanded to supply the required energy to the CSes. This chapter therefore would 

focus on the negotiated planning of CSes and DS in deregulated electricity markets 

based on the forecasting results of DBN method mentioned in Chapter 2. 

In this chapter, a locational marginal pricing model capable of alleviating 

distribution system congestion and promoting the response of electric demands is 

utilized to simulate the deregulated market environment of the future smart grid, 

and the charging stations are considered as market bidder to maximize their 

operation profits. Additionally, a cooperative game-theory based planning strategy 

is proposed to assist the distribution and charging station planners to reach a 

negotiated planning solution for profit sharing and cost recovery of new 

distribution feeders and charging stations to guarantee the service of EV charging.  

3.2  Framework of the Proposed Model  

Accurate EV demand forecasting is the precondition of CS and charging 

network planning, and it is important to select a suitable method and an appropriate 

model to simulate and predict the EV demand. Meanwhile, the operation costs and 

the incomes are the most concerns of both CS and network planning operators and 
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should therefore be considered in the planning procedures. As a result, the 

proposed planning model is composed of three phases, corresponding to 

forecasting, construction and operation, respectively.  

Forecast:

Planning:

Operation:

EV Demand Forecasting

Based on Deep Belief Network

Charging Stations, Substations and 

Feeders Construction

Nash 
Bargaining

LMP, Charging Power

and Power Loss

Maximize social welfare

the Charging 

Station 

Company 

the 

Distribution

System

DSO

 

Fig. 3.1 Framework of the proposed model 

As shown in Fig. 3.1, the EV demand in the planning horizon is obtained from 

the forecasting phase based on Deep Belief Network and then transferred to the 

planning and operation phases. The planning module implements the Nash 

bargaining process between the CS company and the DS to determine the decision 

variables of CSes construction plan and DS extension scheme simultaneously, 

which considers the impacts of LMPs and flexible demands provided by the 

operation phase. Based on the network topology generated from the planning 

phase, the operation module solves the electricity price model based on market 

mechanism and offers decision variables of distribution LMPs as well as flexible 

loads including charging demands to the planning phase. The decision variables of 

the operation phase will iteratively update the planning scheme results until the 

optimal solution achieved.  

3.3  The Mathematical Model 

3.3.1 Nash Bargaining Model: General Formulation 
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The Nash bargaining game between two players is in essence a jointly 

generated surplus sharing problem used to model bargaining interactions. 

Research on bargaining game has found extensive real applications, such as 

contract negotiation [126], social justice allocation [127], and risk aversion [128]. 

In the Nash bargaining game, two players demand a portion of surplus they 

jointly created, which could only be obtained if the negotiation satisfying both 

players could be reached. This could be modeled that game players are in a 

negotiation to identify an agreement outcome (u, v) from the payoff possibility set 

χ. (u0, v0) is called the players’ disagreement point, which is the outcome the 

players can expect to receive if negotiations break down. The problem has 

solutions if agreements in χ are better for both players than the disagreement point. 

A Nash bargaining solution (u*, v*) should satisfy four axioms, which reflects its 

fairness and efficiency properties: Pareto efficiency, symmetry, independence of 

irrelevant alternatives, and invariance under positive linear-affine transformation 

[129]. It is proved by John Nash that under mild conditions, the payoff (u*, v*) is 

exactly a Nash bargaining solution (NBS) if it solves the following optimization 

problem [129][130]: 

max             (u- uPPPP

0
PPPP)( v- vPPPP

0
PPPP)                                                    (3.1) 

subject to       (u, v)∈ χ       (u0, v0) ∈ χ0                               (3.2) 

                         (u, v) ≥ (u0, v0)                                                   (3.3) 

where χ and χ0 are the set of possible payoffs and the set of disagreement outcome, 

respectively. The optimization (3.1)-(3.3) makes the acquisition process of the 

NBS very simple, intuitive, and efficient. Moreover, the details of bargaining 

process could be ignored and the four axioms will be satisfied automatically by 

solving the proposed optimization model. Therefore, it is widely applied in solving 

the cooperative gaming problems. 

3.3.2 Nash Bargaining of the Cooperative Planning  
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The DS planning encounters new challenges due to the fast development of 

EVs. EV CSes and DS are required be planned simultaneously to meet the rapidly 

growing EV charging demand, but research on this is still limited [59][131] and 

mainly under the simplified assumption that the planning is managed by a single 

utility. This is in fact contrary to the reality of deregulated market environment. 

Uncertainties such as price volatility and renewable energy intermittency in the 

market environment make the financial recovery for the CS and DS planning no 

longer guaranteed and discourage planers’ investment willingness. However, CS 

and DS are rational independent decision makers, which are self-operated with 

self-interests such as cost minimization. Without properly designed negotiating 

mechanism, they will interact with each other only if more benefits could be 

obtained as a result, and this leads to difficulties to the cooperative planning of the 

CS and DS. Therefore, an incentive mechanism should be designed to encourage 

proactive interactions and fair profit sharing between CS and DS in the planning. 

In such mechanism, a “win-win” cooperative planning is still feasible, which 

makes the DS obtain more profits by providing transmission service, and the CS 

operators provide required charging service to EVs and recover their investments. 

Therefore, a Nash bargaining based cooperative planning model is proposed here 

for the first time to analyze the possible realistic planning procedures of CSes and 

DS. In the proposed model, the tightly coupled planning variables of CS and DS 

are jointly scheduled and optimized simultaneously to take the advantages of 

diverse profits obtained by both participants. 

 According to the general model (3.1)-(3.3) proposed in Section III-B, the 

cooperative planning results are the NBS obtained by solving the following 

optimization problem: 

max   [uCS(Yi)- u
CS 

0 (Yi)][v
DC(Y

SE 

m , Y
SN 

m , X
LN 

mn )- vDC 

0 (Y
SE 

m , Y
SN 

m , X
LN 

mn )]           (3.4) 

where  
T CS T CS

CS LMP

, , , ,( ) ( )year

t i t i t i t i t i t i

t i t

i

i

u d D p P Y D p PY Y
   

= −                        



65 

CS

CSOM CSC( )i i i

i

c c Y

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+ −                                     
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−              

, , , 2 cos )]m t n t mn tU U −                                           

SN

SOM SN SN( ) m

m

c c Y


− +                                                 

SE

SOM SE SE( ) m

m

c c Y


− +                                                 

LN

BOM LN LN( ) mn mn

mn

c c d X


− +                       (3.6) 

subject to     uCS(Yi)≥ u
CS 

0 (Yi)                                     (3.7) 

vDC(Y
SE

 m , Y
SN

 m , X
LN

 mn)≥vDC

 0 (Y
SE

 m , Y
SN

 m , X
LN

 mn)                            (3.8) 

L

OP B SE SN

mn

mn

X n n n


= − −                                          (3.9) 

CS

CS

i

i

Y n


=                                                  (3.10) 

SN

SN SN

m

m

Y n


=                                                  (3.11) 

In the Nash bargaining between the CS company and the DS, the threating 

point is assumed to be (u
CS 

0 , v
DC 

0 ) = (0, 0), which means that if the payoffs of two 

participants are less than zero, no negotiate settlement would be reached. Based on 

(3.1), (3.4) can be easily concluded and further explained in (3.5) and (3.6), which 

represent the expected payoffs of the CS company and the DS, respectively. 

Furthermore, the payoff of the CS company in (3.5) is composed of three 

components, namely earnings from EVs charging, electricity bills paying to the 

DS, and the investment, operation and maintenance cost of CSes. As shown in 

(3.6), vDC PPPPrepresents the payoff of the DS, where the first and second terms denote 
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its net profits by selling electricity to CSes and other customers, and the cost of 

energy losses. The next two terms are the investment, operation and maintenance 

cost of reinforcing existing substations and constructing new substations. The last 

term indicates the investment, operation and maintenance cost of new feeders. The 

service price EV owners paid to CSes for charging is defined by the weighed 

electricity and gasoline price and could be defined as pi,t = (1+ωc)·p
LMP 

i,t +ξc·p
GAS. 

Yi represents decision variable for candidate CS at node i. Y
SN 

m  is decision 

variable for candidate substation at node m. Y
SE 

m is decision variable for the existing 

substation at node m with reinforcement of high capacity. X
LN 

mn  is the decision 

variable to invest a new feeder mn. dyear accounts for days in the planning horizon. 

ΩPPPP

T
PPPP is set of all time subperiods. Ω PPPP

CS
PPPP is set of candidates CSes. Dt is duration of 

subperiod t (h). pi,t is electricity price customers pay for EV charging in CS i at 

time t. Pi,t  is active power CS i offered to EVs at time t (MW). p
LMP 

i,t  is distribution 

locational marginal price (LMP) of the node where CS i locates at time t 

(US$/MWh). c
CSOM 

i  is operation and maintenance (O&M) costs of the CS i per year. 

c
CSC 

i is investment cost for the CS i.  p
LMP 

m,t  is distribution LMP of node m at time t. 

p
S 

t is electricity price of the balance bus at time t (US$/MWh). ΩnoCS 
PPPPis Set of 

system nodes except the nodes of Ω PPPP

CS
PPPP. P

noCS 

m,t  is  active power demand at node m of 

ΩnoCS at time t. cE is electricity energy cost. cSE is costs to reinforce a substation 

with high capacity (US$). cSN is costs to invest a new substation (US$). p
L 

m,t is 

offer/bid price of  node m at time t. ΩL is set of feeders. Gmn is conductance and 

susceptance of feeder mn. X
OP 

mn  is variable indicates the feeder mn operates or not. 

Um,t and Un,t are Voltage magnitude at node m and n at time t. θmn,t is deviation of 

phase angle between node m and n at time t. ΩPPPP

SE
PPPP and ΩPPPP

SN
PPPP are set of existing and 

candidate substations (SS). cPPPP

SOM
PPPP is operation and maintenance fee of a substation. 

cPPPP

SE
PPPP and cPPPP

SN
PPPP are costs to reinforce a substation with high capacity and invest a new 

substation. ΩPPPP

LN
PPPP are set of existing and candidate feeders. cPPPP

LN
PPPP are costs to invest a 

new feeder, respectively. cPPPP

BOM
PPPP is operation and maintenance fee of a feeder per 

year. dmn is length of feeder mn. nPPPP

B
PPPP is the number of nodes in a DS. nPPPP

CS
PPPP is the 

javascript:void(0);
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number of CSes to be built. nPPPP

SN
PPPP and nPPPP

SE
PPPP are the number of substations to be built 

and the number of existing substations, respectively.  

 (3.7) and (3.8) ensure if any payoff of these two participants is less than the 

threat point, the negotiation fails. Based on the graph theory, in order to guarantee 

that a sub-graph is a tree, it must fulfil two conditions: 1) there are n PPPP

B
PPPP-1 edges in 

this sub- graph while the number of nodes of this sub-graph is nPPPP

B
PPPP, and 2) nPPPP

B
PPPP nodes 

are connected. The first condition is implicitly ensured by (3.9) while (3.17) and 

(3.18) guarantee the second condition [132]. At last, the constraints of CS and new 

SS number are determined by (3.10) and (3.11), respectively. It is also worthwhile 

to point out that the time granularity for all the time dependent parameters and 

variables with subscript t is Dt = 1h in this work. 

3.3.3 EV Participated Market Mechanism 

Well-designed market mechanism in the DS has many advantages in the 

planning and operation of the smart grid, including but not limited to congestion 

alleviation, fairness promotion, and cost reduction [133]. Nowadays, certain kinds 

of loads, such as demands in households controlled by temperature, are flexible 

and dispatchable. Moreover, batteries of EVs are also controllable to achieve smart 

charging. There is potential for these dispatchable loads to respond to energy 

market signals.  

The dispatch of CS demand is simulated in a discrete-state, discrete-time 

fashion at each time interval of one hour. The dispatchable demand in the CS is 

dynamic during a day and highly dependent on the TF passing by the CS, the 

temporal distribution of which is forecasted by the proposed DBN method. The 

EV’s charging in the CS is a typical probabilistic queuing process, which assumes 

the arrival EV number n of each time step follows a Poisson process: 

   ( ) ( ( !)) =0,1,2...nP n e n n −=                            (3.12) 

where λ is the average arrival EV number at each time step. The charging duration 
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tc follows a negative exponential distribution. 

( ) ct

cf t e
 −

=                                             (3.13) 

where μ is average number of EVs that finish charging and leave the CS at each 

time step. According to the queuing theory, the dispatchable EV number is N PPPP

avi
PPPP=λ/μ, 

and the available EV power PPPPP

FL,avi
PPPP is  

FL,avi avi EV

rP N p=                                         (3.14) 

where EV
 

r is the rated power of chargers in the CS, and υ is a coefficient less than 

1 that ensures the dispatched EV’s charging requirement could be satisfied. 

On the other hand, load ramps exist extensively in the DS [160], which could 

drive the DS into balance violations and price spikes if not properly handled [161]. 

Due to the good controllability and fast responsive characteristics, EVs in the CS 

have the potential to eliminate the impacts of load ramps [162] to provide the ramp 

reserve Ri,t, which is taken into the consideration in the proposed model. 

Based on the available EV power, the market mechanism problem consists of 

(3.15) - (3.27), and the overall electricity purchasing cost is minimized for social 

welfare maximization [134]: 

min          
SE SN noCS CS

L S L noCS L

, , , , , ,m t m t m t m t i t i t

m m i

p P p P p P
   

− −                           (3.15) 

subject to                    min max B

, ,m m t mU U U m                                   (3.16) 

B
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m n
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U FL CS

, , , ,i t i t i tP P P i= +                                                 (3.22) 

F,min F F,max F

, , , ,m t m t m tP P P m                                                (3.23) 

FL,min FL FL,avi CS

, , , , ,i t i t i t i tP P R P i +                                          (3.24) 

max OP L

, ,mn t mn mnI I X mn                                                (3.25) 

max CS

, ,0 | | min( , ),i t i t iR R i                                             (3.26) 

CS

SYS

, | | |i t t

i

R R


                                                       (3.27) 

Inequality (3.16) is the voltage magnitude constraint.  (3.17) and (3.18) denote 

the typical AC power flow equality constraints. (3.19) compactly gives the 

capacity constraints for substations.  (3.20) assumes that there are no other loads 

except CS demand on nodes where new CSes are located. As shown in  (3.21) and 

(3.22), parts of loads are dispatchable.  (3.23) denotes the upper and lower limits 

of dispatchable load on nodes where no CSes are located. Inequality (3.24) denotes 

the sum of dispatched power and ramp reserve does not exceed the maximum 

available power. Inequality (3.25) enforces feeder capacity constraints. (3.26) 

indicates that the reserve provided by the CS are limited by the maximum reserve 

as well as their physical ramp rates Δi. (3.27) requires that the sum of the reserve 

should meet the system requirements.  

In this optimization model, network parameters, power flow limits and output 

limits are known data for the optimization. Some required data such as load 

demand and TF levels are forecasted by the market operators to solve this DS 

market optimization model. The control variables include P
F 

m,t and P
FL 

i,t  et al, while 

the state variables include Um,t and θmn,t. Those variables could be obtained by 

solving this social welfare maximization problem with their initial values being 

assumed in the beginning of the solving process. According to the classical LMP 
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theory [162-164], the LMPs equal to the Lagrangian multipliers (p
LMP 

i,t  and p
LMP 

m,t ) 

obtained by solving the proposed market mechanism optimization (3.15)-(3.27). 

p
L 

m,t is offer/bid price of  node m at time t. P
noCS 

m,t is active power demand at node 

m of ΩPPPP

noCS
PPPP at time t. U

max 

m  and U
min 

m  are maximum and minimum acceptable voltage 

magnitude of node m. ΩPPPP

B
PPPP is set of all system nodes. P

S 

m,t, Q
S 

m,t are active and reactive 

power provided by the substation at node m at time t. P
L 

m,t, Q
L 

m,t are active and 

reactive power demand at node m at time t. S
0 

m is apparent power capacity of the 

existing substation at node m. S
SE 

m  is added apparent power capacity of the existing 

substation at node m. S
SN 

m is apparent power capacity of the candidate substation at 

node m. P
U 

m,t is fixed active power demand at node m of ΩPPPP

noCS
PPPP at time t. ΩPPPP

F
PPPP is set of 

nodes with dispatchable demands in ΩPPPP

noCS
PPPP. P

F 

m,t is dispatched active power demand 

at node m of ΩPPPP

F
PPPP at time t. P

FL 

i,t  is dispatched power CS i offered to EVs at time t. P

U 

i,t  is Fixed power the CS i offers to EVs at time t. P
F,max 

m,t  and P
FL,min 

m,t  are maximum 

and minimum demand of P
F 

m,t. P
FL,min 

i,t  is minimum demand of  P
FL 

i,t . Imn,t is current 

magnitude of feeder mn at time t. I
max 

mn  is maximum acceptable current magnitude 

of feeder mn. R
max 

i,t  is maximum reserve at the node where CS i locates at time t.     

R
SYS 

t  is system-wide ramping reserve requirements at time t. 

3.3.4 The Centralized Planning Model for Comparison 

Although it could be quite contrary to the reality, centralized planning model 

is still widely used in practice in some countries, even the CS company and DS 

have been operating independently and bears their own costs. This situation brings 

difficulties of the investment cost recovery for both the DS and CS companies and 

leads to the lack of incentives for constructing enough CSes and DS to facilitate 

the EV popularization. To simulate this situation, the centralized planning to 

maximize the expected system net benefits is therefore briefly introduced here as 

the comparison benchmark. 

Planning Phase: 
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subject to                         (3.9) and (3.11) 

Operation Phase:                    (3.15) - (3.27) 

0T0T0T0T(3.33) summarizes the overall net benefits, which consists of 5 terms: the first 

term is the income of electricity sales; the second term is the cost of power loss; 

and the last 3 terms are the construction, operation and maintenance cost of CSes, 

substations and feeders. The constraints of the planning model are the same as (3.9) 

- (3.11). The objective functions of operation model and constraints are the same 

as (3.15)0T0T0T0T-0T0T0T0T(3.27). 0T0T0T0uCS and vDC
 PPPPof the bargaining model for comparison are calculated 

based on the centralized planning situation according to the objectives (3.5) and 

(3.6).  

3.3.5 Scenario-based Approach for Uncertainty Consideration 

0T0T0T0TVarious uncertainties exist in the future CS and DS planning, which should be 

properly considered to minimize risk, avoid unpredicted losses and minimize 

operational problems. Load demand levels, TF levels, penetration levels of 

renewable energy sources, and penetration levels of EVs are the four uncertainties 

studied in this work. Chance constrained optimization and robust optimization are 

frequently used to cope with uncertainties, but such methods have drawbacks such 

as not able to economically quantify the risks bought by uncertainties. Therefore, 

scenario-based approach is utilized in this thesis to deal with uncertainties involved 
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in the planning and operation processes, and the mentioned four uncertainties are 

stated by the vector as 

D EV RE s[ , , , ]s s s s s s =   P TF                                 (3.29) 

where Φs represents scenario s; 0T0T0T0TP
D 

s0T0T0T0T

 is the load demand vector (including demands 

of all nodes) in scenario k; TFs  is the TF vector (including TF passing by all nodes) 

in scenario k; 0T0T0T0Tβ
EV 

s0T0T0T0T

 and 0T0T0T0Tγ
RE 

s0T0T0T0T

 are the penetration levels of EVs and renewable energy 

sources in scenario k, respectively. In general, the uncertainties of penetrations of 

EVs and renewables can hardly be derived from the historical data and are 

categorized into nonrandom uncertainties. Typical scenarios of this kind of 

uncertainties could be predefined in line according to the factors such as subsidy 

policies, battery performance and renewable purchasing cost. On the other hand, 

as described in Section III.A, the load and TF levels could be predicted by the 

historical data and are categorized into random uncertainties. Deviation strategy is 

applied to the predicted results of this kind of uncertainties [18][58], and the 

typical scenarios are generated. For example, if 3 typical scenarios for TF levels 

are needed, they could be assumed as (1-α%) × forecasted value, forecasted value, 

and (1+α%) × forecasted value. 

Based on the generated scenarios, the mathematical model considering 

uncertainties is summarized as 

0T0T0T0TObjective                    0T0T0T0T ( , )
s

s s s s

s

π f


 X                                   (3.30) 

0T0T0T0Tsubject to         0T0T0T0T

min max s( , )s s s s s s   H H X H                    (3.31) 

s( , )=s s s s G X 0                             (3.32) 

s

=1s

s

π


                                         (3.33) 

0T0T0T0Twhere fs  is the objective function of the planning or operation phases in different 

scenarios, including the cooperative planning model, centralized planning model, 

and the market operation model aforementioned. Xs  is the decision variable vector; 
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(3.31) and (3.32) represent the inequality and equality constraints of different 

scenarios. πs is scenario occurrence probability of scenario s, and (3.33) ensures 

the total probability equals to 1. 

3.4  Solution Methodology 

Step 1：Initialization Step 2：Update Solutions

Step 3：Stop Criteria Checking 

and Results Outputting
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Fig. 3.2  The programming flow chart 

Fig. 3.2 illustrates the programming flow chart of the planning and operation 
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of CS and DS corresponding to the model in Fig. 3.1. In the planning phase, 

locations of CSes, constructions of substations and cable selections of feeders are 

regarded as decision variables. It is a typical mixed integer nonlinear optimization 

and cannot be easily solved by conventional solution methods, thus the binary 

particle swarm optimization algorithm (BPSO), which is a population-based 

stochastic optimization algorithm inspired by bird flocking or fish schooling [135], 

is applied to solve this problem. 

An initial swarm composed of nPPPP

P
PPPP D-dimension particles according to decision 

variables is created. Two formulas are used to describe the particle’s behaviors. 

Formula (3.39) defines the velocity of the particle, and formula (3.40) denotes the 

location of the particle. On each dimension d: 

1

1 2( )+ ( )k k k k k k

id id id id gd idv v c p x c p x  + = + − −                        (3.34) 

1

1

1

1 ( ) ( )

0 ( ) ( )

k

k id

id k

id

rand S v
x

rand S v

+

+

+

 
= 


                                  (3.35) 

where v
k 

id and x
k 

id are the velocity and the position on dth dimension of ith particle 

in kth iteration. p
k 

id represents the dth dimension of the best solution of each particle 

in kth iteration. p
k 

gd denotes the dth dimension of the best location searched by all 

particles in the particle swarm in kth iteration. ω represents the inertia weight: 

max max min max( ) /k k   = − −                                 (3.36) 

where ω PPPP

max
PPPP and ω PPPP

min
PPPP are the maximum and minimum values of the inertia weigh.  

kPPPP

max
PPPP is the total number of iteration. c1 and c2 are acceleration constants. ξ and η 

denote random numbers between 0 and 1. The S(v
k+1 

id ) in (3.35) could be expressed 

as S(v
k+1 

id )=1/(1+exp(-v
k+1 

id )), which produces a value between 0 and 1. As shown in 

(3.35), a number is generated randomly in (0, 1) and compared with S(v
k+1 

id ) to 

determine whether x
k+1 

id  equals to 0 or 1. Before transferring data to the operation 

phase, each particle will be screened for its validity, for any invalid particle that 

does not satisfy constraints (3.9)-(3.11), a small enough value is assigned to the 

fitness function value to avoid unnecessary calculation and reduce the run time of 
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the program. This process is denoted as the “Feasibility check” in Fig. 3.2. 

The solution obtained by the BPSO cannot be guaranteed to be the global 

optima because the algorithm is essentially a heuristic evolutionary method, but 

BPSO could be repeated for multiple times to avoid the randomness of the results. 

Besides, the global convergence of this algorithm could be verified by the method 

of exhaustion because the planning problem has a finite total number of feasible 

solutions. Moreover, despite that the implementation of BPSO may have heavy 

computational burden, the proposed planning model is not time critical, and hybrid 

technologies or parallel strategies [166] could effectively improve the computation 

efficiency.  

For each valid particle in the planning phase, results of distribution LMPs and 

dispatchable loads of nodes (including dispatchable CS demand) can be obtained 

from the computation in the operation phase. The proposed market participation 

model is a complicated nonlinear programming (NLP) problem with a large 

number of constraints, which is solved by the primary-dual interior point method 

to improve the computing efficiency. Then the fitness function value of each valid 

particle will be calculated based on the results of the two phases. In each loop, the 

optimal position of each particle and the best position of the particle swarm are 

found according to values of the fitness function. Finally, the optimal position of 

the particle swarm in the last step is selected as the best plan to achieve the 

negotiation. 

3.5  Case Studies 

In this section, results of the centralized planning are first obtained for 

benchmarking with the NBS. In addition, Nash bargaining planning with fixed 

electricity prices is studied and compared with the planning considering LMP 

model. The robustness of the Nash bargaining model is also verified with various 

disagreement points. 
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3.5.1  Test System and Experiment Data Description 

As shown in Fig. 2.18, an urban area in UK with coupled distribution and 

transportation system is employed to demonstrate the effectiveness of the proposed 

methodology. In the planning process, it is necessary to consider the nature of load 

and factor in annual load increment [170], because the loads do not grow uniformly 

in the whole area. Therefore, as shown by the Lateral 1-3 in Fig. 3.4(a), the loads 

are divided into 3 categories: commercial, industrial, and residential, while the 

Lateral 4 composites loads of the 3 kinds. The annual load increment factors for 

the Lateral 1-4 are set to be 3%, 4%, 5% and 4%. The normalized load patterns of 

the 3 kinds of loads in UK are shown in Fig. 3.3. Detailed description of the DS 

system parameters and load data natures could be found in [167-168].  

 

Fig. 3.3  Normalized load patterns of different load categories in the UK [169] 

The candidate sets for CSes, SSs and feeders should be predefined for the 

planning. There are 2 major principles influencing the selection of CS candidates 

[46]: The service radius of each CS, RCS, should not exceed the EV’s driving range 

d
E 

EV; The shortest distance of 2 neighboring CSes, DCS should be neither too close 

nor exceed their total service radius. The principles are mathematically described 

as 

E

CS EVR d                                               (3.37) 

2CS CS CSR D R                                           (3.38) 
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where DCS  could be calculated by Dijkstra or Floyd shortest path algorithms. Other 

perspectives such as location adaptability and environmental friendliness should 

also be considered to choose the proper locations into the CS candidate sets. The 

feeders should be correspondingly planned to match the development of CSes.  For 

each candidate CS, 3 possible feeders which connect the CS and CS’s neighboring 

nodes with relatively short length are chosen as the candidate feeders. Based on 

the proposed principles, there are five candidate locations (node 33-37) for the 

construction of three CSes (CS1, CS2, and CS3), which are on the roads of A5, 

A40, A41, A404 and A1, respectively [167]. The capacity of the CS is 0.5 MW.  

 

(a) 38-bus DS 

 

(b) The centralized plan 

Fig. 3.4  The 38-bus DS and the centralized planning result (NF: new feeder; 

NSS: new substations; RSS: reinforced substations) 
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Table 3.1 Reinforcement/Construction Costs for Substations 

Substations S1 S2 S3 

Locations Node 1 Node 4 Node 6 

Initial capacity (MW) 2 -- -- 

Reinforcement (MW) 2 -- -- 

Reinforcement Cost 

(10PPPP

3
PPPPUS$) 

140 -- -- 

Planned (MW) -- 2 1.5 

Construction Cost 

(10PPPP

3
PPPPUS$) 

-- 300 250 

Lengths of candidate feeders connecting the CS and the DS node are summarized 

in Table 3.4 with the impedance of 0.2359 + j0.2402 Ω/km. Loads of CSes are 

assumed dispatchable and be able to provide ramp reserve. The reserve 

requirement for this system is 0.45 MW. The max reserve quantity for each 

charging station is 0.25 MW and the max ramp rate for each CS is 0.24 MW/h. 

Fig. 3.4(a) is the corresponding distribution network of the test system. The time 

horizon for the planning considered here is 5 years. Loads in node 13, 20, and 23 

are set to be controllable. On nodes with both flexible and inflexible loads, the 

proportion of its inflexible loads and the maximum of its flexible loads are 70% 

and 30%, respectively. 2 wind power turbines are located at node 2 and node 5. 

An existing substation S1 is located in node 1 with reinforcement options. Two 

new candidate substations (S2 and S3) are located at node 4 and node 6. The 

reinforcement or construction costs for substations are descripted in Table 3.1. The 

generator offers and controllable load bids are listed in Table 3.2 [137], the 

parameters of construction, operation, and maintenance costs of CSes are detailed 

in Table 3.3 [77] with the operation and maintenance cost of each CS estimated as 

5% of its construction cost. The service charge coefficient ωc and ξc are assumed 

20% and 15%, respectively. For simplicity, the petrol price is assumed constant. 
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For the BPSO, ω PPPP

max
PPPP=0.9, ωPPPP

min
PPPP =0.4, kPPPP

max
PPPP =1000, c1=2, c2=2, nPPPP

P
PPPP is 50, D = 23. The 

initial particle position and velocity are randomly generated. 

Table 3.2 the SS Offers and Load/CS Bids (US$/MWh) 

SS CS1 CS2 CS3 Node13 Node20 Node23 

100 150 150 150 120 120 120 

Table 3.3 Costs of CSes 

Candidate 

CSes 
Locations c

CSC 

i  (10PPPP

3
PPPPUS$) 

c
CSOM 

i  

(10PPPP

3
PPPPUS$) 

1 33 650 162.5 

2 34 260 65 

3 35 350 87.5 

4 36 420 105 

5 37 530 132.5 

Table 3.4 Lengths of Candidate Feeders 

Feeder 

Number 

Lengths 

(m) 

Feeder 

Number 

Lengths 

(m) 

Feeder 

Number 

Lengths 

(m) 

32 624 38 436 43 693 

33 500 39 780 44 580 

34 562 40 690 45 532 

35 686 41 770 46 498 

36 562 42 596 47 800 

3.5.2  Scenarios Description 

Based on the DBN forecasted results in Chapter 2, 3 scenarios, 0.9×forecasted 

value, forecasted value, and 1.1×forecasted value, are constructed for the TF levels 

and load levels respectively. Scenarios for the penetration levels of EVs and 

renewables are assigned in a similar way, setting the penetration values with 0.2 

and 0.4 (proportions in all vehicles or total power). For example, the vector [1.1, 

0.9, 0.4, 0.2] stands for the scenario that the TF is 1.1 times of the forecasted value, 

load level is 0.9 times of the forecasted value, the penetration of EV is 0.4 and the 

penetration of renewables is 0.2. Besides, the occurrence probability is set to be 

the same for each scenario.  
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3.5.3  Results of the Centralized Planning Benchmark 

The centralized plan is put forward with the goal of maximizing the net benefits 

carried out by a single payoff. As shown in Fig. 3.4(b), the solution for the 

centralized planning is to have the three CSes constructed on node 33, 35, and 37 

via new Feeder 32, 43, and 36, respectively, with substation S1 upgraded to higher 

capacity (4 MW), substation S3 constructed and no upgraded feeders. The total net 

benefit is US$12,836,870 with the benefits of CSes and DS being US$9,726,360 

and US$3,110,510, respectively. 

3.5.4  The Nash Bargaining Solution 

Aiming to have a fair plan to both the DS and CSes, the proposed Nash 

bargaining approach is used instead with its solution shown in the Fig. 3.5(a). The 

locations of CSes are node 33, 34 and 37 via new Feeder 32, 45 and 36, 

respectively. Again, Substation S1 need to be reinforced with higher capacity and 

no feeders should be upgraded. Substation S3 needs to be constructed. Meanwhile, 

the benefits of CSes and DS are US$9,271,810 and US$3,365,920. 

3.5.5  Discussion: A Comparison between the two Schemes 

In the deregulated environment, the centralized mode itself, which assumes 

both the DS and CSes belonging to one entity, is contrary to the facts and its 

solution is therefore inappropriate for the real world. Compared to the centralized 

program, Nash bargaining tries to achieve the most fair and Pareto-efficient payoff 

allocation for the two independent participants by choosing suitable CS locations 

and new feeders. The outcomes of the proposed centralized and negotiated 

schemes, including the benefits and the construction plans, are summarized in 

Table 3.5. 
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(a)  Without fixing any electricity price 
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(b) With fixed electricity prices 

Fig. 3.5 The Nash Bargaining Solution without and with fixed electricity prices 

(NF: new feeder; NSS: new substations; RSS: reinforced substations) 

Table 3.5 Outcomes of two methods of planning 

Type 
uPPPP

CS 

(US$) 

vPPPP

DC 

(US$) 

Construction Plan 

CS NF NSS RSS 

Centralized 

Plan 
9726360 3110510 

33, 35, 

37 

32, 43, 

36 
S3 S1 

Nash  

Bargaining 
9271810 3365920 

33, 34, 

37 

32, 45, 

36 
S3 S1 

CS: the location of CS; NF: new feeder; NSS: new substations; RSS: reinforced 

substations 

It can be found that the CS and feeder planning results are different in the 2 

mechanisms. As shown in Table 3.5, the DS will gain 8.21% more payoffs in the 

case of Nash bargaining (US$3,365,920 vs US$3,110,510), which is believed to 

boost the DS planner’s motivation to construct facilities including feeders and SS 
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to support the development of EVs. The payoff gap between DS and CS (defined 

as uPPPP

CS
PPPP-vPPPP

DC
PPPP) is also 10.73% smaller in the case of Nash bargaining (US$5,905,890 

vs US$6,615,850), which indicates a more fair solution for the DS and CS could 

be achieved by the proposed negotiated model. 

3.5.6  Nash Solutions with Fixed Electricity Prices 

In the traditional DS, usually the electricity prices on all nodes are set to a fixed 

value decided by the DSO. This widely used fixed electricity price mechanism 

may lead to congestion, voltage collapse, and other problems in the DS [59]. To 

show the advantage of the proposed LMP model, the traditional DS price 

mechanism with fixed electricity price values is utilized as the benchmark case 

and compared with the proposed novel LMP model. It is assumed that in the 

benchmark case, the electricity price of all loads is set to a fixed average value 

over the entire timespan. Results with different fixed electricity prices are detailed 

in Table 3.6. It can be observed that the Nash solution cannot be obtained until the 

price increases to 111 US$/MWh. The planning solution with fixed electricity 

price of 111 and 112 US$/MWh is demonstrated in Fig. 3.5(b). When the price is 

below 111 US$/MWh, Nash bargaining fails, and no agreement is achieved 

between the CS company and the DS. This is because the benefit of the DS is less 

than zero when the price is not high enough, and the negotiation result is below its 

threating point. 

Table 3.7 shows the electricity prices of the CSes in the LMP model. It is clear 

that the electricity price obtained via the market mechanism is significantly higher 

than the minimum found using the fixed electricity price model in Table 3.6. The 

DS would therefore make more profits by providing electricity service to the CSes 

as well as EV users, and the risks of Nash bargaining failure could be avoided with 

acceptable electricity prices for both DS and CSes by using the LMP model. It 

could therefore be concluded that well-designed market mechanism, as described 

in this work, will effectively help the participants reach the planning bargaining 
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solutions, and facilitate the development of EV CSes as well as the popularization 

of EVs. 

Table 3.6 Nash Solutions with fixed electricity prices 

Electricity 

Price(US$

/MWh) 

uPPPP

CS 

(US$) 

vPPPP

DC 

(US$) 

Construction Plan 

CS NF NSS RSS 

108 -- -- -- -- -- -- 

109 -- -- -- -- -- -- 

110 -- -- -- -- -- -- 

111 9344270 43542 33, 36, 37 38, 40, 46 S3 S1 

112 9356880 229819 33, 36, 37 38, 40, 46 S3 S1 

CS: the location of CS; NF: new feeder; NSS: new substations; RSS: reinforced 

substations 

Table 3.7 Electricity prices in the LMP model 

Node Number 
Electricity 

Price(US$/MWh) 

34 116.734 

35 149.934 

37 149.958 

3.5.7  Nash Solutions with Different Disagreement Points 

To test the robustness of the proposed Nash bargaining model, results are 

obtained by choosing different disagreement points. Except the disagreement point 

(0, 0), another 5 disagreement points are selected as benchmarks, the results of 

which are shown in Table 3.8. It can be seen that Nash solutions remain stable 

although disagreement points vary in a certain range. The planning result changes 

only when the disagreement point of one participant becomes very large, for 

example, US$6×10 PPPP

6
PPPP required by the CS. The results demonstrate that the proposed 

model is promising for practical application. 
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Table 3.8 Nash Solutions with Different Disagreement Points 

Disagreement 

Point 

(10PPPP

6
PPPP US$) 

uPPPP

CS 

(US$) 

vPPPP

DC 

(US$) 

Construction Plan 

CS NF NSS RSS 

(0, 0) 9271810 3365920 
33, 34, 

37 

32, 45, 

36 
S3 S1 

(2, 2) 9271810 3365920 
33, 34, 

37 

32, 45, 

36 
S3 S1 

(3, 1) 9271810 3365920 
33, 34, 

37 

32, 45, 

36 
S3 S1 

(3, 3) 9271810 3365920 
33, 34, 

37 

32, 45, 

36 
S3 S1 

(4, 3) 9271810 3365920 
33, 34, 

37 

32, 45, 

36 
S3 S1 

(6, 1) 9726360 3110510 
33, 35, 

37 

32, 43, 

36 
S3 S1 

CS: the location of CS; NF: new feeder; NSS: new substations; RSS: reinforced 

substations 

3.6  Summary 

This chapter focuses on the cooperative planning of CSes and DS. The 

proposed Nash bargaining strategy is a joint program to plan for the future 

development of EV CSes and DS. Different from most existing research, this work 

considers the practical situation that CSes and the DS do not belong to one entity 

and operate in a deregulated market environment. The obtained Nash bargaining 

solution is an agreement achieved between both participants to ensure players are 

treated fairly. Moreover, a new EV participated LMP model is applied in this 

chapter to realistically simulate the impact of electricity market environment on 

the planning results, which is proved for its immediate and far-

reaching significance to promote the development of CSes as well as EVs. 
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Chapter IV 

Multiple Group Search Optimization based on 

Decomposition for Multi-Objective Dispatch with 

Electric Vehicle and Wind Power Uncertainties 

4.1  Introduction 

Once CSes are constructed according to the planning results, the operation of 

CSes should be investigated to ensure the high efficiency and reliability of CSes 

and DS. Electric power dispatch is an essential function required to determine the 

optimal steady-state operation of dispatchable generating plants. While the number 

of EVs increases rapidly, the application potential of EVs should be accounted in 

electric power dispatch with several conflicting and competing objectives such as 

providing V2G service or coordinating with wind power. Moreover, the 

uncertainties of wind power and EVs should be properly handled while the power 

dispatch involves both wind power and EVs. Nevertheless, research considering 

these aspects is rarely conducted in the literature yet. 

In this chapter, an innovative highly constrained multi-objective dispatch 

model considering the uncertainties of EVs and wind power is set up. Furthermore, 

a multiple group search optimization based on decomposition (MGSO/D) is 

proposed to solve this multi-objective optimization problem (MOOP). Specifically, 

the decomposition approach aims to reduce the computational complexity, and the 

innovatively incorporated producer-scrounger model aims to improve the diversity 

and spanning of the Pareto-optimal front (PF). Meanwhile, the estimation error 

punishment is utilized to take account of the uncertainties. The performance of 

MGSO/D and the effectiveness of the uncertainty model are investigated on the 
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IEEE 30-bus system (2 wind farms and 2 CSes) and 118-bus system (6 wind farms 

and 5 CSes).  

4.2  Formulation of the Multi-objective Power Dispatch Problem  

4.2.1  Optimization Objectives Considering Uncertainties 

Extensively existed uncertainties in the power system operation with a high 

penetration of EVs and wind power should be properly tackled. Here, the 

estimation error punishment method [98][138] are utilized to coordinate the 

stochastic availability of V2G and wind power, and reduce the loss resulted from 

uncertainties. In addition, the objective functions involved REs or EVs are derived 

according to the probability density functions (PDFs) to account their randomness. 

Meanwhile, operations of the smart grids usually have conflicting multi-objectives, 

and a family of Pareto-optimal solutions that are the acceptable tradeoffs among 

the objectives should be found. In this work, reducing generation cost, emissions 

and power loss are chosen as the most important objectives of the system operators. 

      (1) Generation Cost Objective: 

Because of the energy storage ability of EV batteries, it is widely believed that 

EVs could be coordinated dispatched to provide the V2G power to the power 

system [92][98]. Due to the length limitation, this work only focuses on EV power 

dispatch in the system operation and omits the EV information interaction or 

market participation problems. All EVs charged on the same bus are modeled as 

an aggregator and provides V2G power as a virtual power plant (VPP). On this 

premise, the uncertainties of V2G power as well as wind power are considered, 

and the battery degradation resulted by V2G is accounted.  

Therefore, the economic objective f1 is formulated in (4.1) to minimize the 

expected total generation cost, which is consisted of 3 components: The first 

component denotes the cost summation of thermal generators. The second and 

third parts represent the cost of EVs V2G power and the cost of wind power 
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generators respectively. EVs and wind power uncertainties are incorporated to this 

objective function. 
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where N PPPP

W
PPPP, N PPPP

T
PPPP and N PPPP

E 
PPPPare the numbers of wind power generators, thermal 

generators, and nodes with V2G facilities installed; Tk is the active power 

generation of the kth thermal generator; C
T 

k  is the cost of the conventional generator; 

En and E
AV 

n  denotes the scheduled V2G power and actual available V2G output on 

node n; C
E 

n , C
E,p 

n  and C
E,r 

n  are the V2G direct operation cost, underestimated penalty 

cost and overestimated penalty cost; C
B 

n  is the battery degradation cost; Wm  and    

W
AV 

m  are the scheduled and the actual available output of wind generator m; C
W 

m , C

W,p 

m and C
W,r 

m are the direct cost, underestimated penalty cost and overestimated 

penalty cost of the mth wind generator, respectively. 

The first component (thermal generation cost) is non-convex because of the 

valve-point effects, which could be modeled by ripple curves [139]. Therefore, the 

cost function for a conventional generator is represented as a combination of a 

quadratic function and a sine component term: 

T 2 min( ) | sin[ ( )] |k k k k k k k k k k kC T a T b T c d e T T= + + + −                      (4.2) 

where ak, bk, ck, dk and ek  are cost coefficients for the kth conventional generator. 

T
min 

k  is the minimum active power output of the kth thermal generator. 

The second component (cost of V2G power) is divided into four parts, 

including C
E 

n (En), C
E,p 

n (E
AV 

n , En), C
E,r 

n (E
AV 

n , En) and C
B 

n (En) [92][140][141]. The first 

part is the scheduled power direct cost C
B 

n (En), which comes from the electricity 

purchasing cost to charge the batteries of EVs: 



88 

( )E E

n n n nC E g E=                                                (4.3) 

where g
E 

n  represents coefficients of direct operation cost. 

Based on the conclusion of [99], the PDF of the actual V2G power fP (E
AV 

n ) is 

assumed a normal distribution: 

V 2 A 2 2A V( ) (1/ 2 ) exp[( ) / (2 )]P nnf EE   =  −                         (4.4) 

where μ and  are the mean and standard deviation of the normal distribution 

respectively. Because the outputs of EVs are highly stochastic, the system power 

dispatch based on the forecasted data will have deviations. If the scheduled power 

is less than the available power, surplus power has to be wasted. In the other aspect, 

if the scheduled power is more than the available power, reserve service is needed 

to compensate this imbalance. According to the PDF in (4.4) and this estimation 

error punishment principle, the second and third parts, underestimated penalty cost 

C
E,p 

n (E
AV 

n , En) and overestimated penalty cost C
E,r 

n (E
AV 

n , En), are derived as 

( ) ( ) ( )E,p AV E,p AV AV AV,
n

n n n n n n P n n
E

C E E E E f E dE
+

= −                                            

           

2

2

( )E,p E,p

2= ( )[1 ( )+ ]
2 2 2

nE

n n n
n

E
E erf e



   


 

− −

− 
− +                             (4.5) 

( ) ( ) ( )E,r AV E,r AV AV AV

0
,

nE

n n n n n n P n nC E E E E f E dE= −                                              

22
E,r

2 2

( )
=( / 2 ){exp( ) exp[ ]}

2 2

n
n

E
  

 

− −−
 −                                      

E,r( / 2)( ){ [ / ( 2 )] [( ) / ( 2 )]}n n nE erf erf E     + − − −          (4.6) 

where erf(•) represents the Gauss error function, which could be calculated with 

numerical integration; ɛ
E,p 

n  and ɛ
E,r 

n  represent coefficients of underestimated penalty 

and overestimated penalty cost of the V2G power on node n, respectively. 

Providing V2G power by EVs will accelerate the battery degradation, the cost 

of which could be calculated in proportion to the V2G power. Besides, additional 

compensation should be paid to motivate EV owners to participate in the V2G 

service. Hence the fourth part, total degradation cost C
B 

n (En), should be set higher 
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than the direct battery degradation cost: 

B BI C B DOD( ) (1 )[ /(1000 )]n n nC E r C L E d E= +                          (4.7) 

where r is the EV aggregator operation cost coefficient for additional 

compensation; C PPPP

BI
PPPP denotes the battery investment cost; L PPPP

C
PPPP corresponds to EV’s 

battery cycle life at a certain depth of discharge (DoD); EPPPP

B
PPPP represents EV’s battery 

capacity; dPPPP

DOD
PPPP is the DoD to determine LPPPP

C
PPPP; the number 1000 is applied to convert 

the kWh to MWh. 

Similarly, the cost of a wind power generator consists of 3 parts, C
W 

m , C
W,p 

m and 

C
W,r 

m . The direct cost C
W 

m  is: 

( )W W

m m m mC W g W=                                            (4.8) 

where g
W 

m  denotes the coefficient of direct cost. C
W 

m  accounts the cost paid by 

system operator to the wind power owners. It should be noted that C
W 

m  is 0 if the 

generators are owned by the system operator because the incremental cost of wind 

power is 0. As stated before, the underestimation and overestimation of wind 

power will lead to additional losses. Considering this uncertainty, the expectations 

of the underestimated penalty cost C
W,p 

m (W
AV 

m ,Wm) and overestimated penalty cost 

C
W,p 

m (W
AV 

m ,Wm) are derived as [138]: 

( ) ( ) ( )
r

W,p AV W,p AV AV AV,
m

m

w

m m m m m m W m m
w

C W W W W f W dW= −               (4.9) 

( ) ( ) ( )W,r AV W,r AV AV AV

0
,

mw

m m m m m m W m mC W W W W f W dW= −             (4.10) 

where ɛ
W,p 

m  and  ɛ
W,r 

m  denote coefficients of underestimated penalty and 

overestimated penalty cost for the mth wind generator. w
r 

m is the rated wind power 

of the mth wind generator and fW(W
AV 

m ) corresponds to the PDF of wind power, 

which can be described as follows [138]: 

( )AV 1(1 ) (1 )
] exp{ [ ] }[m m m

W m

l v l v
f

lv

h
W

h h

   −+ +
−=              (4.11) 

where vm is the wind speed of the mth wind generator, h and γ accounts for the 

scale factor and sharp factor at a given location, l denotes the ratio of linear range 

of wind speed to cut-in wind speed and ρ represents the ratio of wind power output 
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to the rated wind power. It should be noted that the integration results could be 

easily obtained by the quadrature methods. 

(2) Emission Objective 

The second objective aims to reduce emissions from thermal power plants 

[154]. The overall emission in ton/h could be formulated as 

( )( )
T

2 2

2

1

10 exp
N

k k k k k k k k

k

f T T T    −

=

= + + +                     (4.12) 

where αk, βk, ζk, χk and λk are the emission coefficients of the kth thermal generator. 

(3)  Power Loss Objective 

The third objective is to reduce the system power loss. The goal is to minimize 

the network transmission loss with several operating constraints, which could be 

solved using Newton-Raphson method and derived as follows: 

L

LOSS 2 2

3

1

( 2 cos( ))
N

ij i j i j i j

ij

f P G V V VV  
=

= = + − −                     (4.13) 

where N PPPP

L
PPPP represents the number of transmission lines. Vi, Vj are respectively the 

voltage magnitude of bus i and bus j. δi and δj denote the voltage angle of node i 

and node j, and Gij corresponds to the conductance of the line between node i and 

j. 

4.2.2  MOOP Constraints 

(1) Power Balance Constraints: 

Power balance equality constraint indicates that the total electric power 

generation from thermal units, wind power and V2G power should be equal to the 

total power loss PPPPP

LOSS
PPPP plus the total load P PPPP

D
PPPP： 

T W E

D LOSS

1 1 1

0
N N N

k m n

k m n

T W E P P
= = =

+ + − − =                                (4.14) 

This constraint could be satisfied by redistributing the total active power output 

after the power flow calculation. 

(2) Transmission Line Apparent Power Constraints: 
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This constraint is to guarantee that the apparent power of the transmission line 

from bus i to j (and j to i) Sij (and Sji) should be limited within its maximum loading 

capacity Sij,max for secure operation of transmission system. It can be formulated 

as: 

L

,maxmax[| |,| |] 1,2,...,ij ji ijS S S ij N =                              (4.15) 

(3) Generation Capacity Constraints： 

In practice, thermal generators have prohibited operating zones (POZs) 

because of the physical constraints of power plant components (e.g. shaft bearing 

tremor is magnified in some operating zones) [142]. For a POZ, the generator 

could only operate below or above this zone. These disconnected sub-zones form 

a non-convex decision space and make the proposed MOOP highly nonsmoothed, 

non-continuous and nonlinear. The output delivered by the kth generator while 

considering POZ is given in (4.16).  

min

,1

, 1 ,

max

,

, 2,3,...,

,

lb

k k k

ub lb

k u k k u s

ub

k u k k s

T T T

T T T u NP

T T T u NP

−

  



  =


  =

                             (4.16) 

where T
min 

k , T
max 

k  are the minimum and maximum active output power of kth 

generator. T
lb 

k,u and T
ub 

k,u represent the lower and upper limits of the kth generator with 

uth POZ, and NPs corresponds to the number of POZ of kth generator. 

Besides, the generation capacity limits of the scheduled V2G power and wind 

power are stated as: 

min max

n n nE E E                                          (4.17) 

min max

m m mW W W                                        (4.18) 

where E
min 

n and E
max 

n  account for the lower and upper bound of the scheduled V2G 

power n while W
min 

m  and W
max 

m  account for the lower and upper limits of the 

scheduled wind power m.  
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4.3  Multiple Group Search Optimization based on Decomposition 

4.3.1   General Framework 

The proposed MOOP is very hard to solve and easily trapped by local optima 

due to its complicated nonconvex and nonlinear nature. To overcome this obstacle, 

a novel MGSO/D method, which combines 2 powerful optimization tools, is 

applied in this work. Firstly, decomposition strategy is used to divide the MOOP 

into a few subproblems to optimize simultaneously and reduce the computational 

complexity [143]. Secondly, the producer-scrounger model is innovatively 

incorporated as the main population generation methodology [104] in each 

subproblem to enhance the population diversity. Under this mechanism, the 

population is no longer evaluated iteratively like GSO, thus the efficiency of the 

proposed method is improved. To the best of authors’ knowledge, it is the first 

time to employ the combination of advantages of decomposition and producer-

scrounger mechanism to solve the proposed MOOP considering EVs and wind 

power uncertainties. 

4.3.2  Decomposition of the Proposed MOOP 

The Tchebycheff approach [143] is employed to decompose the MOOP with 

N PPPP

OBJ
PPPP objectives into C scalar optimization subproblems by adjusting the jth 

subproblem’s weight vector OBJ

T

1( ,..., )j j j

N
 = , and the objective function of the 

jth subproblem is  

 
OBJ1

min ( | , ) max | ( ) |te j j

i i i
i N

g f z
 

= −x z x     x                       (4.19) 

where Ω is the decision (variable) space. OBJ

T

1= ( ,..., )
N

z zz is the reference point 

vector and zi is to store the best ith single objective fitness value for each i=1, …, 

N PPPP

OBJ
PPPP. At each run, MGSO/D will minimize all these C subproblems 

simultaneously, and the best solutions obtained so far for every subproblem 

constitute the population. The jth subproblem is optimized by using only the 
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current solutions of its neighborhood subproblems because it is believed that the 

neighboring subproblems’ optimal solutions should be close to each other and be 

helpful for the optimization. 

4.3.3  Innovatively Incorporated Producer-Scrounger Model 

Producer-scrounger model of GSO is an efficient framework inspired by the 

animal searching behavior. It is innovatively incorporated in the proposed 

algorithm for its merit of providing diverse and well-scattered population, which 

contributes to the resulted PF’s performance. The population of the GSO is defined 

as a group and individuals in the population are defined as members. GSO group 

consists of producers for resource searching, scroungers for joining resources 

uncovered by others, and rangers for performing random walks to avoid local 

optimum [104]. If the optimal solution is in an N-dimensional search space, each 

member has a current position R Nx  and a head angle φ= (φ1, …, φN-1) 
1R N− . 

The search direction of each member is a unit vector D(φ)= (d1, …, dN) R N , 

which can be solved from φ by a polar to Cartesian coordinate transformation 

[155]: 

1

1

1

= cos( )
N

q

q

d 
−

=

                                            (4.20) 

1

1=sin( ) cos( ) ( 2,..., 1)
N

j j q

q j

d j N 
−

−

=

 = −                           (4.21) 

1=sin( )N Nd  −
                                             (4.22) 

One subproblem and its Y-1 selected neighbor subproblem combines a 

searching group, and Y swarm members of each searching group are categorized 

into producers, scroungers and rangers to carry out different searching strategies: 

(1) Producer: 

The producer uses the food searching mechanism inspired from animals to find 

new optimal results. The member with the best single objective fitness is 

designated to be the producer. The solution of the chosen objective has the greatest 
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orders of magnitude among all objectives. The producer will scan the vision field, 

which is distinguished by the current position xp, maximum pursuit angle θmax 

1R , and maximum pursuit distance lmax 
1R , by randomly sampling 3 points [104]: 

a point at zero degree: 

1 max ( )z p prl= +x x D                                            (4.23) 

a point in the left-hand side hypercube: 

1 max 2 max( / 2)l p prl = + −x x D r                                     (4.24) 

and a point in the right-hand side hypercube: 

1 max 2 max( / 2)r p prl = + +x x D r                                     (4.25) 

where r1∈
1R  represents a normal distributed random number with average 0 and 

standard deviation 1; r2∈
1R N −
 denotes a uniformly distributed random sequence 

in the range (0,1). 

The producer tries to search the best point, and if there is a point in these 3 

points with better resource (better fitness value) than the current position, the 

producer will move to the point. If not, it will not change its position and update 

its head to a new angle φPPPP

new
PPPP: 

2 max

new = +r                                            (4.26) 

where αRRRmaxRRR∈ 1R  is the maximum turning angle. 

(2) Scroungers: 

Part of group members are chosen as scroungers to join the resources found by 

the producer, whose behavior is to move across for searching in the immediate 

area around the producer. This behavior of random walking toward the producer 

could be expressed as: 

3 ( )new

p= + −x x r x x                                        (4.27) 

where xPPPP

new
PPPP is the new position; rRRR3RRR∈R N

 is a uniform random vector in the range 

(0, 1); Operator “ ” figures the entry-wise product of 2 matrices. During this 
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scrounging, the scrounger will go on searching for other chances to join [104], and 

the scrounger’s head angle is updated by  (4.26).  

(3) Rangers: 

Other group members are rangers, which employ random walks to perform 

efficient searching that starts without cues leading to randomly distributed 

resources and benefits the population diversity. Ranger’s head angle is updated in 

the similar way of (4.26) but the αmax is set to be 2π to improve its searching 

ability: 

42new = + r                                             (4.28) 

where rRRR4RRR∈ 1R N −
 represents a uniform distributed random sequence in the range 

(0,1), and then the ranger selects a random distance a·lmax and moves to the new 

position: 

5 max ( )new newa r l= + x x D                                      (4.29) 

where r5∈
1R  denotes a normal distributed random number with mean 0 and 

standard deviation 1 and a∈ 1R is a constant. 

4.3.4  Solving Process 

The major steps of the framework are demonstrated below and depicted in Fig. 

4.1. 

Step 1) Initialization. 

Step 1.1) Set ER= Ø, where ER is the external repository [143] to preserve the 

nondominated solutions found during the search process. 

Step 1.2) Generate C evenly spread weight vectors λPPPP

1
PPPP, …, λPPPP

C
PPPP related to the C 

subproblems respectively. 

Step 1.3) Calculate the Euclidean distance between any 2 weight vectors and 

then figure out the B nearest weight vectors of each weight vector. For each 

j=1, …, C, define its neighborhood set to be NE(j)={j1, …, jB}, where 

are the B nearest weight vectors of λPPPP

j
PPPP. 1{ ,..., }Bj j

 
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Step 3

Check Stop Criteria and Output 

Results

Termination 

Criterion Satisfied?

Output ER

Yes

Input MOOP(1) and 

parameters

Set ER=Ø 

Generate weight vectors and figure out 

the closest weight vectors to each 

weight vector

Randomly generate and evaluate 

population members

Initialize head angles for the each 

subproblem solution

Step 1

Initializaition
Designate and update the producer, 

scroungers and rangers for each sub-

problem

Select one point as the new solution 

and apply a specific repair heuristic 

on it

Update the best single objective 

fitness value

Update neighboring 

solutions and ER

Step 2

Update Solutions

Initialize the best single objective 

fitness value

No

 

Fig.4.1 Flowchart of MGSO/D to solve the proposed problem 

Step 1.4) Randomly generate an initial population xPPPP

1
PPPP, …, xPPPP

C
PPPP. For the jth 

subproblem, calculate its fitness function value vector FVPPPP

j
PPPP=F(xPPPP

j
PPPP). Randomly 

initialize head angles φ for the solution of each subproblem. Initialize z 

randomly.  

Step 2) Updating subproblem solutions. 

For j=1, …, C, perform steps as follows: 

Step 2.1) Reproduction:  

(1) Producer Designate the best individual in B group members as the producer 

xPPPP

w
PPPP(φPPPP

w
PPPP) with the index w. 

(2)  Producing The producer makes producing by (4.23)-(4.26). 

(3) Scrounging Except the producer, randomly choose [80%·(Y-1)] members 

from B-1 group members as scroungers and carry out scrounging using (4.26)- 

(4.27). 

(4) Ranging Except the producer and scroungers, other members are rangers 
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and carry out ranging using (4.28)-(4.29). Then randomly select one point from 

the Y points as the new solution y. 

Step 2.2) Improvement: apply the greedy repair producer [144] on y to produce 

y' to eliminate the infeasible solutions and improve the efficiency of the solving 

process. 

Step 2.3) The updating of z: for every i=1, …, N PPPP

OBJ
PPPP, when zi > fi(y'), set zi = 

fi(y'). 

Step 2.4) The updating of Neighboring Solutions: For every index i∈NE(j), 

if gPPPP

te
PPPP(y' | λPPPP

i
PPPP, z)≤ gPPPP

te
PPPP(xPPPP

i
PPPP| λPPPP

i
PPPP, z), set xPPPP

i
PPPP=y' and FVPPPP

i 
PPPP= F(y'). 

Step 2.5) The updating of ER: Omit all the vectors dominated by F(y') from 

ER, and add F(y') to ER otherwise. 

Step 3) Termination. 

If stopping criteria is met, terminate and export ER. If not, go back to Step 2). 

4.3.5  Performance Metrics of the Proposed MGSO/D Method 

It is hoped that the obtained PF by the MGSO/D could be close enough to the 

true PF. However, the true PF is very hard to figure out and guarantee, and the 

reference PF [145] is used instead. Here the PF solutions obtained by the NSGA-

II [146], MGSO [147], MOEA/D [143] and MGSO/D are ranked by dominance 

comparisons to select the reference PF. Afterwards, 4 indices are utilized to 

compare the PF solution quality of MGSO/D with other typical algorithms. 1) 

Convergence metric: measuring the closeness degree from the reference PF to the 

obtained PF. For each obtained PF, the minimum Euclidean distance between each 

solution on the obtained PF and solutions on the reference PF is computed, and the 

mean of these distances is defined as the convergence metric [146]. 2) Span metric: 

measuring the normalized Euclidean distance of the boundary solutions [148] for 

MOOP objectives, which estimates the spread of the PFs. 3) Spacing metric [149]: 

calculating the relative crowding distance between adjacent solutions on the 

obtained PF. This metric is adopted to evaluate the distribution uniformity of the 
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resulting PF. 4) lmax/lmin metric [150]: It is the ratio of maximum distance of 

consecutive Pareto points to the minimum distance, which is an indicator to 

measure the spatial distribution of PF solutions and can be the supplement of the 

spacing metric. 

4.4  Numerical Results and Analysis 

4.4.1  Investigation on the Modified IEEE 30-Bus System 

A modified IEEE 30-bus system is considered to evaluate the proposed model 

and algorithm for dual-objective dispatch. The topology and parameters including 

the thermal generation cost and emission coefficients can be found in [151]. 2 wind 

farms are located on node 10 and 15, while 2 EV CSes are located on node 3 and 

18. Their relevant information is respectively depicted in Table 4.1 [98][138]and 

Table 4.2 [98]. For fair comparisons, the maximum numbers of generations in 4 

benchmarks are equal to 200. To determine the optimum settings for each 

algorithm, 20 independent runs of each algorithm are carried out. The key settings 

for the algorithm are: Y=3, C=33, B=20. 

(1) Case 1： 

A dual-objective dispatch is studied to optimize the generation cost f1 and 

emission f2 in this case. The averages of 4 performance metrics on convergence, 

span, lmax/lmin and spacing measures over the 20 optimization runs for different 

algorithms are tabulated in Table 4.3.  

In this case, the reference PF used for computing the convergence metric 

consists of 257 nondominated solutions, in which 48.63% and 51.37% of the 

solutions are offered by MOEA/D and MGSO/D, respectively. It reveals that all 

of the solutions obtained by NSGA-II and MGSO are dominated by those obtained 

by MOEA/D and MGSO/D, and MGSO/D has contributed more to form the 

reference PF solutions than MOEA/D. It can also be observed that the solutions 

obtained by the proposed algorithm are closer to the true PF. 
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Table 4.1 Parameter setting 

Parameters Value Parameters Value 

γ 2,4 C PPPP

BI
PPPP/EPPPP

B 100$/kWh 

l 2 L PPPP

C 1000 

vm 5m/s dPPPP

DOD 0.8 

h 5,10 μ 1 

r 0.2  6 

Table 4.2 Cost coefficients of wind and V2G power 

Wind Generator Value V2G Power Value 

g
W 

m  10$/MWh g
E 

n  65$/MWh 

ɛ
W,p 

m   30$/MWh ɛ
E,p 

n  30$/MWh 

ɛ
W,r 

m  70$/MWh ɛ
E,r 

n  70$/MWh 

Table 4.3 Resulting statistics of performance metrics in Case 1 

Case 1  NSGA-II MGSO MOEA/D MGSO/D 

Convergence 0.040145 0.047759 0.017542 0.013515 

Span 0.457428 0.913644 1.052471 1.309735 

lRRRmaxRRR/lRRRmin 64.20240 58.00052 10.31539 7.460752 

Spacing 0.106931 0.219106 0.018393 0.017782 

It could be pointed out from Table 4.3 that the convergence metric of the 

proposed algorithm is much lower than those of other benchmarks, which means 

MGSO/D can most effectively obtain the non-dominated solutions in the separated 

feasible islands. Besides, the maximum normalized span indicates MGSO/D has a 

more powerful global exploratory capability than other algorithms. Furthermore, 

the proposed algorithm performs best in the lmax/lmin and spacing metric, and it 

illustrates that the PF outlines of proposed algorithm are more uniformly-

distributed. Therefore, it can be concluded the proposed algorithm can markedly 

outperform other 3 methods, and provides satisfactory performance on these 4 

indices. 

Table 4.4 listed the best solutions for emission and generation cost obtained by 

the boundary solutions in the PFs of the best runs of all algorithms and the 

corresponding PF solutions are plotted in Fig. 4.2. The results indicate that the best 

run of MGSO/D achieves outstanding diversity with 2 better boundary solutions 
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compared with other 3 algorithms. Meanwhile, the best PF with MGSO/D could 

find solutions with much better fitness on the objectives of the generation cost and 

the emission compared to other 3 algorithms. The decomposition approach helps 

MGSO/D have higher exploratory capability than MGSO. Meanwhile, the 

producer- scrounger model also enhances its searching ability than MOEA/D. 

Table 4.4 Comparison of best solutions in Case 1 

Case 1 
Best generation cost Best emission 

A B C D A B C D 

WRRR1 0.6012 0.5345 0.9047 0.9635 0.6009 0.5837 0.2351 0.3076 

WRRR2 0.4080 0.4399 0.6281 0.7434 0.8074 0.3430 0.0901 0.1709 

ERRR1 0.4587 0.2839 0.7785 0.4487 0.5431 0.4262 0.0084 0.0436 

ERRR2 0.1379 0.2580 0.0176 0.1578 0.0399 0.5514 0.0771 0.0090 

TRRR1 0.1351 0.1380 0.0500 0.0627 0.0928 0.0386 0.0620 0.3510 

TRRR2 0.1789 0.2679 0.1215 0.0680 0.0894 0.2669 0.4014 0.3937 

TRRR3 0.1989 0.2618 0.0588 0.1566 0.0947 0.3227 0.4991 0.4330 

TRRR4 0.2362 0.2205 0.1936 0.1971 0.3113 0.2602 0.3093 0.3204 

TRRR5 0.2612 0.3053 0.0539 0.0566 0.1617 0.3268 0.4604 0.5274 

TRRR6 0.2179 0.1731 0.0905 0.0639 0.0927 0.2111 0.3908 0.5107 

fRRR1 590.26 623.65 538.81 521.55 831.93 895.72 877.48 897.52 

fRRR2 0.2360 0.2273 0.2448 0.2468 0.2001 0.1962 0.1962 0.1956 

A: NSGA-II; B: MGSO; C: MOEA/D; D: MGSO/D ; W: wind power; 

E: V2G power; T: thermal generator power; f: fitness value 

 

Fig. 4.2 The best PFs obtained for Case 1 
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 (2) Case 2： 

This case is to test the overall performance of MGSO/D when the MOOD has 

two competing objectives of the emission f2 and power loss f3. Here there are 273 

points on the reference Pareto Front.  Among 273 points, none is contributed by 

NSGA-II, and only 2 solutions are from MGSO. However, MOEA/D and 

MGSO/D offers 120 points (43.95%) and 151 points (55.32%). In 4 benchmarks, 

MGSO/D has contributed most of reference PF solutions. 

From the results presented in Table 4.5, MGSO/D again performs well on 

convergence, span, lmax/lmin and spacing metrics. The best convergence and span 

metrics verify its outstanding searching ability to find solutions covering the entire 

true PF and the diversity of its PF. In addition, the smallest lmax/lmin and spacing 

metrics confirm that the Pareto solution set formed by MGSO/D is most evenly 

distributed among these four benchmarks.  

Table 4.5 Resulting statistics of performance metrics in Case 2 

Case 2  NSGA-II MGSO MOEA/D MGSO/D 

convergence 0.121255 0.034027 0.007484 0.005917 

span metric 0.818879  1.079506  1.094476  1.226634  

lRRRmaxRRR/lRRRmin 74.29048  63.58833  18.93584  14.30798  

spacing metric 0.201233  0.261979  0.037620  0.036508  

 

Fig. 4.3 The best PFs obtained for Case 2 
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 Fig. 4.3 shows the best Pareto Fronts obtained from four algorithms, which 

again proves the outstanding spanning of the PF of MGSO/D and the Pareto 

optimality of the proposed algorithm. 

 (3) Case 3： 

The third case is to investigate a dual-objective MOOP with the objectives of 

the generation cost f1 and power loss f3. The components of the reference PF of 

case 3 is shown in Table 4.6 Again, solutions from MGSO/D are closer to the true 

Pareto set than those of other algorithms.  

Table 4.6 The components of the reference PF in Case 3 

PF MOEA/D MGSO/D 

points 120 128 

percentage 48.39% 51.51% 

 

Fig. 4.4 The best PFs obtained for Case 3 

Table 4.7 lists resulting statistics of performance metrics obtained by MGSO/D 

and other algorithms, and the corresponding PF solutions of the best run of each 

benchmark are plotted in Fig. 4.4. Among all algorithms, the developed algorithm 

performs best in the metrics of convergence, span and lmax/lmin, which indicates 

good overall performance of MGSO/D. Besides, it can be seen in Tab. VII the PFs 

of MOEA/D have slightly smaller spacing metric, which means PF points from 

MOEA/D are more uniformly-spaced, but only by a very small margin. 
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Additionally, MOEA/D performs worse than MGSO/D in other 3 metrics. 

Therefore, for this dual-objective MOPD, the proposed algorithm can give the best 

performance among 4 benchmarks. 

Table 4.7 Resulting statistics of performance metrics in Case 3 

Case 3  NSGA-II MGSO MOEA/D MGSO/D 

convergence 0.123154  0.104922  0.011829  0.011321  

span metric 0.739562  0.736552  1.228029  1.409085  

lRRRmaxRRR/lRRRmin 68.48074  106.59971  20.16012  15.92876  

spacing metric 0.182097  0.171581  0.031338  0.033932  

It can be observed from Fig. 4.4 that the best run of MGSO/D obtained 2 better 

outer solutions than other 3 benchmarks. Meanwhile, the best PF with MGSO/D 

could find solutions with much better fitness on the objectives of the generation 

cost and power loss compared to other 3 algorithms. 

(3) Uncertainty Discussion： 

 

Fig. 4.5 PFs for different uncertain parameter  of V2G power in Case 4 
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lead to different Pareto curves as shown in Fig. 4.6. Generally, at the same 

generation cost level, power loss becomes smaller when the parameter h gets larger.  

These results clearly indicate the uncertainties significantly influences the Pareto 

solutions of the optimization. Therefore, it is important to account the uncertainties 

during the power system dispatch for better utilization of the V2G and wind power. 

 

Fig. 4.6 PFs for different uncertain parameter h of wind power in Case 4 
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The reference PF for computing the convergence reference consists of 135 

solutions, 38.52% of which (52 solutions) is obtained by MOEA/D and the rest of 

the reference PF containing 83 points is found with MGSO/D. It can be observed 

that all solutions obtained from NSGA-II and MGSO are covered by those of 

MOEA/D and MGSO/D. It again confirms the great ability of MGSO/D to obtain 

a set of solutions closer to the true Pareto set and its high potential to find Pareto 

optimality. 

Table 4.8 Resulting statistics of performance metrics in Case 5 

Case 5  Best Worst Average Variance 

convergence 

NSGA-II 0.390974  0.840298  0.596639  0.008647  

MGSO 0.154348  0.337800  0.232941  0.003117  

MOEA/D 0.010663  0.103243  0.044616  0.000523  

MGSO/D 0.009850  0.065725  0.037132  0.000290  

span  

metric 

NSGA-II 0.021917  0.000426  0.010284  4.43E-05 

MGSO 0.021253  0.003820  0.013042  2.01E-05 

MOEA/D 0.028060  0.003516  0.013738  4.33E-05 

MGSO/D 0.064891  0.006659  0.016972  1.67E-04 

lRRRmaxRRR/lRRRmin 

NSGA-II 22.25166  124.6999  79.97006  1105.110  

MGSO 38.10994  159.1815  87.44264  1382.437  

MOEA/D 22.39172  239.2425  54.84145  2574.360  

MGSO/D 20.78305  77.25710  38.17302  193.5422  

spacing  

metric 

NSGA-II 0.000601  0.009117  0.005002  5.46E-06 

MGSO 0.008498  0.077129  0.026255  3.62E-04 

MOEA/D 0.001383  0.087310  0.007464  3.37E-04 

MGSO/D 0.001367  0.003574  0.002302  3.69E-07 

Furthermore, the resulting statistics of performance metrics of each algorithm 

are shown in Table 4.8, which demonstrate that, MGSO/D markedly outperforms 

the other 3 benchmarks, on the convergence, span, lmax/lmin and spacing metrics. 

These statistical comparative experiments indicate that MGSO/D has the superior 

ability and efficiency of solution searching to guarantee the quality of PF solutions 

when the proposed algorithm deals with high dimensional MOOP with complex 
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and nonlinear power system constraints. Moreover, the variances of the 

convergence, lmax/lmin and spacing metrics confirm the stable performance of 

MGSO/D for the resulting Pareto set on these 3 measures. Although the variance 

of span metric of MGSO/D is not the best in 4 algorithms, its worst span metric in 

20 runs is much higher than other benchmarks. Overall, in dealing with large-scale 

MOOP, the proposed algorithm also shows its obvious advantages. 

In addition, the best run of each algorithm is plotted in Fig. 4.7. It is obviously 

that MGSO/D shows significant superiority in the searching ability than the other 

algorithms, especially NSGA-II and MGSO. It can also be observed that the 

proposed algorithm is able to obtain solutions with superior fitness on 3 objectives 

compared with other 3 benchmarks. 

 

Fig. 4.7 The best PFs obtained for Case 5 
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IEEE 30-bus system in Case 6. For each Y, 10 independent runs were carried out 

in this case. Resulting statistics of performance metrics for Y=3, 10, 15 and 20 are 

detailed in Table 4.9. Although the spacing metric of Y=3 is a little worse, it can 

be observed the proposed algorithm performs better when Y=3 on convergence 

metric, span metric and lmax/lmin than those of Y=10, 15 and 20, which demonstrates 

the best searching ability is obtained when Y=3. As shown in Fig. 4.8, the PFs of 

the best runs for Y=3, 10, 15 and 20 are compared. It can be found that MGSO/D 

(Y=3) can find solutions with better fitness values (emission and generation cost) 

than those when Y= 10, 15 and 20. It is also noted that the PFs of the best run for 

Y=3 performs better with outstanding diversity and spanning. 

Table 4.9 Resulting statistics of performance metrics in Case 6 

Case 6  Y Best Worst Average Variance 

convergence 

3 0.002881  0.010480  0.005994  4.453E-06 

10 0.004331  0.024719  0.014579  3.625E-05 

15 0.005165  0.015557  0.008953  1.436E-05 

20 0.009089  0.016087  0.010991  3.932E-06 

span metric 

3 1.423644  1.346044  1.397212  0.000473  

10 1.044234  0.761052  0.904963  0.007660  

15 1.041209  0.668055  0.826955  0.010460  

20 0.883343  0.583129  0.762124  0.009282  

lRRRmaxRRR/lRRRmin 

3 3.628087  8.392825  6.168374  2.379713  

10 4.867813  14.807929  7.503204  7.247219  

15 4.164266  18.941727  8.481762  17.62801  

20 4.261702  11.807636  7.892960  6.100200  

spacing 

metric 

3 0.011898  0.024077  0.017328  1.663E-05 

10 0.011286  0.020898  0.016840  1.013E-05 

15 0.006316  0.020880  0.015017  1.825E-05 

20 0.007743  0.016995  0.011220  1.141E-05 
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Fig. 4.8 Comparison of the PFs of the best runs for Y=3, 10 and 20 

4.5  Summary 

An efficient MGSO/D algorithm, which combines the merits of decomposition 

strategy and producer-scrounger model, is proposed in this chapter to solve a 

highly nonlinear constrained MOOP with the uncertainty of EVs and wind power 

being considered. It has been verified that the concerned uncertainties would have 

significant impacts to the simulation results, and the proposed MGSO/D has 

superior solution searching ability in both small-size and high-dimensional 

MOOPs with complex constraints and objectives, which makes it a promising 

framework for widely applications in solving other similar problems. 

 

500 550 600 650 700 750 800 850 900 950
0.19

0.2

0.21

0.22

0.23

0.24

0.25

Generation Cost ($/h)

E
m

is
si

o
n
 (

T
o
m

/h
)

 

 

Y=20

Y=15

Y=10

Y=3



109 

Chapter V 

Optimal Dispatch of Electric Vehicle Batteries between 

Battery Swapping Stations and Charging Stations 

5.1  Introduction 

In addition to FCSes considered in previous chapters, BSSes are alternatives to 

provide similar services to the power system. The inconvenience of battery 

charging is the main barrier to the widespread use of EVs, and the EV battery-

swapping technology is a promising method to assist overcoming this difficulty 

eventually because of its flexibility. Different from the fast charging mode, the 

battery charging process that would be completed in BCSes is separated from EVs 

in battery swapping mode. Therefore, the battery transportation between BCSes 

and BSSes needs to be studied. 

In this chapter, a battery schedule framework is studied to dispatch batteries 

between BCSes and BSSes efficiently. A two-direction battery dispatch model to 

reduce the transportation cost is established and solved by the PSO method. 

Moreover, considering the serving ability limitations, the K-means clustering 

algorithm is utilized to pre-partition BCSes and BSSes to make the battery dispatch 

more efficient and effective for the large-scale system. The proposed method has 

been verified by an urban battery logistics case. 

5.2  Assumptions and modeling 

In this section, the structure of the battery swapping charging network and its 
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operation mechanism are firstly described. Then, the basic model and extended 

model of battery dispatch is established and analyzed.    

5.2.1  Battery Swapping Charging Network 

As shown in Fig. 5.1, in the proposed battery swapping charging mode, EVs 

exchange their exhausted batteries with fully charged batteries in the BSS, and the 

batteries exchanged from EVs in the BSS will be transferred to the BCS, where a 

large number of batteries could get charged uniformly. In addition, the batteries 

already charged are transported to BSS for the usage of other EVs. The remarkable 

advantage of this mode is that the BSS only exchange batteries thus does not 

occupy large space, and the BCS could charge batteries in a more organized way, 

which will greatly improve the charging efficiency and reduce the charging service 

cost. 

BCS

BSSBSS BSSBSS

Empty Batteries Fully-charged Batteries 

 

Fig. 5.1 Battery swapping charging network structure 

  

Fig. 5.2 Basic battery dispatch model 
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5.2.2  The Basic 2-Direction Battery Dispatch Model 

Firstly the basic model of battery dispatch is illustrated in Fig. 5.2. The 

objective of the proposed model is to found the shortest paths to delivery full-

charged batteries from BCS to BSS and get the empty batteries back from the BSS 

to BCS. In this model the transportation node set are V={ Vi | i=1,2,…n-1} and the 

path set is  E={ (vi,vj) | vi,vj  V, i≠j}. The BSS location set are C={ v1,v2,…, vn-

1} and the BCS is denoted as v0. Cij =C0dij  is the transportation cost, where C0 is 

the cost per km and dij is the travel distance. A={ gi | i=1,2,…m} is the set of 

delivery vehicles and the total number of which is m. The battery demand is qi  and 

G is the delivery vehicle capacity. The objective function and constraints are as 

follows: 
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where Eqn. (5.1) is the objective function to minimize the delivery cost; Eqn. (5.2) 

is to ensure the delivery vehicle number limitation; Eqn. (5.3) and (5.4) means 

every BSS’s battery is provided by only 1 vehicle; Eqn. (5.5) and (5.6) means 

every vehicle only travel one time. Eqn. (5.7) ensures that every vehicle could go 

back to the BCS; Eqn. (5.8) limits the vehicle transportation capacity and the Eqn. 

(5.9) is the integer constraint. 

5.2.3  The Extended Battery Dispatch Model by K-means Pre-partition Method 

With the development of electric vehicle and battery technologies, the wide 

application of EVs is possible in the future. The optimal dispatch of a battery 

swapping charging network with a high penetration of EVs in a large area is a great 

challenge for the system operators. In this situation, there are more difficulties for 

the battery dispatch like longer travel distance, higher delivery capacity and 

service ability limitations, et al.  

A promising way to solve this problem is pre-partition the service areas, as 

shown in Fig. 5.3. After the pre-partition, the battery dispatch problems could be 

solved separately, which will reduce the service burden and make the dispatch 

more efficient.  

K-means clustering is popular for cluster analysis and partitions n observations 

into k clusters in which each observation belongs to the cluster with the nearest 

mean [172]. The K-means clustering could be applied into our problem as follows: 

1) Set the c BCS locations as the initial centers; 

2) In the kth iteration, calculate the within-cluster sum of squares (simply 

Euclidean distances here) of every BSS to c BCS, and partition the BSS to 

the nearest BCS cluster; 

3) Update the center locations of the c BCS clusters according to least-squares 

estimator (arithmetic means, et. al); 

4) Repeat step 2)-3) until the cluster assignment no longer change; 

5) Output the cluster results. 
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Fig. 5.3 The pre-partition step of the extended battery dispatch model 

The flowchart of the K-means clustering is shown in Fig. 5.4: 

Initialize c centers 

according to the BCS 

locations

Do all Clusters unchanged? 

Calculate the distance of BSS 

to BCS, and partition the BCS 
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Calculate the 

new cluster 

centers

Clustering finished
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S

 

Fig.5.4 Flowchart of the BCS service K-means clustering 

5.3  Solving strategies 

In this thesis, PSO algorithm has been employed to solve the optimization 

problem described before. First, the constraints are dealt with by the penalty 

function method. Second, the fitness function is formed by the objective function 

and penalty constraints together.  
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5.3.1  PSO Based Optimal EV Battery Dispatch 

The flowchart of the PSO procedure is shown in Fig. 5.5. 

Partition the service 

area of BCS

Iteration end? 

Calculate the objective function 

value

End

Y
E

S

Begin

Initialize the particle swarm, 

velocity and acceleration
Generate the initial solution

Calculate the fitness value

Find the best values 

of individuals and the 

particle swarm

Update the velocity, 

acceleration and 

individual values

NO

 

Fig. 5.5 Flowchart of the PSO based optimal EV battery dispatch 

Step 1) Specify some parameters associated with PSO, such as population size 

np, initial solution xi, et al;  

Step 2) Partition the service area of BCS by the K-means clustering method; 
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Step 3) Calculate the objective function value of each cluster respectively; 

Step 4) Initialize the particle swarm, velocity and acceleration; 

Step 5) Generate the initial solution; 

Step 6) Calculate the fitness value; 

Step 7) Find the optimal values of individuals and the optimal solution of the 

particle swarm; 

Step 8) Update the velocity, acceleration and individual values; 

Step 9) Repeat Steps 3)-8) for Nc times. 

Step 10) Select the best individual found in the above solving procedure as the 

optimal solution of the BSS battery dispatch. 

5.4  Case studies 

5.4.1  The Basic 2-Direction Battery Dispatch Model Case 

Firstly, a simple case of a 100 sq.km. area with 1 BCS and 7 BSS is studied. 

The BCS and BSS location is generated randomly. The transportation cost 

parameter C1=C2=0.5 dollar, and the PSO group size is 200. Fig. 5.6 shows the 

random travel path to deliver all the batteries from BCS to BSS. The total distance 

is 62.3024 km.  

 

Fig. 5.6 The random travel path of the basic battery dispatch model 



116 

 

Fig. 5.7 The optimal travel path of the basic battery dispatch model 

In comparison, Fig. 5.7 shows the optimal travel path of the basic model. It is 

clearly demonstrated that after optimization, the travel distance is greatly reduced 

from 62.3024 km to 32.7437 km. Therefore, the travel cost will be saved a lot. 

 

Fig. 5.8 The iteration curve of the proposed PSO method 

Fig. 5.8 shows the performance of the proposed PSO solving strategy. The 

objective function value becomes stable after 50 iterations and the optimal solution 

could be obtained. 
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5.4.2  The Extended Battery Dispatch Model Case with K-means Clustering 

Method 

 

Fig. 5.9 The BSS/BCS partition results in a larger area 

Table 5.1 The BSS/BCS geographic location in the extended model 

No. X Y No. X Y 

1 97.43 65.07 16 59.12 17.47 

2 52.85 11.29 17 25.69 61.38 

3 75.88 51.62 18 1.98 89.79 

4 50.28 75.07 19 54.41 44.1 

5 55.67 54.74 20 63.25 5.14 

6 78.49 98.9 21 55.41 77.76 

7 79.33 36.69 22 23.12 91.28 

8 1.89 87.43 23 14.56 79.21 

9 33.02 87.59 24 94.41 62.81 

10 36.77 69.51 25 17.13 22.35 

11 79.72 42.43 26 76.89 28.08 

12 88.51 64.62 27 15.91 84.58 

13 76.14 1.05 28 38.82 62.81 

14 7.03 39.09 29 95.62 13.43 

15 92.41 42.34 30 1.11 81.53 

It can be concluded that the basic model is very effective in the small area case. 

However, when the service area is large enough with high penetration of EVs in 
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the future (as shown in Fig. 5.9), the pre-partition is essential to solve the high-

dimension problem separately. Table. 5.1 shows the geographic locations in the 

extended model. There are 3 BCS and 27 BSS in this model. Fig. 5.9 shows the 

partition results (Blue, red and green BSS means different clusters) in an area of 

10000 sq.km. 

After partition, the optimal battery dispatch model could be solved separately. 

Fig. 5.10 shows the random and optimal battery delivery path before partition. It 

can be observed that the shortest battery delivery path distance is 645.37 km before 

partition. Although it is much better result that the random solution of 1287.22 km, 

the distance is still a great burden for battery delivery tasks. 

Fig. 5.11 shows the simulation results after partition. It clearly shows that the 

total battery delivery path distance is greatly reduce from 645.37 km to 524.61 km, 

thus the BCS and BSS service ability is improved to promote to promote the wide 

application of EVs in the future. 

 

Fig. 5.10 The random path, optimal path, and iteration curve of the extended 

model before partition 
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Fig. 5.11 The optimal path of the extended model after partition 

5.5  Summary 

This chapter has established an original battery optimal dispatch model 

between BSSes and BCSes to take full advantages of the battery swapping mode 

vehicles, which contributes to the optimal operation of the battery swapping 

charging network in power systems. Case studies have indicated that the optimal 

dispatch model based on K-means partition method can efficiently dispatch 

batteries by reducing the traveling distance, which largely reduces the operation 

costs of the existing battery swapping charging networks. 



120 

Chapter VI 

Conclusions and Future Works 

6.1  Conclusions 

In order to reduce the adverse impact of EVs on the operation of power system 

and promote the integration of EVs into the modern smart grid, this thesis covers 

the complete picture of the forecasting of EV charging loads and the planning and 

the operation of EV CSes, which can assist the traffic operator, CS companies and 

DSO in their decision-making processes. The EV charging load forecasting 

consists of investigations on both long-term forecasting and short-term forecasting. 

The primary conclusions and contributions of this research are summarized as 

follows: 

i) Comparison research on the long-term forecasting of EV charging demand 

based on grey system theory and the NAR neutral network 

The grey system forecasting theory model and the NAR neural network model 

are utilized to forecast the annual growth in the number of EVs. The effectiveness, 

rationality, precision, and adaptability of the two models are evaluated and 

compared. This comparison study shows the prediction accuracy of the grey 

system forecasting model is high when the original EV demand data increases 

exponentially. Otherwise, its prediction shows a larger deviation. And compared 

with the grey system forecasting model, the NAR neural network model has a 

better performance on forecasting the EV charging demand in a long-term horizon, 

which is more suitable for a practical application.  

ii) The accurate TF forecasting based on the DBN method 
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  DBN method is firstly applied to predict EV growth in CS and DS planning 

horizon, which is usually used as a short-term forecasting method in the previous 

literatures. In this thesis, the DBN method achieves the long-term forecasting of 

TF by ensemble the growth trends prediction and hourly prediction together. 

Simulation results show that it outperforms other four typical long-term 

forecasting algorithms which are BPNN, SVM, ARMA and MWNN. Additionally, 

the forecasting results by DBN method are used as the basis of the co-planning of 

CSes and DS, which is also investigated in this thesis. 

iii) A deep learning-based approach for probabilistic forecasting of EV charging 

loads 

 This comprehensive ensemble method is devoted to addressing complicated 

EV load forecasting problems, which is divided into three steps. First, TF is 

forecasted using a deep-learning based convolutional neural network (CNN) 

method in which an ensemble approach that considers both model and data 

uncertainty is employed to effectively formulate the TF prediction intervals (PIs). 

Therefore, the complicated nonlinear features of TFs are learned more effectively, 

and a superior forecasting performance is obtained. Second, a mixture model-

based method is used to approximate the arrival rate of EVs according to historical 

data. Third, an advanced queuing model is formulated for the first time to predict 

the EV charging load in the CSes, which scientifically accounts for CS service 

limitations and the inherent stochasticity of EV driver behaviors. Simulation 

results have demonstrated that the established prediction framework for EV 

charging demand that has better accuracy and reliability is essential for the 

operation and control of FCSes, the power system, and the traffic system. Such a 

framework will help FCS operators determine the number of dispatchable EVs in 

advance in order to avoid higher costs or excessive risks. This will also assist the 

traffic operator in the alleviation of traffic congestion and will aid decision-making 
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for electricity market trading using optimized bidding when EVs participate in the 

ancillary service market, et al. 

iv) The negotiated planning of DS and EV CSes in deregulated electricity 

markets  

Based on the accuracy EV growth forecasting result by DBN method, Nash 

bargaining theory is applied to the negotiated planning of DS and EV CSes for the 

first time. Different from most existing studies, this model is the first to consider 

the CS company and the DS as two separate participants operating in a deregulated 

market environment, which corresponds to reality. Furthermore, a novel DS-based 

LMP model capable of alleviating congestion and promoting the response of EV 

charging is used to realistically simulate the impact of the environment of the 

electricity market on the results of planning. Case studies have demonstrated that 

the obtained Nash bargaining solution can achieve agreement between two players 

and ensures both players are treated fairly. Moreover, the proposed LMP model is 

proved for its immediate and far-reaching significance to promote the development 

of CSes and EVs compared with models that use fixed electricity prices. The 

proposed Nash bargaining based framework with LMP model can encourage 

proactive interactions and fair profit sharing between CS and DS in the planning, 

which is also useful for cooperation between other participants in the deregulated 

market environment. 

v) Multiple group search optimization based on decomposition for multi-

objective dispatch that considers uncertainties of V2G power and wind power  

A highly nonlinear constrained MOOP that considers the uncertainties of V2G 

power and wind power is proposed and solved using a novel algorithm called 

MGSO/D that combines the merits of the decomposition strategy and the producer-

scrounger model. Simulation results have verified that the concerned uncertainties 

would have significant impacts to the dispatch results, which demonstrates that in 

the power dispatch problem, the uncertainties of V2G power and renewable 
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energies cannot be ignored. This is a promising framework for solving similar 

power dispatch problems containing V2G power and other renewable energies. 

Compared with three well-established Pareto heuristic methods, GSO, NSGA-II, 

and MOEA/D, MGSO/D has a superior solution searching ability and is able to 

obtain a uniformly distributed and diverse PF more effectively in both small size 

and high-dimensional MOOPs with complex constraints and objectives. It is also 

worth mentioning that MGSO/D is a useful method that cannot only solve the 

proposed MOOP but also solve other MOOPs with complicated and nonlinear 

constraints.  

vi) A novel optimal dispatch of EV batteries between BSSes and BCSes  

An original optimal battery dispatch model between BSSes and BCSes is 

established to take full advantage of battery-swapping mode vehicles. This model 

contributes to optimal operation of a battery swapping charging network that 

includes BSSes and BCSes. Moreover, the K-means partition method is applied to 

pre-partitioned BCSes and BSSes to make battery dispatch more efficient in a 

large-scale system. Case studies have demonstrated that the optimal dispatch 

model and K-means clustering algorithm can efficiently dispatch batteries and 

reduce the traveling distance, as well as significantly cut operation costs of existing 

battery swapping charging networks. Therefore, this model could improve the 

convenience of EV battery charging and promote the widespread use of EVs. 

6.2  Future Works 

The thesis has proposed several schemes for forecasting EV charging loads 

and for the cooperative planning and multi-objective operation of EV CSes. To 

make the current work more comprehensive, the following topics should be 

investigated in the future. 

(1) As increasing REs participate in power system dispatch, a negotiated 

planning model for DSs, EV CSes, and REs can be investigated to solve the 
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payoff distribution problem among these three participants. Compared with 

the two-player model proposed in Chapter III, the three-player model is more 

complicated and practical, which is worth further investigation. 

(2) Once capacities of existing CSes cannot meet the charging demand of EVs, 

CSes need to be expanded. Based on the CS planning results in chapter III, 

studies can to be performed that investigate the game-theoretical capacity 

expansion for EV CSes in the distribution network, assuming that each CS 

is a separate participant. Additionally, under the smart grid paradigm, a CS 

also could play the role of electric vehicle (EV) aggregation agent to 

participate with bids for purchasing electrical energy in the day-ahead (spot) 

market and selling secondary reserve in the secondary reserve markets. 

Therefore, the game-theoretical model for the EV CS capacity expansion 

considering secondary reserve sessions is worth studying. 

 



125 

Appendix 

Obtaining Process of Pw and P0: 

For brief expression, ρ=λ/μ and η=δ/μ are defined at first. According to [119], the 

steady-state probability of the Markov chain to be at state w is defined as

 lim ( ) , 0,1, ,w
t

P P N t w w K
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= = =   . Based on (2.57) and the birth-and-death 

process shown in Fig. 2.7, the balance equation for each state could be elaborated 

as: 
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…… 

State K-1: 

   

 

  

Therefore 
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