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Abstract

A graph, comprising a set of nodes connected by edges, is one of the simplest yet

remarkably useful mathematical structures in the analysis of real-world complex

systems. By representing the components of a complex system as nodes, and

their interconnectivity as edges, the inherent nature encoded in the topology of a

complex system can be studied. In this thesis, we emphasize on the topological

analysis of two types of public transport networks (PTNs), namely, the bus and

metro transport networks, using the concepts of graph theory. The topological

analysis is accomplished for three cities: Hong Kong, London, and Bengaluru.

Initially, we study the bus transport network topologies of the three cities as

non-interacting mono-layers. Then, we study the bus and metro network topolo-

gies as multi-layer networks by considering and ignoring the interactions between

the two layers. The topological analysis unveils intriguing network behaviors un-

der both mono- and multi-layer analyses. Lastly, we integrate the concepts from

graph theory and vehicular networks to demonstrate the dependency of vehicu-

lar network connectivity on the underlying transport network topology, from a

macroscopic perspective. This thesis aims to analyze the topological properties of

public transport networks and their impact on the vehicular network connectivity.

First, graph theory concepts are employed to represent the PTN topology

as a graph. The consideration of spatial embedding of PTNs results in a new

network element called supernode, which yields in a novel approach in modeling

the PTN topology called supernode graph structure representation. A static de-

mand estimation approach is proposed to weigh a node’s significance based on

its real-world usage alongside its topological centrality. The crux of the demand

estimation approach is that the accessibility factor of a node is greatly influenced

by the presence of points-of-interests and the number of people accessing it. A

zone classification approach is proposed which together with the static demand

estimation approach aids in better identifying a node’s significance.



For the part of mono-layer analysis, a few topological metrics and structural

behaviors of the three bus transport networks are studied in both the conventional

and supernode representations, which reveals interesting topological information

from both micro- and macroscopic points of view. At every stage of the analysis,

we observe that the supernode representation offers better understanding of the

inherent network behaviors as compared to the conventional representation.

For the part of multi-layer analysis, initially, the bus and metro transport

network topologies are considered as non-interacting mono-layers. Later, the

approach of spatial amalgamation is used to integrate the two transport network

topologies so that they can be studied as an interdependent multi-layer network.

The static demand estimation approach is used to rank a node’s significance

with and without considering the interdependency of the multiple layers. The

results demonstrate the fact that ignoring the interdependency between multiple

transport modes will dramatically influence the understanding of true network

behavior.

Finally, we aim to integrate the two different fields of study: network theory

and VANET (Vehicular Ad-hoc Networks), to study the influence of underly-

ing transport network topology on the vehicular network connectivity from a

macroscopic standpoint. Contact duration, a prime metric in VANET is used

to understand the nature of V2I (Vehicle-to-Infrastructure) connectivity, which

is primarily determined by the two topological metrics: weighted in-degree and

node weight. Lastly, we assess the topological robustness of the vehicular net-

work connectivity to determine the network’s ability to sustain malfunctions while

continuing to offer the best possible service.
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Chapter 1

Introduction

1.1 Background

In this section, initially, a brief introduction on the topological analysis of pub-

lic transport networks from a graph theoretic perspective is discussed, which is

followed by a concise discussion on vehicular ah-hoc networks.

1.1.1 Public Transport Network Analysis

Public transportation systems form a vital part of our infrastructure that permits

massive flow of commuters within a city and between cities. In order to meet the

changing needs of the society, the transportation networks have to keep abreast of

the need of commuters with respect to the ever increasing demand of reducing the

traveling time and extending the area covered. At the same time, transportation

networks are facing a series of challenges, including satisfying the ever-growing

passenger volume, achieving long-term sustainability, and improving the quality

of service. Such challenges are encountered at various levels of operation, ranging

from infrastructure deployment to optimal route planning, and the problems are

addressed from different angles depending on the discipline of study, such as

urban planning, regional science, geography, and engineering.

The literature abounds with diverse methodologies adopted in various disci-

plines to represent, perceive and analyze the complex dynamics of public trans-

port systems, among which, Geographic Information System (GIS), graph the-

ory, mathematical programming, and agent-based modeling are most commonly

adopted [1]. Motivated by the notable contributions in the field of network the-

ory [2], application of graph theoretic concepts in the analysis of public transport
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networks (PTNs) has attracted significant attention, and today, it is one of the

most widely employed approaches to understand the nature of connectivity in

PTNs. The representation of a PTN as a complex network, together with the

adoption of some concepts from statistical physics, offers remarkable advantages

in modeling and analyzing of the PTN structures.

Specifically, the analysis of PTNs using network theory permits the use of a

common platform on which to comprehend and decipher the inherent network

features that are encoded in the topological properties. Moreover, to apply the

concepts of complex networks, one should understand the language of graph the-

ory as a prerequisite, where a network is typically represented as a graph consist-

ing of a set of nodes interconnected by a set of edges. Graph theory and network

theory, despite being rooted historically in mathematics, have found applications

in statistical physics, biology, social sciences, finance, and engineering. One of

the oldest instances of using graph theory dates back to the 17th Century when

Leonhard Euler, a Swiss mathematician, used the concept of nodes and edges to

solve a notable real-world problem, the seven bridges of Königsberg [3]. Another

notable usage of graph theory was found by Gustav Kirchhoff, a German physi-

cist, who employed nodes and edges to calculate voltages and currents in electric

circuits, nowadays widely known as Kirchhoff’s laws [4].

Subsequently, many real-world networks were analyzed using graph theory

with significant contributions from the fields of social networks (world wide web)

and biological networks, and later from other fields including friendship networks,

relationship in social media, food web, metabolism, professional ties, author and

co-author relationships, citation networks, computer virus flow, network router

analysis, chemical reactions, neural networks, transportation networks, etc. From

the literature, it is evident that modeling various large real-world network struc-

tures as graphs, and analyzing their behaviors from a network perspective, facili-

tated better understanding of both the global and local properties of the network.

Thus, this domain of study has attracted a tremendous amount of research inter-

est in the past two decades [5, 6, 7].
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1.1.2 Vehicular Ad-hoc Network

Vehicular Ad-Hoc Network (VANET) is a sub-class of Mobile-Ad Hoc Network

(MANET) and an important aspect of Intelligent Transport System (ITS). VANET

comprises of vehicles with on-board communication devices that allow exchange

of information between the vehicles (vehicle-to-vehicle communication or V2V),

between the vehicles and infrastructure (vehicle-to-infrastructure communication

or V2I), and within the vehicles (in-vehicle communication or IVC).

Exchanging information between the vehicles has been in the mind of the

researchers from early 19th century [8]. Though the early research in vehicular

communication projects like Magic Motorways [9], Japanese CACS [10], and Eu-

ropean Prometheus project [11] failed to commercialize the concept of vehicular

communication, the investment from various mobile companies on the huge infras-

tructures, and the success of several prototypes and large scale field operational

tests (FoTs) has attracted tremendous research interest from both the academia

and industries. The commercially available versions like On star, BMW Assist,

FleetBoard, and TomTom HD Traffic are a few examples which demonstrate the

multi-disciplinary efforts towards increased automation and cooperation among

vehicles to gather, process, and analyze the information that are useful for a

wealth of on-road applications.

Furthermore, the commonly employed communication protocols in VANETs

involve LIN (Local Internet Network), CAN (Controller Area Network), FlexRay,

Ethernet, etc. for in-vehicle communication, and the access technologies like

IEEE 802.11 WLAN (Wireless Local Area Network), WAVE (Wireless Access in

Vehicular Environments), and DSRC (Dedicated Short Range Communication)

are employed for V2X communication. The parameters such as dissemination

range, throughput, latency, and PER (Probability Error Rate) are used for perfor-

mance evaluation. Intermittent connectivity, highly dynamic and self-configured

topology due to high mobility of the vehicles are some of the major challenges

pertaining to VANETs. The ability of the modern vehicles to gather huge data

from their on-board sensors and wireless devices, as well as the data communi-

cation among vehicles have facilitated the automotive industries to evolve over

time.
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The information exchanged in VANETs can be either real-time (RT) critical

information or delay tolerant (DT) information which are employed to alleviate a

numerous on-road problems like, efficient traffic management, congestion issues,

emergency handling, alongside with providing on-road infotainment applications.

Any kind of information exchange in VANETs demands some necessary factors

such as highly sustained connectivity which offers longer link duration, an im-

proved throughput, and reduced latency, which are challenging to achieve, and

thus have attracted a significant research interest from multiple-domains.

1.2 Motivation

A graph, comprising a set of nodes connected by edges, is one of the simplest yet

remarkably useful mathematical structures for the analysis of real-world complex

systems. Network theory, being an application-based extension of graph theory,

has been applied to a wide variety of real-world systems involving complex in-

terconnection of subsystems. The application of network theory has permitted

in-depth understanding of the connectivity, topological features and operations

of many practical networked systems as well as the roles the various parameters

play in determining the performance of such systems. In the field of transporta-

tion networks, however, the use of graph theory has been relatively much less

explored, and this motivates us to work in the field of public transport analy-

sis from a graph theoretic perspective which is an active research area among

researchers in transportation and logistics.

Although a public transport network can be unimodal or multi-modal, we

focus on the analysis of two major types of public transportation, namely, the bus

transport network (BTN) and metro transport network (MTN) since we believe

that the two network types are most widely used by the public to meet their

daily commuting needs. Unlike the conventional graph representation employed

previously, we propose a novel approach termed supernode graph representation

to explore the inherent and hidden topological behaviors. Such an analysis would

offer insightful results that can be useful from both the operator and passenger

perspectives.

Urban transportation systems are typically multi-modal in nature which com-

prises of bus, metro, tram, subway, light-rail, ferry, etc. In view of practical
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relevance, the multi-modal transport networks should be treated as interacting

networks or network of networks (NoN). However, a vast majority of analyses

in the literature are dedicated towards analyzing the multiple transport modes

as non-interacting mono-layers failing to quantify the structural and functional

aspects of the network behavior wholly. That is, the results from analysis of

non-interacting mono-layers holds good only when ignoring the presence of other

layers in the network is justifiable.

Thus, to understand the dynamic relationship between the multiple layers,

a PTN as a whole need to be modeled as an interconnected multilayer network

that simultaneously characterizes the behavior of nodes and edges at multiple

levels. Though the notion of multiplex networks (termed by various names in

the literature) has already found its strong existence in other fields of study

like sociology, biology, economics, and urban planning, the field of transport

networks has attracted less research which motivates us to work in the direction.

Specifically, we emphasize on finding the influential nodes in a network by ranking

them based on their contribution to the multiple layers. Such an analysis can be

a great source of information to multiple disciplines of study.

Urban vehicular networks are expected to be an integral part of future ITS

which greatly assists in mitigating serious on-road issues like traffic management,

congestion problems, and accidents. In VANETs, the vehicles with on-board

wireless communication devices can exchange information which is primarily in-

fluenced by the spatio-temporal dynamics of vehicular mobility. Numerous works

in the literature have demonstrated that the mobility pattern of a vehicle has a

profound influence on the nature of vehicular connectivity, both V2V and V2I.

However, in public transport networks, the mobility pattern of vehicles, e.g., buses

follow a constrained and structured pattern which is significantly different from

the other generic vehicles. The unique and partially deterministic nature of vehic-

ular mobility in PTNs interests us to study the nature of vehicular connectivity in

public transport networks. Specifically, we emphasize on V2I connectivity, where

the vehicles are buses, and the infrastructures are the bus stops which are capable

of exchanging information with the vehicles within a given communication range.

Thus, in the first of its kind, we aim at integrating the concepts of graph

theory, and vehicular network connectivity analysis to understand the dependency
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of vehicular network connectivity on the underlying transport network topology

as shown in Fig. 1.1. Contact duration, an important metric in VANETs is

employed as the performance evaluation metric. Such an analysis provides some

fundamental results to the communication network deployers in offering a better

and sustained IoT services, not only to on-road vehicles, but also to the passengers

using PTNs. LinkNY project is an example that demonstrates the real-world

application of such an analysis[12].

Fig. 1.1: Motivation of the work indicating the idea of integrating multiple fields

of study.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 provides a literature review which is subdivided into two phases.

The first phase emphasizes on the important network theory metrics, and their

usage in analyzing the public transport networks, along with the key contributions

from the literature. The second phase provides significant observations from the

previous works in analyzing the connectivity dynamics in vehicular networks.

Chapter 3 discusses the basic approach of representing a PTN topology as a

graph from real-world dataset using the concepts of graph theory.

Chapter 4 emphasizes on the mono-layer analysis, where, the bus transport

network topological analysis is accomplished for the three cities: Hong Kong,

London, and Bengaluru, from a graph theoretic perspective.

Chapter 5 discusses on the multi-layer analysis, where, the need for model-

ing the non-interacting transport modes as an integrated multi-layer network is

demonstrated from a graph theoretic perspective.
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Chapter 6 presents a high-level understanding of the impact of a PTN topol-

ogy on the vehicular network connectivity. Also, the chapter discusses on the

robustness of the vehicular network topology to illustrate the capability of a net-

work to sustain malfunctions.

The thesis concludes in Chapter 7 by summarizing the major findings of the

project, and some thoughts on the future work are presented.
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Chapter 2

Literature Review

This chapter is divided into three sections: in the first section, we review a few

works on the mono-layer analysis of PTNs from a graph theoretic perspective; in

the second section, we review works on the multi-layer analysis of PTNs from a

graph theoretic perspective that considers the multiple transport networks and

their interdependencies; in the last section, we discuss about VANET connectivity

analysis that considers contact duration as an evaluation metric.

2.1 PTN Analysis from A Graph Theoretic Perspective

Network Science by itself has no strong association with any single field of study

as its applications can be found in a variety of real-world systems. There are

a handful of parameters commonly used for analyzing complex networks. In

this section, some key network parameters that aid the understanding of public

transport networks are discussed. For brevity and convenience of discussion, a

nomenclature list is provided at the beginning of the thesis.

The topology of the public transport network under analysis is typically rep-

resented as a graph G, which is an ordered pair comprising a set of nodes (V )

and a set of edges (E), i.e., G = (V,E) such that

V =
{
n1, n2, n3, ......, nN}; N = |V | (2.1)

E =
{
e1, e2, e3, ......, eB}; ei → (ni, nj) ∀ni, nj ∈ V, ei ∈ E; B = |E| (2.2)

where N and B are the cardinality of the node set and edge set, respectively. A

graph can either be directed (digraph), undirected, weighted or unweighted. The

intent of choosing the graph type solely depends on the type of analysis to be



accomplished. For the analysis of transport structures, especially bus transport

structures, a directed graph is often chosen since the inbound and outbound

routes have different travel paths servicing different stations (except the round-

trip journey routes). However, an undirected graph is typically chosen in the

analysis of metro transport networks where the inbound and outbound travel

paths remain the same for a vast majority of routes.

Furthermore, depending on the aim of the network analysis, the graph can

be represented in various spaces of representation as will be discussed in Section

2.1.1. Thus, the type of graph (directed, undirected, weighted, unweighted) along

with its space-of-representation (L-, P-, B- and C-space) defines the topology of

a PTN structure to be examined. Based on the graph type and the space-of-

representation, a square adjacency matrix A of dimension N ×N with elements

aij, can be derived to describe the connection between node pair ni and nj. The

element aij = 1 if there exists a connection between nodes ni and nj, and 0

otherwise.

Fig. 2.1: (a) Simple public transport map with stations A–F being serviced

by route no. 1 (shaded orange), no. 2 (black), and no. 3 (blue); (b) L-space

graph; (c) B-space bipartite graph (route nodes are shown as squares); (d) P-

space graph (complete sub-graph corresponding to route no. 1 is highlighted in

orange); (e) C-space graph of routes. The matrix of connectivity is shown below

the corresponding space-of-representation.
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2.1.1 Spaces of Network Representation

In this section, we describe different spaces of network representation together

with adjacency matrix for the analysis of PTNs. Our discussion will follow the

basics introduced in Kurant and Thiran [13] and Ferber et al. [14] for representing

a public transport network in different spaces of network representation. The

various topological representations are fundamentally related to how the network

and its parameters are being perceived. For instance, different aspects of interest

may include information about the stations having more routes traversing through

them, the most significant station in a network in terms of connectivity, the routes

servicing more stations, edges with the more overlapped routes, the number of

transfers needed to reach two different stations in a network, and so on. Fig. 2.1

shows the most commonly used spaces of representations in a PTN analysis along

with their adjacency matrix entries.

1. A graph in L-space, also called the space-of-stations, is shown in Fig. 2.1(b).

In an L-space graph, a public transport stop is treated as a node, and a

pair of nodes are connected by an edge if there is at least one route ser-

vicing the two stops consecutively. The L-space representation is the most

extensively used representation in the analysis of PTNs since it signifies

the actual physical infrastructure that exists in a real-world network, and

renders useful information on relationship between the nodes.

2. A graph in B-space, also called a bipartite graph, is shown in Fig. 2.1(c),

where both the routes and stops are represented by nodes. A route node is

connected to all the stops it services, and a stop node is connected to all the

routes servicing it. There is no directed edge between nodes of the same

type, i.e., an edge will not exist between two route nodes or stop nodes.

A graph in the B-space will be undirected. Although analysis of PTNs

using bipartite graphs finds limited application, the one mode projection of

a bipartite graph into the P-space (node projected) and the C-space (route

projected) has gained significant attention.

3. A graph in P-space is also called space-of-changes, space-of-transfers, or

stop-unipartite graph, and is shown in Fig. 2.1(d). In the P-space, the
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stops are represented by nodes and every possible pair of nodes that can be

reached without making any transfers are linked by edges (stops serviced

by a single route). A graph in the P-space can be undirected or directed de-

pending on the type of transport networks (BTN or MTN) under study. The

P-space representation renders useful information for studying the transfers

between different routes since the neighbors of a node in the P-space are the

set of nodes that can be reached with or without making a transfer since

the node set associated with a specific route forms a clique or a complete

subgraph.

4. A graph in the C-space is also called route-unipartite graph, as shown in

Fig. 2.1(e). In the C-space, the nodes are the routes and two nodes are

connected by an edge if they service a common set of stop(s) along their

journey. A graph in the C-space can be directed or undirected depending

on the type of transport networks under study (BTN or MTN).

Table 2.1 shows the graph type and the space-of-representation chosen in various

PTN analysis in the literature. Tables 2.2 to 2.4 provide an empirical comparison

of a few network parameters employed in the analysis of PTNs using various

spaces of representation, the details of which will be discussed in the subsequent

subsections.

2.1.2 Degree, Weighted Degree and Average Degree

In a public transport network, the connectivity of a node with its neighbors is

evaluated by a network parameter termed degree, which is the number of edges

incident on a node. Degree is one of the most fundamental, yet significant pa-

rameters in network analysis. Degree is a local property of a node, and average

degree of a network is a global parameter which conveys information on the av-

erage connectivity of nodes in the entire network. Depending on the graph type,

the degree (k) and average degree (〈k〉) are defined as

ki =
N∑
j=1

aij ∀i, j ∈ V, i 6= j, 〈k〉 =
1

N

N∑
i=1

ki (2.3)
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Tab. 2.1: Graph type and space-of-representation used in various PTN analyses.

Directed Undirected Weighted Unweighted References

Bus transport network

L-space X • • X [13] [14] [15]

[16] [17]

X • X • [18] [19]

[20] [21]

[22] [23]

P-space X • • X [14] [15] [24]

[16] [25] [26]

X • X • [20] [22]

[23] [27]

C-space X • • X [14]

• X • X [28]

Metro transport network

L-space • X • X [29] [30]

[31] [32]

[33]

• X X • [34] [35] [36]

for undirected networks, and

kin
i =

N∑
j=1

aji, kout
i =

N∑
i=1

aij, ktotal
i = kin

i + kout
i ∀i, j ∈ V, i 6= j(2.4)

〈kin〉 =
1

N

N∑
i=1

kin
i , 〈kout〉 =

N∑
i=1

kout
i , 〈ktotal〉 = 〈kin〉+ 〈kout〉 (2.5)

for directed networks. All symbols in equations (2.3)–(2.5) are defined in the

nomenclature list at the beginning of the thesis. The weighted node degree and

the average weighted node degree are defined similar to (2.3)–(2.5), where aij

is multiplied by wij, the edge weight (will be discussed in Section 2.1.11). Fur-

thermore, Tables 2.2 to 2.4 tabulate the empirical values of average node degree

under various spaces of representation. From Table 2.2, we observe that the aver-

age node degree in L-space analysis is nearly equal to two (in general) indicating
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Tab. 2.2: Empirical values of various network parameters in L-space repesenta-

tion

〈k〉 C∆ 〈d〉 r References

Bus transport network

2.48-3.03 0.055-0.161 6.83-21.52 +ve [15]

2.88-4.59 0.09-0.15 7.13-12.56 +ve [20]

2.1-2.4 0.0004-0.0129 28.1-50.9 • [13]

1.18-3.59 • 6.4-52 +ve [14]

3.13 0.142 20.03 + ve [16]

2.25-2.50 0.06-0.08 21.09-43.02 • [22]

• • 10.8-14.5 • [18]

3.67-24.58 0.07-0.26 3.87-25.69 +ve, −ve [17]

2.65-2.92 • • +ve [19]

2.65-2.92 0.05-0.09 13.82-20.9 • [21]

Metro transport network

• • 10.74-15.60 • [33]

2-2.45 0-0.077 10-16 • [30]

2.2 0.0018 • • [32]

• 0.390-0.710 • • [35]

2-2.4 • 6.7-19.9 • [37]

• • 10.13-15.02 • [33]

that a stop is merely connected to its neighboring stops. On the other hand, the

values shown in Table 2.3 indicate that the average node degree in the P-space

analysis is roughly 10 times higher than that in the L-space which denotes the

average number of nodes that can be reached from a certain node with or with-

out making a transfer. Appendix A lists the various interpretations of the node

degree under different spaces of network representation.

The key point is that, significant features like connectivity of a node in the

L-space representation, route overlapping pattern in the C-space representation,

and the number of transfers to be made in the P-space representation can be

more readily identified via studying the node degree. Finally, study of the degree
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distribution in a network would benefit the evaluation of an interesting network

property called the scale-free property.

Tab. 2.3: Empirical values of various network parameters in P-space represen-

tation

〈k〉 C∆ 〈d〉 r References

Bus transport network

33.13-90.93 0.682-0.847 1.71-2.90 +ve, −ve [15]

41.06-94.19 0.73-0.78 2.54-2.66 +ve, −ve [20]

24.6-102.3 0.6829-0.9095 2.3-3.7 • [13]

4-11 • 2.2-4.7 +ve, −ve [14]

44.60-122.89 0.716-0.819 2.84-3.45 +ve, −ve [25]

35.84-60.24 0.57-0.68 3.15-3.46 • [22]

44.40-92.54 0.69-0.81 2.42-3.45 • [26]

44.46-134.65 0.73-0.78 2.53-2.89 • [24]

Tab. 2.4: Empirical values of various network parameters in C-space represen-

tation

〈k〉 C∆ 〈d〉 r References

Bus transport network

11.09-151.72 2.14-28.3 1.7-4 +ve [14]

98.1 • • • [28]

2.1.3 Scale-free Property

Following the random network model proposed by Paul Erdős and Alfréd Rényi

[38], many real-world networks were verified to be connected in a random way,

in which a myriad number of nodes in the network exhibit similar degree since

the nodes are connected randomly. The degree distribution of such a random

network is more likely to follow a Poisson distribution [38, 39]. However, Barabási
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[2, 5, 40, 41] showed a unique behavior in which a few nodes in the network exhibit

very high degree while a large number of nodes exhibit low degree, and the degree

distribution of such network is expected to follow a power law distribution. Such

networks are called scale-free networks.

Observing the scale-free property in public transport networks can be inspiring

since it demonstrates a strong prevalence of hierarchical network structure, i.e.,

hubs at the top of the hierarchy serves maximum demand, while those below

are relatively midget nodes serving mediocre demand. Intuitively, although we

would expect a certain number of stops in a network which are serviced by a

large number of routes, it is intriguing to verify such a property mathematically.

Interestingly, it was observed that some of the public transport networks do

exhibit scale-free property. Furthermore, as explained later in this section, the

degree distribution in a network is a good source of inference on the network

evolution [24, 42]. Thus, the study of degree distribution has attracted enormous

research interest.

The degree distribution exposes the probability of a randomly selected node

in the network having a degree of k, i.e.,

P (k) =
Nk

N
or Nk = NP (k) (2.6)

where pk is the probability of finding a node with degree k, Nk is the number

of nodes with degree k, and N is the total number of nodes in the network. If

the degree distribution of a network follows power-law, such networks are termed

scale-free. The power-law is given by,

P (k) ∝ k−γ ⇒ P (k) = Ck−γ (2.7)

where 2 <γ <3 is the scaling parameter, k is the node degree, and C is a constant.

Taking log on both sides of (2.7), we have

lnP (k) ∝ −γ ln k ⇒ lnP (k) = −γ ln k + lnC (2.8)

Thus, the power law is a straight line in log-log scale with negative slope γ, and

valid for k ≥ kmin. Interested readers may refer to [5, Chapters 3–5] to probe

further into the difference between random and scale-free networks. Table 2.5

tabulates the degree distributions of various PTNs reported in the literature.

From Table 2.5, we make the following observations:

16



1. An exponential degree distribution in L-space indicates that connecting a

newly added node with the existing nodes is more likely to be random. This

is in contrary to the notion of preferential attachment where newly added

nodes are connected to the already existing influential nodes in the network,

making the degree distribution a power-law distribution.

2. An exponential degree distribution in P-space indicates that defining a new

route sequence in the network is more likely to be random in order to ensure

a better coverage and service rather than along the influential nodes in the

network.

3. An exponential degree distribution in C-space indicates that defining the

stops along a route node is more random than defining the stops along a

route to cover the influential nodes.

Thus, the degree distribution of a network provides information on the topolog-

ical evolution of the public transport network in a city [24]. Up to now, some

simple network evolution models have been proposed based on fitting empirical

data. However, the nature of network evolution has never been verified from the

actual deployment perspective. As demonstrated by Barabási [2], the existence

of hubs in a scale-free network can be a result of two phenomena, namely, growth

and preferential attachment. But the feasibility of deployment of preferential

attachment in a real-world network is yet to be verified!.

It is very interesting to observe the scale-free property (sometimes called the

80/20 rule) in public transport networks. The 80/20 rule demonstrates the fact

that a myriad number of stops carry 20% of the network load, and a countable

number of stops carry 80% of the load. Public transport networks having such

a property are free of any scaling applied to them. Lastly, scale-free property

is surely one of the interesting topological behaviors which has been empirically

verified for three topologies in our work as will be discussed in Chapter 4.

2.1.4 Clustering or Transitivity

The extent to which the immediate neighbors of a node are connected to each

other is examined through a property called clustering, which defines the level of

cohesiveness in a network. Clustering, also known as the transitivity, is a local
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Tab. 2.5: Degree distribution patterns from some public transport network

analyses.

L-space P-space C-space References

Bus transport network

Power law Exponential • [15] [20]

Shifted power law • • [16]

Power law Shifted power law • [19]

Heavy tailed Power law • [17] [43]

Exponential Exponential • [13] [14] [22]

Exponential • • [18] [27]

• Exponential • [24] [25]

• Power law • [26]

• • Exponential [28]

Metro transport network

Power law • • [34] [35]

property dealing with node level information in network theory. The cohesiveness

of nodes is evaluated at local level through a parameter called local clustering

coefficient, which is given by

Ci =

∑
j,h aijaihajh

ki(ki − 1)
(2.9)

for undirected networks, and

Ci =

∑
j

∑
h(aij + aji)(ajh + ahj)(ahi + aih)

2[ki(ki − 1)− 2k↔i ]
; ki

↔ =
∑
i6=j

aijaji (2.10)

for directed networks. At the global level, the global clustering coefficient is given

by

C∆ =
1

N

∑
i

Ci. (2.11)

Again, all symbols are defined in Table 3. For an in-depth discussion of evaluat-

ing clustering by identifying triads or cliques in different graph types, interested

readers are referred to ref. [44].

The study of clustering coefficients by itself has not attracted much attention

from researchers in the analysis of PTNs. However, some inspiring observations

18



can be made from the relationship between Ci and k.

1. The dependency of Ci and k closely resembles a power law where the value

of Ci for a given k (Ci(k)) is close to unity for small values of k, and Ci(k)

decreases rapidly with increasing k [15, 17, 20].

2. As observed from (2.10) and (2.11), the inverse dependency of Ci on k indi-

cates the hierarchical structure of a network in the L-space representation,

where high degree nodes (hubs) tend to form numerous connections with

their neighbors, thus reducing the possibility of their neighbors having con-

nections among themselves. This reduces the local clustering coefficient of

high degree nodes. On the other hand, a low degree node has a greater ten-

dency to be connected among its neighbors, increasing its local clustering

coefficient [17].

3. In the P-space representation, all stations of a specific route form a perfect

clique, with Ci=1 for all nodes in the route. The value of Ci becomes

smaller when the nodes are shared by multiple routes. Thus, in the P-space

representation, the fully connected subgraphs of all stops along a route

constitute local cliques, and these local cliques are shared between routes

through the common nodes. Hence, the nodes with a low degree and a high

clustering coefficient belong to a fully connected local clique, whereas the

nodes with a high degree and a low clustering coefficient connect multiple

local cliques, reflecting that hubs act as coordinating points for several

routes [15, 24, 25, 26, 45]. Thus, the distribution of Ci(k) gives an indication

on how the clustering is organized for nodes of various degrees.

Appendix A summarizes the common interpretations of transitivity under

various spaces of network representation, and Tables 2.2 to 2.4 give the ranges

of values of the global clustering coefficient under the various spaces of network

representation. It can be seen that the clustering in P-space is significantly higher

than that in L-space due to the existence of more local cliques in P-space.

In the literature, although clustering has been extensively employed in L-space

PTN analysis, the physical significance of evaluating both local and global clus-

tering coefficients in L-space is vague. Moreover, the clustering coefficient is more

meaningfully interpreted in the P-space representation for a PTN analysis. Also,
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evaluating the clustering coefficient in B-space (bipartite graph) is meaningless

since the neighbors of a node are from the same group, and there exists no connec-

tion between nodes of the same group in B-space. However, evaluating clustering

in C-space conveys interesting information on the extent of route overlapping

in a network which is an extremely useful information for route optimization.

The usefulness of evaluating the local and global clustering of a network will be

demonstrated empirically in Chapter 4.

2.1.5 Average Path Length

In a PTN, the number of hops to be traversed to accomplish a journey between

any two chosen stops in a network is normally measured by path length. In graph

theory, a path is a sequence of nodes connected by links. The shortest path length

is the shortest number of links between two chosen nodes, and the average path

length (geodesic path) is the average of shortest path length between all node pairs

in the network. The diameter is the longest of all shortest paths, and is an upper

bound of average path length. Although the measure of path length conveys no

information on the number of transfers to be made during the journey, it is still

an important measure in the public transport network analysis from a passenger

point of view since the number of hops is definitely a prime factor considered by

the passengers in selecting a route to accomplish their journey.

There are a few notable algorithms for finding the average path length in

a network [46]. However, it should be noted that the edge weight should be

cautiously chosen (represented) in the evaluation of the average path length in

a weighted graph in order to avoid a wrong interpretation of the measured path

length. For example, the Dijkastra’s algorithm using dij (geographical distance

between two stops) and vij (average vehicular speed along a road segment) as

the edge weight may generate two completely different results in evaluating the

path length between two chosen nodes [47]. The average shortest path length is

usually given by

〈d〉 =

∑
i6=j

dij

N(N − 1)
∀i = j = 1, 2, .., N (2.12)

where dij is the geodesic distance between nodes ni and nj. Also, dij=1 if there

exists a path between the two nodes, and dij =∞ otherwise, implying a possible
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divergence problem in a non-connected graph. A smaller value of d indicates a

shorter travel distance (with or without transfers) that a passenger should take

to accomplish a journey.

The different perspectives of average path length are given in Appendix A.

A detailed comparison of average path length in different spaces has been given

in Tables 2.2 to 2.4. From the values of 〈d〉 given in Tables 2.2 to 2.4, it is

evident that the average path length in the L-space representation is significantly

longer than that in the P-space representation. Thus, the average number of links

traversed by a user is much larger than the number of transfers made to reach

the destination. A few other notable observations concerning the average path

length are

1. An inhomogeneous distribution of stops within a city leads to Gaussian or

asymmetric unimodal distribution (with longer tail ends) in the L-space

and P-space representations. Thus, a fewer number of stops in the sub-

urbs/downtown in a city leads to long travel distances. This accounts for

the long tail ends in the distribution. This phenomenon is consistent with

the plethora of stops observed at city centers leading to short travel dis-

tances [14, 15, 18]. A rather unique feature can be observed in the distri-

bution pattern in ref. [14], where a secondary peak in the tail end of the

distribution along with the major peak has been observed, indicating that

in addition to a major central business district (CBD), a supporting minor

CBD exists in the city.

2. As studied in ref. [13], the average path length of a network is significantly

affected in L-space by the existence of shortcut paths. Despite the absence

of physical connectivity between a few nodes in the PTN (e.g., between a

bus stop and a metro stop which are geographically close, or stops on either

sides of a road segment), they can be virtually connected by a short walking

distance and such nodes can be represented as short distance station pairs

(SSPs) or supernodes. Thus, merely representing the physical connectivity

of two different transportation networks does not justify the true measure

of average path length [17, 18, 22]. However, a slight reorganization of the

network topology using supernodes provides a better and more practical
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insight on the average path length estimation in a PTN analysis [22].

3. The link length distribution (the distribution of geographical distance be-

tween the stops) conveys captivating information on the route length adopted

by public transport networks. In ref. [22], the geographic link length distri-

bution has been found to follow a power law, indicating that a substantial

number of routes in the public transportation has a short geographical route

length and only a nominal number of routes have a long route length. Fur-

thermore, such an analysis sheds useful light on the city’s demographics.

(Note: Since the latitude and longitude information of the stops are given

in a spherical coordinate system, the great-circle distance is preferred over

the Euclidean distance in evaluating the geographic distance between two

stops [48]).

4. In PTN analysis, the average shortest path length between any two nodes in

the network might not always guarantee a minimum number of transfers.

Hence, combining the number of transfers with the shortest path length

offers a more realistic choice for traveling between a chosen node pair. Zhang

[16] has demonstrated a way of measuring shortest path length in (2.12)

taking into consideration the number of transfers along the shortest path,

i.e.,

〈dtr〉 =

∑
i

∑
j dij(1 + trij)

N(N − 1)
∀i = j = 1, 2, ..N (2.13)

where trij is the total number of transfers needed to travel between nodes

i and j.

As mentioned before, the average path length is undoubtedly one of the important

measures in a PTN analysis since the number of hops is definitely a prime factor

considered by the passengers in deciding a route to accomplish their journey, and

thus, in Chapter 4, the parametric estimation of average path length is discussed

empirically for the three chosen cities.

2.1.6 Small-worldness

First demonstrated by Watts and Strogatz [49], a class of networks, called small-

world networks, exhibit high clustering and a low average path length. Empiri-
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cally the small-world property of a network can be verified by

σ =
C

Crand

d
drand

(2.14)

where Crand and drand are the clustering coefficient and average path length values

of the equivalent random network [50, 51]. If σ > 1, i.e., when C ≥ Crand and

d ≈ drand, the network can be classified as a small-world network. Telesford

et al. [52] pointed out that the comparison of average path length of a given

network to its equivalent random network is acceptable; however, the comparison

of clustering of a network to that of its equivalent random network does not fully

capture the small-world behavior since the clustering of a network is expected to

behave close to a lattice structure.

It is also observed in (2.14) that even a small change in Crand will affect the

value of the small-world parameter (σ). Hence, a new approach to capture the

small-worldness of a network can be adopted, as proposed by Telesford et al. [52],

i.e.,

ω =
drand

d
− C

Clatt

(2.15)

where Clatt and drand are the clustering coefficient and average path length values

of the equivalent lattice and random network, respectively. In (2.15), when C ≈

Clatt and d ≈ drand, we have ω ≈ 0 and such networks are considered small-world

networks. By simulating the behavior of a small network, Telesford et al. [52]

demonstrated the variation of σ and ω, where σ > 1 for all values of p (except

p =1). This means that the network would show the small-world property for all

the rewiring probabilities (except p = 1), demonstrating that σ > cannot fully

capture the small-worldness.

However, the variation of ω shows three major zones, viz. ω < 0, ω ≈= 0 and

ω > 0, capturing the random, small-world and lattice properties of the network

[52]. Furthermore, interested readers may refer to refs. [49, 50] for details on the

basic rewiring approaches. Some reported works have attempted to use (2.14)

to test the small-worldness of public transport networks by verifying σ > 1, but

such results have been found to deliver misleading conclusions [15, 17, 25, 26, 43].

Unlike Stanley Milgram’s experiment conducted in 1967 for studying the

small-world behavior of a social network [53], finding a small value of average

path length in large public transport networks is much more difficult. In ad-
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dition, it is widely know that 〈d〉 varies as
√
N [5]. Thus, a true measure of

small-worldness should consider the network size as one of the parameters along-

side with the clustering and average path length. Small-worldness is undoubtedly

an important network behavior in public transport networks as it demonstrates

the effectiveness of a transport network in terms of both connectivity (clustering)

and the travel distance in hops (path length). Lastly, in our work, the small-

worldness property will be empirically verified for the three network topologies

in Chapter 4.

2.1.7 Betweenness Centrality

Centrality is a network parameter describing primarily local information about

nodes (edges), and yet having a global significance. Centrality quantifies the

significance of a node (edge) based on various sources of information. Centrality

measures may thus include degree centrality, Eigen-centrality, Katz-centrality,

page rank centrality, closeness centrality, betweenness centrality, etc. In PTN

analysis, a few centrality measures have been extensively studied, e.g., degree

centrality, closeness centrality and betweenness centrality.

The degree centrality, as discussed in Section 2.1.2, rates a node’s significance

according to its degree. Similarly, betweenness centrality emphasizes the capabil-

ity of a node in bridging multiple shortest paths in a network [54]. Specifically,

the node betweenness centrality is defined as

Cb(i) =
∑
i,j,k∈V

djk(i)

djk
, (2.16)

and the edge betweenness centrality is defined as

Cb(eim) =
∑

i,j,k,m∈V

djk(eim)

djk
(2.17)

where djk is the total number of shortest paths between nodes j and k, and djk(i)

or djk(eim) is the shortest paths between nodes j and k passing through node i

or edge eim. Appendix A summarizes the different perspectives of betweenness

centrality under various spaces of network representation.

For a given network, it is intuitive to assume that the nodes having a higher

degree have a higher probability to serve as central nodes in the network, and
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thus, the relationship between degree and betweenness centrality has been actively

studied. It has been observed that

1. The dependency of betweenness upon degree is found to follow a Poisson

distribution in the L-space representation [15], and a power-law distribution

in the L-space representation [23] and the C- space representations [14].

2. In the P-space representation, two variations of power law distribution have

been observed depending on the value of k. For small values of k, the be-

tweenness is almost zero leading to a steep slope in the power-law distribu-

tion, whereas for high values of k, a larger betweenness has been observed,

leading to a more regular power-law distribution pattern [14, 15].

3. In the B-space representation, the distribution pattern is found to be similar

to that of the P-space representation since, Nproj nodes have low degree and

Bproj nodes have high degree [14]. Furthermore, Bona et al. [26] demon-

strated that, the nodes having a high betweenness centrality are mostly

situated in CBDs [26]. However, this observation remains partially true be-

cause a node in the downtown/suburb which acts as an entry or exit point

for passengers traveling between the cities might also contribute to a high

betweenness centrality.

One of the main advantages of using betweenness centrality as a measure of

significance of a node is that the removal of high betweenness nodes can ad-

versely affect the average path length of the entire network as these nodes es-

sentially control the traffic movement in the network by bridging various routes

and nodes. Consideration of betweenness of nodes has recently been incorpo-

rated under robustness analysis and is attracting a significant research attention

[29, 35, 55, 56, 57, 58]. Lastly, in our work, we will evaluate the betweenness

centrality of the nodes for the three network topologies in Chapter 4, and also,

in Chapter 5, we will demonstrate the need for considering the layer interdepen-

dency among multiple transport modes by employing betweenness centrality as

the main parameter.
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2.1.8 Closeness Centrality

Closeness centrality is yet another parameter giving node level information, and

in particular indicates how close a node i is to the rest of the network. Normally,

closeness is evaluated in terms of hop count, i.e., total number of hops required

to reach all other nodes in a network from a given node, i.e.,

Cc(i) =
1∑
j dij

(2.18)

The smaller the value of dij, the closer node i is to all other nodes. Prior works [18,

23] have considered the closeness centrality values for weighted and unweighted

network structures, respectively, and the corresponding distributions have been

found to follow an exponential distribution. Appendix A summarizes the key

perspectives on closeness centrality under various spaces of representation.

Due to the limited available results on closeness centrality related to PTNs

and the rather restricted analysis in the L-space representation, the practical sig-

nificance of evaluating closeness centrality of PTNs is still not widely recognized.

In addition, in a PTN under the L-space representation, a particular stop is sel-

dom expected to be close to all other remaining nodes in the network as it is

typically connected to a portion of the network. However, closeness centrality

in other spaces might offer insightful information, and should therefore deserve

further investigation.

2.1.9 Assortativity

Observing the social behavior at public transport stops and routes in a PTN is

interesting. Specifically, the polarization of connectivity of the stops and routes

towards other stops and routes is practically useful. Such social behavior can

be studied in terms of assortativity. While degree, as discussed in Section 2.1.2,

captures the connectivity of a node in the network, assortativity captures the

connectivity among similar kind of nodes in the network. In other words, assor-

tativity reflects the bias of nodes to connect with nodes of similar kind. Thus,

assortativity is also a local parameter providing node level information and specif-

ically correlation between node degrees in the network.

Depending on the correlation type, the network can be either assortative (con-

nection between two high-degree or low-degree nodes) or dissassortative (connec-
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tion between a high-degree node and a low-degree node). Assortativity can be

assessed in terms of the average degree of a node’s neighbors [59]. Moreover,

Newman [60] later demonstrated that assortativity can be effectively evaluated

by the Pearson correlation coefficient, i.e.,

r =
B−1

∑
i jiki − [B−1

∑
i
ki+ji

2
]2

B−1
∑

i
j2i +k2i

2
− [B−1

∑
i
ki+ji

2
]2

(2.19)

where ji and ki are the degrees at both ends of an edge i, B is the number of edges,

and −1 ≤ r ≤ 1. The network is assortative if r is +ve, and disassortative if r is

−ve. Foster et al. [61] extended (2.19) for a directed network where four typical

assortative mixing levels are observed, namely, r(in, in), r(in, out), r(out, in) and

r(out, out) denoting the correlation between in-degree of two nodes, out-degree

of two-nodes, in-degree of a node and an out-degree of a node, respectively.

The physical significance of assortativity is that a negative value of r shows

the existence of core-periphery network structure and a positive value of r shows

a layered network structure. In PTN analysis, it is more desirable for the net-

work to be disassortative in order to offer better service and connectivity in a

core-periphery structure. However, if a PTN follows a layered architecture, it is

desirable to have assortative mixing between highly central nodes or hubs, which

in turn are expected to have a disassortative mixing with other nodes in the

network.

It has been observed that smaller networks are expected to be more disassor-

tative, and larger networks exhibit both assortative and disassortative tendency

[16, 21, 25]. Chatterjee et al. [23] developed the degree-correlation matrix to

visualize the connectivity preferences of nodes in the L-space and P-space repre-

sentations. Strong assortativity has been observed in L-space among low degree

nodes, whereas, in P-space, strong assortativity can be seen in nodes of certain

node degrees.

Also, Ferber et al. [14] investigated the assortativity for the second neighbor

(r(2)) of a node, and found that a more positive r(2) indicates stronger correla-

tion with the immediate neighbors as well as the second neighbors. Although

the property of assortative mixing has so far been studied with respect to a node

degree, the polarization of nodes with respect to other parameters (e.g., vari-

ous centrality measures) may offer a different perspective in understanding the
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network behavior. Such study of social behavior of public transport stops and

routes will provide important information for the design of stop locations and

route distribution.

2.1.10 Communities

Community is a pair-wise parameter studied at node level and yet offers a global

view in network theory. Identifying communities in a network, also called network

partitioning, can be thought of as an extension to identifying assortative mixing

in the network, but over a much larger set of nodes. A community is a subgraph

of a network with nodes of similar behavior (in terms of connectivity), and there

are dense links within a community but much fewer links between communities.

Graph partitioning has been a hot research topic in the field of graph theory

in the past decade since evaluating communities, especially in large and dense

networks involve computationally intensive processes. An index called modularity

is employed to evaluate communities in a network, as demonstrated by Newman

and Girvan [62, 63], i.e.,

Q =
∑
i

sij −
∑
ijk

sijski (2.20)

where sij is a component of matrix s which defines the number of edges in the

original network that connects nodes in community i to nodes in community j,

and 0 ≤ Q ≤ 1. Here, Q = 0 indicates the absence of similar degree connectivity

in a network (random graph), and Q = 1 indicates a strong connection within the

communities. Equation (2.20) has been popularly used to evaluate the modularity

index for all types of networks (directed, undirected, weighted and unweighted).

Moreover, in the survey conducted by Khan and Niazi [64], various modularity

metrics have been considered depending on the network type.

In the study by Háznagy et al. [18], the city’s center has been found to have a

few communities whereas the periphery has numerous communities. The work by

Bona et al. [26] has identified 187 different communities with a modularity value

between 0.3 to 0.7 for a PTN in a Brazilian city. For the Chinese city of Qingdao,

Zhang et al. [19] observed a high modularity value of 0.8 with an average of 20

communities. Furthermore, a total of 46 communities with a strong modularity

value of 0.91 was observed in an urban rail transit system in China [16]. Sun et al.
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[28] also found a weak modularity value of 0.34 with 7 communities in urban bus

networks, where communities have been consistently identified with respect to

their spatial coverage. Appendix A offers various perspectives of understanding

community structures under various spaces of network representation. A physical

significance of identifying communities in a network is that knowing the struc-

tural equivalence of nodes and their communities is crucial to understanding the

behavior of intra-community and inter-community nodes.

2.1.11 Node and Edge Weights

In generating weighted networks, a weight (w) is either added to a node or an edge

or both. Weighted transport networks are still relatively less explored, despite

their obvious practical significance in quantifying the relative importance of nodes

and edges in relation to the level of service and performance provided by a public

transport network. In this section we discuss a few weight metrics commonly

employed in the topological analysis of various public transport networks.

Node weight can be assigned to reflect the relative importance of a node

(station). For instance, a weight can be assigned to a station or a link according

to the number of routes servicing it (degree) [18, 27], or according to the sum of

weights of the adjacent edge weights (weighted degree) [28]. Edge weight may be

assigned according to the morning peak hour capacity of the vehicles carrying the

traffic [18], the minimum geographical distance between any two nodes [21, 22],

the number of overlapped bus routes between two stations [17, 21, 28], the number

of common stops serviced along a route in C-space [20].

Furthermore, dynamic edge weights may also be assigned according to the

average travel time between two nodes [19], which have been found to be very

useful in analyzing the dynamic behavior of PTNs, especially in describing the

varying behavior during peak- and off-peak hours. In our work, we propose a

static demand estimation approach to weigh a node’s significance, and the number

of routes between the two stations is employed as an edge weight, the details of

which will be discussed in Chapter 3.
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2.1.12 Notable Contributions to Public Transports Network

Analysis

In this section, we discuss a few notable contributions in the field of PTN analysis

in addition to the applications of network metrics in the study of PTN topologies.

1. The usual procedure for generating the topology of a PTN is based on some

available online dataset. Kurant and Thiran [13] made a novel attempt to

extract real physical topology of a network by considering the time-tables

of the mass transportation systems. Despite the different terminologies

adopted (space-of-changes for P-space representation, space-of-stations for

L-space representation and the other being space-of-stops representation),

the representations proposed by Kurant and Thiran [13] are generally con-

sistent with the representation types discussed in Section 2.1.1. Essentially,

a multilayer framework has been adopted considering the actual mapping of

logical graphs on physical graphs, where the logical layer is the real-world

traffic flow layer and the physical layer is the topological representation

based on space-of-changes, space-of-stations and space-of-stops.

A node load is estimated based on the weighted combination of four load

estimators, namely, node degree, betweenness, restricted betweenness and

simple load (origin-destination pair) assuming the combined estimation

would aid in revealing some hidden network information which only de-

graded the performance of the best involved estimator (simple load). More-

over, Kurant and Thiran [13] also acknowledged the fact that only the

OD-pair information would not suffice to carry out node load estimation

without additional information like the traffic pattern.

2. A rare but insightful attempt was made by Haznagy et al. [18] to apply

the page ranking concept in a PTN analysis. The public transport stops

are ranked, in a similar manner as in web page ranking in a search engine

demonstrated earlier by Larry Page [65]. The idea behind evaluating the

pagerank is to identify the key nodes in the network that have significant

impact in analyzing the transport efficiency.

3. Spatial embedding networks (SENs) have been introduced by Yang et al.
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[22] to demonstrate the effectiveness in capturing the topological properties

alongside with the underlying spatial characteristics of a network. It has

been demonstrated that in a PTN analysis, considering the underlying ge-

ographical feature is as important as considering the network topology. A

concept of extended space (ES) model has been adopted to represent the

L-space (ESL), P-space (ESP) and network with SSPs (ESW) representa-

tion. A flexible transfer algorithm using the extended model has also been

proposed to evaluate the cost of a transfer plan (cd) taking into account fac-

tors like transfer time, walking distance, and distance to taking bus. Such

analysis has practical significance as it provides the passengers a list of top

minimum cost transfer path routes.

4. A simple network evolution model using a quasi-continuous approximation

model has been proposed by Chen et al. [24]. In their work, the number of

bus routes a stop joins R and the bus stop’s degree k are the key parameters.

Based primarily on the preferential attachment, a simple BTN model can

be organized by adding one new route at a time. It has been demonstrated

empirically that a strong linear correlation exists between R and k, and this

forms the basis for the evolution model [24].

5. A new P-space representation that considers the uplink and downlink routes

separately for the bus routes in Harbin (a northeastern Chinese city) has

been proposed by Feng et al. [27]. Essentially, the representation introduces

a duplication factor DFR′ which is the ratio of repeated stations to unique

stations for a given route R′. This parameter provides practical useful

information about the bus route’s spatial availability, and DFR′ has been

found to exceed 36%. In the new representation, the adjacency matrix

element aij is assigned a value 1 if the node is a part of both uplink and

downlink routes, and 0.5 if the node is a part of either uplink or downlink

route. This representation readily captures the richness of a node in terms of

the degree, weighted degree, average shortest path length, and node weight

(weighted degree/degree).

The basis for evaluating the richness parameter is the so-called rich-club

phenomenon, i.e., the correlation probability of nodes having high richness
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parameter (hub nodes). An exponential distribution has been observed by

probing the rich-club connectivity pattern, indicating that in a small portion

of the network, the hub nodes are well connected. Furthermore, the eval-

uated node weight has showed positive correlation with the corresponding

degree, weighted degree and number of routes along a node (R), indicating

that the stations carrying maximum load are always well connected [27].

6. A simple and realistic routing algorithm called passenger intuitive logic

(PIL) has been used by Wu et al. [33] to study the passenger flow in metro

networks. The passengers’ intuitive strategy of choosing routes, including

minimizing the number of hops traversed and the number of transfers made,

forms the basis of the routing algorithm that is used in the study of pas-

senger flow in metro systems. In their study, Wu et al. combined the use

of shortest path (SP) and minimum transfer path (MTP) to determine the

routes chosen by passengers. Here, MTP corresponds to the route that has

the least number of transfer times, i.e.,

PMTP =

(
1− ε2

λ2
th

) 1
2

(
1− (γ′ − ξ)2

ξ2

)
ε ∈ [0, λth], γ

′ ∈ [0, ξ];PSP = 1−PMTP

(2.21)

where PMTP is the probability of taking a minimum transfer path, and PSP is

the probability of taking a shortest path. Simulation results for the Beijing,

Tokyo, Hong Kong and London metro systems offer insightful observations

on the relationship between the topological structure of metro networks and

traffic flow [33].

Lastly, as observed from the literature, the roles the various parameters in

graph theory play in determining the performance and behavior of transport sys-

tems are of great importance from both the passenger and operator perspectives.

Thus, in Chapter 4 we study the PTN topological behavior from a graph theoretic

perspective. Unlike the conventional way of representing a graph, in our work,

we propose a novel approach which aids in more realistic topological analysis as

will be discussed in Chapter 4.
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2.2 Multi-layer Networks

Urban transportation systems are typically multi-modal in nature which com-

prises of bus-, metro-, tram-, subway-, light-rail-, ferry- networks, and so on.

Considering the real-world usage of the PTNs, the multiple transport modes

should be treated as interacting and interdependent networks, or network of

networks (NoN), to simultaneously capture the benefaction of the nodes and

edges on multiple layers. However, a vast majority of analyses in the literature

are dedicated towards analyzing the isolated, independent, and non-interacting

mono-layer transport networks, or the aggregated version of them, which fails to

quantify the structural and functional aspects of the network behavior wholly.

Thus in this section, we emphasize on the need for modeling the public transport

modes as interdependent multi-layer networks by presenting the key insights from

the literature.

Kivelä et al. [66] presented an exhaustive review of the multilayer networks by

introducing a general framework for the analysis of a wide range of networks like,

monoplex (mono-layer) networks, multiplex (multi-layer) networks, interdepen-

dent networks, interconnecting networks, networks of networks, etc. Tomasini

[67] followed up on Kivelä’s work and provided a more general framework for

multi-layer network analysis. Zanin [68] discussed the multi-layer nature of the

functional networks and demonstrated that neglecting the multi-layer structure

has dramatic consequences in understanding the actual network behavior. Gao et

al. [69] presented a detailed review of the analytical framework for connectivity

properties in NoN which were formed by the interdependent networks.

Identifying the set of influential nodes in a network and ranking them based

on their significance aids in identifying central nodes in a network which acts as

a great source of information to multiple disciplines of study, which is typically

accomplished by evaluating various centrality measures in mono-layer analysis.

However, considering the interdependency of multiple transport modes, the signif-

icance of a node to the overall network behavior might vary which has very limited

contributions in the literature. Domenico et al. [70] in their work capitalized on

the tensorial formalism to demonstrate the natural extension of various centrality

measures employed in mono-layer analysis to the realm of interconnected multi-
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layer networks. The authors highlighted on the significant difference observed in

ranking of nodes considering the weighted mono-layer and multi-layer networks.

Menichetti et al. [71] demonstrated that partial analysis of layers failed to

capture the significant correlation between weights with mono- and multi- layers.

The authors also introduced a framework based on entropy to quantify the in-

formation stored in multi-layer network, and observed undetected information in

the mono-layers when analyzed in isolation. Chodrow et al. [72] considered the

multi-layer aspect of a network from both structural and socio-technical aspect

to analyze the nature of travel demand on the transport layer, and demonstrated

that demand structure plays vital role in both qualitative and quantitative anal-

yses of the network. Furthermore, a majority of works in the literature are dedi-

cated towards understanding the robustness of the integrated multi-layer network

by following various attack models where the nodes were removed from the net-

work from multiple layers, and their implication on the overall network behavior

was assessed [73, 74, 75].

Lastly, Existing works on PTN analysis using graph theory have emphasized

on either the individual transport networks by considering them as isolated mono-

layer networks, or the non-interacting aggregated multi-layer networks. Though

the different transport layers share common features when analyzed as individual

mono-layer structures, by understanding the interconnectedness among different

mono-layers, a more meaningful insight is gained into the overall network struc-

ture and its dynamics. Also, since passengers use multiple transport modes (on

different transport layers) to reach their destinations, it is of practical importance,

though rarely considered, to study the interaction and connectivity between net-

work layers of different transport modes, the details of which are discussed in

Chapter 5.

2.3 VANET Connectivity Analysis

This section is divided into two sections: in the first section we discuss a few

notable works on VANET connectivity analysis considering contact duration as

the evaluation metric, and in the second section we briefly review a few works in

the literature which emphasize on robustness analysis of a PTN topology.

Urban vehicular networks are expected to be an integral part of future intelli-
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gent transport system to mitigate serious on-road issues like traffic management,

congestion problems, and accidents, along with providing on-road infotainment

services. The research in VANET is often dedicated to either microscopic or

macroscopic analysis to understand the nature of V2V and V2I communication.

In microscopic analysis, characteristics such as driver behaviors, individual vehi-

cle mobility are taken into consideration, whereas, in macroscopic analysis road

network topology, diurnal cycles, socio-technical activities are considered. Key

parameters such as dissemination range, throughput, latency, link duration, inter-

contact time, and re-healing period are used for performance evaluation, while

vehicular density and transmission range are used in understanding the connec-

tivity dynamics in VANETs.

In the course of analyzing the factors that influence the connectivity in vehic-

ular network (both V2V and V2I), various mobility models [76, 77, 78], channel

estimation models [79, 80], and routing strategies [81, 82] has been proposed

and verified in the literature. Additionally, the spatio-temporal dynamics of ve-

hicular movement that significantly influence the instantaneous connectivity in

VANETs has been verified from a graph theoretic perspective where the topo-

logical metrics like degree, clustering, and betweenness centrality were evaluated

[83, 84, 85, 86, 87, 88].

Though a numerous analytical frameworks and empirical results has been

discussed in the literature to understand the connectivity dynamics in VANETs,

these works mainly considered generic vehicles like cars and taxis. Very few contri-

butions have considered different vehicle types such as public transport networks.

A rather unique, and partially deterministic mobility pattern of PTNs such as

fixed route and known schedules have attracted interest of a few researchers to

separately model the connectivity in PTNs, specifically BTNs [89, 90].

Ho et al. [89] studied the interbus connectivity pattern by considering the

buses in urban area, and examined their implications on transport-related ser-

vices. An extensive set of simulation results and real-world data on bus routes

were employed in their work. Specifically, the effect of bus stop location and

the prevailing traffic patterns on vehicular connectivity were demonstrated. The

authors discussed the significance of modeling the mobility of buses explicitly

and the usage of such connectivity analysis in developing routing algorithms in
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interbus communication networks.

Doering et al. [90] analyzed the realistic movement patterns of bus traces from

Chicago and Seattle, and analyzed the parameters such as vehicle density, speed,

update intervals, and characteristics that are specific to bus transport networks.

The authors discussed that such an analysis could be useful in communication

systems which forms an useful part of future smart cities.

Contact duration is a key metric in VANET connectivity analysis that strongly

determines the throughput of a communication. Ho et al. [89] and Li et al. [91]

are the only authors in the literature to study the nature of vehicular connectivity

considering the contact duration as the performance evaluation metric. Though

the vehicles considered in the two works are different, a common behavior of

contact duration was observed in both the works, i.e., the dichotomy behavior.

As shown in both the works, a characteristic time was observed below which

the contact duration followed an exponential distribution, and above which it

followed a power-law distribution.

Though the authors in [91] merely discussed the distribution pattern of contact

duration from real-world taxi traces, the authors in [89] discussed empirically

that the behavior of the contact duration below the characteristic time can be

attributed to the traffic control and management aspects, whereas the behavior of

the contact duration above characteristic time can be attributed to the vehicular

density. Additionally, Ho et al. demonstrated that the traffic controls and stops

can lengthen the communication links between the vehicles which can delay the

characteristic time.

Lastly, there exist a numerous works in the literature that has demonstrated

that the mobility pattern of the vehicles has a profound influence on the spatio-

temporal dynamics of vehicular connectivity, specifically V2V connectivity. How-

ever, the lack of emphasis in understanding the nature of V2I connectivity resulted

in understanding the V2I connectivity pattern, specifically in PTNs, as will be

discussed in Chapter 6.

2.3.1 Robustness Analysis

Robustness analysis is a topic of hot research area in the field of network theory.

Following the work published by Albert [92], the domain attracted a significant
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research interest. Many real-world complex systems have demonstrated an ex-

ceptional ability to retain their basic functionality even in the case of failure of

their network components, termed as the network robustness. It has been illus-

trated in a numerous works in the literature that the network topology plays a

vital role in assessing the network robustness [92, 93, 33]. Percolation theory,

which is one of the subfields of statistical physics and mathematics, is typically

employed in assessing the condition for a network breakdown under various node

removal (random and targeted), and attack models (random dynamic, random

static, targeted dynamic, etc.).

The primary interest in robustness analysis is the impact of node failures on

the integrity of the network. By randomly removing a fraction of nodes (f), a

limited impact is observed on the network’s overall integrity. However, increas-

ing f can isolate chunks of nodes from the giant component, and finally, for a

sufficiently large f , the giant component breaks into tiny disconnected compo-

nents [5, Chapter 8]. Thus, to understand the consequences of node removal

accurately, understanding the underpinnings of inverse of the percolation process

is a pre-requite.

Barabási [5] in his work has provided the detailed mathematical derivations re-

garding the critical threshold (fc) required to significantly effect the network’s in-

tegrity for both random- and scale-free network topologies, and interested reader

is referred to the same. There exist a numerous works in the literature where

the authors have demonstrated that the scale-free network topology can with-

stand an arbitrary level of random failures without significantly effecting the

network’s integrity, in which the hubs are responsible for this remarkable ro-

bustness. Whereas, random network topology is more susceptible to random

failures which readily fragments into isolated subgraphs at the critical threshold

[5, 94, 95, 96, 97].

In our work, we evaluate the robustness of the vehicular network connectiv-

ity using the approach of random node removal to demonstrate the capacity of

the network to sustain malfunctions, and yet continue to offer the best possible

service, as will be discussed in Chapter 6.
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2.4 Summary

The application of network theory has permitted in-depth understanding of the

connectivity, topological behavior and operations of many practical networked

systems as well as the roles the various parameters play in determining the per-

formance of such systems. In the field of transportation networks, however, the

use of graph theory has been relatively much less explored, and this interested us

to work in the field of public transport analysis from a graph theoretic perspective.

Furthermore, contemplating the multiple transport networks as independent

and non-interacting networks in a numerous PTN analyses accomplished in the

literature has led to evasive results considering the real-world usage of the net-

work. Thus, in view of the practical relevance of quantifying the actual network

behavior, the need for modeling the interdependency of multiple transport modes

is emphasized in our work which had attracted limited contribution in the past.

Urban vehicular networks are expected to be an integral part of future intelli-

gent transport system to mitigate serious on-road issues where the vehicles with

on-board wireless communication devices can exchange information. A numer-

ous works in the literature had demonstrated that the mobility pattern of the

vehicles had a profound influence on the spatio-temporal dynamics of vehicular

connectivity, specifically V2V connectivity. However, the lack of emphasis in un-

derstanding the nature of V2I connectivity, specifically in PTNs, and the never

explored propensity of analyzing the impact of a PTN topology on the nature of

vehicular network connectivity interested us to work in the direction. Though the

afore mentioned topics are extensively explored in the areas of traffic and trans-

port engineering fields, the analysis from a graph theoretic perspective demands

some serious attention. Lastly, in its first kind, the robustness of the vehicular

network is verified using the approach of random node removal to demonstrate

the capacity of the network to sustain malfunctions, and yet continue to offer the

best possible service.
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Chapter 3

Representation of Public Transport

Network as A Graph

A public transport network can be either unimodal or multi-modal in nature.

In our work, we emphasize on the topological analysis of two different modes of

public transportation, namely, the bus transport network (BTN), and the metro

transport network (MTN), since the two modes are widely used by the public

to meet their daily commuting needs [98]. The current chapter focuses on the

topological representation of a public transport network using the graph theory

concepts. The major contributions of the chapter are three fold:

1. In Section 3.1, a step-by-step procedure is discussed to generate a public

transport network topology from the real-world datasets by applying the

graph theory concepts.

2. Unlike the conventional graph representation employed in the previous

works, in Section 3.2, we propose a novel approach called supernode graph

representation to model the public transport network topology.

3. In Section 3.3, we generate a weighted graph structure by adding a weight to

both a node and an edge. We propose a static demand estimation approach

to add a node weight, and the load between the nodes is made use of as an

edge weight.

Based on the various statistical information like, the network size, number of

daily passengers benefiting from the transport modes, and contribution of the

two chosen transport modes to the overall public transportation in a city, we



consider three cities, namely, Hong Kong, London, and Bengaluru in our studies.

Though the main focus of the current chapter is on the topological representation

of bus transport network, in general, it is applicable to both the bus and metro

transport networks.

3.1 Data Analysis

Although significant research interest in the field of network theory has been

cultivated for several decades, the established concepts have been applied to the

real-world data only in the recent past, mainly due to the availability of real-

world datasets and the high-end tools to process such huge datasets. With the

aid of real-world datasets, a network topology which closely mimics the real-world

structure can be generated using the concepts of graph theory. In this section,

we discuss the detailed procedure in building a PTN topology using the real-

world datasets which involves three steps: data collection, data mining and data

visualization.

3.1.1 Data Collection

In this section, the various means for extracting real-world data are discussed

along with the information encased in the datasets. To the best of our knowl-

edge, there is no single source to extract the dataset on various public transport

networks, however, by referring to the literature, and based on our observation, a

list of online sources and relevant datasets are given in Appendix B. The extracted

datasets include information on

1. List of stops/stations along with their id’s, names, latitude/northing and

longitude/easting data.

2. List of routes/sequence-of-stops along with their stop sequence id’s and

names for the inbound, outbound and round-trip routes.

where a stop or station is a designated place allocated to pick up or drop off the

passengers, a route (sequence of stops) is a path taken to reach the destination

from a source along the intermediate stops. Furthermore, other information such

as the list of routes operated by different operators, end-to-end travel cost, fre-

quency of operation, specific day and time (e.g., weekday, weekend, special days,
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(a)

(b) (c)

Fig. 3.1: An excerpt from the Hong Kong BTN dataset. (a) The columns from

left to right: list of bus routes, name of the operator , route id, service mode (R:

Regular, T: Regular and specific time, N: Night etc.), special type (0: all time,

1: time or day specific), start location, end location, end-to-end travel fare, and

last updated information. (b) The columns from left to right: route id, route

sequence (1: outbound, 2: inbound), stop sequence along the route id 1001, and

their stop id’s, i.e., route No. 1001 has 10 stops along the outbound journey route

with 4001 being the first and 4025 being the last stop along the route, and vice

versa for the inbound journey; (c) The columns from left to right: the list of bus

stops along with their spatial information about easting (x ) and northing (y).
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peak hours, off-peak hours, day-time, night-time routes), etc., are also available

in a few datasets. Fig. 3.1 shows an excerpt from the dataset of Hong Kong bus

transport network.

3.1.2 Data Mining

Like other complex networks, the availability of huge data have posed big chal-

lenges to transport network analysis. Fortunately, the obtained datasets for PTNs

are relatively midget, and can be processed in a reasonable time as compared to

gigantic social networks comprising of billions of nodes and edges which are com-

putationally expensive. Here, we describe three basic steps to extract meaningful

information by mining the crude datasets:

Step 1: Eliminate the anomalies that are commonly observed in the extracted

datasets, e.g., data redundancies with respect to the locations of public trans-

port stops or routes, missing information in the sequence of stops along a route,

allocation of multiple id’s to a specific stop or route, missing information on the

geographical location of a few stops.

Step 2: Process the crude data obtained in step 1 to permit further analysis.

This involves the following procedure:

1. Since PTNs belong to the category of spatial networks, understanding the

topological behavior along with spatial information would facilitate better

network analysis. The spatial information of public transport stops listed in

the datasets are either easting-northing or latitude-longitude. Since many of

the network visualization tools adopt latitude and longitude information for

displaying the spatial locations of the stations, it is useful to convert easting

and northing data to latitude and longitude using tools like ArcGIS [99].

Before the conversion, a suitable global coordinate system (e.g., WGS84)

should be chosen based on the information about local coordinate systems

(e.g., OSGB36 for London and HK1980 for Hong Kong) provided by the

local survey departments [100].

2. In some datasets, the numbers assigned for the stops are typically non-
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sequential in nature which poses computational challenges, e.g., in gener-

ating adjacency matrix. Thus, it is necessary to map the list of id’s (both

routes and stops) extracted from the database with sequentially mapped

numbers. This mapping of original stop id’s with sequentially mapped id’s

makes it less arduous to further process the data.

3. The concept of short distance station pairs (SSPs) has been commonly

adopted to represent a group of stations as a single (merged) station [17, 18,

22]. Assigning new id’s to such SSPs according to the sequential mapping

carried out in Step 2 is recommended to facilitate easy identification of SSPs

in a network. The clustering of multiple stations into one station can be

based on geographical closeness, similar names for nearby stations, stations

within a specific walkable catchment, etc.

Although different terminologies have been used, the essential idea of SSPs

has been reported in a few works [17, 22]. The idea behind identifying

SSPs is to establish a virtual connectivity among the nodes. While combin-

ing multiple nodes as a single node based on their geographical closeness,

the actual definition of geographical closeness is always a matter of choice.

A distance threshold (dth) is needed to define the closeness of two nodes

and can be chosen judiciously by observing the distribution pattern of geo-

graphical distances between successive stations (dij) in a network. However,

it should be noted that choosing an extremely small value of dth creates a

lot of SSPs in a dense network, whereas a large value of dth is meaningless,

since a long walking distance to reach another station in the network is

unreasonable. In either of the cases, the chosen value of dth may bias the

understanding of network behavior. Hence, a careful selection of the dth is

important. SSPs are more prevalently observed in bus transport networks

as compared to metro transport networks.

Step 3: Generate the topology of a PTN from the data extracted in Step 2.

Initially, based on the graph type and the space-of-representation, a square adja-

cency matrix A with dimension N×N and elements aij is derived to describe the

connection between node pair ni and nj. The element aij = 1 if there exists a con-

nection between nodes ni and nj, and 0 otherwise. A graph can either be directed
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(digraph), undirected, weighted or unweighted. The intent of choosing the graph

type solely depends on the type of analysis to be accomplished. For the analysis

of transport structures, especially bus transport structures, a directed graph is

often chosen since the inbound and outbound routes have different travel paths

servicing different stations (except the round-trip journey routes). However, an

undirected graph is typically chosen in the analysis of metro transport networks

where the inbound and outbound travel paths remain the same for a vast majority

of routes. Furthermore, depending on the aim of the network analysis, the graph

can be represented in various spaces of representation as discussed in Section

2.1.1 in Chapter 2. Thus, the type of graphs (directed, undirected, weighted, un-

weighted) along with the space-of-representation (L-, P-, B- and C-space) defines

the topology of a PTN structure to be examined.

3.1.3 Data Visualization

For visualizing a network, there are many open source network visualization tools,

and the selection would depend on the need of the analysis. For a comparison of

different visualization tools, interested reader is referred to ref. [101].

Thus, in the process of building a real-world network topology, we suggest

three fundamental steps, i.e., data collection from a reliable source, data mining

in order to reduce the anomalies, make computation less arduous, define the

network topology based on the graph type and the space-of-representation, and

lastly, data visualization to perceive the network topology. In our work, for the

topological analysis of the three cities, we employ a directed and weighted graph

structure represented in L-space.

3.2 Supernode Graph Representation

In this section, we first discuss the representation of a public transport network

topology as a conventional graph, which is later modified with the proposed

supernode graph representation. Using the conventional graph theory approach,

a graph G is defined by (2.1) and (2.2) as discussed in Section 2.1 in Chapter 2.

Considering the spatial embedding of a public transport network, in our work,
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(a) (b) (c)

Fig. 3.2: Spatial location of bus stops for (a) Hong Kong; (b) London; and (c)

Bengaluru networks.

a graph G is represented by G = (V (x, y), E) where V and E are described as:

V (x, y) = {ni (xi, yi) | xi = latitude, yi = longitude; ∀i = 1, 2, ..., N} (3.1)

E = {eij → (ni (xi, yi) , nj (xj, yj))∀ ni(xi, yi) ∈ V ; ∀i = j = 1, 2, ...., N ; i 6= j}

(3.2)

In the subsequent chapters, ni(xi, yi) is represented as ni assuming that a par-

ticular node is always identified by its latitude and longitude. Fig. 3.2 shows the

spatial location of the bus stops, and the corresponding bus transport network

structure for the three chosen cities represented as a conventional graph.

Additionally, the inspection of spatial embedding of nodes in bus transport

networks resulted in a new network element called supernode, as shown in Fig. 3.3.

A supernode is a set of geographically closer nodes which satisfy the condition:

dij ≤ dth ; dth = 100m (3.3)

where dij is the geographic distance between two nodes i and j, and dth is a

predefined threshold distance. The value of dth is set to be 100 m in our work

assuming it to be an optimal walkable distance to reach a nearby station. If

dij ≤ dth, nodes i and j are said to be geographically close to each other, and are

combined to represent a single node called supernode. The geographical distance

between the nodes (dij) is evaluated using the Haversine formula [102]. The
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combining of multiple nodes as a supernode is not a physical phenomenon, and

instead is merely a structural reorganization.

Fig. 3.3: An example of geographically closer nodes in Hong Kong.

Thus, a supernode graph structure consists of four components: regular node

set (V ), supernode set (VS), regular edge set (E), and superedge set (ES), i.e.,

G = (V (x, y), VS(x, y), E, ES), where VS and ES are given by (3.4) and (3.5)

respectively.

VS =
{
sni} ∀i = 1, 2, .., NS. (3.4)

where NS = |VS|, Vs is the set of all supernodes in the network where, each su-

pernode is defined as: sni =
{
nj, nk}, such that djk ≤ dth, i.e., each supernode

is a set of two regular nodes whose geographic distance is less than or equal to

dth. If (sni ∩ snj) 6= Ø, then, s̃ni=
{
sni ∪ snj}, i.e., if there exists some nodes

that are common to multiple supernodes, these supernodes are combined to form

a giant supernode (s̃ni), which is assigned with a unique node id for its easy

identification. A giant node is also within the supernode set. The newly formed

supernode is assigned a new spatial location which is the mean location value of

the corresponding elements, i.e., sni(xi, yi) =
{
nj(xj, yj), nk(xk, yk), .....}, where

xi = mean(xj, xk, ....), yi = mean(yj, yk, ...). Figure 3.4 illustrates an example of

how a supernode and a giant supernode are defined. In our analysis, consider-

ing the three cities, a supernode comprised of two regular nodes, and a giant

supernode comprised of 9 to 12 regular nodes.

Assuming that an edge eij exists between nodes ni and nj, a superedge can
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(a)
(b)

Fig. 3.4: An example of (a) supernode; and (b) giant supernode.

(a) (b)

Fig. 3.5: An example of defining edge between (a) a supernode and a regular

node; and (b) two supernodes.

then be defined between two supernodes as esni,snj → (sni, snj)∀(ni ∈ sni, nj ∈

snj) as shown in Fig. 3.5b, or a superedge can be defined between a supernode

and a regular node as esni,nj → (sni, nj) ∀(nj ∈ V, ni ∈ sni) as shown in Fig.

3.5a. Thus, the superedge set is defined as

ES =
{
esni,snj ∪ eni,snj} ∀sni, snj ∈ VS, ni, nj ∈ V (3.5)

In the course of defining the supernode structure, some of the original nodes

and self loops are eliminated. The self loops convey information regarding the

edge weight, however, in our analysis, since we do no use the edge weight (ex-

cept for path length calculation), the removal of self loops have no impact on

the overall analysis. Intuitively, based on our condition for forming a supernode,

it can be stated that the existence of supernodes is highly probable in bus net-

works as compared to metro networks. The idea behind identifying supernodes

is to establish a virtual connectivity among the nodes to make the analysis more

practical. However, it should be noted that choosing an extremely small value

of dth creates numerous supernodes in a dense network, whereas a large value

of dth is meaningless, since a long walking distance to reach a nearby station is

unreasonable. Hence, a judicious selection of the dth is important.
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The significance and the necessity of supernode graph representation in a PTN

analysis are summarized as follows:

1. Combining the geographically significant nodes in a network benefits in

improved understanding of the network behavior. For example, combining

nodes with significant degrees in a network helps identify hubs in a network,

which in turn aids in determining the convenient switching/transfer points

in a network. Not all the supernodes are considered the preferred transfer

points, however, the supernode representation offers a strong foundation in

identifying such nodes in the network.

2. Supernode structure helps eliminate redundancies in the network for fast

computation (compared to conventional graph representation), and yet re-

tains the original network structure without significant loss, i.e., with the

supernode structure, we can reproduce a network that nearly mimics the

original network with a reduced dataset.

A parameter redundancy is defined to examine the level of reduction be-

tween the original network and the supernode network which is defined as:

Redundancy =
# of nodes with supernode graph representation

# of nodes with conventional graph representation
(3.6)

Table 3.1 gives statistical details of the original network, the supernode net-

work, and the average redundancy observed for the three networks. Figure

3.6 indicates the histogram of the regular and supernode counts for the three

cities. To define the redundancy, we consider the smallest available division

of the land area such as a district or a ward as shown in Fig 3.7, and we

term it as a zone. The idea behind considering the zones in a network is to

observe the redundancy pattern at local level, i.e., observing the reduction

of nodes within a chosen zone considering the conventional and supernode

graph representation. Interestingly, observing the redundancy distribu-

tion pattern reveals intriguing information on the distribution pattern of

nodes (bus stops) itself. For example, a high density of nodes in certain

zones yields more supernodes in the zone causing maximum redundancy,

since, high density of nodes indicate more closely packed nodes, and in the
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Tab. 3.1: Comparison of network size for the three cities with original and

supernode representations.

Regular structure Supernode structure % redundancy

Nodes Edges Nodes Edges Nodes Edges

Hong Kong 4065 11672 2251 8497 45 27

London 20192 24117 11271 21488 44 11

Bengaluru 5662 13266 3724 9832 34 26

Average - - - - 41 21

(a) (b) (c)

Fig. 3.6: The histogram indicating the number of regular nodes and supernodes

in (a) Hong Kong; (b) London; and (c) Bengaluru cities.

supernode representation, such close associates are merged together to rep-

resent a supernode. Empirically, the redundancy distribution is observed

to follow a Normal distribution for the Hong Kong, London and Bengaluru

networks with µ equal to 45, 44, 37, and σ equal to 4, 8, 16 respectively as

shown in Fig. 3.8. It can be inferred from both the Table 3.1, and Fig. 3.8

that, the redundancy is maximum in the case of Hong Kong bus network

as compared to the London and Bengaluru networks, indicating that the

bus stops in Hong Kong city are geographically closer and denser in a given

zone. Thus, by observing the redundancy pattern in a network, a better

insight into the node distribution pattern can be procured.

Also, as tabulated in Table 3.1, in all the three networks, an average of
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(a) (b) (c)

Fig. 3.7: The consideration of smallest available geographical division of a land

area as a zone in the (a) Hong Kong; (b) London; and (c) Bengaluru cities.

For the Hong Kong city, a zone represents a district, however, for London and

Bengaluru cities, a zone represents a ward. The difference in considering the

geographical area as zone is primarily based on the availability of real-world data

from the respective cities.

(a) (b) (c)

Fig. 3.8: Redundancy distribution for (a) Hong Kong; (b) London; and (c)

Bangalore cities.

40% redundancy of nodes is observed, whereas, only 20% redundancy is

observed with respect to the edges (network connectivity), indicating that

a major portion of the original network structure is still retained even after

the network is reorganized as a supernode structure as shown in Fig 3.9.

The 40% reduction in nodes actually reduces redundant information since

the supernodes indirectly hold the information regarding the geographically

closer nodes in the network, thus retaining the basic information. On the
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(a) (b)

Fig. 3.9: Hong Kong bus transport network structure in (a) conventional; and

(b) supernode graph representation types.

other hand, the 20% reduction in the edges is due to the elimination of self

loops which has less influence in our analysis since the information conveyed

by the self loops is not used in our analysis.

Thus, we claim that the supernode network representation closely mimics

the original network with a reduced dataset, and the information loss in

the new network representation is very minimal thus contributing towards

capturing the actual network behavior. As we demonstrate in Chapter 4,

supernodes play vital role in capturing the actual network behavior which

the conventional representation fails to capture.

Therefore, in the analysis of a PTN structure, a supernode graph represen-

tation can be practiced in the future for faster computation and better under-

standing of the network behavior. In Chapter 4, we empirically show that the

supernode approach aids in a more practical and improved understanding of the

network behavior as compared to the conventional graph representation.

3.3 Weighted Graph Representation

In this section, the supernode graph structure generated in Section 3.2 is modeled

as a weighted graph by adding a weight to both the node and edge. In classical

graph theory, assigning a weight to an edge is of a common practice to generate

a weighted network, however, assigning a weight to a node is seldom considered
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[27, 19]. In our work, we choose to assign a weight to both a node and an edge

since the added weights assists in a more realistic network analysis as discussed

in the following sections.

3.3.1 Node Weight

In the literature, the number of bus routes servicing a bus stop (degree) is typically

used as a node weight by some authors [18, 27, 28]. However, in our work, a

static demand estimation approach is proposed to weigh a node’s significance.

The crux of the static demand estimation approach is that, the utilization factor

of a bus stop in a city is greatly influenced by the presence of points-of-interests

(POIs) around the bus stop, where a POI can be either be a hotel, office, school,

hospital, sports arena, cinema hall, shopping complex or residential apartment.

Additionally, a new metric termed node usage probability (NOP) is proposed

which is defined as the total number of people accessing a bus stop. We believe

that, by studying the geographic locations of POIs around a bus stop alongside

its node occupying probability, a better idea on the static demand serviced by a

bus stop can be procured. The details of the demand estimation approach are as

discussed below:

1. The POIs in a city is broadly divided into four categories (m), as shown in

Table 3.2. Each category can be assigned a weight to indicate the extent

to which the POI attracts the passengers which aids in effortlessly marking

the nodes serving maximum demand in a network based on that specific

POI category.

2. In order to evaluate the node occupying probability (total number of people

accessing a particular bus stop), a small local area (typically a few meters

of walkable catchment) around a bus stop is a requisite. However, for the

purpose of empirical analysis, and due to the lack of real-world data, in our

work, a geographical area termed zone is employed as discussed in Section

3.2, such that each zone possesses a defined land area, population, and POIs

within it. Fig. 3.10 shows the geographic location of the bus stops, and the

POIs located in various zones for the three cities.
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Tab. 3.2: Different POI categories considered for static demand estimation

method.

Recreation Emergency Education Transportation

Parks, restaurants, Hospitals, Schools, Taxi-stands

performing venues, banks, universities, metro stations,

libraries, sports grounds, post-offices, workplaces ferry service,

museums, tourist attractions police-stations trams

(a) (b) (c)

Fig. 3.10: Spatial location of the bus stops (pink color), and the POIs (blue

color) for (a) Hong Kong; (b) London; and (c) Bengaluru cities.

Thus, based on the statistical information on POIs around a node, and its NOP,

we assign a weight to a node as below:

(wi)zone =

c1

4∑
m=1

ρm + c2ρp

ρN


zone

+ c3ki ; zone = 1, 2, ...., z (3.7)

where (wi)zone is the weight of a node i in a specific zone. The term ρm denotes

the POI density of category m in a zone, ρp denoted the static population density

in a zone, ρN is the bus stop density in a given zone, ki is the node degree (as

discussed in Section 2.1.2 in Chapter 2), the fraction (ρp/ρN)zone denotes the node

occupying probability in a given zone, and (ρm/ρN)zone indicates the number of

bus stops servicing the number of POIs in a zone. For simplicity, the constants c1,

c2 and c3 are assumed to be equal to 1 (for the dynamic demand estimation, fine

tuning of the three constants play a vital role). To ensure data integrity across
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all the zones, and for the ease of representation, the node weights are normalized

at zonal level, i.e.,

(wi norm)zone =

(
wi − wmin

wmax − wmin

)
zone

; zone = 1, 2, ...., z (3.8)

In equation (3.8), closer the value of wi norm to one, higher the demand serviced

by the node in the chosen zone. Since the normalization is carried out at zonal

level, each zone will have at least one node with wi norm equal to 1 indicating the

node(s) servicing higher demand at zonal level. Fig. 3.11 indicates the nodes (in

red color) serving maximum demand in the three cities at zonal level based on

the normalized node weight calculated using (3.8). Table 3.3 demonstrates the

approach used to assign node weight to a few nodes in a specific zone in the Hong

Kong city.

Unlike in a few works in the literature where the node degree was solely em-

ployed to quantify a node’s significance [18, 27, 28], in the static demand estima-

tion approach, the degree combined with local demand is taken into consideration

to quantify a node’s significance. An advantage of the approach is that, the bus

stops that attracts significant crowd at zonal level can be better understood.

With the evolution of the city, these zonal significant nodes tend to behave as the

future hubs offering more service to the people, and may act as future congestion

hotspots if timely measures are not taken.

From (3.7), we can notice that, a node weight is a function of four parameters,

i.e., ρm, ρp, ρN and ki. As compared to the other three parameters, ρp has a strong

influence on wi since the rate at which population density in a zone increases more

drastically as compared to the rate at which other three parameters increase.

However, in our approach, since all the parameters in (3.7) are static, the demand

in a zone typically follows the node degree as shown in Fig. 3.12 which is plotted

from the real-world dataset provided by the KMB (Kowloon Motor Bus Co.) bus

operator in Hong Kong. From (3.7), it is also observed that, if the nodes in a

particular zone have comparable degree’s, then the proposed demand estimation

approach fails to effectively capture the local demand serviced by the nodes in

that zone, as observed in the case of London and Bengaluru cities in Fig 3.11.
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(a)

(b)

(c)

Fig. 3.11: The bus stops servicing higher static demand at zonal level for (a)

Hong Kong; (b) London; and (c) Bengaluru cities.
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Tab. 3.3: Illustration of the node weight approach to assign the a node weight

to a node (i) in a specific zone (Central and Western district) in Hong Kong city.

Zone Area ρm ρP ρN
ρm+ρP
ρN

node ki
ρm+ρP
ρN

+ ki wi norm

(km2) (i) (zone)

Central 12.55 38 20057 9 2233 180 2 2235 0

and 242 4 2237 0.1

Western 265 8 2241 0.3

270 3 2236 0.05

272 7 2240 0.25

1026 11 2244 0.45

10003 22 2255 1

10018 5 2238 0.15

10021 10 2243 0.4

10046 18 2251 0.8

Fig. 3.12: An example demonstrating the dependency of a node weight on it’s

degree for the bus stops along route #1 in Hong Kong city. The stops S1:S7

belongs to zone 1, S8:S15 belongs to zone 2, and S16:S25 belongs to zone 3.
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Tab. 3.4: Classification of zones into emitter/absorber/neutral regions.

# jobs # working population # POIs Zone type

scarce scarce scarce Neutral

scarce scarce abundant Absorber

scarce abundant scarce Emitter

scarce abundant abundant Emitter and Absorber

abundant scarce scarce Absorber

abundant scarce abundant Absorber

abundant abundant scarce Emitter and Absorber

abundant abundant abundant Absorber

Zone Classification Approach

To gain better insight on a node’s behavior, in this section, we assess the behavior

of a zone together with the static demand estimation approach. That is, we

consider three information category types: # of POIs, # of working population,

and # of jobs in a specific zone to classify a zone as either an emitter, absorber or

neutral type as shown in Table 3.4. The details regarding the three information

categories at zonal level are extracted from [103, 104, 105]. A category type in a

particular zone is considered scarce if its value is less than the mean or median

value of the respective distribution, otherwise, it is considered abundant. The

emitter zone results in out-flux of passenger from the zone, an absorber zone

results in in-flux of passengers from neighboring emitter zones, and neutral zone

results in a balanced in-flux and out-flux of passengers.

The intent of knowing a zone’s behavior is that, zone classification approach

together with the node weight approach assists in better understanding a node’s

behavior. That is, a highly significant node(s) within an emitter zone is ex-

pected to serve maximum out-flowing demand in the zone, and a highly signif-

icant node(s) within an absorber zone serves the maximum in-flowing demand.

Figs. 3.13a - 3.13c shows the behavior of each zone as either an emitter, absorber

or neutral type. From the real-world data samples obtained from KMB operator

in Hong Kong, we compare the empirical demand using the proposed node weight
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approach with the real-world demand, and the results are as shown in Fig. 3.14b.

Fig. 3.14a indicates the GPS traces for the route #1 alongside with the bus stops,

POIs, and zones. Based on the zone classification approach, the bus stops within

zone 1 (S1-S7) acts as emitter stops, bus stops within zone 2 (S8-S15) and zone

3 (S16-S25) acts as either emitter or absorber stops. Combining the approaches

of zone classification and node weight, we can state that, a bus stop with high

demand within an emitter zone results in an increased boarding of passengers,

and a bus stop with high demand within an absorber zone results in an increased

alighting of the passengers.

Accordingly, from the real-world data samples, the stops S1, S9, S16, S18, S21,

and S23 are regarded high demand nodes during morning rush hours, the stops

S1, S9, S16, S17, S18, S21, S23 are regarded high demand nodes during evening

rush hours. Comparing the results with our proposed approach, the stops S3, S4,

S9, S14, S16, S17, S18, S21, S23 are regarded high demand nodes which leads to a

67% accurate prediction of the actual demand. Thus, the proposed node weight

approach together with the zone classification approach can be a great source of

information to the network operators to analyze a node’s behavior in the network.

Though the 67% accurate prediction is not a better figure, the prediction level

is merely 48% without considering the supernode graph representation. Also, a

few reasons that affect the prediction accuracy are discussed below.

Though the proposed static demand estimation approach aids in identifying

zonal significant nodes, the approach has a few constraints due to which it might

fail to effectively capture the actual demand, i.e.,

1. In (3.7), the parameters POI density and node occupying probability are

not two independent factors, instead, are interdependent. For example, the

number of people accessing a bus stop in a zone is dependent on the ex-

istence of POI categories like residential apartments, working offices, and

schools in that specific zone. Therefore, a more accurate modeling of pas-

senger movement considering the dependency of the two parameters can

lead to a better demand estimation.

2. The area considered to represent a zone is far from a realistic consideration

which contributes towards less accurate NOP estimation for a bus stop.

58



(a)

(b)

(c)

Fig. 3.13: Zone behavior as emitter, absorber or neutral type for (a) Hong Kong;

(b) London; and (c) Bengaluru cities.
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(a) (b)

Fig. 3.14: (a) The GPS traces for route #1 in Hong Kong alongside with the bus

stops, POIs, and zones; and (b) comparison of analytical and empirical demand

serviced by the stops along bus route #1.

Though, the area chosen is based on the availability of empirical data, a

better estimation requires the consideration of an area typically a few meters

around the bus stop to determine a better node occupying probability.

Despite there exists a few constraints, the static demand estimation approach

alongside with the zone classification approach assists in determining the nodes

servicing maximum demand at zonal level, and to understand their behavior as

either emitter, absorber or neutral type. The node weight estimation discussed in

the current section is primarily for mono-layer analysis, i.e., only for bus transport

network. However, an extension of (3.7) considering multiple transport modes is

discussed in detail in Chapter 5.

3.3.2 Edge Weight

Similar to a few works in the literature [17, 28, 21], in our work, we choose the

number of routes operating between two given nodes as the edge weight, i.e.,

wij =
∑
i6=j

rij (3.9)

where rij is the route operating between nodes i and j. It is observed that, the

edge weight distribution for all the three cities follows an exponential distribution

as shown in Fig. 3.15a. The long tail end of the distribution indicates the edges
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(a) (b)

Fig. 3.15: (a) Edge weight distribution for the three cities; and (b) an edge

weighted Bengaluru bus network topology.

with maximum weights, and thus the most overlapped routes in the network.

From a network analysis perspective it is a great source of information to the

operators since these overlapped routes denote the fact that a few sections of the

network are being extensively used leading to high traffic congestion during peak

travel hours. These edges also act as starting points for the traffic aggregation

leading to slow moving traffic, and may even cause longer waiting time for pas-

sengers to board the buses due to multiple buses waiting near the bus stops. Such

an analysis acts as a major source of information for the applied fields of studies

such as route planning and optimization. Fig. 3.15b shows the Bengaluru bus

network topology with added edge weights where the maximum edge weights are

observed at the city’s center. The usage of edge weight has a limited application

in our work as compared to the node weight. The edge weight would be only

employed in the evaluation of path length as will be discussed in Section 4.4 in

Chapter 4.

3.4 Summary

The current chapter emphasized on applying the fundamental concepts of graph

theory to represent the topology of a public transport network for a chosen graph

type and space-of-representation. A step-by-step detailed procedure was dis-

cussed to represent a PTN topology from the real-world datasets that involved
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data collection, data mining, and data visualization. Considering the spatial em-

bedding of a PTN structure, the supernode graph structure representation and

its significance in modeling the PTN structure were discussed. A static demand

estimation approach alongside with the zone classification method was proposed

based on various information categories to weigh a node’s significance and its

behavior as emitter, absorber or neutral type.

To the best of our knowledge, our contribution in generating a weighted graph

by assigning a node weight considering the real-world usage of the network is of

first in its kind. The discussions in the current chapter plays a fundamental, yet

vital role in actualizing the study on public transport network analysis in the

later chapters since the course of a defined topology has a profound influence in

perceiving both the local and global behaviors of a network.
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Chapter 4

Mono-layer Analysis

The current chapter focuses on the topological analysis of the three bus transport

networks using the concepts of graph theory. The term mono-layer indicates the

consideration of single transport mode in the current chapter, i.e., bus transport,

which is extended to multi-layer analysis considering the other transport modes

as will be discussed in next chapter. The topological analysis is accomplished

with the aid of directed and weighted supernode graph structure represented in

L-space as discussed in Chapter 3. The major contributions of the chapter are

two fold:

1. The statistical analysis of a few network parameters that are useful in the

analysis of a BTN topology is accomplished, i.e., local parameters like de-

gree and clustering coefficient, global parameters like the average degree

and average path length, and a few centrality measures like betweenness,

hub and authority centralities are analyzed. Unique topological behaviors

like scale-free and small-world properties are also studied.

2. The topological efficiencies of the three structures are compared to gather

useful information. A semi-realistic simulation in SUMO tool alongside with

the real-world dataset procured from the KMB operator in Hong Kong is

employed to verify the efficiency of a particular route.

In the course of our analysis, empirically we demonstrate at numerous instances

the advantage of using the supernode representation in a BTN analysis as com-

pared to the conventional graph representation.



4.1 Connectivity in Bus Transport Networks

The connectivity pattern of a node is evaluated by a network parameter termed

degree as discussed in Section 2.1.2 in Chapter 2. The degree of a node signifies

the number of edges incident on it, whereas average degree conveys information

about average connectivity of nodes considering the overall network.

Table 4.1 shows the average degree of the bus network for the three cities

in regular (conventional) and supernode representations. It is observed from

Table 4.1 that the average connectivity of the nodes is slightly improved with

supernode representation as compared to the conventional graph representation

for all the three BTN structures. It is quite obviously due to the combining

of nodes in the supernode representation. However, the additional information

obtained by knowing the degree in a SN representation is that it conveys more

practical information on the actual number of stops that can be reached from a

given stop including the walkable catchment, unlike the regular graph topology

which merely conveys information on the immediate neighbors of a node. Though

such a connectivity is an inherent topological behavior, it is better understood

with supernode representation which the conventional graph representation fails

to capture. Thus, understanding the degree of a node in L-space aids in a more

realistic BTN analysis.

Tab. 4.1: The average degree of the three bus transport network topologies in

regular and supernode representations.

Regular Supernode

Hong Kong 2.87 3.77

London 1.20 1.91

Bengaluru 2.34 2.64

A few statistical observations regarding node degree are: (a) the in-degree of a

node can be either less than, or equal to the out-degree of a node; (b) nodes with

high in-degree tend to behave as sink nodes where a numerous routes terminate

their journey, and nodes with high out-degree tend to behave as source nodes

64



where a numerous routes begin their journey; (c) nodes with high overall degree

can be treated as hubs in a network; and (d) in a sparse network, the degree of

a numerous nodes will be two indicating that a stop is merely connected to its

neighboring stops. The key point is that such statistical analysis provides infor-

mation on basic connectivity pattern of a node in the network which acts as prime

information to the operators for a better network planning and optimization.

4.2 Are the Bus Transport Networks Scale-free?

Degree distribution indicates the probability of finding a node in the network

with a degree k , i.e.,

P (k) =
Nk

N
(4.1)

where Nk is the number of nodes with degree k, and N is the total number of

nodes in the network. A network whose degree distribution follows a power-law

as given by (2.7), is termed as scale-free. For a directed network, the power-

law is applied independently to both in- and out- degrees as P (kin) ∝ k−γin and

P (kout) ∝ k−γout respectively. In our work, we follow the approach demonstrated

by Clauset et al. [106] in fitting the power law to the empirical data. That is,

the value of kmin (the lower bound on power law) and γ (the scaling parameter)

are evaluated from the empirical data through the maximum-likelihood estima-

tion (MLE), and a Kolmogorov-Smirnov (KS) goodness-of-fit test is employed

to evaluate the discrepancy between the empirical and the hypothesized power

law distribution, and the corresponding ‘p-value’ for goodness-of-fit is computed.

Typically, if the value of p ≥ 0.1, the power law is a plausible hypothesis.

The graphs in Figs. 4.1 and 4.2 show the power law fit for in- and out- degree

distributions for the three bus transport networks in regular and supernode repre-

sentations. It is interesting to observe that the Hong Kong network fails to satisfy

the power law distribution with conventional graph representation, but plausibly

follows a power-law with supernode representation (The p-value’s for the three

cities are tabulated in Table 4.2 with regular and supernode representations).

Thus, the inherent scale-free behavior of the Hong Kong bus transport network is

better understood with supernode representation, which the conventional repre-

sentation failed to capture. However, the London and Bengaluru networks show
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(a) (b) (c)

Fig. 4.1: Power law fit for in-degree distribution for (a) Hong Kong; (b) London;

and (c) Bengaluru bus transport networks in regular and supernode representa-

tions.

(a) (b) (c)

Fig. 4.2: Power law fit for out-degree distribution for (a) Hong Kong; (b) Lon-

don; and (c) Bengaluru bus transport networks in regular and supernode repre-

sentations.
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Tab. 4.2: The p-value indicating the goodness-of-fit result between empirical and

hypothesized data for the three cities in regular and supernode representations.

Hong Kong London Bengaluru

Regular 0 0 0

Supernode 0.23 0 0

poor fit to the power-law, and a better fit to the Exponential distribution indicat-

ing that both the networks behave as random networks [39, 38]. Thus, a simple

modification in the network topology aids in a better and practical understand-

ing of the actual topological behavior, and can assist in exploring the hidden

properties of the network. Table 4.3 indicates the values of Exponential (λ) and

power-law fitting exponents (kmin, γ) for the three bus networks in regular and

supernode representations. The exponent values indicated in the table are valid

for both the in- and out- degree distributions.

Knowing the degree distribution of a network aids in procuring an obscure

idea on the topological evolution of a public transport network in a city, i.e., if

the degree distribution follows an exponential law, a newly added node to the

network is more likely to be connected with other nodes in a random way, unlike

the notion of preferential attachment where the newly added node is connected

to the already existing influential nodes in the network.

Also, it is interesting to observe the scale-free property (also called the 80/20

rule) in public transport networks which demonstrate the fact the a myriad num-

ber of stops carry 20% of the network load, and a countable number of stops

carry 80% of the load, and such networks are free of any scaling applied to the

networks. Intuitively, though we presume that there exist certain stops in a net-

work which are serviced by a numerous routes, it is intriguing to verify such a

property mathematically. In our work, Hong Kong BTN exhibits such a scale-free

property. Considering the actual network behavior in real-world, we assume that

the passengers prefer to switch the routes at supernodes in the network, and thus

the existence of supernodes plays vital role in determining the scale-free property

of a network with respect to its real-world usage.
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Tab. 4.3: The Poisson and power-law exponent values for the three bus transport

networks in regular and supernode representations.

Regular Supernode

γ kmin λ γ kmin λ

Hong Kong - - 2.87 3.5 5 -

London - - 1.19 - - 1.91

Bengaluru - - 2.39 - - 2.7

4.3 Cohesiveness in Bus Transport Networks

The extent to which the immediate neighbors of a node are connected to each

other is examined with the aid of a network parameter termed clustering, which

defines the level of cohesiveness in a network. The cohesiveness of nodes is eval-

uated at local level through local clustering coefficient given by (2.10), and is

determined at global level through global clustering coefficient given by (2.11).

Though understanding clustering coefficient by itself has less importance in

the analysis of BTN, the relationship between Ci and k raised interesting ob-

servations, i.e, as observed from (2.10) and (2.11), the inverse dependency of Ci

and k indicates the hierarchical structure of a network in L-space where high

degree nodes (hubs) tend to form a numerous connections among its neighbors

reducing the possibility of the neighbors to connect among themselves, and thus

reducing the local clustering coefficient of high degree nodes, whereas, a low de-

gree node has a greater tendency to be connected among its neighbors increasing

its local clustering coefficient. Thus, by observing the distribution of Ci(k) the

organization of clustering with different classes of degrees can be noticed.

Table 4.4 indicates the global clustering coefficient values for the three bus

transport network topologies in regular and supernode representations. Fig. 4.3

shows the histogram for the local clustering coefficient of nodes for the three bus

transport networks in regular and supernode representations. It is observed from

Fig. 4.3, and Table 4.4 that, due to combining of nodes in supernode represen-

tation, the local and global cohesiveness is significantly improved in all the three
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Tab. 4.4: Global clustering coefficient of the three bus transport network topolo-

gies in regular and supernode representations.

Regular Supernode

Hong Kong 0.07 0.21

London 0.005 0.075

Bengaluru 0.06 0.12

(a) (b) (c)

Fig. 4.3: Histogram of local clustering coefficient for (a) Hong Kong; (b) London;

and (c) Bengaluru networks in regular and supernode representations.

networks. Knowing the information about local and global cohesiveness is signif-

icant from a network analysis point of view since the local cohesiveness provides

information on the available alternate path from the node during an emergency

failure in its functionality, and thus acts as a great source of information in de-

veloping various routing algorithms.

4.4 Travel Distance in Hops

In a BTN, the number of hops to be traversed to accomplish a journey between

any two chosen stops in a network is measured by the network parameter termed

path length. Shortest path is the shortest number of links (hops) to travel between

the two chosen nodes, and the average path length (geodesic path) is the average

of shortest path length between all node pairs in the network given by (2.12).
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Tab. 4.5: Average path length of the three bus transport network topologies in

regular and supernode representations.

Regular Supernode

Hong Kong 14 8

London 175 102

Bengaluru 26 22

In our work, the Dijkastra’s algorithm is adopted to calculate the path length

between two nodes by considering the reciprocal of the edge weight to obtain the

reasonable path search results [47].

Merely representing the physical connectivity in a BTN does not typically

justify the true measure of path length since there exists no physical connectivity

between a few nodes in the BTN, and if such nodes can be virtually connected

by a short walking distance (supernodes), the virtual connectivity will aid in

effective calculation of path length. Thus, the average path length of a network

is significantly affected in L-space by the existence of supernodes.

Empirically, the improvement in the perceived path length for a network with

and without supernodes is illustrated in Fig. 4.4. The path length distribution

is observed to follow an asymmetric unimodal distribution for Hong Kong, and

a normal distribution for London and Bengaluru networks. Such distribution

patterns are the virtue of inhomogeneous distribution of nodes in a city where

a fewer number of stops are deployed in the suburbs/peripheries leading to long

travel distances, as compared to plethora of stops at Central Business Districts

(CBDs) leading to short travel distances. Table 4.5 shows the average path length

values for the three bus transport networks in regular and supernode representa-

tions. However, the values in the table provides no information on the number of

transfers to be undertaken as part of the journey.

Though the supernode representation gives a more practical understanding

of the average path length, without considering the total number of transfers to

be made, the evaluated values seems less practical from an end user perspective.

Yet, the average path length is one of the important measures in a BTN analysis
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(a)

(b)

(c)

Fig. 4.4: Path length distribution for (a) Hong Kong; (b) London; and (c)

Bengaluru bus transport networks in regular and supernode representations.
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Tab. 4.6: Value of ω for the three BTN structures in regular and supernode

representations at p = 10−4.

Hong Kong London Bengaluru

Regular structure -0.45 -0.71 -0.59

Supernode structure -0.45 -0.80 -0.60

since the number of hops is definitely a prime factor considered by the passengers

in deciding a route to be taken to accomplish their journey. Lastly, average path

length is also an important parameter which aids in demonstrating the small-

world behavior as discussed in the next section.

4.5 Small-worldness in Bus Transport Networks

The average path length (L), and the global clustering coefficient (C) are the

parameters used to quantify the structural properties of a small-world network,

and is empirically evaluated using (2.15). In the literature, a lattice structure

is typically considered as the initial point where L(0) and C(0) are evaluated,

followed by which, the network is rewired with a given rewiring probability (p)

to obtain L(p) and C(p), the small-worldness of the network is then evaluated

using L(0), C(0), L(p), andC(p).

In our work, the original bus network structure is considered as the initial point

instead of the lattice structure since we believe that the topology of a transport

network is seldom expected to be a lattice like structure, and the comparison of

C(p) with Clatt might yield in obscure results. For a fair comparison, C(p) is

compared with the existing network topology Cexisting, and (2.15) is modified to

(4.2).

ω(p) =
Lrand

L(p)
− C(p)

Cexisting

; 0 ≤ p ≤ 1 (4.2)

Since C(p) at p=0 is same as the clustering coefficient of existing network

topology Cexisting, the term
C(p)

Cexisting
=1. Using the modified equation (4.2), the

values of L(0) and C(0) are evaluated for the existing network structure (no

rewiring). Then, the edges in the network are rewired with different values of

rewiring probability p using the rewiring mechanism discussed in ref. [107], and
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the corresponding values of L(p) and C(p) are evaluated for the three networks.

Using the values of L(p), C(p), L(0) and C(0) , the parameter ω is evaluated

using (4.2), and the corresponding plots are shown in Fig. 4.5. The closer the

value of ω to zero, the network behaves closer to a small-world network [52].

Table 4.6 shows the values of ω for p = 10−4 (i.e., p ≈ 0) for all the three BTN

structures in regular and supernode representations.

Furthermore, the plots in Fig. 4.5 indicate the variation of global clustering

coefficient and average path length of a network for different values of p in regu-

lar and supernode representations. It is interesting to observe that, as p tends to

one, the change in trends of L and C is better in supernode representation which

leads to slower decay of curves as compared to conventional representation where

the curves decay faster. The values of ω for the three networks from Table 4.6

show that Hong Kong and Bengaluru networks have the potential to behave as

small-world networks with certain modifications to the existing routes. However,

the value of ω for London indicates that the network requires significant modifi-

cation in the routes to behave as a small-world network. However, a significant

rewiring would completely change the existing network, which could be unde-

sirable. Lastly, small-worldness is undoubtedly an important network behavior

in public transport networks as it demonstrates the effectiveness of a transport

network in terms of both connectivity (clustering) and the travel distance in

hops (path length), i.e., small-worldness captures the nature of local connectivity

among nodes through clustering, and captures the nature of global connectivity

by measuring the minimum number of hops required to travel between two end

points in a network.

4.6 Centrality Measures

In this section, we study a few centrality measures which conveys information

on a node’s significance to the network based on various measures. We limit the

discussion to only three centrality measures, i.e., eigen vector centrality, between-

ness centrality, and hub and authority centrality, since they are found to be more

relevant to the BTN analysis.
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(a)

(b)

(c)

Fig. 4.5: Small-world network behavior for (a) Hong Kong; (b) London; and (c)

Bengaluru networks in regular and supernode representations with ω(p = 10−4)

highlighted.
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(a) (b)

Fig. 4.6: Comparison of in-degree and eigen centrality values for a few nodes in

Hong Kong in (a) regular; and (b) supernode representations.

4.6.1 How Influential are A Node’s Neighbors?

A node is more important to the network not only because it has many neighbors

(in-degree), but because it has important nodes as its neighbors, such a property

is verified by eigen centrality, and is given by (2.20). Fig. 4.6 compares the

in-degree and the respective eigen vector centrality of a few nodes in the Hong

Kong network. It is observed from the figure that a node with high in-degree can

have a low eigen centrality, indicating that the node can be less central. On the

other hand, a node with low in-degree can have high eigen centrality indicating

that the node can be more central, not only its in-degree is high, but also it has

high degree nodes as its neighbors. That is, not all the nodes with high in-degree

are central nodes in the network, or degree centrality alone might not be able

to fully capture the true measure of a node’s centrality. Pertaining to the real-

world usage, the nodes with high in-degree and high eigen centrality caters for

the maximum demand since the nodes attracts a significant influx of routes by

themselves, and from their neighbors.

Furthermore, with supernode structure representation, along with procuring

more practical perspective of a node’s in-degree, the central nodes are more accu-

rately predicted as a result of combining significant nodes in the network. That

is, supernode representation not only improves the node connectivity but also

helps to identify nodes which are having connection to more influential nodes in

the network. Thus, supernodes play vital role in evaluating the true measure of a

node’s centrality in BTN analysis. However, the problem with eigen centrality is

that, if a node has only outgoing edges and no incoming edges, the centrality of
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such a node will be zero [6]. Since we encounter very few of such nodes in our anal-

ysis, eigen centrality is still conveys useful information on a node’s significance

to the overall network based on its connectivity to influential neighbors.

4.6.2 Hubs and Authorities in Bus Transport Networks

A hub is a node that connects to many other nodes in the network, and an

authority is a node which is connected by many hubs in the network. In a BTN

topology, hubs can be the nodes with high degree since they are connected to

many nodes in the network, and authorities can be the nodes connected by these

hubs, indicating that the authority nodes cater to the highest demand in a city.

The HITS (Hyperlink-Induced Topic Search) algorithm employed to find the hubs

and authorities in a network assigns every node a hub and an authority score given

by:

hi ∝
∑
j

(ujaij) and ui ∝
∑
j

(hjaji) (4.3)

where hi and ui are hub and authority scores, respectively, and aij is the adjacency

matrix element corresponding to node i in the network. An unique observation is

that, the hub and authority scores for a numerous nodes in the network are found

to be approximately same indicating that a hub can behave as an authority, and

vice versa. That is, considering the real-world usage of the network, it can be

stated that the authorities are the nodes catering to highest demands, and based

on our results, it can be concluded that the authority nodes in a BTN are none

other than the hubs (nodes having maximum connectivity). Fig. 4.7 shows the

nodes with high hub score (normalized value ≥ 0.8) in the London network in

regular and supernode representations. A similar scenario is also observed for the

authority scores. It is interesting to observe the effectiveness in identifying the

hubs in London central business district by the HITS algorithm when the network

is represented in supernode structure which the conventional graph representation

failed to demonstrate.

4.6.3 Bridges in Bus Transport Networks

The parameter betweenness centrality highlights the significance of a node in a

network considering its capability in bridging multiple shortest paths in a network,
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(a) (b)

Fig. 4.7: The London bus network showing the nodes with high hub score in

(a)regular; and (b) supernode representations.

and is mathematically given by (2.16). For a given network, it is quite straight

forward for a network analyst to think that the nodes with the highest degree

have higher probability to serve as bridges in the network which might not be

always true. For example, Fig 4.8 highlights the nodes with high degree and

betweenness centrality (normalized value ≥ 0.8) in Hong Kong. From the figure

it is evident that, all the high degree nodes can act as bridges in the network,

whereas the vice versa is not always true.

Furthermore, combining a few significant nodes to form supernodes effectively

aid in finding bridges since the supernodes compensate for the walkable catchment

between the geographically closer nodes aiding in passenger interchange between

the routes. Thus, though the conventional graph representation aids in finding

bridges merely based on its capability in bridging multiple routes, the supernode

representation further improves the chances of identifying bridges in the network

since it includes both a node’s capability in bridging multiple routes and a short

walking distance between two nodes which supports interchange between the

routes. The physical significance of this centrality is that removing these nodes

from the network significantly effect the path length since these nodes potentially

control the routing behaviors of both passengers and buses in the network.
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(a) (b)

Fig. 4.8: Bus stops in Bengaluru network with high betweenness centrality

(normalized value ≥ 0.8) in (a) regular; and (b) supernode representations.

(a) (b)

Fig. 4.9: Hong Kong bus transport network in supernode representation with

highly central nodes (a) evaluated using different centrality measures; and (b)

evaluated using static demand estimation method.
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4.7 Figure of Merit

In this section, we compare the topological centrality of a few nodes with their

geographical centrality. That is, a set of 130 nodes are identified in the Hong

Kong BTN structure with high values (normalized value > 0.8) of degree-, hub-

, betweenness- and eigen- centralities. These 10 nodes are considered highly

central nodes in the network pertaining to topological analysis. On the other

hand, for the same set of 130 nodes the node weight value evaluated using (3.8)

are extracted. By comparing a node’s topological centrality with its geographical

centrality we observe that among the chosen 130 nodes almost 80 nodes are found

to be both topologically significant and geographically important which resulted

in a 63% figure of merit. Fig. 4.9 shows the comparison of topologically central

nodes versus geographically significant nodes for the chosen 130 nodes in Hong

Kong BTN.

Based on our observation, we can state that the geographical significance of

the node evaluated at zonal level using (3.8) yields 60% same result as esti-

mating different topological centrality measures at the global level. Thus, the

strong correlation between the topologically central nodes and the geographically

central nodes reveals that the proposed static demand estimation method for

assigning node weight aids in better identification of influential nodes in the net-

work. Whereas, the 40% discrepancy among the chosen 130 nodes act as great

source of information to the operators to further modify and optimize the routes

to offer improved and more sustained services. The figure of merit is currently

evaluated for only Hong Kong bus transport network. The similar approach can

be employed for London and Bengaluru networks, which can be accomplished as

part of future work.

4.8 How Efficient is A Bus Transport Network Topology?

In this section, we analyze the topological efficiency of a network in terms of the

distance traveled in hops, which is a conventional way to quantify the topological

efficiency. We then remodel the definition of topological efficiency in terms of

time rather than the distance which is useful from a passenger perspective. As
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Tab. 4.7: Comparison of topological efficiency of the three BTN structures in

regular and supernode representations.

ηG Hong Kong London Bengaluru

Regular structure 0.099 0.015 0.038

Supernode structure 0.115 0.023 0.057

per network theory, topological efficiency of a network is given by

ηG =
1

N(N − 1)

∑
i6=j

1

dij
(4.4)

where dij is the shortest path between nodes i and j, and N is the network

size. Table 4.7 shows the comparison of topological efficiency for the three net-

works in regular and supernode representations. From the Table 4.7, it is evident

that the Hong Kong network is topologically more efficient than the London and

Bengaluru networks in both regular and supernode representations. Also, the

efficiency of the three networks is higher in supernode representation as com-

pared to the regular representation. In fact, we can state that the true measure

of topological efficiency is better exploited in supernode representation than the

conventional representation. Although no physical change is made to the ac-

tual network, a slight restructuring in network representation aids in gathering

insightful information on the actual behavior.

Equation (4.4) conveys information on whether the network offers shorter

distance of travel between any two given nodes. However, from a passenger

standpoint, end-to-end travel delay seems a more reasonable metric than the

distance. Of course, other parameters like minimum transfer, cost effectiveness

and convenience are also to be considered. In our work, (4.4) is remodeled in

terms of delay, and is given by

ηG,t =
1

N(N − 1)

∑
i=1...n−1
j=i+1....n

dij
vij

(4.5)

where dij measures the actual geographic distance of every hop along the shortest

distance between nodes i and j. vij is the maximum speed attained along every

hop of the shortest path between the nodes i and j. The term
dij
vij

gives the
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end-to-end travel delay. However, obtaining the data about vij from real-world

experiments is the main obstacle in evaluating ηG,t. Thus, to validate equation

(4.5), a simple simulation is accomplished using SUMO (Simulation of Urban

Mobility) tool for a specific route in Hong Kong, which is supported by the real-

world data from KMB (Kowloon Motor Bus Co.) operator in Hong Kong. The

same approach can be scaled up for all the routes to obtain ηG,t for the overall

network.

4.8.1 SUMO Simulations

SUMO is a microscopic multi-modal traffic simulator which allows the behavior

of each vehicle to be explicitly controlled and monitored [108]. In this section,

the details of the simple simulation conducted using SUMO tool are discussed.

Step 1. Building a road network topology:

To build a road network in SUMO, we can either import the network from Open-

StreetMap [109], or build the network manually. In our simulation, the network

topology is built manually where The bus stops are treated as nodes, and the

road segment connecting the two bus stops is treated as an edge. The informa-

tion about the location of bus stop, # lanes per road segment, the pedestrian

crossing, road junction, and traffic light are extracted from the OpenStreetMap.

All the traffic lights are generated with a default cycle of 90 s (40 s green, 5 s

amber, 40 s red followed by 5 s amber to switch to the next cycle of green). The

simulation considers the road topology as described above for a specific bus route

(Route #1) operating between the source node S (CHUK YUEN ESTATE), and

the destination node D (STAR FERRY). The end nodes S and D, and the specific

route between them is chosen for the simulation since the route passes through

different zones in the city with significant POIs. Such information will help us to

verify the node weight analysis as discussed in Section 3.3.1 in Chapter 3. The

real-world dataset from the KMB operator in Hong Kong is also obtained for the

same route #1.

Step 2. Setting up the routes for buses and other general vehicles in

the network:

The route details and the frequencies for the bus routes are configured according

to the official timetable of KMB [110]. We use “activitygen” to generate the
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traffic other than the buses [111]. Activitygen is a tool in the SUMO simulator

that generates traffic in a network based on the activity in a zone, and is termed

activity based demand generator. An activity can be regarded as a trip going

to or from an office, school, or free time travel. By providing the input data

on the number and locations of POIs, the number of people living in the zone,

the number of people traveling from other zones to the chosen zone, the work-

ing hours in a day, etc., activitygen generates activities happening in the zone.

Using another tool called Duarouter [112], every activity in the zone is assigned

a route based on the shortest path between the source and the destination of

the activity. The destination could be a POI that the passenger wants to reach,

and the source could be a location within the zone or outside the zone where a

passenger starts the journey. If a passenger starts the journey beyond the chosen

zone, a specific location through which he enters the given zone can be explicitly

configured in SUMO. The routes generated by Duarouter are for the generic ve-

hicles (other than buses). Fig. 4.10a shows a snapshot of the simulation setup

described above, indicating the bus stops, traffic lights, pedestrian walkways and

POIs.

Step 3. Run the simulation:

For simulation purpose, the road network as described in step 1 is employed, and

the route set up as described in step 2 is employed, and the simulation is run for

a duration of 3600 s for the morning peak hour (8:00 to 9:00 am).

Step 4. Extract the results from SUMO:

Since SUMO is a microscopic simulator, it logs the results of individual vehicles

in a trace file with a sampling period of 1 s. Additional information like the ge-

ographical position of a vehicle, the route information, lane information, waiting

period at signals, and the velocity of a vehicle can also be found in the trace

files. Using this trace file, the time mean speed of the vehicles at every 1 sec is

extracted for every road segment between S and D, from which the maximum

speed achieved along a road segment is evaluated.

Step 5. Calculate the end-to-end travel delay:
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Tab. 4.8: Comparison of end-to-end travel delay between chosen nodes S and

D during morning peak hour.

HKeTransport Google Maps Simulation Empirical

end-to-end 65 57 56.5 52

delay (min)

The end-to-end travel delay is calculated between the two chosen nodes S and

D using (4.5), where the geographic distance between the bus stops is calculated

using the Haversine formula [102], and the speed is calculated as described in step

4. The final result of our simulation is compared with the results from Google

map's, the Hong Kong's e-Transport application, and the empirical result from

the real-world KMB dataset, and is tabulated in Table 4.8. It is observed from

the table that the results from various sources have a small delta difference which

seems reasonable in a real-world. Thus, a simple and semi-realistic simulation in

SUMO aided in evaluating the topological efficiency for a particular route, which

can be scaled-up for the other routes in the network.

An important observation that followed the simulation is the dependency of

the vehicular speed along a road segment on the node weight. From the simulation

results, we observe that, as the number of POIs around a particular bus stop

increases, the maximum speed attained by the vehicles along the particular road

segment decreases for the peak hour simulation. The situation goes worst when

the distance between the bus stops decreases, and the node weight increases, i.e.,

as shown in Fig. 4.10b, the speed of the traffic changes from free flow to critical

flow, and finally to a jammed state as the node weight increases, and the distance

between the bus stops decreases.

To support the simulation results, a real-world dataset provided from the

KMB operator in Hong Kong is employed. The data was collected for a period of

one week during October 2017 for the morning (8:00-11:00 AM) and evening peak

hours (4:00-7:00PM). The data x (latitude), y (longitude), t (time), v (velocity

at a given time) is sampled with a sampling rate of one second along the chosen

route (Route #1). Using the data, the maximum speed achieved along a road
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(a) (b)

Fig. 4.10: (a) Snapshot of the SUMO simulator; and (b) generalized flow pre-

diction for dependency of vehicular speed on POI density and distance between

the stops.

segment is extracted for both the morning and evening peak hours considering

an average of 30 trips along the chosen route (a road segment is considered as a

segment between successive bus stops, i.e., it can be a collection of smaller road

segments separated by road junctions or traffic lights).

Fig. 4.11 shows the dependency of the maximum speed attained along a road

segment (Vmax) on the normalized node weight (wi norm). A comparison of the

simulation and empirical data showed that, as the node weight increases, the Vmax

decreases. This condition might not be true always, unless the distance between

the successive nodes is considered. Fig. 4.12 plots the distance between two

successive stops (dij), the normalized node weight (wi norm) and the maximum

speed achieved along a road segment (Vmax) for the morning and evening peak

hours for route #1. From Fig. 4.12, we see that bus stops no. 9, 10 and 11 (S9,

S10, S11) have relatively higher node weight. However, since stops S9 and S10 are

geographically closer, the Vmax along the road segment is smaller as compared to

the road segment between the stops S10 and S11. A similar scenario is observed

between stops S17, S18 and S19. Thus, from our findings we can infer that,

with increasing node weight (demand) and geographically closer bus stops, the

maximum speed achieved along the road segment reduces significantly.

It is acceptable that the operators deploy more stops to meet the greater de-

mand, however, the operators should note that closer bus stops would eventually

lead to a state of traffic congestion. Hence, the route planning and the stop
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Fig. 4.11: Comparison of the simulation and empirical results for the dependency

of vehicular speed on the node weight.

deployment needs judicious design to overcome the congested travels. Though

the simple simulation carried out in Section 4.8.1 is primarily to get an idea on

the analysis of topological efficiency in terms of the end-to-end travel delay, the

simulation provided additional information on the dependency of Vmax on wi norm

and dij.

4.9 Summary

Finally, the analysis of the topological properties and structural behavior of the

three bus transport networks in both regular and supernode representations re-

vealed interesting information pertaining to node’s connectivity, network cohe-

siveness, minimum travel distance in hops, nodes having influential neighbors, and

the capacity of a node in bridging multiple routes. At every stage of the BTN

analysis, it was observed that supernode representation offered a more practical

understanding of the inherent network behaviors as compared to the conven-

tional graph representation. Though no significant changes were made to the

actual topology, a slight restructuring offered insightful results on the network

behaviors which were found to be useful from both the operator and passenger

perspectives.

Public transport networks (PTN) contain multiple layers of traffic carrying

networks such as bus-, subway-, metro-, tram-, ferry- networks, etc. Existing
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Fig. 4.12: Dependency of the maximum speed achieved along a road segment

(Vmax) on the distance between two successive stops (dij) and the node weight

(wi norm) for the morning and evening peak hours along the bus route #1. All

the values are normalized to ensure data integrity.

works on PTN analysis using graph theory have emphasized on either the indi-

vidual transport networks by considering them as isolated mono-layer networks,

or the non-interacting aggregated multi-layer networks. Though the different

transport layers share common features when analyzed as individual mono-layer

structures, by understanding the interconnectedness among different mono-layers,

a more meaningful insight is gained into the overall network structure and its dy-

namics. Also, since passengers use multiple transport modes (on different trans-

port layers) to reach their destinations, it is of practical importance, though rarely

considered, to study the interaction and connectivity between network layers of

different transport modes as discussed in the next chapter.
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Chapter 5

Multi-layer Analysis

This chapter focuses on demonstrating the need for considering the interdepen-

dency of multiple transport layers to capture the true contribution of a node and

edge to the overall network. The term multi-layer in the current chapter indicates

the consideration of two transport modes, i.e., the bus and metro transports.

The topological representation of bus transport network follows a directed and

weighted graph in supernode representation, whereas, for the metro transport net-

work, an undirected and weighted graph in conventional graph representation is

considered since the existence of supernodes are less probable in metro networks.

The major contributions of the chapter are two fold:

1. A spatial amalgamation method is proposed to integrate the two non-

interacting mono-layers (BTN and MTN), and represent them as an in-

teracting and integrated multi-layer.

2. An extension of the node weight approach for multi-layer is proposed where,

a node wight is assigned to a node by ignoring and considering the interde-

pendency of the multiple transport modes.

5.1 Multi-layer Network

A multi-layer network M is defined by [67],

M =
(
Va, Ea, Ṽ , l

)
(5.1)

where Ṽ is the node set containing both regular nodes and supernodes inclusive

of all the layers. l = {la}da=1 is the set of elementary layers defined by d aspects



(a) (b) (c)

Fig. 5.1: Independent BTN and MTN mono-layer topologies for (a) Hong Kong;

(b) London; and (c) Bengaluru cities.

or dimensions such that there is one elementary layer set la for each aspect d. For

d = 1 (single aspect), the multilayer network reduces to a mono-layer network.

In our work, d = 2, with an elementary layer and an additional layer. Also,

Va ⊆ Ṽ is a node set associated with different layers l1 to ld such that Va ×

l1,×l2, ..,×ld. Ea ⊆ Va × Va is the edge set containing both regular edges and

superedges inclusive of all the layers. Among the BTN and MTN layers, we chose

BTN layer as the elementary layer and MTN layer as the additional layer (which

can be interchanged). Fig 5.1 shows the topology of the non-interacting mono-

layers (BTN and MTN) for Hong Kong, London, and Bengaluru cities. In the

future sections, the BTN layer is treated as layer-α, and MTN layer is treated as

layer-β.

An important feature in transport networks is that they belong to the category

of layer-disjoint networks where a node or edge exists in at most one layer [66].

(ni)α ∈ Vα, (ni)β ∈ Vβ (5.2)

where a node ni is present either in layer α (BTN layer) or β (MTN layer).

The layer-disjoint property signifies an important observation that there exists

no edges between the two layers in the actual network structure, and the two

layers are typically connected by a small walking distance. Hence, to integrate

the two layers, in our work, the spatial amalgamation method is employed which

makes use of the walkable catchment between the multiple transport modes, the

details of which are discussed in next section.
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5.1.1 Spatial Amalgamation Approach

In spatial amalgamation approach, the two non-interacting mono-layer networks

are integrated and represented as interacting multi-layer network using the idea of

walkable catchment. A geographical area with a radius of 500 m is considered as

the walkable catchment considering it to be a maximum distance the passengers

would prefer to walk for interchanging between the two transport modes. That

is, in spatial amalgamation method, a geographical area with a radius of 500

m around a node in MTN layer is marked, the nodes in the BTN layer that

falls within the region of walkable catchment are extracted, and are termed as

the intermediate layer nodes or coupling layer nodes. A feature in ArcGIS tool

called buffer is employed to accomplish the task. Considering the actual physical

infrastructure, the nodes in the intermediate layer are the stations that act as

transfer points for the passengers opting multiple transport modes to accomplish

their journey.

As an example, Fig. 5.2a shows the layer α, layer β, and the coupling layer for

the London network. Fig. 5.2b demonstrates the spatial amalgamation approach

employed to integrate the two non-interacting mono-layers. The set of nodes in

the intermediate layer is a subset of nodes in BTN layer that aids in establishing

the virtual connectivity between the BTN and MTN layers. According to the ex-

planation above, the intra-layer edge set Eα and Eβ, and the inter-layer (coupling

layer) edge set EC are mathematically defined as

Eα =
{
eij} | eij → (ni, nj)α ∀ni, nj ∈ Vα (5.3)

Eβ =
{
ekl} | ekl → (nk, nl)β ∀nk, nl ∈ Vβ (5.4)

EC =
{
ẽik} | ẽik ↔ (ni, nk), ni ∈ VC, nk ∈ Vβ (5.5)

where α and β are the BTN and MTN layers, respectively; Vβ is the node set of

layer β; and VC is the set of overlapped nodes in the 500 m walkable catchment,

such that VC ⊆ Vα.

5.1.2 Node Weight Approach for Multi-Layer Network

In this section, we use the node weight approach discussed in Section 3.3.1 in

Chapter 3 to assign a weight to a node, with and without considering the in-

teraction between the multiple layers. Using the node weight approach, a set
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(a) (b)

Fig. 5.2: (a) The layers α(BTN), β(MTN) and coupling layer in the London

multi-layer network; (b) an example demonstrating the spatial amalgamation

approach employed to integrate the two non-interacting mono-layers.

of influential nodes is determined that quantify their significance to the overall

network, and also to the mono-layer to which the nodes are associated with.

To suit the node weight approach for multi-layer network, the equations dis-

cussed in Section 3.3.1 are modified as below:

(NOPi,α)z = (ρPα/ρNα)z (5.6)

(NOPj,β)z =
(
ρPβ/ρNβ

)
z

(5.7)

where, NOPi,α is the node occupying probability of a station i in layer α, ρPα is

the static population density accessing the stations in layer α in a zone z, and

ρNα is the node density in layer α in a zone z. For simplicity, the term zone in

Section 3.3.1 is represented as z, ∀z = 1, 2, .., Z. The notations follow similarly

for layer β.

The information regarding the static population accessing the nodes in a spe-

cific layer is derived from the statistical data of the total population count in a

zone [113, 114, 115].

(Pα = c4 ∗ PT )z (5.8)

(Pβ = c5 ∗ PT )z (5.9)

where Pα and Pβ denote the population count accessing the stations in layer α

and β respectively, PT denotes the total static population in a given zone. Table

5.1 indicates the value of c4 and c5 for the three cities. Using Pα and Pβ, we

determine ρPα and ρPβ .
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Tab. 5.1: Population count accessing a specific layer is derived from the total

population as given in 5.8 and 5.9.

Hong Kong London Bengaluru

BTN (c4) 23% 21% 58%

MTN (c5) 77% 79% 42%

Thus, the node weight approach for non-interacting mono-layer is given by:

(wiα)z = (
ρm + ρPα
ρNα

)z + kiα (5.10)(
wjβ
)
z

= (
ρm + ρPβ
ρNβ

)z + kjβ (5.11)

where (wiα)z is the weight of a node i in layer α in a chosen zone z, and kiα is the

node degree which indicates the connectivity of a node in layer α. The notations

follow similarly for layer β. The node weights are normalized to ensure the data

integrity in all the zones. The closer the value of normalized node weight to one,

more influential is a node.

Considering the interdependency of multiple transport modes, the node weight

approach for the multi-layer network is given by,

wi = (wiα)z + Cbi (5.12)

wj = (wjβ)z + Cbj (5.13)

where wi is the overall weight of a node i, (wiα)z is the weight of a node without

considering the interaction between the two layers as given by (5.10), and Cbi is

the betweenness centrality of node i as discussed in Section 4.6.3.

A node’s capacity in bridging multiple routes after integrating the two layers

conveys its true significance to the overall network due to which the parameter

betweenness centrality is employed in assigning node weight. Figs. 5.3a, 5.3c,

5.3e indicate the set of influential nodes according to non-interacting mono-layer

analysis, and Figs. 5.3b, 5.3d, 5.3f indicate the set of influential nodes according

to interdependent multi-layer analysis. It is observed from the figures that a

node’s significance to the overall network differs significantly by considering and

ignoring interdependency between the layers. This shows that neglecting the
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.3: (a) The influential nodes (wi ≥ 0.8) in non-interacting BTN and MTN

mono-layers, and the integrated multi-layer for (a,b) Hong Kong; (c,d) London;

and (e,f) Bengaluru network topologies.
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interaction between the transport layers will completely bias our understanding

of the overall network behavior.

5.2 Summary

To simultaneously quantify a node’s significance to the overall network, we first

considered a node’s significance in the isolated mono-layer, then, we considered

its significance in the interacting multi-layer. The ranking of nodes by consid-

ering and ignoring the layer dependency conveyed the information that ignoring

the layer dependency will yield in absurd results. Though the results in the

current chapter are primarily based on the simple approach of spatial amalga-

mation, knowledge about additional factors like variable walkable catchment and

realistic passenger distribution will further improve the understanding of layer

interdependency.

In the literature, there exist a numerous works whose contributions are lim-

ited to only mono-layer analysis which might cater partial results to the network

operators. Therefore, to offer more meaningful suggestions to the operators,

the consideration of interdependency among multiple layers is always suggested.

However, the huge complexity involved in considering a numerous real-world fac-

tors to integrate the multiple layers can be a primary reason to ignore the layer

interdependency in the previous works. Until this point, we emphasized on the

PTN analysis based on the concepts of graph theory, where the topological behav-

ior of multiple transport modes and their interaction are studied to cater useful

information to the network operators to offer better service to the passengers.
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Chapter 6

Impact of PTN Topology on Vehicular

Network Connectivity

In this chapter we aim to integrate the two different disciplines of study: PTN

analysis using graph theory and the VANET connectivity analysis, to understand

the dependency of vehicular network connectivity on transport network topology,

from a macroscopic perspective. In VANETs, the communication can be either

vehicle-to-vehicle (V2V), or vehicle-to-infrastructure (V2I). In our work, we re-

strict our analysis to V2I which is seldom explored in the literature.

In the V2I connectivity analysis, the vehicles are buses, and the infrastructure

is a bus stop which is equipped with a communication device to support infor-

mation exchange. The vehicles considered are limited to only buses since the

mobility pattern of the buses is significantly different and partially deterministic

(due to constrained and structured mobility). Contact duration, a key parameter

in VANET connectivity analysis that determines the throughput of the informa-

tion exchange is employed to assess the nature of V2I connectivity. The major

contributions of the chapter are four fold:

1. We simulate a semi-realistic scenario in SUMO tool to obtain the synthetic

mobility traces of the buses which are employed to evaluate the V2I contact

duration as discussed in Section 6.4.

2. For the microscopic analysis, we consider two topological metrics: weighted

in-degree and demand centrality of a node to demonstrate the nature of

V2I contact duration.

3. For the macroscopic analysis, the results obtained in Step 2 are used to



assess the distribution pattern of contact duration for the two topologies:

scale-free and random network topologies.

4. Lastly, the robustness of the VANET communication network is assessed

by the random node removal approach to determine the network’s ability

to sustain during malfunctions.

6.1 Transport Network Topology and The Vehicular Network

Connectivity

In its first kind, we aim to integrate two different fields of study, namely, PTN

analysis using graph theory and connectivity analysis in VANET, to study the

impact of the transport network topology on the vehicular network connectivity,

from a macroscopic perspective. To accomplish the study, initially, we assess the

nature of V2I connectivity at a microscopic level, later, the microscopic results

are used to demonstrate the nature of V2I connectivity at a macroscopic level.

To accomplish the study, initially, we assess the nature of V2I connectivity at

a microscopic level, later, the microscopic results are used to demonstrate the

nature of V2I connectivity at a macroscopic level.

Specifically, we consider two topological metrics namely, weighted in-degree

and demand centrality of a node that were discussed in Chapter 2 and 3. The

two topological metrics are employed to demonstrate the nature of V2I connec-

tivity, which we term as microscopic connectivity analysis. Later, by studying the

distribution pattern of the two topological metrics for a given transport network

topology, we determine the distribution pattern of V2I contact duration, which

we term as macroscopic connectivity analysis. Fig. 6.1 demonstrates the details

of the approach employed from both micro- and macroscopic perspectives.

The scale-free and random network topologies are practiced in the current

chapter since the details on the behavior of the two topologies were previously

discussed in Chapter 2 and 4. Recollecting our results from Chapter 4, the Hong

Kong network demonstrated the scale-free property in supernode representation,

while the London and Bengaluru networks demonstrated random topological be-

havior in both regular and supernode representations. In this chapter, we consider

the results concerning to Hong Kong and London network topologies in supernode
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Fig. 6.1: The flow diagram indicating the consideration of the two topological

parameters that determine the nature of V2I contact duration (the definition of

individual parameters are discussed in Section 6.3).

representation, and demonstrate the impact of the two topologies on the nature

of vehicular network connectivity.

6.2 Topological Metrics: A Brief Review

Weighted in-degree:

As discussed in Section 4.1 in Chapter 4, the connectivity pattern of a node

is evaluated by a network parameter termed degree (k). The degree of a node

signifies the number of edges incident on it (i.e., the number of bus stops a given

bus stop is connected to). Whereas, a weighted node degree indicates the number

of routes servicing a station. For a directed graph, the weighted node degree (kwi)

is given by

kin
wi

=
∑
j

ajiwji, k
out
wi

=
∑
j

aijwij, k
total
wi

= kin
wi

+ kout
wi

(6.1)

where aij is the adjacency matrix element corresponding to the ith node, and wij

is the weight, i.e., the number of routes servicing a station.

In our work, the weighted in-degree of a node is considered as the first topo-

logical metric since it conveys information on the number of routes servicing a

bus stop. That is, weighted in-degree of a node determines the number of buses

arriving at a bus stop, which in turn determines the density of buses around the

bus stop, and thus contributes significantly in evaluating the V2I contact dura-

tion. In the future sections, we denote kin
wi

as ki for simplicity.

97



Demand centrality:

The demand centrality (node weight) of a node is considered as the second topo-

logical metric, the details of which were discussed in Section 3.3.1 in Chapter 3,

and is given by

(wi)zone =

c1

4∑
m=1

ρm + c2ρp

ρN


zone

+ c3ki ; zone = 1, 2, ...., z (6.2)

(wi norm)zone =

(
wi − wmin

wmax − wmin

)
zone

; zone = 1, 2, ...., z (6.3)

where the demand centrality of a node conveys information on the NOP (i.e.,

number of people accessing a station), which determines the dwell time of a bus

at the bus stop, and thus contributes significantly in evaluating the V2I contact

duration. Higher the node weight, the demand serviced by the node is high, and

thus, the dwell time of the buses is high. For simplicity, the parameter wi norm is

represented as wi in the future sections.

Thus, the two topological metrics: weighted in-degree and demand centrality

of a node determines the density and dwell time of the buses at a bus stop,

respectively, and contributes significantly in evaluating the V2I contact duration

(tc).

6.3 Definitions

In this section, we discuss the definition of a few parameters which are found to

be useful in the future sections.

1. Dwell time (td): the time spent by the buses to board or alight the pas-

sengers at a designated bus stop. Typically, the dwell time of the buses

at the bus stop depends on the number of passengers accessing it (NOP),

which is determined by the node weight. Thus, we determine the dwell time

based on the demand serviced by a node, i.e., higher the node weight, the

demand serviced by the node is high, and thus, the dwell time of the buses

is high.

2. Vehicle-to-infrastructure contact duration (tc): The term infrastruc-

ture refers to a bus stop equipped with wireless communication device which
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can support information exchange for a specific range RI . The vehicle-to-

infrastructure contact duration is the time period during which a single hop

communication is possible between the buses and the bus stop. We set a

transmission range of Rv = 100 m for the vehicles, and RI = 100 m for the

bus stops (or infrastructure) as shown in Fig. 6.2.

The main aim of evaluating the nature of vehicle-to-infrastructure (V2I)

contact duration is that the buses reach a state of immobility while nearing

the bus stop (to board and alight the passengers) which offers an increased

and sustained connectivity between vehicles and infrastructure. The V2I

contact duration is mathematically defined as

tc = tstart − tend (6.4)

where tstart is the time instant at which the infrastructure detects a bus when

it enters the range RI , tend is the time instant at which the infrastructure

fails to detect the bus when it leaves the range RI . The two time stamps are

extracted based on the footprints generated by SUMO simulation results

as will be discussed in Section 6.4. For example, in Fig. 6.2, buses 1 and

2 contributes towards evaluation of tc since they are within the range RI ,

however, buses 3 and 4 do not.

3. Inter-arrival time or time headway (λi): is the time interval between

two successive bus arrivals for the same route. For a given node with ki

= m, the inter-arrival time is a set of elements with each element denoting

the time headway of individual route, i.e., λi =
{
λ1
i , λ

2
i , λ

3
i , ....., λ

m
i }. Fur-

thermore, We assume that the arrival rate of buses at a bus stop follow

Poisson distribution with mean = λi, and standard deviation =0. That

is, with Poisson arrival, we assume that the buses arrive at the station on

time, however, if the berth is occupied, the buses enter waiting state until

the berth is cleared. During this waiting period, if the buses are within the

range RI , they contribute towards tc. The value of λi is randomly chosen

such that 4 ≤ λi ≤ 10 (the time headway of the buses vary between 4 to 10

min) for the peak hour simulation which is a reasonable assumption valid

in real-world scenario.
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Fig. 6.2: The details of the simulation setup along with the required parameters.

Note: The background traffic is not considered in our simulation. Only one hop

connectivity of buses is considered, i.e., the contact duration indicates that the

buses will be able to communicate with the infrastructure directly. Only east

bound vehicles are considered in the simulation. We assume that the vehicles

(buses) can exchange information with the bus stop (infrastructure) which are

connected to the backhaul network through communication technologies such as

5G or WiMAX (Worldwide Interoperability for Microwave Access).

6.4 Mobility Traces from SUMO Simulations

SUMO is a microscopic multi-modal traffic simulator which allows the behavior

of each vehicle to be explicitly controlled and monitored [108]. SUMO has been

extensively employed in various projects related to network performance, traffic

assignment, vehicle routing, traffic impact analysis, V2X communication analysis,

etc. In this section, the details of the simulation carried out in SUMO to obtain

the synthetic mobility traces of the buses are discussed. The simulation is divided

into two cases as described in Sections 6.4.1 and 6.4.2, where the required input

parameters are set based on the details discussed in the respective sections.

SUMO provides an option to use on-board wireless communication device

(usually bluetooth or wireless local area network) to analyze the nature of vehic-

ular connectivity. Every vehicle can act as a sender or a receiver with configurable

parameters like detection range and detection probability [116]. In our work we

employ bluetooth as on-board wireless communication technology for the buses

with a detection probability one, and detection range Rv = 100 m, i.e., given that

two vehicles are within a communication range of 100 m, the probability that the
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two vehicles identify each other is equal to one. For the V2I communication, the

infrastructure is set up in SUMO by parking a vehicle at a designated position,

and by enabling the communication capability (RI=100 m) of the vehicle. The

details of the simulation set-up are discussed below:

1. A simple real-world road network topology is imported from OpenStreetMap

[109]. The imported road network topology includes # of lanes, junctions,

traffic lights, POIs, bus stops and pedestrian walkways.

2. A route file describing the route details of individual bus routes including

their time headway (inter-arrival time) and dwell time are provided as an

input to the simulation. The # of routes and the dwell time for each route

are determined by the two topological metrics ki and wi.

3. The simulation is run for the morning peak-hour for a duration of 3600 sec

(8:00 - 9:00 AM) for different values of ki and wi.

4. At the end of the simulation, SUMO generates various trace files which

captures the footprints of individual vehicle with a sampling period of 1

sec that includes details on the speed, wait time, geographic position of the

bus (latitude-longitude), the lane ID, stop location, dwell time, start and

end time of vehicle detection, etc. The two time stamps, tstart, tend that fall

within the range RI are directly recorded in the footprints of SUMO which

are employed to determine the V2I contact duration as given by (6.4).

In the next section, we discuss further details of the simulation by varying the two

topological metrics, ki and wi (λmi and td), which in turn determines the nature

of V2I contact duration.

6.4.1 Case1: vary the weighted in-degree (ki) of a node

In this case, to understand the V2I connectivity, we vary the metric ki, and wi

is kept constant. The weighted in-degree of a node along with the time headway

determines the density of buses around a bus stop. For example, let ki = 5, then,

λi =
{
λ1
i , λ

2
i , .., λ

5
i } such that 4 ≤ λmi ≤ 10, i.e., the time headway between the

buses of same route is randomly assigned a value between 4 to 10 min to suit the

real-world scenario for the peak hour simulation. Furthermore, since the node
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(a) (b)

Fig. 6.3: Empirical CDF indicating the (a) variation of tc with ki; (b) variation

of tc with wi or td.

weight is assumed to be constant, i.e., the number of people accessing a bus stop

is constant, the dwell time for the buses is set to be a constant value of 20 sec.

By setting the parameter values as discussed above, the simulation is run,

and the footprints are collected. Using the footprints, the V2I contact duration

is evaluated. Fig 6.3a indicates the variation of contact duration for different

weighted in-degree and constant dwell time. We observe a transition point called

the characteristic time at tc ≈ 40 s above which the curves decay slower. Our

results accords with the results observed by both [89, 91]. Also, as observed from

the figure, the slope of the curves are dependent on the degree, i.e., higher the

degree, slower the decay rate of contact duration, and thus a better connectivity.

Intuitively, this is an expected behavior since the density of the buses increases

with increasing ki which contributes towards increased tc. Thus, based on our

simulation results, we set the first condition to observe an increased contact

duration around a bus stop, i.e., ki → (ki)max.

6.4.2 Case2: vary the demand centrality (wi) of a node

In this section, we vary the demand centrality of node by keeping the degree con-

stant. As discussed in Section 3.3.1, the metric demand centrality is determined

by NOP, which helps to determine the dwell time of the buses at a stop. Similar

to Case 1, λmi is randomly assigned a value such that 4 ≤ λmi ≤ 10. For simplicity,
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we assume that, given the demand centrality of a node is high, irrespective of its

degree, all the routes servicing the stop encounters equal demand. Furthermore,

since we already observed in Section 6.4.1 that tc improves when ki → (ki)max, in

this case we choose a high value of ki to observe the simulation results.

By setting the parameter values as discussed above, the simulation is run,

and the footprints are collected. Using the footprints, the V2I contact duration

is evaluated. Fig 6.3b indicates the variation of contact duration for different

dwell time and constant degree. From figure, it is observed that, higher the

dwell time, greater is the contact duration. Intuitively, this is again an expected

behavior since the increased wait time of the buses contribute towards higher

contact duration. However, with increased dwell time, the buses occupies the

berth for a longer time, leading to less density of buses within a range RI .

By comparing Figs. 6.3a and 6.3b, it can be concluded that the characteristic

time is clearly dependent on the dwell time of the buses, whereas, the slope of the

plots is dependent on the degree. Our simulation results accords with the results

discussed in [89]. Thus, based on our simulation results, we set the first condition

to observe an increased contact duration around a bus stop, i.e., wi → (wi)max

(or td → (td)max).

From the two simulation cases discussed in Sections 6.4.1 and 6.4.2, it can

be stated that, as ki → (ki)max and wi → (wi)max, then tc → (tc)max. Thus, in

the future sections we emphasize on the condition (kimax, wimax) which provides

us the information about (tc)max. Lastly, as part of microscopic connectivity

analysis, the synthetic mobility traces from SUMO simulations were employed

to demonstrate the influence of two topological metrics on the nature of V2I

connectivity. The results of microscopic connectivity analysis are then used to

study the V2I connectivity at a macroscopic level, as discussed in next section.

6.5 Vehicular Network Connectivity: A Macroscopic Analysis

For a given transport network topology, by studying the distribution pattern of

the two topological metrics, we can determine the distribution pattern of the

V2I contact duration (tc), the details of which are discussed in this section. We

consider two topologies: random and scale-free, to demonstrate the distribution

pattern of V2I contact duration.
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(a) (b)

Fig. 6.4: Joint PDF of the two topological metrics ki and wi in (a) linear; and (b)

log-log scale for the two network topologies. In the figure, the scale-free topology

represents the Hong Kong BTN, and random topology represents London BTN.

Now, let K and W be two random variables such that K = ki and W = wi

∀i = 1, 2, .., N , and 0 ≤ ki, wi ≤ 1. For the ease of representation, the values of ki

and wi are normalized such that the two metrics take the values 0, 0.1, 0.2, 0.3,

..., 0.9, and 1. Let the probability distribution function of the two topological

metrics be denoted by P (K = ki) and P (W = wi) that are obtained from the

results discussed in Chapter 3 and 4.

Using the distribution of individual random variable, we evaluate the condi-

tional probability distribution function (PDF), i.e.,

PK,W(ki,wi) = P(W = wi|K = ki)P(K = ki); ki = wi = 0, 0.1, 0.2, ..., 1 (6.5)

For a given value of ki, though wi can take values between 0 and 1, we are

specifically interested in knowing the conditional joint PDF of the two random

variables, since we already demonstrated the nature of linear dependency between

ki and wi in Section 3.3.1 in Chapter 3, i.e., PK,W (ki, wi) = P (K = ki ∩ W = wi).

Figs. 6.4a and 6.4b plot the joint PDF of the two random variables on a

linear- and log-log scale, respectively. In the two figures: the low values of ki and

wi (≤ 0.3) indicate that a poor tc is observed around such nodes; the values of ki

and wi between 0.3 to 0.9 indicate that a mediocre level of tc is observed around

such nodes; and the high values of ki and wi (≥ 0.9) indicate that a better tc is

observed around such nodes. However, as observed from the figure:

104



1. The nodes with low values of ki and wi (≤ 0.3) have higher probability

of occurrence in a scale-free network topology. Thus, a poor V2I contact

duration is expected to occur in high probability in a scale-free network

topology.

2. The nodes with mediocre values of ki and wi (0.3 to 0.9) occur with high

probability in random network topology. Thus, a mediocre nature of V2I

contact duration is expected to occur in high probability in random network

topology.

3. The nodes with high values of ki and wi (≥ 0.9) occur with high probability

in scale-free network topology as compared to random network topology.

Thus, in scale-free topology though a high V2I contact duration is expected,

the probability of finding such nodes is less.

Thus, the two network topologies demonstrate significantly different distribution

pattern of V2I contact duration. Specifically, the V2I contact duration for the two

well-known topological structures: scale-free and random clearly demonstrates

the power-law and Poisson distribution, respectively.

6.6 Topological Vs. Spatial Connectivity

The transport networks belong to the category of spatial networks. Hence, we fur-

ther investigate the nature of V2I connectivity considering the spatial embedding

of the two network topologies. To achieve this, we make use of supernodes that

are existing in the network. We believe that a supernode can aid in further im-

proving the V2I contact duration. Such spatial zones where the supernodes exist

in a network can be used by the network operators to exchange the information

that require higher throughput and longer contact duration.

The definition of a supernode as defined in (3.3) in Section 3.2 in Chapter

3 is a reasonable consideration from a transport network analysis, however, the

definition might not be valid from a connectivity analysis perspective. That is,

as demonstrated in Fig. 6.5b, the members of a supernode can be present on the

same road segment (suitable for both BTN and V2I analysis), can be on either

sides of a road segment (suitable for BTN analysis), or can be on the parallel road
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(a) (b)

Fig. 6.5: An example of geographically closer nodes in Hong Kong which are

termed as supernodes; (b) the supernode considered in BTN analysis and V2I

connectivity analysis.

segment, near junctions, etc. (suitable for BTN analysis). For V2I connectivity

analysis, a supernode whose member nodes lie on the same road segment are

better suited, and thus the condition for defining a supernode is modified as

(dij ≤ dth )| i, j ∈ R′; dth = 100 m (6.6)

where dij is the geographic distance between two nodes i and j, and R′ is a

chosen bus route. Thats is, in VANET connectivity analysis, a supernode is a

set of geographically closer nodes which satisfy the condition dij ≤ dth such that

the nodes i and j are along a specific bus route R′. Thus, the revised supernodes

consists of nodes which typically lie on the same road segment, and are located

within a range of 100 m.

Fig. 6.6 shows the variation of tc around a regular node and a supernode,

with an optimal value of ki and wi (or td). As observed from the figure, an im-

proved value of tc is observed around a supernode as compared to a regular node.

Furthermore, the simulation results show that the behavior of tc for a regular

node (with optimal value of ki and wi) demonstrates an exponential distribution,

whereas, for the supernode, demonstrates a power law distribution. For the pur-

pose of V2I information exchange, a high value of tc is expected, however, the

power law nature of tc might not be of much interest since it demonstrates the

reduced probability occurrence of high value of tc. A careful observation into

Fig. 6.6 reveals the fact that ≈ 80% of the entire distribution can be attributed

to exponential nature, while the remaining 20% can be attributed to power law

nature, which accords with the results discussed in ref. [91].
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(a) (b)

Fig. 6.6: The V2I connectivity pattern around a regular node and a supernode.

Thus, the results in Fig. 6.6 illustrate that the supernodes existing in the

network can be used to improve the V2I contact duration. To demonstrate the

probability of finding such nodes in vehicular network connectivity, we consider

the third random variable i, along with K and W . The parameter i indicates

whether a node is a regular node or a supernode. Considering the three random

variables, we evaluate the conditional PDF as,

PK,W,i(ki,wi, sni) = P(sni|ki ∩ wi)P(wi|ki)P(ki); ki = wi = 0, 0.1, 0.2, .., 1 (6.7)

Fig. 6.7a shows the conditional PDF of the three random variables for a

specific case for the two network topologies: scale-free (Hong Kong) and random

(London). That is, the figure shows the probability of finding the supernodes

in a network for a chosen value of ki and wi. The specific scenario is observed

since it satisfies the condition for obtaining the maximum contact where, ki →

(ki)max, wi → (wi)max, and a node i behaves as a supernode.

As observed from the figure, with increasing values of ki and wi, the probability

of finding a supernode decreases drastically. From a transport network analysis

perspective, this is an expected behavior where the nodes with high degree and
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high demand are seldom deployed geographically closer. However, the probability

of finding a supernode for low values of ki and wi is quite high. Such a behavior

of nodes can be exploited by the communication engineers to improve the nature

of connectivity among nodes with low degree and demand, which are found in

higher probability in both the random and scale-free network topologies.

The impact of topological analysis on VANET connectivity in Section 6.5 re-

vealed that in both scale-free and random network topologies the probability of

observing poor V2I connectivity is higher, however, by understanding the spatial

embedding of the topology we further revealed that such poor connectivity can

be slightly improved by exploiting the supernodes available in a network. Thus,

to assess the impact of underlying transport network topology on the vehicular

network connectivity, merely considering the topological analysis without consid-

ering its spatial embedding might fail to capture the true nature of connectivity,

and thus demands for such a consideration in the future works.

Finally, in defining a supernode, by varying the parameter dth, we can observe

the inherent connectivity among the infrastructure (bus stops), i.e., along with

observing the V2I connectivity around the bus stop within a range RI , we can

also observe the I2I (infrastructure-to-infrastructure) connectivity. Fig. 6.7b

indicates the histogram showing the percentage of bus stops that are connected

among themselves for various vales of dth or RI for the two network topologies. As

observed from the figure, with a small communication range of R = 200m,≈ 25%

of the infrastructure is effortlessly connected. Of course, considering the spatial

embedding of bus stops, relay devices can be employed at appropriate locations to

further enhance the connectivity of the network, both V2I and I2I. Such special

zones where the bus stops are deployed closer can be used to develop robust and

more efficient routing algorithms since a more sustained and improved contact

duration is expected.

Also, we assumed in the beginning that all the bus stops in the network are

connected to the backhaul through communication technologies such as 5G or

LTE (Long Term Evolution), however, connecting the entire network to the back-

haul using 5G can prove to be expensive. By understanding the I2I connectivity,

we can judiciously choose the set of bus stops that can be connected among them-

selves in small-scale using less expensive technologies such as WLAN or DSRC,
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(a) (b)

Fig. 6.7: (a) The conditional PDF of the three random variables; (b) the inherent

connectivity of infrastructure for different communication ranges.

on the other hand we can choose the set of bus stops that can be connected to the

backhaul using expensive technologies such as 5G. Such connectivity leads to a

layered vehicular connectivity network that can greatly assists the communication

engineers in utilizing the existing infrastructure to offer seamlessly connectivity

to both the vehicles and passengers using it. In the next section, we verify the

robustness of the two VANET communication topologies: random and scale-free,

to demonstrate the capability of the two topologies to offer the best possible

connectivity while some of its nodes fail to function.

6.7 Vehicular Network Connectivity Robustness Analysis

Many real-world complex systems have demonstrated an exceptional ability to

retain their basic functionality even in the case of failure of their network com-

ponents, termed as the network robustness. The primary interest in robustness

analysis is to understand the impact of nodes failure on the integrity of a net-

work. In this section, we discuss some fundamental results on the topological

robustness of the vehicular network connectivity by employing the random node

removal approach.

To assess the topological robustness, the commonly employed approach is to

randomly remove a set of nodes from the network which quantify high value of

degree- and betweenness centralities, whereas, in our work, we consider a more

contemporary definition to assess the communication capability of a network
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under node failure condition. By random node removal, we assume that a node is

not capable of exchanging V2I information. Thus, from the VANET connectivity

analysis perspective, the removal of a node or failure in its functionality will not

have any effect on its associated edges.

Considering this scenario, we remove a set of nodes from the two network

topologies randomly to indicate that the nodes are no more capable of performing

their normal functionality (i.e., V2I communication). Later, we evaluate the joint

PDF P (K = ki ∩ W = wi) as given by (6.5) for the two networks with the

remaining set of nodes. This step is carried out multiple times until we reach

the critical threshold for removing the nodes. A detailed discussion regarding the

critical threshold for the two topologies: random and scale-free is discussed by

[5, Chapter 8]. Fig. 6.8 shows the nature of V2I connectivity for the two network

topologies under three scenarios, i.e., number of node failures below the critical

threshold, at the critical threshold, and above the critical threshold.

As discussed in Section 6.5, for a large-scale information dissemination in

PTNs, the random network topology offers a more dispersed and optimal V2I

connectivity, as compared to more concentrated and poorer V2I connectivity

in scale-free networks. Whereas, from Fig. 6.8, we can observe that, under

the random node failure condition, the scale-free topology, though offers poorer

connectivity, has a sustained connectivity offering the best possible service even

under critical conditions. Whereas the random network topology demonstrates a

significant degradation in the service as the number of node failures increase.

6.8 Summary

In the first of its kind, we aimed at integrating the two different disciplines of

study to demonstrate the impact of transport network topology on vehicular

network connectivity. Though the work carried out in the chapter is a high-level

analysis, such an analysis provides some fundamental results for future work to

consider the impact of underlying topological behavior in assessing the dynamics

of vehicular network connectivity. Our work in this chapter provides insight

into the large-scale information dissemination of non-time-critical information

like infotainment applications, broadcasting advertisements on the buses, relaying

touristic information, social media updates, etc.
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(b)

(c)

Fig. 6.8: The joint PDF of ki and wi for the two topologies under random node

removal approach (a) below critical threshold; (b) at critical threshold; (c) above

critical threshold. In the figure, the scale-free topology represents the Hong Kong

BTN, and random topology represents the London BTN.
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For the part of microscopic connectivity analysis, we considered two topolog-

ical metrics: wighted in-degree and demand centrality of a node, to understand

the nature of V2I contact duration around a node, within a range RI . The results

from microscopic analysis were scaled-up to macroscopic analysis by considering

the distribution of the two topological metrics for a given network topology. The

results of macroscopic analysis showed that the random network topology com-

prised of nodes which offered an optimal V2I contact duration in high probability,

whereas, the scale-free topology comprised of a small set of nodes that offered high

V2I contact duration while other set of nodes offered poor V2I contact duration.

Thus, depending on the level of information dissemination, the two topologies

can be employed for different applications in VANETs since they demonstrate

two significantly different behaviors.

Furthermore, we also demonstrated that supernodes existing in the network

can be exploited by the communication engineers to improve the V2I contact

duration. Also, by considering the spatial embedding of a transport network

topology, the special zones such as supernodes can be used by the communication

engineers to develop more robust and realistic protocols for information exchange

in VANETs.

By using the approach of random node failure condition, we demonstrated

that though the scale-free topology is more robust as compared to random topol-

ogy. That is, the scale-free topology though offered poor connectivity, it showed

a sustained connectivity under critical conditions, unlike the random network

topology. Such an analysis provides great insight to the network deployers on the

capability of the communication network to sustain during malfunctions, and yet

offer the best possible service.

112



Chapter 7

Conclusions and Future Work

In this chapter, we re-iterate the main contributions of the thesis and discuss

some potential topics for future research.

7.1 Main Contributions of the Thesis

The main contributions of the thesis include:

1. Representation of public transport network topology as a directed and

weighted graph in supernode representation.

To accomplish the PTN topological analysis, based on various statistical in-

formation, we chose three cities: Hong Kong, London, and Bengaluru. Our

study was limited to two major public transport modes: bus and metro

modes. For the analysis of bus transport networks, a directed and weighted

graph structure was employed, whereas, an undirected and weighted graph

structure was employed for metro transport analysis. The main reason for

considering the graph type is the level of overlapping among the inbound

and outbound routes. The L-space representation was chosen since it closely

mimics the real-world infrastructure of a PTN.

Considering the spatial embedding of PTNs, a new network element called

supernode was defined, and a novel graph representation called supernode

graph representation was proposed, to model the PTN topology. Static

weights were added to both nodes and edges to effectively capture their

significance in the PTN analysis since the consideration of real-world pa-

rameters as weights aids in improved understanding of the network behav-

ior. Finally, the proposed zone classification approach alongside with the



node weight approach demonstrated the effective way of capturing a node’s

significance to the network.

2. Topological analysis of bus transport network from a graph theoretic per-

spective: a mono-layer analysis.

Topological analysis of the three bus transport structures was accomplished

using various local metrics like degree, clustering, betweenness centrality,

closeness centrality, and global metrics like degree distribution, scale-free

property, average path length, and small-world property. The study of var-

ious local and global properties provided intriguing information about the

topological behavior of BTNs. Such a study can be a great source of in-

formation for researchers in the applied fields such as designing of transfer

algorithm, optimization of public transport routes, network planning, and

transit operation. Additionally, we illustrated at various instances that the

supernode structure offered practical and more insightful perspective in un-

derstanding the true network behavior which was difficult to be captured

by the conventional graph representation. The validation of topological ef-

ficiency for a specific route using the results from SUMO simulation and

real-world data from KMB demonstrated an effective way to measure the

time efficiency of the topology, and also illustrated the dependency of ve-

hicular mobility on the node weight.

3. Topological analysis of bus and metro transport networks from a graph the-

oretic perspective: a multi-layer analysis

A simple approach of spatial amalgamation was proposed to capture the in-

terdependency between the two transport layers: bus and metro networks.

Node weight approach was employed to identify a set of influential nodes

by considering and ignoring the layer interdependency. The ranking of

nodes using node weight approach demonstrated that ignoring the inter-

dependency between the two transport modes failed to capture the true

significance of a node in view of practical relevance. Thus, using the ap-

proach of spatial amalgamation, we demonstrated that, to simultaneously

capture the benefaction of the nodes and edges to multiple layers, modeling

the PTN topology as an interdependent network is necessary.
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4. Impact of PTN topology on the vehicular network connectivity.

For microscopic analysis, two topological metrics: wighted in-degree and

the demand centrality of a node were considered to understand the nature

of V2I contact duration. For macroscopic analysis, the distribution pattern

of the two topological metrics for a given network topology was studied to

determine the distribution pattern of V2I contact duration. The results

from the macroscopic analysis revealed that for a large scale information

dissemination in VANETs, the random network topology offered better and

more dispersed V2I contact duration as compared to the scale-free topology.

However, considering the spatial embedding of the topology, the supernodes

existing in the network can be exploited to further improve the nature of

V2I contact duration. The robustness of the vehicular network was assessed

using the random node removal approach which demonstrated that the

scale-free topology offered poor yet sustained connectivity, thus offering the

best possible service under critical conditions, unlike the random network

topology which demonstrated significant degradation in the service.

Finally, some of the key take away points from our work are: (a) applying the

concepts of graph theory to the analysis of public transport networks offered an

effective and convenient way to understand the network operation at both local

and global levels, and from both operator and passenger perspectives; (b) con-

sidering supernodes in a PTN analysis not only rendered useful information on

topological behavior, but also benefited in exploring the hidden network behav-

iors which was difficult to be captured with conventional graph representation;

(c) in view of the practical relevance of the network, we demonstrated that ig-

noring the interdependency among multiple transport modes can be expensive

at the cost of assessing the benefaction of nodes and edges to multiple layers;

and (d) the impact of topological analysis in analyzing the dynamics of vehicular

network connectivity demonstrated that the topological metrics and their distri-

bution pattern should be taken into consideration by communication engineers

in developing robust and realistic information dissemination approaches.
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7.2 Scope for Future Work

In a data driven world, the availability of real-world datasets and the high-end

tools for handling huge volume of data have greatly facilitated the research of

complex systems and data analysis. Despite the successful attempts in apply-

ing the concepts from network science to PTN analysis, rigorous study of PTN

from a network science perspective is still relatively rare. For example, while

PTN topological analysis generates information like the existence of hierarchical

structure, core-periphery structure, and the absence of scaling in a PTN, such

information does not find immediate practical relevance to the PTN operators or

government agencies. Thus, more work is still needed in developing application-

oriented network analysis so that results produced from network theory can be

readily translated to useful practical information and that is desirable at the

operational level.

Alongside with offering a few advantages, the network-based analysis also

raises a few technical challenges as a consequence of increased computational time

with increasing network size which should be addressed in the future. Further-

more, while research efforts have been devoted to the spatial analysis of PTNs,

the temporal dynamics reflecting the topological variation of a PTN deserves

immediate attention. Adding to the spatio-temporal representation of a PTN

topology, consideration of dynamic connectivity, and the study of distributed

passenger flow from a global view point should attract more research interest

to capture the dynamic topological behaviors which is close to the real-world

scenario. For example, the mechanism of passenger flow in a scale-free network

might be significantly different as compared to random network topology.

Another major area of research is dealing with the integration of the multiple

transport networks to form a coordinated and complimentary transport system

that can significantly enhance the traffic carrying capacity and efficiency of the

entire system. In the past, very little contribution has been made through multi-

layer analysis where individual transport networks are treated as independent

topologies, and understanding the interaction among these layers should deserve

more research attention in view of the practical relevance of integrated PTNs.

Identifying the supernodes which behaves as the actual passenger interchange
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stations within and between the transport modes should be considered with re-

spect to the real-world network usage. This can offer insightful suggestions to

the operators to design holistic transport systems.

Another core research area of practical importance is robustness analysis

which aims to study the network functionality upon failure of certain nodes or

edges. Combining the study of robustness analysis and the passenger flow mech-

anism in an integrated multi-layer network, insightful results can be gathered by

network engineers pertaining to the capacity of a network in offering the best

possible service during emergency failure in its components, which is one of the

most prevalent scenarios in the PTNs.

Lastly, in the future, the public transport stops are not only merely expected

to be points of passenger carriers, but are also expected to be the information

carriers such that any information update from the network operators could reach

a significant amount of passengers accessing the PTNs within the least possible

amount of time. The existing infrastructure of the PTNs can be exploited by the

network deployers to prepare them as future smart infrastructures to offer better

connectivity to both the on-road vehicles and passengers, and thus contribute

towards developing the future of smart and connected cities a reality.
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APPENDIX





A Network Parameters in Different Spaces of Representation

Parameter L-space P-space C-space B-space

degree number of

neighboring

stops that a

given stop is

connected to

number of

stops acces-

sible from a

given stop

with or with-

out making a

transfer

number of

overlapped

routes

number of sta-

tions serviced

by a route (in

Bproj graph)

or number

of routes a

station is con-

nected to (in

Nproj graph)

local clus-

tering

(transitiv-

ity)

cohesiveness

among the

neighbors

of a node

considering

the physical

infrastructure

cohesiveness

among the

neighbors of a

node consider-

ing the actual

connectivity

cohesiveness

among the

neighbors of

a node con-

sidering the

common stops

serviced along

the routes

cohesiveness

between the

routes and

stops in a

network

average

path length

total number

of links (hops)

to be traversed

between the

chosen O-D

total number

of transfers to

be taken to

travel between

the chosen

O-D

- -

betweenness

centrality

node signifi-

cance based on

the number of

shortest path

routes that

can traverse

via the given

node

node signifi-

cance based

on the number

of transfers

than can be

handled by the

given node

- -
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closeness

centrality

reachability of

a node with re-

spect to every

other node in

the network

reachability of

a node with

respect to

other routes

in the network

considering

the number of

transfers

- -

assortativity correlation

level between

similar degree

stops in the

network

correlation

level between

similar degree

routes in the

network

correlation be-

tween similar

degree routes

based on their

overlapping

-

communities identifying

different zones

in the network

based on a be-

havior of the

stops and their

connectivity

identifying

different zones

in a network

based on the

behavior of

the routes

identifying

different zones

in the net-

work based

on the behav-

ior of route

overlapping

-
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B Online Sources

Source Ref.

Bus transport network

Hangzhou www.hzbuda.com.cn [24]

Chennai www.mtcbus.org/ [17]

Ahmadabad www.ahmedabadbrts.org/web/commuters.html [17]

Delhi delhitravelhelp.in/StopsOfBus.aspx [17]

Hyderabad www.hyderabadbusroutes.com [17]

Kolkata www.kolkataonline.in [17]

Mumbai github.com/transitmetrics/ntd/tree/master [17]

Singapore www.streetdirectory.com.sg/ -

Hong Kong data.gov.hk/en-data/category/transport?organization= hk-td/ [117]

London data.london.gov.uk/dataset/tfl-bus-stop-locations-and-routes -

Bengaluru opencity.in/topic/transportation/ -

Australia opendata.transport.nsw.gov.au/search/type/dataset -

- www.apta.com [14]

Metro transport network

Beijing www.ebeijing.gov.cn/feature 2/BeijingSubway/ [34]

Shanghai service.shmetro.com/en/ [32]

Hong Kong www.mtr.com.hk/en/customer/tourist/index.php [33]

Tokyo www.tokyometro.jp/en/subwaymap/index.html [33]

London tfl.gov.uk/maps/track?intcmp=40400 [33]

New York web.mta.info/maps/submap.html [33]

Boston mbta.com/schedules/subway [118]

Paris parisbytrain.com/paris-metro/ [33]

Seoul www.korea4expats.com/korean-subways.php [36]
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C KMB Dataset

Below is an excerpt of the information provided by one of the major bus operator

in Hong Kong, the Kowloon Motor Bus Co. (KMB). The data was collected for

a period of one week (22/10/2017 to 28/10/2017) for morning and evening rush

hours (8:00 - 11:00AM, 3:00 - 7:00PM) for a round-trip bus route (#1 Chuk Yuen

Estate Bus Terminus to Tsim Sha Tsui Star Ferry). The information on number

of passenger alighting at a stop is lacking in the provided dataset since the exit

count of passengers is not monitored by the operators.

(a)

(b)

124



Bibliography

[1] M. Kuby, S. Tierney, T. Roberts, and C. Upchurch, “A comparison of geo-

graphic information systems, complex networks, and other models for ana-

lyzing transportation network topologies,” NASA Report CR-2005-213522,

2005.

[2] A.-L. Barabási, “Linked: The new science of networks,” 2003.

[3] L. Euler, “Leonhard Euler and the Königsberg bridges,” Scientific Ameri-

can, vol. 189, no. 1, pp. 66–72, 1953.

[4] K. T. S. Oldham, The Doctrine of Description: Gustav Kirchhoff, Classi-

cal Physics, and the “Purpose of All Science” in 19th Century Germany.

University of California, Berkeley, 2008.

[5] A.-L. Barabási, Network science. Cambridge university press, 2016.

[6] M. Newman, Networks: an introduction. Oxford university press, 2010.

[7] M. Van Steen, Graph Theory and Complex Networks: An Introduction. VU

Amsterdam, 2010.

[8] C. Sommer and F. Dressler, Vehicular networking. Cambridge University

Press, 2014.

[9] E. CLIFF, “Lewis mumford and norman bel geddes: the highway, the city

and the future,” Planning Perspectives, vol. 20, no. 1, pp. 51–68, 2005.

[10] S. Takaba, “Japanese projects on automobile information and communi-

cation systems-things aimed at and obtained in 20 years’ experiences,” in

Vehicle Navigation and Information Systems Conference, vol. 2, pp. 233–

240, IEEE, 1991.



[11] “Prometheus Project.” http://www.eurekanetwork.org/project/id/45.

[Online; accessed 10-Aug-2018].

[12] “LinkNY.” https://www.link.nyc/. [Online; accessed 10-Jun-2018].

[13] M. Kurant and P. Thiran, “Extraction and analysis of traffic and topolo-

gies of transportation networks,” Physical Review E, vol. 74, no. 3,

pp. 036114(1)–036114(10), 2006.

[14] C. Von Ferber, T. Holovatch, Y. Holovatch, and V. Palchykov, “Public

transport networks: empirical analysis and modeling,” The European Phys-

ical Journal B, vol. 68, no. 2, pp. 261–275, 2009.

[15] J. Sienkiewicz and J. A. Ho lyst, “Statistical analysis of 22 public transport

networks in poland,” Physical Review E, vol. 72, no. 4, pp. 1–11, 2005.

[16] H. Zhang, P. Zhao, J. Gao, and X.-m. Yao, “The analysis of the properties of

bus network topology in beijing basing on complex networks,” Mathematical

Problems in Engineering, vol. 2013, pp. 1–7, 2013.

[17] A. Chatterjee, M. Manohar, and G. Ramadurai, “Statistical analysis of bus

networks in india,” PloS one, vol. 11, no. 12, pp. 0168478(1)–0168478(16),

2016.
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[54] M. Barthélemy, “Spatial networks,” Physics Reports, vol. 499, no. 1-3,

pp. 1–101, 2011.

[55] M. J. Alenazi and J. P. Sterbenz, “Evaluation and comparison of several

graph robustness metrics to improve network resilience,” in Proc. 7th In-

ternational Workshop on Reliable Networks Design and Modeling (RNDM),

pp. 7–13, 2015.

[56] M. J. Alenazi and J. P. Sterbenz, “Comprehensive comparison and accu-

racy of graph metrics in predicting network resilience,” in Proc. 11th Inter-

national Conference on the Design of Reliable Communication Networks,

pp. 157–164, 2015.

[57] J. Wang, “Robustness of complex networks with the local protection strat-

egy against cascading failures,” Safety Science, vol. 53, pp. 219–225, 2013.

[58] J. Wu, M. Barahona, Y.-J. Tan, and H.-Z. Deng, “Spectral measure of

structural robustness in complex networks,” IEEE Transactions on Sys-

tems, Man, and Cybernetics-Part A: Systems and Humans, vol. 41, no. 6,

pp. 1244–1252, 2011.

[59] R. Pastor-Satorras, A. Vázquez, and A. Vespignani, “Dynamical and corre-

lation properties of the internet,” Physical Review Letters, vol. 87, no. 25,

pp. 1–4, 2001.

[60] M. E. Newman, “Assortative mixing in networks,” Physical Review Letters,

vol. 89, no. 20, pp. 208701(1)–208701(4), 2002.

[61] J. G. Foster, D. V. Foster, P. Grassberger, and M. Paczuski, “Edge direction

and the structure of networks,” Proceedings of the National Academy of

Sciences, vol. 107, no. 24, pp. 10815–10820, 2010.

130



[62] M. E. Newman, “Detecting community structure in networks,” The Euro-

pean Physical Journal B, vol. 38, no. 2, pp. 321–330, 2004.

[63] M. E. Newman and M. Girvan, “Finding and evaluating community struc-

ture in networks,” Physical Review E, vol. 69, no. 2, pp. 1–15, 2004.

[64] B. S. Khan and M. A. Niazi, “Network community detection: A review and

visual survey,” arXiv:1708.00977, 2017.

[65] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation

ranking: Bringing order to the web,” tech. rep., Stanford InfoLab, 1999.
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[90] M. Doering, W.-B. Pöttner, T. Pögel, and L. Wolf, “Impact of radio range

on contact characteristics in bus-based delay tolerant networks,” in Eighth

International Conference on Wireless On-Demand Network Systems and

Services (WONS), pp. 195–202, IEEE, 2011.

[91] Y. Li, D. Jin, Z. Wang, L. Zeng, and S. Chen, “Exponential and power law

distribution of contact duration in urban vehicular ad hoc networks,” IEEE

Signal Processing Letters, vol. 20, no. 1, pp. 110–113, 2013.

[92] R. Albert, “Attack and error tolerance in complex networks,” Nature,

vol. 406, pp. 387–482, 2000.

133



[93] B. Berche, C. von Ferber, T. Holovatch, and Y. Holovatch, “Resilience of

public transport networks against attacks,” The European Physical Journal

B, vol. 71, no. 1, pp. 125–137, 2009.

[94] J.-L. Guillaume, M. Latapy, and C. Magnien, “Comparison of failures and

attacks on random and scale-free networks,” in International Conference

on Principles of Distributed Systems, pp. 186–196, Springer, 2004.

[95] B. Berche, C. von Ferber, T. Holovatch, and Y. Holovatch, “Public trans-

port networks under random failure and directed attack,” arXiv:1002.2300,

2010.

[96] Z. Zou, Y. Xiao, and J. Gao, “Robustness analysis of urban transit network

based on complex networks theory,” Kybernetes, vol. 42, no. 3, pp. 383–399,

2013.

[97] S. F. Sousa, C. R. Neto, and F. F. Ferreira, “Structure and robustness of

s\˜ ao paulo public transport network,” arXiv:1808.08117, 2018.

[98] L. T. Authority et al., “Passenger transport mode shares in world cities,”

Journeys. Singapore: Land Transport Authority, 2011.

[99] J. Lee and D. W. Wong, Statistical analysis with ArcView GIS. John Wiley

& Sons, 2001.

[100] H. J. Miller and S.-L. Shaw, Geographic information systems for trans-

portation: principles and applications. Oxford University Press on Demand,

2001.

[101] G. A. Pavlopoulos, D. Paez-Espino, N. C. Kyrpides, and I. Iliopoulos, “Em-

pirical comparison of visualization tools for larger-scale network analysis,”

Advances in bioinformatics, vol. 2017, pp. 1–9, 2017.

[102] “Haversine formula- The great circle distance between two points on

a sphere given their latitudes and longitudes.” https://en.wikipedia.

org/w/index.php?title=Haversine_formula&oldid=779367200/. [On-

line; accessed 10-Jul-2017].

134

https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=779367200/
https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=779367200/


[103] “Hong Kong Historical Dataset.” https://data.gov.hk/en-data/

category/transport?organization=hk-td/. [Online; accessed 1-Feb-

2016].

[104] “Transport for London Dataset.” http://content.tfl.gov.uk/

london-bus-network-statistics.pdf/. [Online; accessed 10-Jan-

2017].

[105] “Bengaluru Dataset.” http://opencity.in/topic/transportation/.

[Online; accessed 16-April-2017].

[106] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions in

empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, 2009.

[107] S. M. e. a. Ruowen Liu, Porter Beus, “Analysis of watts-strogatz networks,”

pp. 1–6, 2015.

[108] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–simulation

of urban mobility: an overview,” in The Third International Conference on

Advances in System Simulation, ThinkMind, 2011.

[109] “Openstreetmap .” https://www.openstreetmap.org/#map=5/51.500/

-0.100/. [Online; accessed 13-Nov-2015].

[110] “Kowloon Motor Bus (KMB) route search.” http://search.kmb.hk/

KMBWebSite/index.aspx?lang=en/. [Online; accessed 21-Jun-2017].

[111] “Activitygen .” http://sumo.dlr.de/wiki/Demand/Activity-based_

Demand_Generation/. [Online; accessed 13-Nov-2015].

[112] “DUAROUTER.” http://www.sumo.dlr.de/userdoc/DUAROUTER.

html/. [Online; accessed 13-Nov-2015].

[113] “Hong Kong Population Census Dataset.” https://www.censtatd.gov.

hk/hkstat/sub/sp130.jsp?productCode=FA100065. [Online; accessed 1-

Feb-2016].

[114] “Travel Patterns London Dataset.” https://data.london.gov.uk/

dataset/travel-patterns-and-trends-london/. [Online; accessed 10-

Jan-2017].

135

https://data.gov.hk/en-data/category/transport?organization=hk-td/
https://data.gov.hk/en-data/category/transport?organization=hk-td/
http://content.tfl.gov.uk/london-bus-network-statistics.pdf/
http://content.tfl.gov.uk/london-bus-network-statistics.pdf/
http://opencity.in/topic/transportation/
https://www.openstreetmap.org/#map=5/51.500/-0.100/
https://www.openstreetmap.org/#map=5/51.500/-0.100/
http://search.kmb.hk/KMBWebSite/index.aspx?lang=en/
http://search.kmb.hk/KMBWebSite/index.aspx?lang=en/
http://sumo.dlr.de/wiki/Demand/Activity-based_Demand_Generation/
http://sumo.dlr.de/wiki/Demand/Activity-based_Demand_Generation/
http://www.sumo.dlr.de/userdoc/DUAROUTER.html/
http://www.sumo.dlr.de/userdoc/DUAROUTER.html/
https://www.censtatd.gov.hk/hkstat/sub/sp130.jsp?productCode=FA100065
https://www.censtatd.gov.hk/hkstat/sub/sp130.jsp?productCode=FA100065
https://data.london.gov.uk/dataset/travel-patterns-and-trends-london/
https://data.london.gov.uk/dataset/travel-patterns-and-trends-london/


[115] C. G. Anand, “Presentation on bus-based public transport in bangalore

bmtc experience,” 2013.

[116] M. Behrisch and G. Gurczik, “Modelling bluetooth inquiry for sumo,” in

Modeling Mobility with Open Data, pp. 223–239, Springer, 2015.

[117] T. Shanmukhappa, I. W.-H. Ho, and C. K. Tse, “Bus transport network in

hong kong: Scale-free or not?,” Proc. of the International Symposium on

Nonlinear Theory and Its Applications (NOLTA), pp. 610–613, 2016.

[118] V. Latora and M. Marchiori, “Is the boston subway a small-world net-

work?,” Physica A: Statistical Mechanics and its Applications, vol. 314,

no. 1-4, pp. 109–113, 2002.

136


	Introduction
	Background
	Public Transport Network Analysis
	Vehicular Ad-hoc Network

	Motivation
	Thesis Organization

	Literature Review
	PTN Analysis from A Graph Theoretic Perspective
	Spaces of Network Representation
	Degree, Weighted Degree and Average Degree
	Scale-free Property
	Clustering or Transitivity
	Average Path Length
	Small-worldness
	Betweenness Centrality
	Closeness Centrality
	Assortativity
	Communities
	Node and Edge Weights
	Notable Contributions to Public Transports Network Analysis

	Multi-layer Networks
	VANET Connectivity Analysis
	Robustness Analysis

	Summary

	Representation of Public Transport Network as A Graph
	Data Analysis
	Data Collection
	Data Mining
	Data Visualization

	Supernode Graph Representation
	Weighted Graph Representation
	Node Weight
	Edge Weight

	Summary

	Mono-layer Analysis
	Connectivity in Bus Transport Networks
	Are the Bus Transport Networks Scale-free?
	Cohesiveness in Bus Transport Networks
	Travel Distance in Hops
	Small-worldness in Bus Transport Networks
	Centrality Measures
	How Influential are A Node's Neighbors?
	Hubs and Authorities in Bus Transport Networks
	Bridges in Bus Transport Networks

	Figure of Merit
	How Efficient is A Bus Transport Network Topology?
	SUMO Simulations

	Summary

	Multi-layer Analysis
	Multi-layer Network
	Spatial Amalgamation Approach
	Node Weight Approach for Multi-Layer Network

	Summary

	Impact of PTN Topology on Vehicular Network Connectivity
	Transport Network Topology and The Vehicular Network Connectivity
	Topological Metrics: A Brief Review
	Definitions
	Mobility Traces from SUMO Simulations
	Case1: vary the weighted in-degree (ki) of a node
	Case2: vary the demand centrality (wi) of a node

	Vehicular Network Connectivity: A Macroscopic Analysis
	Topological Vs. Spatial Connectivity
	Vehicular Network Connectivity Robustness Analysis
	Summary

	Conclusions and Future Work
	Main Contributions of the Thesis
	Scope for Future Work

	Appendix
	Network Parameters in Different Spaces of Representation
	Online Sources
	KMB Dataset

	Bibliography



