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Abstract
Gene expression is pivotal in genomic biology. As experimental methods for gene ex-

pression prediction are costly and labor-consuming, there is an urgent to develop high-

performance computational methods for gene expression predictions. As gene expressions

are mainly regulated by interactions between DNAs and transcription factors (TFs) which

is a type of proteins with special function, analysis on TF-DNA interactions may facilitate

the prediction of gene expressions.

This thesis focuses on the analysis of protein-DNA interactions and gene expression.

We attempt to address issues in four aspects in gene expression analysis including (1) pro-

tein second structure prediction, (2) DNA binding residue prediction, (3) TF binding site

(TFBS) prediction and (4) gene expression prediction. Our contribution mainly consists

of four parts.

For protein second structure prediction, we present a novel deep learning based pre-

diction method, referred to as CNNH PSS, which uses a multi-scale CNN with highway

to capture both local context and longer-range dependencies. In CNNH PSS, a specific

part of the information is delivered from a current layer to the output of the next one by

highways to keep local context and the other parts of information are delivered from cur-

rent layer to the input of the next one to capture dependencies among residues with longer

distance. Therefore, the feature space learned by CNNH PSS contains both local context

and long-range interdependencies.

For DNA-binding residue prediction, the research goal is to learn relationships among

residues for the prediction of DNA-binding residues. In this thesis, four prediction meth-

ods are proposed to learn relationships among residues. The first method applies PSSM

(Position Specific Score Matrix) distance transformation to encode local pairwise rela-

tionships between neighboring residues. The second method applies Convolutional Neu-

ral Network to learn relationships among several neighboring residues. The third method
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applies Long Short-Term Memory to learn both local relationships and long-range rela-

tionships among residues. The last method makes use of two sliding windows to learn

sequence relationships and structure relationships, respectively.

For TF-binding site (TFBS) prediction, three prediction methods are proposed. First,

a novel method is proposed to capture higher order relationships among nucleotides by

applying two CNNs on histone modifications and DNA sequence, respectively. Second,

a multi-task framework. is proposed to particular address data sparseness issue by lever-

aging on cross-cell-type information available. The method learns common features from

multiple cell-types using a shared CNN and individual features by a private CNN for

each cell-type. The last method is proposed for for the cross-TF TFBS prediction by

learning TFBSs from other TFs in the training set. This method can further address the

non-available issue in the current training data.

Current gene expression prediction methods can only be used for cell-types or tissues

in which ChIP-seq datasets for most important TFs are labeled. However, for most cell-

types or tissues in human beings, the ChIP-seq datasets for most TFs are not available.

In this work, a novel prediction method is proposed to first predict TFBSs by our cross-

cell-type prediction method and the cross-TF prediction method. They are then combined

with histone modifications to learn feature representations for genes. The advantage of

this method is that it predict gene expressions for any cell-type regardless of the availabil-

ity of the TFBS of the considered TFs. Our proposed method can automatically extract

combinatorial relationships among histone modifications and TFBSs. These relationships

and TFBSs play very important roles in regulating gene expression and facilitate the un-

derstanding of gene expression regulation for humans.
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Chapter 1

Introduction

A genome is an organism’s complete set of DNA, including all the genes (the coding

regions) and the non-coding DNA. The genome of an organism contains all the information

needed to build and maintain that organism. In humans, each cell contains a copy of the

entire genome more than 3 billion DNA base pairs.

Genome analysis has important applications in several fields including medicine, biotech-

nology and anthropology. Firstly, many deceases have genetic markings. By analyzing the

genomic data collected from a large mount of patients with a specific disease, researchers

can better understand the genetic basis of the disease [125, 100]. This can help to de-

velop testing methods to identify many types of genetically linked deceases. Secondly, the

analysis of genomic data has made applications of synthetic biology become feasible. For

example, researchers of the J.Craig Venter Institute created a partially synthetic species of

bacterium, Mycoplasma laboratorium according to the genome of Mycoplasma genitalium

[10]. The application in synthetic biology will allow researcher to create many new syn-

thetic species with desired properties, such as synthesized drugs with specified efficacy.

Thirdly, by analyzing genomic data from a given population, conservationists can help a

species without genetic diversity to obtain genetic diversity [6].

In order to understand the genomic formation of bi-organisms of human beings, we

must first obtain the sequence of more than 3 billion DNA base pairs in human genes. Sci-
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entists proposed the Human Genome Project (HGP) in 1985. HGP was started in 1990 and

finished in 2003. With the completion of HGP, these 3 billion base pairs of human genome

are sequenced and available for researchers. This means that life science has entered the

post genome era [191]. However, data in the scale of 3 billion is too large for any manual

study of the genome sequence is not viable. Therefore, developing computational methods

for genome data analysis is almost the only way to do genome analysis.

1.1 Biology Basics

Before introducing computational methods for human genome analysis, some basic biol-

ogy knowledge is introduced to provide background information in the genomics domain.

The main research areas of the post genome era includes functional genomics and phar-

macogenomics. Functional genomics [191] aims to make use of the vast wealth of data

given by genome sequencing projects and RNA sequencing projects to describe gene func-

tions and interactions. RNA is a polymeric molecule essential in various biological roles

in coding, decoding, regulation, and expression of genes. There are three main categories

of RNA: (1) messenger RNA (mRNA) used to convey genetic information, (2) transfer

RNA (tRNA) used to deliver amino acids to the ribosome and (3) ribosomal RNA (rRNA)

used to like amino acids together to form proteins. Functional genomics mainly focuses

on the dynamic process in aspects such as gene transcription, translation and regulation of

gene expressions. Pharmacogenomics [69], on the other hand, studies the role of genomes

in drug response, which mainly analyzes how the genetic makeup of an individual may

affect his/her response to drugs. More specifically, pharmacogenomics studies the influ-

ence of acquired and inherited genetic variation on drug response in patients by corre-

lating gene expression with Pharmacokinetics (drug absorption, distribution, metabolism,

and elimination) and Pharmacodynamics (effects mediated through a drug’s biological tar-

gets). Both functional genomics and pharmacogenomics are related to gene expressions.
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This is why research on gene expression is an important research area of both Functional

genomics and Pharmacogenomic. Genes are subunits of DNA, which carry the genetic
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Figure 1.1: The structure of a eukaryotic protein-coding gene.

blueprints used to make up for proteins. Figure 1.1 shows the structure for of a eukaryotic

protein coding gene. A gene consists of three parts: the regulatory sequence in the 5’ end,

open reading frame and the regulatory sequence in the the 3’ end. In the regulatory se-

quence in the 5’ end, genes contain a promoter sequence. The promoter is recognized and

bound by transcription factors and RNA polymerase to initiate transcription. The recogni-

tion typically occurs as a consensus sequence like the TATA box. A gene can have more

than one promoter, resulting in messenger RNAs (mRNA) that differ in how far they ex-

tend in the 5’ end. Highly transcribed genes have ”strong” promoter sequences that form

strong associations with transcription factors, thereby initiating transcription at a high rate.

Others genes have ”weak” promoters that form weak associations with transcription fac-

tors and initiate transcription less frequently. In the regulatory sequence in the 3’ end,

genes contain a terminator sequence. The terminator can initiate the transcription. Ad-

ditionally, genes can have regulatory regions many kilobases upstream or downstream of

the open reading frame that alter expression. These act by binding to transcription factors

which then cause the DNA to loop so that the regulatory sequence (and bound transcription
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factor) become close to the RNA polymerase binding site.

Every gene contains a particular set of instructions that encode a specific functional

protein. The genetic code stored in a gene is ”interpreted” by the so called gene expres-

sion, and the properties of the expression give rise to the organism’s phenotype. The word

”interpreted” implies that gene expression refers to a process. Thus, gene expression

generally refers to the process by which the information from genes is used to synthesize

functional gene products and Figure 1.2 shows the procedure for gene expressions. The

products for most gene expressions are proteins, which go on to perform essential func-

tions as enzymes, hormones and receptors. But for non-protein coding genes including

tRNA coding genes and small nuclear RNA (snRNA) coding genes, the products are func-

tional RNA. Figure 1.1 shows that gene expression is accomplished by several steps: the

transcription, the RNA splicing, the translation, and the post-translational modification of

proteins. Transcription is the process by which segments of DNA are copied into RNA

(especially mRNA) by the RNA polymerase. RNA splicing is the step to edit the nascent

precursor mRNA produced by the transcription into mature mRNA, by which intros are re-

moved and exons are joined together. Translation is the process by which mature mRNAs

produced by the RNA splicing process are decoded into amino acid chains or polypep-

tides in ribosome. Figure 1.3 shows the procedure for the translation of protein encoding

genes. In the translation of protein encoding genes, three consecutive bases compose a

codon. Every codon can produce a amino acid and the produced amino acids can compose

proteins. Finally, protein post-translation modification refers to the covalent and generally

enzymatic modification of proteins, by which the polypeptides or the amino acid chains

produced by the translation process are transformed into mature proteins. [177]

Gene expression level refers to the level at which a particular gene is expressed within

a cell, tissue or organism. Usually, gene expression level are measured by two types

of methods including the mRNA quantification method and the protein quantification

method. The mRNA quantification method provides the amount of mRNA produced by
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Figure 1.2: The process of gene expressions.

the transcription process in the gene expression of target genes and the amount for mRNA

can be measured by several metrics, such as the size of mRNA molecules [77], mRNA

abundance and mRNA concentration [119]. The protein quantification method provides

the amount of protein products by the whole gene expression process and the amount of

proteins can be measured by several metrics, such as the size of protein molecules, protein

abundance and protein concentration. In most literature [153, 62, 51, 114, 46, 40, 76], the

terms gene expression and gene expression level are used interchangeably because gene

expression level is the end result of gene expression as a process. In the remainder text of

this thesis, when there is not confusion for the two semantic meanings, the simpler form

of ”gene expression” will be used.

Gene expression is mainly determined by gene expression regulation, which is a very

complex system of mechanisms to control the amount and timing of appearance of the

functional products of gene expression by monitoring cells and their environment. The

gene expression regulation process takes internal and external signals, analyzes them, and

then decides if a gene product is needed and how much is needed. Gene expression regu-
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Figure 1.3: The process of translation.

lation involves two step: transcriptional regulation and translational regulation. Transcrip-

tional regulation is the means by which the conversion of DNA to RNA is regulated to

orchestrate gene expression [28]. Translational regulation refers to the process by which

the synthesis of proteins from its mRNA is controlled to the level of gene expression [48].

Proteins 
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TF binding sites 

RNA 

DNA Transcription Translation 

Figure 1.4: The procedure of the transcription regulation.

Transcriptional regulation is completed by sequence-specific interactions between

transcription factor (TF) and DNA at a point upstream to the target gene [99, 132, 123,

171], which is the promoter. TFs are proteins that control the rate of transcription of

genetic information from DNA to mRNA by binding to a specific DNA sequence [75].

The functions of TFs are to regulate - turn on and off - genes in order to make sure they

are expressed in the right cell at the right time and in the right amount throughout the

life of the cell and the organism. The procedure of transcription regulation is shown in

Figure 1.4. Figure 1.4 shows that TF-DNA interactions is an important component in the

transcription regulation and TF-DNA interactions are mainly made up by DNA binding

residues and TF binding sites. Therefore, the Analysis on TF-DNA interaction mainly

focuses two components: the residues in TFs which can bind to DNA, referred to DNA
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binding residues and the sites in DNA which can bind to TFs, referred to as TF binding

sites (TFBSs).

DNA binding residues are the residues in TFs which can interact with its specific

DNA sequence. More specifically, a DNA binding residue is defined as the residue of

which any side chain or backbone atom falls within a cut-off distance of 3.5 angstroms

from any atom of its partner DNA molecule. As DNA binding residues are the basic ele-

ments in TFs of TF-DNA interactions, the identification of DNA binding residues is very

important to understand the recognition mechanism between TF and DNA as well as the

mechanism of gene transcriptional regulation. The identification of DNA binding residues

also provides some basic knowledge for understanding the pathogenesis of several dis-

eases. For example, the DNA binding residues on the repressor protein P53 can provide

knowledge about certain diseases, such as some kinds of tumors. As secondary structure

can be used to encode peptides and peptides contain relevance among multiple neighbor

residues [89], the formation of DNA binding residues closely correlates with their sec-

ondary structures. Secondary structure of a TF refers to the three dimensional form of

its local segments, which is defined by the pattern of hydrogen bonds between the amine

hydrogen and carbonyl oxygen. Secondary structures contain three categories including

helix, strand and coil. However, the secondary structures for most TFs are unknown and

experimental techniques for TF secondary structure identification are very labor-intensive

and costly. Therefore, Secondary structure prediction for TFs is important for DNA bind-

ing residue prediction [89, 121, 148].

TF binding sites (TFBSs) are DNA fragments where TFs can bind to. They are dif-

ferent from DNA binding residues because they are a part of DNA sequence and bound

by TFs. More specifically, TFBSs are defined as short and often degenerate DNA se-

quences (typically 4 to 30 base pairs long) that are bound by one or more TFs with various

functions. According to their functions, TFBSs can be a part of either the promoter or

enhancer region of genes. Promoters sit upstream to genes and contain three important
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regions including regulatory protein binding site, TFBS and RNA polymerase binding site.

Enhancers are usually even farther upstream of a gene. Binding of TFs to an enhancer

will stimulate transcription at a higher rate compared to a bound promoter. So, binding of

a TF to an enhancer accelerates the transcription of a target gene. Therefore, TFBSs play

an important role in gene expression regulation [204, 147, 34].

There are more than 200 different cell-types or tissues for humans. A cell-type is a

set of morphologically or phenotypically related cells within a species. A multicellular

organism may contain a number of widely differing and specialized cell types, such as

muscle cells and skin cells in humans, that differ both in appearance and function yet are

genetically identical. A tissue is an ensemble of similar cells from the same origin that

together carry out a specific function. As both the term cell-type and tissue are used to

denote a set of cells with a specific function, the term cell-type is used in the rest of the

thesis to refers to both cell-type and tissue. All cell-types in an organism have a same

genome, but different cell-types have different gene expressions due to differential gene

regulations. Different gene regulations are caused by different binding sites of TFs in

different cell-types. Moreover, In each cell-type, the expression of genes are regulated

collaboratively by more than 2600 TFs. different TFs usually have different sequences

and biology functions. So, they may bind to different positions of the genome to play

different roles in regulations of gene expression. Therefore, when developing prediction

algorithms, TFBSs for different TFs in a same cell-type are different and the TFBSs of a

same TF for different cell-types also are different.

In addition to DNA binding residues and TFBSs, histone modification is another im-

portant type of factors for gene expression regulation. A Histone is one kind of proteins

which can interact with DNA. Compared with TFs, a histone binds to DNA less specif-

ically. Nucleosomes, as the basic units of chromosome, are formed by two copies of

four core histone proteins including H2A, H2B, H3 and H4 and 147 base pair (bp) DNA

sequence. These histone proteins are subject to a number of post-translational covalent
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modifications, such as methylation, acetylation and phosphorylation [7, 18]. These modi-

fications can change the structure and function of chromatin by altering the charge of the

nucleosome and/or by recruiting enzymes individually or in combination [81]. These his-

tone modifications can form a ‘histone code’, which is read out by proteins to give rise to

various downstream effects on gene expression regulation [90].

DNase I hypersensitive sites (DHSs) are regions of chromatin that are sensitive to

cleavage by the DNase I enzyme. In these specific regions of the genome, a chromatin has

lost its condensed structure, exposing the DNA and making it accessible to DNA degra-

dation by enzymes, such as DNase I. These accessible chromatin zones are functionally

related to transcriptional activities since this remodeled state is necessary for the binding

of proteins such as TF. Many works in the literature [61, 60, 27] have found that DHSs

are closely correlated to regulatory regions including promoters, distal enhancers, insula-

tors and active histone marks. Moreover, DNase-seq were proposed for profiling DHSs

in a genome-wide fashion [155]. DNase-seq (DNase I hypersensitive sites sequencing)

is a experimental method in molecular biology used to identify the location of regulatory

regions which is based on the genome-wide sequencing of regions sensitive to cleavage

by DNase I. Therefore, DNase-seq data for DHSs is another important type of features for

gene expression prediction.

1.2 Problem Statements and Research Objectives

With the development of technologies, several technologies have been proposed for mea-

suring gene expression in an automated manner, including microarry experiment [165]

and RNA-seq technology [119, 44, 186]. Microarry experiment [165] contains GeneChip

oligonucleotide probe based arrays and high density bead arrays. RNA-seq technology

[119, 44, 186] uses next-generation sequencing methods to quantify RNA in a cell or

tissue sample. Next-generation sequencing, also called second-generation sequencing,
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represents several high-throughput approaches to DNA sequencing by massively paral-

lel processing [176]. However, there exists several fundamental impediments for current

profiling technologies. First, the RNA-seq technology and microarry experiment is too

costly to adapt in research and clinical applications alike. Second, the requirements for

data storage and high computation complexity is a great challenge. Last but not least, the

microarray experiment often inevitably miss a larger number of data, which adversely af-

fects downstream analysis. Therefore, it is urgent to propose computational methods for

the prediction of gene expression levels.

This thesis focuses on the prediction of gene expression in specific cells or tissues.

Generally speaking, to find high quality computational prediction methods for gene ex-

pression requires four parts. The first part is to investigate methods for predicting sec-

ondary structures of TFs. The second part is to investigate methods for predicting DNA

binding residues based on predicted secondary structures of TFs. The third part is to inves-

tigate methods for predicting TFBSs from DNA based on predicted DNA binding residues.

The last part is to investigate methods for predicting gene expression levels based on pre-

dicted TFBSs features and histone modifications. The major problems in current works

that motivate this work and the research objectives are given based on the these four parts.

Note that the second part and the third part are two important areas of study on TF-DNA in-

teraction. Since most cell-types or tissues lack TF-DNA interaction information measured

by experiments, this work put particular emphasis on the study of TF-DNA interaction

including DNA residue prediction and TFBS prediction.

Protein secondary structure prediction

Secondary structure prediction of proteins is the inference of secondary structure of protein

fragments based on their amino acid sequence. In bioinformatics and theoretical chem-

istry, secondary structure prediction is very important for medicine and biotechnology such

as drug design [8] and the design of novel enzymes. Current computational approaches for

10



secondary structure predictions can be divided into 3 categories. The first category uses

statistical models to analyze the probability of secondary structure elements for individual

amino acids [13]. The second category is evolutionary information based methods. These

methods usually used position-specific scoring matrices (PSSM)[16] from PSI-BLAST for

prediction. The last category applies deep learning method to learn feature representations

for residues. However, statistical methods and evolutionary information based methods

cannot extract both local context and long-range dependencies. The third category of

methods currently either has limited ability to extract both local context and long-range

dependencies or the models are too complex computationally.

Objective 1: To investigate more efficient methods to extract both local context and long-

range dependencies use deep learning models.

DNA binding residue prediction

TFs are the most intensively studied DNA-binding proteins which form interactions

with DNA by some specific interaction mechanism[7]. They activate or inhibit the tran-

scription of genes by binding to particular DNA sequences closing to their promoters or

enhancers through their DNA binding residues. DNA binding residues are also important

for the functions of TFs. The mutations of some DNA binding residues may predispose

individuals to disease. Thus, the prediction of DNA binding residues is not only important

for understanding the gene regulation process but also helpful for annotating the function

of proteins.

Many computational methods have been proposed for the prediction of DNA-binding

residues. Commonly used features include three types: sequence features, evolutionary

features, and structure features [13–16]. However, most current methods based these fea-

tures did not consider the relationships among different residues because data sparseness

issue. As the function and the structure of a target residue are often closely related to its

contextual residues, we hypothesize that relationships among a residue and its context are

11



important for the predictions of it function.

Objective 2: To investigate effective ways to extract relationships among target residues

and their contextual residues to learned feature representations for residues and

then applies the learned representation for DNA binding site prediction.

TF binding site prediction

Genes often have several TFBSs around their coding region. Profiling of TFBSs is an

important yet challenging problem because TFBSs are often short and disperse. Further-

more, the form of TFBSs vary depending on the type of tissues, the stage of development,

and the physiological condition. Such condition-dependent characteristic makes the prob-

lem of TFBSs prediction even more challenging. Many classical computational methods

used PWM to represent TFBS [159, 160]. The basic assumption of PWM based meth-

ods is that each nucleotide within a TFBS participates independently in the corresponding

DNA-protein interaction. In order to incorporate nucleotide dependency into prediction,

a new approach called dinucleotide weight matrix (DWM) was proposed recently [149].

In addition to DWM, TFFM proposed by Mathelier and Wasserman can also capture nu-

cleotide dependency for prediction [110]. Although DWM [149], TFFM [110], and other

methods [190, 111] can use nucleotide dependency for prediction, current works cannot

capture higher order dependency.

Objective 3: To investigate effective methods to extract higher order dependencies for

TFBS prediction.

Cross-cell and cross-TF binding site prediction

Currently, to develop a model for a target TF in a specific cell-type requires collecting

TFBSs of the target TF of that cell-type for training. However, for many target TFs in a

specific cell-type, the target TFs do not have any training sample in the considered cell-

type. Even if the TFBSs of the target TFs in different cell-types are different, they may

have a common TF-DNA interaction mechanism.
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Objective 4: To explore effective cross-cell TFBS prediction methods for cell-types with-

out any TFBS by using available TFBSs from other cell-types.

The cross-cell TFBS prediction methods developed in Objective 4 can be used to pre-

dict TFBSs for TFs in a specific cell-type by using training samples from other cell-types.

However, many TFs do not have any TFBS in any cell-type. So, the method developed in

Objective 4 cannot be applied. Fortunately, in a specific cell-type, there exist many other

TFs which have TFBSs identified by experimental methods. Even though a majority of

TFs have different sequences and biology functions, some TFs do have similar sequences

and biology function. As these TFs similar in sequences and biology functions tend to

bind to similar positions of the genome, the TFBSs of these TFs can be collected to build

a model for the target TFs.

Objective 5: To explore effective cross-TF TFBS prediction methods to predict TFBSs for

TFs by using the TFBSs of other TFs from the same cell-type.

Gene expression prediction

Gene expression refers to the amount of RNAs or proteins that are produced by genes

under specific circumstance or in a specific cell-type or tissue. The measurement of gene

expression is an indispensable part in the study of life science. Microarry experiment and

RNA-seq technology have been proposed for measuring gene expression. However, RNA-

seq technology and microarry experiment are too labor-intensive and costly to be adapted

in research and clinical applications alike.

Many computational methods have been proposed for gene expression prediction.

Commonly used features in these works include two types: histone modifications and

TFBSs. Both histone modifications and TFBSs play important roles in gene expression

prediction. However, many methods use only histone modifications in predictions due

to the lack of TFBSs in a large number of cell-types or tissues. Although many exist-

ing methods do use histone modifications and TFBSs, their TFBSs were identified by
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experimental techniques. The experimental techniques for TFBS identification often are

labor-consuming and costly, so a large number of cell-types or tissues lack TFBSs for most

TFs. This situation limits the application of the these methods to only a few of cell-types

or tissues which have TFBSs for enough number of TFs.

Objective 6: To explore a new prediction method for gene expression by using the pre-

dicted TFBSs by cross-cell prediction method or cross-TF prediction method

and histone modifications.

1.3 Thesis Outline

Chapter 2 introduces background knowledge related to this thesis, mainly including liter-

ature study of protein secondary structure prediction, DNA binding residue prediction, TF

binding site prediction, gene expression prediction and deep learning models.

Chapter 3 introduces a novel convolutional neural network based method with highway

for protein secondary structure prediction. Our proposed method can make good use of

both local context and long-distance dependencies around target residues for secondary

structure prediction [214].

Chapter 4 introduces four methods for DNA binding residue prediction, including (1)

EL PSSM-RT which uses Position Specific Score Matrix (PSSM) relation transformation

(PSSM-RT) to encode pair relationships between residues [213]; (2) CNNsite which ap-

plies convolutional neural network (CNN) to extract relationships among multiple residues

[211, 212]; (3) EL LSTM which applies Long Short-Term Memory network (LSTM) to

extract both local context and long-distance relationships; and (4) PDNAsite which uses

sequence sliding window and spatial sliding window to encode both sequence context and

spatial context [215].

Chapter 5 introduces three works for TFBS prediction: (1) a CNN based method us-

ing sequence features and histone modification features to automatically extract both first
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order dependency and higher order dependency; (2) a cross-cell TFBS prediction method

MTTFsite using TFBSs from multiple cell-types to train a prediction model by multi-task

learning framework; and (3) a cross-TF TFBS prediction method PDBR TF using TFBSs

from multiple other TFs to train a prediction model. It combines predicted DNA binding

sites predicted by CNNsite, DNA sequence and histone modification features to encode

feature representation.

Chapter 6 proposes a novel gene expression prediction method TFChrome by using

histone modification features and TFBSs, in which the TFBSs are predicted by our cross-

cell TFBS prediction method MTTFsite or cross-TF TFBS prediction method PDBR TF

instead of experimental techniques.

Chapter 7 concludes the thesis by summarizing the main contributions and limitations

as well discussions on future works on gene expression analysis.
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Chapter 2

Background

This chapter gives an overview of research related in four areas of our research including

(1) protein secondary structure prediction, (2) DNA binding residue prediction, (3) TF

binding site prediction, and (4) gene expression prediction. The last part also gives an

overview of deep learning models which is related to our proposed methods.

2.1 Overview of protein secondary structure prediction

The concept of secondary structure was first introduced by Linderstrm-Lang at Stanford in

1952[93, 145] to represent the three dimensional form of local segments of proteins. Pro-

tein secondary structure is defined by the pattern of hydrogen bonds between the amine hy-

drogen and carbonyl oxygen. There are two ways used for the classification of protein sec-

ondary structures: three-category classification(Q3) and eight-category classification(Q8).

Q3 classifies target residues into helix(H), strand(E) and coil(C). The more comprehensive

Q8 classifies target residues into 3-turn helix(G), 4-turn helix(H), 5-turn helix(I), hydrogen

bonded turn(T), extended strand in parallel and/or anti-parallel β-sheet conformation(E),

residue in isolated β-bridge (B), bend(S), and coil(C)[73, 209, 197]. Most recent state-

of-the-art methods use Q8 classification to evaluate their proposed methods. In order to

compare with state-of-the-art methods, the work in this thesis also uses Q8 classification

for secondary structure prediction.
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Three experimental methods were proposed to identify secondary structures for pro-

teins including far-ultraviolet circular dichroism, infrared spectroscopy, and NMR spec-

trum. Far-ultraviolet circular dichroism predicts pronounced double minimum at 208 and

222 nm as α-helical structure and single minimum at 204 nm or 217 nm as random-coil

or β-sheet structure, respectively[133]. Infrared spectroscopy uses the difference in bond

oscillations of amide groups for prediction[115] while NMR spectrum predicts protein

secondary structure by using estimated chemical shifts [115]. As experimental methods

are costly and proteins with known sequences continue to outnumber the proteins with

experimentally identified secondary structures, developing computational approaches for

protein secondary structure prediction becomes increasingly urgent.

Generally speaking, computational approaches for protein secondary structure predic-

tion can be divided into 3 categories. The first category is either rule-based or statistic-

based which can be dated back to 1970s. The rule-based methods uses empirical rules

for predicting the initiation and the termination of helical and β regions in proteins. The

empirical rules used are that when six successive residues have four helical formers or five

successive residues have three β formers clustered together in any native protein segment,

the nucleation of these secondary structures begins and propagates in both directions until

terminated by sequence of breakers [42]. Later, statistical models are applied for segments

of 9-21 amino acids. For example, the GGBSM method [55] uses amino acid segments

to predict the structure of its central residue based on a well-known biological fact that

amino acid compositions of different secondary structures are different. In GGBSM, the

secondary structure is expressed as a function of the local amino acid composition by using

three sets of parameters whose values are calculated from the 62 proteins of the Kabsch

and Sander data bank. However, this category of methods use only sequence features to

establish rules or to calculate probabilities for residue secondary structures, their perfor-

mances (ă 60% of Q3 accuracy) is not good enough for use in any practical application.

Inspired by the successful use of volutionary features in DNA binding residue pre-
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diction [4] and Protein folding recognition [50], etc., the second category of methods

uses evolutionary information of proteins from the same structural family [140] extracted

by multiple-sequence alignment and position-specific scoring matrices (PSSM) [72] from

PSI-BLAST for prediction. An evolutionary information based two-layered feed-forward

neural network was developed on a non-redundant database of 130 protein chains to pre-

dict the secondary structure of water-soluble proteins, in which evolutionary information

in the form of multi-sequence alignment is used as input instead of the use of single se-

quences [140]. The inclusion of evolutionary information in this method increases the

prediction accuracy by 5%-10% of Q3 accuracy. This is because the method can make

better use of protein family information for the target protein. Later, Hua and Sun pro-

posed the first support vector machine(SVM) classifier for protein secondary structure

prediction[65]. The input evolutionary information is in the form of multiple sequence

alignment. Their work uses Q3 for classification by using three binary classifiers and as-

semble them into a tertiary classifier. The performance of this method reaches 76.2% on

segment overlap accuracy (SOV).

Unbalanced data is a common problem for protein secondary structure prediction. Kim

and Park [78] proposed a new protein secondary structure prediction method SVMpsi

using an improved SVM with a jury decision system. The improved SVM can reduce the

influence of noise and outliers by leveraging the theoretical relationships in the soft margin

of an SVM. SVMpsi achieves the highest published Q3 accuracy and segment overlap

accuracy (SOV) on two common datasets including both RS126 and CB513. Another

SVM based method, called PMSVM, uses a dual-layer SVM and evolutionary information

in the form of Position Specific Score Matrix(PSSM). [57]. In the dual-layer support

vector machine, the first layer takes PSSM as input and outputs a feature matrix and the

second layer takes the feature matrix as input. So, the first layer serves to learn feature

representations for proteins and the second layer is for prediction.

Inspired by the successful application of deep learning models in natural language
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processing tasks [198, 205], the third category of methods uses different neural network

models including convolutional neural networks (CNN) [86] and recurrent neural net-

works (RNN) [134, 11]. Many deep learning methods have been proposed for protein

secondary structure prediction problems [185]. For example, Wang et al. proposed a Deep

Convolutional Neural Fields (DeepCNF) method[185]. DeepCNF mainly contains two

components including a deep neural network and a conditional random fields (CRF). In

DeepCNF, the deep neural network component extract local context for target residues and

the CRF component models dependencies among protein secondary structure of adjacent

residues. DeepCNF achieves a high performance of 84% of Q3 accuracy and 72% of Q3

accuracy on the CASP dataset and the CAMEO dataset, respectively. The GSN method

proposed by Zhou and Troyanskaya [209] uses a supervised generative stochastic network

and convolutional architecture. Supervised generative stochastic network is a recently pro-

posed deep learning technique [15], which can learns a Markov chain to sample from a

conditional distribution. So GSN can automatically extract local context for target residues

by a Markov chain in GSN. Although CNN can automatically extract local context for a

target residue, it lacks the ability to extract long-range dependency.

To extract long-range dependency, several methods were proposed including bidi-

rectional recurrent neural networks (BRNN) [134, 11] and probabilistic graphical mod-

els [146, 43]. For example, a novel deep convolutional and recurrent neural network

(DCRNN) was proposed by Li and Yu [92] which can extract both local context and long-

range dependences.

Even though theses deep learning based methods can extract both local context and

long-range dependency, such as GSN and DCRNN, they need to combine two complex

models to extract local context and long-range dependency, separately. Thus they are

quite memory-intensive and time-consuming.
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2.2 Overview of DNA binding residue prediction

The interactions between proteins and DNA are important for transcriptional regulation,

which is essential to decipher the genetic pathways of various cellular processes [136].

As DNA binding residues are the basic elements in proteins-DNA interactions [101, 102,

103], the identification of DNA binding residues is important to understand the recogni-

tion mechanism between a protein and its DNA as well as the mechanism of transcrip-

tional regulation. Due to the importance of DNA binding residues, many experimental

methods were developed to identify DNA binding residues from protein sequences includ-

ing electrophoretic mobility shift assays (EMSAs) [71, 72], nuclear magnetic resonance

(NMR) spectroscopy [135], X-ray crystallography [128], peptide nucleic acid (PNA)-

assisted identification of RNA binding proteins (RBPs) (PAIR) [127], MicroChIP [102],

Fast ChIP [107], and conventional chromatin immunoprecipitation (ChIP) [80]. However,

experimental methods are costly and labor-consuming. They are also not suited for anal-

ysis at the genome level. With the development of protein sequencing technology, more

protein sequence data are now available. However, their 3D structures and biological func-

tions are still mostly unknown. Development of computational methods for the prediction

of DNA binding residues is now possible and can provide more insight to the understand-

ing of interactions between proteins and DNA at the genome level.

Docking is a method which predicts the preferred orientation of one molecule to a

second when bound to each other to form a stable complex. Knowledge of the preferred

orientation in turn may be used to predict the strength of association or binding affinity

between two molecules using, for example, scoring functions. Docking methods have

been applied to ligand docking and protein-protein docking. Ligand docking [173] refers

to cases where small molecule (“ligand”) is being docked into much larger macromolecule

(”target”). Protein-protein docking [157] refers to predict the structure of protein–protein

complexes using docking approaches. The ultimate goal of docking is the prediction of the

21



three dimensional structure of the macromolecular complex of interest as it would occur

in a living organism. Docking itself only produces plausible candidate structures. These

candidates must be ranked using methods such as scoring functions to identify structures

that are most likely to occur in nature. Although docking method can be used to identify

ligand binding residues and protein-protein interaction residues, they have not been used

to identify DNA binding residues. There may be two main reasons. The first one is target

proteins need similar proteins which have available co-crystal structure with DNA to help

inform of the interaction pocket. The other one is some DNA-binding proteins can bind

DNA regardless of DNA sequence while others (for example transcription factors) bind

specific DNA sequence. For many target proteins, we do not know their interacting DNA

sequence before doing protein-DNA docking.

Many computational methods were proposed for the prediction of DNA binding residues.

Commonly used features include three types: sequence features, evolutionary features, and

structure features [180, 181, 182, 85]. In principle, both sequence features and evolution-

ary features can be extracted from protein sequence directly. However, earlier studies using

evolutionary features have two limitations. Limited computer power makes it difficult to

obtain evolutionary features of large protein sequences. Limited data in protein sequence

databases also makes it hard to obtain high quality evolutionary features. Structure fea-

tures need to be extracted from 3D structures of protein sequences which were unavailable

until recently. Thus, earlier DNA binding residue predictions only use sequence features

for prediction. Sequence features, as a very important type of features, include amino acid

composition, predicted structure features and physiochemical properties. The Naı̈ve Bayes

classifier developed by Yan et al.[195] was trained from the identities of a target residue

and its contextual residues. The SVM predictor proposed by Wang et al. [180] was based

on sequence features including side chain pKa value, hydrophobicity index, and molecular

mass.

As computing power is improved at a very rapid speed and dataset on protein sequences
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are progressively getting larger, high quality evolutionary features can be obtained now for

most protein sequences. Thus, evolutionary features are used in many recent prediction

methods. Originally, evolutionary features are used as a singular type of features for pre-

dictions such as the neural network classifier proposed by Ahmad et al. [4]. The classifier

is trained by using Position Specific Score Matrix (PSSM), a commonly used represen-

tation for evolutionary features. Later works also make combined use of both sequence

features and evolutionary features. For instance, the neural network classifier proposed by

Ofran et al. [126] combines PSSM and sequence features including predicted secondary

structure and predicted solvent accessibility. The used secondary structure and solvent

accessibility are predicted by computational methods based on protein sequence , so they

also belong to sequence features. The Random Forest classifier developed by Wang et

al. combines PSSM with hydrophobicity index, side chain pKa value and molecular mass

[182]. The Random Forest predictor DNABR proposed by Ma et al. [105], combines

PSSM with six physicochemical properties which are different from that used in Wang et

al.’s work [182]. For these kinds of features, the commonly used machine learning models

include SVM, neural network and ensemble learning [129, 66, 148].

Technology advancement in recent years greatly helped the works for protein struc-

ture identification. 3D structures of many protein sequences are now available. Thus,

using structure features in computational methods for DNA binding residue prediction is

becoming feasible. Frequently used structure features include secondary structure, sol-

vent accessible surface area, spatial neighbors, B-factor, protrusion index and depth index.

Structure features are often used in machine learning models either as a singular type

of features or are used in combination with sequence features and evolutionary features.

For example, a SVM classifier developed by Bhardwaj et al. [20, 21] uses only structure

features including Solvent accessibility, local composition, net charge, and electrostatic

potentials. The neural network classifier developed by Ahmad et al. [3] uses the combina-

tion of sequence features and structure features. The neural network classifier DISPLAR
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proposed by Tjong et al. [166] combines evolutionary features and structure features, such

as the 14 closest spatial neighbors and solvent accessibility. The SVM classifier developed

by Kuznetsov et al. [85] incorporates evolutionary features, sequence features and struc-

ture features. SVM models [21, 3, 91, 98, 175] and neural network models [166] are the

two commonly used machine learning models. Since machine learning based methods

need intensive computing power and time to train, other works used non machine learn-

ing methods as alternatives for prediction. For example, Ozbek et al. [129] proposed the

DNABINDPROT method by first selecting candidate residues based on the fluctuations

of residues in high-frequency modes and then filtering selected residues with their evo-

lutionary conservation profiles. Chen et al. [39] proposed DR bind by first calculating

geometry features, electrostatics features as well as conservation features and then select-

ing the three patches with the largest features as binding residues. However, relationships

between residues, including pairwise relationships, relationships among multiple residues,

are yet to be explored because the relationship information is naturally sparse.

2.3 Overview of TF binding site prediction

Gene expression is mainly regulated by interactions between DNAs and TFs [68]. The pre-

diction of TF binding site (TFBS) is very important for understanding transcriptional reg-

ulatory networks and crucial in understanding fundamental cellular processes [52]. Two

experimental techniques were developed for TFBS identification: chromatin immunopre-

cipitation followed by high throughput sequencing (ChIP-Seq) [67, 59, 79] and chromatin

immunoprecipitation followed by array hybridization (ChIP-chip) [67, 139]. These tech-

nologies have been successfully used to map binding locations in many organisms. But,

some properties of these techniques such as tissue and condition specificity, the availabil-

ity of antibodies for TFs under study, and the expense of the experiments have made them

useful only for a limited number of TFs. Therefore, high quality computational methods
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for TFBS prediction are urgently required for TFBS identification.

TFBSs are normally short and often diverse sequence motifs [36], which makes it

computationally difficult to be modeled and predicted at the genomic scale. TFBS can

be represented by a consensus sequence and a position weight matrix (PWM) [159, 160].

The consensus sequence representation makes it easy for visual interpretation of TFBS.

But, variations in the compositions of nucleotide types in TFBS make consensus sequence

an unsuitable approach for TFBS representation [88, 64]. So many classical computa-

tional methods use PWMs to represent TFBS [159, 160]. A PWM is often derived from

a set of aligned and functionally related sequences. The basic assumption of PWM based

methods is that each position within a TFBS participates independently in the correspond-

ing DNA-protein interaction. However, position dependence within TFBS motifs is ob-

served in many studies including crystal structure analyses [102] and biochemical stud-

ies [106]. Furthermore, quantitative analyses of protein binding microarray (PBM) data

[120, 188, 208] have demonstrated that position dependence between neighboring posi-

tions is stronger than that between other positions. In order to incorporate position depen-

dence into prediction, a new approach called a dinucleotide weight matrix (DWM) was

proposed recently [149]. A DWM extends the basic PWM by considering the dependence

between all pairs of neighbor positions within TFBS [149]. In addition to DWM, TFFM

proposed by Mathelier and Wasserman can also capture position dependence for predic-

tion [110] by using state transition probabilities in a hidden Markov model (HMM) [108]

to model position dependence within TFBS.

Although DWMs [149] and TFFMs [110] can capture dependency between neighbor

positions, they can only model dependency between two positions and cannot be used to

capture dependency among multiple positions. Histone modification features are post-

translational modification levels of histones on chromatin structure. Also, histone modifi-

cation features covers multiple positions (at least 25 positions) and distinct DNA fragments

may have different histone modification features. Thus, histone modification features by

25



nature contain dependencies among multiple positions. Several studies [167, 83, 190] have

shown that TF-DNA interactions are associated with various histone modification levels.

According to these observations, several studies [167, 83, 190] have developed methods to

improve the accuracy of TFBS predictions by incorporating histone modification features.

Talebzadeh and Zare-Mirakabad [164] developed a method to make combined use of two

types of histone modification features: the closet distance to a specific histone and the total

number of specific histone modification. Won at al. [16] proposed a HMM based method

called Chromia, in which both histone modification features and sequence features are

used for feature representation learning. Recently, Tsai et al. [167] analyzed the contri-

butions of sequence features, histone modification features, and DNA structure features to

predictive models of TFBS by using a random forest model [31] and the conclusion is that

all three feature types are useful for TFBS prediction. Recent studies have also suggested

that DNA shape is another important type of features for TFBS prediction [111]. DNA

shape represents the 3D structure of a DNA and a DNA shape feature covers indefinite

number of positions. Thus by nature it contains dependences between multiple positions.

Methelier [111] proposed a method by using DNA shape features and demonstrated that

DNA shape features indeed play an important role in TFBS prediction. However, current

works only contains first order dependency. Moreover, to predict the TFBSs of a TF for a

specific cell-type, all current methods need training data from that specific cell-type. If a

TF lacks training samples in a considered cell-type, current methods would not be able to

predict the TFBSs of the TF for the considered cell-type.

2.4 Overview of gene expression prediction

Based on the three feature types including TFBSs, histone modification features and DHSs

measured by DNase-seq data, multiple computational models were proposed for predict-

ing gene expression. Beer and Tavazoie (2004) [14] proposed a systematic genome-wide
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probabilistic approach for learning complex combinatorial code underlying gene expres-

sion by using occupancy states of multiple TFBSs. The method can identify both posi-

tional and combinatorial constraints context-dependent gene expressions. The identified

regulatory rules composed of positional and combinatorial constraints achieve 73% pre-

diction accuracy for those genes in Saccharomyces cerevisiae. Ruan (2010) [142] later

proposed a simple k-nearest-neighbor (KNN) method. Despite of the simplicity of KNN,

this method works well in the third DREAM (Dialogue on Reverse Engineering Assess-

ments and Methods project) Challenge on gene expression prediction [158] sharing the

“top performers” with another team whose method is much more complicated [58]. To

quantify the relationships between histone modification features and gene expression lev-

els and understand interactions among different histone modifications features, both Karlic

et al. (2010) [76] and Costa et al. (2011) [46] proposed linear regression method to build

prediction model. Karlic et al. (2010) built a linear regression model from histone modi-

fication features and applied it to predict gene expression for human T-cell [184]. Result

shows a high correlation level between their predictions and the observed gene expres-

sions further proves that histone modification features indeed correlate with gene expres-

sion. Costa et al. (2011) proposed a model using the combination of two linear regression

models to investigate the relative importance and effect of each histone modification fea-

ture for gene expression prediction. The conclusion is that H3K4me3 and H3K27me3 are

positively and negatively correlated with gene expression, respectively.

Cheng at al. (2011) [40] attempted to reformulate gene expression prediction as a clas-

sification problem such that SVM can be used as the classifier. To incorporate position-

specific histone modification features into a SVM model, the regions flanking transcription

start site (TSS) and transcription termination site (TTS) are split into 160 bins of 100 bps

and a SVM model is built for each bin, resulting in 160 SVM models. To quantify pair-

wise interactions between different histone modification features, they further proposed a

linear regression model with binary combinatorial terms. They also investigated higher or-
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der interactions by applying a Bayesian network rather instead of a polynomial regression

model. Dong at al. (2012) [51] built a Random Forest model from histone modification

features to classify the level of expressions genes as either high or low. Result of the Ran-

dom Forest model is inputted to a linear regression model to predict their gene expression

level. The method uses the histone modification features in the bin with the closest rela-

tionship with gene expression to build its model for each bin. Four groups are formed for

ll the histone modification features according to their functions to analyze the effects of

pairwise interactions between groups on gene expression prediction.

Hu et al. (2015) [62] proposed a rule-learning method on the 20 most discriminative

histone modification features in the T-cells datasets and learned 83 combinatorial rules to

be used to discriminate high expression genes from low expression genes. The 83 rules

provide good indication of the possible roles of histone modification combinations in gene

regulation. Kumar et al. (2013) [84] proposed a linear estimation method called EFilter

to predict gene expression from histone modification features imputed by ChromImpute,

which was proposed by Ernst and Kellis (2015) [53] to impute histone modification signals

for a new sample using an ensemble of regression trees.

With the deep learning technologies becoming more successful in many areas of re-

search, many studies in the bioinformatics community have started to use deep learning

methods to learn meaningful and hierarchical representation for DNA and proteins. Singh

et al. (2016) [153] developed a gene expression prediction model, called DeepChrome,

by applying a deep convolutional neural network [87]. In DeepChrome, only the regions

flanking transcription start site (TSS) are divided into 100 bp bins and the histone modi-

fication signals in all bins are concatenated as input to the method. In contrast to afore-

mentioned methods, DeepChrome can automatically extract complex interactions among

different histone modification features and it also allows to visualize the combinatorial

interactions among histone modification features by feature pattern maps from the learnt

deep model.
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Even though many methods use histone modification features. TFBS features and

DHS features are much less explored. Natarajan at al. (2012) [122] proposed a method

to predict cell-type-specific gene expressions from DHS information obtained by DNase-

seq. The result shows that the DHS information for the promoters of three types of genes

are substantially different. The gene types include cell-type-specific up-regulated, down-

regulated, and constitutively expressed genes. The major limitation of this method is that

it can extract DHS information only from DNase-seq data, which limit its application

to only those cell-types with DNase-seq data. Schmidt et al. (2017) [147] proposed a

novel segmentation-based method, called TEPIC, to predict gene expressions. TEPIC

requires two steps in its process. The first step predict TF binding strength by combing

position weight matrices and open-chromatin regions (OCRs). OCRs are defined as the

DNA regions accessible by proteins such as TFs. In the second step, the TF binding

strength of the regions flanking TSS are used to predict gene expression levels using a log

regression model. In TEPIC, both DNase-seq and NOMe-seq data can be used to measure

open-chromatin regions, so TEPIC has wider applications. The results on several cell-

types demonstrated that the open-chromatin signal indeed can improve gene expression

prediction further.

Recently, Zhang and Li (2017) [204] proposed a statistical model to estimate the ef-

fects of TFBSs and histone modification features on gene expressions by using a support

vector regression(SVR) model. In this method, genome-wide TFBSs of 15 TFs, 10 his-

tone modification features and DHSs are used as input for the SVR model to predict gene

expression for three cell lines: H1-HESc, Gm12878 and K562, respectively. The study

on combinatorial interactions among TFBSs, histone modification features concludes that

even though TFBSs and histone modification features have some redundancies in the pre-

diction, likely due to regulation mechanism, their effects on the predictive abilities of the

SVR model for prediction are different. Currently, only a limited number of TFs have

identified TFBSs using the aforesaid methods. even in common cell-types, current meth-
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ods can only incorporate the TFBSs of a limited number of TFs.

2.5 Deep learning models

Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM)

are two representative methods in deep learning methods and can learn information from

sequence data. Thus they are suited for learning local context as well as long-range depen-

dences. As many of the state-of-the-art algorithms use these two methods, more details

information is given here.

2.5.1 Convolutional Neural Network

A convolutional Neural Network (CNN) is a type of feed-forward Artificial Neural Net-

work. The individual neurons in a CNN are arranged in such a way that they respond

to overlapping regions tiling the visual field. CNNs are applied in many fields including

image and video recognition [45], recommender systems [168] and natural language pro-

cessing. In recent years, CNN has gradually been introduce into bioinformatics to learn

protein sequence representation for predictions of protein structures and functions. For

example, Alipanahi et al. [5] developed DeepBind for the prediction of sequence speci-

ficities of DNA- and RNA-binding proteins. Wang et al. [183] proposed a CNN based

method for protein secondary structure prediction.

A CNN comprises four computational layers: a convolution layer, a rectification layer,

a pooling layer and a neural network layer. The first three layers can discover impor-

tant motifs of input instances and the last layer is used to obtain prediction results. The

convolution layer, the rectification layer, and the network layer have trainable motif detec-

tors D, thresholds b, and weights W , respectively. For an instance S, a CNN produces a

real-valued score fpSq according to the following formula
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fpSq “ netW ppoolprectbpconvDpSqqqq (2.1)

where convDpq, rectbpq, poolpq and netwpq denote the four layers in CNN. This real-

valued score is used for prediction.

Convolution layer: In the convolution layer, several filters, called motif detectors, are

used to convolve the raw input. For instance, the convolution of a motif detector can play

the same role as a “motif scan” operation in a PWM or a PSAM-based model. For a motif

detector of size m, the instance S should be padded by concatenating pm ´ 1q unuseful

residues on either sides. The padded sequence of S is represented as a matrix M defined

as follows:

$

’

&

’

%

0.05 if i “ m or i ą n´m

1 if Si´m`1 “ jth base

0 otherwise

(2.2)

where n is the length of the input instance. The output of the convolution layer is a matrix

X in which an element Xi,k is essentially the score of motif detector k aligned to position

i of the padded sequence M . Given that the motif detectors are represented as an array D,

where element Dk,j,l is the coefficient of motif detector k at motif position j and base l,

the element Xi,k of the output is calculated by following formula

Xi,k “

m
ÿ

j“1

20
ÿ

l“1

Mi`j,lDk,j,l (2.3)

So, the column X.,k is the motif scan of motif detector k applied to the padded sequence

M and row Xi,. is the motif scan of all the motif detectors on position i of the padded

sequence M .
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Rectification layer: The rectification layer plays an important role for CNNs as it is

used to filter unimportant motif features. Its takes the output from the convolution layer.

Its output Y “ rectbpXq is an matrix of the same size as that of X defined as follows:

Yi,k “Maxp0, Xi,k ´ bkq (2.4)

where bk is the activation threshold for motif detector k, which is learned in the training

process of CNN. The formula means that if score Xi,kebk, the relative score of motif

detector k at position i is passed to the next stage; Otherwise motif detector k is deemed

irrelevant at position i and so the relative score is zero. Only those motif features with

scores larger than a specified threshold will pass through this layer.

Pooling layer: The output Z of the pooling layer is a feature vector, whose dimension

depends on the number of motif detectors in the convolution layer. The pooling layer for

motif detector kp1 ď k ď dq is formulated as

Zk “MaxpY1,k, ¨ ¨ ¨ , Yn,kq (2.5)

For every instance, we can obtain a vector Z with dimension of d, where d is the number

motifs used in the Convolution layer. The features contained in vector Z are motif features

captured by d motif detectors in the convolution layer.

Neural network layer: The neural network layer is used for prediction. In order to

avoid overfitting, a recently proposed dropout technique are now commonly used before

the hidden layer in the neural network layer. For example, DeepChrome proposed by

Singh et al.(2016) contains a drop with a chosen probability of 0.5 between the pooling

layer and the neural network layer [153]. With the dropout technique, the entries of hidden

representations are set to 0 with a dropout rate.
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CNN can extract relationships in multiple positions, but only local context in short dis-

tance. In proteins and DNA, the long-range dependencies between positions also play an

very important role for function and structure prediction. The Long Short-Term Memory

Network, on the other hand, is more suited to, extract long-range dependencies.

2.5.2 Long Short-Term Memory Network

Long Short-Term Memory Network (LSTM) [63] is a extended form of recurrent neural

networks (RNNs) in deep learning. LSTM have been successfully applied to handwriting

recognition [56], speech recognition [143] and a wide range of NLP tasks such as machine

translation [161], constituency parsing [175], language modeling [203] and natural lan-

guage inference including rule-based systems [26]. Simply put, LSTMs use several gate

vectors at each position to control the passing of information along a sequence and this

helps to model long-range dependences.

. . .

. . .

. . .

. . .

. . .

. . .

Input layer

LSTM layer

Dropout layer

Neural network 

classifier

Residues

Feature 

vectors

0

Hidden leayer

Output

Figure 2.1: The framework diagram of LSTM.

Figure 2.1 shows the framework of a LSTM model with four layers: the input layer,

the LSTM layer, the dropout layer and the final neural network classifier.
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The input layer: the elements of each instance in this layer are encoded by different

features. Given an instance St, the input layer generates its representation as a feature

vector sequence

Xt “ xt´w´1
2
, xt´w´3

2
, ¨ ¨ ¨ , xt, ¨ ¨ ¨ , xt`w´3

2
, xt`w´1

2
(2.6)

where xk P Rdpt´pw´1q{2 ď k ď t`pw´1q{2q is a feature vector of residue in position

k. Each feature vector is a representation of the different features of St. The dimension

size of the feature vector is denoted by d.

The LSTM layer: This layer is often referred to as the hidden layer in neural net-

works because it learns information not explicitly coded from the input layer. If the left

context and right context for a node in different instances are not symmetric, useful fea-

tures for a node in the left context and the right context need to be extracted separately.

Thus, in the LSTM layer, two separate representations are built for a node k. The forward

representation, denoted by
ÝÑ
hk, encodes pairwise relationships between node k and its left

neighbor. The backward representation, denoted by
ÐÝ
hk, encodes pairwise relationships

between node k and its right neighbor. In the representation of the node in either direction,

a node k has five internal vectors. To avoid duplication, let use explain this using forward

direction only. The five internal vectors are (1) an input gate
ÝÑ
ik , (2) a forget gate

ÝÑ
fk , (3) an

output gate ÝÑok, (4) a candidate memory cell r

ÝÑck , and (5) a memory cell ÝÑck .
ÝÑ
ik ,
ÝÑ
fk and ÝÑok

are used to indicate which values should be updated, forget or kept in the LSTM model.

r

ÝÑck and ÝÑck are used to keep the candidate features and the accepted features, respectively.

Two sets of weight matrices
ÝÝÑ
W˚

p
ÝÑ
Wi,

ÝÑ
Wf ,

ÝÝÑ
Wo,

ÝÝÑ
Wc

q and
ÝÑ
V˚
p
ÝÑ
Vi,

ÝÑ
Vf ,

ÝÑ
Vo,

ÝÑ
Vc
q are used

to connect input feature vectors and the left neighbor to the current node k, respectively.

These weight matrices are learned in the training process of a LSTM model.
ÝÑ
ik ,
ÝÑ
fk , ÝÑok

and r

ÝÑck are computed from the input feature vector and the forward representation of its
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left neighbor. Formally, they are computed by the following formulae:

ÝÑ
ik “ σp

ÝÑ
Wi

˚ xk `
ÝÑ
Vi
˚
ÝÝÑ
hk´1 `

ÝÑ
bi
q (2.7)

ÝÑ
fk “ σp

ÝÑ
Wf

˚ xk `
ÝÑ
Vf
˚
ÝÝÑ
hk´1 `

ÝÑ
bf
q (2.8)

ÝÑok “ σp
ÝÝÑ
Wo

˚ xk `
ÝÑ
Vo
˚
ÝÝÑ
hk´1 `

ÝÑ
bo
q (2.9)

r

ÝÑck “ σp
ÝÝÑ
Wc

˚ xk `
ÝÑ
Vc
˚
ÝÝÑ
hk´1 `

ÝÑ
bc
q (2.10)

where is σ the sigmoid function and
ÝÑ
b˚p
ÝÑ
bi ,
ÝÑ
bf ,
ÝÑ
bo,
ÝÑ
bc
q are the bias vectors to be learned.

The memory cell ÝÑck is the sum of the filtered left memory cell ÝÝÑck´1 by the forget gate
ÝÑ
fk , and the updated candidate memory cell r

ÝÑck of the current node by the input gate
ÝÑ
ik as

defined below:

ÝÑck “
ÝÑ
fk d

ÝÝÑck´1 `
ÝÑ
ik d r

ÝÑck (2.11)

where d is the element-wise multiplication of the two vectors. Finally, the forward repre-

sentation
ÝÑ
hk is calculated by multiplying memory cell ÝÑck with the output gate ÝÑok.

ÝÑ
hk “

ÝÑok d tanhp
ÝÑckq (2.12)

Similarly, backward representation, the 5 gates can be defined by the following formu-

lae:
ÐÝ
ik “ σp

ÐÝ
Wi

˚ xk `
ÐÝ
Vi
˚
ÐÝÝ
hk´1 `

ÐÝ
bi
q (2.13)

ÐÝ
fk “ σp

ÐÝ
Wf

˚ xk `
ÐÝ
Vf
˚
ÐÝÝ
hk´1 `

ÐÝ
bf
q (2.14)

ÐÝok “ σp
ÐÝÝ
Wo

˚ xk `
ÐÝ
Vo
˚
ÐÝÝ
hk´1 `

ÐÝ
bo
q (2.15)

r

ÐÝck “ σp
ÐÝÝ
Wc

˚ xk `
ÐÝ
Vc
˚
ÐÝÝ
hk´1 `

ÐÝ
bc
q (2.16)

ÐÝck “
ÐÝ
fk d

ÐÝÝck´1 `
ÐÝ
ik d r

ÐÝck (2.17)

ÐÝ
hk “

ÐÝok d tanhp
ÐÝckq (2.18)
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Note that the learned feature vectors for every residue includes the forward represen-

tation and the backward representation symmetrically.

Dropout Layer: This layer is introduced to avoid overfitting in the learning process. In

this layer, the entries of the representations for every node are set to 0 with a dropout rate,

tuned based on development data. After processed by the dropout layer, feature vectors

of all the nodes are combined to form the final feature vector representation. This final

feature vector representation is then used by the neural network classifier for prediction.

The neural network classifier includes a hidden layer and an output layer where the hidden

layer is used to reduce the dimensionality of the feature space and the output layer is used

for prediction.

2.6 Chapter Summary

In this chapter, the related background knowledge for the four problems is introduced. For

protein secondary structure prediction, current methods cannot extract local context and

long-range dependency efficiently. For DNA binding residue prediction, existing methods

cannot capture the relationships between residues including relationships between residues

with short distance and long distance. For TF binding site prediction, existing methods

cannot extract higher order dependencies between positions and also cannot be applied

to predict the TFBSs of TFs for cell-types without training data. For gene expression

prediction, existing methods either did not use TFBSs of TFs or can only be applied for

cell-types with TFBSs for most TFs. The limitations of research works in the above areas

motivate the works in this thesis. The technology development in hardware and software

and the availability of additional datasets makes solutions using deep learning models

possible. Thus, in the following chapters, novel methods will be proposed to overcome

these limitations.
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Chapter 3

Protein secondary structure prediction

In bioinformatics and theoretical chemistry, protein secondary structure prediction is very

important in medicine development and biotechnology, for example in drug design[124]

and in the design of novel enzymes. Since secondary structure can be used to find distant

related proteins with unalignable primary structures, incorporating both secondary struc-

ture information and simple sequence information can improve the accuracy of protein se-

quences alignment[151]. Protein secondary structure prediction also plays a important role

in protein tertiary structure prediction. As protein secondary structure can determine the

structure types of protein local fragments, the freedom degree of protein local fragments in

the tertiary structure can be reduced. Therefore accurate secondary structure prediction can

potentially improve the accuracy of protein tertiary structure prediction[209, 185, 196].

As presented in Chapter 2, the first category and the second category of approaches

cannot extract local context and long-range dependency for prediction. Although some

works in the 3rd category can extract both local context and long-range dependency using

deep learning methods, they need to combine two models to extract local context and long-

range dependency, separately. For example, GSN [209] needs to use CNN to extract local

context and a supervised generative stochastic network to extract long-range dependency.

DCRNN [92] needs to use CNN to extract local context and RNN to extract long-range

dependency. As both supervised generative stochastic networks and RNN are very com-
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plex models, these methods are very computationally intensive and thus need to use a lot

of computing power.

In this chapter, we proposed a novel method, referred to as CNNH PSS, to extract

both local context and long-range dependency. The principle idea of CNNH PSS is to

use a multi-scale CNN with a highway structure to pass some information learned from

the previous layer. The highway can bypass the current layer to go into the next layer

without any change. More specifically, a mulit-scale CNN uses several sets of kernels with

different lengths to extract relationships of different lengths. For example, relationships

between two residues has a length of 2 and relationship among 3 residues has a length

of 3,etc.. In CNNH PSS, every layer in the network have a bypass, commonly referred

to as a highway, between the input and output. For each layer, a portion of information

is delivered from the input to the output directly by the highway while the other portion

of the information is processed by the current layer to extract relationships between more

remote residues. A weight is learned for each layer to control how much information is

retained by the highway and how much information is processed by the kernels in the

layer. By means of the additional highway structure in each layer, local context extracted

by a layer can passes through directly to upper layers so that CNNH PSS can learn long-

range dependency by higher layers while retaining local context extracted by low layers.

Finally, the extracted local context and long-range dependency are inputted to a Multilayer

perceptron (MLP) containing a fully connected layer and a softmax layer for prediction.

3.1 The CNNH PSS Method

As shown by many recently published works[193, 194], a complete prediction model

in bioinformatics should contain the following four components: validation benchmark

dataset(s), an effective feature extraction procedure, an efficient predicting algorithm and

a set of fair evaluation criteria. In this section, we describe each of these four components
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of CNNH PSS in details.

3.1.1 Datasets

Two publicly available datasets: CB6133 and CB513 are used to evaluate the performance

of our proposed method CNNH PSS in comparison to other state-of-the-art methods. The

state-of-the-art methods on CB6133 include GSN [209] and DCRNN [92]. The state-of-

the-art methods on CB513 include SSpro8 [134], CNF [185] and DeepCNF [183].

CB6133: CB6133 was produced by PISCES CullPDB[179] and it is a large non-

homologous protein dataset with known secondary structures for every protein. It contains

6,128 proteins, in which 5,600 proteins are training samples. 256 proteins are validation

samples and 272 proteins are testing samples. This dataset is publicly available [92].

CB513: CB513 is a testing dataset and can be freely obtained [209, 47]. When CB513

is used for testing, CB6133 is the training dataset. As there are some redundancy be-

tween CB513 and CB6133, CB6133 is filtered by removing all sequences having over

25% sequence similarity with sequences in CB513. After filtering, 5,534 cleaned proteins

in CB6133 are used as training samples. Since CB513 is used by most of the state-of-the-

art methods including GSN [209] and DCRNN [92] as well as other methods [183, 185],

CB513 serves as the benchmark dataset to make fair comparison to other methods.

3.1.2 Feature representation

Given a protein with L residues as X “ x1, x2, x3, ¨ ¨ ¨ , xL, where xi P Rm is a m-

dimensional feature vector of the ith residue, the secondary structure prediction for this

protein is formulated as determining S “ s1, s2, s3, ¨ ¨ ¨ , sL for X where si is an Q8

secondary structure label. In this study, xi is encoded by both sequence features and

evolutionary information. Sequence features are used to specify the category of the tar-

get residue. Two methods are used to encode sequence features. The first one is one

hot vector representation and the second one is residue embedding. One hot represen-
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tation encodes sequence features of each residue by a 21-dimension one-hot vector, in

which only one element equals to 1 and the remaining elements are set to 0, where every

one-hot vector corresponds a residue type. However, one-hot vector is a sparse represen-

tation and unsuitable for measuring relations between different residues. In order to get

a dense representation of sequence features, an embedding technique in natural language

processing is used to transform 21-dimensional one-hot vector to a 21-dimensional dense

representation[117]. The transformation is implemented by a feed forward neural network

layer before the multi-scale CNN in CNNH PSS.

Evolutionary information such as position-specific scoring matrix (PSSM) is consid-

ered as informative features for predicting secondary structure in previous works[72].

PSSM is a common representation for evolutionary information and has been used in many

bioinformatics studies including protein functionality annotation and protein structure pre-

diction [82, 70, 23, 174, 207]. In this study, PSSM is calculated by PSI-BLAST[144]

against the UniRef90 database with E-value threshold 0.001 and 3 iterations. For a protein

with length L, PSSM is usually represented as a matrix with L ˆ 21 dimensions where

21 denotes the 20 standard types of residues and one extra residue type which represents

all non-standard residue types. Before PSSMs are used as inputs for CNNH PSS, they

need to be transformed to 0-1 range by the sigmoid function. By concatenating sequence

features and evolutional information, each residue in protein sequences can be encoded by

a feature vector with dimension of 42.

3.1.3 Multi-scale CNN with highway

In this work, the proposed CNNH PSS uses a multi-scale CNN with highway to ex-

tract both local context and long-range dependency. Then, the extracted local context

and long-range dependencies are inputted to a fully connected softmax layer for predic-

tion. The framework of one layer in a CNNH PSS node is shown in Figure 3.1. Fig-

ure 3.1 shows that each layer in CNNH PSS contains three parts: the input section, the
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Figure 3.1: The framework of a single layer in CNNH PSS

CNNH PSS section, and the output section. In the input section, xi P Rm denotes the

feature vector of ith residue in protein, which is the concatenation of sequence features

and evolutional information. Thus a protein of length L is encoded as a L ˆ m matrix

x1:L “ rx1, x2, x3, ¨ ¨ ¨ , xLs
T, where L andm denote the length of proteins and the number

of features used to encode residues, respectively. In this study, as both sequence features

and evolutional information have 21 dimensions, m is thus 42. As the the output of a layer

and the information bypassed by the highway need to be summed up by element-wise

manner to get the final output of the layer, so the input and output of all layers must have

the same sample length. In order to keep the output of this layer to have the same length

as that of the input, we need to pad th{2u and tph´ 1q{2u m-dimensional zero vectors to

the respective head and the tail of the input x1:L, where h is the length of the kernel in this

layer. The CNNH PSS section contains two parts: the multi-scale CNN and the highway.

Each multi-scale CNN contains n layers. In the layer pt´ 1qth, the convolution operation

of the kth kernel wt´1k P Rhˆm executed on DNA fragment xi:i`h´1 is expressed as

ct´1k,i “ f t´1pwt´1k ¨ xi:i`h´1 ` b
t´1
k q (3.1)

where h is the length of the kernel, bt´1k is the bias of the kth kernel, f is the activation

function and xi:i`h´1 denotes the DNA fragment xi, xi`1, xi`2, ¨ ¨ ¨ , xi`h´1. Through exe-
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cuting convolution operation of the kth kernel on the padded input, we get a novel feature

vector

ct´1k “ rct´1k,1 , c
t´1
k,2 , c

t´1
k,3 , ¨ ¨ ¨ , c

t´1
k,L s

T (3.2)

Suppose we have d kernels in the layer, thus we can get d novel features vectors as formula

(2). By concatenating d novel feature vectors, we can get a novel feature matrix with

dimension Lˆ d

ct´1 “ rct´11 , ct´12 , ct´13 , ¨ ¨ ¨ , ct´1d s (3.3)

This novel feature matrix is used as the input of the next layer. If there are n layers and θt

is used to denote the kernels and the bias of the tth layer, the output of the nth layer is

cn “ fnθnpf
n´1
θn´1

p¨ ¨ ¨ f 1
θ1
px1:Lqqq (3.4)

Finally, the output of the nth layer is used as the input of the fully connected softmax layer

for prediction

yi “ argmaxpw ¨ cn ` bq (3.5)

where w and b is the weight and bias of the fully connected softmax layer, respectively. yi

is the predicted secondary structure for the ithresidue in the target protein.

CNN has achieved huge progress in many tasks of image processing filed, one common

sense is that the success of CNN is attributed to multiple layers in CNN because CNN
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with more number of layers can extract dependencies between more remote positions.

However, with the augment of number of layers in CNN, the information communication

between layers will become more difficult and the gradient will disappear[156]. Srivastava

et al. [156] has proposed highway network to resolve these problems. So in CNNH PSS,

highway network and multi-scale CNN are incorporated to predict secondary structures.

In CNNH PSS, each layer has a highway (shown in Figure 3.1). For each layer, the

highway is used to deliver a portion information from the input to the output directly

to retain the relationships contained by the previous layer and the kernels in the current

layer are used to process the other portion of information to extract relationships between

more remote residues. Each highway has a weight zt to determine how much information

is delivered by the highway and how much information are used to extract relationships

between remote residues in the current layer. The weight zt is calculated by the weighted

sum of the values in the input ct´1 of current layer.

zt “ δpwtzc
t´1
q (3.6)

where δp¨q is sigmoid function and wtz is a weight. The output of the current layer is the

weighted sum of the information delivered by the highway and the output of the kernels

of the current layer.

ct “ p1´ ztq ˆ f
t
θtpc

t´1
q ` zt ˆ c

t´1 (3.7)

where f tθt is the convolution operation of the current layer. So the output of the tth layer

contains two portions: information from the highway and that outputted by the convolution

kernels of the current layer.
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Table 3.1: Hyper-parameters of multi-scale CNN

Hyper-parameter Value

Kernel length [7,9,11]
Number of kernels 80 for each kernel length
Batch size 50
Learning rate 2e-3
Regularizer 5e-5
Decay rate 0.05
Activation function ReLU

3.2 Performance Evaluation

The purpose of the evaluation is to examine the effectiveness of our proposed CNNH PSS.

Four sets of evaluations are conducted. The first experiment evaluates the performance of

multi-scale CNN on CB6133 and CB513. The second experiment evaluates our proposed

CNNH PSS on CB6133 and CB513. The third experiment compares CNNH PSS with

state-of-the-art methods. Finally, based on CB6133, we analyze the local context and

long-range dependencies learned by CNNH PSS. The performance of prediction methods

are measured by Q8 accuracy[209, 92]. For multi-scale CNN and CNNH PSS, the hyper-

parameters of multi-scale CNN in this study are listed in Table 3.1.

3.2.1 The performance of multi-scale CNN model

Note that three set of kernels with different lengths are used in the multi-scale CNN model

and 80 kernels are used for each kernel length. To conveniently encode and process protein

sequences, we normalize the length of all protein sequences to 700 according to literature

[209]. When sequences are shorter than 700, they are padded with zero vectors. If se-

quences are longer than 700, the additional part is truncated. In order to get the best

performance, we need to determine how many layers the multi-scale CNN model should

contain. We conduct experiments to evaluate the performance of the multi-scale CNNs

model with different number of layers on CB513. The performance is shown in Figure
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3.2, where the x-axis is the number of epochs used to train the multi-scale CNN model

and the y-axis is validation accuracy. Figure 3.2 shows the performances for the models
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Figure 3.2: The performance of multi-scale CNN with different number of convolutional
layers

with the number of layers from 1 to 5. This figure shows that the model with 3 layers gets

the best accuracy. When the number of layers is increased to 4 or 5, accuracy decreases

obviously. The main reason for this phenomenon may be that extracted local context will

lost when more layers are added in CNN. We know that with the augment of number of

layers in CNN, CNN can extract relationships between more remote residues, but most

local context may be lost. When the number of layers is increased to 3, CNN may extract

both local context and long-range dependencies, which is validated by that the CNN with

3 layers gets the best accuracy in our problem. However, when the number of convolution

layers is more than 3, most local context extracted by lower layers are used to learn de-

pendencies between more remote residues by higher layers so that relationships outputted

by higher layers may contains less local context. Thus, the predicting accuracy starts to

decrease when the number of layers is more than 3.

The performances of the multi-scale CNN with 3 layers on CB6133 and CB513 are
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Table 3.2: Q8 accuracy of the multi-scale CNN with 3 layers

datasets CB6133 CB513
Multi-scale CNN(one hot) 0.721 0.689
Multi-scale CNN(embedding) 0.729 0.693

shown in Table 3.2, where the best performers and the second best performers are marked

by bold and underscore, respectively. Two sequence features encoding methods for residues

are evaluated: one hot and residue embedding.

Table 3.2 shows that residue embedding outperforms one hot on both CB6133 and

CB513 by at least 0.004 Q8 accuracy, indicating that residue embedding is a better encod-

ing method for sequence features. In the next section, we use residue embedding method

to encode sequence features in both the multi-scale CNN model and our proposed method

CNNH PSS.

3.2.2 The performance of CNNH PSS

We evaluate the performance of our proposed method CNNH PSSs with different number

of layers on CB513. The performance is shown in Figure 3.3.
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Figure 3.3: The performance of CNNH PSS with different number of layers
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Table 3.3: Q8 accuracy of CNNH PSS with 5 convolutional layers

Method CB6133 CB513

Dilated Residual Network 0.710 0.670
Multi-scale CNN 0.729 0.693
CNNH PSS 0.740 0.703

Figure 3.3 shows that CNNH PSS achieves the best performance when the number of

layers is 5. When the number of layers is more than 5, the performance of our method

starts to decrease. So CNNH PSS with 5 layers is used in the rest of the evaluation. Com-

paring with the 3-layer multi-scale CNN model in the previous section CNNH PSS not

only contains a highway for every layer, but also has more number of layers. It means

that CNNH PSS not only can retain more local context, but also extract more long-range

dependencies between more remote residues. The performances of CNNH PSS and the

multi-scale CNN model on CB6133 and CB513 are shown in Table 3.3, where the best per-

formers and the second best performers are marked by bold and underscore, respectively.

Table 3.3 shows that CNNH PSS outperforms the multi-scale CNN model by 0.011 Q8

accuracy on CB6133 and 0.010 Q8 accuracy on CB513. The performance improvement

by CNNH PSS in both datasets validates that the highways in CNN indeed can retain both

local context as well as extract long-range dependencies between more remote residues.

Dilated Residual Network [201] is a combined method of Deep Residue Network [74]

and Dilated Convolution [200], which can increase the resolution of output feature maps

without reducing the receptive field of individual neurons. This means that Dilated Resid-

ual Network not only can learn long-range dependencies, but also can keep the resolution

of output feature maps. Therefore, when compared with CNN with highway, the strength

of Dilated Residual Network is that it can increase the resolution of output feature maps.

However, the key component for protein secondary structure prediction methods is to learn

dependencies among residues with very long distance. It may not be unnecessary to in-
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crease the resolution of output feature maps for amino acid residues.

To demonstrate the strength of our proposed CNNH PSS over Dilated Residual Net-

work, we compared CNNH PSS with Dilated Residual Network on both CB6133 and

CB513. Table 3.3 shows that CNNH PSS performs better than Dilated Residual Network

by 3.0% and 3.3% on CB6133 and CB613, respectively. Although Dilated Residual Net-

work also can extract long-range dependencies between residues through increasing the

receptive field of individual neurons, the better performance of CNNH PSS demonstrates

that our proposed CNNH PSS can extract more effective long-range dependencies for pro-

tein secondary structure predictions than Dilated Residual Network.

3.2.3 Comparison with state-of-the-art methods

Protein secondary structure prediction is an important problem in bioinformatics and crit-

ical for analyzing protein function and applications like drug design. So many state-of-

the-art methods have been proposed for the prediction. SSpro8 is a prediction method pro-

posed by Pollastri et al. [134] by combining bidirectional recurrent neural networks (RNN)

and PSI-BLAST-derived profiles. CNF is a Conditional Neural Fields based method

which was proposed by Wang et al. [185]. CNF not only can extract relationships be-

tween sequence features of residues and their secondary structures, but also capture local

context[185]. Later, an extension version of CNF (DeepCNF) was proposed by Wang et

al.[183] using deep learning extension of conditional neural fields, which is an integra-

tion of conditional neural fields and shallow neural networks. It can extract both complex

sequence-structure relationship and dependency between adjacent SS labels. These three

methods only make use of local context for prediction. The GSN method proposed by

Zhou and Troyanskaya[209] uses a supervised generative stochastic network and convo-

lutional architectures. Using supervised generative stochastic networks is a recently pro-

posed deep learning technique[15] well suited for extracting local context and also has

the ability to capture some long-range dependencies. The DCRNN method, recently pro-
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Table 3.4: Q8 accuracy of CNNH PSS and state-of-the-art methods containing only local
context

Method CB513
SSpro8 0.511
CNF 0.633
DeepCNF 0.683
CNNH PSS 0.703

Table 3.5: Q8 accuracy of CNNH PSS and state-of-the-art methods containing both local
context and long-range dependences

Method CB6133 CB513
GSN 0.721 0.664
DCRNN 0.732 0.694
CNNH PSS 0.740 0.703

posed by Li and Yu [92], is the best method up to now. DCRNN uses a multi-scale CNN

and three staked bidirectional gate recurrent units (BGRUs)[41]. GSN and DCRNN can

extract both local context and long-range dependencies. But, they need to combine two

complex models to capture the two types features, separately.

In this evaluation, We first compare our proposed CNNH PSS with the three state-of-

the-art methods which can extract only local context on CB513. The result is listed in Table

3.4, where the best performers and the second best performers are marked by bold and

underscore, respectively. Table 3.4 shows that CNNH PSS outperforms the three methods

by at least 0.020 Q8 accuracy. This indicates that the long-range dependencies extracted

by CNNH PSS are indeed useful features for protein secondary structure prediction.

The next evaluation uses both CB6133 and CB513 to compare all the methods that can

extract long range dependencies including our CNNH PSS, GSN, and DCRNN. Results

for both CB6133 and CB513 are listed in Table 3.5, where the best performers and the sec-

ond best performers are marked by bold and underscore, respectively. Result shows that

CNNH PSS performs better than both GSN and DCRNN by at least 0.008 Q8 accuracy on

CB6133 and 0.009 Q8 accuracy on CB513. Note that both GSN and DCRNN use CNN
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for local context extraction and an additional model for long-range dependencies extrac-

tion. We conducted a CPU consumption evaluation for these three methods using GTX

TITANX GPU. CNNH PSS tends to converge after only half an hour whereas DCRNN

needs more than 24 hours to converge [92]. So CNNH PSS is almost 50 times faster than

DCRNN. Although the exact running time for GSN is not known, GSN does need to be

trained for 300 epochs [209] which is much larger than that of CNNH PSS as CNNH PSS

tends to converge after training for less than 35 epochs as shown in Figure 3.3. It means

that CNNH PSS is almost 9 times faster then GSN. These two evaluations indicate that

CNNH PSS not only can extract both local context and long-range dependency more ef-

fectively, but also more efficiently.

3.2.4 Learned local context and long-range dependency

The advantage of our proposed CNNH PSS over state-of-the-art methods is that it can

extract both local context and long-range dependency by using multi-scale CNN with

highway. In CNNH PSS, every layer has a highway to deliver a portion of information

from the input to the output. In each layer, the highway and the kernels can extract local

context and long-range dependencies, respectively. In this section, we use CNNH PSS

with 5 layers and the kernel length of 11 to introduce the extraction of both local context

and long-range dependency as shown in Figure 3.4. First, the target protein is inputted to

the first layer and the kernels in this layer can extract local context from the input protein.

So the output of the first layer contains local context within 11 consecutive residues. The

information from the output of the first layer is delivered to the output of the second layer

in two ways: direct delivery by the highway in the second layer and delivery as the re-

sult of the processing by the second layer kernels. So, the output of the second layer is the

weighted sum of these two pieces of information. As the kernels in the secondary layer can

extract relationships between residues with distance of up to 19 residues, the output of the

second layer contains both local context within 11 consecutive residues and dependencies
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Figure 3.4: Extraction process for local context and long-range dependences

between residues with distance of 19 residues. Using the same principle, the output of the

fifth layer also contains two parts. The first part is the information from the output of the

fourth layer delivered by the highway, which contains local context within consecutive 11

and dependencies between residues with distance of 19, 29 and 39 residues. The second

part is the information output by the kernels of the 5th layer, which contains dependencies

between residues with distance of up to 49 residues. Therefore, CNNH PSS can out-

put local context within 11 consecutive residues and dependencies between residues with

distance of 19, 29, 39 and 49 residues, In contrary, the multi-scale CNN with the same

number of convolution layers only outputs dependences between residues with distance

of 49 residues without local context within 11 consecutive residues and nor dependences
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between residues with distance of 19, 29 and 39 residues.

In order to demonstrate the importance of learned local context and long-range de-

pendencies in protein secondary structure prediction, we show learned local context and

long-range dependencies in a representative protein PDB 154L[152], obtained from the

publicly available protein data bank[17]. The learned local context and long-range depen-

dencies by CNNH PSS in protein PDB 154L are shown in Figure 3.5, where the protein

contains 185 amino acids.
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Figure 3.5: Prediction results of 154L by CNNH PSS and comparing methods

In Figure 3.5, the first three lines correspond to the predicted results by (1) CNNH PSS

with 5 layers, (2) CNNH PSS with 3 layers, (3) multi-scale CNN with 5 layers, respec-

tively, and the next two lines are (4) the actual secondary structures and (5) the amino acid

sequence of the protein PDB 154L, respectively. The comparison between their predicted

results is more suitable for demonstrating the importance of local context and long-range

dependences in protein secondary structure prediction. Figure 5.5 shows three instances

for long-range dependencies: (1) dependency between the 24th and the 60th residue and
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that between the 25th and the 60th residue; (2) dependency between the 60th and the 100th

residue and (3) dependency between the 85th and the 131th residue. As these three learned

dependencies are composed by residues with distance of more than 29 and less than 49

residues, both CNNH PSS with 5 layers and the multi-scale CNN with 5 layers can ex-

tract them while CNNH PSS with 3 layers cannot capture them. So both CNNH PSS

with 5 layers and the multi-scale CNN with 5 layers make correct prediction for the 24th,

25th, 85th, 100th and 131th residues while CNNH PSS with 3 layers cannot make correct

predictions for them. It validates that CNNH PSS with more layers indeed can extract

long-range dependences between more remote residues.

Furthermore, Figure 3.5 also shows 4 instances for learned local context: (1) context

from the 31th to the 35th residues; (2) that from the 111th to the 115th residues; (3) that

from the 146th to the 149th residues and (4) that from the 158th to the 163th residues. Both

CNNH PSS with 3 layers and that with 5 layers can learn these four context so that the

secondary structures of all the residues in the learned context can be correctly predicted.

However, the multi-scale CNN with 5 layers cannot learn these four context. So it cannot

predict the secondary structures correctly for some of these residues. It validates that the

highways in the CNNH PSS indeed can be used to extract local context for prediction.

Our future works will validate these conclusions by experimental methods.

3.3 Chapter Summary

We propose a novel CNNH PSS method by using a unified model of multi-scale CNN with

an additional highway as a mechanism to obtain long-range dependencies. CNNH PSS is

able to extract long-range dependences by higher layers and retain local context extracted

in lower layers through the highway of every convolution layers. Contrast to existing

methods, which either cannot extract local context or long-range dependency or need to

combine two complex models to extract both of them, our proposed CNNH PSS requires
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only one model to extract both of them. The advantage of CNNH PSS is demonstrated in

both efficiency and performance. In terms of efficiency, CNNH PSS is almost 50 times

faster than DCRNN and 9 times faster than GSN when trained on GTX TITANX GPU. In

terms of performance, CNNH PSS outperforms the state-of-the-art methods on CB513 by

at least 0.008 in Q8 accuracy. When evaluated on CB6133, CNNH PSS outperforms the

state-of-the-art methods by at least 0.009 in Q8 accuracy.
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Chapter 4

DNA binding residue prediction

DNA binding residues are the residues which can bind to a corresponding DNA fragment

in a protein sequence. For example, TFs have many binding residues in their sequence.

Through these binding residues, TFs can bind to corresponding DNA fragments including

promoters, enhancers, insulators and silencers to regulate gene expressions. The iden-

tification of DNA binding residues is crucial to understand the recognition mechanism

between proteins and DNA as well as the mechanism of transcriptional regulation. The

identification of DNA binding residues also provides basic knowledge for understanding

the pathogenesis of several diseases. For example, DNA binding residues on the repressor

protein P53 provides information about certain diseases, such as certain tumors [35].

As presented in Chapter 2, the three basic feature categories of residues do not con-

tain information on the relationships between residues. Current methods of using feature

concatenations in the contextual residues are based on a simple hypothesis that features

of the target residue and that of its context are independent and thus each feature is used

as one dimension in the final feature space. The relationships between residues cannot be

extracted by concatenated features.

As functions and structures of residues are often related closely to their contextual

residues, we hypothesize that relationships among residues are meaningful for the predic-

tions of their functions and structures and the inclusion of these features should be able to
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improve prediction performance. Based on this hypothesis, four methods are proposed in

this chapter to include extracted relationships between residues for DNA binding residue

prediction. The first method uses PSSM Relationship Transformation (PSSM-RT) to en-

code residues by incorporating pairwise relationships of evolutionary information between

residues. The second method use a CNN based methed, CNNsite, to encode residues on

sequence features, which can extract relationships among multiple residues. The third

method uses a LSTM based method, EL LSTM, to encode residues on sequence features

to capture relationships among residues both at short range (local context) and long range

(long-range dependency). The last method, PDNAsite, uses sliding windows for both se-

quence feature and spatial features, to extract relationships among target residues and their

spatial neighbor residues as well as relationships among target residues and their sequence

neighbor residues.

4.1 Material and feature representation

4.1.1 Datasets

For evaluation of DNA binding residues, three commonly used benchmarking datasets and

two independent datasets are used. The benchmarking datasets used by many works in the

literature include PDNA-62, PDNA-224 and DBP-123 [91, 3, 192]. HOLO-83 and TS-61

[192] serves as two independent datasets which are used only as testing sets.

PDNA-62 [3] was firstly constructed by Ahmad et al. to train an ANN classifier to

distinguish DNA binding sites from non-binding residues. It was later employed to train

different machine learning classifiers by many studies, including ANN, SVM, Random

Forest and Naı̈ve Bayes12,14,17,21. PDNA-62 was derived from the structure data of

62 protein-DNA complexes in the Protein Data Bank (PDB)20. The dataset contains 67

sequences and the sequence identity between any two sequences is less than 25%. As in

most previous studies, in the structure of the protein-DNA complexes, a residue in protein
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is regarded as interacting with DNA if the side chain or the backbone atoms of the residue

falls within a cutoff distance of 3.5 Å from any atom of the partner DNA molecule in the

complex. All the other residues were regarded as non-binding sites. As a result, this data

set contains 1,215 DNA binding residues and 6,948 non-binding residues. As this dataset

has been used in many studies, it is convenient for comparing the predicting accuracy of

PDNAsite with that of other existing methods.

PDNA-224 was collected by Li et al. [91] from the Protein Data Bank (PDB) (released

by January 2011) [19], which contains 224 protein chains with pairwise sequence identity

less than 0.25. The binding residues and the non-binding residues for this dataset follow

the definition of Ahmad et al. [3]: a residue in a protein is regarded as a binding residue

if the side chain or the backbone atoms of the residue falls within a cut-off distance of

3.5 angstroms from any atom of the partner DNA molecule in the complex; otherwise, the

residue is considered as a non-binding residue.

DBP-123 was collected by Xiong et al. [192] from PDB (September 2009 release)

[19] and it is composed of 123 protein sequences of 119 protein-DNA complex. The

sequence identity between any two sequences is less than 0.25 and each sequence contains

a minimum of 40 residues. The binding residues and the non-binding residues follow the

definitions of Tjong and Xiong [166, 192]: a residue is considered as a surface residue if

its exposed surface area is larger than 10% of its nominal maximum area [141]; Further,

a surface residue is defined as a binding residue if it contains at least one heavy atom that

falls within the distance of 4.5 angstroms from any heavy atoms of the DNA molecule.

HOLO-83 is a common independent dataset given by Xiong et al. from 82 protein-

DNA complexes [192]. The 83 protein sequences have sequence similarity less than 0.25.

The sequence identity between HOLO-83 and DBP-123 is less than 0.25. The protein

sequences from HOLO-83 was built from PDB’s September 2009 release. So, it did not

include some of the newly decoded proteins. To include the newer decoded protein se-

quences, we build a new independent dataset, referred to as TS-61 from the December
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2016 release of PDB.

TS-61 is constructed in this work by applying the follow procedure: (1) retrieving

protein-DNA complexes from PDB; (2) screening obtained sequences with the cut-off

pairwise sequence similarity of 25% as well as dissimilarities to PDNA-224, DBP-123,

and HOLO-83 of at least 75%. This selection process ends up with 61 sequences. The

PDB id and the chain id of the 61 protein sequences in TS-61 are listed in addition file 1,

which can be obtained from our web site http://hlt.hitsz.edu.cn/EL LSTM/. Both HOLO-

83 and TS-61 serve as testing data. Training for their predictions uses DBP-123. Thus,

the binding residues for HOLO-83 and TS-61 use the same definitions as that of DBP-

123. The number of binding residues and non-binding residues of these five datasets are

summarized in Table 4.1.

Table 4.1: The details of the four datasets

datasets PDNA-62 PDNA-224 DBP-123 HOLO-83 TS-61

binding residues 1,215 3,778 2,895 2,038 1,491
non-binding residues 6,948 53,570 15,428 12,200 8,385
total number 8,163 57,348 18,323 14,238 9,876

4.1.2 Feature Descriptors

For prediction of DNA binding residues, residues are the prediction targets. As the func-

tions of each residue are closely related to its contextual residues, the fragment including

the target residue and its context, referred to as a residue-wise data instance, is used to

learn the feature representation for the target residue. A residue-wise data instance is

observed within a sliding widow of length w, where the target residue is positioned in the

center and pw ´ 1q{2 contextual residues are located on both sides. For a given protein

sequence P with length of L, it is defined by a sequence of residues denoted by

P “ R1R2R3R4R5R6 . . . RL (4.1)
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where R1 denotes the first residue of the chain P , R2 is the second residue and so forth.

For the target residue Rt at position t of the protein sequence P , its residue-wise data

instance St is defined as a fragment with w (w is an odd number) residues where the target

residueRt is positioned in the middle of the fragment with the other w´1 residues located

on either sides of Rt. So the residue-wise data instance St for the target residue Rt can be

represented as

St “ Rt´w´1
2
Rt´w´3

2
. . . Rt´1RtRt`1 . . . Rt´w´1

2
(4.2)

where Rt in the middle is the target residue and the other pw ´ 1q residues are its contex-

tual residues. For example, in protein 1NG9 [PDB:1NG9] chain A, the residue-wise data

instance S6 for the 6th residue is ”MSAIENFDAHT”, where ”N” is the target residue. The

set of residues ”MSAIE” on the left side and ”FDAHT” on the right side are referred to as

its left context and its right context, respectively. A residue-wise data instance is defined

as a positive sample if the target residue is a DNA binding residue or a negative sample if

the target residue is a non-binding residue. Features for a target residue are extracted from

its residue-wise data instance.

Residues have three commonly used feature types: sequence features, evolutionary

features, and structure features. Sequence features include identity property and physio-

chemical properties. The identity property of a residue is represented as a 20-dimensional

one-hot vector with each position corresponds to one residue type. Thus, for a residue,

its identity property vector has the corresponding entry being set to 1 and the remainder

positions are all 0s. For example, the identity of the residue Arg is represented with a 20-

dimensional feature vector with the fourth position as 1 and the remaining positions as 0.

Physiochemical properties contain pKa index and hydrophobic index. Sequence features

are encoded by concatenating identity property with physiochemical properties.

Evolutionary features are often represented by the Position Specific Score Matrix

(PSSM). PSSM is obtained by running the PSI-BLAST program to search against the
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non-redundant (NR) database through three iterations with 0.001 as the E-value cutoff for

multiple sequence alignment. PSSM for a protein sequence with length L is represented

as a matrix with dimension of Lˆ 20, in which the score in row i and column j represents

the conservation degree of residue type j in position i. PSSM for a residue is a row in

PSSM. A score in PSSM needs to be scaled between 0 and 1 using the following equation

NPSSMpi, jq “
1

1` e´PSSMpi,jq (4.3)

Structure features are extracted from the 3D structures of protein sequences. Com-

monly used structure features include solvent accessibility surface area, B-factor, packing

density and secondary structures. The solvent accessibility surface area (SASA) is calcu-

lated from protein 3D structure by the DSSP program. SASA, to be used as feature, needs

to be normalized by dividing the max SASA value of the residue type. Packing density is

defined as the number of non-covalently bounded residues whose Ca position falls within

a sphere of 6Å radius from the Ca position of the target residue. Secondary structures

include three types and are often represented as a 3 dimensional one-hot vectors.

4.1.3 Evaluation metrics

As the residue-wise data instances in this paper are extracted by a sliding window of size

w on protein sequences, the value of w needs to be set properly. Due to the length of this

paper, we are showing the experiments for parameter training. Size of 11 is experimentally

validated and used in all the following experiments.

Five common metrics are used in performance evaluation: Sensitivity (SN), Specificity

(SP), Strength (ST), Accuracy (ACC), and Mathews Correlation Coefficient (MCC). Their

respective definitions are listed below:

SN “ TP {pTP ` FNqq (4.4)

SP “ TN{pTN ` FP qq (4.5)
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ST “ pSN` SPq{2 (4.6)

ACC “ pTP ` TNq{pTP ` FP ` TN ` FNq (4.7)

MCC “
TP ˚ TN ´ FP ˚ FN

a

T ˚ pTP ` FP q ˚N ˚ pTN ` FNq
(4.8)

where TP is the number of true positives; TN is the number of true negatives; FP is the

number of false positives; FN is the number of false negatives; T is the total number of

positives; N is the total number of negatives.

Since the non-binding residues outnumber the binding residues by at least 5.5 times

in our datasets, accuracy ACC cannot provide unbiased evaluation because by classifying

all test samples as non-binding residues without running any machine learning algorithm

will already give a very high ACC value. For skewed datasets, the most important perfor-

mance measure is ST and MCC. Many works in literature [180, 181, 182, 91] pointed out

that ST, the average of SN and SP, can provide a more appropriate evaluation for skewed

datasets. We also use the ROC (Receiver Operating Characteristic) curve and the area

under the ROC curve(AUC) as unbiased performance measures. ROC curve is a standard

representation for the trade-off between false positive rate and sensitivity. The curve is

drawn by plotting the true positive rates (i.e. sensitivity) against the false positive rates

(i.e. 1-specificity) by varying the classification threshold. So, the area under the ROC

curve (AUC) is also an unbiased metric for unbalanced dataset. Therefore, ST, MCC and

AUC are used as the main metrics and shaded for easy observation in all the forms of this

chapter. The other three metrics, SN, SP, and ACC are used for reference only.

To demonstrate the significance of the performance improvement, we apply the Wilcoxon

signed-ranks test[189] to compute the p-value for the comparison. The Wilcoxon signed-

ranks test[189] is a non-parametric test method, which ranks the difference in perfor-

mances of two classifiers for each dataset, ignoring the signs, and compares the ranks

for positive and negative differences [8]. Let R` be the sum of ranks for the datasets
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on which the second classifier outperforms the first one, R´ be the sum of ranks for the

opposite and T be the smaller of the two sums. For a comparison with N datasets, the

statistics

z “
T ´ 1

4
NpN ` 1q

b

1
24
NpN ` 1qp2N ` 1q

(4.9)

is considered to be distributed approximately normally when N is larger (ě 20). For

more details about the Wilcoxon signed-ranks test, [189] and [189] should be helpful ref-

erences. The p-value for all the performance comparisons in this paper is computed by the

Wilcoxon signed-ranks test.

4.2 PSSM-RT SVM: PSSM Distance Transformation based
method

4.2.1 PSSM Distance Transformation

Evolutionary features is produced by the evolutionary processes and it is important for pro-

tein structure and function prediction. PSSM is a common representation for evolutionary

features and has been used in many bioinformatics studies including protein functionality

annotation and protein structure prediction [82, 70, 23, 174, 207]. For every protein se-

quence in this study, its PSSM is calculated from multiple sequence alignments produced

by running the PSI-BLAST program [144] to search the non-redundant (NR) database

through three iterations with the E-value cutoff at 0.001. For a protein with length L,

PSSM is usually represented as a matrix with L x 20 dimensions. 20 denote the 20 stan-

dard types of residues. For the sequence fragment Fi using representation defined in For-

mula (2), its PSSM can be represented as a matrix with dimensions w x 20. Thus, the
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PSSM of the residue-wise instance Fi for the target residue Ri can be formulated as

PSSMFi
“

»

—

—

—

—

—

—

–

Si´w´1
2
,1 ¨ ¨ ¨ Si´w´1

2
,r ¨ ¨ ¨ Si´w´1

2
,20

... ¨ ¨ ¨
... ¨ ¨ ¨

...
Si,1 ¨ ¨ ¨ Si,r ¨ ¨ ¨ Si,20

... ¨ ¨ ¨
... ¨ ¨ ¨

...
Si`w´1

2
,1 ¨ ¨ ¨ Si`w´1

2
,r ¨ ¨ ¨ Si`w´1

2
,20

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.10)

where Si,r is the conservative score of residue type r at position i in the sequence fragment.

Before PSSM-RT is calculated, the conservative scores in PSSM should be normalized

between 0 and 1. Thus, for a given Si,r, its normalized value SpNqi,r can be expressed by a

logistic function given below

S
pNq
i,r “

1

1` e´Si,r
(4.11)

PSSM-RT contains three categories of features: residue conservations, pair-relationships

and multi-relationships. The residue conservations contain the PSSM scores of the target

residue and its context residues. The pair-relationship is defined as the relationship of

evolutionary information between two residues, for example, the pair-relationship between

the residue r1 of position i and the residue r2 of position j is calculated as

PSSM-RTpi, j, r1, r2q “ S
pNq
i,r1
˚ S

pNq
j,r2

(4.12)

As every position in a residue-wise data instance has conservative scores for the 20 stan-

dard residue type, 400 types of relationships can be calculated for any two positions. As

the target position in a residue-wise data instance is influenced by all its context posi-

tions, the all pair-relationships for the target position and its context positions needs to be

included in the prediction. Thus the pair-relationship for a residue-wise data instance is
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defined as the sum of pair-relationship for the target position and all its context positions.

For example, the pair-relationship between residue r1 and residue r2 for a residue-wise

data instance with i as its target position is formulated as

PSSM-RTpi, r1, r2q “
ÿ

j

PSSM-RTpi, j, r1, r2q (4.13)

where j is the context position of the target position.

Multi-relationships are the evolutionary information relationships between multiple

residues. We consider two kinds of multi-relationships: the left multi-relationships that

include the relationships between the target residue and its left context residues and the

right multi-relationships that include the relationships between the target residue and its

right context residues. For residue r, the left multi-relationship of residue-wise data in-

stance at target position i is formulated as

PSSM-RTleftpi, rq “
i
ÿ

k“i´w´1
2

S
pNq
k,r (4.14)

For residue r, the right multi-relationship of residue-wise data instance at target position i

is formulated as

PSSM-RTrightpi, rq “
i`w´1

2
ÿ

k“i

S
pNq
k,r (4.15)

Thus, the dimension of the feature space constructed by PSSM-RT is p20 ˚ w ` 20 ˚ 20`

2 ˚ 20q.
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In addition to PSSM-RT, there are two other types of features that are used in this

work: sequence features and physiochemical features. Sequence features given in the

datasets include amino acid composition, predicted secondary structure, predicted solvent

accessible area, and identity of the target residue. Physiochemical features include pKa

values of amino group, pKa values of carboxyl group, electron-ion interaction potential

(EIIP)[25], number of lone electron pairs(LEPs), Wiener index [170], molecular mass

[170], side chain pKa value, and hydrophobicity index. The predicted secondary struc-

ture and predicted solvent accessible area are obtained by applying PSIPRED [113] and

SABLE [1, 2, 178], respectively.

4.2.2 Ensemble learning

Ensemble learning is now an active area of research in machine learning and pattern recog-

nition. Ensemble learning first learns several base predictors from the training dataset and

then combines them into an ensemble predictor. Ensemble learning aims to take advan-

tage of the different learning ability of the different base predictors. There are three widely

used ensemble strategies to train base predictors: training by different data subsets, train-

ing from different feature subsets and training by different classification algorithms.

In DNA binding residue prediction, non-binding residues outnumber binding residues

by a large margin. In order to get a balanced dataset for training, many predictors chose

to discard a large part of non-binding residues [172]. However, discarded non-binding

residues may potentially be useful information to improve prediction performance. In

order to better use all the data available, we propose to use ensemble learning by com-

bining all the three ensemble strategies. And then use our proposed method, referred to

as EL PSSM-RT, to combine the ensemble learning model with PSSM-RT. The system

architecture of EL PSSM-RT is shown in Figure 4.1. Note that EL PSSM-RT contains 4

steps: Dataset Partition, Feature Extraction, Base Classifier Training and Base Classifier

Selection. In Step 1 of Dataset Partition, the non-binding residues in the training dataset
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Figure 4.1: The framework diagram of EL PSSM-RT.

are first partitioned into n non-overlapping subsets with the number of samples approxi-

mately equal to that of all the binding residues. Then, n new balanced training datasets are

formed by adding the binding residues into the n subsets non-binding residues. In Step

2 of Feature Extraction, three categories of features are extracted for residues including

sequence features, physiochemical features, and evolutionary features extracted by PSSM-

RT. In Step 3 of Base Classifier Training, both the SVM classifier and the Random Forest

classifier are used by each category of features on every newly formed training dataset.

SVM and Random Forest are used because they are proven to have good predicting per-

formances for DNA binding residue prediction [180, 181, 182]. Thus, 6 ˚np2 ˚ 3 ˚nq base
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predictors are trained in this step. In Step 4 of Base Classifier Selection, a diversity based

dynamic ranking and selecting method is designed based on diversity to build the ensem-

ble predictor using an iterative approach. In our dynamic ranking and selecting method,

a base predictor is initially selected at random. Then in each iteration, all the unselected

base predictors are first ranked based on their diversity with the selected base predictor(s),

followed by the selection step in which the one with the largest diversity will be added into

the set of selected predictors. The iteration is terminated when the addition of diversity

for the set of selected predictors is less than a specified criterion. Finally, the selected base

predictors are combined to construct an ensemble predictor by the majority vote strategy.

4.2.3 Experiments and Results

The purpose of the evaluation is to examine the effectiveness of our proposed PSSM-RT

over other methods. Four sets of evaluations are conducted here. Experiment 1 com-

pares PSSM-RT with previous encoding methods. Experiment 2 compares the ensemble

learning model with the base classifiers. Experiment 3 compares our proposed predictor

EL PSSM-RT with previous predictors, and Experiment 4 evaluates EL PSSM-RT on two

independent datasets. Based on the obtained data, we further analyze the relation-pairs of

amino acids followed a case study of two proteins in the identified binding-residues.

Experiment 1: Comparison of PSSM-RT with previous encoding

methods

Since PSSM-RT uses a window based approach, the window size needs to be set properly.

For the SVM classifier which uses PSSM-RT as features, the performance of the SVM

classifier with different window size w is shown in Figure 4.2. It can be seen that the ST

value continues to increase and peaks when w reaches 13. So, the window size w “ 13 is

used for all the SVM classifiers.
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Figure 4.2: The compact of window size w on performance of PSSM-RT.

This set of experiments compares PSSM-RT with two types of existing encoding meth-

ods: the combination methods and the concatenation methods. As both of them contain

several methods, we only consider the state-of-the-art works for the respective groups.

Consequently, Ma et al.’s work using combination method [104] and Li et al.’s work [91]

using the concatenation methods are used for comparison. Both Ma et al.’s work [104] and

Li et al.’s work [91] used SVM as the classifier, so we also use SVM as the classifier in

this experiment. Since both Ma et al.’s work and Li et al.’s work did not provide the per-

formance for evolutionary features and combination with sequence features on PDNA-62

and PDNA-224, their methods are implemented in this study to obtain evaluation data. The

performances on both datasets PDNA-62 and PDNA-224 are shown in Table 4.2, where

the best performers and the second best performers are marked by bold and underscore,

respectively. The corresponding ROC curves are shown in Figure 4.3(A) and 4.3(B), re-

spectively.

From Table 4.2, we can see that PSSM-RT performs better than Ma et al.’s work on

both datasets with p-values less than 3.05E-5, which means the improvement is quite sig-

nificant. More specifically, the increase in the PDNA-62 dataset is 0.17 on MCC, 11.06%
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Table 4.2: Performance for evolutionary features on benchmark datasets by SVM.

Dataset Methods ACC (%) MCC SN(%) SP(%) ST(%) AUC

Ma et al. 72.23 0.26 59.45 74.48 66.96 0.734
PDNA-62 Li et al. 77.32 0.40 72.00 78.27 75.14 0.821

PSSM-RT 76.45 0.43 80.23 75.80 78.02 0.845

Ma et al. 76.88 0.18 50.59 78.87 64.73 0.723
PDNA-224 Li et al. 79.18 0.29 67.21 80.09 73.65 0.813

PSSM-RT 80.39 0.31 68.11 81.32 74.72 0.826
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Figure 4.3: Comparison between different encoding methods.

on ST and 0.111 on AUC and 0.13 on MCC, 9.99% on ST and 0.103 on AUC for the

PDNA-224 dataset. PSSM-RT outperforms Li et al.’s work quite significantly on both

datasets with p-value less than 4.71E-5. More specifically, the increase in the PDNA-62

dataset is 0.03 on MCC, 2.88% on ST and 0.024 on AUC and 0.02 on MCC, 1.07% on

ST and 0.013 on AUC on the PDNA-224 dataset. Figure 4.3(A) and 4.3(B) show that

PSSM-RT has the best ROC curve on both PDNA-62 and PDNA-224.

When both sequence features and physiochemical features are added, the performances

of the three methods on PDNA-62 and PDNA-224 are shown in Table 4.3, where the best

performers and the second best performers are marked by bold and underscore, respec-

tively. The corresponding ROC curves are shown in Figure 4.4(A) and 4.4(B). Table 4.3
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shows the same performance trends as that in Table 4.2. Figure 4.4(A) and 4.4(B) also

show that PSSM-RT has the best ROC curve on both PDNA-62 and PDNA-224 when the

three types of features are combined. This clearly indicates that PSSM-RT outperforms

both Ma et al.’s work and Li et al.’s work when all three types of features are used. When

comparing Table 4.2 and Table 4.3, we observe that the performance of PSSM-RT is im-

proved by 0.05 on MCC, 1.52% on ST and 0.028 on AUC for PDNA-62 and 1.92% on

ST and 0.017 on AUC for PDNA-224. This shows that PSSM-RT is complementary to

the other two features. This set of experiments indicates that the relationships of evolu-

tionary information between residues perform better than the two previous state-of-the-art

encoding methods.

Table 4.3: Performance for all features on benchmark datasets by SVM.

Dataset Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Ma et al. 75.11 0.40 78.22 74.58 76.40 0.832
PDNA-62 Li et al. 77.81 0.42 75.50 78.24 76.87 0.851

PSSM-RT 81.50 0.48 76.74 82.34 79.54 0.873

Ma et al. 76.66 0.27 68.59 77.25 73.10 0.808
PDNA-224 Li et al. 78.65 0.29 69.48 79.34 74.41 0.825

PSSM-RT 78.14 0.31 74.92 78.38 76.65 0.843

Experiment 2: Comparison of EL PSSM-RT with base classifiers

This set of experiments compares EL PSSM-RT with the base classifiers. The perfor-

mances of EL PSSM-RT, the SVM classifier and the Random Forest(RF) classifier are

shown in Table 4.4, , where the best performers and the second best performers are marked

by bold and underscore, respectively. The corresponding ROC curves are shown in Figure

4.5(A) and 4.5(B).

Table 4.4 shows that compares to both the SVM classifier and the RF classifier, EL PSSM-

RT achieves significant performance improvement on both PDNA-62 with p-value less
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Figure 4.4: Comparison between different encoding methods when combining with se-
quence features and physicochemical features.

Table 4.4: Comparison of EL PSSM-RT with base classifiers on benchmark datasets.

Dataset Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

SVM 81.50 0.48 76.74 82.34 79.54 0.873
PDNA-62 RF 80.90 0.47 77.43 81.42 79.43 0.880

EL PSSM-RT 80.82 0.51 85.04 80.10 82.57 0.901

SVM 78.14 0.31 74.92 78.38 76.65 0.843
PDNA-224 RF 80.95 0.32 71.11 81.69 76.40 0.844

EL PSSM-RT 78.09 0.34 79.58 77.98 78.78 0.865
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Figure 4.5: Comparison between EL PSSM-RT, SVM classifier and Random Forest clas-
sifier.
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than 6.52E-5 and PDNA-224 with p-value less than 7.25E-5. More specifically, on the

PDNA-62 dataset, the increase to the SVM classifier is 0.03 on MCC, 3.03% on ST and

0.028 on AUC and 0.04 on ACC, 3.14% on ST and 0.021 on AUC to the RF classifier.

For the PDNA-224 dataset, the increase to the SVM classifier is 0.03 on MCC, 2.13% on

ST and 0.022 on AUC and to the RF classifier is 0.02 on MCC, 2.38% on ST and 0.021

on AUC. Figure 4.5(A) and 4.5(B) also show that EL PSSM-RT obtains the best ROC

curve on both PDNA-62 and PDNA-224. This indicates that ensemble learning makes

EL PSSM-RT more superior than both the SVM classifier and the RF classifier.

Experiment 3: Comparison with previous predictors

This set of experiments evaluates the performance of our proposed ensemble learning

based EL-PSSM-RT compared to other state-of-the art methods trained and tested either

on PDNA-62 or PDNA-224 including eight algorithms: (1) Dps-pred [3], (2) Dbs-pssm

[4], (3) BindN [180], (4) Dp-bind [85], (5) Dp-Bind [66], (6) BindN-RF [182], (7) BindN+

[181], and (8) PreDNA [91]. The first seven methods were trained and tested on PDNA-

62. The last method, PreDNA [91], was trained and tested on both datasets. PreDNA was

proposed recently and achieved the best performance for DNA binding residue prediction

so far. In addition to sequence features and evolutionary information, PreDNA [91] also

used structure features. As we have pointed out earlier, structure features of most pro-

teins are unavailable and the experimental 3D structure is very expensive to obtain. Thus,

PreDNA [91] cannot be used as a general method at the current time for DNA binding

residue prediction on a genomic scale. For this reason, EL PSSM-RT does not use any

structure feature, similar to many other methods. To fairly compare the performance of

various methods, the version of PreDNA without using structure features is used in this

evaluation. The prediction accuracy of EL PSSM-RT and other methods on PDNA-62 and

PDNA-224 are shown in Table 4.5 and Table 4.6, respectively, where the best performers

and the second best performers are marked by bold and underscore, respectively.
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Table 4.5: Performance comparison of various prediction methods on PDNA-62 by five-
fold cross-validation.

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Dps-pred 79.10 – 40.30 81.80 61.10 –
Dbs-pssm 66.40 – 68.20 66.00 67.10 –
BindN 70.30 – 69.40 70.50 69.95 0.752
Dp-bind 78.10 0.49 79.20 77.20 78.20 –
DP-Bind 77.20 – 76.40 76.60 76.50 –
BindN-RF 78.20 – 78.10 78.20 78.15 0.861
BindN+ 79.00 0.44 77.30 79.30 78.30 0.859
PreDNA 79.40 0.42 76.80 79.70 78.30 –
EL PSSM-RT 80.82 0.51 85.04 80.10 82.57 0.901

Table 4.6: Performance of EL PSSM-RT Compared with PreDNA on PDNA-224 by five-
fold cross-validation.

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

PreDNA 79.10 0.29 69.50 79.80 74.60 –
EL PSSM-RT 78.09 0.34 79.58 77.98 78.78 0.865

Table 4.5 shows that EL PSSM-RT achieves the best performance with significant im-

provement with p-value less than 3.06E-5 for PDNA-62, outperforming other methods

by 0.02-0.07 on MCC, 4.27%-21.47% on ST and 0.040-0.149 on AUC. For the PDNA-

224 dataset, EL PSSM-RT performs better than PreDNA by 0.05 on MCC, 4.18% on ST

with p-value less than 3.64E-5. The results on both datasets indicate that the effect use of

relation information and ensemble learning is superior to other existing methods.

Experiment 4: Independent tests use TS-72 and TS-61

We evaluate the performance of our EL-PSSM-RT on the TS-72 dataset so we can compare

it with the previous published DNABR method [172] and the BindN series [180, 181, 182].

DNABR is a sequence based DNA binding residue prediction method proposed by Ma et

al. [172]. BindN, BindN-RF and BindN+ are three methods proposed by Wang et al.

using only sequence information [180, 181, 182]. the AUC values of the four published
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methods are 0.866, 0.748, 0.825 and 0.844, respectively according to Ma et al.’ work

[172] which are trained on TR265. The AUC value for EL PSSM-RT, is 0.879. Our

method increases the performance by 0.013-0.131 on AUC with p-value less than 8.37E-4

for the independent dataset TS-72.

For the second independent dataset TS-61, we compare our proposed method with

DB-Bind [66]. DB-Bind [66] is a web server for predicting DNA binding sites in a DNA

binding protein from its amino acid sequence. The web server implements three machine

learning classifiers: DP-Bind(SVM) that uses support vector machine, DP-Bind(KLR) that

use kernel logistic regression and DP-Bind(PLR) that uses penalized logistic regression.

DB-Bind [66] also implements two types of consensus methods. One is majority con-

sensus on the results of three machine learning methods by majority vote, referred to as

DP-Bind(MAJ). The other is strict consensus obtained by unanimous agreement, referred

to as DP-Bind(STR). The performance of EL PSSM-RT trained by PDNA-224 and the

different DB-Bind methods is shown in Table 4.7, where the best performers and the sec-

ond best performers are marked by bold and underscore, respectively. From the Table 4.7

shows that our method has the best performance outperforming all the different machine

learning methods in DB-Bind with 0.02-0.05 on MCC, 2.26-6.48% on ST and 0.038-0.056

on AUC.

Table 4.7: Performance of EL PSSM-RT Compared with DP-Bind on TS-61.

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

DP-Bind(SVM) 75.90 0.26 65.99 76.70 71.34 0.794
DP-Bind(KLR) 76.45 0.25 64.22 77.45 70.83 0.790
DP-Bind(PLR) 75.46 0.25 65.24 76.29 70.76 0.812
DP-Bind(MAJ) 76.64 0.26 65.24 77.57 71.41 –
DP-Bind(STR) 80.21 0.31 68.74 81.11 74.92 –
EL PSSM-RT 77.65 0.33 76.62 77.74 77.18 0.850
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4.2.4 Analysis of Important Pair-Relationships and case study

To further understand the importance of PSSM-RT for DNA binding residue prediction,

we analyze the important pair-relationships found by the learning algorithm. Since the

importance of the relations can be reflected by the discriminant weight vector of the pair-

relationships extracted by PSSM-RT, the values in the discriminant weight vector indicates

the discriminant powers of the features in the feature space. Following the published works

in [95, 131, 199], the discriminant weight vector W is calculated as follows: first, we

obtain the classification weight vector A from the ensemble learning classifier during the

training process. W is calculated by applying the following formulae:

W “ AT
¨M “

»

—

—

—

–

a1
a2
...
aN

fi

ffi

ffi

ffi

fl

T »

—

—

—

–

m11 m12 ¨ ¨ ¨ m1d

m21 m22 ¨ ¨ ¨ m2d
...

... ¨ ¨ ¨
...

mN1 mN2 ¨ ¨ ¨ mNd

fi

ffi

ffi

ffi

fl

(4.16)

where A is the classification weight vector of the training dataset by the ensemble

learning classifier trained on PDNA-62 and M is the feature vectors of all training data

instances; d is the dimension of the feature space and N is the number of data instances in

the training dataset. The analysis results are shown in Figure 4.6 based on the data given

in the part E of the additional file 1 which lists all the discriminant weights of the 400 pair-

relationships between the target residue and its neighboring residue. Figure 4.6 includes

a heatmap showing the discriminant weight of every pair-relationship and a diagram of

binding residues showing the pair-relationships between important residues. Figure 4.6A

shows that the relationships between amino acid pairs (K, K), (K, R), (R, R), (Q, K), (Q,

R), (S, K), (S, R), (R, Q), (S, S), (S, Q), (T, R), (E, K), (E, R), (E, R),(E, Q) are the fif-

teen relationships with larger discriminant weights. This means that the amino acids K,

R, Q, S, T and E are important in the interaction between proteins and its corresponding
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Figure 4.6: The feature analysis results of PSSM-RT on PDNA-62.

DNA molecular. This feature analysis result is consistent with many other works for DNA

binding proteins research which stated that R, K, E and S are important for the interaction

between DNA binding proteins and its responsible DNA molecules [150, 163]. Figure

4.6B shows eight DNA binding residues and its context residues extracted from the struc-

ture of a protein-DNA complex (PDB id: 1u1q). As we can see from Figure 4.6B, the

relationship between R and K has the highest occurrence frequency among the eight DNA

binding residues and is the most important feature for DNA binding residue prediction for

this protein. The second most important feature is the relationship between R and K. The

relationships between E and Q and between E and R are the third most important features.

The analysis result validates the usefulness of PSSM-RT for the representation of DNA

binding residues.

In order to further validate the usefulness of EL PSSM-RT for DNA binding residue

prediction, we apply EL PSSM-RT trained on PDNA-62 to distinguish the binding residues

from non-binding residues for two protein-DNA complexes which are not in the training

set, namely, 1s40 and 1b3t. The proteins in these two complexes are two typical DNA

binding proteins and the sequences have sequence similarity of less than 25% for all the
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sequences in the training set. On 1s40, EL PSSM-RT achieves 96.71% on ACC, 0.74 on

MCC, 92.06% on SN, 96.96% on SP and 94.51% on ST, respectively. This means that 34

residues out of a total of 39 actual binding residues are correctly predicted by EL PSSM-

RT and only 24 residues in the 264 non-binding residues are incorrectly predicted as bind-

ing residues. The actual residues and predicted residues in 1s40 are shown in Figure 4.7A

and Figure 4.7B, respectively. The two figures show that most of the real binding residues

Figure 4.7: Actual residues and predicted residues of proteins in 1s40 and 1b3t.

overlap with the predicted binding residues. This provides a visual indication that most

of binding residues are correctly predicted.. In the case of 1b3t, EL PSSM-RT achieves

90.02% on ACC, 0.60 on MCC, 79.17% on SN, 91.35% and 85.25% on ST, respectively.

In other words, 40 residues out of 48 binding residues are correctly predicted and only

32 residues out of 244 non-binding residues are incorrectly predicted as binding residues.

Figure 4.7C and Figure 4.7D depict the actual binding regions and predicted binding re-

gions on 1b3t, respectively. We can see that most of the actual binding residues overlap

with the predicted binding residues and only very few non-binding residues are wrongly

identified as the binding residues.
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In summary, our proposed EL PSSM-RT can extract pairwise relationships between

residues from sequence for prediction. Evaluation on the three datasets shows that EL PSSM-

RT outperforms state-of-the-art methods significantly. This shows that pairwise relation-

ships of residues indeed play an important role for DNA binding residue prediction. How-

ever, EL PSSM-RT is limited to extract pair-wise relationships only. As the function and

structure of a residues affect multiple neighboring residues, relationships among several

residues may also play a role in the prediction.

4.3 CNNsite: Convolutional Neural Network based method

In order to extract relationships of multiple residues, a Convolutional Neural Network

(CNN) based method, referred to as CNNsite, is proposed to extract relationships among

multiple nucleotides.

4.3.1 CNNsite

In this section, we propose a novel method to identify important motif features from the

sequences around the binding residues for DNA binding residue prediction based on CNN

and then develop a neural network classifier, referred to as CNNsite, by combining the im-

portant motif features (MOT), the sequence features (SEQ) and the evolutionary features

(EVO). The frame diagram of CNNsite is shown in Figure 4.8. CNNsite comprises four

computational layers: the convolution layer, the rectification layer, the pooling layer and

the neural network layer. In our prediction task, the first three layers can discover impor-

tant motifs of the inputting residue-wise data instances and the last layer is used to get the

prediction results. The convolution, rectification, and network layers have trainable motif

detectors D, thresholds b, and weights W , respectively. For a residue-wise data instance

S, CNNsite produces a real-valued score fpSq for prediction by the following formula

fpSq “ netwppoolprectbpconvDpSqqqq (4.17)
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where convDpq, rectbpq, poolpq and netW pq denote the four layer in CNNsite, respectively.

Note that in the last layer, three kinds of features are used as input: the motif features

outputted by the pooling layer, the sequence features, and the evolutionary features.
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Figure 4.8: The frame diagram of CNNsite.

4.3.2 Experiments and Results

The purpose of the evaluation is to examine the effectiveness of the CNNsite for the predic-

tion of DNA binding residue. Since CNNsite uses a window based approach, the window

size needs to be set properly. Due to the length of this paper, we skipped the parameter

tuning and all the results shown in this section use the window size w “ 11 that is the

context size is 5 on both the left and right side of the window. Four sets of evaluations are

conducted. The first set evaluates the performance of CNNsite with different combinations

of the three kinds of features on PDNA-62. The second set evaluates the performance of

CNNsite with different combinations of the three kinds of features on PDNA-224. The
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third one uses the datasets PDNA-62 and PDNA-224 to compare our CNNsite with pre-

vious published predictors. And the last one evaluates CNNsite on an independent test

TS-72 compared with previous published methods.

The predicted results on PDNA-62

This set of experiments examines the contributions of the three different kinds of features

in CNNSite for the DNA binding residue prediction on PDNA-62. The performance is

shown in Table 4.8, where the best performers and the second best performers are marked

by bold and underscore, respectively.

Table 4.8: The prediction performance on PDNA-62 for various features by ten-fold cross-
validation

Method ACC(%) MCC SN(%) SP(%) ST (%) AUC

SEQ 73.78 0.345 70.94 74.29 72.61 0.770
EVO 75.27 0.362 70.74 76.04 73.39 0.802
MOT 77.48 0.459 83.89 76.36 80.12 0.871
MOT+SEQ 78.15 0.473 85.25 76.92 81.09 0.889
MOT+EVO 78.57 0.476 84.81 77.48 81.15 0.897
ALL 80.63 0.509 85.87 79.78 82.67 0.911

As mentioned earlier, MCC, ST and AUC are the main metrics. Thus we shade the

best performers of these three metrics for easy observation. It can be seen that the motif

features achieve 0.459 for MCC, 80.12% for ST and 0.871 for AUC, outperforming the

sequence features by 0.114 for MCC, 7.51% for ST and 0.101 for AUC and performs bet-

ter than the evolutionary features with 0.097 for MCC, 6.73% for ST, 0.069 for AUC. It

indicates that the motif features are more useful than the sequence features and the evo-

lutionary features. When the motif features are combined with the sequence features, its

performance is improved on all metrics with 0.014 for MCC, 0.97% for ST and 0.018

for AUC. When the motif features are combined with the evolutionary features, its per-

formance is improved with 0.017 for MCC, 1.03% for ST and 0.026 for AUC. When the
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three kinds of features are combined, CNNsite achieves 0.509 for MCC, 82.67% for ST

and 0.911 for AUC, outperforming other combinations with 0.033-0.164 for MCC, 1.52-

10.06% for ST and 0.014-0.141 for AUC. Figure 4.9 also shows that the motif features

gets better ROC curve than the sequence features and the evolutionary features and the

combination of them gets the best ROC curve. It indicates that the motif features, the

sequence features and the evolutionary features are complementary for each other.
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Figure 4.9: ROC curves of CNNsite with different combination of features on PDNA-62.

The predicted results on PDNA-224

This set of experiments examines the contributions of the three different kinds of features

in CNNSite for the DNA- binding residue prediction on PDNA-224. To further evaluate

the performance of our proposed method CNNsite in predicting DNA binding residues,

we evaluate it on a recently proposed dataset PDNA-224. The results of CNNsite using

various features are listed in Table 4.9, where the best performers and the second best

performers are marked by bold and underscore, respectively.
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Table 4.9: The predicting performance on PDNA-224 for various features by ten-fold
cross-validation

Method ACC(%) MCC SN(%) SP(%) ST (%) AUC

SEQ 87.58 0.222 33.85 91.80 62.83 0.756
EVO 89.16 0.251 33.23 93.35 63.39 0.780
MOT 83.09 0.367 72.85 83.91 78.38 0.858
MOT+SEQ 82.85 0.382 76.63 83.34 79.99 0.869
MOT+EVO 82.40 0.381 77.35 82.79 80.07 0.872
ALL 83.68 0.397 77.12 84.19 80.66 0.892

The results show that the motif features achieve 0.367 for MCC, 78.38% for ST and

0.858 for AUC, performing better than the sequence features with 0.145 for MCC, 15.55%

for ST and 0.102 for AUC and the evolutionary features with 0.116 for MCC, 14.99% for

ST and 0.078 for AUC. When the motif features are combined with the sequence features,

the performance increases by 0.02 for MCC, 1.61% for ST and 0.011 for AUC. When the

motif features are combined with the evolutionary features, the performance increases by

0.014 for MCC, 1.69% for ST and 0.014 for AUC. On this dataset, the best result (MCC

of 0.397, ST of 80.66% and MCC of 0.397) is obtained when the three kinds of features

are combined. It performs better than other combinations with 0.016-0.175 MCC, 0.59-

17.83% ST and 0.02-0.136 AUC. Although the combination of the motif features and the

evolutionary features achieves higher value than the combination of the three kinds of

features for SN, its SP value is lower than the latter. Figure 4.10 also shows that the motif

features get better ROC curve than the sequence features and the evolutionary features and

the combination of the three features get the best ROC curve. The results on this dataset

also indicate that the motif features are more useful than the sequence features and the

evolutionary features for the prediction of DNA binding residue and that these three kinds

of features are complementary to each other in CNNsite.

Comparison with previous computational methods

This set of experiments evaluates the performance of our proposed CNNsite compared
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Figure 4.10: ROC curves of CNNsite with different combinations of features on PDNA-
224.

with previous published methods which have been trained and tested either on PDNA-

62 or PDNA-224. Many predicting algorithms including Dps-pred [3], Dbs-pssm [4],

BindN [180], Dp-bind [85], Dp-Bind [66], BindN-RF [182], BindN+ [181] and PreDNA

[91] have been proposed for the prediction of DNA binding residue, in which the former

seven methods were trained and tested on PDNA-62 and the last one, PreDNA, trained and

tested on both data sets. PreDNA [91] was developed by integrating a SVM classifier and a

template-based prediction protocol. The SVM classifier was trained by sequence informa-

tion, evolutionary information and structure information. The template-based prediction

protocol is completed by aligning the structure of the current protein-DNA complex and

that in template library. Since CNNsite do not use any structure features for prediction,

to fairly compare the prediction performance of various methods, we only consider the

PreDNA without using any structure features. The prediction performance of CNNsite

and other methods on PDNA-62 and PDNA-224 are shown in Table 4.10 and Table 4.11,

respectively, where the best performers and the second best performers are marked by bold
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and underscore, respectively.

Table 4.10: The predicting performance compared with other computational methods on
PDNA-62

Method ACC(%) MCC SN(%) SP(%) ST (%) AUC

Dps-pred 79.10 – 40.30 81.80 61.10 –
Dbs-pssm 66.40 – 68.20 66.00 67.10 –
BindN 70.30 – 69.40 70.50 69.95 0.752
Dp-bind 78.10 0.490 79.20 77.20 78.20 –
DP-Bind 77.20 – 76.40 76.60 76.50 –
BindN-RF 78.20 – 78.10 78.20 78.15 0.861
BindN+ 79.00 0.440 77.30 79.30 78.30 0.859
PreDNA 79.40 0.420 76.80 79.70 78.30 –
CNNsite 80.63 0.509 85.87 79.78 82.67 0.911

Table 4.11: The predicting performance compared with other computational methods on
PDNA-224

Method ACC(%) MCC SN(%) SP(%) ST (%) AUC

PreDNA 79.10 0.290 69.50 79.80 74.60 –
CNNsite 83.68 0.397 77.12 84.19 80.66 0.892

As the performance of the existing methods is cited from the published papers, the

values of some metrics are not known. Table 4.10 shows that BindN+ achieved the best

performance (MCC of 0.440, ST of 78.30% and AUC of 0.859) on PDNA-62 among the

previous published methods. Among all the prediction methods, CNNsite achieves the

best performance (MCC of 0.509, ST of 82.67% and AUC of 0.911) outperforming the

BindN+ on all the metrics with 0.069 on MCC, 4.37% on ST and 0.040 on AUC for

PDNA-62. Table 4.11 shows that when testing on PDNA-224, CNNsite also achieves the

best performance (MCC of 0.397, ST of 80.66% and AUC of 0.892) and performs bet-

ter than PreDNA with 0.107 on MCC, 6.06% on ST for PDNA-224. By comparing the

improvement of our proposed CNNsite over previous methods on PDNA-62 and that on

PDNA-224, we observe that the improvement on PDNA-224 is higher than the improve-

ment on PDNA-62. This phenomenon may be explained by the fact that the instances
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in PDNA-224 is more than that in PDNA-62 and CNN can make good use of the large

number of training instances to improve its performance.

Independent test

This set of experiments evaluates the performance of CNNsite on an independent test TS-

72. Since the performance on PDNA-62 and PDNA-224 are obtained by applying the

ten-fold cross-validation and the test set and training set in the cross validation are drawn

from the same population, the evaluating performances are not very persuasive. More-

over, there also exists some other predicting methods to be compared with our proposed

CNNsite, which have not been evaluated on PDNA-62 and PDNA-224. Therefore, to eval-

uate CNNsite more objectively and compare it with the methods that have not been eval-

uated on PDNA-62 and PDNA-224, we conduct an experiment on an independent dataset

TS-72. TS-72 is an independent dataset that was proposed by Ma et al. [104] to compare

the performance of DNABR with that of three other predictors including BindN [180],

BindN-RF [182] and BindN+ [181]. DNABR is a sequence based DNA binding residue

prediction method and BindN, BindN-RF and BindN+ are three methods proposed by us-

ing only sequence information. In this work, we use TS-72 to compare the performance

of CNNsite with these four predictors. The AUC values of CNNsite, DNABR, BindN,

BindN-RF, and BindN+ for TS-72 are 0.878, 0.866, 0.748, 825 and 0.844, respectively,

where the AUC values of those four previous methods are reported in Ma et al.’work [104].

In summary, our method increases the performance by 0.012-0.130 on AUC for TS-72.

4.3.3 Further analysis of the important motif features

The evaluation on PDNA-62 and PDNA-224 shows that the motif features captured by

CNNsite perform better than the sequence features and the evolutionary features, indicat-

ing that the motif features are more effective for DNA binding residue prediction than

the sequence features and the evolutionary features. In this section, we analyze discrimi-
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nant powers of the motif features in CNNsite and give an explanation for the effectiveness

of motif features for the prediction of DNA binding residue. In the convolution layer of

CNNsite, the raw input is convolved with many motif detectors. In CNNsite, 5 sets of

motif detectors of length from 2 to 6 are used and every set contains 500 motif detectors.

After CNNsite is trained by PDNA-62, the discriminant power of a motif t in CNNsite is

calculated by following formula

DP ptq “
p
ÿ

i“1

d
ÿ

j“1

fi,jptq (4.18)

fi,jptq “

#

Zj if argmaxpY1,j, ¨ ¨ ¨ , Yn,jq “ the position of t inIi

0 others
(4.19)

where p is the number of positive instances in PDNA-62, d is the number of motif detec-

tors of the same length as motif t, Ii is a positive instance in the PDNA-62, and Zj is the

feature value of motifm in instance (for more entails about Zj , refer to formula 4.23 ). The

15 top motif features with the largest discriminant power are shown in Table 4.12. For the

motif features of 2 residues, TALBE VI shows that KR, GR, GN, GK, NR, EK, KT, RN,

RT and KG are the top ten motif features. We find that the residues R, K, G are the impor-

tant compositions of these motifs. This finding is consistent with Szilágyi and Skolnick’s

study [52], in which they found that R, A, G, K and D are important for the formation of

protein-DNA interactions. The importance of R for the formation of protein-DNA inter-

actions is further confirmed by Sieber and Allemann’s work [150] which states that R can

indirectly interact with DNA by interacting with both the phosphate backbone and the car-

boxylate of E(345). Since these residues are important for the formation of protein-DNA

interactions, we speculate that they often occur in the context of DNA binding residues
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Table 4.12: The top 15 motif features of various length with the largest discriminant power

Length 2 3 4 5 6

1 KR RNR KNWV NRRRK SNRRRK
2 GR RMR WVSN KGNRS KGRRGR
3 GN RGR CKGF TRGRV VSNRRR
4 GK RLP KGFF GRRGR VSRGRT
5 NR RKR GHRF TRKRK TTRKRK
6 EK KTR HSPA RGHRF KKRRKT
7 KT HSP VSNR KRVRG GIGNIT
8 RN LKG YRPG VSNRR YKGNRS
9 RT TRK KTRK SNRRR KSIGRI

10 KG ALR IKNW RGRVK MKRVRG
11 GT IQI FGKM KGRRG RKSIGR
12 IS DSL SIGR KTRGR GSGNTT
13 DK RKT FMKR RVRGS NKRMRS
14 TR MRN KRMR KRMRS SKTRKT
15 SR RKE RGHR SRGRT KTRGRV

and their occurrences are important features for prediction. In the 15 top motif features

of more than 2 residues with the largest discriminant power, most of them also contain

these residues with high proportions. Motif features of 3 residues contain RNR, RMR,

RGR, RKR and KTR, motif features of 4 residues contain CKGF, GHRF, FMKR, KRMR

and RGHR, motif features of 5 residues contain NRRRK, KGNRS, GRRGR, TRKRK and

SNRRRK, and motif features of 6 contain SNRRRK, KGRRGR, VSNRRR, VSRGRT and

KKRRKT. It can be seen that the proportions of R, K and G in all these motif features are

very high. The discriminant powers of all motif features of number residues from 2 to 6 is

listed in the support information S1, which is an attached support information file of this

paper and can downloaded from our website. The proportions of R, A, G, K and D in the

top 15 motif features with the largest discriminant power are shown in Table 4.13. It can

be seen that motif features of 5 residues get the highest proportion (78.67%) of the im-

portant residues, indicating that the motif features of 5 residues are more useful for DNA

binding residue prediction than other motif features. By observing the proportions of the

five important residues separately, we found that the proportion of R is higher than that of
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Table 4.13: The proposition of R,A,G,K and D in the top 15 motif features of various
residues with the largest discriminant power

length 2(%) 3(%) 4(%) 5(%) 6(%) sum(%)

R 23.33 33.33 16.67 42.67 28.89 144.89
K 20.00 13.33 15.00 12.00 16.67 77.00
G 16.67 4.44 11.67 16.00 13.33 62.11
D 3.33 2.22 0.00 0.00 0.00 5.55
A 0.00 2.22 1.67 0.00 0.00 3.89
Others 36.67 44.44 55.00 29.33 41.11 206.56

other four important residues in all motifs features, it indicates that R is important for the

formation of DNA binding residues in protein chains, which is consistent with the findings

in Sieber and Allemann’s work [150].

In summary, our proposed CNNsite can extract relationships of multiple nucleotides

by applying CNN on a DNA sequence. The evaluation on three datasets shows that

CNNsite outperforms state-of-the-art methods. This shows that relationships of multiple

nucleotides indeed play an important role in prediction. Both EL PSSM-RT and CNNsite

can extract relationships of nucleotides in short range.

4.4 EL LSTM: Long Short-Term Memory Based Method

In order to extract relationships between residues that have long-range dependency, we

propose a method, referred to as EL LSTM, to use the LSTM method to extract rela-

tionships of both short range and long range through the gate mechanism to capture long

distance relationships.

4.4.1 EL LSTM

Generally speaking, every residue is encoded by sequence features, evolutionary features

and structure features. The pairwise relationship between two residues can be represented

by bi-grams of these three basic types of features, referred to as feature bi-grams. There

are 9 different types of bi-grams formed by the combination of the three basic types of
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features as shown in Figure 4.11. Let S, E, and T denote sequence feature, evolutionary
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Figure 4.11: The diagram of bi-grams formed by the three basic types of features.

feature, and structure feature, respectively. The nine different bigram types are denoted

by: (1) SSBi, (2) SEBi, (3) STBi, (4) EEBi, (5) ESBi, (6) ETBi, (7) TTBi, (8) TSBi and

(9) TEBi. Since each target residue also one residue on its left as well as on its right, the

set of bi-gram features include 18 pairs. The features used on the left side of the target

residue is call left feature bi-grams and the ones on the right side are called right feature

bi-grams. It is obvious from Figure 1 that extraction of bi-gram information requires large

amount of computation time, which is only possible now.

4.4.2 Ensemble learning

Ensemble learning is now an active area of research in machine learning and pattern recog-

nition. Ensemble learning first learns several base predictors from a training dataset and

then combines the predictors into an ensemble predictor. Ensemble learning aims to take

the advantage of learning ability of different base predictors suited for different data. There
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are three widely used ensemble strategies to train base predictors: trained by different data

subsets, trained from different feature subsets and trained by different algorithms.

In DNA binding residue predictions, non-binding residues outnumber binding residues

by a very large margin. For example, the ratios of non-binding residues to binding residues

for our four datasets shown in Table 1 ranges from 5.50 to 15.18. In order to get a bal-

anced dataset for training, many predictors remove the surplus non-binding residues [172].

However, the surplus non-binding residues do contain information and they do have the

potential to improve prediction performance.

In order to make good use of the surplus non-binding residues, we develop a predictor,

referred to as EL LSTM, by incorporating ensemble learning into our base LSTM learning

method. In EL LSTM, a variant of the bootstrap aggregating (bagging) strategy [30] is

used as the ensemble strategy to train multiple base LSTM classifiers. Since we have

sufficient non-binding residues, the binding residues (let the size to be denoted by m) are

first taken out from the dataset. The non-binding residues are divided into n subsets with

each subset having roughlym number of residues sampled randomly without replacement.

Finally the n new non-binding training datasets are formed by using the binding residues

as positive samples as n training sets for n LSTM base classifiers.

The system architecture of EL LSTM is shown in Figure 4.12. The Dataset Partition

module in EL LSTM first split the dataset as described above. Then, each dataset is fed

into the Base Classifier Training module using the base LSTM described in Figure 2.1.

For ensemble learning in the Base Classifier Selection module, a diversity based dynamic

ranking and selecting method is used to select predictors with the largest diversity between

each other to build the ensemble predictor.

Our dynamic ranking and selecting method, initially select a base LSTM at random.

Then, in each iteration, all the unselected base predictors are ranked based on their diver-

sity with the selected base predictor(s), and the one with the largest diversity will be added

into the set of selected predictors. Diversity, as an indication of the difference between
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Figure 4.12: The framework diagram of EL LSTM.

two base classifiers, is measured by the proportion of the number of samples with differ-

ent labels from the two classifiers to the total number of samples in the validation dataset.

Given a dataset with n samples and two classifiers f1 and f2, the diversity d between the

two classifiers on the dataset is calculated as

d “

řn
i“1 1pf1pxiq “ f2pxiqq

n
(4.20)

where xi is one of the sample in the dataset and 1pq is an indicator function. If f1pxiq equals

to f2pxiq, the value of the indicator function is 1; Otherwise, the value of the function is

0. The iteration is terminated when the addition of diversity no more than a specified

criterion. Finally, the selected base predictors are combined to construct an ensemble

predictor using a simple majority vote strategy.
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4.4.3 Experiments and Results

Performance evaluations serve for two purposes. The first purpose is to measure the effec-

tiveness of LSTM in terms of pairwise relationships extraction reflected in the ability of

LSTM to improve performance compared to other methods where pairwise relationships

are not used. The second purpose is to examine the effectiveness of EL LSTM for the

prediction of DNA binding residues. Four sets of evaluations are conducted here. The first

set compares LSTM with traditional classifiers. The second set compares the ensemble

classifier with base classifiers. The third set compares our proposed EL LSTM with previ-

ous predictors on the two benchmarking datasets, and the fourth set evaluates EL LSTM

on the two independent datasets.

Comparison to classifiers not using pairwise relations

The first set of experiments aims to compare the performance of LSTM to other classi-

fiers not using pairwise relationships. In this experiment, we consider three predictors

including neural network (NN) classifier, random forest (RF) classifier and SVM classi-

fier. These three classifiers are fed with the same set of residue-wise instances. Note that

the difference between LSTM and NN is only because LSTM has an additional hidden

layer to capture the pairwise relationships. Also, RF and SVM classifiers have no ability

to capture pairwise relationships. The performances of the three classifiers and LSTM on

the two benchmark datasets PDNA-224 and DBP-123 are shown in Table 4.14 and Table

4.15, respectively, where the best performers and the second best performers are marked

by bold and underscore, respectively.

The performance on PDNA-224 given in Table 4.14 shows that LSTM performs better

than the other three classifiers by 0.025-0.061 on MCC, 1.72-4.27% on ST and 0.024-

0.11 on AUC in PDNA-224. Table 4.15 shows that LSTM outperforms the other three

classifiers by 0.028-0.075 on MCC, 1.18-4.37% on ST and 0.012-0.098 on AUC in DBP-

123.The improvements on both PDNA-224 and DBP-123 are very significant with p-value

92



Table 4.14: Performance of classifiers on PDNA-224 by ten-fold cross-validation

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

NN 72.34 0.261 74.24 72.19 73.22 0.751
RF 75.27 0.299 77.01 75.14 76.08 0.835
SVM 74.98 0.295 76.61 74.86 75.73 0.837
LSTM 78.36 0.356 81.29 78.48 79.89 0.861

Table 4.15: Performance of classifiers on DBP-123 by ten-fold cross-validation

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

NN 76.36 0.352 74.74 76.55 75.64 0.770
RF 77.29 0.386 79.28 77.06 78.17 0.844
SVM 78.34 0.399 79.43 78.22 78.83 0.856
LSTM 80.51 0.427 79.34 80.67 80.01 0.868

less than 1.51e-9. Note that LSTM and the other three classifiers are fed with the same

features, but LSTM can learn feature bi-grams between residues and then learn the feature

vectors for all residues in each residue-wise data instance using the learned feature bi-

grams. The superiority of LSTM indicates that the feature bi-grams between residues are

important and indeed useful for the prediction of DNA binding residues.

Comparison between LSTM and EL LSTM

The second set of experiments compares the performance of LSTM and EL LSTM on

PDNA-224 and DBP-123. The performance of LSTM and EL LSTM on PDNA-224

and DBP-123 are shown in Table 4.16 which shows that EL LSTM outperforms LSTM

by 0.045 on MCC, 1.89% on ST and 0.03 on AUC in PDNA-224. When evaluated on

DBP-123, EL LSTM outperforms LSTM by 0.021 on MCC, 1.32% on ST and 0.018 on

AUC. Note that the improvements on both PDNA-224 and DBP-123 are very significant

with p-value less than 5.23e-7. The superiority of EL LSTM to LSTM indicates that en-

semble learning can significantly improve performance by making better use non-binding

residues. Figure 4.13(A) and Figure 4.13(B) show the ROC of EL LSTM and LSTM on

PDNA-224 and DBP-123, respectively. EL LSTM obviously obtains better ROC than
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LSTM on both PDNA-224 and DBP-123.

Table 4.16: Performances of LSTM and EL LSTM by ten-fold cross-validation

Datasets Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

PDNA-224 LSTM 78.36 0.356 81.29 78.48 79.89 0.861
EL LSTM 82.59 0.401 80.26 83.18 81.72 0.891

DBP-123 LSTM 80.51 0.427 79.34 80.67 80.01 0.868
EL LSTM 81.44 0.448 81.18 81.48 81.33 0.886
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Figure 4.13: The ROC of LSTM and EL LSTM on PDNA-224 and DBP-123 by ten-fold
cross-validation.

Note that the smallest increment on AUC for PDNA-224 and DBP-123 are 0.03 and

0.018, respectively. In these two datasets, the ratios between the non-binding residues

in PDNA-224 and that in DBP-123 is 1:3.58, which means that the non-binding residues

in PDNA-224 are much more than that in DBP-123. The difference in performance im-

provement of EL LSTM to LSTM on PDNA-224 and DBP-123 may be attributed to the

difference in the number of non-binding residues in the two datasets. The additional non-

binding residues in PDNA-224 can provide more diversity for the base classifiers, which

is the key for prediction performance.

Comparison with previous prediction methods
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The third set of experiments compares our proposed EL LSTM with state-of-the-art pre-

dictors. We first compare EL LSTM with PreDNA [28] on PDNA-224 by ten-fold cross-

validation. PreDNA was proposed recently and it achieved the state-of-the-art perfor-

mance for DNA binding residue prediction on PDNA-224 so far. PreDNA was developed

by using all three types of common features. The performances of EL LSTM and PreDNA

on PDNA-224 given in Table 4.17 shows that EL LSTM outperforms PreDNA by 0.051

on MCC and 2.52% on ST in PDNA-224, which is a significant improvement with p-value

of 2.31e-9. Table 4.18 shows the comparison of EL LSTM with two state-of-the-art pre-

dictors on DBP-123 by ten-fold cross-validation, where the best performers and the second

best performers are marked by bold and underscore, respectively. The first predictor is the

SVM classifier develop by Xiong et al. [192] which combines B-factor, packing density

and several conventional features including PSSM, Relative solvent accessibility and side

chain pKa values. The second predictor is a SVM classifier, called DNABind [98], trained

by PSSM, relative solvent accessibility, depth index and protrusion index and topological

features including degree, closeness, between-ness, and clustering coefficient. Table 4.18

shows that EL LSTM outperforms Xiong et al.’s method [192] by 0.07 on MCC, 8.68%

on ST and 0.08 on AUC and DNAbind by 0.016 on MCC, 5.05% on ST and 0.041 on AUC

on DBP-123 with p-value of 6.14e-8. Although Xiong et al.’s method and DNABind both

have higher specificity SP which measures the true negatives. However, their sensitivity

SN which measures the true positives are much lower than ours. Since binding residue is

what we are looking for, higher true spositives is more meaning full. In short, the superi-

ority of EL LSTM to the state-of-the-art predictors indicates that the EL LSTM is a useful

method for DNA binding residue predictions.

Performance on independent datasets: HOLO-83 and TS-61

The last set of experiments compares EL LSTM with state-of-the-art methods on the two

independent datasets HOLO-83 and TS-61. We first compare EL LSTM with three predic-
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Table 4.17: Comparison with previous prediction methods on PDNA-224 by ten-fold
cross-validation

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

PreDNA 81.80 0.350 76.10 82.20 79.20 -
EL LSTM 82.59 0.401 80.26 83.18 81.72 0.891

Table 4.18: Comparison with previous prediction methods on DBP-123 by ten-fold cross-
validation

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Xiong et al. 79.69 0.378 62.50 82.81 72.65 0.806
DNABind 80.76 0.432 69.80 82.76 76.28 0.845
EL LSTM 81.44 0.448 81.18 81.48 81.33 0.886

tors including Xiong et al.’ method, DNABind and DISPLAR on HOLO-83. In addition

to the works of Xiong et al. and DNABind, introduced in the the last section, previous ex-

periment, DISPLAR [166] is a neural network classifier using PSI-blast sequence profiles,

solvent accessibilities and 14 closest neighboring residues. The performance of EL LSTM

and the other three predictors on HOLO-83 is shown in Table 4.19, where the best per-

formers and the second best performers are marked by bold and underscore, respectively.

Among the four predictors, EL LSTM achieves the best performance. It outperforms the

other three predictors by 0.009-0.062 on MCC, 3.37-7.23% on ST, and 0.012-0.051 on

AUC. Again, the method by Xiong et al., DNABind and DISPLAR all have higher SP

than EL LSTM. But, their SN are much lower than EL LSTM.

To compare EL LSTM with DP-Bind [66] and DNABind [98] on TS-61, we use their

web server to get their prediction results for TS-61. DP-Bind [66] is a web server for pre-

dicting DNA binding residues in a DNA binding protein from its amino acid sequence. The

web server implements three machine learning methods: DP-Bind(SVM) that uses SVM,

DP-Bind(KLR) that uses kernel logistic regression, and DP-Bind(PLR) that uses penal-

ized logistic regression. DB-Bind [66] also implements two types of consensus methods.

The first one uses majority vote on the results of three machine learning methods, re-
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ferred to as DP-Bind(MAJ). The second one uses strict consensus that forces unanimous

agreement. Since strict consensus is hard to achieve, DP-Bind using this consensus mode

cannot provide prediction results for many of the residues. Therefore, in the performance

evaluation on TS-61, we only show the result of the majority vote method. The perfor-

mance of EL LSTM and other methods on TS-61 is listed in Table 4.20, where the best

performers and the second best performers are marked by bold and underscore, respec-

tively. It shows that EL LSTM outperforms DP-Bind by 0.15-0.16 on MCC, 4.86-5.51%

on ST and 0.03-0.052 on AUC and outperforms DNABind by 0.12 on MCC, 8.48% on

ST and 0.085 on AUC. This comparison indicates that EL LSTM performs better than the

predictors in DP-Bind [66] and DNABind [98] with a large margin on TS-61.

Because the samples in repetitive training datasets and testing datasets may be related,

this may result in a biased estimation[8]. Therefore, the p-value for a comparison between

two methods on a single dataset by ten-fold cross-validations may be biased. In order to

validate the unbiasedness of our evaluation, we further use the independent test dataset

TS-61 to calculate the p-values for comparisons by the Wilcoxon signed-ranks test[189].

As the Wilcoxon signed-ranks test requires a larger number of data sets to ensure test

statistic (equation 23) to be distributed approximately normally [8], we divided TS-61 into

20 independent datasets, where every independent datasets contains 3 protein sequences

except that the last one contains 4 sequences. Since the pairwise sequence similarity be-

tween the sequences in TS-61 is less than 25%s, the 20 independent datasets from TS-61

are unrelated from each other, which may provide unbiased estimation for p-value. Since

DNABind outperforms Xiong et al.’s method on both the DBP-123 and HOLO-83, and

its prediction results TS-61 can be easily obtained by its web sever while the results of

Xiong et al.’s method can’t be obtained, we analyze DNABind in the comparison. Addi-

tionally, we also analyzed DP-Bind which prediction results for TS-61 can be obtain by

using its web sever. As DP-Bind(PLR) can obtain better performance other two settings

on TS-61(as shown in Table 4.20), we use DP-Bind(PLR) to represent DP-Bind in this
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analysis. The AUCs of our method EL LSTM, DP-Bind and DNABind on the 20 inde-

pendent datasets are listed in Table 4.21, where the best performers and the second best

performers are marked by bold and underscore, respectively. Table 4.21 shows that for

the 20 independent datasets except the third and the 7th datasets, our method EL LSTM

can perform better then them. Both the p-values for the comparison with Dp-Bind and

that with DNABind are 8.85e-5, which indicates that the outperformance for our method

EL LSTM over DP-Bind and DNABind are significant.

Table 4.19: Comparison with previous prediction methods on HOLO-83 by independent
test

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Xiong et al. 80.27 0.358 58.60 83.89 71.25 0.800
DNABind 83.25 0.411 59.00 87.09 73.05 0.839
DISPLAR 85.66 0.396 46.10 92.27 69.19 -
EL LSTM 79.19 0.420 72.48 80.35 76.42 0.851

Table 4.20: Comparison with previous prediction methods on TS-61 by independent test

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

DP-Bind(SVM) 75.90 0.26 65.99 76.70 71.34 0.794
DP-Bind(KLR) 76.45 0.25 64.22 77.45 70.83 0.790
DP-Bind(PLR) 75.46 0.25 65.24 76.29 70.76 0.812
DP-Bind(MAJ) 76.64 0.26 65.24 77.57 71.41 -
DNABind 76.99 0.29 54.79 80.79 67.79 0.757
EL LSTM 76.09 0.41 76.52 76.02 76.27 0.842

4.4.4 Feature Analysis

The advantage of LSTM for DNA binding residue prediction is that it can extract the

pairwise relationships between neighboring residues. As residues are encoded by sequence

features, evolutionary features and structure features, the pairwise relationships between

neighboring residues can be represented by 9 types of feature bi-grams formed by these

three basic features. As weight matrices
ÝÑ
V˚
p
ÝÑ
Vi,

ÝÑ
Vf ,

ÝÑ
Vo,

ÝÑ
Vc
q are four weight matrices in
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Table 4.21: AUCs of different prediction methods on 20 independent datasets from TS-61

datasets 0 1 2 3 4 5 6 7 8 9

DP-Bind 0.775 0.750 0.753 0.728 0.808 0.793 0.842 0.785 0.725 0.761
DNABind 0.825 0.796 0.781 0.784 0.815 0.791 0.842 0.810 0.797 0.692
EL LSTM 0.918 0.914 0.837 0.768 0.878 0.847 0.810 0.879 0.856 0.862

datasets 10 11 12 13 14 15 16 17 18 19

DP-Bind 0.661 0.748 0.713 0.645 0.756 0.786 0.784 0.787 0.751 0.746
DNABind 0.618 0.815 0.753 0.672 0.740 0.789 0.709 0.767 0.751 0.757
EL LSTM 0.824 0.847 0.788 0.711 0.806 0.873 0.761 0.856 0.783 0.835

LSTM used for measuring left feature bi-grams, the weight matrix for left feature bi-grams

, denoted by
ÝÑ
V, can be is calculated as follows:

ÝÑ
V “ sqrp

ÝÑ
Vi
d
ÝÑ
Vi
`
ÝÑ
Vf
d
ÝÑ
Vf
`
ÝÑ
Vo
d
ÝÑ
Vo
`
ÝÑ
Vc
d
ÝÑ
Vc
q (4.21)

where d is the element-wise multiplication of the two matrices and sqrpq is the root oper-

ation of every element in matrix. Similarly, the weight matrix for right feature bi-grams,

denoted by
ÐÝ
V, can be calculated from the four weight matrices

ÐÝ
V˚
p
ÐÝ
Vi,

ÐÝ
Vf ,

ÐÝ
Vo,

ÐÝ
Vc
q.

ÝÑ
V “ sqrp

ÝÑ
Vi
d
ÝÑ
Vi
`
ÝÑ
Vf
d
ÝÑ
Vf
`
ÝÑ
Vo
d
ÝÑ
Vo
`
ÝÑ
Vc
d
ÝÑ
Vc
q (4.22)

where d is the element-wise multiplication of the two matrices and sqrpq is the root op-

eration of every elements in matrix. By observing
ÐÝ
V and

ÝÑ
V, we can identify the feature

bi-grams that are important for the DNA binding residue prediction.

Since we cannot find works from literatures to validate the feature bi-grams involved

by structure features, we only analyze SSBi, EEBi, SEbi and ESbi. As sequence features

are represented by the identities of the 20 residue types and evolutionary features are en-

coded by conservative scores of the 20 residue types, SSBi, EEBi, SEBi and ESBi can be

represented as 400 types of bi-grams formed by the 20 residue types. The heat map for the

weights of SSBi, EEBi, SEBi, ESBi are shown in Figure 4.14, Figure 4.15, Figure 4.16

and Figure 4.17, respectively.
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Figure 4.14: The heat map of SSBi.
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Figure 4.15: The heat map of EEBi.

In these four figures, the left subgraph and the right subgraph show the left feature bi-

grams and the right feature bi-grams, respectively. By observing the colors of for the left

feature bi-grams and for the corresponding right feature bi-grams, it is obvious that they

are not symmetric. This validates the purpose of having separate feature representations

for left context and right context. The bi-grams with larger weights for SSBi, EEBi, SEBi,

ESBi are listed in Table 4.22.

By analyzing the bi-grams with large weights listed in Table 4.22, we can see that the
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Figure 4.16: The heat map of SEBi.
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Figure 4.17: The heat map of ESBi.

interactions formed by residues R, D, G, A and K are important in the prediction of DNA

binding residue. This finding is consistent with the study of Szilágyi and Skolnick [163], in

which they found that R, D, G, A and K are important for the recognition between protein

chains and DNA. The importance of R for the prediction of DNA binding residue is further

confirmed by the work of Sieber and Allemann [150] which states that R can indirectly

interact with DNA by interacting with both the phosphate backbone and the carboxylate

of E(345). Table 4.22 also shows that KR, GK and KG are three of the feature bi-grams
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Table 4.22: The bi-grams with larger weight for all types of bi-grams

Bi-grams types Bi-grams with larger weight

Left SSBi AL, AT, RC, MR, DF, HD, KD, SD, TD, PD
Right SSBi GR, ER, KR, DC, DF, DY, HD, KG, PG, VR
Left EEBi AG, AT, RR, ER, GR, KR, KI, IG, FG, DK
Right EEBi PA, RM, DQ, DF, GN, GM, NG, KG, KH, KQ
Left SEBi AK, AY, RA, RQ, RL, DP, DW, FD, GS, KN
Right SEBi AC, AE, AG, AH, QR, FR, GA, YG, QK, IK
Left ESBi NA, QR, VR, RE, RI, DE, ED, FG, VG, KI
Right ESBi AF, HA, SA, QR, GH, GS, CG, QG, QK, CK

with the higher weights. It means that the combinations between K and R and between K

and G are very important for the interaction between protein and DNA. This conclusion

is consistent with the conclusion conducted by study of Ahmad et al. [3], in which they

concluded that K and R can enhance R’s ability to bind DNA and that the K residues within

binding regions seem to favor G as their immediate neighbor on both sides. In addition to

R, D, G, A and K, the four figures also show that the feature bi-grams involving Q also

has very high weights. For example, for SEBi and ESBi, both the left bi-grams and the

right bi-grams involving Q have very hight weights. This indicates that Q is useful for the

prediction of DNA binding residues. Consequently, we hypothesize that residue type Q

is also important for the interaction between proteins and DNAs. Our feature works will

further investigate the importance of residue type Q for the interaction between proteins

and DNAs through computational methods and experimental methods.

In summary, EL LSTM can extract both local context and long-distance dependency

for prediction. Evaluation on four datasets indicates that both local context and long-

distance dependency play important roles in the prediction. As long-distance dependency

is usually composed of residues in short spatial distance, it is not surprising to see that

some long-distance dependencies extracted by EL LSTM are in neighboring residues spa-

tially as long as they are also sequential neighbors. However, EL LSTM only extract long

distance relationships with the maximum sequential distance of 11. How to extract rela-

102



tionships with very short spatial distance yet with very long sequence distance is the focus

of our next study.

4.5 PDNAsite: Spatial and Sequence Context based method

In order to extract the relationships between residues with very short spatial distance yet

with very long sequence distance, we propose a novel method referred to as PDNAsite. In

PDNAsite, two sliding windows are used to capture relationships of sequence neighbors

and spatial neighbors, respectively. these two types of neighbor residues are then used

jointly to learn both sequence context and spatial context for prediction.

4.5.1 Contextual feature extraction

In the study of DNA binding site prediction, the residue-wise data instances derived from

sequence were used as samples to train and evaluate classifiers. In order to make the full

use of the sequence context for a target residue, a sequence sliding window of sizew(being

an odd number) is used. Then, a residue-wise data instance was commonly defined as a

fragment with w consecutive amino acids with the target residue positioned in the middle

and pw´1q{2 neighboring residues on either side. The residues contained in the sequence

sliding window provide the sequence context information for the target residue. However,

research results in many literatures [166, 20, 21] have indicated that the spatial context can

also contribute to the identification of DNA binding site from non-binding sites. In order

to extract the spatial context of a target site for its prediction, we propose a spatial sliding

window with size m. The spatial sliding window is defined as a sphere with the target site

positioned at the center and pm ´ 1q sites with the shortest spatial distance to the target

site contained in it. The distance between sites is calculated based on the coordinates of

their Cαatoms.

For a target site, the sites contained in the spatial sliding window are referred to as the
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spatial context, while the sites contained in the sequence sliding window are referred to as

the sequence context. As some residues in the sequence context may also be within the

cutoff spatial distance from the target site, there may be sites contained simultaneously

by both the sequence context and the spatial context, referred to as the overlapping sites.

Since these sites are closed to the target site within both the sequence distance and the

spatial distance, they can have greater effect on the function of the target site. So when the

sequence context and the spatial context are combined to extract features, the overlapping

sites should be used twice.

Therefore, in this method, a residue-wise data instance is defined as the combination

of the sequence context and the spatial context. As a result, a residue-wise data instance

should contain pm`w´ 1q residues. A residue-wise data instance is labeled with 1 (pos-

itive) if the target residue is binding or -1 (negative) if the target residue is non-binding.

As SVM classifiers only take numerical values for classification, the residue-wise data

instances need to be encoded into feature vectors. In this method, the feature space of

residue-wise data instances is constructed by extracting the sequence information and

structure information from the spatial context and the sequence context, including local

amino acid composition, evolutionary information in terms of PSSM, Solvent accessible

surface area, secondary structure, net charge and B-factor, where the entails for Solvent

accessible surface area, secondary structure, net charge and B-factor are described in the

following text.

Solvent accessible surface area (ASA): the ASA of every residue in protein is calcu-

lated from DSSP36. Before encoding the ASAs of the target residue and its neighboring

residues, the ASA is divided by the maximum ASA of the corresponding residue type

to calculate its relative ASA (RASA). Then, for a data instance, the RASA values of the

residues in the spatial context and the sequence context are encoded and added into fea-

ture vector. Secondary structure: Secondary structure assignments of all residues in the

proteins are made with DSSP [73], which classify every residue as one of the nine types:
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alpha helix (H), residue in isolated beta-bridge (B), extended strand participates in beta

ladder (E), 3-helix (or 310 helix) (G), 5-helix (or pi-helix) (I), hydrogen-bonded turn (T),

bend (S), loop (L) and irregular (no designation). In this paper, the 9 types of secondary

structure are approximately combined into 3 types: helix (H),β-strand (E) and coil (C).

The secondary structure of the target residue is encoded using mutually orthogonal binary

vectors: (1,0,0) for helix, (0,1,0) forβ-strand and (0,0,1) for coil. Additionally, the sec-

ondary structure compositions for the residues in the left sequence sliding window, the

right sequence sliding window, the whole sequence sliding window and the spatial slid-

ing window are added into the feature vector, respectively. The values in the structure

composition denote the proportion of the number of residues with the corresponding sec-

ondary structure type over the total number. Net charge of a residue: Due to the negative

ambience around the DNA, the charge reciprocality of a residue may play an important

role in its binding to the partner DNA. Therefore, the net charge of a residue is used as

a feature for classification. A charge of +1 is ascribed to Arg and Lys and -1 to Asp and

Glu. His is specified a charge of +0.5 and all other residues are taken as neutral. The net

charge of the sites in the sequence and spatial sliding windows are calculated. B-factor of

a residue: The B-factor of protein crystal structure reflects the fluctuation of atoms about

their average positions and provides important information about protein dynamics. The

thermal motion is useful for analyzing the dynamic properties of proteins. Therefore, in

this work, the B-factor of the Cαand that of the Cβof the residues in the sequence and

spatial windows were encoded. In addition, the sum of the B-factor of the Cαover the

residues in spatial sliding window was also calculated.

4.5.2 Latent Semantic Analysis (LSA) and Support Vector Machine

LSA is a method for extracting and representing the contextual meaning of words by statis-

tical computations. Latent Semantic Analysis (LSA) is suitable to remove redundancies in

feature space. Recently, LSA has been successfully applied to many bioinformatics prob-
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lems. For example, Dong and his coworkers [49] developed SVM classifiers for protein

remote homology detection by applying the LSA operation. For this problem, the starting

point of the LSA operation is the construction of a triplet-sequence matrix W with dimen-

sion pM ˚ Nq which denotes the co-occurrences between triplets and protein sequences.

Triplets denote the combinations of three amino acid types. In the triplet-sequence matrix

W , each sequence is expressed as a column vector. However, this representation does

not recognize the triplets with similar function in the sequence and the dimension is too

large. To resolve these problems, singular value decomposition is used to process the

triplet-sequence matrix W . Let K be the rank of W , W can be decomposed into three

matrices:

W “ USV T (4.23)

Where U is the left singular matrix with dimensions pM ˚ Kq, V is the right singular

matrix with dimensions pN ˚ Kq, S is the pK ˚ Kq diagonal matrix with singular values

where . One can reduce the dimensions by deleting the smaller singular values in the di-

agonal matrix and ignore the corresponding columns of matrix U and rows of matrix V .

Additionally, Liu et al. [94] further improved the prediction accuracy for protein remote

homology detection by applying LSA on the top-n-gram-sequence matrix which denotes

the co-occurrences between top-n-grams and protein sequences. Through the analysis

of the three matrices (word-document matrix, the triplet-sequence matrix, and the top-

n-gram-sequence matrix), we discovered that all these three matrices are constructed by

features of the same type, for example, words or biological sequences. We speculate that

LSA could only be suitable for processing the feature space constructed by features of the

same type, such as words in text, triplet or top-n-gram in protein sequence. In this pa-

per, we construct a feature-instance matrix W which denotes the co-occurrences between

features and protein sequences. Since there is much redundant information between the
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PSSM features, we need to apply LSA to decrease the redundant information. However,

the features used to construct the matrix W do not belong to the same type. So matrix

W cannot be processed by LSA directly. In this work, we take the sub space of W with

dimension of p20 ˚ pw ` m ´ 1qq spanned by only the PSSM features, denoted by W 1.

Since W 1 contains features of the same, we can then use LSA.

SVM can be used to resolve both binary-labeled and multi-labeled classification prob-

lems. For a binary-labeled classification problem, SVM first maps the input feature space

into a higher-dimensional space and then seeks an optimal hyperplane, which maximizes

the separation margin between the two classes of training instances, to separate the pos-

itive instances from negative instances. As SVM can transform the input features of the

instances from a low dimensional space to a higher dimensional space, it has superior gen-

eralization power for most classification problems. In this study, the LIBSVM software

package available at https://www.csie.ntu.edu.tw/ cjlin/libsvm/ is used. The radial basis

function (RBF) is taken as the kernel function. RBF is defined as

KpXi, Xjq “ expp´γ }Xi ´Xj}q (4.24)

where γ is a training parameter. A smaller value makes the decision boundary smoother.

Another parameter for SVM training is the regularization factor C, which controls the

trade-off between low training error and large margin. The optimal value of the parameters

and C are obtained by five-fold cross-validation in this work. The data sets used in this

study have many more negative instances than positive instances, which will have a great

impact on the prediction performance of classifiers. In order to deal with imbalanced data

sets, ensemble learning is used. Ensemble learning first divides the negative instances

into n folds with non-overlapping instances, where the number of instances in each fold

is approximately equal to that of the positive instances. Then the negative instances in

each fold and the positive instances are combined to form a new data set. Thus n new data
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sets are constructed. Finally, the n new data sets are used as training data sets to train n

base classifiers, which are subsequently combined as an ensemble classifier for prediction.

Five-fold cross-validation is a widely used validation method, where the data set is first

divided into five folds with no overlapping instances, and each time one fold is used as

the test set and the remaining four folds are taken as the training set. This process is

repeated five times until all the instances in the original set are tested once. The average

performance over five such runs is used as the final prediction performance. In this study,

the performances of our method on the two data sets are evaluated by applying five-fold

cross-validation.

4.5.3 Experiments and Results

Performance evaluations serve for two purposes. The first purpose is to measure the ef-

fectiveness of spatial sliding window in extracting spatial relationships between residues.

The second purpose is to examine the effectiveness of PDNAsite for the prediction of DNA

binding residues. Three sets of evaluations are conducted here. The first set compares the

performance of sequence sliding window with spatial sliding window. The second set

evaluates the application of LSA on feature-instance matrix. The third set compares our

proposed PDNAsite with previous predictors on the three benchmarking datasets and two

independent datasets.

Performance comparison between sequence sliding window with

spatial sliding window

To evaluate the performance of PDNAsite and compare it with other existing predictors,

we first analyze the impacts of the sequential sliding window size w and the spatial sliding

window size m on the prediction performance of PDNAsite. The impacts of w and m on

the prediction performance of PDNAsite on PDNA-62 by five-fold cross-validation are

shown in Figure 4.18A and Figure 4.18B, respectively. As can be seen from Figure 4.18A,
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MCC value and ST value are initially on the rise until they reach their maximum value at

around w “ 13 and then slightly go down with the increasing value of w. Thus we choose

w “ 13 for PDNAsite. This value is used for w in subsequent analysis. From Figure

4.18B, we can see that both MCC and ST values go up as m increases and achieves their

best values when m “ 15. So in all the subsequent experiments, m is set to 15.
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Figure 4.18: Impacts of window size w and m on prediction performance.

In this study, the features from the sequence context and the spatial context are used

to construct the feature vector for each target site. In order to find out the contributions of

the spatial context and the sequence context to the identification of DNA binding residue,

we conduct performance evaluations using three sets of features: sequence context, spa-

tial context and combined use of both. The performances of the predictors using different

context on PDNA-62 and PDNA-224 are shown in Table 4.23 and Table 4.24, respec-

tively, where the best performers and the second best performers are marked by bold and

underscore, respectively.

Table 4.23: Performance comparison of predictors with different context on PDNA-62.

methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Sequence context 83.48 0.527 80.40 84.03 82.22 0.893
Spatial context 83.78 0.540 82.31 84.04 83.18 0.900
Both 84.40 0.563 84.94 84.32 84.63 0.917

As can be seen from Table 4.23 on PDNA-62, the predictor using spatial context

achieved better performance than that using sequence context by 0.013 in terms of MCC,
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Table 4.24: Performance comparison of predictors with different context on PDNA-224.

methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Sequence context 79.19 0.346 78.52 79.24 78.88 0.868
Spatial context 79.61 0.358 81.01 79.50 80.26 0.880
Both 80.81 0.387 83.04 80.63 81.84 0.894

0.96% in terms of ST and 0.007 in terms of AUC. The predictor using both of them

achieved 0.563 MCC, 84.63% ST and 0.917 AUC, outperforming the one using sequence

context alone by 0.036 MCC, 2.41% ST and 0.024 AUC with p-value less than 0.001 indi-

cating the improvement is quite significant. As can be seen from Table 4.24 on PDNA-224,

the predictor using spatial context achieved better performance than that using sequence

context by 0.012 MCC, 1.38% ST and 0.012 AUC. The predictor using both of them out-

performed the one using sequence context alone by 0.041 MCC, 2.96% ST and 0.026 AUC

with p-value less than 0.001 indicating the improvement is quite significant. The ROC

curves of the predictors using different context on PDNA-62 and PDNA-224 are shown

in Figure 4.19 and Figure 4.20, respectively. The ROC curves of the predictors with dif-

ferent context also indicate that the spatial context gives more performance gain than the

sequence context and the combination of them can further improve the performance.

0 20 40 60 80 100

0

20

40

60

80

100

S
en

si
ti

v
it

y

Sequence context

Spacial context

Both

Both_LSA_All

Both_LSA_PSSM

100-Specificity

Se
ns

iti
vi

ty

Figure 4.19: The ROC of PDNAsite with different sittings on PDNA-62.
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Figure 4.20: The ROC of PDNAsite with different sittings on PDNA-224.

Application of LSA on feature-instance matrix W

LSA is an efficient feature extraction technique widely used to remove noise information

for a feature space. In this paper, we applied LSA in two different ways: one is applying

LSA on the whole feature space, and the other is employing LSA on the sub feature space

spanned by PSSM features. The prediction performances of the two ways on PDNA-

62 and PDNA-224 by five-fold cross-validation are shown in Table 4.25 and Table 4.26,

respectively, where the best performers and the second best performers are marked by bold

and underscore, respectively.

Table 4.25: Performance comparison of predictor with different LSA on PDNA-62.

methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Both 84.40 0.563 84.94 84.32 84.63 0.917
Both LSA All 84.28 0.550 82.63 84.58 83.61 0.908
Both LSA PSSM 85.11 0.582 86.27 84.91 85.59 0.928

It can be observed that, on PDNA-62, the prediction performance decreased by 0.013

MCC, 1.02% ST and 0.009 AUC when LSA was applied on the whole feature space, while

the prediction performance increased by 0.019 MCC, 0.96% ST and 0.005 AUC when
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Table 4.26: Performance comparison of predictor with different LSA on PDNA-224.

methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Both 80.81 0.387 83.04 80.63 81.84 0.894
Both LSA ALL 78.54 0.338 78.24 78.57 78.41 0.860
Both LSA PSSM 82.25 0.405 83.17 82.34 82.67 0.902

LSA was applied on the sub feature space spanned by PSSM features. On PDNA-224, the

prediction performance decreased by 0.049 MCC, 3.43% ST and 0.034 AUC when LSA

was applied on the whole feature space, while the prediction performance increased by

0.018 MCC, 0.83% ST and 0.008 AUC when LSA was applied on the sub feature space

spanned by PSSM features. The ROC curves of the two ways on PDNA-62 and PDNA-224

are shown in Figure 4.21 and Figure 4.22, respectively. The results shown in Figure 4.21

and Figure 4.22 indicate that LSA is not suitable to deal with the feature space constructed

by features of different types and the application of LSA on the sub feature space spanned

by PSSM is capable of improving the performance of PDNAsite.

Comparison with existing methods

DNA binding sites have been predicted successfully by many predictors. To demonstrate

the discriminating power of our proposed PDNAsite, its prediction performance is com-

pared with other existing state-of-the-art methods. As a meaningful comparison must be

made on the same data sets, the following predictors which used the either of the two

datasets are used as comparison including Dps-pred [3], Dbs-pssm [4], BindN [180], Dp-

bind [85], Dp-Bind [66], BindN-RF [182], BindN+ [181] which used the first dataset, and

PreDNA [91] which used both datasets. PreDNA [91] is the best-performing predictor

reported so far. It integrated a machine learning model and a structural alignment model

for prediction where the structural alignment model used the amino acid-nucleotide pairs

with distance less than 16 Å as the alignment units. In each alignment unit, the distance

between the amino acid and the nucleotide is calculated based on their coordinates in the

3D structure of the protein-DNA complex. However, in most cases, the binding sites and
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the non-binding sites in the training dataset and the test dataset are defined based on the

distances between the sites and its neighboring nucleotides. As such, the binding site can

be distinguished from the non-binding site based on the distance information directly. We

argue that for training classifiers for DNA binding sites, the distance information between

amino acid and nucleotide should not be used as features. Therefore, in order to fairly

compare the performance of our proposed PDNAsite with the existing methods, we only

consider the PreDNA without using the structural alignment model. The prediction accu-

racies of our method and the existing methods by five-fold cross-validation on PDNA-62

are shown in Table 4.27, where the best performers and the second best performers are

marked by bold and underscore, respectively. As can be seen from the table, our method

Table 4.27: Comparison of PDNAsite with other existing methods on PDNA-62.

methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

Dps-pred 79.10 – 40.30 81.80 61.10 –
Dbs-pssm 66.40 – 68.20 66.00 67.10 –
BindN 70.30 – 69.40 70.50 69.95 0.752
Dp-bind 78.10 0.490 79.20 77.20 78.20 –
DP-Bind 77.20 – 76.40 76.60 76.50 –
BindN-RF 78.20 – 78.10 78.20 78.15 0.861
BindN+ 79.00 0.440 77.30 79.30 78.30 0.859
PreDNA 83.06 0.500 80.20 84.10 82.20 –
PDNAsite 85.11 0.582 86.27 84.91 85.59 0.928

performs better than PreDNA by 0.082 MCC, 3.39% ST with p-value less than 0.001, in-

dicating that not only PDNAsite is the best performer, the improvement is significant on

PDNA-62. The comparison between our predictor and PreDNA on PDNA-224 by five-

fold cross-validation is shown in Table 4.28, where the best performers and the second

best performers are marked by bold and underscore, respectively. Our method outper-

forms PreDNA by 0.045 in MCC, 3.47% in ST and 0.010 in AUC with p-value less than

0.001, indicating significant performance improvement. DNABind [98] is a recently pro-

posed predictor for DNA binding site prediction, which also used some spatial context as
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Table 4.28: Comparison of PDNAsite with PreDNA on PDNA224.

methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

PreDNA 81.80 0.350 76.10 82.20 79.20 0.892
PDNAsite 82.25 0.405 83.17 82.34 82.67 0.902

classification features, including degree, closeness and betweenness [97]. These features

are calculated from the graph structure formed by the target site and its spatial neighbor-

ing sites. The features used in this paper include the amino acid composition, secondary

structure, evolutionary information and physiochemical information contained in spatial

context. In order to demonstrate the effectiveness of the spatial context proposed in this

paper for the prediction of DNA binding site, we compared our predictor with DNABind

[98] on DBP-123 and HOLO-83. As our predictor is only trained by DBP-123 without

using any information in the template library used by DNABind [98], we just compared

our predictor with the machine learning-based protocol in DNABind (DNABindML). The

results of the two methods are shown in Table 4.29, where the best performers and the sec-

ond best performers are marked by bold and underscore, respectively. It can be observed

that our method outperforms DNABindMLwith 2.66% ST and 0.044 AUC with p-value

less than 0.001 on DBP-123 and with 3.98% ST and 0.009 AUC on HOLO-83.

Table 4.29: Comparison of PDNAsite with DNABind on DBP-123 and HOLO-83.

Datasets methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

DBP-123
DNABind 80.76 0.432 69.80 82.76 76.28 0.845
PDNAsite 84.56 0.506 71.02 86.86 78.94 0.889

HOLO-83
DNABind 83.25 0.411 59.00 87.09 73.05 0.839
PDNAsite 78.66 0.439 74.59 79.47 77.03 0.848

DNABR [104] is a sequence based DNA binding site prediction method, which per-

forms better than the three methods proposed by Wang et al., including BindN [180],

BindN-RF [182] and BindN+ [181]. To compare with DNABR, an independent test dataset

TS-61 with 61 protein chains is applied. TS-61 was first proposed for evaluating the per-
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formance of DNABR [104] by extracting proteins-DNA complexes from PDB [17]. On

the dataset with 3.5 Å as the distance threshold, results show that the AUC values are

0.8783, 0.8669, 0.7488, 8257, and 0.8445 for our method, DNABR, BindN, BindN-RF,

and BindN+ method, respectively. For this evaluation our method, BindN, BindN-RF, and

BindN+ are trained on the PDNA62 whereas DNABR is trained on a much larger dataset

TR265 with 265 protein chains and the AUC values for the other four methods are ref-

erenced from Ma et al.’s work [104]. It indicates that our method performs better than

DNABR and other three methods on TS-61.

4.5.4 Analysis spatial context and Case study

Different target sites generally have different spatial context. For example, some sites

may only contain either non-binding sites or binding sites in their spatial context while

other sites may have both of them. Figure 4.21A and Figure 4.21B show the sensitivity

and specificity of the predictions for sites with different number of binding sites in their

spatial context, respectively. In Figure 4.21A, the x-axis represents the number of binding
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Figure 4.21: Analysis of number of binding sites in the spatial context.

sites contained in the spatial context and the y-axis represents the predicting sensitivity

for the sites with certain number of binding sites in their spatial context. In Figure 4.21A,

the x-axis has the same meaning as the one for Figure 4.21A and the y-axis denotes the

predicting specificity for the sites with certain number of binding sites in their spatial

context. From Figure 4.21A, we can see that the predicting sensitivity increases as the
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number of binding sites in the spatial context increases to 10; and PDNAsite gets the

maximal sensitivity when the number of binding sites in the spatial context equals to or

greater than 10. From Figure 4.21B, we can see that the predicting specificity decreases

as the number of binding sites in the spatial context increases to 10; and PDNAsite gets

the maximal specificity when the number of binding sites in the spatial context equals to

0. This phenomenon indicates that, as the number of binding sites in the spatial context

increases, the target site has more capacity to bind to its corresponding DNA molecule,

meaning that the number of binding sites in the spatial context has a great impact on the

prediction. Therefore, the spatial context extracted from the spatial sliding window can act

as a very important discriminant feature for DNA binding site identification. We can also

conclude that the interactions between neighboring binding sites in their spatial structure

are important for protein-DNA recognition and their binding ability.

Epstein-Barr nuclear antigen 1 (PDB 1B3T) activates the initiation of DNA replication

once every cell cycle from the Epstein-Barr virus (EBV) latent origin of DNA replica-

tion, oriP [24]. Nucleosome Core Particle (PDB 1KX5) is the greater part of nucleosome

and comprises an octamer, containing a single histone H3-H4 tetramer and two histone

H2A-H2B dimer, and 147 bp of DNA 45. 1B3T and 1KX5 are two typical protein-DNA

complexes and they are not contained by the data sets PDNA-62 and PDNA-224. More-

over, the protein chains in these two complexes show low similarity with that in PDNA-62.

So these two complexes are used as study cases for PDNAsite trained on PDNA-62. On

complex 1B3T, PDNAsite achieves 86.16% ACC, 0.599 MCC, 96.00% SN, 84.91% SP

and 90.45% ST. And on complex 1KX5, PDNAsite achieves 89.12% ACC, 0.600 MCC,

89.71% SN, 89.06% SP and 89.39% ST. The real DNA binding sites and predicted sites

by PDNAsite for complex 1B3T and 1KX5 are shown in Figure 4.22. Figure 4.22A and

Figure 4.22B denote the real sites and predicted sites of 1B3T, respectively. And Figure

4.22C and Figure 4.22D denote the real sites and predicted sites of 1KX5, respectively.

From the figure, we can see that most of the real binding sites are covered by the predicted
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binding sites, indicating that most real binding sites were successfully predicted by PDN-

Asite. As there are much more non-binding sites than binding sites in a protein sequence,

there are some false predicted non-binding sites shown in Figure 4.22B and Figure 4.22D.

Figure 4.22: The Real sites and the predicted sites of 1B3T and 1KX5.

4.6 Comparison among our four methods

Four methods are proposed in this chapter for binding residue predictions. EL PSSM-

RT is designed to extract relationships between two residues. CNNsite aims to extract

relationships of residues in more than two positions. EL LSTM aims to extract both local

context and long-range relationships. PDNAsite can extract both sequence relationships

and spatial relationships between two residues. Comparison of the performance of the

four methods are tabulated in Table 4.30, Table 4.31 and Table 4.32 for dataset PDNA-62,
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PDNA-224, and TS-61, respectively. From these three tables, we can see that PDNAsite

and EL LSTM are the top two performers compared to CNNsite and EL PSSM-RT. This

is because PDNAsite and EL LSTM contain both sequence features and structure features

whereas CNNsite and EL PSS-RT only use sequence features. Thus we can conclude that

structure features are indeed useful for DNA binding residue prediction.

Note that in the two top performers, PDNAsite outperforms EL LSTM with a large

margin. This indicates that spatial context captured by the spatial sliding window in PDN-

Asite is a more salient feature for DNA binding residue prediction. Even though structure

features are important for DNA binding residue prediction, structure features are unavail-

able for most proteins. So PDNAsite and EL LSTM can be applied to only a limited

number of proteins. Between the two methods that use only sequential features, CNNsite

outperforms EL PSSM-RT on all the three datasets. This indicates that multi-residue re-

lationships are more useful for DNA binding prediction than pairwise relationships. How-

ever, CNNsite is a deep learning model based method which requires a large number of

samples to train while EL PSSM-RT is much less demanding on the number of sample

needed. Therefore, CNNsite is applicable to applications where the datasets are relatively

large whereas EL PSSM-RT is more useful if the training data is relatively small.

Table 4.30: Comparison of performances on PDNA-62.

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

EL PSSM-RT 78.23 0.490 87.08 76.69 81.87 0.901
CNNsite 80.63 0.509 85.87 79.78 82.67 0.911
PDNAsite 85.11 0.582 86.27 84.91 85.59 0.928

Table 4.31: Comparison of performances on PDNA-224.

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

EL PSSM-RT 78.93 0.330 75.57 79.20 77.39 0.853
CNNsite 83.68 0.397 77.12 84.19 80.66 0.892
EL LSTM 82.59 0.401 80.26 83.18 81.72 0.891
PDNAsite 82.25 0.405 83.17 82.34 82.67 0.902
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Table 4.32: Comparison of performances on TS-61.

Methods ACC(%) MCC SN(%) SP(%) ST(%) AUC

EL PSSM-RT 77.33 0.310 73.64 77.73 75.19 0.839
CNNsite 77.37 0.320 74.79 77.61 76.05 0.840
EL LSTM 76.09 0.410 76.52 76.02 76.27 0.842
PDNAsite 78.72 0.430 78.65 78.87 78.76 0.878

4.7 Chapter Summary

This chapter introduce four novel methods to include relationships of either pair-wise or

multiple residues in residue prediction. Each method is focused on a different type of

relationship. Both EL PSSM-RT and CNNsite can extract relationships among residues

in different positions, these relationships contain only local context with close distance.

EL LSTM not only can extract local context but also long-range dependency PDNAsite

goes one step further to extract structure to include spatial relationships between neighbor

residues in residue prediction. The four methods uses different machine learned meth-

ods suited for their respective purposes and they also have different application scopes.

PDNAsite and EL LSTM are applicable to proteins with available 3D structures. CNNsite

are suitable for applications with large training samples. EL PSSM-RT, as the simpliest

method in this group is suitable for all known proteins as it only need to use sequential

features and do not require large training set.
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Chapter 5

TF binding site prediction

TF binding sites (TFBSs) is DNA fragments that can be bound by TFs. As TF-DNA

interaction plays an important role in gene expression regulations, TFBS prediction is

very useful for understanding transcriptional regulatory networks and fundamental cellular

processes, such as growth control, cell-cycle progression and development, as well as

differentiated cellular function [187, 52, 202].

Dependency between nucleotides are used by several methods, such as DWM [149],

TFFM [110], Chromia [190], and DNA shape based methods [111]. However,current

works only make use of first order dependencies. The term first order dependency refers

to relationships between individual nucleotides. Higher order dependency refers to re-

lationship between elements containing first order dependency. For example, the relation-

ships between DNA fragments is a higher order dependency because a DNA fragment

contains multiple first order dependencies.

Relationships between histone modification features contain higher order dependen-

cies [190]. This is because Histone modification features are properties over DNA frag-

ments (at least 25 bps). In this chapter, we propose to make use of relationships between

histone modification features to extract higher order dependencies. Since several widely

used classifiers for bioinformatics including support vector machine (SVM) [169], neural

network (NN) [22], and random forest (RF) [31] intrinsically lack the ability to capture
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dependency between input features, we investigate the use of a convolutional neural net-

work(CNN) on histone modification features to extract needed relationships as CNN is

proven to be an efficient method for extracting context dependencies contained in a se-

quence [211, 212]. We first propose a novel method, referred to as CNN TF, by apply-

ing CNNs [211, 212] on DNA sequence and histone modification features, respectively.

CNN TF incorporates both first order and higher order dependencies for prediction.

One issue in TF binding site prediction is that there are only limited TF training sam-

ples for a large number of cell-types. This is because TFBSs for TFs can only be identified

by ChIP-Seq [67, 59, 79] or ChIP-chip [67, 59, 79, 139] which are experimental tech-

niques, too time-consuming and too expensive to scale up.

Recent studies [190, 167, 83] have shown that the TFBSs of a TF are associated with

histone modification types of several cell-types. Also, a TF often shares a common binding

motif in multiple cell-types [112, 33].

Based on the results of these biological studies, we propose a novel TFBS prediction

method, referred to as MTTFsite. MTTFsite uses a multi-task framework to learn common

features from multiple cell-types with TF training samples using a so called common CNN

as well as features of individual cell-types using a group of private CNNs for individual

cell-types which have TF training samples. In MTTFsite, our proposed CNN TF is used to

build both the common CNN and a private CNN for each cell-type. MTTFsite is designed

to predict TFBS for cell-types with insufficient training samples as it can leverage on

training samples from other cell-types. Thus, it is referred to as a cross-cell-type TFBS

prediction method.

As many target TFs do not have any training sample in any of the cell-types, our pro-

posed MTTFsite cannot be applied to predict TFBSs for these TFs. Fortunately, we know

that in a specific cell-type, there exist other TFs which have TFBSs identified by exper-

imental methods. Even though a majority of TFs have different sequences and biology

functions, some TFs do have similar sequences and biology functions. As these TFs are
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similar in sequences and biology functions and tend to bind to similar positions of the

genome, we propose a novel method, referred to as PDBR TF, to obtain features for those

TFs without training data by using experimentally identified TFBSs of other TFs from the

same cell-type. Thus, this method is also referred to as the cross-TF TFBS prediction

method. In PDBR TF, the predicted DNA binding residues by our proposed CNNsite are

combined with DNA sequence and histone modifications to learn features by the network

topology in CNN TF.

5.1 Feature representation and evaluation Metrics

Most recent studies used the ChIP-seq experiments [61, 13] to identify TFBS. First, every

nucleotide in a genome is provided with a signal value by ChIP-seq experiments. Then,

a so called peak calling method [37, 206, 137] is used to identify peaks from the genome

according to the provided signal values. The obtained peaks are usually provided in one of

two formats. One is called the narrow peak and the other is called the broad peak. Both

types of peaks provide chromosome, start position, end position and signal value. The

narrow peak data, which requires technically more sophisticated equipment to get, can

provide more accurate position for TFBS than the broad peak. However, some datasets

are provide with only the broad peak format. In this work, the narrow peak format is used

to define TFBSs whenever available. Otherwise, the broad peak format is used. As both

the peak and its context are important for their function prediction, we define a TFBS as

a DNA segment with 101 base pairs, where the midpoint of the peak is positioned in the

middle and the equal number of neighbor nucleotides are positioned on either sides. For

example, given a genome sequence G of length L (L ąą 101) denoted as

G “ N1N2N3N4N5N6 ¨ ¨ ¨Ni´1NiNi`1 ¨ ¨ ¨NL (5.1)

where N1 represents the first nucleotide of the genome sequence G, N2 represents the

second nucleotide and so forth. For a ChIP-seq peak with the midpoint at nucleotide i in
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G, the TFBS can be represented as

Ti “ Ni´50Ni´49¨ ¨ ¨N i´1NiNi`1¨ ¨ ¨N i`49Ni`50 (5.2)

ChIP-seq can be used to map global binding sites precisely for any protein of interest

on the genome scale. Therefore, the labeled data in our study and the predicted TF-binding

sites by our proposed methods already contain the TF-binding sites located in enhancers

and that in other specific genetic regions, including promoters and insulators. Enhancers

are short (50–1500 bp) regions of DNA that can be bound by proteins (activators) to in-

crease the likelihood that transcription of particular genes will occur. These proteins are

usually referred to as transcription factors. Enhancers can be located up to 1 Mbp away

from the gene, upstream or downstream from the start site. There are hundreds of thou-

sands of enhancers in the human genome. Promoters are regions of DNA that initiate

transcription of a particular gene. Promoters are located near the transcription start sites

of genes and can be about 100–1000 base pairs long. Insulators is a type of cis-regulatory

element known as a long-range regulatory element and working over distances from the

promoter. Insulators are typically 300 bp to 2000 bp in length and function either as an

enhancer-blocker or a barrier, or both.

Both sequence features and histone modification features are very important features

for TFBS. Sequence features of a TFBS are defined by all the nucleotides within the

TFBS and they can be represented by concatenating one-hot vectors of these nucleotides.

Sequence features are used to capture first order dependencies by CNN TF. Histone modi-

fication features refer to the post-translational modification levels of histones in chromatin

structure. Histone modification features are used to capture higher order dependencies by

CNN TF. With the advancement of technology, the mapping of histone modification fea-

tures can be completed by ChIP-seq technology on a genome scale. However, as the ChIP-

seq experiments for histone modification features mapping are costly and labor-intensive,

many histone modification features are absent for mES cell. In this study, eight types of
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histone modification features are used for mES cell:H3, H3K4me1, H3K4me2, H3K4me3,

H3K9me3, H3K36me3, H3K20me3, and H3K27me3. The ChIP-seq data for these histone

modification features can be obtained from literature [118, 116]. For the 5 cell-types of hu-

mans, seven types of histone modification features are: H3K4me2, H3K4me3, H4K20me1,

H3K9ac, H3K27ac, H3K27me3 and H3K36me3. The ChIP-seq data for these histone

modification features can be obtained from the work of [83]. In study of [190], 25-bp bin

is used as a unit to measure histone modification features becasue the resolution for the

ChIP-seq experiments is 25-bp. The histone modification features for each 25-bp bin are

obtained by estimating the number of end-sequenced ChIP reads of corresponding histone

modification marks that overlap the bin in a reference genome. And then, the histone

modification features for each 100-bp bin are computed by averaging the histone modifi-

cation features over the four 25-bp bins within a 100-bp bin. According to this method,

we use the following scheme to apply histone modification features in CNN TF: We first

estimate the histone modification features for every 25-bp bin without overlap and then

calculate the histone modification features for every 100-bp bin by averaging them over

the four 25-bp bins within the 100-bp bin. Finally, the histone modification features for

each TFBS are calculated by concatenating the histone modification features of the twenty

100-bp bins within the TFBS.

We evaluate our proposed method using the Area under Receiver Operating Charac-

teristic(ROC) [162], curve (AUC) [29], and positive predictive values (PPV)[190]. ROC

curve is a graphical plot that illustrates the diagnostic ability of a binary classifier. It is

drawn by plotting the true positive rates (i.e. sensitivity) against the false positive rates

(i.e. 1-specificity) calculated by changing the classification threshold for predictors. AUC

[29] is the area under the ROC curve and is equal to the probability that a classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative one. An

AUC of 1.0 and 0.5 indicate the best performance and a random performance, respectively.

PPV [190] is another useful evaluation metric for TFBS prediction problem, which can be
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calculated by following the following formula

PPV “ TP {pTP ` FP q, (5.3)

where TP denotes the number of true positive samples and FP denotes the number of

false positive samples.

5.2 CNN TF: Higher order dependency based method

5.2.1 CNN based TF site prediction method (CNN TF)

In this chapter, we propose a novel method, referred to as CNN TF, to extract both first

order dependency and higher order dependency by applying CNN on sequence features

and histone modification features, respectively. The extracted first order dependencies

andhigher order dependencies are incorporated into a neural network classifier.

The general framework of CNN TF is shown in Figure 5.1. The CNN TF model

consists of two CNNs: one is used to extracting first order dependency from sequence

features and the other is used to extracting higher order dependency from histone modifi-

cation features. Both CNNs contain three computational layers: the convolution layer, the

rectification layer, and the pooling layer. Feature vectors learned by the two CNNs are then

concatenated and fed into a softmax classifier for prediction. CNN TF includes three sets

of parameters: (1) motif detectors FS and thresholds bS for sequence features S, (2) motif

detectors FC and thresholds bC for histone modification features C, and (3) the weights

W for the neural network classifier. For a TFBS T , CNN TF provides a real-valued score

fpT q according to the following formula

fpT q “ softmaxW ppoolprectbSpconvFS
pSqqq

à

poolprectbC pconvFC
pCqqqq,

(5.4)

where fpT q is defined by the softmax classifier through concatenation
À

of the two el-

ements. The first element is the output from the CNN for sequence features, denoted by
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Figure 5.1: The schematic graph of the architecture of CNN TF.

S with convFS
pq, rectbS and poolpq representing the three layers in CNN. Similarly the

second element is the output from the CNN for histone modification features. convFC
pq,

rectbC and poolpq denote the three layers in the CNN for histone modification features C.

This real-valued softmax score is used for prediction.

5.2.2 Experiments and Results

Performance evaluations serve for two purposes. The first purpose is to measure the effec-

tiveness of higher order dependency TFBS prediction. The second purpose is to examine

the complementary between first order dependency and higher order dependency for TFBS

prediction. Four sets of evaluations are conducted in the evaluation. The first set compares

127



the performance between first order dependency and higher order dependency. The second

set compares the performance of CNN TF and that of typical bio-classifiers which cannot

extract dependency. The third set evaluates CNN TF by 5 TFs in five cell-types of humans.

The fourth set compares our proposed CNN TF with the state-of-the-art predictors.

Datasets

Two datasets are used in this work to evaluate the performance of our proposed CNN TF:

13 TFs in the mouse embryonic stem cell and 5 TFs in 5 cell-types of humans.

13 TFs in mES cell: 13 TFs in mouse embryonic stem (mES) cell have been widely

used by multiple TFBS prediction methods: CTCF, E2F1, Esrrb, Klf4, c-Myc, n-Myc,

Nanog, Oct4, Sox2, Smad1, STAT3, Tcfcp2l1, and Zfx. These 13 TFs are used to evaluate

the performance of our proposed CNN TF and compare with state-of-the-art methods. For

all the 13 TFs in the mES cell, TFBSs are obtained from ChIP-seq experiments and the

ChIP-seq data of these 13 TFs can be accessed freely [38]. Leave-one-chromosome-out

cross-validation method is applied for evaluation where one chromosome is left out for

test; one is used for validation and the remainder chromosomes are used for training. As

all the 101 bp DNA fragments except the TFBSs are non TFBSs, the number of non TFBS

is significantly larger than that of TFBSs. The imbalance between the number of TFBSs

and that of non TFBSs can badly affect the performance of machine learning models. So

in the training set, an approximately equal number of non TFBSs matching the approxi-

mate same composition distribution of all dinucleotide types with TFBSs are selected. In

the validation phase, the TFBSs and all non TFBSs in the validation chromosome are used

to determine the best hyperparameters for CNN TF. In the testing phase, the TFBSs and

all non TFBSs in the test chromosome are used for evaluation. The above test process is

repeated for multiple times until all the chromosomes are tested one time and the perfor-

mance is averaged over all the chromosomes. Note that there is no overlapping of non

TFBSs in the training set, the validation set and the test set.
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5 TFs in 5 cell-types: In order to evaluate the influence of different cell-types on the

predicting performance of our method, we evaluate CNN TF by a recent dataset collected

by the Gene Expression Omnibus (GEO) [12]. In this dataset, five dissimilar TFs are se-

lected: CTCF, JunD, REST, GABP and USF2 and five dissimilar cell-types are selected:

GM12878, H1-hESC, HeLa-S3, HepG2 and K562. These five cell-types are chosen be-

cause they represent diverse classes of cell-types. Besides, ChIP-seq data of all the five

TFs in these cell-types are available. The ChIP-seq signal peak lists of the five TFs in these

five cell-types can be downloaded freely from literature [83]. As this dataset contains too

many cell-type TF pairs, ten-fold cross-validation method is used to evaluate CNN TF

on this dataset instead of leave-one-chromosome-out cross-validation method to decrease

time cost in evaluation. First, for each cell-type TF pair, approximately equal number of

non TFBSs as that of TFBSs are selected, in which the composition distribution of all

dinucleotide types for the selected TFBSs is approximately same with TFBSs. second, the

combination of TFBSs and the selected non-TFBSs are divided into ten folds randomly.

Then one fold of samples are left out for test, one is used for validation and the remainder

eight folds are used for training set. Finally, the above test process is repeated 10 times as

ten-folds and the performance is averaged over the 10 repeats.

Performance of first order dependency and higher order dependency

To demonstrate the superiority of higher order dependency over first order dependency

for TFBS prediction, we compare their predicting performance on the 13 TFs in mES cell

by leave-one-chromosome-out cross-validation.

Table 5.1 shows the AUCs of first order dependency and higher order dependency as

well as their combined use on the 13 TFs in mES cell, where the best performers and

the second best performers are marked by bold and underscore, respectively. Among the

13 TFs in mES cell, higher order dependency outperforms first order dependency signif-

icantly in 10 of the 13 TFs, first order dependency outperforms higher order dependency

129



Table 5.1: AUCs of first dependency and higher order dependency on the 13 TFs in mES
cell

TF first order higher order combine p-valuea p-valueb

Zfx 0.967 0.991 0.995 7.32e-04 6.67e-13
CTCF 0.985 0.945 0.991 3.69e-05 1.81e-24
c-Myc 0.973 0.986 0.992 6.76e-03 1.01e-07
n-Myc 0.968 0.980 0.983 3.87e-02 2.41e-06
E2f1 0.913 0.986 0.989 2.26e-02 8.33e-22
Esrrb 0.977 0.972 0.994 3.39e-19 4.81e-04
Klf4 0.970 0.986 0.994 2.97e-11 1.53e-17
Tcfcp 0.964 0.964 0.987 8.36e-01 1.12e-21
Nanog 0.909 0.928 0.964 4.62e-10 6.11e-05
Oct4 0.908 0.967 0.981 1.70e-06 3.14e-18
Smad 0.809 0.942 0.944 8.78e-03 1.81e-15
Sox2 0.939 0.966 0.985 1.39e-12 2.67e-10
STAT 0.904 0.958 0.969 6.59e-03 6.79e-14

a denotes the comparison between first order and higher order dependency, b denotes the
maximum p-value of the comparisons between the combine and the two individual

feature types.

only in 2 of the 13 TFs. one TF as similar performance for both first order dependency

and higher order dependency. These results indicate that higher order dependency contain

more useful information than first order dependency on most TFs. When first order de-

pendency and higher order dependency are used in combination, it outperforms both first

order dependency and higher order dependency significantly in all the 13 TFs. This is a

clear indication that first order dependency and higher order dependency are two compli-

mentary features for TFBS prediction. Two sets of p-values are given in this experiment by

Wilcoxon rank sum test The two p-values for each TF show that improvements by higher

order dependency and combined use are significant with p-value at no more than 3.87e-02.

Comparison with typical bio-classifiers

The main advantage of our proposed method CNN TF is that it can extract both first order

dependency and higher order dependency from sequence features and histone modification
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features, respectively. To demonstrate the learned features are indeed useful, this evalua-

tion compares the performance of CNN TF with typical classifiers used for bioinformatics

classifications including support vector machine (SVM) [169], neural network (NN) [22]

and random forest (RF) [31]. Neural networks can learn higher dependencies by their hid-

den layers. In SVM, radial kernel is used. So SVM can learn higher order dependencies by

the radial kernel. Evaluation is done on the 13 TFs in mES cell by leave-one-chromosome-

out cross-validation. The AUCs of CNN TF and the three traditional classifiers are shown

in Table 5.2, where the best performers and the second best performers are marked by bold

and by underscore, respectively. Note that the input features for CNN TF and the three

traditional classifiers are same.

We first compared CNN TF containing only first order dependencies (called FOD CNN)

to SVM and NN. The main difference between them is that FOD CNN consists of only

a CNN to learn first order dependencies from sequence features while SVM and NN can

learn both first order dependencies by relationships among sequence features and higher

order dependencies by relationships between among histone modification features. Table

5.2 shows that SVM outperforms FOD CNN in 11 TFs out of the 13 TFs in the mES cell.

For the 11 TFs, the average improvement and the maximum improvement are 2.0% and

6.4%. When comparing FOD CNN with NN, NN outperforms FOD CNN for 11 TFs out

of the 13 TFs in the mES cell. For Zfx, E2f1, Klf4, Oct4 and Sox2, the improvements are

2.1%, 6.7%, 1.6%, 4.4% and 1.6%, respectively, which are very significant improvements.

As SVM and NN can learn long-range depedencies while FOD CNN cannot learn them,

addedbetter performances achieved by SVM and NN are contributed to the learned long-

range dependencies. It concludes that long-range dependencies play an important role in

TFBS predictions, irrespective of which method is applied to learn these dependencies.

We then compare CNN TF containing both first order dependencies and higher or-

der dependencies to SVM, RF and NN. In 7 out of the 13 TFs, CNN TF outperforms all

the other classifiers in larger margins (ą 1%) with the highest p-value at 2.33e-2 indi-
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cating that the improvements are very significant. More impressively, the improvements

on CTCF, Nanog, Oct4, Smad, Sox2 and STAT3, are larger than 2%. For the remaining

5 TFs, although the improvements by CNN TF are marginal (ă 1%), the improvements

are significant as indicated by the p-value of no more than 4.95e-05. As SVM and NN

also can extract higher order dependencies, the improvements achieved by CNN TF indi-

cates that higher order dependencies extracted by CNN TF can be more useful than that

extracted by SVM and neural networks. It indicates that CNN TF is more effective for

learning long-range dependencies than NN. Moreover, SVM and NN cannot learn higher

order dependencies for predictions. On the contrary, our proposed CNN TF can provide

the learned higher order dependencies and their contribution in the predictions. It can

provide us with deep understanding of the TF-DNA interactions.

Table 5.2: AUCs of CNN TF and three state-of-the-art traditional classifiers on the 13 TFs
in the mES cell

TF CNN TF FOD CNN SVM RF NN p-valuea

Zfx 0.995 0.967 0.990 0.988 0.988 4.95e-05
CTCF 0.991 0.985 0.961 0.947 0.963 1.48e-21
c-Myc 0.992 0.973 0.979 0.984 0.976 8.78e-06
n-Myc 0.982 0.968 0.963 0.976 0.977 2.15e-07
E2f1 0.989 0.913 0.977 0.981 0.980 5.71e-09
Esrrb 0.994 0.977 0.980 0.971 0.979 4.37e-15
Klf4 0.994 0.970 0.988 0.985 0.986 4.08e-10
Tcfcp211 0.987 0.964 0.975 0.966 0.976 1.56e-12
Nanog 0.964 0.909 0.920 0.907 0.917 8.01e-12
Oct4 0.981 0.908 0.952 0.956 0.952 1.37e-08
Smad1 0.944 0.809 0.877 0.924 0.816 2.33e-02
Sox2 0.985 0.939 0.961 0.958 0.955 1.19e-10
STAT3 0.969 0.904 0.915 0.939 0.893 3.67e-10

a denotes the maximum p value of the comparisons between CNN TF and the three
state-of-the-art traditional classifiers.

Performance of CNN TF on five TFs in five cell-types

Several recent studies have reported that TF binding is influenced by chromatin contex-
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tual features such as DNA accessibility, nucleosome occupancy, or the presence of some

specific histone post-translational modifications. These chromatin contextual features are

different for different cell-types. So in this evaluation, CNN TF is applied to predict TF-

BSs for TFs in multiple different cell-types to analyze their influence on prediction perfor-

mance. We use five diverse TFs as examples: (1) the insulator protein CTCF featuring 11

zinc finger domains, (2) the transcriptional activator GABPA, (3) JunD, a leucine zipper

protein and member of the activator protein 1 (AP1) family, (4) the transcriptional repres-

sor REST, and (5) USF2 a member of the evolutionary conserved basic helix-loophelix

leucine zipper TF family. These factors are chosen because they represent diverse classes

of transcription factors. For the five TFs, five human cell-types are considered: GM12878,

H1-hESC, HeLa-S3, HepG2 and K562. The five cell-types are selected because they rep-

resent diverse classes of cell-types in humans [83].

We first evaluate the influence of different cell-types on the contributions of first or-

der dependency and higher order dependency for TFBS prediction. The AUCs of first

order dependency, higher order dependency and their combined use are shown in Table

5.4, where the best performers and the second best performers are marked by bold and

underscore, respectively. Results show that for each TF, the predicting performance of the

first dependency for different cell-types are different. In the case of GABPA, higher or-

der dependency outperforms first order dependency significantly in all the five cell-types.

When the two features are combined, the predicting performance is improved significantly

in all the five cell-types. On the other hand, first order dependency perform significantly

better than higher order dependency for CTCF in all the five cell types. In the CTCF case

too, the combined method still gains significant improvement in all the five cell types. For

the remaining three TFs, no single dependency type plays a dominant role. However, the

performance for all the cell-types are improved significantly when the two features are

combined. This experiment clearly shows that first order dependency and higher order

dependency have different contributions in TFBS prediction for different cell-types. Fur-
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Table 5.3: AUC of first order dependency and higher order dependency on the five TFs in
the five cell-types

TF CELL first or-
der

higher
order

Combine p-valuea p-valueb

CTCF GM12878 0.949 0.751 0.941 2.27e-03 5.01e-14
H1-hESC 0.898 0.700 0.929 3.29e-02 2.52e-16
HeLa-S3 0.930 0.738 0.895 2.38e-05 1.03e-06
HepG2 0.928 0.792 0.938 2.81e-01 8.46e-12
K562 0.888 0.744 0.884 9.19e-01 1.12e-07

GABPA GM12878 0.908 0.955 0.982 4.74e-10 2.32e-04
H1-hESC 0.851 0.876 0.913 2.37e-03 1.26e-03
HeLa-S3 0.926 0.906 0.955 6.31e-02 2.64e-02
HepG2 0.931 0.946 0.983 9.29e-07 2.84e-03
K562 0.872 0.954 0.966 7.37e-07 4.46e-01

JunD GM12878 0.772 0.993 0.994 1.21e-12 6.09e-01
H1-hESC 0.932 0.846 0.942 3.51e-01 8.07e-04
HeLa-S3 0.954 0.964 0.991 8.04e-09 3.21e-02
HepG2 0.977 0.746 0.971 1.31e-01 2.64e-08
K562 0.879 0.874 0.948 1.43e-03 7.63e-03

REST GM12878 0.816 0.790 0.935 4.91e-08 2.11e-04
H1-hESC 0.832 0.714 0.917 1.64e-09 5.63e-09
HeLa-S3 0.877 0.770 0.942 1.32e-03 2.26e-05
HepG2 0.816 0.768 0.945 5.41e-11 1.67e-09
K562 0.839 0.878 0.951 1.31e-11 5.41e-06

USF2 GM12878 0.947 0.902 0.955 7.96e-01 2.23e-02
H1-hESC 0.897 0.817 0.920 4.41e-01 5.68e-04
HeLa-S3 0.932 0.877 0.940 8.47e-01 1.82e-02
HepG2 0.855 0.840 0.930 4.35e-02 1.45e-03
K562 0.806 0.903 0.950 1.41e-05 1.21e-09

a denotes the comparison between firs order and higher order dependency, b denotes the maximum
p-value of the comparisons between the combine and the two individual features.

thermore, the two types of dependency are complementary to each other and thus their

combined use outperforms any single use irrespective of their dominance as a single de-

pendency for different cell-types.

Then, we evaluate the roles of another type of features, DNA methylations, in TFBS

predictions. DNA methylation is a process by which methyl groups are added to the DNA

molecule. Methylation can change the activity of a DNA segment without changing the
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Table 5.4: AUC of CNN TF with DNA methylation and that without DNA methylation on
the five TFs in the five cell-types

TF CELL histone histone
+methy

combine combine
+methy

p-valuea p-valueb

CTCF GM12878 0.751 0.752 0.941 0.941 9.29e-01 9.84e-01
H1-hESC 0.700 0.677 0.929 0.926 9.87e-03 5.17e-01
HeLa-S3 0.738 0.738 0.895 0.898 9.99e-01 7.59e-01
HepG2 0.792 0.792 0.938 0.938 9.97e-01 9.20e-01
K562 0.744 0.736 0.884 0.885 6.70e-01 9.69e-01

GABPA GM12878 0.955 0.962 0.982 0.982 2.10e-01 9.03e-01
H1-hESC 0.876 0.874 0.913 0.914 8.97e-01 9.33e-01
HeLa-S3 0.906 0.928 0.955 0.961 1.70e-01 4.72e-01
HepG2 0.946 0.951 0.983 0.983 6.60e-01 9.64e-01
K562 0.954 0.951 0.966 0.965 6.89e-01 8.49e-01

JunD GM12878 0.993 0.992 0.994 0.994 8.36e-01 8.30e-01
H1-hESC 0.846 0.832 0.942 0.939 6.75e-01 8.05e-01
HeLa-S3 0.964 0.966 0.991 0.991 1.70e-01 4.72e-01
HepG2 0.746 0.748 0.971 0.971 9.71e-01 9.16e-01
K562 0.874 0.839 0.948 0.941 3.06e-01 5.64e-01

REST GM12878 0.790 0.815 0.935 0.936 4.03e-01 9.37e-01
H1-hESC 0.714 0.728 0.917 0.917 4.75e-01 5.59e-01
HeLa-S3 0.770 0.781 0.942 0.941 7.48e-01 9.34e-01
HepG2 0.768 0.774 0.945 0.943 7.55e-01 8.12e-01
K562 0.878 0.877 0.951 0.948 9.15e-01 4.38e-01

USF2 GM12878 0.902 0.902 0.955 0.954 9.84e-01 9.90e-01
H1-hESC 0.817 0.810 0.920 0.919 8.06e-01 9.51e-01
HeLa-S3 0.877 0.875 0.940 0.941 9.50e-01 9.45e-01
HepG2 0.840 0.839 0.930 0.929 9.62e-01 9.43e-01
K562 0.903 0.899 0.950 0.950 8.89e-01 9.71e-01

a denotes the comparison between histone modification with DNA methylation and that without
DNA methylation, b denotes the maximum p-value of the comparisons between the combination

with DNA methylation and that without DNA methylation the two individual features.

sequence. When located in a gene promoter, DNA methylations typically act to repress

gene transcription. DNA methylations are essential for normal development and is as-

sociated with a number of key processes including genomic imprinting, X-chromosome

inactivation, repression of transposable elements, aging, and carcinogenesis. This means

that DNA methylations may also be important features for TFBS predictions.

We conduct two experiments to evaluate the roles of DNA methylations in TFBS pre-
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dictions: the first one is combining with only histone modification features and the second

one combines both histone modification features and sequence features. In these two ex-

periments, DNA methylations are calculated by the same method as histone modifications

and are added into histone modification features as an additional dimension. Therefore,

the combination of DNA methylations and histone modification features for an instance

can be encoded by an feature matrix with dimension of 8 ˆ 20. The results of these two

experiments are shown in Table 5.3. Table 5.3 shows that among the 25 cell-type TF pairs,

there is only one pair, CTCF in H1-hESC, the performance is decreased significantly when

DNA methylations are combined with histone modification features. The differences for

all the remaining pairs are not significant. It indicates that DNA methylations cannot pro-

vide additional contributions for TFBS predictions. The reason may be that the roles of

DNA methylations in TFBS predictions are redundant with that of histone modification

features. Our future work will explore which modification features have redundant roles

with DNA methylations.

Comparison between CNN TF and state-of-the-art methods on TFs in

mES cell

In this experiment, we compare our method with several state-of-the-art methods in-

cluding Chromia [190], Cluster-Buster (CB) [54], MCAST [9], EEL [130] and Stubb [154]

on the TFs in mES cell. Stubb has two versions: one is called the Stubb-Single (SS) and

the other is called Stubb-Multiple (SM). Chromia was proposed by Won at al. [16] based

on a HMM model, in which both histone modification features and sequence features are

used for learning feature representation. In Chromia, three HMM models including pro-

moter model, enhancer model and background model are trained and the log-odd score

of the promoter model or the enhancer model to the background model is used for pre-

diction. Cluster-Buster [54] uses motifs documented in databases including JASPAR [33]

and TRANSFAC [112] or predicted by de novo motif finding algorithms to search for TF-
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Table 5.5: PPVs of CNN TF and three state-of-the-art methods on the 13 TFs in mES cell

TF CNN TF Chromia CBa MCAST EEL SSb SMc

Zfx 81.5% 51.7% 5.6% 0.2% 24.8% 46.9% 26.0%
CTCF 98.6% 13.2% 51.3% 37.9% 44.0% 13.4% 3.9%
Myc 82.8% 57.8% 7.1% 0.4% 3.3% 20.2% 17.8%
E2f1 98.1% 85.3% 0.0% 1.3% 0.5% 12.0% 8.2%
Esrrb 66.8% 23.5% 9.7% 4.9% 16.2% 13.9% 5.1%
Klf4 60.0% 34.2% 5.7% 0.3% 12.5% 28.6% 9.5%
Tcfcp211 77.3% 33.8% 5.0% 11.5% 27.2% 12.7% 5.3%
Nanog 47.3% 7.8% 0.0% 0.4% 0.7% 1.4% 0.1%
Oct4 25.0% 15.0% 0.0% 2.8% 3.5% 0.5% 0.0%
Smad1 10.6% 1.0% 0.0% 0.4% 0.2% 0.0% 0.0%
Sox2 35.8% 4.2% 0.0% 2.4% 2.8% 0.2% 0.8%
STAT3 17.1% 1.0% 0.0% 0.2% 1.6% 2.9% 0.8%
a denotes Cluster-Buster, b denotes Stubb-Single and c denotes Stubb-Multiple.

BSs from test sequence. MCAST [9] uses a motif-based HMM model with several novel

features to model TFBSs, for which a DNA database and a collection of known binding

motifs are used as inputs. In MCAST, motif-specific p-value is used to identify motif oc-

currence by a user-specified threshold. EEL [130] uses motif conservation information and

TFBS clustering in the prediction model, which locates the enhancer elements according

to a simplified biochemical and physical model of TF binding [130]. In EEL, the binding

score of a putative TFBS is calculated by aligning the putative TFBS to the orthologous

sequences and used for prediction. Stubb [154] includes motif conservation information

and TFBS clustering in the prediction model and uses a HMM framework to model en-

hancer. In Stubb, the calculated free energy is used for prediction. The free energy in

Stubb-Single is based on correlations between binding sites while that in Stubb-Multiple

incorporates phylogenetic comparisons among sequences from multiple species.

All the six state-of-the-art methods were run using their default setup and parameters.

For Chromia, the bins containing both strong histone modification signals and large PSSM

scores were selected for training. More specifically, at first, H3K4me3 and H3K4me1 or
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H3K4me2 were used to select promoters and enhancers by a cutoff value, respectively.

Next, all the selected promoters or enhancers are ranked by PSSM score in descending

order. The top 100 promoters and 100 enhancers were selected to train a promoter and

a enhancer model, respectively, and a background model was trained by the entire chro-

mosome 1. The log-odd score of the promoter or the enhancer model to the background

model is used for prediction. Cluster-Buster was run with the option ’-p0 -m0 -c0’ to get

the output. For MCAST, the option ’-e-thresh 0’ was selected to turn off thresholding. To

run EEL and Stubb, we used human and mouse orthologous sequences obtained from the

UCSC genome browser. For Stubb-Multiple, we used LAGAN [32] to align human and

mouse orthologous sequences and used ’window size’ = 500 and ’shiftsize’ = 100.

As Stubb and EEL both require pairwise alignment with other genomes and it is too

time-consuming to evaluate their performance on the entire genome, only 20 chunks of

the genomic sequences (total513,846,568 bp) [16] that had pairwise alignment with the

human genome were selected from the UCSC genome browser for test. The remainder ge-

nomic sequences are used for training. As the TFBSs for c-Myc and n-Myc have similar

properties and Chromia combined them into a dataset labeled as Myc, we also incorpo-

rated them into a dataset. In the evaluation for the 6 state-of-the-art methods and our

CNN TF method, the top 600 sites with larger prediction weight are used for evaluation.

The PPV score of the top 600 predicted sites for each method is calculated. The PPVs of

CNN FT and the state-of-the-art methods are shown in TABLE 5.5, where the best per-

formers and the second best performers are marked by bold and underscore, respectively.

Results show that CNN TF achieves obvious improvements for all the 12 TF sets. For

some TFs, the improvement by CNN FT is very promising. For example, the improve-

ment for CTCF is over 60%PPV and the improvements for Esrrb, Tcfcp and Nanog are

over or near 40%PPV. Note that some of the state-of-the-art methods cannot even provide

any true TFBSs for some TFs. For example, Stubb-Single and Stubb-Multiple cannot iden-

tify any true TFBSs for Smad and EEL; Cluster-Buster cannot identify any true TFBSs for
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E2f1, Nanog, Oct4, Smad1, Sox2 and STAT3. This comparison validates the usefulness

of higher order dependency for TFBS prediction.

Comparison of CNN TF with state-of-the-art methods on TFs in

cell-types of humans

DNA shape represents the 3D structure of a DNA. Recently, Mathelier at al. [111] pro-

posed several DNA shape based methods for TFBS prediction in vivo. Four DNA shape

features including helix twist (HelT), minor groove width (MGW), propeller twist (ProT),

and Roll were used to represent putative TFBSs, which were computed by the DNA

shape method [216]. In Mathelier’s work, four prediction methods were proposed: (1) 4-

bits+shape, which combines one-hot encoding with DNA shape features; (2) PSSM+shape,

which combines PSSM encoding with DNA shape features; (3) TFFM d+shape, which

combines detailed TFFM encoding and DNA shape features, and (4) TFFM f+shape,

which combines 1st-order TFFM encoding and DNA shape features. The one-hot en-

coding, PSSM encoding and TFFM encoding used in these DNA shape based methods are

representations of DNA sequence features, so the inputs of our proposed CNN TF and the

four DNA shape based methods are same except that the additional features in the four

methods are DNA shape features whereas the additional features in our method are higher

order dependency.

To make the comparison fair, the evaluation is conducted on the five TFs in the five cell-

types of humans by ten-fold cross-validation. The results are listed in TABLE 5.6, where

the best performers and the second best performers are marked by bold and underscore,

respectively. TABLE 5.6 shows that CNN TF outperforms the four DNA shape based

methods significantly on all the five TFs in all the five cell-types. CNN TF performs better

than the four DNA shape based methods by at least 0.073 AUC. The outperformance of our

method over the four DNA shape based methods indicates that higher order dependency is

more useful than DNA shape features.
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Table 5.6: AUCs of the four DNA shape based methods and CNN TF on TFs in cell-types
of humans

TF CELL 4-bits PSSM TFFM d TFFM f CNN TF p-value

CTCF GM12878 0.763 0.762 0.748 0.750 0.935 9.94e-04
H1-hESC 0.762 0.758 0.740 0.744 0.929 7.23e-04
HeLa-S3 0.739 0.736 0.724 0.726 0.900 3.95e-03
HepG2 0.759 0.757 0.741 0.746 0.943 9.18e-04
K562 0.747 0.745 0.731 0.733 0.886 9.88e-03

GABP GM12878 0.830 0.828 0.830 0.830 0.981 6.84e-03
H1-hESC 0.832 0.828 0.824 0.824 0.905 1.96e-01
HeLa-S3 0.796 0.796 0.792 0.787 0.955 5.11e-03
HepG2 0.842 0.838 0.830 0.837 0.978 7.91e-03
K562 0.822 0.817 0.812 0.815 0.966 8.59e-03

JunD GM12878 0.752 0.751 0.742 0.753 0.993 1.17e-13
H1-hESC 0.762 0.760 0.750 0.753 0.947 8.44e-14
HeLa-S3 0.800 0.797 0.773 0.777 0.989 2.55e-14
HepG2 0.774 0.771 0.754 0.757 0.970 1.18e-19
K562 0.763 0.760 0.742 0.746 0.945 8.31e-14

REST GM12878 0.782 0.780 0.764 0.774 0.927 1.45e-02
H1-hESC 0.768 0.768 0.751 0.753 0.917 9.79e-03
HeLa-S3 0.620 0.621 0.605 0.594 0.936 1.75e-19
HepG2 0.781 0.780 0.771 0.770 0.938 2.27e-02
K562 0.774 0.771 0.758 0.763 0.948 8.95e-03

USF2 GM12878 0.773 0.771 0.754 0.758 0.952 2.11e-12
H1-hESC 0.784 0.780 0.765 0.770 0.916 1.01e-08
HeLa-S3 0.750 0.746 0.731 0.735 0.937 5.96e-12
HepG2 0.788 0.784 0.762 0.766 0.924 1.14e-07
K562 0.773 0.773 0.752 0.753 0.945 8.53e-09

In addition to the DNA shape based methods, several deep learning methods have been

proposed. DeepSea [210] and DanQ [138] are two representative methods. DeepSea [210]

was proposed by Zhou and Troyanskaya (2015) by applying CNN on DNA sequence and

DanQ [138] was proposed by Quang and Xie (2016) by combining CNN and Recurrent

neural network (RNN) on sequence features to learn features. Both DeepSea and DanQ

used multi-task learning to learn representations for putative TFBSs and contain 919 tasks

including 690 TFBS prediction tasks for 160 TFs, modification value prediction tasks for
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104 histone marks, prediction tasks for 125 DNase I–hypersensitive sites (DHSs). As the

comparison among CNN TF and them is conducted on 5 TFs in 5 cell-types of humans,

the tasks in DeepSea [210] and DanQ [138] contain 25 TFBS prediction tasks (the 5 TFs

in the 5 cell-types of humans). For DanQ [138], Quang and Xie (2016) also have pro-

posed an alternative model, called DanQ-JASPAR, by initializing half of the kernels in

CNN with motifs from the JASPAR database [109]. For DeepSea [210], we also consider

its alternative model, abbreviated as DeepSea-JASPAR, by using the same kernel initial-

izing method. We downloaded the torch (https://github.com/torch/torch7) implementa-

tion of DeepSea [210] from the software’s webpage (http://deepsea.princeton.edu/) and

the Keras (https://github.com/fchollet/keras) implementation of DanQ [138] from the soft-

ware’s webpage (http://github.com/uci-cbcl/DanQ). All these four state-of-the-art methods

were run using their default setup and parameters. The AUCs of our method CNN TF and

the four state-of-the-art methods are listed in TABLE 5.9. TABLE 5.9 shows that CNN TF

performs better than the other four methods for 24 out of the 25 cell-type-TF pairs. On

the 24 cell-type-TF pairs, the minimum improvement and the maximum improvement

achieved by our method are 0.051 on GABP in HepG2 and 0.258 on REST in HeLa-S3,

respectively. The average improvement on the 24 cell-type-TF pairs is 0.145, which is

a prominent improvement. As the dominated difference between our proposed CNN TF

and the four state-of-the-art methods is that CNN TF can extract higher order dependency

while the four state-of-the-art methods cannot extract it, the improvements indicates that

the higher order dependency learned by CNN TF indeed plays an important role for TFBS

prediction.

5.2.3 Analysis of learned features

Distinct histone modification features have been observed at various genomic loci includ-

ing promoters and enhancers. Won [190] investigated the ChIP-seq signals of the eight

types of histone modification features for the TFBSs of the 13 TFs in the mES cell. They
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Table 5.7: AUCs of CNN TF and four state-of-the-art methods on TFs in cell-types of
humans

TF CELL DanQ DanQ-J DeepSea DeepSea-J CNN TF

CTCF GM12878 0.780 0.703 0.745 0.617 0.935
H1-hESC 0.824 0.723 0.767 0.656 0.929
HeLa-S3 0.754 0.670 0.699 0.605 0.900
HepG2 0.826 0.724 0.772 0.644 0.943
K562 0.772 0.687 0.720 0.618 0.886

GABP GM12878 0.929 0.907 0.906 0.895 0.981
H1-hESC 0.922 0.906 0.907 0.894 0.905
HeLa-S3 0.808 0.772 0.766 0.752 0.955
HepG2 0.927 0.914 0.913 0.906 0.978
K562 0.911 0.898 0.900 0.892 0.966

JunD GM12878 0.835 0.779 0.789 0.729 0.993
H1-hESC 0.771 0.718 0.726 0.699 0.947
HeLa-S3 0.850 0.721 0.766 0.671 0.989
HepG2 0.842 0.725 0.765 0.697 0.970
K562 0.717 0.652 0.664 0.624 0.945

REST GM12878 0.750 0.651 0.657 0.630 0.927
H1-hESC 0.699 0.604 0.603 0.580 0.917
HeLa-S3 0.678 0.580 0.584 0.560 0.936
HepG2 0.758 0.673 0.682 0.664 0.938
K562 0.756 0.711 0.715 0.695 0.948

USF2 GM12878 0.789 0.706 0.710 0.689 0.952
H1-hESC 0.849 0.775 0.780 0.758 0.916
HeLa-S3 0.723 0.637 0.644 0.609 0.937
HepG2 0.811 0.691 0.693 0.668 0.924
K562 0.809 0.704 0.717 0.691 0.945

found that H3K4m1, H3K4m2 and H3K4m3 show strong signals for all the TFBSs of

the 13 TFs. In contrast, the signals of H3K27m3 are much weaker. Their study on the

association of any histone modification feature patterns with a specific TF shows that

H3K4me1 and H3K4me2 present a distinct bimodal profile in all TFBSs; H3K4me3 shows

a strong peak for the TFBSs of E2F1, c-Myc, n-Myc and Zfx, intermediate peaks for Es-

rrb, Klf4, STAT3 and Tcfcp211, and weak signals for CTCF, Nanog, Oct4, Smad1 and

Sox2. H3K36me3 shows relatively strong signals for E2f1, c-Myc, n-Myc and Zfx. The

142



repressive features H3K9me3, H3K20me3 and H3K27me3 show an overall low signal.

The advantage of our proposed CNN TF is that it can capture higher order dependency

and then combine with first order dependency for prediction. To demonstrate the com-

petence of CNN TF for higher order dependency extraction, we analyze the higher order

dependencies extracted by CNN TF for all the 13 TFs in mES cell. In CNN TF, d filters

are used to calculate higher order dependency.

For each histone modification feature, the higher order dependency is calculated as

the weighted sum of all the learned filters from histone modification features. In order to

show the learned higher order dependency learned by CNN TF directly, we sum up the d

learned filters by the following formula:

F “
d
ÿ

k“1

W0,pd`kqF
k
C , (5.5)

where W0,˚ is the weight vector in the neural network classifier of CNN TF and used

for classifying input sequences as TFBSs. The weights are the contributions of the cor-

responding learned filters in classifying input sequences as TFBSs. FC represents the

learned filters from histone modification features by CNN TF. d denotes the number of

filters histone modification features. For more details about W0, please refer to Formula

(5.4). In fact, F in Formula (5.5) shows how higher order dependencies is learned from

histone modification features. Due to the length limit of this paper, we only show the

learned higher order dependencies for c-Myc and Oct4. The learned higher order depen-

dencies for other TFs are listed in Figure S1 to S11 in the Additional file 1 in our website

(http://hlt.hitsz.edu.cn/CNN TF/). The learned higher order dependencies for c-Myc and

Oct4 are shown in Figure 5.2 and Figure 5.3, respectively.

Figure 5.2 shows that H3K4me1 and H3K4me2 indeed present a bimodal profile in

the TFBSs of c-Myc. H3K4me3 also shows a strong signal in the TFBSs. The learned

higher order dependencies for H3K9me3, H3K20me3 and H3K27me3 show an overall
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Figure 5.2: The learned higher order dependency for Oct4.
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Figure 5.3: The learned higher order dependency for c-Myc.

low signal for c-Myc. This indicates that the learned higher order dependencies are con-

sistent with the dependencies from ChIP-seq signals by a previous study [190]. Figure

5.3 also shows that H3K4me1 and H3K4me2 present bimodal profile. H3K4me3 and the

three repressive features including H3K9me3, H3K20me3 and H3K27me3 show weak

signals for Oct4, which are also consistent with the conclusions of a previous study [190].
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These results show that CNN TF can indeed capture useful higher order dependencies for

prediction. By observing Figure 5.2 and Figure 5.3, we find that, except for H3K4me1

and H3K4me2 described above, other histone modification features including H3K4me3,

H3K9me3 and H3K20me3 also show bimodal profile for both c-Myc and Oct4. Further-

more, the learned dependencies for the remaining 11 TFs, which are listed in Addition file

1, also show bimodal profile for the 5 histone modification features. This set of experi-

ments indicates that among the eight histone modification features used in CNN TF, five

histone modification features show bimodal profile in the TFBSs for all the 13 TFs.

In summary, CNN TF extracts both first order dependency and higher order depen-

dency by applying CNN on sequence features and histone modification features to pre-

dict TFBSs for TFs. However, to predict the TFBSs of target TFs for specific cell-types,

CNN TF need sufficient training samples of the target TFs from the specific cell-types.

However, many target TFs do not have training samples in the specific cell-types. Thus

CNN TF cannot be applied to predict TFBSs of the target TFs in these cell-types.

5.3 MTTFsite:Multi-task learning based method

5.3.1 Multi-Task Learning for TFBS Prediction (MTTFsite)

Multi-task learning is an effective approach for improving the performance of a single task

with the help of other related tasks [96]. Multi-task learning attempts to divide the features

of multiple tasks into private and common spaces based on whether parameters of some

components should be shared. In multi-task learning framework, each task contains two

feature spaces, private feature space and common feature space. For TFBS prediction,

the learned private feature space contains the interaction mechanism specific to the target

cell-type, which is referred to as the private interaction mechanism. The common feature

space is referred to as the common interaction mechanism, which are shared by multiple

cell-types. Assuming for each cell-type (task) m, we have a dataset Dm with Nm samples,
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each sample is a pair of a DNA fragment xmi and its corresponding label ymi , that is:

Dm “ tpx
m
i , y

m
i qu

Nm
i“1 (5.6)

In multi-task learning, there could be two types of learning methods, fully-shared

method and shared-private method [96]. The fully-shared method uses a single com-

mon CNN to extract features for multiple cell-types, which hypothesizes that all cell-types

share the same feature space (as shown in the left panel of Figure 5.4). The shared-private

method contains two feature spaces for each cell-types, private feature space and com-

mon feature space. The private feature space contains features that are specific to the

target cell-type while the common feature space contains features that are common for

all cell-types. The shared-private scheme is illustrated in the right panel of Figure 5.4.

In the TFBS prediction problem investigated here, each cell-type is considered as a task.
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Figure 5.4: Architecture of multi-task learning for TFBS Prediction.

The fully-shared method assumes the multiple cell-types have a common CNN for feature

learning while the shared-private method has a private CNN for each cell-type to learn

private features apart from the common CNN across multiple cell-types to learn common
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features. As CNN is used to learn representations for all TFBSs, the private interaction

mechanism hm and the common interaction mechanism sm for TFBSs in cell-type m are

formally formulated as:

hm “ CNNpx, θmq (5.7)

sm “ CNNpx, θsq (5.8)

where x is the input for a TFBS; θm and θs are the parameters for the private interaction

mechanism for cell-type m and the common interaction mechanism, respectively. Our

proposed MTTFsite follows the shared-private method and it therefore has the ability to

take into account both private and common interaction mechanisms for TFBS prediction.

For both the fully-shared method and shared-private method, the network topology in

our proposed CNN TF is applied to extract features. The network topology contains two

convolution layers: one convolution layer for sequence features and one convolution layer

for histone modification features. The convolution layer for sequence features consists

of 200 convolution kernels of length 10, followed by a maxpooling with size of 92. The

convolution layer for histone modification features consists of 200 convolution kernels of

length 10, followed a maxpooling with size of 11. Then, the features learned by the two

convolution layers are concatenated into feature vectors. The classifiers in both the fully-

shared method and shared-private method are multilayer perceptron, in which two fully

connected layers of 200 neurons were used to dense feature vectors for TFBSs.

5.3.2 Experiments and Results

Four sets of evaluations are conducted here. The first set compares the performance be-

tween the fully-shared method and the baseline method without applying multi-task learn-

ing framework. The second set compares the performance of the shared-private method

and that of the fully-shared method. The third set compares our proposed MTTFsite with
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state-of-the-art predictors and the last one applies MTTFsite for cross-cell TFBS predic-

tion. In this section, the datasets used to evaluate our proposed method will be introduced

first. Then, details of the four components of will be described in sequence.

Datasets

Five cell-types including GM12878, H1-hESC, HeLa-S3, HepG2 and K562 are used to

evaluate our proposed method. As MTTFsite is required to be evaluated by the TFs with

labeled data in at least two cell-types, where one is used for testing and the others are used

for training, a total of 72 TFs are used to evaluate MTTFsite, where 17, 14, 18, 23 TFs have

labeled data in all the five cell-types, four cell-types, three cell-types and two cell-types,

respectively. The TFBSs of these TFs have been identified by ChIP-seq experiments and

their peak lists can be downloaded from ENCODE freely. The obtained peaks are usually

provided in one of two formats: narrow peak and broad peak. The narrow peak format,

which requires technically more sophisticated equipments to get, can provide more accu-

rate the positions for TFBSs than the broad peak format. So the narrow peak format is used

if available, otherwise the broad peak format is used. Based on works [5], the TFBS at

each peak is defined as a 101 bp sequence by taking the midpoint of the peak as the center.

Contrast to TFBSs, the non-TFBSs of a TF are defined as 101 bp DNA regions which can

not be bound by the target TF. Many literatures [190, 83] used a shuffle method to construct

non-TFBSs. In the shuffle method, a non-TFBS is constructed for each TFBS by shuffling

the dinucleotides in the TFBS to keep the distribution of dinucleotides unchanged. How-

ever, in this study, as both histone modification features and DNA sequences are needed

to encode TFBSs and histone modification features need to be extracted from actual DNA

sequences, we require to extract actual DNA fragments to construct non-TFBSs. So we

construct a non-TFBS for each TFBS by selecting a 101 bp DNA fragment having more

than 98% dinucleotide similarity with the TFBS and nonoverlapping with all the TFBSs.

Thus, we can construct the same number of non-TFBSs as TFBSs for each TF. For each
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TF in each cell-type, the labeled data are divided into 3 separate, but equal size folds: one

fold for training, one fold for validation and one fold for test.

Results of fully-shared (FS) method

We first evaluate the performance of the fully-shared method on the TFs in the five cell-

types and compare with a baseline method. The baseline method is similar to the fully-

shared scheme except that the baseline method is trained by the training samples from only

the target cell-type while the fully-shared method is trained by combining the training

sample from the multiple cell-types. In this experiment, the experimentally identified

TFBSs of each cell-type are divided into 3 separate, but equal size folds: training set,

validation set and test set. We train the baseline method with the training set, select model

with the best performance on the validation test and test it by the test set. For the the

fully-shared method, the model is trained by combining the the training set from the target

cell-type and the training samples from other multiple cell-types.

The comparison among the fully-share model and the baseline model is shown in Fig-

ure 5.5. Figure 5.5A shows that the fully-shared model performs better than the baseline

method for most (cell-type,TF) pairs, where a (cell-type,TF) pair refers to a prediction

task for a TF in a cell-type. Figure 5.5D shows that the first quartile, the median and

the third quartile of AUC for the fully-shared model are higher than that of the baseline

method. More specifically, the AUC of the fully-shared model and the baseline method for

TFs in GM12878, H1-hESC, HeLa-S3, HepG2 and K562 are are listed in Table A.1, A.2,

A.3, A.4 and A.5, respectively, where bold represents the best performance and underline

represents the second best performance. Table A.1 shows that the fully-shared method

outperforms the baseline method for 49 TFs out of the 58 TFs in GM12878. Table A.2

shows that the fully-shared scheme performs better than the baseline method for 31 out of

the 41 TFs in H1-hESC. Table A.3 shows that there are 37 TFs out of the 42 TFs in HeLa-

S3 on which the fully-shared method outperforms than the baseline method. Table A.4
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shows that there are 42 TFs out of the 43 TFs on which the fully-shared method performs

better than the baseline method. Table A.5 shows that there are 60 TFs out of the 65 TFs

in K562 on which the fully-shared method outperforms the baseline method. It indicates

that the learned common feature space indeed plays an important role for TFBS prediction

and impies that the interaction between a TF and DNA indeed have common mechanisms

among multiple cell-types.
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Figure 5.5: The AUCs for the cell-types with sparse labeled data.

Results of shared-private method (MTTFsite)

Our proposed MTTFsite contains a common CNN for multiple cell-types and a private

CNN for each cell-type. The difference between the fully-shared method and our proposed
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MTTFsite is that the fully-shared method has only a common CNN for multiple cell-types

while MTTFsite also has a private CNN for each cell-type except the common CNN among

multiple cell-types.

The comparison among the fully-share model, the baseline method and our proposed

MTTFsite is shown in Figure 5.5. Figure 5.5B and Figure 5.5C shows that MTTFsite

performs better than both the baseline method and the fully-shared model for most (cell-

type,TF) pairs. Figure 5.5D shows that the first quartile, the median and the third quartile

of the AUC for MTTFsite are higher than that of the baseline method and the fully-shared

model. More specifically, the AUC for the baseline method, the fully-share model, and

our proposed MTTFsite for TFs in GM12878, H1-hESC, HeLa-S3, HepG2 and K562 are

listed in Table A.1, A.2, A.3, A.4 and A.5, respectively, where bold represents the best per-

formance and underline represents the second best performance, respectively. Table A.1

shows that MTTFsite performs better than both the fully-shared method and the baseline

method for 43 TFs out of the 58 TFs in GM12878. There are four TFs on which the base-

line method outperforms both the fully-shared method and MTTFsite, it may be due to

the TF-DNA interaction in multiple cell-types have dissimilar mechanisms. On these four

TFs, even if MTTFsite achieves lower performance than the baseline method, it performs

better than the fully-shared method, which validates that MTTFsite can indeed extract

both common features and private features. Table A.1 also shows that there are 16 TFs

on which our proposed MTTFsite performs better than the baseline method by 0.01 AUC.

The improvements on some TFs are more than 0.05 AUC, such as ATFs, CTCF, SMC3,

FOS, RAD21 and ZNF143, and the improvements on NRSF and TR4 are even more than

0.15 AUC. Note that there are 7 TFs on which MTTFsite performs better than the fully-

shared method by more than 0.01 AUC. Table A.2 shows that there are 36 out of the 41

TFs in H1-hESC on which MTTFsite outperforms both the fully-shared method and the

baseline method. There are six TFs on which the fully-shared method performs worse than

the baseline method, but MTTFsite performs better than the baseline method. It validates
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that the fully-shared method loses the private features of the target cell-type when com-

bining the training samples from the multiple cell-types while MTTFsite can extract both

the common features among the multiple cell-types and the private of the target cell-type.

Table A.2 also shows that there are 26 TFs out of the 41 TFs in H1-hESC on which our

proposed MTTFsite performs better than the fully-shared method by more than 0.01 AUC.

The improvements on some TFs are more than 0.05 AUC, such as ATF3, BRCA1, CTCF,

MAFK, RAD21, RFX5 and SRF, and the improvement on NRSF is more 0.09 AUC. Note

that there are 20 TFs on which MTTFsite performs better than the fully-shared method by

more than 0.01 AUC.

Table A.3 shows that there are 41 TFs out of the 42 TFs in HeLa-S3 on which MT-

TFsite outperforms both the fully-shared method and the baseline method. There are five

TFs on which the fully-shared method performs worse than the baseline method while

MTTFsite performs better than the baseline method. It also validates that MTTFsite can

extract both the common features among the multiple cell-types and the private of the

target cell-type. Table A.3 also shows that there are 17 TFs on which the improvements

achieved by MTTFsite are more than 0.01 AUC. The improvements on some TFs are more

than 0.05 AUC, such as BRF2, CTCF, MAFK, RAD21 TR4, SMC3 and ZNF143, and the

improvements on BDP1 and NRSF are more than 0.1 AUC. There are also 9 TFs on which

MTTFsite performs better than the fully-shared method by more than 0.01 AUC, and the

improvements on BRF2, RAD21, SMC3 and ZNF274 are more than 0.02 AUC, which

is a very large improvement. Table A.4 shows that there are 41 TFs out of the 43 TFs

in HepG2 on which MTTFsite performs better than both the fully-shared method and the

baseline method. Table A.4 also shows that there are 18 TFs on which MTTFsite performs

better than the baseline method by more than 0.01 AUC. The improvements on some TFs

are more than 0.05 AUC, such as SMC3 and SP2, and the improvements on CTCF and

RAD21 are more than 0.07 AUC. There are also 8 TFs on which MTTFsite performs better

than the fully-shared method by at least 0.01 AUC. Table A.5 shows that MTTFsite out-
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performs both the fully-shared method and the baseline method for 61 TFs out of the 65

TFs in K562. There are four TFs on which the fully-shared method performs worse than

the baseline method while MTTFsite performs better than the baseline method. Table A.5

also shows that there are 36 TFs on which MTTFsite performs better the baseline method

by more than 0.01 AUC. The improvements on some TFs are more than 0.05 AUC, such

as CTCF, SMC3 and YY1, and the improvements on RAD21 and TR4 are more than 0.1

AUC. Note that there are 11 TFs on which MTTFsite performs better than the fully-shared

method by more than 0.01 AUC and the improvements on RAD21 and TR4 are more than

0.02 AUC.

In sumarry, by carefully analyzing the comparisons among the basline method, the

fully-shared method and MTTFsite on the TFs in the five cell-types, we can draw two

conclusions: (1) the training samples of target TFs from multiple cell-types can indeed

improve the prediction accuracy for them in each cell-type, which indicates that the TF-

DNA interaction in multiple different cell-types indeed have common mechanisms; (2)

the fully-shared method performs worse than the baseline method while MTTFsite out-

performs the baseline method for some TFs while MTTFsite performs better than it on

most TFs in the five cell-types, which indicates that each cell-type also has its private

mechanism except the common interaction mechanism among the multiple cell-types.

Comparison between MTTFsite and state-of-the-art methods

The AUCs of MTTFsite and the four existing methods using DNA shape features on five

TFs in four cell-types are shown in Table 5.8. It can be observed that MTTFsite outper-

forms the four existing methods on all the five TFs in the four cell-types except GABP

in H1-hESC. The minimum improvement and maximum improvement are 0.022 AUC on

GABP in HepG2 and 0.233 AUC on JunD in GM12878, respectively. The average im-

provement is 0.115 AUC, which is a very big improvement for TFBS prediction.

The AUCs of our proposed MTTFsite and the four existing deep learning methods on
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Table 5.8: AUCs of the four DNA shape based methods and MTTFsite on four TFs in five
cell-types.

TF CELL 4-bits PSSM TFFM d TFFM f MTTFsite

CTCF

GM12878 0.763 0.762 0.748 0.750 0.859
H1-hESC 0.762 0.758 0.740 0.744 0.816
HeLa-S3 0.739 0.736 0.724 0.726 0.834
HepG2 0.759 0.757 0.741 0.746 0.871
K562 0.747 0.745 0.731 0.733 0.839

GABP

GM12878 0.830 0.828 0.830 0.830 0.934
H1-hESC 0.832 0.828 0.824 0.824 0.729
HeLa-S3 0.796 0.796 0.792 0.787 0.946
HepG2 0.842 0.838 0.830 0.837 0.864
K562 0.822 0.817 0.812 0.815 0.913

JunD

GM12878 0.752 0.751 0.742 0.753 0.975
H1-hESC 0.762 0.760 0.750 0.753 0.876
HeLa-S3 0.800 0.797 0.773 0.777 0.942
HepG2 0.774 0.771 0.754 0.757 0.829
K562 0.763 0.760 0.742 0.746 0.912

USF2

GM12878 0.773 0.771 0.754 0.758 0.938
H1-hESC 0.784 0.780 0.765 0.770 0.887
HeLa-S3 0.750 0.746 0.731 0.735 0.938
HepG2 0.788 0.784 0.762 0.766 0.904

five TFs in four cell-types are listed in TABLE 5.9. TABLE 5.9 shows that MTTFsite

performs better than the four methods for 15 out of the 19 pairs. On the 15 pairs, the

maximum performance improvement 0.215 AUC on USF2 in HeLa-S3. The average im-

provement on the 15 pairs is 0.095, which is a prominent improvement and indicates that

MTTFsite achieves better performance than state-of-the-art methods.

Prediction for cell-types without training samples

Due to the high cost of the ChIP-seq experiment, most TFs do not have labeled data for

certain cell-types. So it is urgent to predict the TFBSs of TFs in the cell-types without

labeled data. As MTTFsite can use a common CNN to learn common features by using

the available labeled data from multiple cell-types, it can predict the TFBSs for TFs in
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Table 5.9: AUCs of MTTFsite and four state-of-the-art methods on TFs in cell-types of
humans

TF CELL DanQ DanQ-J DeepSea DeepSea-J MTTFsite

CTCF GM12878 0.780 0.703 0.745 0.617 0.895
H1-hESC 0.824 0.723 0.767 0.656 0.816
HeLa-S3 0.754 0.670 0.699 0.605 0.834
HepG2 0.826 0.724 0.772 0.644 0.871
K562 0.772 0.687 0.720 0.618 0.839

GABP GM12878 0.929 0.907 0.906 0.895 0.934
H1-hESC 0.922 0.906 0.907 0.894 0.729
HeLa-S3 0.808 0.772 0.766 0.752 0.946
HepG2 0.927 0.914 0.913 0.906 0.864
K562 0.911 0.898 0.900 0.892 0.913

JunD GM12878 0.835 0.779 0.789 0.729 0.975
H1-hESC 0.771 0.718 0.726 0.699 0.876
HeLa-S3 0.850 0.721 0.766 0.671 0.942
HepG2 0.842 0.725 0.765 0.697 0.829
K562 0.717 0.652 0.664 0.624 0.912

USF2 GM12878 0.789 0.706 0.710 0.689 0.938
H1-hESC 0.849 0.775 0.780 0.758 0.887
HeLa-S3 0.723 0.637 0.644 0.609 0.938
HepG2 0.811 0.691 0.693 0.668 0.904

the cell-types without labeled data, which is referred to as cross-cell-type predictions. In

MTTFsite, the private CNN for each cell-type need to be trained by the labeled data in

the cell-type. As the private CNNs for the cell-types without labeled data do not have

training data, MTTFsite trains them by leveraging on the training data from cell-types

with available labeled data. Thus, by comparing MTTFsite and the full-shared model,

we find that the private CNNs for the cell-types without labeled data are similar to the

common CNN in the fully-shared model, because they both are trained by the combined

training data from the cell-types with available labeled data. The only difference is that

MTTFsite contains both the features learned by private CNNs and that learned by the

common CNN while the fully-shared model contains only the features learned by the

common CNN. We have noted that if some cell-types contains too much training data,
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the feature space learned by the fully-shared model is overoccupied by private features

such that many common features are lost. As MTTFsite can separate private features from

common features, the lost common features in the private CNNs can be complemented

by the common features learned by the common CNN. Therefore, the features learned

by MTTFsite for each cell-type contains more common features than that learned by the

fully-shared model.

In order to evaluate the cross-cell-type prediction performance of MTTFsite on a cell-

type, we suppose that only the test set for the cell-type is available and both the training set

and the validation set are unavailable. So the fully-shared model and MTTFsite need to be

trained and validated by the combined training data and the combined validation data from

the other cell-types with available labeled data, respectively. In addition, we also compare

MTTFsite with the baseline method in cross-cell-type TFBS prediction. The baseline

method is similar to the fully-shared model except that the baseline method is trained

by the training data of only the target cell-type. So the baseline method is a supervised

method, in which the training set and validation set come from the same cell-type with the

test set.

The comparison among the baseline method, the fully-share model and our proposed

MTTFsite is shown in Figure 5.6. Figure 5.6A shows that the fully-shared model performs

better than the baseline method for most (cell-type,TF) pairs. Figure 5.6D shows that the

first quartile, the median and the third quartile of the AUC for the fully-shared model are

higher than that of the baseline model. It shows that the fully-shared model trained by

cross-cell-type can achieve better performance the baseline method trained by the target

cell-type. It indicates that the fully-shared model can achieve good performance for cross-

cell-type TFBS predictions. Figure 5.6B and Figure 5.6C show that MTTFsite performs

better than both the baseline method and the fully-shared model for most (cell-type,TF)

pairs. Figure 5.6D shows that the first quartile, the median and the third quartile of the

AUC for MTTFsite are higher than that of both the baseline method and the full-shared
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Figure 5.6: The AUCs for the cell-types without labeled data.

model. More specifically, the comparison among the baseline method, the fully-shared

model and MTTFsite for GM12878, H1-hESC, HeLa-S3, HepG2 and K562 are listed in

Table A.6, A.7, A.8, A.9 and A.10, respectively, where bold represents the best perfor-

mance. We first compare MTTFsite with the baseline method in detail. For the 56 TFs

in GM12878, Table A.6 shows that there are 46 TFs on which MTTFsite performs bet-

ter than the baseline method. The maximum and the average improvement are 0.266 and

0.042 AUC, respectively. For the 42 TFs in H1-hESC, Table A.7 shows that there are 31

TFs on which MTTFsite performs better than the baseline method. The maximum and the

average improvement are 0.211 and 0.063 AUC, respectively. For the 37 TFs in HeLa-
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S3, Table A.8 shows that there are 29 TFs on which MTTFsite performs better than the

baseline method. The maximum and the average improvement are 0.172 and 0.034 AUC,

respectively. For the 43 TFs in HepG2, Table A.9 shows that there are 35 TFs on which

MTTFsite performs better than the baseline method. The maximum and the average im-

provement are 0.253 and 0.042 AUC, respectively. For the 63 TFs in K562, Table A.10

shows that there 54 TFs on which MTTFsite performs better than the baseline method.

The maximum and the average improvement are 0.242 and 0.034 AUC, respectively. It in-

dicates that MTTFiste trained by cross-cell-type can achieve better performance than the

baseline method trained by the target cell-type.

Then we compare MTTFsite with the fully-shared model in detail. For the 56 TFs in

GM12878, Table A.6 shows that there are 54 TFs on which MTTFsite performs better than

the fully-shared model. The improvements on NRSF, SMC3, RAD21, YY1, NFE2 and

BCL11A are more than 0.02 AUC, and the improvements on CTCF and EZH2 are even

more than 0.04 AUC. For the 42 TFs in H1hesc, Table A.7 shows that there are 36 TFs on

which MTTFsite outperforms the fully-shared model. The improvements on RFX5, NRSF,

RXRA, TCF12 and ZNF143 are more than 0.02 AUC, and the improvements on RAD21

and MAFK are even more than 0.03 AUC. For the 37 TFs in HeLa-S3, Table A.8 shows

that there are 33 TFs on which MTTFsite performs better than the fully-shared model. The

improvements on SMC3, RAD21, MAFK and NRSF are more than 0.02 AUC, and the im-

provements on CTCF is more than 0.04 AUC. For the 43 TFs in HepG2, Table A.9 shows

that there are 41 TFs on which MTTFsite performs better than the fully-shared model. The

improvements on CTCF, JUND, MYC, CEBPB, GABP, SMC3, ZBTB33, MAFF, RAD21

and MAFK are more than 0.02 AUC, and the improvement on NRSF is even more than

0.04 AUC. For the 63 TFs in K562, Table A.10 shows that there are 62 TFs on which MT-

TFsite performs better than the fully-shared model. The improvements on NFE2, RFX5,

ZBTB33, MAFK, NRSF and ZNF143 are more than 0.02 AUC, and improvements on

CTCF, RAD21 and SMC3 are more than 0.03 AUC. It indicates that MTTFsite can also
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performs better than the fully-shared model for cross-cell-type predictions.

In summary, MTTFsite can predict TFBSs of target TFs for a large number of cell-

type without training samples by using training samples from multiple other cell-types.

However, many target TFs do not have any training sample in any of the cell-types, thus

MTTFsite cannot be applied to predict TFBSs of target TFs in any of the cell-types.

5.4 PDBR TF:Predicted DNA binding residue based method

In above section, we presented a cross-cell-type TFBS prediction method MTTFsite based

on multi-task learning. MTTFsite can predict TFBSs of target TFs in specific cell-types

without training samples by using the training samples from multiple other cell-types.

However, many TFs do not have any training sample in any of the cell-types. Thus, MT-

TFsite cannot be applied to predict TFBSs for these TFs. Fortunately, we know that in

a specific cell-type, there exist other TFs which have TFBSs identified by experimental

methods. Even though a majority of TFs have different sequences and biology functions,

some TFs do have similar sequences and biology functions. As these TFs are similar in

sequences and biology functions and tend to bind to similar positions of the genome, we

propose PDBR TF to obtain features for TFs without training data by using experimentally

identified TFBSs of other TFs from the same cell-type.

5.4.1 Cross-TF TFBS prediction

A simple method for cross-TF TFBS prediction is to train a model for a target TF in a

specific cell-type by assembling the training samples from multiple other TFs with training

samples in the sample cell-type. Since CNN TF have achieved good performance for

TFBS prediction, we can train a CNN TF model for a target TF in a specific cell-type

by assembling the training samples from multiple TFs in the same cell-type, which is

considered as the baseline method for this problem. By carefully analyzing the baseline
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method, we found that the baseline method treats the training samples from different TFs

equally in training model. They deem that the training samples from different TFs will

provide same contributions in the training, which is an inappropriate hypothesis. In factor,

different TFs have different similarity to the target TF in sequences and biology functions

and TFs with higher similarity in sequences and biology functions tend to bind to same

positions in a genome. Thus, the TFs with higher similarity with the target TF tend to have

larger contribution for the training than the TFs with lower similarity with the target TF.

In order to incorporate information of TFs into prediction model, we present a se-

quence based method in which the sequence features of TFs and The putative TFBS

are combined as input features. In the sequence based method, the network topology

in CNN TF is used to learn sequence features from DNA sequence and a LSTM network

is used to learn sequence features from the sequence of the corresponding TFs, and then

the features of a DNA sequence and the features of the corresponding TF are concatenated

into a feature vector. The reason for why LSTM network is used to learn sequence features

for TFs is that LSTM network is capable of automatically capturing both local context and

long-range dependency among residues in a sequence. The sequence of TFs contain hun-

dreds or thousands of residues and multiple residues often participate combinatorially in

the TF-DNA interaction, thus there may exist many local context and long-range relation-

ships in the sequence of TFs. Finally, the concatenated feature vectors are fed into a fully

connected network to learn condensed feature vectors. In the fully connected network, the

features from a TF and that from a putative TFBS are blended together. In factor, the fea-

tures learned from TFs by LSTM can determine the contributions of the training samples

from different TFs in the training process.

The sequence of TFs usually contains a larger number of residues, which makes the

LSTM network be very time consuming. For example, BDP1 contains as many as 2624

residues, which will consume much time. Furthermore, a TF may also contains several

other domains except a DNA binding domain. Other domains include many types, such as
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Death effector domain (DED), Immunoglobulin-like domains, Phosphotyrosine-binding

domain (PTB), Pleckstrin homology domain (PH), Src homology 2 domain (SH2), etc..

These domains play other roles like allowing protein–protein binding, playing roles in the

immune system, binding to phosphorylated tyrosine residues, binding phosphoinositides

with high affinity, binding to phosphorylated tyrosine, etc.. Since the residues in other

domains are not involved in TF-DNA interaction, they may affect TFBS prediction. DNA

binding domain is an independently folded protein domain that contains at least one struc-

tural motif that recognizes double- or single-stranded DNA. A DNA binding domain can

recognize a specific DNA sequence (TF binding site) or have a general affinity to DNA.

DNA binding domains include many DNA binding residues in their folded structure and

these residues play important roles in TF-DNA interaction. Therefore, we aim to make

good use of DNA binding residues in TF for cross-TF TFBS prediction.

As experimental methods for identification of DNA binding residues require known

tertiary structures for both TF and DNA and only a limited number of TFs have known ter-

tiary structures, we aim to use DNA binding residues predicted by computational methods

to complete for cross-TF TFBS prediction. We have proposed four computational meth-

ods for DNA binding residue prediction, but the lacking of structure features for most TFs

make only EL PSSM-RT and CNNsite be suitable for our TFBS prediction. Moreover, we

have collected enough number of training samples for DNA binding residue prediction, so

the binding residues predicted by our proposed CNNsite are used to build our proposed

cross-TF TFBS prediction method PDBR TF.

5.4.2 Predicted DNA binding residue based method (PBDR TF)

The framework of PDBR TF is shown in Figure 5.7. PDBR TF contains three main parts.

The first part is a LSTM network followed by a layer normalization layer. The input of

this part is the feature matrix concatenated by the one-hot vectors of all predicted binding

residues within the corresponding TF. The second part is a CNN TF model, which is used
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to learn feature vectors for putative TFBSs. The CNN TF model contains two convolution

layers followed by a pooling layer and a layer normalization layer. One convolution layer

inputs the feature vector concatenated by the one-hot vectors of the nucleotides within the

target putative TFBS while the other convolution layer inputs the feature vector concate-

nated by the histone modification features of the target putative TFBS. The last part is

a fully connected network followed by a softmax classier. The fully connected network

contains three hidden layer and a dropout layer used to avoid over-fitting before the first

hidden layer. The fully connected network inputs the feature vector concatenated by the

features outputted by the LSTM network and that outputted by the CNN TF and outputs a

label for indicating whether the inputting putative TFBS is an actual TFBS or not.

5.4.3 Experiments and results

The performance of PDBR TF is measured by AUC. We compare PDBR TF with two

the methods including the baseline method and the sequence method. The difference be-

tween PDBR TF and the baseline method is that PDBR TF has a LSTM applied on the

amino acid sequence of corresponding TFs except the network topology in CNN TF. The

different between PDBR TF and the sequence method is that PDBR TF applies a LSTM

on the amino acid sequence composed by only predicted DNA binding residues within

corresponding TFs while the sequence method applies a LSTM on the amino acid se-

quence composed by all the residues of corresponding TFs. Four sets of evaluations are

conducted here. The first set compares the performance between the baseline method and

the sequence method. The second set compares the performance between the sequence

method and our proposed PDBR TF. The third set compares the performance between

our proposed cross-TF TFBS prediction method PDBR TF with our proposed cross-cell-

type TFBS prediction method. In this section, the datasets used to evaluate our proposed

method will be introduced first. Then, details of the three components of our proposed

PDBR TF will be described in sequence.
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Figure 5.7: The framework of PDBR TF.

Datasets

Five cell-types including GM12878, H1-hESC, HeLa-S3, HepG2 and K562 are used

to evaluate our proposed method. A total of 132 TFs are used to evaluate PDBR TF,

where 55, 30, 17, 14, 16 TFs have labeled data in one cell-types, two cell-types, three

cell-types and four cell-types and all the five cell-types, respectively. The TFBSs of these

TFs have been identified by ChIP-seq experiments and their peak lists can be downloaded

from ENCODE freely. The obtained peaks are usually provided in one of two formats:

narrow peak and broad peak. The narrow peak format, which requires technically more
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sophisticated equipments to get, can provide more accurate positions for TFBSs than the

broad peak format. So the narrow peak format is used if available, otherwise the broad

peak format is used. Based on works [5], the TFBS at each peak is defined as a 101 bp

sequence by taking the midpoint of the peak as the center. Contrast to TFBSs, the non-

TFBSs of a TF are defined as 101 bp DNA regions unbound by the target TF. In this study,

as TFBSs are encoded by both histone modification features and DNA sequences, we

construct non-TFBSs by extracting actual DNA fragments. A non-TFBS is constructed

for each TFBS by selecting a 101 bp DNA fragment with more than 98% dinucleotide

similarity to the TFBS and nonoverlapping with any TFBS. Thus, we can construct the

same number of non-TFBSs as TFBSs for each TF. For each TF in each cell-type, the

labeled data are divided into 3 separate, but equal size folds: one fold for training, one fold

for validation and one fold for test.

The performance of the sequence method

We first evaluate the performance of the sequence method on the TFs in the five cell-types

and compare it with the baseline method. For each TF in each cell-type, the sequence

method and the baseline method are trained by the training set of other TFs, validated and

tested by the validation set and the test set of the target TF, respectively.

The comparison between the baseline method and the sequence method is shown in

Figure 5.8. Figure 5.8A shows that the sequenc method achieves lower performance than

the baseline method for most (cell-type,TF) pairs, where a (cell-type,TF) pair refers to a

prediction task for a TF in a cell-type. Figure 5.8D shows that the first quartile, the median

and the third quartile of AUC for the sequence method are higher than that of the baseline

method. More specifically, the comparison between the baseline method and the sequence

method on the TFs in GM12878, H1-hESC, HeLa-S3, HepG2 and K562 is shown in table

B.1, B.2, B.3, B.4 and B.5, respectively. Table B.1 shows that there are 42 TFs out of

the 69 TFs in GM12878 on which the baseline method performs better than the sequence
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method and the baseline method performs worse than the sequence method on the other 25

TFs. Table B.2 shows that the baseline method performs better than the sequence method

on 37 TFs out of the 46 TFs and performs worse than the sequence method on the other 9

TFs. Table B.3 shows that the baseline method performs better than the sequence method

on 27 TFs of the 46 TFs in HeLa-S3 and performs worse than the sequence method on

the other 19 TFs. Table B.4 shows that the baseline method outperforms the sequence on

33 TFs out of the 52 TFs in HepG2 and performs worse than the sequence method on the

other 19 TFs. Table B.5 shows that the baseline method outperforms that sequence method

on 49 TFs out of the 88 TFs in K562 and performs worse than the sequence method on the

other 39 TFs.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Sequence

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CN
N_

TF

(cell-type,TF) pair

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
PDBR_TF

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
CN

N_
TF

(cell-type,TF) pair

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
PDBR_TF

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Se
qu

en
ce

(cell-type,TF) pair

CNN_TF Sequence PDBR_TF
0.75

0.80

0.85

0.90

0.95

1.00

Methods

A
U

C

(A) (B)

(C) (D)

Figure 5.8: The comparisons between CNN TF, the sequence method and PDBR TF.
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By analyzing the above five tables, we found that when the sequence features of cor-

responding TFs are incorporated into prediction, the performance is declined. The reason

may be that a TF may contain multiple different protein domains. Different types of pro-

tein domains often involved in different biology functions, for example, Basic Leucine

zipper domain (bZIP domain) and Zinc finger DNA binding domain (ZnF GATA) are

two examples of the domains involved in DNA binding contains and Death effector do-

main (DED) allows protein–protein binding by homotypic interactions (DED-DED), and

Phosphotyrosine-binding domain usually binds to phosphorylated tyrosine residues. When

incorporating the sequence features from the whole amino acid sequence of corresponding

TFs into prediction, the extracted features not only contain the information from domains

involved in DNA binding, but also contain the information from domains involved in other

functions. With the incorporating of the information involved in other functions, the in-

corporated features will affect the performance of the sequence method. Moreover, as

the amino acid sequence of TFs usually contains a large number of residues, applying a

LSTM network on the amino acid sequence of TFs to extract features costs plenty of time

and much computer resources.

The performance of PDBR TF

The comparison among our proposed PDBR TF, the sequence method and the base-

line method are shown in Figure 5.8. Figure 5.8B and Figure 5.8C shows that PDBR TF

performs better than both the baseline method and the sequence method for most (cell-

type,TF) pairs. Figure 5.8D shows that the first quartile, the median and the third quartile

of the AUC for PDBR TF are higher than that of the baseline method and the sequence

method. More specifically, the comparison among our proposed PDBR TF, the baseline

method and the sequence method on the TFs in GM12878 is shown in table B.1. Table

B.1 shows that PDBR TF performs better than both the baseline method and the sequence

method on 65 TFs out of the 69 TFs in GM12878. TFs with improvement more than 0.01
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Table 5.10: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 23 TFs in GM12878.

TF Base Seq PDBR TF Base Seq PDBR

GABP 0.948 0.945 0.962 TCF3 0.949 0.946 0.961
ELK1 0.937 0.962 0.971 RUNX3 0.959 0.963 0.975
ELF1 0.943 0.940 0.953 SIX5 0.944 0.949 0.965
RFX5 0.950 0.947 0.961 USF2 0.959 0.958 0.970
ATF2 0.965 0.980 0.987 POU2F 0.959 0.962 0.972
BCL3 0.917 0.917 0.928 NFE2 0.938 0.937 0.954
SMC3 0.969 0.968 0.979 ZZZ3 0.848 0.833 0.860
NFATC1 0.907 0.959 0.970 BATF 0.965 0.970 0.979
BHLHE40 0.957 0.959 0.972 SRF 0.936 0.929 0.943
SP1 0.963 0.964 0.976 EGR1 0.939 0.937 0.950
USF1 0.926 0.930 0.953 FOS 0.961 0.966 0.974
NFYB 0.875 0.860 0.904

AUC are listed Table 5.10, which shows that there 23 TFs on which PDBR TF performs

better the baseline method by more than 0.01 AUC. The table also shows that the im-

provements for some TFs are more than 0.02 AUC, such as ELK1, ATF2, USF1, NFYB

and SIX5, and the improvement on NFATC1 is more than 0.06 AUC. There are 18 TFs on

which PDBR TF performs better the sequence method by more than 0.01 AUC. The im-

provements on USF1 and ZZZ3 are more than 0.02 AUC and the improvement on NFYB

is more than 0.04 AUC. The comparison between our proposed PDBR TF, the baseline

method and the sequence method on the TFs in H1-hESC is shown in table B.2, which

shows that PDBR TF performs better than both the baseline method and the sequence

method on 45 TFs out of the 46 TFs in H1-hESC. The TFs with improvement more than

0.01 AUC are listed in table 5.11, which shows that improvements on 26 TFs out of the

46 TFs in H1-hESC are more than 0.01 AUC. This table also shows that the improve-

ments for some TFs are more than 0.02 AUC, such as TEAD4, EZH2, FOSL1, EGR1,

POU2F, SIX5, RXRA and USF1. On the 26 TFs, PDBR TF also performs better than the

sequence method by 0.01 AUC and the improvement on 19 TFs are more than 0.02 AUC.
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Table 5.11: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 26 TFs in H1-hESC.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.935 0.924 0.951 MAFK 0.867 0.855 0.883
SP4 0.936 0.931 0.950 JUND 0.937 0.930 0.953
SUZ12 0.832 0.831 0.845 NANOG 0.945 0.932 0.958
MXI1 0.937 0.934 0.950 NRF1 0.887 0.879 0.905
TEAD4 0.913 0.915 0.938 CEBPB 0.791 0.781 0.810
EZH2 0.888 0.894 0.905 POU2F 0.948 0.949 0.970
FOSL1 0.878 0.855 0.902 SIX5 0.925 0.916 0.952
RFX5 0.865 0.865 0.876 GABP 0.922 0.912 0.933
ATF3 0.949 0.938 0.966 RXRA 0.928 0.925 0.949
BACH1 0.919 0.913 0.936 MAX 0.930 0.925 0.947
MYC 0.932 0.926 0.949 HDAC2 0.946 0.940 0.959
RAD21 0.954 0.951 0.971 P300 0.942 0.936 0.955
EGR1 0.885 0.877 0.908 USF1 0.897 0.903 0.920

The improvement on FOSL1, EGR1, SIX5 are more than 0.04 AUC. The comparison be-

tween our proposed PDBR TF, the baseline method and the sequence method on the TFs

in HeLa-S3 is shown in table B.3. Table B.3 shows that there are 43 TFs out of the 46 TFs

in HeLa-S3 on which the PDBR TF performs better than both the baseline method and

the sequence method. The TFs with improvement more than 0.01 AUC are listed in table

5.12, which shows than there are 25 TFs out of the 46 TFs in HeLa-S3 on which the im-

provement of our proposed PDBR TF over the baseline method are more than 0.01 AUC.

This table also shows that the improvements on NFYA, CEBPB and BRF1 are more than

0.02 AUC, which are very larger improvements. There are 22 TFs on which PDBR TF

performs better than the sequence method by more than 0.01 AUC. The improvement on

CTCF, ZNF143, USF2 and CEBPB are more than 0.02 AUC and the improvement on

BRF1 is more than 0.03 AUC.

The comparison between our proposed PDBR TF, the baseline method and the se-

quence method on the TFs in HepG2 is shown in table B.4. This table shows that there

are 49 TFs out of the 52 TFs in HepG2 on which PDBR TF performs better than both the
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Table 5.12: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 25 TFs in HeLa-S3.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.954 0.951 0.967 E2F1 0.902 0.902 0.915
CTCF 0.913 0.903 0.930 ZNF143 0.925 0.917 0.939
AP2A 0.949 0.947 0.963 MAZ 0.929 0.926 0.940
NRF1 0.911 0.908 0.921 MXI1 0.959 0.955 0.967
ELK4 0.957 0.954 0.968 USF2 0.945 0.938 0.965
AP2G 0.945 0.941 0.955 CEBPB 0.922 0.935 0.959
NFYA 0.927 0.929 0.947 BRF1 0.860 0.868 0.900
BAF170 0.964 0.970 0.976 IRF3 0.954 0.954 0.968
E2F6 0.926 0.922 0.936 SMC3 0.961 0.965 0.975
TBP 0.971 0.974 0.981 INI1 0.931 0.927 0.941
MAX 0.952 0.950 0.963 MYC 0.952 0.955 0.966
RAD21 0.959 0.961 0.973 BRCA1 0.960 0.961 0.972
NFYB 0.901 0.900 0.918

Table 5.13: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 20 TFs in HepG2.

TF Base Seq PDBR TF Base Seq PDBR

ZBTB33 0.955 0.923 0.966 HNF4G 0.968 0.973 0.981
FOXA2 0.967 0.973 0.982 BHLHE40 0.952 0.950 0.964
CTCF 0.941 0.947 0.953 HNF4A 0.975 0.979 0.986
MAZ 0.942 0.932 0.952 ELF1 0.947 0.937 0.957
NRF1 0.927 0.911 0.940 MXI1 0.946 0.918 0.960
CEBPB 0.951 0.954 0.961 NRSF 0.780 0.761 0.836
FOXA1 0.966 0.927 0.981 USF2 0.950 0.952 0.969
GABP 0.911 0.909 0.926 RXRA 0.969 0.974 0.979
SP2 0.773 0.768 0.941 MAX 0.943 0.938 0.963
MYC 0.967 0.968 0.978 USF1 0.920 0.929 0.948
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Table 5.14: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 35 TFs in K562.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.930 0.933 0.946 ELK1 0.957 0.958 0.968
JUND 0.962 0.964 0.972 SIN3A 0.925 0.926 0.944
CTCF 0.935 0.936 0.949 JUN 0.973 0.973 0.985
ZBTB33 0.906 0.908 0.920 MAFK 0.967 0.977 0.980
TEAD4 0.958 0.964 0.968 BHLH40 0.940 0.942 0.952
KAP1 0.817 0.786 0.891 MAZ 0.943 0.946 0.954
TAL1 0.951 0.955 0.964 SIX5 0.937 0.941 0.956
ATF3 0.933 0.925 0.945 CEBPB 0.824 0.825 0.845
ZNF274 0.754 0.749 0.780 USF2 0.962 0.965 0.974
RAD21 0.976 0.974 0.986 P300 0.886 0.895 0.926
NFYB 0.904 0.917 0.933 NFYA 0.940 0.941 0.961
NFE2 0.988 0.987 0.992 NRSF 0.872 0.867 0.915
SMC3 0.965 0.964 0.978 E2F4 0.930 0.929 0.940
MAFF 0.948 0.953 0.973 TR4 0.906 0.897 0.918
SP2 0.938 0.935 0.952 MAX 0.949 0.952 0.960
SRF 0.930 0.934 0.941 SP1 0.948 0.950 0.959
FOS 0.964 0.968 0.976 GABP 0.933 0.936 0.948
USF1 0.932 0.943 0.952

baseline method and the sequence method. The TFs with improvements of more than 0.01

AUC are listed in table 5.13, which shows that the improvement on 20 TFs out of the 52

TFs in HepG2 are more than 0.02 AUC. The table also shows that the improvement on

MAX, USF1 and NRSF are more than 0.02 AUC and improvement on SP2 is even more

than 0.16 AUC, which are very large improvements. There are 14 TFs on which PDBR TF

performs better than the sequence method by more than 0.01 AUC and improvement on

9 TFs are more than 0.02 AUC. The improvement on ZBTB33, FOXA1 and NRSF are

more than 0.04 AUC and the improvement on SP2 is more than 0.17 AUC. The compar-

ison between our proposed PDBR TF, the baseline method and the sequence method on

the TFs in K562 is shown in table B.5. This table shows that there are 81 TFs out of the

88 TFs in K562 on which our proposed PDBR TF performs better than both the baseline

method and the sequence method. The TFs with more than 0.01 AUC improvements are
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listed in table 5.14, which shows that there are 35 TFs out of the 88 TFs in K562 on which

the PDBR TF performs better than the baseline method by more than 0.01 AUC and im-

provement on 9 TFs are more than 0.02 AUC. The improvements on P300 and NRSF are

more than 0.04 AUC, and the improvement on KAP1 is even more than 0.07 AUC, which

are very large improvements. There are 22 TFs on which PDBR TF performs better than

the sequence method by more than 0.01 AUC, and the improvement on 9 TFs are more

than 0.02 AUC. The improvement on P300 and NRSF are more than 0.03 AUC, and the

improvement on KAP1 are even more than 0.1 AUC. The above analysis for the TFS in

the five cell-types shows that PDBR TF performs better than both the baseline method and

the sequence method with large margins for most TFs in all the five cell-types. It indicates

that the features learned by LSTM from the amino acid sequence composed by predicted

DNA binding residues indeed play a important role in TFBS prediction.

As the difference between our proposed PDBR TF and the baseline method is that

PDBR TF incorporates features learned by LSTM from the amino acid sequence com-

posed by predicted DNA binding residues, the outperformance of PDBR TF over the

baseline method is attributed by the features learned from predicted DNA binding residues.

Moreover, the difference between PDBR TF and the sequence method is that the features

of TFs in PDBR TF are learned from predicted DNA binding residues while that in the

sequence method are learned from all the residues. So the outperformance of PDBR TF

over the sequence method is attributed by the predicted DNA binding residues instead of

a entire TF. Contrast to a entire TF containing residues involved in different functions, the

predicted DNA binding residues contain only residues involved in DNA binding function.

So the predicted DNA binding residues are more suitable to measure the similarity be-

tween two TFs in terms of the DNA binding function than a entire TF. As the cross-TF

TFBS prediction model including PDBR TF, the baseline model and the sequence model

for a target TF are trained by the experimentally identified TFBSs from multiple other TFs

and different TFs have different structure and function similarity with the target TF, the
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training samples of different TFs have different contributions for the model training. How-

ever, the baseline method treats the training samples from different TFs equally and deem

the training samples from different TFs to have equal contribution for training. Even if

the sequence method treats the training samples in different TFs unequally, it just uses the

features learned by LSTM from a entire TF to determine the contributions of their TFBSs

in training. Contrast to the sequence method, our proposed PDBR TF applies the features

learned by LSTM from only predicted DNA binding residues. Therefore, PDBR TF can

determine the contribution of the training samples from a TF more accurately by using

only features involved in DNA binding function.

Comparison between PDBR TF and MTTFsite

MTTFsite is our proposed cross-cell-type TFBS prediction method, which can pre-

dict TFBSs of target TFs for specific cell-types without training samples by using the

training samples of the target TFs from multiple other cell-types. In order to compare

the performance between our proposed cross-TF TFBS prediction method PDBR TF and

cross-cell-type TFBS prediction method MTTFsite, we apply PDBR TF and MTTFsite

on the TFs in the five cell-types. For a target TF in a specific cell-type, PDBR TF uses

the experimentally identified TFBSs of the target TF in the specific cell-type in test set

and the TFBSs of other TFs in the same cell-type in training set. MTTFsite uses the ex-

perimentally identified TFBSs of the target TF in the specific cell-type in test set and the

TFBSs of the target TF in other cell-types in training set. For PDBR TF and MTTFsite,

10% samples of the training set are left out as validation set. As there are 55 out of the 69

TFs in GM12878, 42 out of the 46 TFs in H1-hESC, 37 out of the 46 TFs in HeLa-S3, 42

out of the 52 TFs in HepG2 and 60 out of the 88 TFs in k562, on which both PDBR TF

and MTTFsite can be evaluated, we compare them on the these TFs for the five cell-types.

The comparisons between PDBR TF and MTTFsite for the TFs in the five cell-types

are listed in Figure 5.9. Figure 5.9A shows that PDBR TF performs better than MTTF-
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Figure 5.9: The comparisons between our proposed MTTFsite and PDBR TF.

site for most (cell-type,TF) pairs. Figure 5.9B shows that the first quartile, the median

and the third quartile of the AUC for PDBR TF are higher than that of MTTFsite. More

specifically, PDBR TF achieves higher AUC than MTTFsite for 206 pairs out of the 237

common (cell-type,TF) pairs between them. The largest improvement and average im-

provement are 43.9% and 14.7%, respectively, which is a very large improvement. It

indicates that PDBR TF is more useful for the TFBS prediction of TFs without labeled

data than MTTFsite.

The comparisons on the 55 TFs in GM12878 shows that PDBR TF outperforms MT-

TFsite on 52 out of the 55 TFs in GM12878. The improvement on 49 TFs are more than

0.02 AUC. The comparisons on the 42 TFs in H1-hESC shows that PDBR TF outperforms

MTTFsite on 35 out of the 42 TFs in H1-hESC and the improvements on 33 TFs are mores

than 0.02 AUC. The comparisons on the 37 TFs in HeLa-S3 shows that PDBR TF outper-

forms MTTFsite on 33 out of the 37 TFs in HeLa-S3 and the improvement on 31 TFs are

more than 0.02 AUC. The comparisons on the 42 TFs in HepG2 shows that PDBR TF

outperforms MTTFsite on 35 out of the 42 TFs in HepG2 and the improvement on 33 TFs

are more than 0.02 AUC. The comparisons on the 60 TFs in K562 shows that PDBR TF
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outperforms MTTFsite on 48 out of the 60 TFs in K562 and the improvement on 41 TFs

are more than 0.02 AUC.

There are totally 31 TFs, on which MTTFsite outperforms PDBR TF, for all the five

cell-types. Out of the 31 TFs, there are 16 TFs with training samples in all the five cells,

11 TFs with training samples in four cells, 4 TFs with training samples in 3 cells. It

indicates that the 31 TFs have training samples for at least 3 cell-types and 27 TFs out of

them have training samples for at four cell-types. So the higher performance of MTTFsite

over PDBR TF is attributed to the enough number of cell-types with training samples for

target TFs. Therefore, we conclude that the performance of MTTFsite closely relies on the

number of cell-types with training samples for target TFs. Moreover, in the five cell-types,

there are totally 84 TFs with training samples for only one cell-types. MTTFsite cannot

be applied to predict TFBSs for these TFs because these TFs have only test cell-types and

do not have training cell-types from which the training samples are achieved. By contrary,

for target TFs in a specific cell-types, there are many other TFs with training samples in

the same cell-type, our our proposed cross-TF prediction method PDBR TF is suitable

to be applied to predict TFBSs for these target TFs. Therefore, our proposed cross-TF

prediction method PDBR TF and cross-cell prediction method MTTFsite can applied for

different cases. MTTFsite is suitable to be applied for target TFs with training samples in

multiple other cell-types while PDBR TF is suitable to be applied for target TFs in specific

cell-types with training sample for multiple other TFs.

5.5 Chapter Summary

In this chapter, three novel methods are proposed for TFBS prediction. Firstly, the pro-

posed novel CNN TF method aims to capture both first order and higher order depen-

dencies for those TFs with sufficiently large number of training samples for a specific

cell-type. CNN TF uses both sequence features and histone modification features using
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CNN for prediction. Performance evaluation shows that higher order dependencies is a

very useful feature for TF binding site prediction, and CNN TF outperforms the current

state-of-the-art methods with 0.051 AUC improvement. Secondly, the proposed MTTFsite

is a novel cross-cell-type TFBS prediction method to address data sparseness issue for a

specific cell-type. MTTFsite leverages on training samples of TFs available in other cell

types. Lastly, the proposed novel PDBR TF method is the first attempt to address the non-

available data issue through a cross-TF TFBS prediction method such that TF prediction

can be done even if there is no TF training sample in any of the cell-types. PDBR TF

leverages on training samples available for other TFs of the same cell-type. Evaluation on

TFs in five cell-types demonstrates that both MTTFsite and PDBR TF can predict TFBSs

of target TFs for cell-types without training samples.

The main strength of our proposed MTTFsite and PDBR TF is that they can be applied

to real population. However, TF-binding site data and histone modification data for real

population are unavailable, so our proposed MTTFsite and PDBR TF cannot be applied to

real population to evaluate their performance. With the advance of biotechnologies, many

data for real population may be available to researchers in the future. By then, we will be

able to evaluate the performance for our proposed methods using data for real population.
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Chapter 6

Gene expression prediction

Many computational methods have been proposed for gene expression level prediction.

DeepChrome, TEPIC and Zhang and Li’s method are three state-of-the-art methods for

gene expression prediction. DeepChrome [153] is a unified end-to-end architecture for

gene expression prediction using a convolutional neural network. the big advantage of

DeepChrome is that it can capture both pairwise interactions between neighboring bins

and combinatorial relationships between different histone modification marks. However,

DeepChrom does not incorporate TFBSs of any TF in its prediction. TEPIC is a segmentation-

based method which predict TFBSs by combining sets of open-chromatin regions with

position weight matrices [147]. In TEPIC, position weight matrices are used to identify

TFBSs for TFs. However, only a small portion of TFs have known position weight matrix.

So TEPIC can only incorporate the TFBSs of a small number of TFs into prediction while

the TFBSs for large number of TFs cannot be used. Moreover, the predicted TFBSs by

position weight matrices usually have very high false positive rate. Another method by

Zhang and Li uses a combination of 10 histone modification marks, TFBSs of 15 TFs and

DNase-I hypersensitivity data for prediction [204]. The TFBSs of the 15 TFs are identi-

fied by experimental methods. As only a small number of cell-types have enough number

of TFs with experimentally identified TFBSs, this method is limited to only a very small

number of cell-types.
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In this chapter, we propose a novel method, referred to as TFChrome, to predict gene

expression for two groups of cell-types to which TEPIC and Zhang and Li’s method can-

not be applied. In the first group of cell-types, only a very small number of TFs have

experimentally identified TFBSs. For these cell-types, we apply our proposed PDBR TF

to predict TFBSs for TFs without experimentally identified TFBSs by using training sam-

ples of other TFs from the cell-types. In the second group of cell-types, all the TFs do

not have experimentally identified TFBSs. For these cell-types, our proposed MTTFsite

is applied to predict TFBSs of TFs by collecting training samples of the same TFs from

other cell-types. Then, the predicted TFBS are used to predict gene expressions for these

target cell-types by combining with histone modification features. Therefore, TFChrome

is not limited to only a few cell-types with known information for training.

6.1 Datasets

Two sets of datasets are used to evaluate our proposed TFChrome: one set comes from En-

cyclopedia of DNA Elements (ENCODE) database and the other one comes from Roadmap

Epigenomics Consortium (RMEC) database. The ENCODE Consortium is an interna-

tional collaboration of research groups funded by the National Human Genome Research

Institute (NHGRI) and the REMC is a public resource of human epigenomic data produced

from hundreds of cell-types.

The datasets from ENCODE contain four cells: GM12878, HeLa-S3, HepG2 and

K562. The reason for selecting these four cell-types for evaluating our method is that

they contains experimentally identified TFBSs for enough number of TFs and gene ex-

pressions measured by RNA-seq experiment. Therefore, for these four cell-types, there

exists enough training samples to predict TFBSs for a large number of other TFs without

experimentally identified TFBSs. As these four cell-types have both many TFs with ex-

perimentally identified TFBSs and also a larger number of TFs for which the TFBSs have
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not been identified by experimental methods, these four cell-types are suited to evaluate

the usefulness of the TFBSs predicted by PDBR TF in gene expression prediction.

The datasets from RMEC contain 20 different cell-types. These 20 cell-types have

three common characteristics: having at least five core histone modification marks, hav-

ing gene expression measured by RNA-seq experiment and having open-chromatin data

measured by DNase-seq experiment. As these 20 cell-types do not have any TF with ex-

perimentally identified TFBSs, the TFBSs for TFs in these cell-types can only be predicted

by our proposed MTTFsite, so these datasets is suitable to evaluate the usefulness of the

TFBSs predicted by MTTFsite in gene expression prediction. For TFs in these 20 cell-

types, the TFBSs from GM12878, HeLa-S3, HepG2, K562 and H1-hESC are combined

as training samples, because these five cell-types have known TFBSs for many TFs. In

order to make sure that the training samples are enough to train MTTFsite, 71 TFs with

experimentally identified TFBSs in at least 3 cell-types are used. So we will predict the

TFBSs for these 71 in all the 20 cell-types and use them as features.

In this thesis, following previous works, we formulates gene expression prediction

problem as a binary classification problem. More specifically, we use labels +1 and -1 to

represent gene expression as high or low, respectively. Referring to Cheng et al. (2011)

and Singh et al. (2016), the genes in a particular cell-type are discretized into high (+1) or

low (-1) by using the median gene expression across all the genes in the target cell-type as

a threshold.

6.2 Feature representation

For our proposed TFChrome, two types of features are used to encode genes: histone

modification features and TFBSs. For the 4 cell-types from ENCODE, the TFBSs are

predicted by our proposed PDBR TF and the TFBSs in the 20 cell-types from RMEC are

predicted by our proposed MTTFsite.
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Following Cheng et al.(2011), Dong et al. (2012) and Singh et al. (2016), we uses the

10,000 base-pair (bp) DNA region (˘5000 bp) around the transcription start site (TSS)

of a gene to represent the gene. As both TFBSs and histone modification features are

DNA region features, we divide the 10,000 bp DNA region around TSS into bins of

length 100 bp. For histone modification features, the cell-types from RMEC use seven

core histone modification features including H3K27ac, H3K37me3, H3K36me3, H3K9ac,

H3K9me3, H3K4me1 and H3K4me3 and the cell-types from ENCODE use 8 core histone

modification features including H3K27ac, H3K37me3, H3K36me3, H3K9ac, H3K9me3,

H3K4me1, H3K4me2 and H3K4me3. In each bin, the histone modification features are

concatenated to represent the bin. Then the concatenated features for all bins are concate-

nated to represent the target gene. Thus, the input for every gene can be represented as a

n ˆ 100 matrix, where the 100 columns denote the different bins and the n lows denote

the histone modification features. For predicted TFBSs, for each TF, a bin is encoded as 1

if it contains a predicted TFBSs of the target TF; otherwise, the bin is encoded as 0. This

makes the predicted TFBSs for each gene amˆ100 matrix, where the 100 columns denote

the different bins and the m lows denote the different TFs. The cell-types from ENCODE

use 151 TFs while the cell-types from RMEC use 71 TFs. Finally, the n ˆ 100 matrix

representing histone modification features and the mˆ 100 matrix representing predicted

TFBSs features are concatenated into a pm` nq ˆ 100 to represent a target gene.

6.3 TFChrome: A deep learning method for gene expres-
sion prediction

Due to the high performance in learning meaningful and hierarchical representations from

larger datasets for biological sequence including protein, RNA and DNA, deep learning

models have been widely used in bioinformatics community. Lin et al.(2016) presented a

method for protein property prediction by using deep CNN and outperformed most state-
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of-the-art method. Leung et al.(2014) presented a method for predicting alternative splic-

ing patterns in individual tissues and their difference across different tissues by using deep

learning model. Aliphanahi et al. (2015) proposed a prediction method for sequence

specificities of DNA- and RNA-binding proteins by applying CNN to learn motifs from

inputting DNA or RNA sequence. Zhou and Troyanskaya (2015) proposed a prediction

method for chromatin features and TFBSs for multiple TFs by combining CNN with multi-

task learning method. All these works demonstrates that deep learning models are suitable

for learning representations for biological sequences. So Singh et al. (2016) proposed a

method, called DeepChrome, for gene expression prediction by using CNN, which demon-

strates that DeepChrome can automatically capture the combinatorial relationships among

different histone modifications for learning representations for genes. However, the reg-

ulation of gene expression is completed by the combination of histone modification and

TF-DNA interaction. Histone modification is not enough to capture information for gene

expression prediction.

In this chapter, we propose a method, called TFChrome, for gene expression prediction

by applying CNN on the combination of histone modification and TFBSs of multiple TFs

to learn representations for genes, which can capture three kinds of relationships: combi-

natorial relationships among different histone modifications, combinatorial relationships

among TFBSs of different TFs and that among histone modifications and TFBSs of mul-

tiple TFs. The framework of TFChrome is shown in Figure 6.1. Figure 6.1 shows that in

TFChrome, for the cell-types with labeled data for some TFs, PDBR TF is applied to the

TFs without labeled data. For the certain cell-type without labeled data for any TF, MT-

TFsite is applied to the TFs without labeled data. Then the predicted TFBSs for the TFs

without labeled data and the known TFBSs for other TFs are combined to be TFBS fea-

tures. For each gene, TFBS features and histone modification features are fed into a CNN

model for feature extraction. The features learned by the CNN model for each gene are

fed into a MLP model to predict the expression level. As experimental methods for TFBS
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identification including ChIP-seq and Chip-chip are very time-consuming and costly, the

TFBSs for most TFs in human beings are unknown. So TFChrome cannot be directly

applied for cell-types in human beings. In our thesis, there are two set of cell-types are

used evaluate our method TFChrome. The first set of cell-types contains four cell-types

extracted from ENCODE and the four cell-types have a number of TFs with known TF-

BSs identified by ChIP-seq. For each one of the four cell-type, we combine the known

TFBSs available for any TF as training set to train a TFBS prediction model by applying

our proposed PDBR TF. Then we apply the trained model to predict TFBSs for all the 151

considered TFs. As the the whole genome of human genes has more than 3 billion DNA

base pair, it is very time-consuming to apply PDBR TF on the whole genome. Further-

more, TFs often bind to DNA in open-chromatin regions, because open-chromatin regions

are accessible for TFs to form TF-DNA interaction. Therefore, we apply PDBR TF on

only open-chromatin regions. In this thesis, we use DNase I hypersensitive sites (DHSs)

measured by DNase-seq method to locate open-chromatin regions.

For the 20 cell-types from RMEC, the TFBSs for all TFs are unknown. So our pro-

posed PDBR TF can not be applied to predict TFBSs for TFs in these cell-types duo to

lacking training samples. Even if these 20 cell-types do not have experimentally identified

TFBSs for all TFs, there also exist some other cell-types with experimentally identified

TFBSs for a number of TFs. So we use our proposed MTTFsite to predict TFBSs for TFs

in these 20 cell-types. MTTFsite is trained by the experimentally identified TFBSs from

five cell-types from ENCODE. The five cell-types are GM12878, H1-hESC, HeLa-S3,

HepG2 and K562, because these five cell-types have many TFs with experimentally iden-

tified TFBSs. As there are 71 TFs with experimentally identified TFBSs in at least three

cell-types of these five cell-types, we can predict the TFBSs for these 71 TFs in all the 20

cell-types from RMEC by applying MTTFsite. For each TF of the 71 TFs, We combine

the labeled data avalaible in the five cell-types and train a prediction model by applying

MTTFsite. The trained modle for each TF can be applied to predict its TFBSs in any cell-
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Figure 6.1: The framework of TFChrome.

type. In order to decrease the time cost of applying MTTFsite in these 20 cell-types, we

also applies MTTFsite on only open-chromatin regions identified by DNase-seq method.

After obtaining predicted TFBSs for the considered TFs by our proposed methods, we

concatenate histone modification features and the predicted TFBSs of the considered TFs

to encode genes following section 6.2. Thus, each gene can be encoded as a pm`nqˆ100

matrix, where m,n represent the number of considered histone modification features and

that of considered TFs. Then, the pm`nqˆ100 matrix for every gene is fed into TFChrome

to predict its expression. TFChrome mainly contains four parts: the convolution layer,

the pooling layer, the dropout layer and the fully connected neural network. In the two

convolution layers, 200 convolution filters of size 10 have be used. In the pooling layer,

maxpooling and pool size of 82 are used. In the dropout layer, the probability of 0.5 is

chosen. In the fully connected neural network, two fully connected layer and a softmax
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layer are used. The number of hidden units chosen for the two fully connected layer are

100 and 50, respectively.

6.4 Results on the 4 cell-types from ENCODE

We first evaluate our method by the 4 cell-types from ENCODE. In this evaluation, three

methods are compared. The first one is the method using only predicted TFBSs, the second

one is the method using only histone modification features and the last one is our proposed

TFChrome which uses both the predicted TFBSs and histone modification features. The

hyper-parameters for these three methods are same. The only difference among these

three methods is that the inputting features are different. The performance of these three

methods on the 4 cell-types from ENCODE is listed in table 6.1, where TFBS, Histone and

Combine denote the three methods, respectively, and the best performers are marked by

bold and underscore, respectively. The p value denotes the difference between the method

used only histone modification features and our proposed TFChrome.

Table 6.1: Results on the 4 cell-types from ENCODE.

Cells TFBS Histone Combine p value
GM12878 0.603 0.712 0.733 2.38e-2
HeLa-S3 0.569 0.607 0.657 1.29e-3
HepG2 0.560 0.742 0.751 6.82e-3
K562 0.595 0.763 0.773 1.57e-3

Table 6.1 shows that the method using only predicted TFBS achieves good perfor-

mance on all the four cell-types, which are far better than random guessing. So we can

indicates that the predicted TFBSs by our proposed PDBR TF indeed play important roles

for gene expression prediction.

Table 6.1 also shows that our prosed TFChrome performs better than the method using

only histone modification features on all the four cell-types. More specifically, TFChrome

performs better than the method using only histone modification features by 0.021 AUC
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on GM12878, 0.05 AUC on HeLa-S3, 0.009 AUC on HepG2 and 0.01 AUC on K562,

which indicates that the outperformances of TFChrome on all the four cell-types are very

prominent improvements. And the p values listed in table 6.1 indicate that the outper-

formances of TFChrome over the method using only histone modification features on all

the four cell-types are signifficant. As the only difference between TFChrome and the

method using only histone modification features is that TFChrome incorporates predicted

TFBSs for prediction, we conclude that the TFBSs predicted by our proposed PDBR TF

and histone modifications are complementary for gene expression prediction.

Table 6.2: Results of TFChrome with and without predicted TFBSs on the 4 cells from
ENCODE.

Cells Partial TFChrome TFChrome p value
GM12878 0.714 0.733 3.45e-2
HeLa-S3 0.646 0.657 7.72e-3
HepG2 0.734 0.751 2.04e-2
K562 0.770 0.773 5.17e-2

Furthermore, the predicted TFBSs used by TFChrome also contains the predicted TF-

BSs of the TFs with experimentally identified TFBSs. However, the TFBSs of these TFs

already have been identified by experimental methods and do not need to be predicted

by computational methods. So, the performance listed in table 6.1 may overestimate the

contribution of predicted TFBSs for gene expression prediction. To evaluate the effect of

the TFs without experimentally identified TFBSs, we execute another experiment on the

four cell-types. In the new experiment, two methods are compared. The first method is

our method TFChrome and the other method is a variant of TFChrome in which only the

predicted TFBSs of the TFs with experimentally identified TFBSs are incorporated into

prediction. Their performance of these two methods on the four cell-types are listed in

table 6.2, where the best performers are marked by bold. The Partial TFChrome denote

TFChrome using only the predicted TFBSs of the TFs with experimentally identified TF-

BSs. Table 6.2 shows that TFChrome outperforms the partial TFChrome by 0.019 AUC on
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GM12878, 0.011 AUC on HeLa-S3, 0.017 AUC on HepG2, 0.003 AUC on K562. The p

values shows that the improvements achieved by TFChrome on three cell-types are signif-

icant. As the difference between TFChrome and the Partial TFChrome is that TFChrome

incorporates predicted TFBSs of the TFs without experimentally identified TFBSs into

prediction, it indicates the predicted TFBSs of the TFs without experimentally identified

TFBSs indeed play important roles in prediction. However, the improvement on K562 is

not significant. The reason may be that the number of TFs having experimentally TFBSs

are larger while the number of TFs without identified TFBSs are small.

6.5 Results on the 20 cell-types from RMEC

In this section, we evaluate our method TFChrome by the 20 cell-types from RMEC. On

these 20 cell-types, we also compare three methods: method using only predicted TF-

BSs, method using only histone modification features and our proposed TFChrome. Their

performances on the 20 cell-types are listed in Table 6.3, where the best performers are

marked by bold and underscore, respectively. The p value denotes the difference between

the method using only histone modification features and TFChrome. Table 6.3 shows that

for the 20 cell-types, the maximum, minimum and average AUC of the method using only

the predicted TFBSs are 0.815, 0.744 and 0.769, which shows that the method using only

the predicted TFBss performs far better than random guessing. It indicates that the pre-

dicted TFBSs by our proposed MTTFsite indeed play important roles in prediction. Note

that the used TFBSs are predicted by MTTFsite trained by the TFBSs of target TFs from

multiple other cell-types, which means that we do not use any information about histone

modifications and TF-DNA interactions of target cell-types. It implies that we can predict

gene expression by our proposed TFChrome for the cell-types without histone modifica-

tion features and TF-DNA interactions.

Table 6.3 also shows the performance of TFChrome and the method using only his-

186



Table 6.3: Results on the 20 cell-types from RMEC.

Cells TFBS Histone Combine p value
Breast vHMEC 0.779 0.859 0.864 1.20e-2
Fetal Brain 0.764 0.848 0.855 4.68e-2
Fetal Muscle Leg 0.773 0.854 0.858 3.62e-2
Fetal Muscle Trunk 0.759 0.802 0.849 2.93e-2
Gastric 0.752 0.813 0.819 1.48e-2
H1 BMP4 Derived Mesendoderm Cultured Cells 0.746 0.787 0.827 2.74e-2
H1 BMP4 Derived Trophoblast Cultured Cells 0.751 0.831 0.840 1.66e-3
H1 Cell Line 0.754 0.837 0.844 9.98e-3
H1 Derived Mesenchymal Stem Cells 0.782 0.833 0.839 4.17e-2
H1 Derived Neuronal Progenitor Cultured Cells 0.752 0.833 0.839 2.85e-2
IMR90 Cell Line 0.789 0.852 0.860 2.13e-2
iPS DF 19.11 Cell Line 0.744 0.808 0.813 1.25e-2
iPS DF 6.9 Cell Line 0.746 0.823 0.826 4.50e-2
Mobilized CD34 Primary Cells 0.797 0.872 0.878 2.00e-2
Pancreas 0.754 0.824 0.832 1.75e-2
Penis Foreskin Fibroblast Primary Cells 0.815 0.885 0.891 2.44e-2
Penis Foreskin Keratinocyte Primary Cells 0.794 0.872 0.880 3.83e-2
Penis Foreskin Melanocyte Primary Cells 0.801 0.875 0.881 6.58e-3
Psoas Muscle 0.767 0.801 0.858 2.80e-2
Small Intestine 0.767 0.835 0.840 4.25e-2

tone modification features, which indicates that TFchrome performs better than the method

using only histone modifications on all the 20 cell-types. The p values show that all the

improvements achieved by using predicted TFBSs are significant. For some cell-types, the

performance improvement achieved by predicted TFBSs are very larger. For example, the

performance improvement for Fetal Muscle Trunk, H1 BMP4 Derived Trophoblast Cultured Cells

and Psoas Muscle are 0.033, 0.040 and 0.057, respectively. These improvements achieved

by predicted TFBSs on all the 20 cell-types indicates that the TFBSs predicted by our

proposed MTTFsite indeed play important roles in gene expression prediction.

6.6 Comparison with state-of-the-art methods

So far, many computational methods have been proposed for gene expression prediction.

DeepChrome, TEPIC and Zhang and Li’s method are three state-of-the-art methods. As
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the datasets used in our proposed TFChrome is different from TEPIC and Zhang and

Li’s method formulates gene expression prediction as an linear regression problem, the

performance comparison among TFChrome, TEPIC and Zhang and Li’s method can-

not be conducted directly. Therefore, in this section, we only compare TFChrome and

DeepChrome. DeepChrome is proposed by using CNN and 5 core histone modification

features, which outperforms the most previous methods on 56 cell-types from RMEC. So,

in this section, we compare our proposed TFChrome with DeepChrome on 15 cell-types

from RMEC which are the common cell-types between the 20 cell-types used in our the-

sis and the 56 cell-types used in DeepChrome. The comparisons between TFChrome and

DeepChrome on the 15 common cell-types are listed in table 6.4,where the best performers

are marked by bold. Note that the AUCs of DeepChrome on the 15 common cell-types are

referred from the work proposed by Singh et al.(2016). The table shows that our proposed

Table 6.4: Comparison with DeepChrome on the 20 cell-types from RMEC.

Cells DeepChrome TFChrome
Breast vHMEC 0.810 0.864
Fetal Brain 0.780 0.855
Gastric 0.730 0.819
H1 BMP4 Derived Mesendoderm Cultured Cells 0.810 0.827
H1 BMP4 Derived Trophoblast Cultured Cells 0.800 0.840
H1 Cell Line 0.770 0.844
H1 Derived Mesenchymal Stem Cells 0.820 0.839
H1 Derived Neuronal Progenitor Cultured Cells 0.770 0.839
Mobilized CD34 Primary Cells 0.800 0.878
Pancreas 0.740 0.832
Penis Foreskin Fibroblast Primary Cells 0.830 0.891
Penis Foreskin Keratinocyte Primary Cells 0.840 0.880
Penis Foreskin Melanocyte Primary Cells 0.840 0.881
Psoas Muscle 0.900 0.858
Small Intestine 0.720 0.840

TFChrome performs far better than DeepChrome on 14 cell-types of the 15 common cell-

types. The maximum improvement, minimum improvement and average improvement is

0.120, 0.017 and 0.062, which are larger improvements for all cell-types. As the main
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difference between TFchrome and DeepChrome is that TFChrome uses both the histone

modifications and the predicted TFBSs in features while DeepChrome uses only the his-

tone modifications in features, the larger outperformance of TFChrome over DeepChrome

further demonstrates the usefulness of predicted TFBSs for gene expression prediction.

6.7 Chapter Summary

For most cell-types of humans, only a limited number of TFs have experimentally iden-

tified TFBSs. For a larger number of cell-types, no TFBSs for their TFs are known. For

these cell-types, either PDBR TF or MTTFsite proposed in this thesis can be used to pre-

dict their TFBSs. In this chapter, a novel method, referred to as TFChrome, is proposed

for gene expression prediction. The main idea is to leverage on histone modification fea-

tures and TFBSs of the considered TFs. There is no requirement that gene expression

must have available TFBSs of the considered TFs as they can be predicted by either our

proposed PDBR TF or MTTFsite to learn the representations for genes. The performance

evaluation on two groups of cell-types shows that the predicted TFBSs of considered TFs

can achieve far better performance than random guessing and the combined use of the

predicted TFBSs and histone modification features performs better than histone modifi-

cation features alone. This indicates that the use of predicted TFBSs using our proposed

methods are indeed important in gene expression prediction. As our proposed MTTFsite

and PDBR TF can be used predict TFBSs of considered TFs for all cell-types regardless

of availability of training samples for a particular cell-type, our proposed TFChrome can

be used to predict gene expressions for all cell-types.
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Chapter 7

Conclusions and Future Work

Gene expression prediction is a very important research area in bioinformatics. It can help

with disease diagnosis as well as improve drug design for patients. One of the key elements

in gene expression is TF-DNA interaction. This thesis studies TF-DNA interactions and

its application in gene expression prediction. The focus is on predicting DNA binding

residues, TF binding sites and then use them for predicting gene expression.

7.1 Contributions

This thesis covers a comprehensive range of studies on gene expression prediction from

protein second structure prediction, DNA binding residue prediction, TF binding site pre-

diction to gene expression prediction. The main conclusions and contributions are sum-

marized as follows:

1. Protein second structure prediction.

A general framework, called CNNH PSS, is proposed to automatically learn fea-

ture representations for residues in protein sequence. The main contribution of

CNNH PSS is to use Position Specific Score Matrix by a multi-scale CNN frame-

work with a highway as a mechanism to capture both local context and long-range

dependencies. It is one of the first attempts to predict secondary structures of

residues for TFs with high-quality performance.
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2. DNA binding residue prediction. Four effective methods for DNA binding residue

prediction are proposed to learn various relationships among residues to overcome

the limitations of the current state-of-the-art methods. (1) EL PSSM-RT can effec-

tively learn pairwise relationships between residues in a short range; (2) CNNsite

can learn relationships among multiple residues in a short range; (3) EL LSTM can

learn residue representations by extracting both local context and long-range de-

pendencies; and (4) PDNAsite can learn sequence relationships between sequence

neighbor residues as well as spatial relationships between spatial neighbor residues.

3. TF binding site prediction. Three effective methods for TF binding site predic-

tion are proposed. The CNN TF method uses a deep learning method to effectively

include higher order dependencies as an additional feature in TF binding site predic-

tion for a particular cell-type which has sufficient training samples. The MTTFsite

method addresses data sparseness within a particular cell-type by leveraging on TF

training samples available in other cell-types using multi-task learning. MTTFsite

learns common features from multiple cell-types with training TFBS samples using

a common CNN as well as features of individual cell-types using a group of private

CNNs for individual cell-types which have training TFBS samples. The PDBR TF

further addresses the non-availability issue by using the training TFBS samples of

other TFs for a target TF.

4. Gene expression prediction. Finally, the TFChrome method is proposed to effec-

tively predict gene expressions making using of all the new methods we have de-

veloped so as to include more relationships as well as effective methods to address

both data sparseness issue and data unavailability issue. In TFChrome, predicted

TFBSs and histone modifications are combined to learn feature representations for

genes. For cell-types with only a small number TFs having experimentally identi-

fied TFBS, TFChrome can use our proposed PDBR TF to predict TFBSs for the TFs
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without experimentally identified TFBSs. For cell-types which do not have TFs with

experimentally identified TFBSs, TFChrome can use MTTFsite to predict TFBSs of

for all considered TFs. Evaluations on two sets of cell-types and comparisons with

state-of-the-art methods indicates that predicted TFBSs indeed play important roles

for gene expression prediction. TFChrome can be widely used to predict gene ex-

pressions for any cell-types regardless of the availability of training data available

for that cell type.

7.2 Limitations and Future Work

We have shown the roles of long-range dependencies learned by CNNH PSS in protein

secondary structure prediction. However, validation on whether the learned long-range

dependencies really exist is yet to be done. Because only a limited number of proteins has

known 3D structures, the DNA binding residue prediction methods using both sequence

features and structure features are applicable to only a limited number of proteins. For

many specific cell-types of other species(except humans and mice), many of the target

TFs do not have any training sample for any cell-type and some specific cell-types do not

have any training sample for any TF. Thus, both MTTFsite and PDBR TF are currently

applicable to human and mice mostly. Sequence information is only one type of features

for genes. Its combination with histone modification features and TFBSs may have poten-

tial effect for gene expression prediction. But, sequence features is yet to be incorporated

into TFChrome for gene expression prediction.

Recent studies have shown that X-ray diffraction crystallography and NMR can iden-

tify the 3D structures for proteins [135, 128], so these methods can be used to calculate

the spatial distance between any two residues in a protein sequence. Long-range depen-

dencies between residues are usually formed by the short spatial distance between them

because neighboring residues located spatially tend to have similar structures and biology
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functions. Therefore, the spatial distance between two residues can validate whether the

learned long-range dependency between them is really existed. Thus, one possible future

direction is to validate the learned long-range dependencies learned by CNNH PSS by

3D structures of proteins. Another direction of research is to develop high-performance

computational methods to predict 3D structures for proteins based on sequence features.

With regards to TFBS predictions, another direction of work can be finding effective

prediction methods for TFBS of target TFs in a specific cell-type by using training TFBS

samples of other TFs in other cell-types. This can help to predict the TFBSs of a target TF

for all cell-types.

The curretn work on gene expression prediction can be further improved by combining

sequence features, histone modification features and TFBSs to in the representation of

genes. As these three types of features contains both the features of genes and cell-types,

the developed methods may be applicable to predict the expressions of genes for cell-types

which are different from the training cell-types.
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Appendix A

Performance for cross-cell-type TFBS
prediction.

Table A.1: The AUC of the baseline method (Base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in GM12878.

TF Base FS MTTF TF Base FS MTTF

ATF2 0.949 0.949 0.951 JUND 0.969 0.975 0.975
ATF3 0.823 0.879 0.891 MAX 0.920 0.940 0.939
BCL11A 0.943 0.934 0.939 MAZ 0.907 0.933 0.932
BCL3 0.891 0.895 0.900 MEF2A 0.948 0.949 0.951
BCLAF1 0.923 0.926 0.925 MXI1 0.928 0.942 0.943
BHLHE40 0.925 0.938 0.941 MYC 0.912 0.919 0.919
BRCA1 0.939 0.969 0.977 NFE2 0.890 0.877 0.885
CEBPB 0.965 0.969 0.970 NFIC 0.951 0.952 0.956
CHD1 0.958 0.956 0.960 NFYA 0.912 0.948 0.953
CHD2 0.929 0.939 0.941 NFYB 0.902 0.922 0.927
CTCF 0.778 0.844 0.859 NRF1 0.904 0.917 0.913
E2F4 0.911 0.927 0.930 NRSF 0.688 0.893 0.906
EGR1 0.900 0.916 0.920 P300 0.957 0.966 0.971
ELF1 0.880 0.910 0.909 PML 0.935 0.945 0.949
ELK1 0.929 0.936 0.935 RAD21 0.791 0.858 0.873
ETS1 0.912 0.915 0.921 REST 0.947 0.959 0.957
EZH2 0.922 0.905 0.911 RFX5 0.916 0.931 0.939
FOS 0.913 0.956 0.963 RXRA 0.923 0.919 0.930
GABP 0.891 0.928 0.934 SIN3A 0.930 0.942 0.939
SIX5 0.912 0.940 0.946 SMC3 0.794 0.872 0.884
SP1 0.939 0.949 0.953 SRF 0.893 0.906 0.912
STAT1 0.910 0.903 0.908 STAT3 0.948 0.950 0.955
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STAT5A 0.947 0.944 0.948 TAF1 0.941 0.960 0.960
TBP 0.949 0.958 0.961 TBLR1 0.937 0.942 0.943
TCF12 0.925 0.923 0.926 GTF2F1 0.859 0.881 0.886
TR4 0.651 0.801 0.816 USF1 0.874 0.910 0.914
USF2 0.915 0.938 0.938 YY1 0.926 0.946 0.943
ZBTB33 0.897 0.931 0.931 ZNF143 0.800 0.862 0.881
ZZZ3 0.726 0.752 0.740 ZNF274 0.908 0.883 0.887

Table A.2: The AUC of the baseline method (Base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in H1-hESC.

TF Base FS MTTF TF Base FS MTTF

ATF2 0.891 0.885 0.895 JUND 0.854 0.871 0.876
ATF3 0.839 0.876 0.891 JUN 0.883 0.909 0.912
BACH1 0.842 0.845 0.853 MAFK 0.781 0.845 0.859
BCL11A 0.944 0.903 0.923 MAX 0.890 0.894 0.905
BRCA1 0.809 0.903 0.923 MXI1 0.862 0.873 0.888
BRG1 0.955 0.959 0.962 SIN3A 0.862 0.859 0.868
CEBPB 0.813 0.852 0.862 MYC 0.681 0.640 0.642
CHD1 0.939 0.926 0.931 NRF1 0.869 0.884 0.886
CHD2 0.850 0.886 0.899 NRSF 0.727 0.809 0.819
CTCF 0.759 0.806 0.816 TEAD4 0.870 0.870 0.880
EGR1 0.830 0.838 0.849 P300 0.890 0.878 0.888
EZH2 0.959 0.963 0.960 RAD21 0.762 0.798 0.814
FOSL1 0.759 0.762 0.754 RBBP5 0.879 0.879 0.887
GABP 0.709 0.722 0.729 RFX5 0.819 0.859 0.869
RXRA 0.836 0.831 0.854 ZNF143 0.783 0.814 0.832
SIX5 0.865 0.889 0.897 SP1 0.903 0.899 0.911
SP2 0.878 0.916 0.914 SRF 0.837 0.869 0.887
TAF1 0.866 0.877 0.885 TAF7 0.865 0.853 0.868
TBP 0.856 0.854 0.866 TCF12 0.879 0.881 0.893
USF1 0.828 0.849 0.858 USF2 0.845 0.876 0.887
YY1 0.845 0.853 0.863
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Table A.3: The AUC of the baseline method (Base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in HeLa-S3.

TF Base FS MTTF TF FS Base MTTF

BDP1 0.704 0.802 0.809 BRF1 0.743 0.758 0.767
BRCA1 0.938 0.940 0.941 JUND 0.919 0.939 0.942
JUN 0.951 0.955 0.958 REST 0.946 0.938 0.940
CEBPB 0.888 0.908 0.914 MAFK 0.857 0.892 0.910
CHD2 0.930 0.934 0.940 MAX 0.926 0.939 0.943
CTCF 0.768 0.816 0.834 MAZ 0.889 0.918 0.920
E2F4 0.921 0.933 0.934 MXI1 0.935 0.949 0.951
MYC 0.955 0.960 0.964 TAF1 0.940 0.955 0.957
ELK1 0.935 0.940 0.945 NFYA 0.889 0.903 0.910
EZH2 0.937 0.928 0.936 NFYB 0.911 0.939 0.944
FOS 0.968 0.972 0.974 NRF1 0.917 0.942 0.948
GABP 0.913 0.944 0.946 NRSF 0.670 0.807 0.818
GTF2F1 0.941 0.941 0.943 P300 0.955 0.960 0.961
HDAC2 0.908 0.898 0.908 ZNF274 0.957 0.956 0.987
IRF3 0.941 0.952 0.955 ZZZ3 0.821 0.857 0.831
BRF2 0.681 0.700 0.732 RAD21 0.833 0.865 0.890
RFX5 0.910 0.905 0.912 SMC3 0.837 0.868 0.888
STAT1 0.916 0.917 0.921 STAT3 0.965 0.965 0.968
TCF12 0.917 0.944 0.949 TBP 0.959 0.963 0.964
TCF7L2 0.938 0.943 0.947 TR4 0.861 0.916 0.926
USF2 0.917 0.930 0.938 ZNF143 0.832 0.899 0.918

Table A.4: The AUC of the baseline method (Base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in HepG2.

TF Base FS MTTF TF Base FS MTTF

ARID3A 0.927 0.941 0.942 MAFK 0.732 0.735 0.748
ATF3 0.903 0.945 0.949 MAX 0.901 0.922 0.923
BHLHE40 0.896 0.917 0.920 MAZ 0.893 0.920 0.925
BRCA1 0.858 0.896 0.899 MXI1 0.905 0.918 0.918
CEBPB 0.816 0.824 0.837 MYC 0.934 0.936 0.938
CHD2 0.900 0.925 0.929 NFIC 0.961 0.964 0.965
CTCF 0.789 0.852 0.871 NRF1 0.924 0.953 0.955
ELF1 0.916 0.941 0.944 NRSF 0.603 0.828 0.831
EZH2 0.897 0.897 0.908 P300 0.950 0.961 0.963
GABP 0.823 0.856 0.864 RAD21 0.816 0.875 0.889
HDAC2 0.942 0.947 0.949 REST 0.928 0.910 0.911
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IRF3 0.895 0.917 0.924 RFX5 0.883 0.902 0.907
JUND 0.812 0.819 0.829 RXRA 0.944 0.946 0.952
JUN 0.836 0.838 0.847 SIN3A 0.923 0.929 0.929
MAFF 0.759 0.775 0.778 SMC3 0.841 0.888 0.898
ZNF274 0.941 0.946 0.955 SP1 0.953 0.955 0.961
SP2 0.781 0.824 0.840 SRF 0.919 0.936 0.944
TAF1 0.873 0.890 0.892 TBP 0.942 0.957 0.957
TCF7L2 0.939 0.942 0.938 TEAD4 0.948 0.959 0.962
TR4 0.900 0.920 0.923 USF2 0.872 0.896 0.904
YY1 0.876 0.892 0.897 ZBTB33 0.897 0.911 0.916
ZBTB7A 0.908 0.917 0.919

Table A.5: The AUC of the baseline method (Base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in K562.

TF Base FS MTTF TF Base FS MTTF

ARID3A 0.930 0.938 0.945 GTF2F1 0.890 0.892 0.900
ATF3 0.889 0.900 0.906 HDAC2 0.911 0.916 0.924
BACH1 0.902 0.914 0.919 JUND 0.894 0.907 0.912
BCL3 0.909 0.882 0.881 JUN 0.928 0.938 0.943
BCLAF1 0.934 0.939 0.941 MAFF 0.805 0.848 0.862
BDP1 0.556 0.684 0.668 BRF1 0.961 0.967 0.978
BHLHE40 0.889 0.905 0.910 MAFK 0.839 0.872 0.884
BRG1 0.973 0.972 0.977 MAX 0.901 0.915 0.919
CEBPB 0.853 0.872 0.880 MAZ 0.881 0.887 0.894
CHD1 0.914 0.913 0.916 MEF2A 0.921 0.928 0.933
CHD2 0.881 0.908 0.914 MXI1 0.927 0.940 0.943
CTCF 0.776 0.826 0.839 MYC 0.942 0.944 0.947
E2F4 0.884 0.898 0.903 NFE2 0.935 0.929 0.936
E2F6 0.892 0.895 0.897 NFYA 0.908 0.930 0.934
EGR1 0.854 0.858 0.867 NFYB 0.926 0.946 0.953
ELF1 0.868 0.896 0.899 NRF1 0.903 0.923 0.931
ELK1 0.899 0.914 0.921 NRSF 0.862 0.873 0.882
ETS1 0.884 0.882 0.886 P300 0.932 0.941 0.946
EZH2 0.910 0.907 0.920 PML 0.926 0.930 0.934
FOSL1 0.914 0.911 0.917 RAD21 0.821 0.896 0.921
FOS 0.929 0.949 0.953 RBBP5 0.886 0.909 0.910
GABP 0.901 0.915 0.913 REST 0.894 0.898 0.905
ZNF274 0.824 0.825 0.843 RFX5 0.859 0.881 0.886
SIN3A 0.902 0.910 0.913 SIX5 0.886 0.920 0.924
SMC3 0.813 0.870 0.886 SP1 0.925 0.949 0.954
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BRF2 0.755 0.786 0.800 SP2 0.839 0.868 0.864
SRF 0.899 0.930 0.932 STAT1 0.929 0.949 0.951
STAT5A 0.949 0.949 0.954 TAF1 0.920 0.939 0.940
TAF7 0.905 0.907 0.904 TBP 0.907 0.926 0.928
TBLR1 0.882 0.895 0.895 TEAD4 0.912 0.923 0.928
TR4 0.697 0.785 0.822 YY1 0.862 0.920 0.925
ZBTB33 0.844 0.861 0.861 ZBTB7A 0.864 0.870 0.877
ZNF143 0.820 0.852 0.866

Table A.6: The AUC of the baseline method (base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in GM12878 without using training samples.

TF Base FS MTTF TF Base FS MTTF

ATF2 0.949 0.911 0.925 ATF3 0.823 0.922 0.931
BCL11A 0.943 0.869 0.896 BCL3 0.891 0.822 0.829
BCLAF1 0.923 0.907 0.918 BHLHE40 0.925 0.934 0.939
BRCA1 0.939 0.949 0.965 CEBPB 0.965 0.964 0.969
CHD1 0.958 0.946 0.944 CHD2 0.929 0.938 0.938
CTCF 0.778 0.847 0.881 E2F4 0.911 0.923 0.934
EGR1 0.900 0.911 0.918 ELF1 0.880 0.909 0.911
ELK1 0.929 0.938 0.949 ETS1 0.912 0.912 0.924
EZH2 0.922 0.875 0.911 FOS 0.913 0.966 0.971
GABP 0.891 0.938 0.933 GTF2F1 0.859 0.903 0.905
JUND 0.969 0.972 0.973 MAX 0.920 0.939 0.942
MAZ 0.907 0.929 0.931 MEF2A 0.948 0.928 0.943
MXI1 0.928 0.939 0.942 MYC 0.912 0.909 0.914
NFE2 0.890 0.908 0.923 NFIC 0.951 0.936 0.942
NFYA 0.912 0.956 0.966 NFYB 0.902 0.923 0.933
NRF1 0.904 0.936 0.943 NRSF 0.688 0.883 0.911
P300 0.957 0.973 0.976 PML 0.935 0.947 0.951
RAD21 0.791 0.865 0.901 REST 0.947 0.936 0.948
RFX5 0.916 0.923 0.941 RXRA 0.923 0.922 0.942
SIN3A 0.930 0.931 0.933 SIX5 0.912 0.949 0.957
SMC3 0.794 0.879 0.896 SP1 0.939 0.952 0.956
SRF 0.893 0.911 0.924 STAT1 0.910 0.929 0.934
STAT3 0.948 0.951 0.958 STAT5A 0.947 0.942 0.951
TAF1 0.941 0.951 0.952 TBP 0.949 0.959 0.965
TBLR1 0.937 0.929 0.937 TCF12 0.925 0.907 0.911
TR4 0.651 0.908 0.917 USF1 0.874 0.921 0.927
USF2 0.915 0.942 0.948 YY1 0.926 0.933 0.947
ZBTB33 0.897 0.928 0.941 ZNF143 0.800 0.867 0.897
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Table A.7: The AUC of the baseline method (base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in H1-hESC without using training samples.

TF Base FS MTTF TF Base FS MTTF

ATF2 0.891 0.853 0.853 ATF3 0.839 0.899 0.912
BACH1 0.842 0.769 0.768 BCL11A 0.944 0.889 0.902
BRCA1 0.809 0.911 0.922 BRG1 0.955 0.973 0.976
CEBPB 0.813 0.871 0.884 CHD1 0.939 0.937 0.931
CHD2 0.850 0.909 0.916 CTCF 0.759 0.809 0.827
E2F6 0.912 0.921 0.918 EGR1 0.830 0.834 0.845
EZH2 0.959 0.943 0.952 FOSL1 0.759 0.838 0.868
GABP 0.709 0.822 0.837 JUND 0.854 0.899 0.903
JUN 0.883 0.949 0.954 MAFK 0.781 0.839 0.862
MAX 0.890 0.889 0.901 MXI1 0.862 0.896 0.906
MYC 0.681 0.875 0.892 NRF1 0.869 0.924 0.926
NRSF 0.727 0.809 0.831 P300 0.890 0.898 0.912
RAD21 0.762 0.812 0.832 RBBP5 0.879 0.837 0.851
RFX5 0.819 0.909 0.929 RXRA 0.836 0.907 0.924
SIN3A 0.862 0.839 0.832 SIX5 0.865 0.909 0.933
SP1 0.903 0.891 0.896 SP2 0.878 0.894 0.906
SRF 0.837 0.899 0.907 TAF1 0.866 0.882 0.885
TAF7 0.865 0.815 0.766 TBP 0.856 0.863 0.866
TCF12 0.879 0.838 0.849 TEAD4 0.870 0.841 0.864
USF1 0.828 0.851 0.866 USF2 0.845 0.909 0.913
YY1 0.845 0.846 0.862 ZNF143 0.783 0.807 0.833

Table A.8: The AUC of the baseline method (base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in HeLa-S3 without using training samples.

TF Base FS MTTF TF Base FS MTTF

BRCA1 0.938 0.913 0.931 CEBPB 0.888 0.898 0.905
CHD2 0.930 0.931 0.941 CTCF 0.768 0.815 0.842
E2F4 0.921 0.936 0.945 ELK1 0.935 0.941 0.946
EZH2 0.937 0.928 0.945 FOS 0.968 0.967 0.971
GABP 0.913 0.943 0.951 GTF2F1 0.941 0.902 0.919
HDAC2 0.908 0.874 0.885 IRF3 0.941 0.938 0.948
JUND 0.919 0.935 0.942 JUN 0.951 0.951 0.955
MAFK 0.857 0.884 0.896 MAX 0.926 0.937 0.932
MAZ 0.889 0.917 0.919 MXI1 0.935 0.946 0.951
MYC 0.955 0.923 0.936 NFYA 0.889 0.919 0.923
NFYB 0.911 0.949 0.954 NRF1 0.917 0.962 0.963
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NRSF 0.670 0.818 0.842 P300 0.955 0.954 0.961
RAD21 0.833 0.854 0.884 REST 0.946 0.925 0.932
RFX5 0.910 0.889 0.891 SMC3 0.837 0.859 0.885
STAT1 0.916 0.889 0.898 STAT3 0.965 0.954 0.964
TAF1 0.940 0.949 0.955 TBP 0.959 0.961 0.966
TCF12 0.917 0.955 0.961 TCF7L2 0.938 0.942 0.953
TR4 0.861 0.917 0.941 USF2 0.917 0.935 0.938
ZNF143 0.832 0.903 0.913

Table A.9: The AUC of the baseline method (base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in HepG2 without using training samples.

TF Base FS MTTF TF Base FS MTTF

ARID3A 0.927 0.924 0.936 ATF3 0.903 0.929 0.939
BHLHE40 0.896 0.913 0.925 BRCA1 0.858 0.933 0.941
CEBPB 0.816 0.828 0.841 CHD2 0.901 0.933 0.938
CTCF 0.789 0.853 0.887 ELF1 0.916 0.932 0.934
EZH2 0.897 0.917 0.934 GABP 0.823 0.857 0.883
HDAC2 0.942 0.927 0.936 IRF3 0.895 0.962 0.962
JUND 0.812 0.801 0.822 JUN 0.836 0.832 0.848
MAFF 0.759 0.768 0.778 MAFK 0.732 0.723 0.741
MAX 0.901 0.919 0.929 MAZ 0.893 0.919 0.922
MXI1 0.905 0.916 0.924 MYC 0.934 0.913 0.921
NFIC 0.961 0.952 0.957 NRF1 0.924 0.963 0.964
NRSF 0.603 0.834 0.856 P300 0.950 0.959 0.964
RAD21 0.816 0.877 0.909 REST 0.928 0.916 0.921
RFX5 0.883 0.908 0.924 RXRA 0.944 0.894 0.923
SIN3A 0.923 0.919 0.925 SMC3 0.841 0.893 0.907
SP1 0.953 0.943 0.948 SP2 0.781 0.859 0.855
SRF 0.919 0.909 0.943 TAF1 0.873 0.894 0.903
TBP 0.942 0.958 0.961 TCF7L2 0.939 0.938 0.937
TEAD4 0.948 0.956 0.961 TR4 0.900 0.918 0.924
USF1 0.865 0.898 0.907 USF2 0.872 0.915 0.924
YY1 0.876 0.894 0.903 ZBTB33 0.897 0.906 0.928
ZBTB7A 0.908 0.907 0.908
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Table A.10: The AUC of the baseline method (base), the fully-shared (FS) method and
MTTFsite (MTTF) on TFs in K562 without using training samples.

TF Base FS MTTF TF Base FS MTTF

ARID3A 0.930 0.938 0.941 ATF3 0.889 0.881 0.895
BACH1 0.902 0.909 0.914 BCL3 0.909 0.911 0.904
BCLAF1 0.934 0.921 0.936 BHLHE40 0.889 0.905 0.912
BRG1 0.973 0.965 0.961 CEBPB 0.853 0.872 0.887
CHD1 0.914 0.916 0.927 CHD2 0.881 0.915 0.921
CTCF 0.776 0.831 0.855 E2F4 0.884 0.889 0.909
E2F6 0.892 0.886 0.893 EGR1 0.854 0.838 0.854
ELF1 0.868 0.894 0.901 ELK1 0.899 0.929 0.936
ETS1 0.884 0.865 0.871 EZH2 0.910 0.931 0.941
FOSL1 0.914 0.804 0.802 FOS 0.929 0.951 0.961
GABP 0.901 0.905 0.916 GTF2F1 0.890 0.909 0.917
HDAC2 0.911 0.909 0.921 JUND 0.894 0.897 0.911
JUN 0.928 0.943 0.951 MAFF 0.805 0.831 0.836
MAFK 0.839 0.865 0.892 MAX 0.901 0.909 0.921
MAZ 0.881 0.879 0.891 MEF2A 0.921 0.926 0.936
MXI1 0.927 0.939 0.945 MYC 0.942 0.921 0.926
NFE2 0.935 0.877 0.895 NFYA 0.908 0.939 0.942
NFYB 0.926 0.949 0.954 NRF1 0.903 0.946 0.951
NRSF 0.862 0.853 0.866 P300 0.932 0.937 0.944
PML 0.926 0.924 0.928 RAD21 0.821 0.901 0.941
RBBP5 0.886 0.904 0.915 REST 0.894 0.871 0.886
RFX5 0.859 0.906 0.922 SIN3A 0.902 0.909 0.915
SIX5 0.886 0.931 0.945 SMC3 0.813 0.873 0.899
SP1 0.925 0.955 0.962 SP2 0.839 0.875 0.893
SRF 0.899 0.932 0.941 STAT1 0.929 0.934 0.949
STAT5A 0.949 0.936 0.941 TAF1 0.920 0.938 0.943
TAF7 0.905 0.901 0.908 TBP 0.907 0.929 0.909
TBLR1 0.882 0.907 0.913 TEAD4 0.912 0.905 0.916
TR4 0.697 0.919 0.939 USF1 0.874 0.906 0.917
USF2 0.920 0.929 0.949 YY1 0.862 0.935 0.935
ZBTB33 0.844 0.865 0.894 ZBTB7A 0.864 0.859 0.872
ZNF143 0.820 0.853 0.876
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Appendix B

The performance for cross-TF TFBS
prediction.

Table B.1: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 69 TFs in GM12878.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.964 0.965 0.973 EBF1 0.935 0.932 0.943
JUND 0.993 0.994 0.998 ETS1 0.945 0.942 0.953
PAX5 0.931 0.929 0.936 TCF3 0.949 0.946 0.961
ELK1 0.937 0.962 0.971 RUNX3 0.959 0.963 0.975
CTCF 0.942 0.934 0.944 ZNF143 0.967 0.949 0.964
RFX3 0.953 0.951 0.960 MAZ 0.952 0.947 0.960
NRF1 0.929 0.919 0.934 MXI1 0.959 0.957 0.966
TAF1 0.960 0.964 0.966 ELF1 0.943 0.940 0.953
EZH2 0.787 0.770 0.787 STAT3 0.980 0.978 0.982
YY1 0.957 0.952 0.959 CEBPB 0.985 0.986 0.990
SIX5 0.944 0.949 0.965 USF2 0.959 0.958 0.970
RFX5 0.950 0.947 0.961 ATF2 0.965 0.980 0.987
ATF3 0.929 0.920 0.938 POU2F 0.959 0.962 0.972
BCL3 0.917 0.917 0.928 NFE2 0.938 0.937 0.954
MEF2C 0.983 0.981 0.989 NRSF 0.767 0.746 0.753
MTA3 0.978 0.979 0.981 SMC3 0.969 0.968 0.979
SIN3A 0.959 0.957 0.962 ZEB1 0.932 0.928 0.936
IKZF1 0.981 0.981 0.982 ZZZ3 0.848 0.833 0.860
NFATC1 0.907 0.959 0.970 RXRA 0.957 0.953 0.966
ZBTB33 0.943 0.940 0.950 TR4 0.922 0.918 0.927
PBX3 0.939 0.936 0.948 BATF 0.965 0.970 0.979
BHLHE40 0.957 0.959 0.972 BCL11A 0.976 0.977 0.985
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CHD1 0.973 0.973 0.974 TBP 0.974 0.970 0.979
BCLAF1 0.971 0.970 0.974 E2F4 0.956 0.953 0.958
IRF4 0.982 0.983 0.988 MAX 0.964 0.962 0.969
SRF 0.936 0.929 0.943 MYC 0.952 0.955 0.958
SP1 0.963 0.964 0.976 TCF12F 0.961 0.959 0.967
RAD21 0.968 0.968 0.973 NFIC 0.981 0.981 0.988
PML 0.967 0.964 0.970 EGR1 0.939 0.937 0.950
USF1 0.926 0.930 0.953 FOS 0.961 0.966 0.974
P300 0.976 0.975 0.978 BRCA1 0.971 0.966 0.966
FOXM1 0.981 0.980 0.986 GABP 0.948 0.945 0.962
STAT1 0.940 0.945 0.939 NFYB 0.875 0.860 0.904
STAT5A 0.973 0.973 0.980 MEF2A 0.977 0.977 0.984
NFYA 0.956 0.946 0.965

Table B.2: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 46 TFs in H1-hESC.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.935 0.924 0.951 MAFK 0.867 0.855 0.883
GTF2F 0.936 0.922 0.937 SP4 0.936 0.931 0.950
JUND 0.937 0.930 0.953 ZNF143 0.922 0.902 0.925
SUZ12 0.832 0.831 0.845 NANOG 0.945 0.932 0.958
CTCF 0.943 0.938 0.950 MXI1 0.937 0.934 0.950
TEAD4 0.913 0.915 0.938 CEBPB 0.791 0.781 0.810
NRF1 0.887 0.879 0.905 USF2 0.951 0.956 0.944
TAF1 0.931 0.923 0.932 ATF2 0.950 0.944 0.958
EZH2 0.888 0.894 0.905 POU2F 0.948 0.949 0.970
YY1 0.918 0.914 0.927 FOSL1 0.878 0.855 0.902
SIX5 0.925 0.916 0.952 RBBP5 0.922 0.922 0.924
RFX5 0.865 0.865 0.876 NRSF 0.744 0.716 0.843
ATF3 0.949 0.938 0.966 RXRA 0.928 0.925 0.949
SIN3A 0.939 0.934 0.945 BCL11A 0.966 0.966 0.966
JUN 0.950 0.952 0.972 TBP 0.906 0.904 0.909
CHD1 0.962 0.962 0.965 BACH1 0.919 0.913 0.936
SP2 0.927 0.917 0.935 MAX 0.930 0.925 0.947
SRF 0.858 0.836 0.856 MYC 0.932 0.926 0.949
HDAC2 0.946 0.940 0.959 SP1 0.934 0.921 0.936
TCF12 0.938 0.931 0.942 RAD21 0.954 0.951 0.971
EGR1 0.885 0.877 0.908 USF1 0.897 0.903 0.920
TAF7 0.924 0.922 0.929 P300 0.942 0.936 0.955
BRCA1 0.936 0.925 0.941 GABP 0.922 0.912 0.933
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Table B.3: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 46 TFs in HeLa-S3.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.954 0.951 0.967 E2F1 0.902 0.902 0.915
GTF2F 0.973 0.974 0.976 JUN 0.982 0.981 0.989
JUND 0.976 0.971 0.985 TCF7 0.960 0.958 0.966
ELK1 0.943 0.938 0.945 MAFK 0.854 0.836 0.854
CTCF 0.913 0.903 0.930 ZNF143 0.925 0.917 0.939
AP2A 0.949 0.947 0.963 MAZ 0.929 0.926 0.940
NRF1 0.911 0.908 0.921 MXI1 0.959 0.955 0.967
ELK4 0.957 0.954 0.968 STAT3 0.985 0.985 0.990
AP2G 0.945 0.941 0.955 CEBPB 0.922 0.935 0.959
TAF1 0.962 0.959 0.970 USF2 0.945 0.938 0.965
NFYA 0.927 0.929 0.947 BRF1 0.860 0.868 0.900
BAF170 0.964 0.970 0.976 NRSF 0.717 0.700 0.711
E2F6 0.926 0.922 0.936 SMC3 0.961 0.965 0.975
BAF155 0.969 0.968 0.978 IRF3 0.954 0.954 0.968
RFX5 0.962 0.956 0.970 ZZZ3 0.919 0.884 0.886
BRF2 0.712 0.686 0.716 BRG1 0.966 0.963 0.974
TR4 0.941 0.932 0.944 TBP 0.971 0.974 0.981
E2F4 0.936 0.930 0.940 INI1 0.931 0.927 0.941
MAX 0.952 0.950 0.963 MYC 0.952 0.955 0.966
RAD21 0.959 0.961 0.973 BDP1 0.949 0.938 0.946
FOS 0.986 0.987 0.991 P300 0.984 0.984 0.988
NFYB 0.901 0.900 0.918 BRCA1 0.960 0.961 0.972
GABP 0.932 0.930 0.940 STAT1 0.914 0.906 0.920

Table B.4: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 52 TFs in HepG2.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.936 0.932 0.944 ZBTB33 0.955 0.923 0.966
FOXA2 0.967 0.973 0.982 BHLHE40 0.952 0.950 0.964
JUND 0.963 0.964 0.971 MAFK 0.960 0.966 0.929
CTCF 0.941 0.947 0.953 HNF4A 0.975 0.979 0.986
HNF4G 0.968 0.973 0.981 PGC1A 0.977 0.972 0.978
TEAD4 0.976 0.976 0.984 MAZ 0.942 0.932 0.952
NRF1 0.927 0.911 0.940 MXI1 0.946 0.918 0.960
TAF1 0.923 0.921 0.925 ELF1 0.947 0.937 0.957
EZH2 0.690 0.660 0.679 ZBTB7A 0.930 0.929 0.939
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YY1 0.945 0.937 0.949 CEBPB 0.951 0.954 0.961
FOXA1 0.966 0.927 0.981 USF2 0.950 0.952 0.969
RFX5 0.924 0.911 0.921 HSF1 0.949 0.946 0.957
ATF3 0.962 0.950 0.971 NRSF 0.780 0.761 0.836
GABP 0.911 0.909 0.926 SMC3 0.975 0.972 0.984
SIN3A 0.953 0.953 0.960 IRF3 0.952 0.952 0.952
JUN 0.978 0.981 0.981 MAFF 0.968 0.954 0.972
TCF7 0.973 0.964 0.976 MBD4 0.976 0.968 0.979
FOSL2 0.962 0.957 0.970 RXRA 0.969 0.974 0.979
TR4 0.954 0.951 0.963 TBP 0.964 0.961 0.971
SP2 0.773 0.768 0.941 MAX 0.943 0.938 0.963
SRF 0.936 0.928 0.941 MYBL2 0.975 0.977 0.983
MYC 0.967 0.968 0.978 HDAC2 0.974 0.974 0.983
SP1 0.973 0.971 0.979 TCF12 0.977 0.975 0.983
RAD21 0.961 0.952 0.966 NFIC 0.980 0.980 0.985
ARID3A 0.980 0.983 0.987 USF1 0.920 0.929 0.948
P300 0.977 0.979 0.984 BRCA1 0.965 0.953 0.968

Table B.5: The AUC of the baseline method (base), the sequence method (seq) and
PDBR TF (PDBR) on 88 TFs in K562.

TF Base Seq PDBR TF Base Seq PDBR

CHD2 0.930 0.933 0.946 BRF2 0.826 0.803 0.804
JUND 0.962 0.964 0.972 SIN3A 0.925 0.926 0.944
ELK1 0.957 0.958 0.968 CBX3 0.934 0.935 0.925
PLU1 0.945 0.943 0.945 STAT2 0.973 0.968 0.975
CTCF 0.935 0.936 0.949 JUN 0.973 0.973 0.985
JUNB 0.979 0.978 0.980 ZBTB33 0.906 0.908 0.920
TEAD4 0.958 0.964 0.968 BHLH40 0.940 0.942 0.952
UBTF 0.924 0.921 0.923 CHD1 0.949 0.947 0.949
NRF1 0.942 0.951 0.930 CCNT2 0.922 0.921 0.930
TAF1 0.944 0.945 0.950 GTF2F1 0.958 0.957 0.962
EZH2 0.762 0.677 0.735 MAFK 0.967 0.977 0.980
GATA1 0.978 0.982 0.987 ETS1 0.939 0.941 0.947
KAP1 0.817 0.786 0.891 HDAC1 0.942 0.943 0.945
NR2F2 0.957 0.956 0.965 SAP30 0.946 0.951 0.950
TAL1 0.951 0.955 0.964 GATA2 0.968 0.971 0.975
YY1 0.950 0.944 0.951 ZNF143 0.942 0.940 0.951
E2F6 0.930 0.932 0.936 MAZ 0.943 0.946 0.954
SIX5 0.937 0.941 0.956 MXI1 0.946 0.947 0.954
RFX5 0.931 0.930 0.934 ELF1 0.922 0.915 0.926
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ATF3 0.933 0.925 0.945 ZBTB7A 0.907 0.904 0.910
BCL3 0.932 0.921 0.924 CEBPB 0.824 0.825 0.845
ZNF274 0.754 0.749 0.780 USF2 0.962 0.965 0.974
ZNF263 0.845 0.827 0.845 HDAC2 0.914 0.920 0.923
NELFE 0.925 0.920 0.925 RAD21 0.976 0.974 0.986
ARID3A 0.982 0.981 0.984 PML 0.962 0.963 0.968
BDP1 0.837 0.827 0.933 TAF7 0.932 0.924 0.931
P300 0.886 0.895 0.926 HMGN3 0.911 0.904 0.918
PHF8 0.941 0.943 0.944 BACH1 0.978 0.975 0.983
NFYB 0.904 0.917 0.933 STAT5A 0.978 0.979 0.987
NFYA 0.940 0.941 0.961 FOSL1 0.962 0.967 0.967
SIRT6 0.985 0.986 0.986 HDAC8 0.975 0.973 0.973
RBBP5 0.939 0.940 0.940 BRF1 0.974 0.971 0.976
NFE2 0.988 0.987 0.992 NRSF 0.872 0.867 0.915
SMC3 0.965 0.964 0.978 GTF2B 0.959 0.955 0.962
MAFF 0.948 0.953 0.973 TR4 0.906 0.897 0.918
BRG1 0.981 0.977 0.981 TBP 0.940 0.939 0.944
THAP1 0.931 0.927 0.939 BCLAF1 0.943 0.940 0.951
E2F4 0.930 0.929 0.940 INI1 0.973 0.970 0.970
SP2 0.938 0.935 0.952 MAX 0.949 0.952 0.960
SRF 0.930 0.934 0.941 SETDB1 0.822 0.794 0.827
MYC 0.963 0.962 0.968 SP1 0.948 0.950 0.959
HDAC6 0.877 0.864 0.873 USF1 0.932 0.943 0.952
FOS 0.964 0.968 0.976 GABP 0.933 0.936 0.948
STAT1 0.985 0.983 0.986 MEF2A 0.966 0.962 0.963
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nay, Jessica Lee, Wenqiang Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt,
et al. JASPAR 2016: a major expansion and update of the open-access database
of transcription factor binding profiles. Nucleic Acids Research, 44(Database
issue):D110–D115, 2016.

[110] Anthony Mathelier and Wyeth W Wasserman. The next generation of transcription
factor binding site prediction. PLoS Computational Biology, 9(9):e1003214, 2013.

[111] Anthony Mathelier, Beibei Xin, Tsu-Pei Chiu, Lin Yang, Remo Rohs, and Wyeth W
Wasserman. DNA shape features improve transcription factor binding site predic-
tions in vivo. Cell Systems, 3(3):278–286, 2016.

[112] Volker Matys, Olga V Kel-Margoulis, Ellen Fricke, Ines Liebich, Sigrid Land,
A Barre-Dirrie, Ingmar Reuter, D Chekmenev, Mathias Krull, Klaus Hornischer,
et al. TRANSFAC R© and its module TRANSCompel R©: transcriptional gene regu-
lation in eukaryotes. Nucleic Acids Research, 34(suppl 1):D108–D110, 2006.

[113] Liam J McGuffin, Kevin Bryson, and David T Jones. The PSIPRED protein struc-
ture prediction server. Bioinformatics, 16(4):404–405, 2000.

[114] Robert C Mcleay, Tom Lesluyes, Gabriel Cuellar Partida, and Timothy L Bailey.
Genome-wide in silico prediction of gene expression. Bioinformatics, 28(21):2789–
2796, 2012.

[115] Jens Meiler and David Baker. Rapid protein fold determination using unassigned
NMR data. Proceedings of the National Academy of Sciences, 100(26):15404–
15409, 2003.

220



[116] Alexander Meissner, Tarjei S Mikkelsen, Hongcang Gu, Marius Wernig, Jacob
Hanna, Andrey Sivachenko, Xiaolan Zhang, Bradley E Bernstein, Chad Nusbaum,
David B Jaffe, et al. Genome-scale DNA methylation maps of pluripotent and dif-
ferentiated cells. Nature, 454(7205):766–770, 2008.
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