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ABSTRACT 
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Today’s electrical grids are facing great challenges due to the harmful power 

imbalance between the supply and demand sides. The increasing penetrations of 

intermittent and unpredictable renewable resources, such as wind and solar energy, 

exacerbate this imbalance. Demand response (DR) is a cost-effective method to 

address this imbalance issue. With the assistance of smart grid technologies, such as 

smart meters and smart home energy manage systems (HEMSs), electricity end-use 

customers at the demand side are informed and enabled to take DR actions to 

reduce/shift power consumption and improve the grid reliability. Dynamic electricity 

pricing is the major DR program adopted by electric utilities and grid operators to 

encourage electricity end-users to take DR actions.  

Buildings, as the major electricity consumers worldwide, have great responsibilities 

and potential to provide DR resources. Centralized heating ventilation and air 

conditioning (HVAC) systems and decentralized HVAC equipment, such as air 

conditioners (ACs) and heap pumps, account for a large proportion of the total 

electricity use in buildings. Their power consumption has a direct impact on power 
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grids.  In the context of smart grids, building HVAC systems and equipment need to 

be not only energy-efficient, but also grid-friendly and grid-responsive to address the 

power imbalance issue effectively.  

Unlike centralized HVAC systems in commercial buildings, which are enabled to 

fulfill automatic DR control by advanced building automation systems (BAS), 

residential HVAC equipment is still facing challenges to make automatic DR during 

peak demand periods. Although DR control of residential ACs has been widely studied, 

the residential ACs in the previous studies were almost all single-speed ACs with on-

off control. On-off control carries the great disadvantage of undesired current peaks 

during state transitions. Single-speed ACs are also being gradually replaced by 

inverter ACs, which have greater energy efficiency in partial-load conditions. Inverter 

ACs can operate within a wide range of frequencies (20 to 100 Hz), which is 

accompanied by large variations in power consumption. The control algorithms of 

inverter ACs are more complicated than those of single-speed ACs. Two types of 

dynamic retail electricity pricings are widely used by most utilities in the United States: 

day-ahead pricing (DAP) and real-time pricing (RTP). For DAP, the prices for specific 

hourly intervals are announced to the end-consumers 1 day ahead. For RTP, the 

electricity prices are provided every 5 minutes based on the current electricity supply 

and demand of grid nodes. To conclude, the present thesis aims to develop model-

based DR control methods for residential variable-speed ACs in response to two types 

of dynamic pricings, i.e. DAP and RTP. 

Two types of model-based optimal DR control methods are developed in response to 

two major dynamic electricity pricings, respectively: 1) Indirect model-based optimal 
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control method in response to hourly day-ahead prices (DAP) via temperature set-

point reset; 2) Direct model predictive control method in response to 5-minute real-

time pricing (RTP) via operating frequency adjustment.  Both DR control methods are 

developed based on the system model and the predictions of the influential variables, 

including the weather conditions, occupancy and RTPs. The system concerned in the 

present study is an integrated system consisting of an air-conditioned room and a 

variable-speed AC. Thus, simplified models for both room thermal dynamics and 

energy performances of AC are needed.  

A semi-physical (grey-box) dynamic room thermal model is developed and validated 

for predicting the indoor air temperature under dynamic operating conditions. For the 

computational efficiency, the dynamic room thermal model is transformed from the 

form of ordinary differential equations (ODE) to stochastic discrete-time state-space 

representation. Random white Gaussian noise is added in the system model 

considering the uncertainties arising from the exogenous input variables and make the 

model more realistic. The state space model can be used to formulate convex 

optimization problems which in general can be conveniently solved by using state-of-

the-art optimization techniques. The model parameters can be learnt by making 

effective use of the data available in the today’s smart in-home sensors. Due to the 

simple structure and moderate computation load, the developed room thermal model 

is suitable for developing model-based optimal control of residential ACs in response 

to dynamic DR signals. A simplified energy performance model of variable-speed 

ACs is developed and validated to characterize the AC performances under various 

operating frequencies and environmental conditions. The proposed simply structured 

energy performance model of variable-speed ACs can be readily used by electrical 
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researchers and engineers for either model-based DR control in smart HEMSs or DR 

potential estimation of a single variable-speed AC or a large population of variable-

speed ACs. 

A model-based optimal control method is developed for variable-speed ACs in 

response to hourly DAP, which adopts a two-level hierarchy structure. The high-level 

controller, i.e., the supervisory controller, is used to output the optimal set-point 

scheduling for the low-level local PID controller. The local PID controller is used to 

track the optimal set-points. Optimal scheduling of indoor air temperature set-points 

is formulated as a nonlinear programming problem which seeks the preferred trade-

offs among electricity costs, thermal comfort and peak power reductions. Genetic 

algorithm (GA) is used to search the optimal solution of the nonlinear programming 

problem. The test results show that the proposed model-based optimal control method 

can reduce the whole electricity costs and the peak power demands during DR hours 

while meeting thermal comfort constraints. Besides, sensitivity analyses on the trade-

off weightings in the optimization objective function demonstrate that electricity costs, 

occupant comfort and peak power reductions are sensitive to the weightings and the 

use of the weightings is effective in achieving the best trade-off. 

An MPC method is also proposed to directly control the operating frequency of 

variable-speed ACs in response to 5-minute RTP, which differs from the indirect DR 

control method (i.e., indoor air temperature set point reset).  The major advantage of 

MPC is to take account of all the influential variables, such as weather conditions, 

occupancy, and dynamic electricity pricing, at the controller design stage while 

satisfying the system operating constraints. A simplified room thermal model in the 
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stochastic state-space representation and performance maps of an inverter AC are 

integrated into the MPC controller for online prediction of the thermal response of an 

air-conditioned room. Two types of MPC controllers are designed for comparison, 

including an ordinary MPC controller without DR function and a DR-enabled MPC 

controller. The test results show that compared to the conventional PID controller, the 

MPC controller can implement automatic and optimal precooling based on the 

predictions of dynamic weather conditions and occupancy. Besides, the DR-enabled 

MPC controller demonstrates great improvements in both peak power reduction and 

electricity cost savings and is thus more grid-friendly and cost-efficient. 

To conclude, in order to make the residential variable-speed ACs grid-responsive and 

DR-enabled, two types of model-based optimal control methods are developed in 

response to two commonly used dynamic electricity pricings, i.e., DAP and RTP. The 

proposed DR control methods help to reduce the power consumptions during peak 

demand periods, reduce the electricity costs for end-use customers, and improve the 

grid reliability.  
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivations 

The power imbalance between the supply and demand sides is a critical issue faced by 

current electrical grids. The increasing penetrations of intermittent renewable energy 

resources, such as wind and solar energy, cause the deterioration of the imbalance 

situation. The smart grid has been gradually replacing the traditional electrical grid, 

which uses two-way information and communication technologies and computational 

intelligence to achieve a clean, secure, reliable, resilient, efficient and sustainable 

power system (Fang et al., 2012; Güngör et al., 2011; Ipakchi & Albuyeh, 2009). With 

the assistance of smart grid technologies, such as smart meters and smart home energy 

manage systems (HEMSs) (B. Zhou et al., 2016), the end-use customers are able to 

change their normal consumption patterns in response to changes in the price of 

electricity over time, or to the incentive payments at times of high wholesale market 

prices or when system reliability is jeopardized (U.S. Department of Energy, 2006). 

The actions made by the customers in response to the signals from utilities during peak 

demand periods is called demand response (DR). DR has short-term impacts on the 

electricity markets, resulting in economic benefits for both the customers and the grid 

operators. Moreover, in the long term, lowering the peak demand and improving the 

reliability of the power system can avoid additional capacity investments. 

Buildings are responsible for around 40% of the total energy consumptions worldwide, 

and consume over 70% of the total electrical energy in the USA (Somasundaram et 

al., 2014) and over 90% of the total electricity in Hong Kong (Electrical and 
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Mechanical Services Department, 2017). As the major end-user of electricity, 

buildings have great responsibilities and potentials to provide peak power reductions 

during on-peak hours. Building owners should look beyond the buildings themselves 

and consider the impacts of buildings on power grids for the benefits of both power 

grids and building owners. For modern buildings, they need to be not only energy-

efficient, green, sustainable, or intelligent but also grid-friendly and gird-responsive 

(S. Wang, 2016; S. Wang et al., 2014).  

Centralized heating ventilation and air conditioning (HVAC) systems in commercial 

and industrial buildings and decentralized HVAC equipment in residential buildings, 

such as air conditioners (ACs) and heap pumps, account for a large proportion of the 

total building electricity use. Their power consumptions have direct impacts on power 

grids (Electrical and Mechanical Services Department, 2017). According to California 

energy demand report, HVAC systems are the major contributors to most of the peak 

power demands in summer in California (California Energy Commission, 2000). DR 

control of building HVAC systems and equipment is considered as one of the most 

promising solutions to grid power imbalance issue.  

In commercial buildings, DR technologies such as the use of building thermal mass 

(P. Xu & Haves, 2006; Yin et al., 2010) and thermal energy storage systems (Cui et 

al., 2015; Patteeuw et al., 2015; Ruan et al., 2016) have been adopted to reduce and 

shift power consumptions of large centralized HVAC systems. Centralized HVAC 

systems are normally managed by advanced building automation systems (BAS) and 

professional engineers, which enable them to fulfill automatic DR control. Residential 



3 

 

HVAC equipment, is still facing challenges to make automatic DR during peak 

demand periods.  

Single-speed ACs with on-off control are the first generation of ACs and widely used 

in residential buildings. The indoor air temperature is controlled by switching on and 

off the compressor. However, the state transitions have a big disadvantage of 

undesired current peaks (Aswani et al., 2012). For this reason, residential ACs have 

been improved from the single-speed to variable-speed ACs, which have gained an 

increasing market share in recent years due to its higher efficiency under part-load 

conditions (Qureshi & Tassou, 1996). DR control strategies of residential single-speed 

ACs have been extensively studied in the literature, however, few studies have been 

carried out on variable-speed ACs. Thus, the present thesis aims at developing 

automatic DR control strategies/methods for residential variable-speed ACs in 

response to dynamic electricity pricings. 

Energy-efficiency is the major consideration in the developments of residential 

variable-speed ACs in recent decades. Various control methods have been developed 

to improve the energy efficiency of variable-speed ACs, such as proportional-integral-

derivative (PID) control, fuzzy logic control and artificial neural networks (ANNs) 

(Asakawa & Takagi, 1994; Chiou et al., 2009; Ekren et al., 2010; Soyguder et al., 2009; 

J. Wang et al., 2006). In the context of smart grids, the new control method for 

variable-speed ACs needs to be able to respond to dynamic pricing or other incentive 

signals from grid operators with the assistance of advanced information and 

communication technologies and intelligent control and automation techniques. As a 

result, the ACs can help to reduce the power consumptions during on-peak periods 
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and save electricity bills for end-use customers. To conclude, being gird-friendly, grid-

responsive and DR-enabled is the new important feature for the next generation of 

residential ACs. 

The residential ACs still need to satisfy the thermal comfort of occupants while 

making demand response. The simplest way of achieving DR from residential ACs is 

to directly limit the power consumption when the prices are high. However, this will, 

inevitably, result in the thermal discomfort. Precooling the building using the building 

thermal mass is a promising solution to address this issue (Sun et al., 2012; Turner et 

al., 2015; P. Xu et al., 2004; Yin et al., 2010). For example, residential ACs can start 

up in advance before the room is occupied to precool the room when the prices are 

low. When the prices are high, the residential ACs can turn off or run at a low operating 

frequency to reduce the power consumption. In this way, the thermal comfort could 

be guaranteed by using the stored cooling in the building. 

However, the determination of the start-up time and duration of the precooling is a 

great challenge. The start-up time and duration of the precooling should be different 

for rooms with different thermal masses, which are also influenced by the dynamic 

weather conditions and occupancy profiles on different days. To simultaneously 

consider the thermal characteristics of the room and all the influential variables 

including weather conditions, occupancy profile and dynamic electricity pricing, 

advanced model-based optimal control strategies/methods are needed to automatically 

determine the optimal precooling start-up time and duration under various operating 

conditions. 
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Two types of dynamic electricity pricings are widely used by most utilities in the 

United States, i.e., day-ahead pricing (DAP) and real-time pricing (RTP) (Federal 

Energy Regulatory Commission, 2014). For DAP, the prices at hourly intervals are 

announced to the end-consumers one day ahead. For RTP, the electricity prices are 

offered every 5 minutes based on the current electricity supply and demand of grid 

nodes. To respond to hourly DAP, the indirect model-based control method is 

competent, which usually adopts a two-level hierarchy structure. The high-level 

controller, i.e., the supervisory controller, is used to set the optimal set points for the 

low-level local controllers. The local controllers, e.g., the on-off controller and PID 

controller, are used to track the set points and output the command signals for actuators 

such as rotational speed of compressor and opening degree of valve. 

However, the indirect model-based control method is incompetent for variable-speed 

ACs to respond to 5-minute RTP. There are two major reasons: 1) Due to the thermal 

mass, the change in the indoor air temperature is much slower than the response speed 

of a controller. That means if we adjust the temperature set-points every 5 minutes to 

respond to real-time pricing, the indoor air temperature could not track the frequently 

changed set-points well. 2) Direct control of the compressor frequency is closely 

relates to the power consumption, which is more effective in shifting power 

consumption than adjusting the temperature set-points of a local controller every 5 

minutes. Thus, there is a lack of frequency-based optimal DR control method for 

variable-speed ACs in response to RTP.  

Model predictive control (MPC) is a promising method for frequency-based DR 

control of residential variable-speed ACs, which has been shown the superiority in 
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energy-efficient/cost-effective based optimal control of building energy systems. The 

major advantage of MPC is that it can simultaneously take account of all the influential 

variables at the controller design stage while satisfying the system operating 

constraints. In this study, we make the first attempt to apply MPC method to directly 

control the operating frequency of variable-speed ACs in response to RTP. 

1.2 Aim and Objectives 

The aim of the present study is to develop two types of model-based optimal DR 

control methods for residential variable-speed ACs in response to two types of 

dynamic electricity pricings, respectively: 1) Indirect model-based optimal control 

method in response to hourly day-ahead pricing by optimal scheduling of temperature 

set-point; 2) Direct model predictive control method in response to 5-minute real-time 

pricing by direct control of operating frequency of AC.  

To achieve the aim, the following objectives are set and attained in this study: 

(1) To develop and validate a semi-physical (grey-box) room thermal model for 

predicting the indoor air temperature under dynamic operating conditions. The 

model parameters can be learnt by making effective use of the data available 

in the today’s smart in-home sensors. Due to the simple structure and moderate 

computation load, the developed room thermal model is suitable for the 

applications in the HEMSs, such as model-based optimal control of residential 

ACs in response to dynamic DR signals.  

(2) To develop a methodology to transform the model in the form of ordinary 

differential equations (ODE) to stochastic discrete-time state space model. In 
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order to make the model more realistic, random white Gaussian noises are 

added into the system model. The state space model explicitly expresses the 

relationships between the outputs and inputs. Moreover, it can be used to 

formulate convex optimization problems which in general can be conveniently 

solved by using state-of-the-art optimization techniques.  

(3) To develop and validate a simplified energy performance model of variable-

speed ACs to characterize the AC performances under various operating 

frequencies and environmental conditions. The proposed simply structured 

energy performance model of variable-speed ACs can be readily used by 

electrical researchers and engineers for either model-based DR control in smart 

HEMSs or DR potential estimation of a single variable-speed AC or a large 

population of variable-speed ACs. 

(4) To develop and validate a model-based optimal control method for variable-

speed ACs in response to hourly DAP. The proposed model-based optimal 

control method is intended to be implemented in the smart HEMSs and enable 

the residential variable-speed ACs to achieve the optimal trade-offs among 

electricity costs, occupant comfort and peak power reductions during DR hours. 

(5) To develop and validate a frequency-based model predictive control method 

for variable-speed ACs in response to 5-minute RTP. The advanced MPC 

method is intended to directly control the operating frequency of variable-

speed AC while considering all the influential variables including weather 

conditions, occupancy and RTP.  

(6) To develop a TRNSYS-MATLB co-simulation testbed to test the 

performances of various control methods using the integrated building energy 



8 

 

system. Instead of using the typical meteorological year (TMY) weather data 

at hourly intervals, historical weather data from local observatory are used for 

the tests. 

1.3 Organization of the Thesis 

The whole thesis is divided into 9 chapters. Figure 1.1 shows the outline of the present 

study.  

 

Figure 1.1 Outline of the present study. 

The main content of each chapter is presented as follows. 

Chapter 1: The background and motivation of the present study is outlined, which is 

to develop model-based control strategies/methods for residential variable-speed ACs 

in response to two widely-used electricity pricings, i.e., DAP and RTP, with the 
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assistance of advanced information and communication technologies and 

computational intelligence techniques in smart grids. The aim/objectives and thesis 

organization are presented. 

Chapter 2: Literature survey is conducted in terms of DR in smart grids, DR control 

strategies for buildings, dynamic room thermal model and performance model of ACs. 

Research gaps are then summarized. 

Chapter 3: This chapter introduces the frameworks of two types of DR control 

methods for variable-speed ACs: (1) Indirect model-based optimal control method in 

response to hourly day-ahead pricing; (2) Direct model predictive control method in 

response to 5-minute real-time pricing. The reason why the direct MPC controller is 

needed is explained. The detailed differences between the two types of DR control 

methods are compared. Both of the two DR control methods need to use the system 

model to predict the future evolutions of the system. Simplified models for both room 

thermal dynamics and energy performances of AC are needed. The procedure of 

developing the simplified models is introduced. 

Chapter 4: This chapter introduces the development of simplified dynamic room 

thermal model for model-based online control. We propose an accurate semi-physical 

(grey-box) room thermal model for predicting the indoor air temperature under 

dynamic operating conditions. To improve the computational efficiency of both 

offline parameter identification and online model predictive control, the ODE model 

is transformed to the stochastic discrete-time state space model. Pre-estimation and 

scaling approaches are proposed to pre-process the model parameters, which help to 

improve the accuracy and computational efficiency of the parameter identification 
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process. Three popular optimization techniques including trust region algorithm 

(TRA), genetic algorithm (GA) and particle swam optimization (PSO) are used for 

parameter identification. Case studies are carried out to validate the simplified room 

thermal model using field test data and simulation data. 

Chapter 5: This chapter aims to develop a simplified energy performance model of 

variable-speed ACs and apply the model to model-based DR control. A simplified 

energy performance model structure of variable-speed ACs is proposed in the form of 

piecewise polynomial functions to characterize the performances of variable-speed 

ACs under various operating frequencies and environmental conditions. However, the 

AC manufacturers seldom provide enough data for coefficient identification. Thus, a 

steady-state physical model of variable-speed ACs is developed to generate enough 

performance data to identify the simplified AC model. 

Chapter 6: This chapter presents a novel model-based DR control method for 

residential variable-speed ACs to automatically and optimally respond to day-ahead 

electricity prices. The proposed control-oriented room thermal model and steady-state 

energy performance model of variable-speed ACs in last two chapters are integrated 

to predict the coupled thermal response of the room and AC for the purpose of model-

based control. Optimal scheduling of indoor air temperature set-points is formulated 

as a nonlinear programming problem which seeks the preferred trade-offs among 

electricity costs, thermal comfort and peak power reductions. Genetic algorithm (GA) 

is used to search the optimal solution of the nonlinear programming problem. 

Chapter 7: Prior to applying MPC to the control of variable-speed ACs, the 

fundamentals behind the MPC method is first introduced including the general control 
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procedure of MPC and the features of critical components in MPC, such as cost 

function, dynamics, constraints and current state. The existing applications of MPC in 

the area of built environment control are then presented. 

Chapter 8: In this chapter, we make the first attempt to use the advanced MPC method 

to directly control the operating frequency of variable-speed AC while considering all 

the influential variables including weather conditions, occupancy and RTP. The 

stochastic state-space room thermal model and the simplified energy performance 

model of variable-speed ACs are used for online predicting the future evolutions of 

the system. Based on the integrated thermal response model, we proposed two types 

of MPC controllers: an MPC controller without DR function and a DR-enabled MPC 

controller. A TRNSYS-MATLB co-simulation testbed is developed to test the 

performances of various control methods using the integrated building energy system.  

Chapter 9: Main conclusions and contributions are summarized. Recommendations 

for the future study are presented. 
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CHAPTER 2 LITERATURE REVIEW 

Since this study attempts to develop model-based DR control methods for variable-

speed air conditioners in response to dynamic electricity pricings in smart grids, 

previous research efforts on DR measures and programs, dynamic pricings, DR 

control strategies for buildings, building thermal model and AC model are reviewed. 

Section 2.1 presents an overview of DR and smart grid, typical DR measures and 

programs and potential benefits of DR. Section 2.2 presents the existing studies on DR 

control strategies for both commercial and residential buildings. Section 2.3 and 

Section 2.4 present the existing models for room thermal dynamics and AC energy 

performance, respectively. 

2.1 Demand Response in Smart Grids 

DR is the background of our research. Thus, in this section we presents the critical 

points of DR including the definition, the relationship with smart grids, the typical 

programs, the potential benefits and the enabling technologies. 

2.1.1 Overview of DR and Smart Grids 

DR refers to changes in electric usage by end-use customers from their normal 

consumption patterns in response to changes in the electricity prices over time, or to 

incentive payments designed to induce lower electricity use when wholesale market 

prices are high or when system reliability is jeopardized (Federal Energy Regulatory 

Commission, 2010; U.S. Department of Energy, 2006). The responses made by the 

customers during peak demand periods have short-term impacts on the electricity 
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markets, resulting in economic benefits for both the customers and the grid operators. 

Moreover, in the long term, lowering the peak demand and improving the reliability 

of the power system can avoid additional capacity investments. 

Smart grid and DR are intrinsically linked in many areas of application (Federal 

Energy Regulatory Commission, 2010). The advancements of smart grid can apply 

digital technologies to the conventional grid and enable real-time communication and 

coordination of information among supply resources, demand resources and 

distributed energy resources (DER), which brings about high operating efficiency for 

grid operators(Güngör et al., 2011; Messner & Nadel, 2011). Smart grid technologies, 

such as smart meters, help to achieve the DR potential (Camyab, 2015). In turn, some 

benefits related to investment in the smart grid, such as change in electricity usage of 

customers in response to prices or signals from grid operators, are essentially DR 

actions.  

2.1.2 Typical DR Measures and DR Programs 

Classifications of DR measures 

In general, DR participants can change their electricity usage in three possible ways 

(Siano, 2014): 

1) Demand shaving. The customers can reduce their energy consumption using 

load curtailment strategies. 

2) Demand shifting. The customers can move the energy consumption to a 

different time period, e.g., from high-price to low-price period. 
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3) Onsite generation.  The customers can limit their dependence on the electric 

grid by using onsite standby distributed energy resources, such as wind and 

solar energy. 

Customers can participate in DR programs directly with the utility or through an 

intermediary. In the electricity markets, the end-use customers are usually aggregated 

by intermediaries, normally called as aggregators, services providers or DR providers. 

According to the amount of the consumption within their facilities, customers can be 

divided into the following classes (Siano, 2014): 1) large commercial and industrial 

customer; 2) small commercial and industrial customer; 3) residential customer; 4) 

individual plug-in electric vehicle (PEV); and 5) fleet of PEVs. 

Classifications of DR programs 

In general, DR is divided into two basic categories, namely price-based programs, and 

incentive or event-based programs (Mohamed H Albadi & El-Saadany, 2007; M. H. 

Albadi & El-Saadany, 2008). 

In price-based programs, the electricity price changes in different periods according 

to the electricity supply cost, including high price for peak period, medium price for 

off-peak and low-price for low-load period, and there is no incentive nor penalty for 

these programs. The types of price-based DR programs are as follows. 

• Time-of-use pricing (TOU): the electricity prices are set for the specific time 

periods (e.g., on-peak period and off-peak period). These price settings aim to 

prompt end-users to shift their electricity usage from on-peak to off-peak 
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period for financial benefits, helping the grid improve load factor and reduce 

generation capacity(Torriti, 2012; Vanthournout et al., 2015). 

• Critical peak pricing (CPP): it is a kind of TOU pricing in fact but with 

special prices for the peak demand days or hours when the prices can be several 

times higher than usual prices. When utilities observe or anticipate high 

wholesale market prices or power system emergency conditions, they may call 

critical events during a specified time period and the price for electricity during 

these time periods is substantially raised (Herter et al., 2007; Herter & 

Wayland, 2010).   

• Real-time pricing (RTP): it is also called dynamic pricing, is that the 

electricity prices may change as often as hourly or even more quickly (e.g., 5 

minutes). The real time prices are usually announced a day ahead or a few 

hours ahead(Avci et al., 2013; Chassin et al., 2015; S. Li & Zhang, 2014; 

Lujano-Rojas et al., 2012; Vrettos et al., 2013). 

Incentive-based DR programs represent contractual arrangements designed by load-

serving entities, policymakers, and grid operators for demand reductions from end-use 

customers at critical times called program events. These programs provide DR 

participants with monetary incentives to reduce load that are separate from, or 

additional to, those customers’ retail electricity price. The forms of the incentives may 

be explicit bill credits or payments for load reductions (pre-contracted or measured). 

To determine the amount of the demand reductions for program participants, a method 

is usually specified to establish the baseline energy consumption which will be used 

for the calculation of demand reduction. The types of incentive-based DR programs 

are as follows. 
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• Direct load control: the electricity utilities have the access to directly control, 

such as turn off, the specific devices/systems of end-users by offering a certain 

payment based on the previous signed agreements. Direct load control is 

usually conducted during peak demand periods or emergency situations of the 

grid (Bargiotas & Birdwell, 1988; S. Wang & Tang, 2016; F. Zhang & de Dear, 

2015; F. Zhang et al., 2016). 

• Interruptible/curtailable service: customers on interruptible/curtailable 

service rates/tariffs receive a discount or bill credit in exchange for agreeing to 

reduce load during system contingencies. This program is mandatory for end-

users and if they do not accomplish the load reduction signed ahead, they 

would be subject to penalties. The tariffs used for this program are always 

offered by an electric utility or load-serving entity that has the right to 

implement the program when necessary, which is the main difference with that 

for emergency DR and capacity-program alternatives (H. A. Aalami et al., 

2010; Mohamed H Albadi & El-Saadany, 2007). 

• Demand bidding program: this is a competitive and negotiated program. 

End-use customers offer their expected cost benefits and availabilities in 

power reduction in advance. After the market receives and accepts the offer, 

the end-use customers are expected to reduce the pre-determined load and will 

receive their stated payments. Otherwise, the end-users will be subject to 

penalties if they cannot finish the declared load reduction. The main difference 

between the demand side bidding and other demand side management methods 

is that demand side bidding involves the short-term discrete changes into 

individual load profiles of end-users while other demand side managements 
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involve sustainable and permanent changes into the load profiles (Bode et al., 

2013; Cappers et al., 2013). 

• Emergency demand response program: this DR programs provide 

incentives for end-users to reduce their power loads during grid reliability-

triggered events, but load reduction is voluntary. Customers can decide/choose 

whether receive the payment and accomplish the load reduction when notified. 

If customers do not reduce their power use, they will not be penalized (H. 

Aalami et al., 2008).  

• Capacity-market programs: as for this DR program, customers should 

achieve pre-signed load reductions with utility companies when facing the 

power grids contingencies. This program is mandatory and end-uses will be 

penalized if they do not reduce the power use when notified. Capacity market 

programs can be also viewed as a form of insurance. In exchange for being 

obligated to reduce power use when notified, participants can receive 

guaranteed payments (i.e., insurance premiums). Just like insurance, in some 

years power reductions for smart grids will not be required, even though 

participants are paid to be on call. Capacity market programs are typically 

offered by regional transmission organizations (RTOs) or independent system 

operators (ISOs) (H. A. Aalami et al., 2010; Cappers et al., 2010).  

• Ancillary services market programs: this program allows end-users to bid 

load curtailments in wholesale market providers, ISO/RTO markets, as 

operating reserves. After their bids are accepted, the market price is paid to 

them for the commitment of being on standby. For end-users, being able to 

quickly reduce the consumption when a reliability event occurs is the key 



18 

 

requirement for ancillary-service markets. (Bode et al., 2013; Cappers et al., 

2013).  

2.1.3 Potential Benefits of DR 

Financial and reliability benefits are the major two potential benefits of DR. 

• Financial benefits. Customers can obtain monetary benefits including: (1) 

cost savings on customers’ electric bills from shaving or shifting power 

consumptions during on-peak periods; (2) some explicit financial payments 

the customer receives for curtailing usage in a DR program. The benefits of 

DR programs are market-wide, and not only for program participants. An 

overall electricity price reduction is expected eventually because of a more 

efficient utilization of the available infrastructure. DR programs also result in 

an avoided or deferred capacity costs. The cascaded impact of DR programs 

includes avoided or deferred need for distribution and transmission 

infrastructure enforcements and upgrades. All of the avoided or deferred costs 

will be reflected in the price of electricity for all electricity consumers (Strbac, 

2008). 

• Reliability benefits. Reliability benefits refer to the reduced chance of losing 

services in blackouts. This benefit may be associated with an internalized 

benefit, in cases where the customer perceives (and monetized) benefits from 

the reduced likelihood of being involuntarily curtailed and incurring even 

higher costs, or societal, in which the customer derives satisfaction from 

helping to avoid widespread contingencies (Dodrill, 2011).  
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2.2 Demand Response from Buildings 

2.2.1 Why Buildings and HVAC Systems Need to Be Grid-responsive? 

Buildings are responsible for around 40% of the total energy consumptions worldwide, 

and consume over 70% of the total electrical energy in the USA (Somasundaram et 

al., 2014) and over 90% of the total electricity in Hong Kong (Electrical and 

Mechanical Services Department, 2017). As the major end-user of electricity, 

buildings have great responsibilities and potentials to provide peak power reductions 

during on-peak hours. Building owners should look beyond the buildings themselves 

and consider the impacts of buildings on power grids for the benefits of both power 

grids and building owners. For modern buildings, they need to be not only energy-

efficient, green, sustainable, or intelligent but also grid-friendly and gird-responsive 

(S. Wang, 2016). 

Heating, ventilation and air conditioning (HVAC) systems account for a large 

proportion of the total building electricity use. Their power consumptions have direct 

impacts on power grids (Electrical and Mechanical Services Department, 2017). 

According to California energy demand report, HVAC systems are the major 

contributors to most of the peak power demands in summer in California (California 

Energy Commission, 2000). DR management of building HVAC systems is 

considered as one of the most promising solutions to grid power imbalance issue. The 

development of smart grids imposes a new feature for HVAC systems and equipment, 

i.e., being grid-responsive. 
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2.2.2 DR Control Strategies for Commercial Buildings 

Central HVAC systems are normally managed by advanced building automation 

systems (BAS) and professional engineers, which enable them to fulfill automatic DR 

control. This section describes the existing DR control strategies for air-conditioning 

system. Two main categories of DR strategies for HVAC systems were summarized 

by Watson et al. (Watson et al., 2006): (1) global temperature adjustment, and (2) air 

distribution and cooling system adjustment. Global temperature adjustment is carried 

out by increasing building zone temperature set-points during DR events. Air 

distribution and cooling system adjustment includes duct static pressure set-point 

reduction, fan speed limit, chiller demand limit, etc. 

• Global temperature adjustment: this strategy allows commercial building 

operators to easily adjust the space temperature set-points for an entire facility by 

one command from one location. Typically, this is done from a screen on the 

human machine interface. In field tests, global temperature adjustment is shown 

to be an effective and least objectionable strategy of the HVAC DR strategies 

tested (Piette et al., 2004; Piette et al., 2006). It is most effective because it reduces 

the loads of all associated air handling and cooling equipment. This control 

strategy achieves even reduction of service level among all zones and can be 

activated automatically by remote signals or manually by building operators. 

• Passive thermal mass storage: this method takes advantages of thermal mass of 

a building to reduce the peak load. In summer, the cooling can be charged in the 

building thermal mass during non-peak hours and discharged to reduce the cooling 

demand during peak period. As a result, the cooling demand load is shifted from 
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off-peak period to on-peak period. The building thermal mass is always cooled 

during unoccupied period when the comfort constraints are relatively relaxed. For 

example, precooling is always conducted in the morning. When the precooling is 

sufficient and the daytime cooling demand is low, the indoor air temperature may 

be possible to be ensured within the acceptable range during the peak period 

without any mechanical cooling (X. Li & Malkawi, 2016; P. Xu & Haves, 2006; 

P. Xu et al., 2004; Yin et al., 2010).  

• Duct static pressure (DSP) adjustment: for variable air volume (VAV) systems, 

the DSP set-points should be high enough in order to provide enough pressure for 

each terminal (i.e., VAV box) to work properly. The measured point of DSP is 

always located about two-thirds of the way down the duct system. In the conditions 

of less demand, energy waste may occur. This is because the DSP set-points are 

higher than the need to meet demands and the openings of VAV boxes are nearly 

to be closed. During DR events, there is no doubt that reducing the DSP set-points 

can achieve some shed savings without any reduction in thermal comfort to the 

occupants. But additional shed savings would result in some VAV terminal boxes 

fully open because of the very low DSP set-points (Goddard et al., 2014).  

• Fan speed limit: Like duct static pressure set point reduction mentioned above, 

this DR strategy is relevant to fans with variable frequency drives (VFD). During 

the DR event, the speed of the VFD is limited to a fixed value. To be effective, the 

fixed value must be lower than that under normal closed loop conditions. Fan 

speed limiting saves energy for the same reasons as duct static pressure set point 

reduction. Its effect on the air distribution systems and associated occupied zones 
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is somewhat less predictable because of the open-loop nature of the control. Fan 

speed limits may be useful as part of other DR strategies such as cooling system 

adjustments described below. This strategy may also be used on fans with inlet 

guide vanes (Lin et al., 2015). 

• Supply air temperature adjustment: this method differs from constant air 

volume (CAV) and VAV systems. In a CAV system, the power demand can be 

reduced by increasing its supply air temperature set-point. In packaged direct 

expansion units and heat pumps, the savings will be achieved at each unit by 

reducing compressor load. For air handlers with cooling coils, the savings will 

occur at the central cooling plant. While, in a VAV system, this method causes the 

cooling supply to zones insufficient and each damper of VAV box will be fully 

opened to maintain its corresponding indoor air temperature set-point. The air 

delivery fan will be over-speeding because of the fully open dampers. If this 

method is implemented in such VAV system, the fan’ speed of inlet guide vane 

would be fixed to avoid the over-speeding of fans to reduce the effectiveness of 

DR controls (Motegi et al., 2007).  

• Chilled water temperature adjustment: the efficiency of chiller can be 

improved by increasing chilled water supply temperature. But this leads to the 

increase on chilled water flow and increase the power demand of variable speeds 

of chilled water pumps unless the speed of variable volume devices is limited. 

Therefore, the power reduction will be based on the trade-off between the reduced 

chiller power demand from increased efficiency and the increased distribution 

devices (e.g., pumps) (Su & Norford, 2015).  
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• Chiller demand limit: this strategy saves cooling demand by directly controlling 

the chiller compressor. If the chillers operate at nearly full load, this strategy is 

beneficial just by limiting the demand at the most efficient part‐load operation. 

The chiller compressor adjusts its capacity based on the supply chilled water 

temperature. For a constant volume chilled water system, the pump power will not 

increase by limiting its demand capacity. For a variable volume system, the chilled 

water pumps speed up to increase chilled water flow to maintain the supply air 

temperature. When this strategy is employed, the chiller cannot provide more 

cooling than the demand limit allows. Therefore, the pump speed should be locked 

at the state prior to DR. Similarly, locking fan VFD or inlet guide vanes at the 

position prior to the DR operation is required to achieve demand savings (Tang et 

al., 2016). 

2.2.3 DR Control Strategies for Residential Buildings 

To fully exploit the DR potentials of residential electrical appliances, advanced 

metering infrastructure such as smart meters (Federal Energy Regulatory Commission, 

2014) and HEMSs (B. Zhou et al., 2016) have been developed and implemented in 

many residential buildings, which provide great opportunities for residential ACs to 

achieve automatic DR.  

Smart meter is an advanced meter that measures the electricity consumption hourly or 

more frequently, and provides bidirectional communications between residential end-

users and electric utilities/third-party load aggregators (Depuru et al., 2011; Federal 

Energy Regulatory Commission, 2018). The major signals sent from utilities toward 

residential DR participants are dynamic electricity prices (Faruqui et al., 2010). 
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Residential DR participants can reduce the electricity use during high-price periods 

and shift the electricity use to low-price periods. Automatic DR control strategies are 

essential for residential electrical appliances to respond to dynamic pricing. Smart 

HEMSs facilitate the implementation of automatic DR control methods and strategies 

for residential appliances including ACs.  

Many studies have been conducted on DR control of residential electric appliances in 

the dynamic pricing environment. The commonly used DR control method for 

residential ACs is indoor air temperature set-point reset based on the dynamic 

electricity prices. Chen et al. (Z. Chen et al., 2012) used stochastic optimization and 

robust optimization approaches to optimize the operation scheduling of six typical 

residential appliances based on real-time electricity prices. The objective was to 

minimize the whole-day electricity payment without largely sacrificing thermal 

comfort. A mixed-integer linear programming problem was formulated and solved by 

Hubert et al. (Hubert & Grijalva, 2012) to minimize electricity costs. Their study 

showed that advanced scheduling controllers implemented in HEMS were valuable to 

fully achieve the DR benefits. Li et al. (S. Li et al., 2014) investigated and compared 

different DR strategies for residential ACs under different dynamic electricity pricings 

and environmental conditions based on eQUEST simulations. Lujano-Rojas et al. 

(Lujano-Rojas et al., 2012) proposed an optimal energy management strategy for 

residential energy system consisting of renewable power generations and electrical 

vehicles based on real-time electricity prices. The optimized operation scheduling for 

household appliances and electrical vehicles reduced the electricity bills by 8% to 22% 

on typical summer days. Thomas et al. (Thomas et al., 2012) developed an intelligent 

AC controller which can provide the optimal comfort and cost trade-offs for the 
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residents by scheduling the AC on/off status. Yoon et al. (Yoon et al., 2014) proposed 

a price-responsive controller for residential HVAC system which enables to reset 

temperature set-point when the retail price is higher than the preset price. Simulation 

results showed that the DR controller can provide up to 10.8% energy cost savings 

and 24.7% peak power reductions. Hu and Xiao (Hu & Xiao, 2018) made the first 

attempt at automatic DR control of variable-speed ACs in response to day-ahead 

dynamic prices. The optimal set points for the next-day indoor air temperature were 

obtained by solving a compound objective function of electricity costs, peak power 

reduction, and thermal comfort using a genetic algorithm. 

2.2.4 Conclusive Remarks 

Although DR control methods of residential AC have been extensively studied, the 

ACs considered in previous studies were all single-speed ACs which only allowed on-

off control. The on-off controlled ACs have a big disadvantage of undesired current 

peaks during state transitions (Aswani et al., 2012). The single-speed ACs are also 

gradually replaced by variable-speed ACs which have gained an increasing market 

share in recent years due to its higher efficiency under part-load conditions (Qureshi 

& Tassou, 1996). A major difference between single-speed and variable-speed ACs is 

the performances of the latter depend on not only the indoor and outdoor 

environmental conditions, but also the operating frequencies of the compressor motor. 

Therefore, the energy performance models of AC in previous residential DR research 

are not applicable for DR study of variable-speed AC.  

In addition, conventional local control methods for variable-speed AC such as PID 

control, fuzzy logic control and artificial neural network, are incompetent to address 
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the DR optimization problems involving multiple objectives and multiple variables 

such as weather conditions, occupancy and dynamic electricity pricing (Henze et al., 

2004; Y. Ma, A. Kelman, et al., 2012). Model-based optimal control method, as an 

advanced control approach, can simultaneously take account of all influential 

variables in a real process using model-based prediction techniques and optimally 

control the dynamic system by solving optimization problems.  

2.3 Dynamic Room Thermal Model 

Both electric utilities and smart HEMSs require the predictions of power reductions 

of residential ACs to implement DR strategies. For the former, many influential 

decisions on grid operations are made based on the predicted power reduction, such 

as generation and reserve planning, dynamic electricity prices and payments to homes 

joining DR program (Amini et al., 2013; Kamyab et al., 2016). For the latter, the 

widely adopted optimal load scheduling methods for DR in the presence of dynamic 

electricity pricings are also developed based on the predication of AC power 

consumption. Dynamic room thermal models are necessary to make prediction of the 

power consumption and power reduction of residential ACs. 

2.3.1 Typical Room Thermal Models 

There are a variety of available modeling methods for the analysis of energy use in 

buildings. They can be divided into three categories (Foucquier et al., 2013): white 

box method, black box method and grey-box method. Generally speaking, the white-

box model can be used to solve the forward problems and the black box and grey box 

model can be used to solve the inverse problems (Rabl, 1988). It is hard to determine 
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which method is absolutely the best. To a large extent, the choice usually depends on 

the given information and the output requirements. 

White box model 

White box or physical techniques are based on the solving of equations describing the 

physical behavior of heat transfer in detail. Therefore, its solution heavily depends on 

the detailed description of model. The sophisticated simulation software packages, 

such as DOE-2 (Winkelmann et al., 1993), EnergyPlus (Crawley et al., 2000), and 

TRNSYS (S. A. Klein, 1979), are all used the white box method. But they require a 

large amount of detailed characteristics data as inputs and significant amount of CPU 

time, so simplified white box methods are used based on some assumptions. 

Unfortunately, due to the assumptions and the uncertainties induced by geometric and 

thermal parameters, even for the newly designed buildings, it is still hard to evaluate 

the accuracy degree of models.  

Li et al. (S. Li et al., 2014) used the building model in eQUEST to investigate and 

compare different DR strategies for residential ACs under different dynamic 

electricity pricings and environmental conditions. Yoon et al. (Yoon et al., 2014) used 

the building model in EnergyPlus to test the proposed price-responsive control 

strategy for residential HVAC systems.  

Black box model 

In contrast to the white box models, black box models mainly use statistical tools and 

machine learning techniques to analyze a large amount of data, but don’t require any 

physical building information. Thus, these models are well suitable when the building 
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physical characteristics are extremely poor or even not known. However, the black 

box model may not always reflect the actual physical behavior. In other words, the 

modelling results sometimes are difficult to interpret from the physical perspective 

and usually specific to the modelled case, not valid for others. Besides, it is both 

expensive and time-consuming to measure and collect a large amount of data when 

the black box methods are used.   

Neural-network (NN) -based model is the most common back box model for the 

prediction of room thermal dynamics (Afram et al., 2017; J. Chen et al., 2018; Ferreira 

et al., 2012; Reynolds et al., 2018). Ferreira et al. (Ferreira et al., 2012) used radial 

basis function NNs to predict the room thermal comfort, which was assessed by 

predicted mean vote (PMV) index. The parameters in the NNs were identified using 

the multi-objective genetic algorithm. Reynolds et al. (Reynolds et al., 2018) 

developed zone-level artificial NNs to predict the energy consumption and indoor air 

temperature, which took weather, occupancy, set point schedule, and previous indoor 

air temperature as inputs. The NN model was trained using the simulation data from 

EnergyPlus.  

In addition to NNs, support vector machines (SVMs) were applied to predict the 

cooling loads (Q. Li et al., 2009a, 2009b; Xuemei et al., 2010), energy consumptions 

(Che et al., 2012; Dong et al., 2005; Kavaklioglu, 2011), daily maximum temperature 

(Paniagua-Tineo et al., 2011) and short-term wind speed (K. Chen & Yu, 2014), 

respectively. Smarra et al. (Smarra et al., 2018) developed regression trees and random 

forests based on historical building data for data-driven predictive control. 

Grey box model 
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Grey-box model, a hybrid of white box model and black box model, combines the 

basic prior knowledge of room thermal features with a reasonable amount of measured 

data to describe the building thermal performance. It bridges the gap between limited 

physical knowledge and limited sampled data. Moreover, in recent years the rapid 

developments of smart household monitoring, communication and automated control 

technologies and products, e.g., smart meters, and HEMSs, have facilitated the use of 

the grey-box techniques. The grey-box models can conduct the self-learning procedure 

by getting access to and making use of the real-time performance data from in-home 

smart meter readings. Then the identified models can be used for different purposes, 

e.g., forecasting and optimal supervisory control of energy consumption.  

One of the most popular grey-box methods for modelling the building energy 

consumption is RC (resistance and capacity) thermal network model. Braun and 

Chaturvedi (Braun & Chaturvedi, 2002) proposed a thermal network model and 

trained it using one to two weeks of data to accurately predict transient building load. 

Wang and Xu (S. Wang & Xu, 2006; X. Xu & Wang, 2007) developed a genetic 

algorithm to estimate the lumped thermal parameters of building using a thermal 

network structure and operation data from site monitoring. Bacher and Madsen 

(Bacher & Madsen, 2011) used prior physical knowledge and a forward selection 

strategy to formulate a series of RC network models with different complexity. Then 

likelihood ratio tests were used to determine the performance of each model.  

A widely used grey-box model for residential DR purpose is equivalent thermal 

parameter (ETP) model, which simplifies the room thermal dynamics as a second-

order electric circuit analog. Lu (Katipamula & Lu, 2006; Lu, 2012) used the ETP 
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model to study the impacts of various residential HVAC control strategies on electric 

distribution feeder load profile during DR periods for both a single residence and a 

population of residences. Thomas et al. (Thomas et al., 2012) proposed an intelligent 

residential AC system controller which can provide optimal comfort and cost trade-

offs for the resident using the ETP model. Zhang et al.(W. Zhang et al., 2013) adopted 

the ETP model to describe the thermal dynamics of each individual load and deal with 

a population of heterogeneous loads. Besides, GridLAB-D, an open-source power 

systems modeling and simulation environment, also use the ETP method to model the 

AC energy consumption (Pacific Northwest National Laboratory).  

However, there are two main critical issues about the ETP model. First, the model is 

too simplified to consider the impacts of specific building features such as wall 

material, window arrangement, and internal thermal mass. The network structure of 

the required model should be more detailed and include more physical descriptions, 

and a moderate amount of data arising from smart in-home sensors should also be 

needed to train the model. Second, the values of the ETP model parameters were 

determined according to the room geometry and thermal parameters in a database 

developed over 20 years ago (Pratt et al., 1991). The room thermal parameters are only 

applicable to the residential buildings in the US. The architecture design and envelop 

thermal properties are very different from the high-rise residential buildings in modern 

cities like Hong Kong and Shanghai. The uncertainties of the parameters have 

significant impacts on the accuracy of the modelling results. 
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2.3.2 Conclusive Remarks 

To conclude, considering the computational efficiency for online applications, grey-

box room thermal model is a better choice for predicting the future thermal response 

of the room and the energy consumption of the HVAC system. It needs to capture 

adequate thermal behaviors of the system to keep its robustness under different 

operating conditions. It should also not be too complicated for online applications. It 

can make full use of the indoor air temperature data from smart in-home sensors to 

identify the unknown model parameters with the assistance of data-driven 

optimization techniques. 

2.4 Performance Models of Air Conditioners 

The thermal dynamic characteristics of AC are mainly determined by the components, 

which accomplish the vapor compression cycle (VCC). A cycling refrigerant serves as 

a medium to move energy in AC. The generic VCC consists of four major components: 

an evaporator, a compressor, a condenser, and an expansion device. For simplification 

purpose, additional components such as accumulators and receivers are usually not 

considered. Both evaporator and condenser are heat exchangers, transferring heat 

between two mediums without allowing them to directly contact. The refrigerant flow 

in each heat exchanger is said to be on the “refrigerant side”. The other medium with 

which the component exchanges energy, often air or a single-phase fluid, is said to be 

on the “secondary side”. 

In a refrigerant-to-air system, up to four actuator inputs are used to control the 

operation of the VCC. They are the speed of the fan blowing air across the external 
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surfaces of the evaporator, the rotational speed of the compressor motor, the speed of 

the fan blowing air across the external surfaces of the condenser, and the opening 

degree of the expansion device. The fan speeds are fixed in some systems, leaving 

only two actuator inputs. The heat exchanger fans and compressor all consume 

electrical power in driving these actuators. Expansion devices may or may not 

consume electrical power as well depending on the type.  

Figure 2.1 shows a schematic and typical Pressure-Enthalpy (P-h) diagram of a basic 

VCC. Refrigerant flows through the evaporator at low pressure side and absorbs 

energy from the secondary side of the evaporator, typically undergoing a phase change 

from two-phase to superheated vapor in the process. The refrigerant then flows into 

the compressor, where it is pressurized to a high-temperature superheated vapor. Next, 

the refrigerant enters the condenser, where it rejects energy to the condenser secondary 

side, typically changing to a subcooled liquid phase in the process. After exiting the 

condenser, the refrigerant flows through the expansion device. In the expansion device, 

its temperature and pressure are reduced, causing a phase change to a two-phase liquid 

before the refrigerant again enters the evaporator. In this way, the refrigerant is used 

as a means to “pump” energy from the evaporator secondary side to the condenser 

secondary side.  
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Figure 2.1 Schematic of VCC (left) and P-h diagram (right). 

The typical phases at the entrance and exit of each heat exchanger during nominal 

operation are shown in Figure 2.1. However, this is not the case at all times. Startup 

or shutdown conditions, large disturbances on the secondary-side, or faults in control 

can all result in off-nominal phase flow combinations in the heat exchangers. 

In general, the basic methods for modeling the VCC can be divided into two categories: 

empirical modeling and numerical modeling. According to scales of system time-

regimes, both the empirical and numerical modeling can be further divided into 

transient and steady state modeling again. Typically, the transient state is the case when 

the system is started-up and is approaching steady state, or when it is shutdown from 

a steady state, or when it is disturbed from its steady state. Noted that the steady state 

of VCC in practice usually does not maintain for a long period, therefore a third time-

regime in between the true steady state and non-steady state, termed the ‘quasi- steady 

state’, occurs more often. In that case, the VCC transient responses are much faster 

than the transients of the inputs. This means the refrigeration system switches the 
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operation conditions in a sequence of steady states. For such cases, steady-state 

modeling could be used to study dynamic behavior.  

2.4.1 Empirical Models of ACs 

Empirical steady-state model 

The DOE-2, a widely used and accepted building energy analysis program, provides 

characteristic curves for cooling capacity and energy input ratio (EIR, the inverse of 

COP) of room air conditioners (York & Tucker, 1980). Dimensionless factors for 

cooling capacity and EIR are functions of the wet-bulb temperature of the outdoor air 

and dry-bulb temperature of the indoor air, and are mathematically express as a bi-

quadratic equation. The characteristic curves have been widely used in the simulation 

of AC energy consumption (Pacific Northwest National Laboratory; Thomas et al., 

2012). Meissner et al. (Meissner et al., 2014) trained this mathematical AC model by 

doing experimental tests on climatic chambers under a set of environmental conditions, 

then integrated the model into a building energy program. Cherem-Pereira and 

Mendes (Cherem-Pereira & Mendes, 2012) empirically modeled the total cooling 

capacity, the sensible cooling capacity and the Energy Efficiency Ratio of four room 

air conditioners in various environment psychrometric conditions. The obtained 

mathematical correlations were the functions of room air wet-bulb temperature and 

outdoor-side dry-bulb temperature. 

Empirical transient model 

Mulroy and Didion (Mulroy & Didion, 1985) experimentally studied refrigerant 

migration with time by installing pneumatic valves in the system. They showed that 
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during start-up more charge was in the evaporator but during steady-state operation it 

migrated to the condenser. Regression analysis was carried out on the experimental 

data to obtain the equation for instantaneous refrigeration capacity as a function of 

time, accounting for the transient loss due to both the thermal mass of heat exchangers 

and the refrigerant migration. Tree and Weiss (Tree & Weiss, 1986) developed a two 

time constant modeling approach for residential heat pump. The results showed that 

the two time constant approach can be used to model the change in air temperature as 

it flows over the indoor coil of a heat pump both in in the heating and cooling modes. 

Kim and Bullard (Kim & Bullard, 2001) tested the shutdown and startup 

characteristics of a residential R-410A air conditioner with a capillary tube. The test 

results showed that the cooling capacity and the coefficient of performance after 

startup can be expressed as the combination of two exponential functions of time, 

approaching the cooling capacity of steady-state. The cooling capacity and coefficient 

of performance (COP) were found to increase gradually and reach the steady-state 

values in about 15 min. 

2.4.2 Numerical Models of ACs 

Numerical steady-state model 

Richardson et al. (D. Richardson et al., 2002; D. H. Richardson, 2006) developed the 

simulation tool “VapCyc” for the steady-state analysis of vapor compression cycles 

that allows the optimization of refrigerant charge and design for different components 

configurations. A correlation is used to capture the pressure drop in the heat 

exchangers, therefore the momentum balance equation is not included. Zhou and 

Zhang et al. (R. Zhou et al., 2010) developed the steady-state model of VCC and used 
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it to optimize the refrigeration system for high heat flux removal. A parametric study 

was performed to study the effect of various external inputs on the system performance 

using the developed steady-state model. 

Numerical transient model 

Transient modeling is the predictive analysis of the system’ operation when 

disturbances come, and aims to improve the performance efficiency at local control 

levels. Therefore, the components in VCC usually need to be detailed and specific. 

For example, assuming the whole refrigeration system is at one steady-state operating 

point, due to the cooling demand of the air-conditioned room increases, the 

compressor motor will speed up to meet the sudden change of cooling capacity. 

However, the acceleration of compressor speed may increase the superheat in the 

evaporator, lowering the performance efficiency. Then, the expansion devices, like 

capillary tube, TEV and electronic expansion valve (EEV), will expand the opening 

degree to increase the mass flow rate. In this way, the refrigeration COP will be 

compensated to some extent. It normally takes around 100 seconds for the VCC 

system to arrive at another steady-state point.  

Numerous studies in the literature have been dedicated to modeling VCC with various 

levels of details and emphasis on different parts of the system behavior. In this 

subsection, we introduce a few of them, which have inspired the present study in 

particular. Wedekind et al. (Wedekind et al., 1978) were among the first to study 

transient modeling of the two-phase flow dynamics in heat exchangers. To simplify 

the representation of two-phase flow, volumetric mean void fraction over the two-

phase region was assumed. The mean void fraction assumption was applied almost 
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universally by other researchers developing moving boundary models, allowing the 

two-phase region to be modeled in lumped form. Chi and Didion’s (Chi & Didion, 

1982) model was among the few that works with the transient form of the momentum 

equation. A moving boundary lumped parameter formulation was used to model an 

air-to-air heat pump system. The dynamics of all components were considered, 

including the momentum of air flowing across the heat exchangers. Murphy and 

Goldschmidt (Murphy & Goldschmidt, 1985) developed simplified system models to 

study start-up and shutdown transients of an air-to-air system. In the start-up model, 

the target dynamics were those in the capillary tube and the phenomenon of liquid 

flowing back into the condenser during start-up. The compressor was modeled from 

steady-state measurements and actual measurements of evaporator performance were 

used in place of an evaporator model. The condenser dynamics modeled were those 

of the refrigerant pressure response and the tube material. In the shutdown study, both 

the heat exchangers were modeled as tanks containing two-phase refrigerant at 

different pressures to begin with, with air as the secondary fluid cooling or heating the 

coils by natural convection. MacArthur and Grald (MacArthur & Grald, 1989) 

presented one of the first fully distributed models, which adopted an unsteady 

compressible two-phase flow model to predict heat pump performance. This kind of 

model is known to be able to predict with a good accuracy dynamic evolutions of 

characteristics as superheat, spatial distributions of pressure and enthalpy, but the 

simulation time is not adapted to process control and optimization purposes.  
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2.4.3 Conclusive Remarks 

Although DR of residential ACs has been extensively studied, the residential ACs in 

the literature were single-speed ACs with on-off control method. The on-off control 

has a big disadvantage of undesired current peaks during state transitions (Aswani et 

al., 2012). The single-speed ACs are also gradually replaced by the variable-speed 

ACs which have gained an increasing market share in recent years due to its improved 

efficiency at part-load conditions (Qureshi & Tassou, 1996). Hence further studies 

should be conducted to explore the DR potential and control methods of variable-

speed ACs. One of the major challenges is the lack of a simple yet accurate variable-

speed AC model. A major difference between single-speed ACs and variable-speed 

ACs is that the performances of variable-speed ACs are influenced by not only the 

indoor and outdoor environmental conditions, but also the operating compressor 

frequencies. Thus, the previous steady-state models are not applicable to variable-

speed ACs. 

As shown in the literature survey, AC models can be generally classified into transient 

models and steady-state models. The refrigerant dynamics in residential ACs are much 

quicker than the thermal dynamics of the room. The refrigerant re-distributions in 

different AC components normally accomplish in a short period, around 100 seconds 

(He et al., 1997; B. P. Rasmussen, 2005). Therefore, a steady-state AC model is 

sufficient to predict the coupled dynamic behaviors of the room and the AC under 

time-varying internal and external conditions. 
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2.5 Summary 

This chapter presents a review on the DR in smart grids, DR control strategies for both 

commercial and residential buildings, dynamic room thermal model and performance 

model of ACs. From the above review, the following research gaps are identified: 

i. Research on DR potential and DR control methods for residential variable-

speed ACs are seriously insufficient and needs more efforts. 

ii. Conventional local control methods for variable-speed ACs, such as PID 

control and fuzzy logic control, are incompetent to address the complicated 

problems, which are subject to multiple constraints (e.g., occupant’s thermal 

comfort and system dynamics) and involve multiple variables (e.g., weather 

conditions, occupancy and dynamic electricity pricing) and multiple objectives 

(e.g.,  maximization of power reduction and minimization of operation cost). 

Model-based optimal control methods are competent, which can 

simultaneously take account of all influential variables in a real process using 

model-based prediction techniques and optimally control the dynamic system 

using optimization techniques. 

iii. Unlike the day-ahead pricing (DAP) at hourly intervals, the real-time pricing 

(RTP) is provided every 5 minutes based on the current electricity supply and 

demand of grid nodes. Previous studies of DR control of residential appliances 

mainly targeted at DAP. There is a lack of DR control methods for responding 

to RTP. The widely used DR control strategy for ACs, i.e., optimal temperature 

set point reset, is incompetent for DR control of variable-speed ACs in 

response to RTP. Due to the thermal mass, the change in the indoor air 
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temperature is much slower than the response speed of an AC controller. If the 

temperature set points are adjusted every 5 minutes in response to RTP, the 

indoor air temperature could not track the frequently changed set points well. 

In order to respond to RTP every 5 minutes, direct control of the compressor 

frequency, which largely determines the AC power consumption, is more 

effective in regulating power consumption and hence more grid-friendly. New 

DR control methods are needed for achieving automatic DR from residential 

variable-speed ACs in response to RTP at 5-minute intervals. 

iv. Considering the computational efficiency of online control, a simplified 

dynamic room thermal model is needed which can predict the thermal 

dynamics of the room under the future weather disturbances and occupancy. 

v. For online applications, a simplified energy performance model of variable-

speed ACs is needed to characterize the performances under various operating 

frequencies and environmental conditions. Due to its structural simplicity, it 

can be used by electrical researchers and engineers for either model-based DR 

control in smart HEMSs or DR potential estimation of a single or a large 

population of variable-speed ACs. 
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CHAPTER 3 FRAMEWORKS OF THE PROPOSED 

MODEL-BASED DEMAND RESPONSE CONTROL 

METHODS FOR VARIABLE-SPEED AIR 

CONDITIONERS  

In order to automatically respond to dynamic electricity pricings, including hourly 

day-ahead pricing and 5-minute real-time pricing, two types of model-based DR 

control methods are developed in the present study: 

• Indirect model-based optimal control method in response to hourly day-ahead 

pricing via temperature set-point reset; 

• Direct model predictive control method in response to 5-minute real-time 

pricing via operating frequency adjustment. 

This chapter presents the frameworks of the proposed two types of DR control 

methods for variable-speed ACs. Section 3.1 introduces the outlines of the online 

control parts and compares the differences between them in terms of input, output and 

optimization scheme. Section 3.2 introduces the procedure of developing the 

simplified models using data-driven techniques. The simplified system models are 

used in both model-based control methods.  

3.1 Overview of the Two Control Methods in Response to Different 

Dynamic Pricings 
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Figure 3.1 Block diagram of data-driven system modeling (top), indirect model-based optimal control method (bottom left) and direct MPC 

method (bottom right) for variable-speed ACs.
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3.1.1 Indirect Model-based Optimal Control in Response to Hourly Day-ahead 

Pricing 

Model-based optimal control, also known as supervisory control, has been used in the 

control of HVAC systems, which normally aims at minimizing the energy 

consumption or operating cost while satisfying thermal comfort when subject to the 

changing indoor and outdoor conditions as well as the characteristics of building and 

HVAC systems (S. Wang & Ma, 2008). The model-based optimal control in the 

literature usually adopted a two-level hierarchy structure in which the command 

signals for actuators such as rotational speed of compressor and opening degree of 

valve were sent by local controllers, e.g., the on-off controller and PID controller. The 

high-level controller, i.e., the supervisory controller, was used to set the optimal set 

points for the low-level local controllers.  

This local-controller-based supervisory control is also adopted for the control of 

variable-speed air conditioners in response to hourly day-ahead pricing. The block 

diagram of indirect model-based optimal control method for variable-speed ACs is 

shown in the bottom left corner of Figure 3.1. 

3.1.2 Direct Model Predictive Control in Response to 5-minute Real-time Pricing 

In this study we also apply model predictive control method for directly regulating the 

operating frequencies of the compressors in variable-speed ACs to minimize the 

operating cost in the presence of real-time pricing. The major reasons for adopting the 

direct model predictive control method are given as follows: 
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1) Due to the thermal mass, the change in the indoor air temperature is much 

slower than the response speed of a controller. That means if we adjust the 

temperature set-points every 5 minutes to respond to real-time pricing, the 

indoor air temperature could not track the frequently changed set-points well.  

2) Direct control of the compressor frequency is closely related to the power 

consumption, which is more effective in shifting power consumption than 

adjusting the temperature set-points of a local controller every 5 minutes.  

The bottom right corner of Figure 3.1 shows the block diagram of direct model 

predictive control method for variable-speed ACs. The state-space room thermal 

model and performance maps of variable-speed AC are adopted in the MPC controller 

for online prediction of the system evolutions under the influence of predicted future 

exogenous variables such as weather conditions, occupancy and real-time pricing.  

3.1.3 Comparison of the Two Control Methods 

The differences in control logic between indirect model-based optimal control and 

direct model predictive control are shown in Figure 3.2. The detailed differences, 

including of input, output and optimization scheme, are listed in Table 3.1.  

• Input. For both demand response control methods for variable-speed ACs, 

predictions of exogenous input variables, including weather conditions, 

occupancy, and dynamic electricity pricings are needed. The differences lie in 

the intervals of the price signal. The day-ahead pricing is at hourly intervals 

and the real-time pricing is at 5-minute intervals. Besides, the day-ahead 

pricing for the following day is fixed once it is determined at the midnight. 
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However, the real-time pricing is updated every 5 minutes based on the current 

electricity supply and demand of grid nodes. 

• Output. The output of the model-based optimal control method is the 

scheduling of the temperature set-points for the local controller, such as PID 

controller or fuzzy logic controller. The local controller is responsible for 

tracking the dynamic set-points. However, the MPC controller is used to 

directly output the operating frequency of the compressor. Based on the 

differences in output signals, ‘direct’ and ‘indirect’ are used in the thesis to 

distinguish the two control strategies in a clearer way. 

 

Figure 3.2 Comparison between indirect model-based optimal control and direct 

model predictive control for HVAC systems. 
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Table 3.1 Comparison between indirect model-based optimal control and direct 

model predictive control in terms of input, output, optimization times and 

allowed runtime. 

DR control method Input             

(price signal) 

Output Number of 

optimization 

runs 

Allowed 

optimization 

runtime  

Indirect model-based 

optimal control 

Day-ahead pricing 

(hourly) 

Optimal set-

point for local 

controller 

One-shot 

optimization 

No strict 

requirement 

Direct model 

predictive control 

Real-time pricing         

(5-minute) 

Optimal 

operating 

frequency for 

compressor 

Receding 

horizon 

optimization 

Less than 

prediction interval  

(5 minute) 

• Number of optimization runs. Because the day-ahead pricing for the 

following day is fixed and will not be changed once it is determined at the 

midnight, the optimization in model-based optimal control is implemented 

only once, i.e., one-shot. However, the prediction of the real-time pricing is 

updated and announced every 5 minutes based on the supply and demand 

conditions. The optimization problem needs to be solved every 5 minutes 

based on the updated real-time prices. The essence of model predictive control 

is receding horizon control. 

• Allowed optimization runtime. For the day-ahead pricing, the DR 

participants normally have access to the pricing signals at the midnight. The 

optimization solver has plenty of time to make the optimal decisions for the 

next day. However, in order to respond the 5-minute real-time pricing, the 
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optimal decision-making must be finished in 5 minutes, which proposes a high 

requirement for the formulation and solving of the optimization problem. 

• Practical implementation. In practice, the two control strategies work 

independently, as the control output signals are different. For the indirect 

model-based optimal controller, the output signal is the set-point schedule, 

which is delivered to the programmable thermostat in AC. The whole 

optimization process could be implemented in external home energy 

management system. For the direct model predictive controller, the output 

signal is the operating frequency of variable-speed compressor. A dedicated 

controller needs to be embedded in AC to replace the conventional controller 

such as PID controller. 

3.2 Development of Data-driven System Models 

For both indirect model-based optimal control and direct model predictive control, 

simplified model of to-be-controlled system is needed for on-line applications. The 

target system in this study is an integrated system consisting of an air-conditioned 

room and a variable-speed AC. The AC delivers the cooling into the room to remove 

the accumulated heat and to maintain the temperature at the set-points or between the 

temperature ranges. Considering computational efficiency, both simplified dynamic 

room thermal model and energy performance model of variable-speed ACs are needed 

for online predictions. 

For the dynamic room thermal model, it needs to be neither too simple nor too complex. 

It should be able to capture adequate thermal behaviors of the system to keep its 
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robustness under different operating conditions. Considering the computational 

efficiency, it should not be too complicated. To meet the aforementioned requirements, 

a semi-empirical (grey-box) resistance-capacitance (RC) dynamic room thermal 

model is first developed in the form of ordinary differential equations (ODE). To 

formulate convex optimization problems and to be conveniently solved using state-of-

the-art optimization techniques, the model in the ODE form is then transformed and 

discretized to a state-space model. Before being used for online prediction, the 

unknown parameters in the grey-box room thermal model need to be identified using 

data-driven techniques. 

AC models can be generally classified into transient models and steady-state models. 

The refrigerant dynamics in residential ACs are much quicker than the thermal 

dynamics of the room. The refrigerant re-distributions in different AC components 

normally accomplish in a short period, around 100 seconds (He et al., 1997; B. P. 

Rasmussen, 2005). Therefore, a steady-state AC model is competent to predict the 

coupled dynamic behaviors of the room and the AC under time-varying internal and 

external conditions. In view of this, we first develop a steady state physical model of 

variable-speed ACs. Performance maps of a variable-speed AC under typical 

operating conditions are then generated using the steady-state physical model. 

3.3 Summary 

In this chapter, we introduce the frameworks of two types of DR control methods for 

variable-speed ACs: (1) Indirect model-based optimal control in response to hourly 

day-ahead pricing; (2) Direct model predictive control in response to 5-minute real-
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time pricing. In the former one, the outputs of the optimizer are the optimal scheduling 

of temperature set-points. The local controller, i.e., PID controller, is used to track the 

temperature set-points. In the latter one, the outputs of the MPC controller are the 

operating frequency of the compressor. The reason why the direct MPC controller is 

needed is explained. The detailed differences between the two types of DR control 

methods are compared.  

Both of the two DR control methods need to use the system model to predict the future 

evolutions of the system. The target system in the present study is an integrated system 

consisting of an air-conditioned room and a variable-speed AC. Thus, simplified 

models for both room thermal dynamics and energy performances of AC are needed. 

The procedure of developing the simplified models is introduced. 
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CHAPTER 4 DEVELOPMENT OF A SIMPLIFIED 

DYNAMIC ROOM THERMAL MODEL FOR ONLINE 

APPLICATIONS 

For both indirect model-based optimal control method and direct model predictive 

control method, a simplified model of room thermal dynamics is needed for on-line 

predicting the thermal evolutions of the target room. The room thermal model needs 

to be neither too simple nor too complex. It should be able to capture adequate thermal 

behaviors of the system to keep its robustness under different operating conditions. 

Considering the computational efficiency, it should not be too complicated. In this 

chapter, we aim at developing and validating a simplified room thermal model for 

online applications. Figure 4.1 shows the flow chart of the development of the 

simplified dynamic room thermal model. 

 

Figure 4.1 Flow chart of the development of the simplified dynamic room thermal 

model. 
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The whole chapter is organized as follows. Section 4.1 introduces the requirements 

for the dynamic room thermal model, which needs to be used for online predictions. 

Section 4.2 presents the structure of a semi-physical (grey-box) dynamic room thermal 

model in the form of ODE. In section 4.3, we transform the model from ODE form to 

stochastic discrete-time state space form so as to formulate convex optimization 

problems which can be conveniently solved using state-of-the-art optimization 

techniques. In Section 4.4, we propose the pre-estimation and scaling approaches to 

pre-process the model parameters, which help to improve the accuracy and 

computational efficiency of the parameter identification process. In Section 4.5, the 

proposed dynamic room thermal model is validated using both field test and 

simulation data. 

4.1 Requirements for Online Applications 

Building models used in popular building simulation tools such as TRNSYS (S. Klein 

et al., 2017), EnergyPlus (Crawley et al., 2000) and eQUEST(Hirsch, 2010) are not 

suitable for the development of model-based control methods since the complex 

building models are usually time-consuming. Besides, a large amount of building 

parameters are required as inputs in the simulation software, which is difficult even 

for the newly designed buildings. 

A widely-used room thermal model for DR analysis is the equivalent thermal 

parameter (ETP) model, which simplifies the room thermal dynamics as a second-

order electric circuit analog (Katipamula & Lu, 2006; Lu, 2012; Thomas et al., 2012; 

W. Zhang et al., 2013). However, the model is too simplified to consider the impacts 
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of specific building features such as wall material, window arrangement, and internal 

thermal mass. Moreover, the values of the ETP model parameters were determined 

according to the room geometry and thermal parameters in a database developed over 

20 years ago (Pratt et al., 1991). The room thermal parameters are only applicable to 

the residential buildings in the US. The architecture design and envelop thermal 

properties are very different from the high-rise residential buildings in modern cities 

like Hong Kong and Shanghai. The uncertainties of the parameters have significant 

impacts on the accuracy of the modelling results.  

In general, a simplified dynamic room thermal model is needed for online applications, 

which needs to be neither too simple nor too complex. It needs to capture adequate 

thermal behaviors of the system to keep its robustness under different operating 

conditions. Considering the computational efficiency, it should not be too complicated. 

To meet the aforementioned requirements, a control-oriented semi-physical (grey-box) 

dynamic room thermal model is developed in this study.  

4.2 A Semi-physical Dynamic Room Thermal Model 

In general, the room thermal dynamics can be expressed as a set of first-order ordinary 

differential equations containing several uncertain parameters to be identified. Figure 

4.2 illustrates the components included in the model and the heat fluxes exchanged 

between them. The model mainly contains four parts, i.e., outdoor environment, 

building envelope, indoor air, and internal thermal mass.  
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Figure 4.2 Schematic of the grey-box thermal model of residential buildings (5R4C). 

The exterior building envelop consists of opaque walls and transparent windows. 

Considering the climate in Hong Kong, most residential buildings are constructed with 

light-weight wall and without thermal insulation. Therefore, it is reasonable to 

consider the external wall as one thermal resistance and two equal thermal 

capacitances (Seem, 1987). Two types of heat transfer on the external wall surface are 

considered, i.e., convective heat transfer with the outdoor air and radiative heat 

transfer with the sky.  Heat flows through the windows consist of 1) conductive and 

convective heat transfer caused by the temperature difference between outdoor and 

indoor air, 2) solar radiation incident on the windows, either directly from the sun or 

reflected from the ground or adjacent buildings. The solar radiation through the 

window is first absorbed by the internal thermal mass constituted by floor, ceiling, 

partitions and furniture. Besides the solar radiation through the windows, the bulk of 

internal mass absorbs the heat from indoor heat sources as well. It then gradually 

transfers the heat into the space by heat convection. The air in the interior zone, which 
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exchanges heats with the internal thermal mass, internal wall surface and outdoor air 

through windows, is represented by a lumped node. Besides, the energy from the solar 

radiation, HVAC system, and internal heat sources (e.g., occupants, lights, and 

equipment) is assumed to be immediately absorbed by the indoor air. 

The energy balances for the external and internal wall surfaces, the indoor air, and the 

internal thermal mass are given by Equations (4.1) – (4.4). 

𝐶𝑤
𝑑𝑇𝑤,𝑒𝑥𝑡

𝑑𝑡
= 

𝑇𝑜−𝑇𝑤,𝑒𝑥𝑡

𝑅𝑤,𝑜
+
𝑇𝑤,𝑖𝑛𝑡−𝑇𝑤,𝑒𝑥𝑡

𝑅𝑤
+ 𝑓𝑠𝑜𝑙𝑎𝑟,𝑤𝐴𝑤𝐼𝑠𝑜𝑙𝑎𝑟                    (4.1) 

𝐶𝑤
𝑑𝑇𝑤,𝑖𝑛𝑡

𝑑𝑡
= 

𝑇𝑤,𝑒𝑥𝑡−𝑇𝑤,𝑖𝑛𝑡

𝑅𝑤
+
𝑇𝑖𝑛−𝑇𝑤,𝑖𝑛𝑡

𝑅𝑤,𝑖𝑛
                                                 (4.2) 

𝐶𝑖𝑛
𝑑𝑇𝑖𝑛

𝑑𝑡
= 

𝑇𝑚−𝑇𝑖𝑛

𝑅𝑖𝑛,𝑚
+
𝑇𝑤,𝑖𝑛𝑡−𝑇𝑖𝑛

𝑅𝑤,𝑖𝑛
+
𝑇𝑜−𝑇𝑖𝑛

𝑅𝑤𝑖𝑛
+ 𝑓𝑖𝑛𝑡𝑒𝑟,𝑖𝑛𝑄𝑖𝑛𝑡𝑒𝑟 + 𝑄𝐻𝑉𝐴𝐶    (4.3) 

𝐶𝑚
𝑑𝑇𝑚

𝑑𝑡
=
𝑇𝑖𝑛−𝑇𝑚

𝑅𝑖𝑛,𝑚
+ 𝑓𝑠𝑜𝑙𝑎𝑟,𝑚𝐴𝑤𝑖𝑛𝐼𝑠𝑜𝑙𝑎𝑟 + 𝑓𝑖𝑛𝑡𝑒𝑟,𝑚𝑄𝑖𝑛𝑡𝑒𝑟                    (4.4) 

where R and C represent the overall heat resistance and capacitance; T denotes 

temperature; subscripts in, o, w, int, ext, win and m indicate indoor air, outdoor air, 

exterior wall, internal wall surface, external wall surface, window and internal mass, 

respectively; Qinter denotes the internal heat gain; Isolar denotes the global solar 

radiation; A denotes the geometric area; f denotes the conversion coefficients for the 

heat gains, which are also identified together with R and C. 

In the grey-box model, R, C and f are free parameters which need to be identified based 

on historical data. There are two points that should be noticed. 1) The free parameters 

for a time-invariant model are not functions of time, although the values of the 
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parameters actually change with time or under different weather conditions. For 

instance, when the outdoor wind speed increases, the convective heat transfer 

coefficient between the external wall surface and the outdoor air increases as well. The 

changes of these free parameters are so small that they are assumed to be fixed instead 

of being function of time. 2) R and C characterize the building inherent thermal 

features. It will make no difference to the identification results whether or not the heat 

gains from internal sources or HVAC are considered. 

4.3 Stochastic Discrete-time State-Space Model Considering the 

Uncertainties 

The dynamic room thermal model as described by the differential equations (4.1) – 

(4.4) is a multiple-input multiple-output (MIMO) system. State space models are 

commonly used for modeling MIMO systems because of their advantage in explicitly 

expressing the relationships between the outputs and inputs. In addition, they can be 

used to formulate convex optimization problems which in general can be conveniently 

solved by using state-of-the-art optimization techniques. In order to make the model 

more realistic, white Gaussian noise is added into the system model. Equations (4.1) 

– (4.4) can be converted into a continuous-time state-space model with unknown 

stochastic noise, as shown in Equations (4.5). 

𝑑𝑇 = (𝐴𝑇 + 𝐵𝑢 + 𝐸𝑑)𝑑𝑡 + 𝑑𝑤(𝑡)                             (4.5) 

Where the system state 𝑇 = [𝑇𝑤,𝑒𝑥𝑡 𝑇𝑤,𝑖𝑛𝑡 𝑇𝑖𝑛 𝑇𝑚]𝑇;  

the input vector 𝑢 =  𝑄𝐻𝑉𝐴𝐶; 
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the disturbance vector 𝑑 = [𝑇𝑜 𝐼𝑠𝑜𝑙𝑎𝑟 𝑄𝑖𝑛𝑡𝑒𝑟]
𝑇;  

the system matrix  

𝐴 =

(

 
 
 
 

−1

𝐶𝑤𝑅𝑤,𝑜
+

−1

𝐶𝑤𝑅𝑤

1

𝐶𝑤𝑅𝑤
0 0

1

𝐶𝑤𝑅𝑤

−1

𝐶𝑤𝑅𝑤
+

−1

𝐶𝑤𝑅𝑤,𝑖𝑛

1

𝐶𝑤𝑅𝑤,𝑖𝑛
0

0
1

𝐶𝑖𝑛𝑅𝑤,𝑖𝑛

−1

𝐶𝑖𝑛𝑅𝑤,𝑖𝑛
+

−1

𝐶𝑖𝑛𝑅𝑖𝑛,𝑚
+

−1

𝐶𝑖𝑛𝑅𝑤𝑖𝑛

1

𝐶𝑖𝑛𝑅𝑖𝑛,𝑚

0 0
1

𝐶𝑚𝑅𝑖𝑛,𝑚

−1

𝐶𝑚𝑅𝑖𝑛,𝑚)

 
 
 
 

4×4

;  

the input matrix 𝐵 = (0 0 1 𝐶𝑖𝑛⁄ 0)𝑇;  

the disturbance matrix 𝐸 =

(

 
 
 

1

𝐶𝑤𝑅𝑤,𝑜

𝑓𝑠𝑜𝑙𝑎𝑟,𝑤×𝐴𝑤

𝐶𝑤
0

0 0 0
1

𝐶𝑖𝑛𝑅𝑤𝑖𝑛
0

𝑓𝑖𝑛𝑡𝑒𝑟,𝑖𝑛

𝐶𝑖𝑛

0
𝑓𝑠𝑜𝑙𝑎𝑟,𝑚×𝐴𝑤𝑖𝑛

𝐶𝑚

𝑓𝑖𝑛𝑡𝑒𝑟,𝑚

𝐶𝑚 )

 
 
 

4×3

;  

w(t) is a Wiener process, which is a stochastic process with independent normal 

distributed increments. 

In practical applications, the stochastic continuous-time state-space model needs to be 

discretized, and the stochastic discrete-time state-space model is given by Equations 

(4.6) – (4.7). 

𝑇𝑘+1 = 𝐴𝑑𝑇𝑘 + 𝐵𝑑𝑢𝑘 + 𝐸𝑑𝑑𝑘 + 𝑤𝑘                         (4.6) 

𝑦𝑘 = 𝐶𝑑𝑇𝑘 + 𝑣𝑘                                                        (4.7) 

where Ad, Bd and Ed are the corresponding matrices of the discrete-time state-space 

model which depend on the sampling time. The observed output vector 𝑦𝑘 = 𝑇𝑖𝑛; the 

output matrix 𝐶𝑑 = (0 0 1 0); The random variables wk and vk represent the 
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process and measurement noises, respectively, which are assumed to be independent, 

white and with normal distribution probabilities, i.e., 𝑤𝑘~𝑁(0, 𝑄) and 𝑣𝑘~𝑁(0, 𝑅); 

Q and R are covariance matrices of process noise and measurement noise, respectively. 

Equations (4.6) – (4.7) are used in the MPC controller to predict the system evolutions. 

4.4 Parameter Identification Method 

In order to improve the accuracy and computation efficiency of the optimizations, the 

parameter pre-processing and different optimization techniques are proposed in this 

study. The optimal parameters can be accurately and efficiently obtained by the 

systematic identification procedure which is shown in Figure 4.3. 
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Figure 4.3 Flowchart of parameter identification for the grey-box model. 

4.4.1 Parameter Pre-processing 

The model robustness relies on not only the feasible physical structure but also the 

reasonable values of R and C. To make the identified R and C values physically 

reasonable, they are estimated based on the surveyed values of the thermal parameters 

of residential buildings in Hong Kong and the specific geometric size of the room. 
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With the pre-estimated values, the search ranges for the parameters can be narrowed 

down and thus the computation time for optimization can also be saved. 

In Hong Kong, U-value of the exterior wall typically ranges from 2.2 to 2.9 W/(m2·K), 

and average U-value of the single glazed window is 5.6 W/(m2·K). Considering the 

average wind speed of 7.2 m/s during summer in Hong Kong, an average heat transfer 

resistance of the external wall surface is recommended as 0.036 (m2·K)/W (Joseph C 

Lam et al., 2000; Joseph C. Lam et al., 2005). Typical range for the heat transfer 

resistance of the interior surface is from 0.12 to 0.2 (m2·K)/W (ASHRAE, 2009). 

Thermal resistances, i.e., Rw, Rwin, Rw,o, Rw,in, and Rin,m, are all overall thermal 

resistances, and can be calculated by Equation (4.8). Equivalent thermal capacitances 

including Cin, Cw, and Cm play functions of dampening the effects of heat transfer. 

Without them, instantaneous temperature changes in corresponding objects would 

occur. The building internal mass (e.g., partitions, furniture, carpet, etc.) can be 

summed to a lumped thermal mass Cm, ranging from 100 to 450 kJ/(K·m2) (BRE, 2012; 

Domínguez-Muñoz et al., 2010). Thermal capacitance of half exterior wall can be 

calculated by Equation (4.9). With the estimated values of R and C, the search range 

of parameter then can be determined by adopting a search factor ζ ranging from 0 to 

1. The upper and lower bounds of the search range can be calculated by Equations 

(4.10) - (4.11). 

R =
1

A×U
                                                           (4.8) 

𝐶𝑤 =
𝜎𝑤𝐴𝑤𝜌𝑤𝑐𝑤

2
                                               (4.9) 

Rub = (1 + ζ) × Rest                                          (4.10) 
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Rlb = (1 - ζ) × Rest                                                                 (4.11) 

After pre-estimating the parameter values, we can easily find the orders of magnitudes 

(OM) of R and C vary a lot, namely the parametric model is poorly scaled. Poorly 

scaled problems usually arise in the simulation of physical and chemical systems 

where different processes take place at different rates (Nocedal & Wright, 2006). In 

the simulation of building thermal dynamics, the cost function is not the same sensitive 

to the changes of R and C. To solve this problem, a scaling method, i.e., diagonal 

scaling, is introduced to make the solution more balanced. As shown in Equation 

(4.12), the diagonal matrix can transform the poorly scaled variables to new variables 

within an order of magnitude of 1. The diagonal elements are orders of magnitudes of 

the estimated R and C. 

(

 
 
 
 
 
 

𝐶𝑤
𝐶𝑖𝑛
𝐶𝑚
𝑅𝑤𝑖𝑛
𝑅𝑤
𝑅𝑤,𝑜
𝑅𝑤,𝑖𝑛
𝑅𝑖𝑛,𝑚)

 
 
 
 
 
 

= (
𝑂𝑀1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑂𝑀8

)

8×8

(

 
 
 
 
 

𝑐𝑤
𝑐𝑖𝑛
𝑐𝑚
𝑟𝑤𝑖𝑛
𝑟𝑤
𝑟𝑤,𝑜
𝑟𝑤,𝑖𝑛
𝑟𝑖𝑛,𝑚)

 
 
 
 
 

                    (4.12) 

4.4.2 Parameter Identification Using Optimization Techniques 

In the present study, we formulate the system identification to a numerical 

optimization problem. Searching optimal values of the undetermined parameters in a 

grey-box model is a nonlinear optimization process. Given a set of R and C, the grey-

box model can predict the indoor air temperature profile. An objective function can be 

used to evaluate the fitness between the predicted data and the measured data collected 
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from smart in-home sensors during the optimization process. The optimization 

objective is to minimize the integrated root-mean-square error, as defined in Equation 

(4.13). 

𝐽(𝐶𝑤, 𝐶𝑖𝑛, 𝐶𝑚, 𝑅𝑤𝑖𝑛, 𝑅𝑤, 𝑅𝑤,𝑜 , 𝑅𝑤,𝑖𝑛, 𝑅𝑖𝑛,𝑚, 𝑓𝑠𝑜𝑙𝑎𝑟,𝑤,𝑓𝑠𝑜𝑙𝑎𝑟,𝑚, 𝑓𝑖𝑛𝑡𝑒𝑟,𝑖𝑛, 𝑓𝑖𝑛𝑡𝑒𝑟,𝑚) =

                                   𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒√
1

𝑁
∑ (𝑇𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑇𝑠𝑎𝑚𝑝𝑙𝑒,𝑖)2
𝑁
𝑖=1                            (4.13) 

where Tmodel,in is the predicted indoor air temperature and Tsample,in is the actual 

measured indoor air temperature.  

Optimization techniques are needed to find the optimal values of R and C which make 

the objective function reach the minimal value. Three types of optimization solvers 

including a mathematical solver i.e., trust region algorithm (TRA) , and two 

evolutionary solvers, i.e., genetic algorithm (GA) and particle swarm optimization 

(PSO) , are employed to identify the RC values in this study. Both GA (Molina et al., 

2013; Tuhus-Dubrow & Krarti, 2010; S. Wang & Xu, 2006; Xuemei et al., 2010) and 

PSO (Kusiak et al., 2011) have been used to solve the optimization problems in the 

domain of HVAC. In this study, all optimizations are carried out in MATLAB, and 

performed on a desktop computer with Intel Core i7-4790 (3.60 GHz), 16 GB of 

memory, under Windows 10 64-bit operating system. Runtimes and optimization 

results of these three optimization strategies will be compared in the real cases. 

It is worth mentioning that the identification method used in the present study is the 

classical least-squares based identification method with the assistance of GA or PSO. 

In the industrial control engineering, the commonly used method for MIMO model 

identification is the state-space identification method, such as subspace identification 
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method, due to simple parametrization and non-iterative numerical solution (Qin, 

2006; Van Overschee & De Moor, 1994). However, since the subspace identification 

methods completely rely on historical data and statistical approaches, the identified 

parameters may not be physically reasonable (Lin et al., 2012; S. Prívara et al., 2010). 

In the future, we will attempt to use state-space based methods to identify the grey-

box room thermal model. 

4.5 Model Validation 

4.5.1 Identification and Validation Using Field Test Data 

One residential bedroom in Hong Kong was chosen to test the grey-box room thermal 

model. The geometric dimension of the room is 4.8m long, 3.6m wide, and 3m high. 

It has only one south-facing exterior wall (3.6m×3m) in which single glazed windows 

are embedded. The Window-Wall-Ratio (WWR) is 0.2 and the type of glass is clear. 

The absorption coefficient of the external wall surface is 0.8, and the solar heat gain 

coefficient (SHGC) of the glass is 0.7.  

A smart wireless sensor block was installed in the room to record the indoor air 

temperature with the interval of 10 minutes. The wireless sensor block includes 

temperature, humidity, ambient light intensity, presence detection, Presence Detection 

(Bluetooth LE 4.0 – iBeacon), as listed in Table 4.1. The working diagram of the 

designed wireless sensor block is shown in Figure 4.4. The data are uploaded in 

defined intervals, i.e. every 10 minutes in this study, to the Internet Gateway via the 

wireless network with the protocol Zigbee HA 1.2. The recorded data are saved in 

XML format and then uploaded to the Cloud Server for storage and further analysis. 
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For the outdoor weather data, both outdoor air temperature and horizontal global solar 

radiation are obtained from the nearby Hong Kong Observatory with the interval of 1 

minute.  

Table 4.1 Specifications of the wireless sensor block 

Sensor Type Range of measurement Resolution 

Temperature + Humidity -40-125℃ / 0-100%RH 0.01℃ / 0.04%RH 

Ambient Light Intensity Visible light & Infrared 0.06LUX 

Presence Detection (PIR) 6 meter at 120°view angle - 

Presence Detection  

(Bluetooth LE 4.0 - iBeacon) 

10 meter indoor - 

 

Figure 4.4 Working diagram of the wireless sensor block 

Parameter pre-estimations are first conducted using the specific geometric parameters 

and general building thermal parameters in Hong Kong, as listed in Table 4.2. The 
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search range of each parameter is set as 1±50% of the corresponding estimated value. 

To improve the search efficiency, the estimated R and C are transformed to r and c, 

ranging from 0 to 1, by a diagonal matrix, as shown in Equation (4.14).  

Table 4.2 Pre-estimations of R and C based on prior knowledge. 

 Cw (J/K) Cin (J/K) Cm (J/K) 

Rwin 

(K/W) 

Rw  

(K/W) 

Rw,o 

(K/W) 

Rw,in 

(K/W) 

Rin,m 

(K/W) 

Estimated 

values 

1,850,688 187,868 25,488,000 0.0643 0.0463 0.0033 0.0106 0.0014 

Orders of 

magnitudes 

1E+07 1E+06 1E+08 1E-01 1E-01 1E-02 1E-01 1E-02 

 

𝑂𝑀 = 

(

 
 
 
 
 

107        
 106       
  108      
   10−1     
    10−1    
     10−2   
       10−1  
        10−2)

 
 
 
 
 

8×8

     (4.14)  

Three optimization solvers, i.e., TRA, GA and PSO, are used to identify the 

parameters. A six-day (26 - 31 July 2015) indoor air temperature profile is used for 

the identification. Noted that the time step of the prediction is 1minute and the 

predicted profile is reinitialized to the sampled value in the midnight of each day to 

reduce the accumulative error. The identification results (R and C) of the three 

optimization methods are listed in Table 4.3. The values of f in three cases are almost 
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the same: fsolar,w = 0.7999; fsolar,m = 0.1855; finter,in = 0.7191; and finter,m = 0.1034.  Then, 

another six-day (1 - 6 August 2015) indoor air temperature profile is forwardly 

predicted using the developed grey-box model and the identified R and C.  

Table 4.3 Identification results using different optimization solvers. 

Solver 

Identification results 

Cw (J/K) Cin (J/K) Cm (J/K) 

Rwin 

(K/W) 

Rw 

(K/W) 

Rw,o 

(K/W) 

Rw,in 

(K/W) 

Rin,m 

(K/W) 

TRA 1,306,623 62,900  31,673,741  0.0579 0.0324 0.0026 0.0084 0.0020 

GA 1,475,300  69,972  35,327,243  0.0608 0.0330 0.0031 0.0094 0.0018 

PSO 1,301,978  62,623  33,158,823  0.0579 0.0327 0.0027 0.0084 0.0020 

 

In order to quantify the deviations of the predicted data from the measured data during 

both training session and validation session, three indices are used to evaluate the 

deviations, as defined in Equations (4.15) - (4.17). Table 4.4 lists the indoor air 

temperature deviations of the modeled data from the measured data using different 

optimization solvers. 

Mean Absolute Error 

𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑇𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑇𝑠𝑎𝑚𝑝𝑙𝑒,𝑖|
𝑛
𝑖=1                            (4.15) 

Mean Absolute Percentage Error 



66 

 

𝑀𝐴𝑃𝐸 = 
1

𝑛
∑ |

𝑇𝑚𝑜𝑑𝑒𝑙,𝑖−𝑇𝑠𝑎𝑚𝑝𝑙𝑒,𝑖

𝑇𝑠𝑎𝑚𝑝𝑙𝑒,𝑖
|𝑛

𝑖=1                               (4.16) 

Root Mean Square Error 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑇𝑚𝑜𝑑𝑒𝑙,𝑖 − 𝑇𝑠𝑎𝑚𝑝𝑙𝑒,𝑖)2
𝑛
𝑖=1                      (4.17) 

Comparing the optimization results in Table 4.4, it can be seen that the optimal 

parameter values by different optimization methods are almost the same. The runtimes 

in the cases of TRA, GA and PSO are 0.37, 4.70 and 6.09 mins, respectively. The 

deviations between the modeled data and measured data are smaller when TRA and 

PSO are used. It is worth mentioning that when the room thermal model is represented 

in the form of ODE, the runtimes in the cases of TRA, GA and PSO are 7.8, 87.7 and 

24.3 mins, respectively (Hu et al., 2017). When the state space room thermal model is 

used instead of the ODE model, the runtimes are significantly reduced. 

Table 4.4 Deviations of the modeled data from the measured data using different 

optimization solvers. 

Optimization 

solver 

Runtime 

(minute) 

Training session Validation session 

MAE MAPE RMSE MAE MAPE RMSE 

TRA 0.37 0.1851 0.60% 0.2344 0.1005 0.32% 0.1215 

GA 4.70 0.1929 0.62% 0.2429 0.1059 0.33% 0.1316 

PSO 6.09 0.1833 0.59% 0.2307 0.0959 0.30% 0.1175 
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The sampled and modeled profiles of indoor air temperature using the PSO 

optimization during the training and validation sessions are shown in Figure 4.5 and 

Figure 4.6, respectively.  

 

Figure 4.5 Weather conditions, predicted and sampled indoor air temperature 

profiles during the training session (26 - 31 July 2015). 

 

Figure 4.6 Weather conditions, predicted and sampled indoor air temperature 

profiles during the validation session (1 - 6 August 2015). 
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To better understand the function played by each component in the grey-box model 

physically, the room thermal dynamics on a typical summer day (1 August 2015) are 

simulated and shown in Figure 4.7. The temperature of the external wall surface (Tw-

ex) in the daytime is higher than the outdoor air temperature (Tout) due to the effects of 

solar radiation, while at night without the solar radiation it is closer to the outdoor air 

temperature. The temperatures of the internal thermal mass (Tmass) and internal wall 

surface (Tw-in) hardly change simultaneously with the outdoor weather conditions due 

to the thermal capacitances. It is why the cooling output and hence the power 

consumption of air conditioners can be reduced during the DR period without 

significantly affecting the thermal comfort of residents. Figure 5.7 shows that the 

model outputs (Tin-model) and the sampled indoor air temperature (Tin-sample) agree very 

well, which means the model can predict the indoor air temperature in a high degree 

of accuracy. 

 

Figure 4.7 Comparison of modeled and sampled indoor air temperatures on a typical 

summer day.  
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4.5.2 Identification and Validation Using Simulation Data 

Another room in a residential flat is modelled in TRNSYS (S. Klein et al., 2017). The 

prototype of the room is in Hong Kong. The residential room (L×W×H: 

4.8m×3.6m×3m) has one south-facing exterior wall (3.6m×3m) and one east-facing 

exterior wall (4.8m×3m). Both exterior walls have single glazed windows and the 

window-wall-ratio of each wall is 0.2. The overall heat transfer coefficients of the 

exterior wall and the single glazed window are 2.57 and 5.69 W/(m2·K), respectively. 

Instead of using the default TMY weather data, real historical weather data at 1-minute 

intervals from Hong Kong observatory are used in simulation tests. Four weeks (1 

June to 29 June 2015) of indoor air temperature data at 1-minute intervals generated 

from TRNSYS are used to identify the room thermal model. The identification results 

are: Cw = 8,381,606 J/K, Cin = 871,887 J/K, Cm = 13,904,351 J/K, Rwin = 0.0051 K/W, 

Rw = 0.0060 K/W, Rw,o = 0.0010 K/W, Rw,in = 0.0041 K/W, Rin,m = 0.0023 K/W, fsolar,w 

= 0.4834, fsolar,m = 0.0012, finter,in = 3.0367, finter,m = 0.9976. Figure 4.8 shows the 

outdoor air temperatures and solar radiations as well as the indoor air temperature 

generated from TRNSYS (Tin,TRN) and the RC model (Tin,RC). The results show that the 

RC room thermal model is able to predict the indoor air temperature in a relatively 

high degree of accuracy. 
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Figure 4.8 Weather conditions and indoor air temperature generated from TRNSYS 

and the RC model. 

With the identified RC values and the sampling interval of 5-minute, the matrices in 

the discrete-time state-space model, i.e., Equations (4.6) – (4.7), can be determined as 

follows: 

𝐴𝑑 = 10
−2(

95.809 0.5757 0.0023 0.0001
0.5757 98.573 0.7543 0.0600
0.0223 7.2508 73.899 13.012
0.0001 0.0362 0.8159 99.119

)

4×4

;    

𝐸𝑑 = 10
−4(

361.21 3.4146 0.0001
3.7494 0.0101 0.0415
581.53 0.0004 9.0293
2.8933 0.0013 0.2591

)

4×3

; 

𝐵𝑑 = 10
−5(0.0003 0.1367 29.686 0.1477)𝑇;  

𝐶𝑑 = (0 0 1 0). 
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4.6 Summary 

This chapter introduces the development of simplified dynamic room thermal model 

for model-based online control purpose. The major work in this chapter is as follows. 

• A semi-physical (grey-box) dynamic room thermal model is proposed for 

predicting the indoor air temperature under dynamic operating conditions 

which is represented in the form of ODE. The model parameters can be learnt 

by making effective use of the data available in the today’s smart in-home 

sensors.  

• To improve the computational efficiency of both offline parameter 

identification and online model predictive control, the ODE model is 

transformed to the state space model, which can explicitly express the 

relationships between the outputs and inputs. Moreover, it can be used to 

formulate convex optimization problems which in general can be conveniently 

solved by using state-of-the-art optimization techniques.  

• We propose the pre-estimation and scaling approaches to pre-process the 

model parameters, which help to improve the accuracy and computational 

efficiency of the parameter identification process. We also compare three 

popular optimization techniques including TRA, GA and particle PSO for 

parameter identification.  

• Case studies are carried out to validate the simplified room thermal model 

using both field test and simulation data. 
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To conclude, due to the simple structure and moderate computation load, the 

developed dynamic room thermal model is suitable for online applications. It can be 

used in the HEMSs for model-based AC load scheduling in response to DR signals. It 

is also valuable for electric utilities to evaluate the impacts of DR programs on large 

populations of residential ACs and make appropriate incentive policies. 
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CHAPTER 5 DEVELOPMENT OF A SIMPLIFIED 

ENERGY PERFORMANCE MODEL OF VARIABLE-

SPEED AIR CONDITIONERS  

Although AC power consumption estimation and model-based control have been 

extensively studied, the residential ACs in the literature were single-speed ACs with 

on-off control method. The on-off control has a big disadvantage of undesired current 

peaks during state transitions (Aswani et al., 2012). The single-speed ACs are also 

gradually replaced by the variable-speed ACs which have gained an increasing market 

share in recent years due to its improved efficiency at part-load conditions (Qureshi & 

Tassou, 1996). Hence further studies should be conducted to explore the DR potential 

and control methods of variable-speed ACs. One of the major challenges is the lack 

of a simple yet accurate variable-speed AC model. A major difference between single-

speed ACs and variable-speed ACs is that the performances of variable-speed ACs are 

influenced by not only the indoor and outdoor environmental conditions, but also the 

operating compressor frequencies. Thus, the previous steady-state models are not 

applicable to variable-speed ACs.  

In the present chapter, we aim to develop a simplified energy performance model of 

variable-speed ACs and apply the AC model for model-based DR control. Figure 5.1 

shows the flow chart of the development of the simplified energy performance model 

of residential variable-speed ACs. First, a simplified energy performance model 

structure of variable-speed ACs is proposed in the form of piecewise polynomial 

functions to characterize the performances of variable-speed ACs under various 
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operating frequencies and environmental conditions. However, the AC manufacturers 

seldom provide enough data for coefficient identification. Thus, a steady-state 

physical model of variable-speed ACs is developed to generate enough performance 

data to identify the simplified AC model. Then, the generated performance data are 

used to identify the coefficients in the piecewise polynomial functions. 

 

Figure 5.1 Flow chart of the development of the simplified energy performance 

model of residential variable-speed ACs 

5.1 Simplified Energy Performance Model of Variable-speed Air 

Conditioners 

Energy performance model of residential ACs can be used for two main purposes: DR 

potential estimation at individual and aggregate level and model-based DR control of 

an individual AC. Considering the computational efficiency, a simplified AC energy 

performance model is needed for both aforementioned purposes. For a single-speed 

AC, energy performances are normally characterized using dimensionless factors (Q* 
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and COP*) of cooling capacity (Q) and coefficient of performance (COP), which are 

the ratios of the performance data on a given environmental condition (Qreal and 

COPreal) to the nominal performance data (Qnom and COPnom). Environmental 

conditions are supposed to include dry-bulb and wet-bulb temperatures of both indoor 

air (Tin,db and Tin,wb) and outdoor air (Tout,db and Tout,wb). Experimental studies show that 

the thermal and energy performances of single-speed AC are mainly influenced by the 

outdoor air dry-bulb temperature (Tout,db) and indoor air wet-bulb temperature (Tin,wb) 

(Cherem-Pereira & Mendes, 2012; Meissner et al., 2014; York & Tucker, 1980). Thus, 

as shown in Equations (5.1) - (5.2), Q* and COP* are normally represented as the 

polynomial functions of indoor air wet-bulb temperature (Tin,wb) and outdoor air dry-

bulb temperature (Tout,db) (Cherem-Pereira & Mendes, 2012; Meissner et al., 2014; 

York & Tucker, 1980). The nominal environmental conditions are: Tin,wb = 19.4 ℃ 

(Tin,db = 27 ℃) and Tout,db = 35 ℃ (ANSI/AHRI, 2008). Previous research results show 

that the polynomial performance model can fit the performance data accurately even 

without the quadratic items, i.e., 𝑎3 = 𝑎4 = 𝑏3 = 𝑏4 = 0. 

𝑄∗ =
𝑄𝑟𝑒𝑎𝑙

𝑄𝑛𝑜𝑚
= 𝑎0 + 𝑎1𝑇𝑖𝑛,𝑤𝑏 + 𝑎2𝑇𝑜𝑢𝑡,𝑑𝑏 + 𝑎3𝑇𝑖𝑛,𝑤𝑏

2 + 𝑎4𝑇𝑜𝑢𝑡,𝑑𝑏
2        (5.1) 

𝐶𝑂𝑃∗ =
𝐶𝑂𝑃𝑟𝑒𝑎𝑙

𝐶𝑂𝑃𝑛𝑜𝑚
= 𝑏0 + 𝑏1𝑇𝑖𝑛,𝑤𝑏 + 𝑏2𝑇𝑜𝑢𝑡,𝑑𝑏 + 𝑏3𝑇𝑖𝑛,𝑤𝑏

2 + 𝑏4𝑇𝑜𝑢𝑡,𝑑𝑏
2       (5.2) 

The major difference between single-speed AC and variable-speed AC is that energy 

performances of variable-speed ACs are influenced by the indoor and outdoor 

environmental conditions as well as the rotational speed of compressor. The thermal 

and energy performance model of variable-speed AC can be seen as the collection of 

a sequence of sub-models at different operating frequencies. Depending on the 
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operating frequency, the performance model of variable-speed AC switches among 

the sub-models for different operating frequencies. Like the performance model of 

single-speed AC, each sub-model can be mathematically represented in the form of 

polynomial function. Therefore, we can use piecewise polynomial model to 

characterize the energy performance of variable-speed ACs under different operating 

frequencies.  

The dimensionless factor of cooling capacity and COP of variable-speed ACs under 

various operating frequencies can be described as shown in Equations (5.3) - (5.4). In 

contrast with the nominal operating condition of single-speed AC, the nominal 

operating condition of variable-speed AC includes not only the nominal 

environmental variables but also the nominal operating frequency such as 50 Hz in 

our study. Thus, the nominal operating condition of variable-speed AC is Ncomp = 50Hz, 

Tin,wb = 19.4 ℃ and Tout,db = 35 ℃. 

Q∗ =
𝑄𝑟𝑒𝑎𝑙

𝑄𝑛𝑜𝑚
=

{
 
 
 
 

 
 
 
 

(

 
 
 
 

𝑎0
𝑁0 𝑎1

𝑁0 𝑎2
𝑁0

𝑎0
𝑁1 𝑎1

𝑁1 𝑎2
𝑁1

⋮ ⋮ ⋮

𝑎0
𝑁𝑖 𝑎1

𝑁𝑖 𝑎2
𝑁𝑖

⋮ ⋮ ⋮

𝑎0
𝑁𝐾 𝑎1

𝑁𝐾 𝑎2
𝑁𝐾)

 
 
 
 

⏟            
𝐴

(

1
𝑇𝑖𝑛,𝑤𝑏
𝑇𝑜𝑢𝑡,𝑑𝑏

)          

𝑁𝑐𝑜𝑚𝑝 = 𝑁0
𝑁𝑐𝑜𝑚𝑝 = 𝑁1

⋮
𝑁𝑐𝑜𝑚𝑝 = 𝑁𝑖

⋮
𝑁𝑐𝑜𝑚𝑝 = 𝑁𝐾

       (5.3) 

COP∗ =
𝐶𝑂𝑃𝑟𝑒𝑎𝑙

𝐶𝑂𝑃𝑛𝑜𝑚
=

{
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⋮ ⋮ ⋮
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𝑁𝑖

⋮ ⋮ ⋮

𝑏0
𝑁𝐾 𝑏1

𝑁𝐾 𝑏2
𝑁𝐾)

 
 
 
 

⏟            
𝐵

(

1
𝑇𝑖𝑛,𝑤𝑏
𝑇𝑜𝑢𝑡,𝑑𝑏

)          

𝑁𝑐𝑜𝑚𝑝 = 𝑁0
𝑁𝑐𝑜𝑚𝑝 = 𝑁1

⋮
𝑁𝑐𝑜𝑚𝑝 = 𝑁𝑖

⋮
𝑁𝑐𝑜𝑚𝑝 = 𝑁𝐾

      (5.4) 
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where Q* and COP* denote the dimensionless factor of cooling capacity and COP, 

respectively; A and B denote the coefficient matrices of dimensionless factors of 

cooling capacity and COP, respectively; Ncomp denotes the operating frequency of 

compressor; Ni denotes the typical operating frequency, e.g., [20, 30, 40, …, 100] Hz 

in our case study. The piecewise polynomial model of variable-speed AC including 

Q* and COP* are grey-box models. The coefficient matrices of cooling capacity and 

COP (A and B) need to be identified using a large number of performance data under 

various environmental conditions (Tin,wb and Tout,db) and operating frequencies (Ncomp). 

Either experimental tests from AC manufacturers or physics-based modeling 

technique can be used for the identification. Since AC manufacturers seldom provide 

enough data for coefficient identification, the first method is infeasible. Considering 

the universal physical principles, physics-based modeling of typical ductless split 

variable-speed AC is preferred in our study. 

5.2 Steady-state Physical Modeling of Variable-speed Air 

Conditioners 

AC models can be generally classified into transient models and steady-state models. 

The refrigerant dynamics in residential ACs are much quicker than the thermal 

dynamics of the room. The refrigerant re-distributions in different AC components 

normally accomplish in a short period, around 100 seconds (He et al., 1997; B. P. 

Rasmussen, 2005). Therefore, a steady-state AC model is developed to predict the 

coupled dynamic behaviors of the room and the AC under time-varying internal and 

external conditions. The steady-state performances of variable-speed AC in terms of 

cooling capacity and COP can be determined from compressor frequencies (Ncomp) as 
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well as indoor and outdoor air temperature (Tair,out and Tair,in). For simplification of 

modeling, only the four major components, i.e., condenser, evaporator, variable- speed 

compressor, and EEV, are modeled in this paper. Other minor components such as 

accumulator, refrigerant pipeline, sub-cooler and receiver are not considered here.  

5.2.1 Variable-speed Compressor 

Refrigerant mass flow rate and enthalpy at the compressor outlet are the key outputs 

of the compressor module. The refrigerant mass flow rate through the compressor and 

the refrigerant enthalpy at the compressor outlet are given by Equations (5.5) - (5.6), 

respectively.  

�̇�𝑐𝑜𝑚𝑝 = 𝑁𝑐𝑜𝑚𝑝𝑉𝑐𝑜𝑚𝑝𝜌𝑐𝑜𝑚𝑝𝜂𝑣                                        (5.5) 

ℎ𝑐𝑜𝑚𝑝,𝑜 = ℎ𝑐𝑜𝑚𝑝,𝑖 + (ℎ𝑐𝑜𝑚𝑝,𝑜,𝑖𝑠 − ℎ𝑐𝑜𝑚𝑝,𝑖) 𝜂𝑖𝑠⁄                (5.6) 

where Ncomp, Vcomp, ρcomp are the rotational speed of compressor motor in Hz, effective 

displacement volume, and refrigerant density at the inlet, respectively; hcomp,i, hcomp,o 

are the enthalpies at the compressor inlet and outlet; hcomp,o,is is the enthalpy at the 

compressor outlet under an isentropic compression; ηv and ηis are compressor 

volumetric efficiency (Kapadia et al., 2009; Koury et al., 2001) and isentropic 

efficiency (Leducq et al., 2003; B. P. Rasmussen, 2005; R. Zhou et al., 2010) which 

can be approximately calculated by Equations (5.7) - (5.8), respectively. 

𝜂𝑣 = 1 + 𝑐𝑐𝑜𝑚𝑝 − 𝑐𝑐𝑜𝑚𝑝(𝑃𝑐𝑜𝑚𝑝,𝑜 𝑃𝑐𝑜𝑚𝑝,𝑖⁄ )𝑐𝑣/𝑐𝑝                  (5.7) 

𝜂𝑖𝑠 = 𝑐0 + 𝑐1𝑁𝑐𝑜𝑚𝑝 + 𝑐2𝑁𝑐𝑜𝑚𝑝
2 + 𝑐3𝑃𝑟 + 𝑐4𝑃𝑟

2                   (5.8) 
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where Pcomp,o and Pcomp,i are the refrigerant pressures at the compressor outlet and inlet, 

respectively; Pr is the ratio of compressor outlet pressure to the inlet pressure; ccomp is 

the compressor clearance ratio; cv and cp are the constant volume and constant pressure 

specific heats at the compressor inlet, respectively; c0- c4 are coefficients which can 

be empirically identified from the actual compressor. 

5.2.2 Electronic Expansion Valve 

Expansion devices are used in the refrigeration systems to regulate the refrigerant mass 

flow rate into the evaporator and maintain the refrigerant superheat at the evaporator 

outlet. In recent years, due to its superior performance in control, EEV has been 

implemented in the variable-speed ACs or heat pumps to control the cooling capacity 

and superheat instead of the conventional expansion devices such as capillary tubes 

and thermostatic expansion valves (Choi & Kim, 2003). Refrigerant mass flow rate 

through an EEV can be modeled using Equation (5.9). Since refrigerant expansion 

process in EEV can be considered as being adiabatic, the enthalpy at the EEV outlet 

therefore can be given by Equation (5.10). 

 �̇�𝑣 = 𝐶𝑣𝐴𝑣√𝜌𝑣(𝑃𝑐 − 𝑃𝑒)                                   (5.9) 

ℎ𝑣,𝑜 = ℎ𝑣,𝑖                                                        (5.10) 

where Cv, Av, ρv are the orifice coefficient, valve opening area, refrigerant density, 

respectively; Pc and Pe are refrigerant pressures at the condenser and evaporator, 

respectively; hv,o and hv,i are the refrigerant enthalpies at the EEV inlet and outlet, 

respectively. 
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5.2.3 Heat Exchangers 

Heat exchangers, including the condenser and the evaporator, are responsible to 

conduct the heat transfer between the refrigeration system and the surroundings. Based 

on the fundamental principles of mass, momentum and energy conservations, the 

dynamics of the two-phase flow in heat exchangers can be represented by a set of 

elaborated, nonlinear partial differential equations (Leducq et al., 2003). The heat 

exchangers are assumed to be one-dimensional, and the pressure drops are assumed to 

be negligible.  

 

Figure 5.2 Diagram of the moving-boundary heat exchangers: (a) condenser with 

three fluid zones; (b) evaporator with two fluid zones. 

The moving boundary approach is widely adopted for both transient modeling (Grald 

& MacArthur, 1992; He et al., 1997; He et al., 1998; B. P. Rasmussen, 2005; Bryan P. 

Rasmussen & Alleyne, 2004) and steady-state modeling (Zakula et al., 2011; R. Zhou 

et al., 2010) of heat exchangers. The method is able to capture the characteristics of 
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multiple fluid phase heat exchangers while preserving the simplicity of lumped 

parameter models. As shown in Figure 5.2, the condenser is normally divided into 

three zones based on the refrigerant state, i.e., de-superheated, two-phase, and 

subcooled zones, and the evaporator is divided into two zones, i.e., two-phase and 

superheated zones. With these assumptions, the one-dimensional steady state model 

of each zone can be represented by the conservation equations of mass and energy, 

which only contain the derivatives to the length of the zones. After integration along 

the length, the steady state model of a heat exchanger zone can then be transformed 

into the two algebraic equations as follows: 

�̇�𝑒𝑥,𝑜 = �̇�𝑒𝑥,𝑖                                                       (5.11) 

ℎ𝑒𝑥,𝑜 = ℎ𝑒𝑥,𝑖 + 𝑄𝑟𝑒𝑓,𝑎𝑖𝑟 �̇�𝑒𝑥,𝑖⁄                                (5.12) 

where �̇�𝑒𝑥,𝑖  and �̇�𝑒𝑥,𝑜  are the mass flow rates at the inlet and outlet of the zone, 

respectively; ℎ𝑒𝑥,𝑖  and ℎ𝑒𝑥,𝑜  are the enthalpy at the inlet and outlet of the zone, 

respectively; Qref,air is the heat exchanged between the refrigerant and the air in that 

zone (negative value for the condenser). The heat transfer rates, Qref,air, in heat 

exchangers are calculated by effectiveness-number of transfer units (ε-NTU). In the 

ε-NTU method, the actual heat transfer between the refrigerant and air for each zone 

can be calculated by Equations (5.13) - (5.23). 

𝐶𝑟𝑒𝑓 = �̇�𝑟𝑒𝑓𝑐𝑟𝑒𝑓                                                      (5.13) 

𝐶𝑎𝑖𝑟 = �̇�𝑎𝑖𝑟𝑐𝑎𝑖𝑟                                                        (5.14) 

𝐶𝑚𝑖𝑛 =  min(𝐶𝑟𝑒𝑓, 𝐶𝑎𝑖𝑟)                                            (5.15) 
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𝐶𝑚𝑎𝑥 = max(𝐶𝑟𝑒𝑓, 𝐶𝑎𝑖𝑟)                                            (5.16) 

c𝑟 = 
𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥
                                                                   (5.17) 

𝐴𝑠𝑢𝑟 =  𝜋𝐷𝑜𝐿                                                              (5.18) 

𝑈𝑜𝑣 = 1 (
1

𝛼𝑟𝑒𝑓
+
1

2

𝐷𝑜

𝜆𝑤
𝑙𝑛

𝐷𝑜

𝐷𝑖
+

1

𝑟𝛼𝑎𝑖𝑟
)⁄                             (5.19) 

𝑁𝑇𝑈 =  𝑈𝑜𝑣𝐴𝑠𝑢𝑟 𝐶𝑚𝑖𝑛⁄                                                (5.20) 

ε =  (1 − 𝑒−𝑁𝑇𝑈(1−𝑐𝑟)) (1 − 𝑐𝑟𝑒
−𝑁𝑇𝑈(1−𝑐𝑟))⁄              (5.21) 

𝑄𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛|𝑇𝑟𝑒𝑓,𝑖𝑛 − 𝑇𝑎𝑖𝑟,𝑖𝑛|                                   (5.22) 

𝑄𝑟𝑒𝑓,𝑎𝑖𝑟 = ε𝑄𝑚𝑎𝑥                                                        (5.23) 

where Cref and Cair are the refrigerant and air thermal capacitance rates, W/K; Uov is 

the tube overall heat transfer coefficient from the refrigerant side to the air side, 

W/(m2•K); NTU is the number of transfer unit; ε is the heat transfer effectiveness; αref 

and αair are the heat transfer coefficients at the refrigerant and air sides, W/(m2•K). 

The heat transfer coefficients (HTCs) are critical parameters in the heat exchanger 

modeling. For different zones in the heat exchangers, the correlations used for 

calculating HTCs at the refrigerant and air sides are different, as shown in Table 5.1. 
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Table 5.1 Correlations for the calculations of heat transfer coefficients. 

Regions 

Correlations for HTCs 

Refrigerant side Air side 

Condenser 

De-superheated zone Petukhov correlation (Petukhov, 1970) 

Wang et al. (C-C 

Wang et al., 1999) 

(Dry condition) 

Two-phase zone Cavallini correlation (Cavallini et al., 2006) 

Subcooled zone Gnielinski correlation (Gnielinski, 1976) 

Evaporator 

Two-phase zone Kandlikar correlation (Kandlikar, 1990) 

Superheated zone Petukhov correlation (Petukhov, 1970) 

Wang et al. (Chi-

Chuan Wang et al., 

2000) (Wet 

condition) 

 

How to determine the length of each zone is a critical issue for steady-state heat 

exchanger modeling using moving boundary approach. Details of the numerical 

solution for heat exchanger modeling is introduced in Section 5.3.4. Similar to the heat 

exchanger models, the solution for the modeling of the whole refrigeration system is 

implicit and can only be solved by a numerical method which shown in Section 5.3.5. 

5.2.4 Numerical Solution for Heat Exchanger 

A one-dimensional optimization technique is adopted in this study to determine the 

length of each zone in the heat exchangers and obtain the refrigerant enthalpy at the 

heat exchanger outlet. The heat transfer from the refrigerant to the air can be calculated 

by forwardly using the ε-NTU method, Equations (5.13) - (5.23). The length of each 

zone can be determined using the ε-NTU method inversely, as shown in Equations 

(5.24) - (5.25). The flow chart for numerical solution of heat exchangers is shown in 

Figure 5.3.  
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𝐿 =  
𝐶𝑚𝑖𝑛

𝑈𝑜𝑣𝜋𝐷𝑜(𝑐𝑟−1)
𝑙𝑛

𝑄𝑚𝑎𝑥−𝑄𝑟𝑒𝑓,𝑎𝑖𝑟

𝑄𝑚𝑎𝑥−𝑟𝑄𝑟𝑒𝑓,𝑎𝑖𝑟
                            (5.24) 

𝑄𝑟𝑒𝑓,𝑎𝑖𝑟 = �̇�𝑒𝑥,𝑖(ℎ𝑒𝑥,𝑜 − ℎ𝑒𝑥,𝑖)                               (5.25) 

 

Figure 5.3 Flow chart for numerical solution of heat exchangers. 

5.2.5 Numerical Solution for Whole Refrigeration System 

Figure 5.4 shows the flowchart of the numerical solution of the whole refrigeration 

system. First, we input the geometric parameters of all components and operating 

conditions including the actuator signal, i.e., compressor rotational speed (Ncomp) and 
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environmental disturbances (Tair,out and Tair,in). In the steady-state modeling of 

variable-speed AC, the condenser airflow rate and evaporator airflow rate are assumed 

to be constants under all operating conditions and are not manipulated in any situations. 

The EEV opening degree Nv, condenser pressure Pc, evaporator pressure Pe , sub-

cooling degree at the condenser outlet SC, and superheat at the evaporator outlet SH 

under the specific operating conditions, i.e., Tair,out, Tair,in and Ncomp, are determined by 

a constrained nonlinear optimization, as shown in Figure 6.2. The reference values for 

sub-cooling (SCref) and superheat (SHref) are both 4.5℃ which normally occurs in the 

real case. Given a set of Nv, Pc, Pe, SC and SH the nonlinear optimizer sequentially 

calls the modules of the compressor, condenser, EEV and evaporator and computes 

the value of the objective function as shown in Equation (5.26).  

𝑚𝑖𝑛
𝑁𝑣,𝑃𝑐,𝑃𝑒,𝑆𝐶,𝑆𝐻

(
�̇�𝑐𝑜𝑚𝑝−�̇�𝑣

�̇�𝑐𝑜𝑚𝑝
)
2

+ (
𝑆𝐶−𝑆𝐶𝑟𝑒𝑓

𝑆𝐶𝑟𝑒𝑓
)
2

+ (
𝑆𝐻−𝑆𝐻𝑟𝑒𝑓

𝑆𝐻𝑟𝑒𝑓
)2               (5.26) 

The outputs of the nonlinear optimization are then brought back to the refrigeration 

system from compressor to condenser, EEV and evaporator. To the end, the cooling 

capacity and COP under specific operating conditions can be calculated. In this study, 

all the sub-models of the refrigeration system and optimizations are carried out in 

MATLAB (MathWorks, 2012). The thermo-physical properties of refrigerant are 

calculated with the assistance of CoolProp tool (Bell et al., 2014).  
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Figure 5.4 Flow chart for numerical solution of whole refrigeration system. 
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5.3 Parameter Identification and Model Validation 

5.3.1 AC Description and Parameter Identification 

There have been a number of experimental studies of steady-state performances of 

ACs (Cherem-Pereira & Mendes, 2012; Gayeski, 2010; Meissner et al., 2014). 

Gayeski (Gayeski, 2010) carried out quite elaborate experiments for a Mitsubishi split-

type variable-speed air conditioner with a rated cooling capacity of 2.5kW. It is one 

of the most popular types of residential variable-speed ACs and the main 

specifications are listed in Table 5.2. The experimental results in (Gayeski, 2010), 

however, did not contain the complete performance data. The same split-type variable-

speed air conditioner was chosen for performance identifications under a wide range 

of typical operating conditions using physical modeling techniques. The typical 

operating conditions are the combinations of typical compressor rotational speeds 

(Ncomp,ty = [20, 30, … , 100]), typical dry-bulb temperature of outdoor air (Tout,db,ty = 

[23, 26, 29, 32, 35, 38]) and typical wet-bulb temperature of indoor air (Tin,wb,ty = [14.6, 

17.1, 19.4, 22.0, 24.5, 27.0]). The typical wet-bulb temperature of indoor air is 

determined by the corresponding typical dry-bulb temperature (Tin,db,ty = [21, 24, 27, 

30, 33, 36]).  
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Table 5.2 Main specifications of the variable-speed AC. 

Item Specification 

Refrigeration R410A 

Compressor 
type rotary piston type 

piston displacement volume (cm3) 10 

EEV 
type step motor 

inner diameter (mm) 4 

Evaporator 

dimension (L×W×H) (m) 0.62×0.03×0.34 

row number 2 

loop number 2 

tube number per row 16 

tube length per row (m) 0.62 

tube outer diameter (mm) 6.8 

tube inner diameter (mm) 5.2 

fin number 488 

fin pitch (mm) 1.17 

fin thickness (mm) 0.102 

Condenser 

dimension (L×W×H) (m) 0.86×0.5×0.022 

row number 1 

loop number 2 

tube number per row 12 

tube length per row (m) 0.86 

tube outer diameter (mm) 6.5 

tube inner diameter (mm) 4.9 

fin number 610 

fin pitch (mm) 1.34 

fin thickness (mm) 0.0762 
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The dimensionless factors of cooling capacity and COP (Q* and COP*) of the target 

variable-speed AC under typical operating conditions, as shown in Figure 5.5, are 

obtained using the steady-state physical modeling technique. Figure 5.6 shows the 

performances of the variable-speed AC at the compressor speeds of 30Hz, 60Hz and 

90Hz predicted by the model. It can be found that the cooling capacity and COP of 

variable-speed AC mainly depend on the compressor speed. The cooling capacity 

increases with the increase of compressor speed, but the COP decreases with the 

increase of compressor speed. The cooling capacity increases with the increase of 

indoor air temperature and decreases with the increase of the outdoor air temperature. 

Compared to the indoor air temperature, the outdoor air temperature has a larger effect 

on the COP. The trends predicted by the steady-state model are reasonable and typical 

for variable-speed ACs, therefore, the steady-state model does not suffer from the 

overfitting issue and can predict the change of performance with the operating 

conditions. 
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Figure 5.5 Performances (dimensionless factors of cooling capacity and COP) of the 

variable-speed AC under typical operating conditions. 

 

Figure 5.6 Performances of the variable-speed AC at the compressor speeds of 30Hz, 

60Hz and 90Hz, respectively. 
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With the performance data under typical operating conditions, the simplified 

piecewise polynomial performance model of variable-speed AC then can be identified. 

The identified coefficients, i.e., matrices A and B in Equations (5.3) - (5.4), are listed 

in Table 5.3 and Table 5.4, respectively. Coefficient of determination R2 is used to 

evaluate the goodness of fit of the model. 

Table 5.3 Coefficients of the piecewise polynomial model for cooling capacity of 

variable-speed AC. 

Operating 

frequency (Hz) 

a0 a1 a2 R2 

20 0.585843 0.006222 -0.005484 0.9988 

30 0.746835 0.005789 -0.005232 0.9982 

40 0.907888 0.005348 -0.004979 0.9975 

50 1.068738 0.004910 -0.004723 0.9966 

60 1.165241 0.004647 -0.004570 0.9958 

70 1.229575 0.004472 -0.004467 0.9953 

80 1.293910 0.004297 -0.004365 0.9947 

90 1.358245 0.004121 -0.004262 0.9936 

100 1.454747 0.003859 -0.004108 0.9923 
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Table 5.4 Coefficients of the piecewise polynomial model for COP of variable-speed 

AC. 

Operating 

frequency (Hz) 

b0 b1 b2 R2 

20 2.3251606 0.0088524 -0.0230007 0.9989 

30 1.6822462 0.0047449 -0.0149859 0.9987 

40 1.4649414 0.0027292 -0.0118164 0.9984 

50 1.3133828 0.0014556 -0.0097436 0.9981 

60 1.0795743 0.0015988 -0.0081978 0.9986 

70 0.9242602 0.0016845 -0.0071883 0.9989 

80 0.8001989 0.0015814 -0.0062748 0.999 

90 0.7225063 0.0013145 -0.0055670 0.999 

100 0.6621846 0.0010672 -0.0049823 0.9989 

5.3.2 Model Validation 

To validate the simplified piecewise polynomial model of variable-speed AC, 40 sets 

of experimental data provided by Gayeski (Gayeski, 2010) are compared with the 

modeled data under the same operating conditions. The ranges of Tin,wb, Tout,db and 

Ncomp are 17.5-26.7 ℃, 24-36 ℃, and 19-95 Hz, respectively. Figure 5.7 shows the 

comparisons between the modeled data and the experimental data. The deviations 

mainly locate in the range of ±15%. The mean absolute percentage errors (MAPEs) 

between the predicted and tested cooling capacity and COP are 5.65% and 11.94%, 

respectively.  
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Figure 5.7 Comparisons between the modeled data and experimental data. 

5.4 Summary 

As the major contributors to home electricity bills and peak power demands in 

electrical grids, residential air conditioner (AC) has drawn increasing attention to the 

exploitation of its DR resource. In order to investigate DR potential of ACs at 

individual and aggregate level and to conduct model-based DR control of an individual 

AC, a simply structured energy performance model of ACs is needed by electrical 

engineers and researchers for the purpose of computational efficiency. However, 

recent studies on DR management of ACs mainly focused on the on-off (single-speed) 

ACs rather than variable-speed (variable-speed) ACs due to the lack of a simplified 

yet accurate energy performance model of variable-speed ACs.  

In this chapter, we aim to develop a simplified energy performance model of variable-

speed ACs to characterize the AC performances under various operating frequencies 

and environmental conditions. The essence of the simplified AC model is a grey-box 
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model which needs to be identified using performance data from either experimental 

tests from AC manufacturers or physics-based modeling technique. Since AC 

manufacturers seldom provide enough data for coefficient identification, physics-

based modeling of typical variable-speed AC is considered in our study. For this 

reason, a steady-state physical model of variable-speed ACs is developed to generate 

performance data under typical operating frequencies and environmental conditions. 

The proposed simply structured energy performance model of variable-speed ACs can 

be readily used by electrical researchers and engineers for either model-based DR 

control in smart HEMSs or DR potential estimation of a single variable-speed AC or 

a large population of variable-speed ACs.   
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CHAPTER 6 INDIRECT MODEL-BASED OPTIMAL 

CONTROL METHOD IN RESPONSE TO DAY-AHEAD 

PRICING 

The rapid developments of advanced metering infrastructure and dynamic electricity 

pricing provide great opportunities for residential electrical appliances, especially air 

conditioners (ACs), to participate in DR programs to reduce peak power consumptions 

and electricity bills. One of the biggest challenges faced by residential DR participants 

is the lack of intelligent DR control methods which enable residential ACs to 

automatically respond to dynamic electricity prices. Most existing studies on DR 

control of residential ACs focus on single-speed ACs. However, variable-speed ACs 

which have higher part-load efficiencies have been extensively installed in today’s 

residential buildings.  

This chapter presents a novel model-based DR control method for residential variable-

speed ACs to automatically and optimally respond to day-ahead electricity prices. The 

proposed control-oriented room thermal model and steady-state energy performance 

model of variable-speed ACs in last two chapters are integrated to predict the coupled 

thermal response of the room and AC for the purpose of model-based control. Optimal 

scheduling of indoor air temperature set-points is formulated as a nonlinear 

programming problem which seeks the preferred trade-offs among electricity costs, 

thermal comfort and peak power reductions. Genetic algorithm (GA) is used to search 

the optimal solution of the nonlinear programming problem.  
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6.1 Outline of the Proposed Model-based Optimal Control Method 

6.1.1 Local Control Loop 

Figure 6.1 depicts the block diagram of the integrated thermal response models and 

frequency-based control method of variable-speed AC. A room temperature controller 

plays the function of connecting the room thermal dynamics with the variable-speed 

AC. The variable-speed AC controller in the present study is designed using a PID 

control structure. After detecting the temperature difference from the set-point, the 

PID controller computes and outputs the actuating signal of rotational speed to the 

variable-speed compressor motor. Under the specific compressor rotational speed and 

weather disturbances, the cooling capacity and COP of variable-speed AC can be 

determined using the developed AC model. The variable-speed AC then delivers the 

cooling capacity into the air-conditioned room removing the heat gains caused by the 

disturbances including outdoor air temperature, solar radiation, and internal heat gains.  

 

Figure 6.1 Block diagram of the integrated thermal response models and frequency-based control 

method of variable-speed AC. 

6.1.2 Model-based Supervisory/Optimal Control 

The basic idea of the model-based optimal control is to use the integrated model to 

predict the performances of variable-speed AC based on the predictions of weather 
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conditions, occupancy and day-ahead electricity prices. GA is used to search the 

optimal control signal, i.e., indoor air temperature set-point schedule.  

 

Figure 6.2 Framework of the model-based optimal load control methodology of 

variable-speed ACs. 

As shown in Figure 6.2, the whole process of the model-based optimal DR control of 

variable-speed AC includes two major steps: preparation/prediction of exogenous 

input variables and model-based optimization using the GA solver. Weather 

conditions including outdoor air temperature and solar radiation are required for the 

predictions of the room thermal dynamics and AC performance, which may come 

from local observatory or from prediction models (Q. Zhou et al., 2008). The presence 

of occupant will influence the room thermal response and hence it is an influential 

variable in the room thermal model. With the aid of advanced infra-red sensing 

technology, the presence of occupant can be determined conveniently. However, 

considering the number of residents in a room is small and more or less the same, it 
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can be pre-defined. Dynamic electricity prices are available from smart meters. The 

integrated thermal response models of an air-conditioned room and an variable-speed 

AC are used to predict the AC power consumption and indoor air temperature with 

the inputs. In the end, an optimization problem is formulated and solved using GA to 

find the day-ahead optimal schedule of indoor air temperature set-point.  

6.2 Problem Formulation and Set Point Optimization using GA 

6.2.1 Problem Formulation 

The optimization problem in this study is a multi-objective optimization problem, 

which includes three objectives, i.e., minimization the total electricity cost (Jcost as 

defined by Equation (6.2)), the thermal comfort deviation (Jcomfort, as defined by 

Equation (6.3)) considering home residents and minimization of the peak power 

demand during DR hours (Jpeak,DR, as defined by Equation (6.4)) considering the power 

grids. The total electricity cost (Jcost) is the sum of the products of the hourly energy 

consumption of variable-speed AC (Ei) and the hourly electricity price (Ci). The total 

comfort deviation (Jcomfort) is the root mean square error of the indoor air temperatures 

to the temperature set-points. The peak power demand (Jpeak,DR) is the maximum 

power consumption of the variable-speed AC during DR hours. The time steps of 

energy consumption (Ei) and electricity price (Ci) are 1 hour and the time intervals of 

the indoor air temperature (Tin,j) and the power consumption (Pl) are both 1 minute. 

The optimization processes of each objective function are subject to the comfort 

constraint, Equation (6.5), which limits the temperature set-point between a lower 

bound (Tset,lb) and an upper bound (Tset,ub). The three objectives, i.e., Equations (6.2) - 
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(6.4), are not independent but conflicting. For example, when minimizing the thermal 

comfort deviation, it may result in the increase of the electricity cost and the increase 

of the peak power demand. When minimizing the peak power demand, the deviation 

of thermal comfort may increase.  

  min
{𝑇𝑠𝑒𝑡,1,𝑇𝑠𝑒𝑡,2,…,𝑇𝑠𝑒𝑡,𝑘}

((1 − 𝛼 − 𝛽)
𝐽𝑐𝑜𝑠𝑡

𝐽𝑐𝑜𝑠𝑡
∗ + 𝛼

𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡

𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡
∗  + 𝛽

𝐽𝑝𝑒𝑎𝑘,𝐷𝑅

𝐽𝑝𝑒𝑎𝑘,𝐷𝑅
∗ )                      (6.1) 

𝐽𝑐𝑜𝑠𝑡 = ∑ 𝐸𝑖𝐶𝑖
𝑚
𝑖=1 ;                                                              (6.2) 

𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = √
1

𝑛
∑ (𝑇𝑖𝑛,𝑗 − 𝑇𝑖𝑛,𝑒𝑥𝑝,𝑗)2
𝑛
𝑗=1 ;                             (6.3) 

𝐽𝑝𝑒𝑎𝑘,𝐷𝑅 = 𝑚𝑎𝑥{𝑃1, 𝑃2, … , 𝑃𝑙};                                           (6.4) 

Subject to            𝑇𝑠𝑒𝑡.𝑙𝑏 ≤ 𝑇𝑠𝑒𝑡,𝑘 ≤ 𝑇𝑠𝑒𝑡,𝑢𝑏                                                     (6.5) 

where 𝐽𝑐𝑜𝑠𝑡
∗ = 𝑚𝑖𝑛{𝐽𝑐𝑜𝑠𝑡}; 𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡

∗ = 𝑚𝑖𝑛{𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡} and 𝐽𝑝𝑒𝑎𝑘,𝐷𝑅
∗ = 𝑚𝑖𝑛{𝐽𝑝𝑒𝑎𝑘,𝐷𝑅}. 

The methods of multi-objective optimization problem can be divided into classical 

methods and evolutionary methods. Classical methods include the weighted sum 

method, epsilon constraint method, weighted metric method, value function method 

and so on. Evolutionary methods are methods based on evolutionary algorithms such 

as genetic algorithm(Deb et al., 2002) and particle swarm optimization 

algorithm(Hamid Reza Baghaee et al., 2012; H. R. Baghaee et al., 2016). The weighted 

sum method (Grodzevich & Romanko, 2006), which is simple and readily applicable 

to engineering practice, is adopted in this study to formulate a compound single-

objective optimization problem as shown in Equation (6.1). The compound single 

objective function is mathematically expressed as a sum of weighted individual 
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objective functions. The weightings can be assigned by the users. Considering 

different objective functions may have different magnitudes, the individual objective 

function (Jcost, Jcomfort and Jpeak,DR) is normalized by its own optimal value (𝐽𝑐𝑜𝑠𝑡
∗  , 

𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡
∗  and 𝐽𝑝𝑒𝑎𝑘,𝐷𝑅

∗ ). After the normalization, all dimensionless objective functions 

are multiplied with corresponding weightings, i.e., thermal comfort weighting α, peak 

power weighting 𝛽, and cost weighting (1- α - 𝛽). Given a set of indoor air temperature 

set-point schedule {Tset,1, Tset,2, …, Tset,k}, the indoor air temperature and power 

consumption can be predicted using the integrated thermal models. Note that due to 

the nonlinear characteristics of dynamics of the integrated thermal response models, 

the optimization problem is a nonlinear programming problem and an advanced 

optimization solver is needed to search the optimal schedule of the indoor air 

temperature set-points. 

6.2.2 Optimization Using GA 

Conventional optimization techniques depend strongly on the initial values and are apt 

to get a local optimization. GA is an evolutionary search algorithm inspired by the 

process of natural selection. It makes a population of individual solutions “evolve” 

toward an optimal solution by successive modifications. During each modification, 

three main types of rules, i.e., selection, crossover and mutation, are used to create the 

next generation from the current generation. GA can address a variety of optimization 

problems that standard gradient descent methods are incompetent to solve, such as the 

problems in which the objective function is discontinuous, stochastic, or highly 

nonlinear. GA (Tuhus-Dubrow & Krarti, 2010; S. Wang & Xu, 2006) has been used 

to solve the optimization problems in the domain of HVAC. The major reason for 
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applying GA in this study is that the algorithm is gradient free and the target problem 

is a nonlinear programming problem. Population-Size, Max-Generations and 

Function-Tolerance are three important parameters in the GA optimization, which 

indicate the number of individuals in each generation, the maximum number of 

iterations before the algorithm halts and the termination tolerance, respectively. In this 

study, they are assigned with the values of 100, 160 and 1×10−6, respectively. The GA 

optimization is solved by using MATLAB on a desktop computer with Intel Core i7-

4790 (3.60 GHz), 16 GB of memory, under Windows 10 64-bit operating system. The 

runtime of the GA optimization in our case study is around 80 minutes. As the model-

based DR control method for residential variable-speed ACs developed in this study 

is to respond to day-ahead electricity pricing which is forecasted by the utility or third-

party load aggregator and delivered to the end-users one day ahead, the runtime is 

acceptable. 

6.3 Case Studies and Analysis 

6.3.1 Test Conditions 

Dynamic electricity pricing is one key component in the implementation of DR 

programs. DAP and RTP are the most commonly used dynamic electricity pricings 

used by Independent System Operators (ISO) or Regional Transmission Operators 

(RTO) such as Electricity Reliability Council of Texas (ERCOT), PJM or New York 

ISO. Figure 6.3 shows the historical DAP data of the PJM energy market from June 

to July 2016 (PJM Interconnection, 2017). The average DAP profile is used for case 
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studies. Weather forecast data from local observatory, pre-defined occupancy profiles 

and day-ahead electricity prices from electric utilities are used as the inputs.  

 

Figure 6.3 Day-ahead pricing data of the PJM energy market from June to July 2016. 

 

Figure 6.4 Outdoor weather conditions and internal heat gains on a typical hot 

summer day. 

Case studies in this study are carried out on a typical hot summer day. Figure 6.4 

shows the outdoor weather conditions and internal heat gains from 8:00 to 8:00 on the 

next day. The room is unoccupied from 8:00 to 18:00 considering the occupants are 

out for school or work during day time. Signals of DR events, which normally last for 
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2 to 4 hours, are determined and delivered by the electric utilities. The DR event here 

is assumed to start at 16:00 to end at 20:00, which is the typical time period when the 

residential buildings are occupied and the regional electricity consumption is high. 

The simulation starts from 8:00 in the morning. It is assumed that the room thermal 

response is stabilized after one-night AC operation and control, therefore, the AC 

temperature set-point is used as the initial value of indoor air temperature in the 

simulation. The time step for simulation is set as 1 minute.  

6.3.2 Reference Case without DR Control 

A reference case without DR is tested for comparison purpose. The indoor air 

temperature set-point from 18:00 to 08:00 on the next day is fixed as 24℃ in the 

baseline case. The PID controller parameters are tuned manually in this study with Kp 

= 5, Ki = 1 and Kd = 5. Average hourly power consumption, hourly electricity cost and 

indoor air temperature are shown in Figure 7.5 - Figure 7.10 for comparisons with the 

GA-based cases.  

6.3.3 DR Cases 

Different from the baseline case, the pre-cooling strategy is adopted in the GA-based 

cases which means the AC is allowed to be turned on from 16:00 to 18:00 before the 

room is occupied. The energy consumptions and electricity costs from 16:00 to 08:00 

on the next day are also taken into account when calculating the objective function of 

Equation (6.2), i.e., m = 16 hours. The temperature deviations are considered only 

when the room is occupied, i.e., 18:00 to 8:00 on the next day and n = 840 minutes in 

Equation (6.3). The peak power demand during DR hours in Equation (6.4) is the 
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maximum value of power from 16:00 to 20:00, i.e., l = 240 minutes. To satisfy the 

thermal comfort of occupants, the temperature set-points are searched in the range of 

22℃ - 26℃ with a constant interval of 0.5 ℃.  

The optimal temperature set-point schedule searched by the GA-based method is 

affected by both thermal comfort weighting α and peak power weighting 𝛽. Three 

groups of cases are tested for investigating the impacts of the weightings on the 

optimization results. In each group of cases (e.g., Case 1), the peak power weightings 

are 0.3, 0.4 and 0.5 respectively (i.e., Case 1-a, 1-b and 1-c) while the thermal comfort 

weightings are the same. Different groups of cases adopt different thermal comfort 

weightings, i.e., 0.2 for Case 1, 0.3 for Case 2 and 0.5 for Case 3. Table 6.1 shows the 

whole-day indoor air temperature set-point schedules in the baseline case and GA-

based cases. The schedules in the GA-based cases are the optimized results. Table 6.2 

compares the performances of the GA-based cases with the baseline case in terms of 

peak power reductions, electricity cost savings and temperature deviations. Mean 

absolute error (MAE) and root mean square error (RMSE) are used to quantify the 

temperature deviations from the temperature set-points. Some common features in all 

GA Cases can be found as follows. Compared with the baseline case, the peak power 

consumptions and total electricity costs in all GA-based cases have certain reductions. 

In terms of thermal comfort, the indoor air temperatures in the GA-based cases have 

larger temperature deviations, but they still remain in the comfort constraint of 22℃ - 

26℃. 
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Table 6.1 Indoor air temperature set-point schedules in baseline case and GA-based 

cases 

Time of day Indoor air temperature set-point schedules (℃) 

Start End 

Baseline 

Case 

GA Cases 

Case 

1-a 

Case 

1-b 

Case 

1-c 

Case 

2-a 

Case 

2-b 

Case 

2-c 

Case 

3-a 

Case 

3-b 

Case 

3-c 

08:00 16:00 off off off off off off off off off off 

16:00 17:00 off 25.5 26 26 25.5 25.5 26 25.5 25.5 26 

17:00 18:00 off 25.5 26 26 25.5 25.5 26 25.5 25.5 25.5 

18:00 19:00 24 25.5 26 26 25 25 25.5 24.5 25 25 

19:00 20:00 24 25 26 26 24.5 25 25.5 24.5 24.5 24.5 

20:00 21:00 24 24.5 23 25 24 24 25 24.5 24 24 

21:00 22:00 24 24 25 26 24 24.5 24.5 24 24 24 

22:00 23:00 24 24 25 26 24 24 24.5 24.5 24.5 24 

23:00 00:00 24 25 25 24 25 25 24.5 24 24 24.5 

0:00 01:00 24 24.5 25 25.5 24.5 24 24.5 24 24 24 

01:00 02:00 24 24.5 24.5 25 24.5 24 23.5 24 24 24 

02:00 03:00 24 24.5 24.5 25 24 23.5 25 24 24 24.5 

03:00 04:00 24 25.5 23.5 25.5 24 24 24.5 24.5 24 23.5 

04:00 05:00 24 25.5 23.5 25 24 24 24.5 25 24.5 23.5 

05:00 06:00 24 25 26 26 23.5 24 24 24.5 23.5 24.5 

06:00 07:00 24 23.5 24 24.5 23.5 25 25 24 24 23.5 

07:00 08:00 24 26 25 25 25 24 25 24.5 25 24.5 
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Table 6.2 Performance comparison in baseline case and GA-based cases 

Cases Comfort 

weighting 

Peak 

weighting 

Peak 

power 

demand 

during 

DR hours 

(W) 

Peak 

power 

reductio

n (%) 

Electricity 

cost 

(Cents) 

Cost 

saving 

(%) 

Temperature 

deviation (℃) 

MAE RMSE  

Baseline Case 
 

1343.0 0 161.98 0 0.05 0.37 

GA Case 1-a  0.2 0.3 566.2 57.84% 131.43 18.86% 0.50 0.65 

GA Case 1-b 0.2 0.4 444.9 66.87% 133.47 17.60% 0.79 0.99 

GA Case 1-c 0.2 0.5 444.9 66.87% 101.22 37.51% 1.01 1.19 

GA Case 2-a 0.3 0.3 566.2 57.84% 142.22 12.20% 0.34 0.48 

GA Case 2-b 0.3 0.4 566.2 57.84% 139.92 13.62% 0.31 0.50 

GA Case 2-c 0.3 0.5 444.9 66.87% 121.97 24.70% 0.57 0.73 

GA Case 3-a 0.5 0.3 702.6 47.68% 145.17 10.37% 0.20 0.29 

GA Case 3-b 0.5 0.4 566.2 57.84% 144.66 10.69% 0.22 0.36 

GA Case 3-c 0.5 0.5 549.4 59.09% 143.98 11.11% 0.31 0.43 

 

6.3.3.1. Sensitivity analysis of peak power weighting 

Three sets of GA-based cases (i.e., Case 1, 2 and 3) are studied to investigate the 

sensitivity of the optimization method to the peak power weighting. In each set of 

cases, the thermal comfort weightings remain fixed as 0.2, 0.3 and 0.5, respectively, 

and the peak power weightings are set as 0.3, 0.4 and 0.5 in each set. Average hourly 

power consumption, electricity cost and indoor air temperature in all cases are shown 

in Figure 6.5 - Figure 6.7. It can be found that when the thermal comfort weighting is 

fixed, peak power consumptions during DR hours and total electricity costs decrease 

with the increase of the peak power weighting. This is because the increase of the peak 

power weighting means the peak power reduction is considered to be more important 
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in searching the optimal solution using GA. As shown in Table 6.2, the maximum 

peak power reductions are achieved with the largest peak power weightings in each 

set of GA-based cases, i.e., 66.87% in Case 1-c, 66.87% in Case 2-c and 59.09% in 

Case 3-c, respectively. The minimum temperature deviations (RMSE) occur with the 

smallest peak power weighting in each set of GA-based cases, i.e., 0.65℃ in Case 1-

a, 0.48℃ in Case 2-a, and 0.29℃ in Case 3-a, respectively. The results show that the 

objective function is sensitive to the peak power weighting, and the peak power 

weighting reasonably influences the optimization results to achieve the optimization 

purpose.  

 

Figure 6.5 Energy consumption, cost and indoor air temperature in the baseline case 

and GA-based cases (α = 0.2, 𝛽 = 0.3/0.4/0.5). 
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Figure 6.6 Energy consumption, cost and indoor air temperature in the baseline case 

and GA-based cases (α = 0.3, 𝛽 = 0.3/0.4/0.5). 
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Figure 6.7 Energy consumption, cost and indoor air temperature in the baseline case 

and GA-based cases (α = 0.5, 𝛽 = 0.3/0.4/0.5). 

6.3.3.2. Sensitivity analysis of thermal comfort weighting 

In order to investigate the impacts of the thermal comfort weighting on the 

optimization results, the simulation results are presented in a different way where the 

peak power weightings remain fixed at 0.3, 0.4 and 0.5 while the thermal comfort 

weightings are 0.2, 0.3 and 0.5 in each set of GA-based cases. Figure 6.8 - Figure 6.10 

show the profiles of average hourly power consumption, electricity cost and indoor air 

temperature in all cases. It can be seen that when the peak power weighting is fixed, 

peak power consumptions during DR hours and total electricity costs increase with 
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the increase of the thermal comfort weighting. This is because the increase of the 

thermal comfort weighting means occupants consider maintaining thermal comfort is 

more important in searching the optimal solution using GA. The maximum peak 

power reductions are achieved with the smallest thermal comfort weighting in each 

set of GA-based cases, i.e., 57.84% in GA Case 1-a, 66.87% in GA Case 1-b and 66.87% 

in GA Case 1-c, respectively. The minimum temperature deviations (RMSE) occur 

with the largest thermal comfort weighting in each set of GA-based cases, i.e., 0.29℃ 

in GA Case 3-a, 0.36℃ in GA Case 3-b, and 0.43℃ in GA Case 3-c, respectively. 

The results show that the objective function is sensitive to the peak power weighting, 

and the peak power weighting reasonably influences the optimization results to 

achieve the optimization purpose. 
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Figure 6.8 Energy consumption, cost and indoor air temperature in the GA-based 

cases (α = 0.2/0.3/0.5, 𝛽 = 0.3). 
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Figure 6.9 Energy consumption, cost and indoor air temperature in the GA-based 

cases (α = 0.2/0.3/0.5, 𝛽 = 0.4). 
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Figure 6.10 Energy consumption, cost and indoor air temperature in the GA-based 

cases (α = 0.2/0.3/0.5, 𝛽 = 0.5). 

6.4 Summary 

Dynamic electricity pricing is an effective DR program in smart grids to attract 

residential end-users to participate in it. It can bring about cost savings to residential 

homes while relieving power imbalance issue during on-peak hours. Intelligent DR 

control technologies for household appliances, especially ACs, are urgently required 

to encourage and enable wider participations. The chapter presents a model-based 

optimal DR control method for residential variable-speed ACs to achieve optimal 
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trade-offs among electricity costs, thermal comfort and peak power reductions in the 

dynamic electricity pricing environment.  

For the purpose of computational efficiency, the simplified control-oriented room 

thermal model and energy performance model of variable-speed ACs are integrated 

for model-based control. We formulate the trade-offs among electricity costs, 

occupant comfort and peak power reductions during DR hours as a nonlinear 

programming problem using the weighted sum approach. The weightings in the 

compound objective function are user-definable, which indicate the preferences of 

participants. GA, as an advanced and effective optimization method, is used to solve 

the optimization problems.  

Simulation results of case studies show that the proposed model-based optimal control 

method can reduce the peak power consumptions of variable-speed ACs and reduce 

the electricity costs while still satisfying the thermal comfort constraints. Sensitivity 

analyses of the weightings in the normalized objective function show that the objective 

function is reasonably formulated and sensitive to both peak power weighting and 

thermal comfort is weighting. Minimizing the comprehensive objective function can 

effectively achieve the optimal trade-offs among the electricity costs, occupant 

comfort and peak power reductions.  

The proposed model-based optimal control method can be implemented in the smart 

HEMSs and enable the residential variable-speed ACs to automatically respond to the 

day-ahead dynamic electricity prices to achieve the optimal trade-offs. When a large 

number of residential ACs simultaneously respond to dynamic electricity prices from 
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utilities or third-party load aggregators, power consumptions in grid during on-peak 

hours can be significantly reduced.  
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CHAPTER 7 PRINCIPLES OF MODEL PREDICTIVE 

CONTROL AND ITS APPLICATIONS IN BUILT 

ENVIRONMENT CONTROL 

In order to make response to 5-minute RTPs for variable-speed ACs, a frequency-

based model-based optimal control method is needed, which also needs to 

simultaneously take account of the other influential variables including dynamic 

weather conditions and occupancy. Model predictive control (MPC), also called 

receding horizon predictive control, is a promising method for frequency-based DR 

control of residential variable-speed ACs. 

Prior to applying MPC method to control variable-speed ACs, the fundamentals 

behind MPC are first briefly discussed in Section 7.1. Section 7.2 presents the state-

of-the-art studies on MPC of built environment. 

7.1 Principles of Model Predictive Control 

7.1.1 General Control Procedure 

MPC, also called receding horizon control, is an intuitive advanced control method of 

constrained control that has been successfully applied in many research areas over the 

last decades (Camacho & Alba, 2013; Oldewurtel, 2011). The major advantage of 

MPC is that it can simultaneously take account of all the influential variables at the 

controller design stage while satisfying the system operating constraints. Its main idea 
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is to use system models to predict the future evolution of the system under the 

predicted operating conditions.  

Table 7.1 Procedure of model predictive control (Receding horizon control) 

Algorithm of Model Predictive Control 

Step 1. Measure the state 𝑥𝑡 at time step t 

Step 2. Obtain the optimal output 𝑢𝑡
∗(𝑥𝑡) =  {𝑢𝑡|𝑡

∗ , 𝑢𝑡+1|𝑡
∗ , … , 𝑢𝑡+𝑁−1|𝑡

∗ } by solving 

an optimization problem with prediction horizon N 

Step 3. Apply the first command signal 𝑢𝑡|𝑡
∗  to the system 

Step 4. Proceed to time step t+1 

Step 5. Go to Step 1 

 

 

Figure 7.1 Scheme of receding horizon strategy. (Only the first control signal is 

adopted at each optimization step, while the rest of the output trajectory is discarded). 
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Table 7.1 summarizes the whole procedure of MPC. During each discrete time interval, 

starting at the current state, an optimal control problem is formulated and solved over 

a finite horizon. The optimization result is a trajectory of future control inputs 

satisfying the dynamics and time-varying constraints of the system. However, only the 

first control signal will be adopted by the system at the next sampling time, while the 

rest of the sequence is disposed, as shown in Figure 7.1. In order to compensate for 

modeling deviations and/or disturbances, a new measurement is taken at the next time 

step and the whole procedure is repeated with prediction horizon shifted forwards by 

one time step. The purpose of receding horizon is to introduce the feedback into the 

system.  

7.1.2 Critical Components 

The design efforts of an MPC controller consist of specifying some dynamics, 

constrains of the control problem and a cost function that encapsulate the preferences 

of the user towards some particular behavior of the control signals. At each sampling 

interval, the components, including cost function, dynamics, constraints and current 

state, are combined and converted into an optimization problem. A generic MPC 

framework is given by the following finite-horizon optimization problems, i.e., 

Equations (7.1) – (7.4). 
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min
𝑢𝑡|𝑡
∗ ,𝑢𝑡+1|𝑡

∗ ,…,𝑢𝑡+𝑁−1|𝑡
∗

∑ 𝑓𝑘(𝑥𝑡+𝑘|𝑡, 𝑢𝑡+𝑘|𝑡)
𝑁−1
𝑘=0           Cost function                   (7.1) 

subject to            𝑥𝑡+𝑘+1|𝑡 = 𝑔(𝑥𝑡+𝑘|𝑡, 𝑢𝑡+𝑘|𝑡)         Dynamics                         (7.2) 

(𝑥𝑡+𝑘|𝑡, 𝑢𝑡+𝑘|𝑡) ∈  𝕏 × 𝕌              Constraints                       (7.3) 

𝑥𝑡|𝑡 = 𝑥𝑡                                       Current state                    (7.4) 

In order to distinguish between the prediction of a state and the actual state, we use 

𝑥𝑡+𝑘|𝑡 to denote the prediction for the actual state 𝑥𝑡+𝑘 at time t; N is the prediction 

horizon; 𝕏 and 𝕌 are the constraint sets for states and inputs, respectively.  

The cost function and constraints are the major components of the MPC design. The 

dynamics of the system have to be modeled to a reasonable precision to achieve a good 

control performance. The current state is used as the initial state for predicting the 

future evolution of the system. In the following, the significance of each of the four 

components is briefly introduced. 

Cost Function 

The cost function depicts the desired behavior of the target system. Generally, it serves 

two purposes, i.e., stability and performance target. 

• Stability. To achieve the stability of the control, Lyapunov functions are 

usually chosen as cost functions for the closed loop system. In practice, this 

requirement is normally relaxed for the systems with slow dynamics, such as 
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buildings. For MPC designers, this increases the freedom to select the cost 

function strictly on the basis of performance. 

• Performance target. The cost function is generally, but not always, used to 

express a preference for one closed-loop behavior over another. For instance, 

minimizing energy consumption or maximizing thermal comfort in built 

climate control. 

The majority of cost functions in use are convex, resulting in a simple optimization 

problem to solve using state-of-art solvers. Common options of cost functions are 

listed in Table 7.2. 

Table 7.2 Common types of cost function in MPC controllers 

Cost function type Mathematical description 

Quadratic cost  𝐽𝑘(𝑥𝑡+𝑘|𝑡,𝑢𝑡+𝑘|𝑡) = 𝑥𝑡+𝑘|𝑡
𝑇 𝑄𝑥𝑡+𝑘|𝑡 + 𝑢𝑡+𝑘|𝑡

𝑇 𝑅𝑢𝑡+𝑘|𝑡 

Linear cost 𝐽𝑘(𝑥𝑡+𝑘|𝑡,𝑢𝑡+𝑘|𝑡) = ‖𝑄𝑥𝑡+𝑘|𝑡‖1
+ ‖𝑅𝑢𝑡+𝑘|𝑡‖1

 

Probabilistic cost  𝐽𝑘(𝑥𝑡+𝑘|𝑡,𝑢𝑡+𝑘|𝑡) = 𝑃[𝑔(𝑥𝑡+𝑘|𝑡,𝑢𝑡+𝑘|𝑡)] 

 

• Quadratic cost. The relative weighting between the states and the command 

inputs, i.e., the determination of the matrices Q and R, provides a trade-off 

between the regulation quality and the energy of the inputs. If a system is 

unconstrained, or the constraints are inactive, then the problem is reduced to a 

classic Linear Quadratic Regulator (LQR). In the area of built climate control, 

this type of cost function is usually used as a low-level controller which tracks 

the set-points given by the high-level controllers. 
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• Linear cost. If the control objective is to minimize the amount of the used 

energy/operating cost instead of doing a trade-off using quadratic costs, then 

the linear cost function is a suitable choice. 1-norm cost would be a common 

choice for minimizing the energy consumption in buildings. 

• Probabilistic cost. This cost function is usually chosen for systems subject to 

random disturbances. It is able to take account of the stochastic nature of 

certain phenomena, and minimize some expected values of some events, such 

as the bound violations of room thermal comfort. 

Dynamics 

Given the initial condition of states, numerical optimizers need a system model to 

predict the future evolution of the states. Modeling the dynamics of the system plays 

a critical role in the MPC controller, since the control performance depends on the 

quality of the model. The most common models used in MPC controllers are listed in 

Table 7.3. 

Table 7.3 Common types of dynamic models in MPC controllers. 

Dynamic model type Mathematical description 

Linear model 𝑥𝑡+𝑘+1|𝑡 = 𝐴𝑥𝑡+𝑘|𝑡 + 𝐵𝑢𝑡+𝑘|𝑡 

Input-affine model 𝑥𝑡+𝑘+1|𝑡 = 𝑓(𝑥𝑡+𝑘|𝑡) + 𝑔(𝑥𝑡+𝑘|𝑡)𝑢𝑡+𝑘|𝑡 

Piecewise affine 

(PWA) model 𝑥𝑡+𝑘+1|𝑡 = {

𝐴1𝑥𝑡+𝑘|𝑡 + 𝐵1𝑢𝑡+𝑘|𝑡 𝑖𝑓 𝑥𝑡+𝑘|𝑡 = 𝑃1
⋮ ⋮

𝐴𝑛𝑥𝑡+𝑘|𝑡 + 𝐵𝑛𝑢𝑡+𝑘|𝑡 𝑖𝑓 𝑥𝑡+𝑘|𝑡 = 𝑃𝑛

 

Non-linear model 𝑥𝑡+𝑘+1|𝑡 = 𝑓(𝑥𝑡+𝑘|𝑡, 𝑢𝑡+𝑘|𝑡) 
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• Linear model. Linear model is the most common type of model in use. More 

importantly, it is the only one type which results in convex and easily solvable 

optimization problems. For multiple input multiple output (MIMO) systems, 

the state space model is commonly used to describe system dynamics. 

• Input-affine model. It can be used to model a large number of complicated 

systems, but it is very difficult to handle at the same time. Under some 

circumstances, some mathematical tricks can be made to efficiently manage 

the dynamics of the system. 

• Piecewise affine (PWA) model. This class of model contains a mixture of 

discrete and continuous components, such as switches or valves in 

combination with continuous systems. It is extremely general and can be used 

to approximate any smooth system to an arbitrary degree of accuracy. 

Optimization problems for this type of system are usually formulated as 

mixed-integer optimization problems, which are in general difficult to be 

solved, although many well-tested methods are available for some special 

cases. 

• Non-linear model. Non-linear models are very common in real cases. Due to 

their generality, they are significantly more difficult to handle and thus not 

considered for MPC purposes. 

Constraints 

The key strength of the MPC method is the ability to specify constraints in the MPC 

formulation and to handle them directly using optimization routines. Instead of using 

the concept of specific set point of the controlled variables, specified constraints of 
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optimization problem are chosen to fulfill the control targets. Various types of 

constraints are used in practice, an overview of common types suitable for built 

climate control is given in Table 7.4. 

Table 7.4 Common types of constraints in MPC controllers. 

Constraint type Mathematical description 

Linear constraint 𝐴𝑥𝑡+𝑘|𝑡 ≤ 𝑏 

Convex quadratic constraint (𝑥𝑡+𝑘|𝑡 − �̅�)
𝑇
𝑄(𝑥𝑡+𝑘|𝑡 − �̅�) ≤ 1 

Second order cone constraint ‖𝐴𝑥𝑡+𝑘|𝑡 + 𝑏‖2
≤ 𝐶𝑥𝑡+𝑘|𝑡 + 𝑑 

Chance constraint P[𝐴𝑥𝑡+𝑘|𝑡 ≤ 𝑏] ≥ 1 − α, α ∈ (0,1) 

 

• Linear constraint. This is the most common type of constraint, which is used 

to set upper and/or lower bounds on controlled variables. Linear constraints 

are the easiest to handle when solving optimization problems and can also be 

used to approximate any convex constraint to an arbitrary degree of accuracy. 

• Convex quadratic constraint. This type of constraint is used to set variable 

bounds within ellipses. In building control, this type of constraint would arise, 

e.g., when formulating a bound on the total input energy produced by several 

actuators. 

• Second order cone constraint. Under some special circumstances, second 

order cone constraints can result from reformulations of chance constraints. 

When A = 0, the constraint collapses to a linear constraint. When C = 0, the 

constraint collapses to a convex quadratic constraint. 
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• Chance constraint. This type of constraint is chosen when uncertainty needs 

to be taken into consideration. Since an optimization problem can only be 

solved if all variables are deterministic, chance constraints need to be 

transformed into deterministic constraints. 

Current State 

The system model needs to be initialized with the current (measured/estimated) state 

of the system and all future predictions of exogenous input variables. If some states 

cannot be measured, a Kalman filter is commonly used for state estimations (Bishop 

& Welch, 2001; Simon, 2006). The Kalman filter is an algorithm that provides a 

computationally efficient solution to estimate the state of a process in a way that 

minimizes the prediction mean squared error. The solution is recursive in such a way 

that each updated estimate of the state is computed from the previous estimate and the 

new measured data. 

Prediction Horizon and Prediction Interval 

Prediction horizon N and prediction interval Δt play significant roles in the 

performance of MPC controllers. The determination of the prediction horizon is a 

trade-off between the accuracy of the prediction of exogenous inputs and a sufficient 

length of the prediction horizon. Long horizon also increases the computation time of 

each optimization. For the MPC of radiant heating systems, the prediction horizon is 

normally set as 6 – 48 hours because the rooms have large thermal masses and respond 

to the heating system very slowly (Feng et al., 2015; Halvgaard et al., 2012; Hedegaard 

et al., 2018; Karlsson & Hagentoft, 2011; Široký et al., 2011). Prediction interval is 
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the frequency at which the optimization problem is solved and at which the actuator 

receives the command signal, which is affected by the thermal response time of the 

system. 

7.2 MPC for Built Environment Control 

MPC is a flexible and intuitive approach for constrained control, which was initially 

applied in the process industries such as petroleum refineries and chemical plants in 

the late 1970s and has been successfully developed in many other fields over the last 

decade (Camacho & Alba, 2013; Morari & Lee, 1999; Qin & Badgwell, 2003).  

In recent years, MPC has received increasing attentions in the field of built 

environment control. As shown in Figure 7.2, the general procedure of MPC scheme 

in built environmental control is as follows: at the current time, a heating/cooling plan 

is formulated for the next several hours to days based on predictions of the upcoming 

weather conditions. Predictions of any other disturbances (e.g., internal gains), the to-

be-controlled costs (e.g., dynamic electricity prices), and the constraints (e.g., thermal 

comfort range) can be readily included in the optimization. The first step of the control 

plan is applied to the building, determining the setting of all the heating, cooling, and 

ventilation actuators, then the process is repeated at the next time instant (Oldewurtel, 

2011; Oldewurtel et al., 2012). 
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Figure 7.2 MPC scheme for built environment control (Oldewurtel et al., 2012). 

Some major works on the MPC of built environment are listed as follows: 

Privara et al. (Samuel Prívara et al., 2011) applied MPC to the temperature control of 

a real building heating system using both weather forecast and thermal model of a 

building. The MPC controller can utilize thermal capacity of a building and minimize 

energy consumption. It can also maintain inside temperature at desired level 

independent of outside weather conditions. The MPC controller was tested on a large 

university building during a heating season, achieving energy savings of 17–24% in 

comparison to the present controller.  

Siroky et al. (Široký et al., 2011) applied MPC to a ceiling radiant heating system, in 

which heating beams were embedded into the concrete ceiling to utilize the thermal 
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capacity of the building. Simulation results showed that the energy savings for using 

MPC with weather predictions for the target building heating system were between 

15% and 28%, which majorly depended on insulation level and outdoor temperature. 

Ma et al. (J. Ma et al., 2012) developed an economic MPC method for a multi-zone 

commercial building equipped with of variable air volume cooling system. The 

Building Controls Virtual Test Bed (BCVTB) was used as middleware to provide real-

time data exchange between EnergyPlus and MATLAB in which the MPC controller 

was developed. An economic objective function was used to account for the daily 

electricity costs. Precooling during off-peak periods and cooling discharge from the 

building thermal mass during on-peak periods can be observed from the simulation 

results. Compared with the open-loop control strategies, MPC helped to reduce the 

operating costs.  

Ma et al. (Y. Ma, F. Borrelli, et al., 2012; Ma et al., 2015) used both deterministic and 

stochastic MPC approaches to control large building cooling systems equipped with 

thermal energy storage by using predictions of weather conditions and building loads. 

A simplified hybrid model was used to predict the main behavior of the overall system. 

An MPC controller was designed to optimize the scheduling and operation of the 

central plant to reduce the electricity costs and to improve the system performances. 

Experimental results showed that the MPC method enabled a 19.1% improvement of 

the COP of the plant in comparison to the original baseline case. 

Halvgaard et al. (Halvgaard et al., 2012) developed an economic MPC controller to 

control a ground source heat pump for heating residential buildings with a water-based 

floor heating system. The thermal capacity of the building was used to shift the energy 
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consumption to low-price periods, making the residential building become a flexible 

power consumer. Both dynamic weather conditions and electricity pricing were 

included in the model. Simulation studies demonstrated that compared to traditional 

operation of heat pumps, the optimized operating strategy saves 25-35% of the 

electricity cost. 

Unlike the other studies which focused on a particular case, Oldewurtel et al. 

(Oldewurtel et al., 2012) investigated the potential of energy saving in a large-scale 

simulation study for a large number of different cases varying in the building type, 

HVAC system, and weather conditions. Simulation results showed that for many cases, 

MPC has a significant energy savings potential. Besides, stochastic MPC was shown 

to outperform the conventional control method in terms of non-renewable primary 

energy usage, thermal comfort statistics, and advantageous room temperature 

dynamics. 

Feng et al. (Feng et al., 2015) applied MPC to radiant slab systems with evaporative 

cooling sources. A first-order dynamical model was developed for implementation in 

the MPC controller and it was shown to be able to predict the system performance 

reasonably well. Model predictive control (MPC) was tested against a fine-tuned rule 

based heuristic control method for this complex control problem. Test results showed 

that the MPC controller was able to maintain zone operative temperatures at thermal 

comfort level more than 95% of the occupied hours for all zones. Compared to the 

heuristic method, MPC reduced the energy consumption of the cooling tower by 55% 

and pumping power consumption by 25%. 
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To conclude, existing studies demonstrate the superiority of MPC in energy-

efficient/cost-effective based optimal control of building energy systems especially 

when several influential variables need to be considered. 

7.3 Summary 

The main idea of MPC is to use system models to predict the future evolution of the 

system under the predicted operating conditions. Unlike the conventional model-based 

optimal control method using one-shot optimization, MPC is intrinsically a feedback 

control, which incorporates iterative optimizations over moving prediction horizons.  

The formulations of cost function, system dynamics, and constraints play significant 

roles in the performance of an MPC scheme. To obtain simple optimization problems, 

the majority of cost functions, which describe the desired performance, are convex, 

such as quadratic costs and linear costs. Instead of using the concept of specific set 

point of the controlled variables, specified constraints of optimization problem are 

chosen to fulfill the control targets. Due to the computational simplicity, linear 

constraint is the most common type of constrain. For multiple input multiple output 

(MIMO) systems, the state space model is commonly used to describe system 

dynamics.  

MPC has been applied in the field of built environment control in recent years. 

Existing studies demonstrate the superiority of MPC in energy-efficient/cost-effective 

based optimal control of building energy systems especially when several influential 

variables need to be considered.  
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CHAPTER 8 DIRECT MODEL PREDICTIVE 

CONTROL IN RESPONSE TO REAL-TIME PRICING 

Two types of dynamic electricity pricings are widely used by most utilities in the 

United States, i.e., day-ahead pricing and real-time pricing (Federal Energy 

Regulatory Commission, 2014). For day-ahead pricing, the prices at hourly intervals 

are announced to the end-consumers one day ahead. For real-time pricing, the 

electricity prices are offered every 5 minutes based on the current electricity supply 

and demand of grid nodes. The indirect model-based control method is used to respond 

to day-ahead pricing via temperature set-point adjustment. There is a lack of real-time 

optimal DR control methods in response to real-time pricing for variable-speed ACs.  

The model-based optimal control method in the literature usually adopted a two-level 

hierarchy structure in which the command signals for actuators such as rotational 

speed of compressor and opening degree of valve were sent by local controllers, e.g., 

the on-off controller and PID controller. The high-level controller, i.e., the supervisory 

controller, was used to set the optimal set points for the low-level local controllers. 

Due to the thermal mass, indoor temperature changes in buildings is much slower than 

the response speed of a controller. To respond to real-time pricing at 5-minute intervals, 

direct control of the compressor frequency, which closely relates to the power 

consumption, is more effective in shifting power consumption than adjusting the 

temperature set points of a local controller every 5 minutes. Thus, in this chapter we 

aim to use model predictive control method to directly regulate the operating 
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frequencies of the compressors in variable-speed ACs in response to the real-time 

pricing. 

8.1 Outline of the Proposed Model Predictive Control Method 

For purposes of comparison, two types of MPC controllers are designed for variable-

speed ACs including an ordinary MPC controller without DR function and a DR-

enabled MPC controller with automatic response capability to RTP. As shown in 

Figure 8.1, for both MPC controllers, three major steps are included in each time step 

of MPC: (1) preparation/prediction of the exogenous input variables, including the 

weather, occupancy, and RTP; (2) solution of the optimization problem based on the 

predicted exogenous inputs and updated current state filtered by the Kalman filter; (3) 

control implementation and measurement. Figure 8.1 illustrates the flows of both MPC 

controller without DR function and the DR-enabled MPC controller. The RTP-related 

blocks (in yellow) are involved only in the DR-enabled MPC controller.  
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Figure 8.1 Flow chart of online MPC for variable-speed ACs.  
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8.2 DR-enabled MPC Controller 

8.2.1 Step 1: Preparation/Prediction of Exogenous Input Variables 

Weather Conditions and Occupancy 

Weather conditions, such as outdoor air temperature and solar radiation, influence a 

room’s thermal dynamics and AC performances. These data may come from a local 

observatory or from prediction models (Q. Zhou et al., 2008). The integrated building 

system model used in the MPC controllers in this study makes predictions regarding 

system dynamics based on local weather forecasts. Occupancy prediction plays a 

significant role in model-based building climate control. The occupancy pattern 

determines the internal heat gain and the control range of the indoor air temperature 

over the prediction horizon. In practical implementation, the occupancy information 

could be obtained from either Internet of Things (IoT) devices (B. Zhou et al., 2016) 

or on-site prediction models (Balvedi et al., 2018; Dong et al., 2018; W. Wang et al., 

2018; W. Wang et al., 2017; Yao, 2018; Y. Zhang et al., 2018). In our simulation 

studies, the real-time weather forecast is obtained from the local observatory website, 

and the occupancy is pre-specified for the sake of simplicity.  

RTP and Dynamic Power Thresholds  

The typical RTP at 5-minute intervals is considered in the development of the online 

MPC controller for variable-speed ACs. Figure 8.2 shows the historical nodal dynamic 

RTPs of the Electric Reliability Council of Texas (ERCOT) in June 2016 (Electricity 

Reliability Council Of Texas (ERCOT)) to illustrate the large daily fluctuations in 

typical daily RTP profiles. 
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Figure 8.2 Daily RTP profiles in the ERCOT retail market on typical days of June 

2016. 

To achieve supply-demand balance in electrical grids, grid operators usually increase 

the RTP to prompt DR program participants to reduce power consumption during the 

peak demand periods. To obtain effective responses, a power constraint based on 

dynamic pricing is usually adopted in DR control methods for residential appliances. 

When the RTP is high, a low operating power threshold can be set for electric 

appliances to provide DR resources and reduce operating costs. In a similar way, when 

the RTP is low, a high operating power threshold can be adopted. Based on this idea, 

a “Price-to-Power Threshold” model for variable-speed ACs is formulated in this 

study. The cumulative probability distribution of RTP, which is obtained by analyzing 

the historical RTP database, can help us develop the model. The cumulative 

probability of RTP refers to the likelihood that the RTP is less than or equal to a 

specified value of RTP. Figure 8.3 shows the probabilities and cumulative probability 

distribution of RTPs in the ERCOT retail market in June 2016. Taking as an example 

the point denoted by the triangle symbol in Figure 8.3-b, the cumulative probability is 
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explained here. The point (24.97, 70%) means that the probability is 70% when the 

RTP is 24.97 cents/kWh or less (i.e., RTPcp=0.7 = 24.97). 

 

Figure 8.3 Probabilities (a) and cumulative probability distribution (b) of RTPs in 

the ERCOT retail market in June 2016. 

Using the cumulative probability distribution of RTP, we propose a scheme to 

determine dynamic power thresholds for the DR-enabled MPC of variable-speed ACs 

that can be mathematically described by Equation (8.1). 

𝑃𝑡ℎ𝑠ℎ,𝑖 =

{
 
 

 
 100% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑖 ≤ 𝑅𝑇𝑃𝑐𝑝=0.7
85% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑐𝑝=0.7 < 𝑅𝑇𝑃𝑖 ≤ 𝑅𝑇𝑃𝑐𝑝=0.85
70% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑐𝑝=0.85 < 𝑅𝑇𝑃𝑖 ≤ 𝑅𝑇𝑃𝑐𝑝=0.95
55% ∙ 𝑃𝑚𝑎𝑥 if  𝑅𝑇𝑃𝑖 ≥ 𝑅𝑇𝑃𝑐𝑝=0.95

           (8.1) 

where Pmax refers to the maximum operating power of an variable-speed AC; Pthsh,i 

denotes the dynamic power threshold at time step i; and RTPcp=0.7, RTPcp=0.85, and 

RTPcp=0.95 are the RTPs when the cumulative probabilities (cp) are 0.7, 0.85, and 0.95, 

respectively. The dynamic power thresholds are used as a time-varying constraint in 
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the DR-enabled MPC controller to limit the maximum operating power of AC during 

DR events. 

8.2.2 Step 2: Formulation and Solving of Optimization Problem 

A general MPC framework includes four parts: cost function, constraints, system 

dynamics and current state [32]. The cost function, constraints and system dynamics 

are introduced in Section 8.2.2.1. The method of updating current state using Kalman 

filter is presented in Section 8.2.2.2. 

8.2.2.1 Cost Function, Constraints and System Dynamics 

The objective of the DR-enabled MPC controller is to minimize the operating costs of 

the variable-speed AC over the prediction horizon N while keeping the indoor air 

temperature within a pre-specified range. The optimization problem is formulated as 

Equations (8.2) - (8.7).  

 min
𝑃1,𝑃2,…,𝑃𝑁−1

 ∑ 𝑃𝑘∆𝑡 ∙ 𝑅𝑇𝑃𝑘 + 𝜌𝑒𝑒𝑘
𝑁−1
𝑘=1                                     (8.2) 

subject to             𝑇𝑘+1 = 𝐴𝑑 ∙ 𝑇𝑘 + 𝐵𝑑 ∙ 𝐶𝑂𝑃𝑘 ∙ 𝑃𝑘 + 𝐸𝑑 ∙ 𝑑𝑘 + 𝑤𝑘                (8.3) 

𝑦𝑘 = 𝐶𝑑𝑇𝑘 + 𝑣𝑘                                                                  (8.4) 

𝑦𝑙𝑏,𝑘 − 𝑒𝑘 ≤ 𝑦𝑘 ≤ 𝑦𝑢𝑏,𝑘 + 𝑒𝑘                                             (8.5) 

𝑒𝑘 ≥ 0                                                                                 (8.6) 

𝑃𝑘 = 0  or  𝑃𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑡ℎ𝑠ℎ,𝑘                                         (8.7) 
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where N is the prediction horizon; Δt is the prediction interval; Pk and COPk are the 

AC power consumption and COP at time step k, respectively; Pthsh,k is the dynamic 

power threshold; Tk, yk, and dk are the state vector, output vector, and disturbance 

vector in the state-space system model, respectively; wk and vk are the process and 

measurement noise, respectively, which are assumed to be independent and white and 

to have a normal distribution. Ad, Bd, Cd, and Ed are the state-space matrices of the 

discrete-time state-space model.  

The objective function, Equation (8.2), aims to minimize the operating costs over the 

prediction horizon. If the constraints are not violated, the optimal power consumption 

remains at 0 kW, i.e., the AC is turned off.  

Equation (8.3) - (8.4) depict the system dynamics in a state-space form. The input 

variable, the cooling capacity (QHVAC,k), is obtained by the product of COPk and power 

consumption (Pk).  

Equation (8.5) is a dynamic soft constraint that maintains the indoor air temperature 

within a certain range. During unoccupied hours, it is supposed that the AC is turned 

off and that the optimized power consumption is 0 kW. To achieve that goal, a wide 

temperature range is normally set, e.g., 20℃ to 30℃, as a result, the indoor air 

temperature is always within the range and AC remains off during the unoccupied 

period. When the room is occupied, a narrow temperature range is set to ensure 

thermal comfort (i.e., 22°C to 24°C when the occupants are awake and 24°C to 26°C 

while the occupants sleep).  
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However, the temperature constraint may not be satisfied in practice even if the AC 

runs at its full cooling capacity, such as on an extremely hot day. This situation may 

lead to a failure to solve the optimization problem. To address this issue, we can relax 

the MPC problem by introducing a slack variable ek. The hard constraint is then 

converted to a soft constraint, which has a similar function as the dead-band plays in 

the on-off control. To ensure that the preset temperature range is met most of the time 

(i.e., ek = 0), an especially large penalty ρe can be imposed on the slack variable ek in 

the objective function.  

Equation (8.7) is a time-varying hard constraint to limit the maximum power 

consumption of AC based on the RTP from electric utilities. A variable-speed AC has 

a minimum operating frequency (e.g., 20 Hz) and corresponding minimum power 

consumption Pmin. Therefore, the power consumption should range between Pmin and 

Pthsh,k, which can be determined by Equation (8.1) or equal zero when it is turned off. 

The prediction horizon N and prediction interval Δt play significant roles in MPC 

controllers. The optimal prediction horizon is a trade-off between the accuracy of the 

predictions of exogenous inputs and a sufficient length of the prediction horizon. A 

long horizon also increases the computation time for each optimization step. For the 

MPC of radiant heating systems, the prediction horizon is normally set as 6 to 48 hours 

because the rooms have large thermal masses and respond very slowly to the heating 

system (Feng et al., 2015; Halvgaard et al., 2012; Hedegaard et al., 2018; Karlsson & 

Hagentoft, 2011; Široký et al., 2011). However, the room concerned in this study is 

located in a cooling-dominated district and has a relatively small thermal mass. In 

addition, the variable-speed AC delivers cooling to the space via heat convection, 
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which is a direct and quicker mode of heat transfer than heat radiation in a radiant 

heating system. Considering the short thermal response time of the target room to the 

cooling system, the prediction horizon N in this study is set to 3 hours, which is 

sufficient for the variable-speed AC to respond in advance to upcoming disturbances. 

The prediction interval is the frequency at which the optimization problem is solved 

and at which the actuator receives the control signal. Considering the room’s thermal 

response time and the compressor motor’s life expectancy, the compressor’s rotational 

speed is allowed to change every 5 minutes (i.e., the prediction interval of the MPC 

controller in our study is 5 minutes). 

8.2.2.2 Current State Estimation Using Kalman Filter 

At the beginning of each step, current state is needed as the starting point for 

optimization. In our case, the system state includes four variables: 𝑇 =

[𝑇𝑤,𝑒𝑥𝑡 𝑇𝑤,𝑖𝑛𝑡 𝑇𝑖𝑛 𝑇𝑚]𝑇 . However, only the indoor air temperature Tin is 

measured in real applications. To address this issue, Kalman filter is commonly used 

to optimally estimate the immeasurable variables and to filter the noise in 

measurements (Bishop & Welch, 2001; Simon, 2006). The Kalman filter is an 

algorithm that provides a computationally efficient solution to estimate the state of a 

process in a manner that minimizes the prediction mean squared error. The solution is 

recursive in such a way that each updated estimate of the state is computed from the 

previous estimate and the new measured data. As shown in Figure 8.4, each Kalman 

filter cycle includes two steps: time update (priori estimate) and measurement update 

(posteriori estimate). P, Q, and R are the covariance matrices of the state estimate error, 

the process noise, and the measurement noise, respectively. �̂�𝑘
′  denotes a priori state 
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estimate at time step k. �̂�𝑘 denotes the posteriori state estimate given measurement yk 

(i.e., indoor air temperature Tin) at time step k. Kk is the Kalman gain determined by 

solving an algebraic Riccati equation. I is an identity matrix.  

 

Figure 8.4 Kalman filter cycle for current state estimate in MPC 

8.2.3 Step 3: Implementation of Frequency Signal from MPC controllers 

The actuator in a variable-speed AC is the variable frequency driver of the compressor, 

which usually adopts the frequency as the control signal. In the development of the 

MPC controller for residential ACs, the AC power consumption, rather than the AC 

frequency, is chosen as the variable to be optimized because most incentives (e.g., 

DAP and RTP) for DR are set for power shifting and power shaving. It is more 

straightforward to use power consumption in the objective function. The optimization 

result (i.e., the power of the AC) must be converted into frequency signals to 

implement DR control. The performance maps of variable-speed ACs can be used in 

an inverse manner to determine the corresponding frequency. 
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MPC is intrinsically a feedback control, which incorporates iterative optimizations 

over moving prediction horizons. The optimization result at each time step is a 

trajectory of control signals. Only the first signal is implemented and the rest signals 

are disposed. At next time step, the optimization is repeated based on the updated 

current state.  

8.3 Ordinary MPC Controller without DR Function 

Compared with the DR-enabled MPC controller, the ordinary MPC controller without 

DR function does not consider the dynamic RTP in formulating the optimization 

problem. A general MPC framework includes four parts: cost function, constraints, 

system dynamics, and current state [32]. The differences of the two types of MPC 

controllers for variable-speed ACs only exist in the parts of cost function and 

constraints. 

The optimization problem of the ordinary MPC scheme, which aims to save the energy 

use, can be described by the objective function Equation (8.8), and the constraints 

including Equations (8.3) – (8.6) and Equation (8.9). In contrast to the time-varying 

constraint, i.e., Equation (8.7) in the DR-enabled MPC controller, Equation (8.9) is a 

static constraint that limits power consumption in a constant power range. 

 min
𝑃1,𝑃2,…,𝑃𝑁−1

 ∑ 𝑃𝑘∆𝑡 + 𝜌𝑒𝑒𝑘
𝑁−1
𝑘=1                                          (8.8) 

𝑃𝑘 = 0  or  𝑃𝑚𝑖𝑛 ≤ 𝑃𝑘 ≤ 𝑃𝑚𝑎𝑥                                       (8.9) 
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8.4 Case Studies and Analyses 

8.4.1 TRNSYS-MATLAB Co-simulation Testbed and Test Conditions 

Computer-based dynamic simulation is usually considered an effective and reliable 

approach to test control performance under various conditions. Building energy 

simulation programs like EnergyPlus and TRNSYS are commonly used to simulate a 

building’s thermal performance and the energy performance of its HVAC system. 

However, the embedded controller models in these programs usually implement on-

off control and PID control. In addition to the lack of advanced controllers, the 

simulation programs seldom provide frequency-based model of variable-speed AC 

and corresponding frequency-based control methods.  

To solve these problems, TRNSYS and MATLAB are combined in this study, as 

illustrated in Figure 8.5. In the integrated building energy system, the air-conditioned 

room is coupled with a variable-speed AC. The building model (Type 56) in TRNSYS 

is used to characterize the building’s thermal performance under the influences of 

weather, occupancy and AC cooling. The output of the controller is the operating 

frequency of the compressor motor. The variable-speed AC then uses the operating 

frequency to determine the corresponding cooling capacity and delivers it to the 

building component in TRNSYS. In this study, the component of Type 155 is used to 

establish the communication between the models in TRNSYS 18 (32-bit) and 

MATLAB 2014a (32-bit) in the Windows 10 64-bit operating system. The MPC 

controller is designed and implemented in MATLAB using the YALMIP optimization 



143 

 

toolbox (Löfberg, 2004) with the Gurobi optimization solver (Gurobi Optimization, 

2016). 

 

Figure 8.5 TRNSYS-MATLAB co-simulation testbed for building energy system 

Weather forecast data from a local observatory, occupancy profiles, and RTPs from 

electric utilities are the exogenous inputs of the MPC controllers. The variables for 

three typical summer days are shown in Figure 8.6, and are used to test the 

performances of the MPC controllers in this study. It can be seen that RTP at 5-min 

intervals from ERCOT retail market varies throughout the day and normally reaches 

a peak around 16:00, which prompts DR from residential ACs. A fluctuant occupancy 

pattern is defined to simulate the time-changing occupancy patterns. The room is 

assumed to be occupied from 12:00 to 18:00 and from 20:00 to 08:00. The simulation 

begins at 08:00. It is assumed that the room’s thermal response is stabilized after one 

night of AC operation at 08:00. Thus, the AC temperature set point is used as the initial 

value of the indoor air temperature in the simulation. 
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Figure 8.6 Weather conditions and RTP from ERCOT on three sequential typical 

summer days. 

8.4.2 Reference Case Using Conventional PID Control 

For comparison, the system performance using conventional PID control is tested first. 

A PID controller is chosen to control the variable-speed AC to maintain the indoor 

temperature at the set point. The indoor air temperature set point is 24℃ from 12:00 

to 18:00 and from 20:00 to 24:00 and 26℃ from 24:00 to 08:00 to reflect the common 

practice of setting the indoor temperature higher at night. In this case, RTP is used 

only to calculate electricity costs and is not involved in the control algorithm. The 

simulation time step is 1 minute. 
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Figure 8.7 (a) RTPs and system performance under PID control, including (b) indoor 

air temperature, (c) power consumption, and (d) electricity costs. 

Figure 8.7 shows the performances of the room and the AC under conventional PID 

control. Figure 8.7-b shows that the PID controller can maintain the indoor air 

temperature at its set point most of the time. The AC is off from 18:00 to 20:00 and 

from 08:00 to 12:00 because it is assumed that no one is in the room. When the room 

changes from unoccupied to occupied, the variable-speed AC takes time to counter 

the accumulated heat gain and bring the indoor temperature back to the set point. The 

variable-speed AC runs at high frequencies when RTP is high around 16:00. It is a 
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disadvantage to the power grid considering the large population of residential ACs 

operating at the same time. It is also a disadvantage to residential users due to the high 

electricity cost. 

8.4.3 Cases Using MPC Controllers 

The simulation tests with the two types of MPC controllers are conducted separately 

under conditions identical to those used in the reference case. The simulation time step 

in TRNSYS is set as 5 minutes, and at each time step the MPC controller in MATLAB 

is called by TRNSYS, and the frequency control signal is sent to the variable-speed 

AC model. 

8.4.3.1 Ordinary MPC controller without DR function  

Figure 8.8 shows the system performances with the ordinary MPC without DR 

function. For easy comparison, the RTP and the performances under the PID control 

are shown in the same figure. Figure 8.8-b shows that the MPC controller, as a new 

optimal control method for variable-speed ACs, satisfactorily maintains the indoor air 

temperature between the upper and lower limits, although the temperature fluctuates 

due to the uncertain noise.  

The results also show that the ordinary MPC controller naturally implements the 

precooling strategy, which obviously improves thermal comfort at the beginning of 

occupancy. On Day 1, the prediction made by the MPC controller at 10:00 indicates 

that the indoor air temperature will exceed the upper boundary (i.e., 24℃) at 12:00. 

Hence, the variable-speed AC begins to run at 10:00 to precool the room before it is 

occupied so that the indoor air temperature is at a comfortable level at the beginning 
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of occupancy. In the PID case, the temperature deviations from the set point evaluated 

by the mean absolute error (MAE) from 12:00 to 14:00 are 0.39℃, 0.78℃, and 0.96℃ 

on Days 1, 2 and 3, respectively, which are greater than those in the MPC case (i.e., 

0.06°C, 0.17°C, and 0.18°C, respectively).  

 

Figure 8.8 (a) RTPs and system performance under PID control and ordinary MPC 

without DR function, including (b) indoor air temperature, (c) power consumption, 

and (d) electricity costs. 
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Moreover, precooling is an optimal solution because the objective of the ordinary 

MPC is to minimize the energy consumption in the horizon. The ordinary MPC 

controller automatically implements precooling with different start-up times and 

durations on the three days because the weather conditions differ. In this way, the 

ordinary MPC controller solves the problem of determining the start-up time for 

precooling, which was challenging for most previous studies in which a precooling 

strategy was developed (Sun et al., 2012; Turner et al., 2015). Precooling may result 

in an increase in energy consumption, which can be observed in the test results shown 

in Figure 8.8-b. The AC under the ordinary MPC control consumes more energy than 

that under the PID control on these three days. However, the daily operating costs may 

be reduced, as shown in Figure 8.10-d, because the MPC controller allows a higher 

indoor air temperature than the PID controller. 

8.4.3.2 DR-enabled MPC controller 

The DR-enabled MPC controller considers the RTP in the optimization process. 

Dynamic power thresholds can be generated using Equation (8.1) according to the 

RTP signals from the electric utility. The dynamic power threshold acts as a time-

varying constraint in the solution of the optimization problem. 
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Figure 8.9 (a) RTPs and system performances under PID control, ordinary MPC 

without DR function, and DR-enabled MPC, including (b) indoor air temperature, (c) 

power consumption, and (d) electricity costs. 
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Figure 8.10 System performances under PID control, ordinary MPC without DR 

function, and DR-enabled MPC. 

Figure 8.9 shows the system performances under the PID control, the ordinary MPC 

without DR function, and the DR-enabled MPC. Like the ordinary MPC controller 

without DR function, the DR-enabled MPC controller can implement automatic and 

optimal precooling. However, the DR-enabled MPC controller adopts longer and 

deeper precooling to limit power consumption during peak demand periods. It starts 

the variable-speed AC to precool the room to a lower temperature so that the AC 

power consumption and operating frequency can be limited around 16:00, when the 
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RTP is very high. Thermal comfort can be maintained due to the cooling energy stored 

in the thermal mass during the precooling period.  

As can be seen from Figure 8.10-c that, compared with the PID case, the average 

power consumption from 15:00 to 17:00 is reduced by 17.31% on Day 1, 31.00% on 

Day 2, and 38.86% on Day 3, in the DR-enabled MPC control case.  

Because the DR-enabled MPC controller effectively shifts power consumption from 

high-RTP periods to low-RTP periods, the all-day electricity costs are reduced by 0.42% 

on Day 1, 13.75% on Day 2, and 22.16% on Day 3. The electricity cost saving is 

influenced by the weather conditions and RTP profiles. For example, the weather on 

Day 1 is cooler than that on Days 2 and 3 and the RTP curve is flatter, so the electricity 

cost saving is less.  

Meanwhile, as shown by Figure 8.10-b, the daily energy consumption of the AC under 

the DR-enabled MPC may exceed that under the PID control. This is the price paid to 

achieve power reductions during the peak demand hours via precooling. From the 

prospective of power grids, it is more important to provide a stable power reduction 

as required.  

Figure 8.11 shows the computation time required to solve the optimization problem at 

each time step using a PC with Intel Core i7-4600U 2.70 GHz. The computation time 

is less than 5 seconds, which is shorter than the prediction interval of 5 minutes. 

Therefore, the MPC controllers are competent in real-time online control. 
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Figure 8.11 Computation time for MPC controller without DR function (left) and 

DR-enabled MPC controller (right) at each time step. 

8.5 Summary 

In this chapter, I present the developed advanced DR-enabled MPC controller for 

residential variable-speed ACs that directly controls the operating frequency of 

variable-speed ACs in response to RTP. Stochastic white noise is added to the dynamic 

room thermal model to make it more realistic and robust. The performance under the 

proposed DR-enabled MPC controller is compared with that under the conventional 

PID controller and the ordinary MPC controller without DR function using a 

TRNSYS-MATLAB co-simulation testbed. 

The test results show that the DR-enabled MPC controller can reduce power 

consumption by 17.31% to 38.86% compared with the PID controller during peak 

demand periods and reduce all-day electricity costs by 0.42% to 22.16%. The 

percentages of peak power reduction and cost savings are influenced by the room’s 
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thermal mass, the weather conditions, and the RTP profiles. The total energy 

consumption of variable-speed ACs under the MPC may exceed that under PID 

control because the MPC controller adopts precooling to shift power demands during 

peak demand periods. The thermal comfort, as evaluated by the indoor air temperature, 

is satisfactory under all three controllers. The thermal comfort at the beginning of 

occupancy under the MPC controllers is improved by automatic precooling. The test 

results also show that the computation time of the MPC controllers is suitable for 

online real-time control. In general, residential variable-speed ACs under the proposed 

frequency-based stochastic MPC are more grid-friendly and cost-efficient.  
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CHAPTER 9 CONCLUSIONS AND 

RECOMMENDATIONS 

In this chapter, conclusions are made based on the work done. Main contributions of 

the thesis are summarized. Recommendations for the future work are also presented. 

9.1 Conclusions 

The simplified dynamic room thermal model 

The proposed grey-box dynamic room thermal can accurately predict the indoor air 

temperature under dynamic operating conditions. The model transformation from 

ODE to state space form helps to improve the computational efficiency of both offline 

parameter identification and online model predictive control.  

Test results show the runtime of GA optimization is largely reduced from 87.7 to 4.7 

minutes after the state space model is used instead of the ODE model. When the state 

space model is used for online model predictive control, it helps to formulate convex 

optimization problems which in general can be conveniently solved by using state-of-

the-art optimization techniques. Test results show that the computation time at each 

optimization step is less than 5 seconds, making the MPC controllers are competent 

to fulfill the online control. 

A room thermal model with fixed parameter values is not applicable to various 

residential buildings in different cities because the building materials, architecture 

design and occupant habits are very different. Thus, a self-learning grey-box model is 
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needed to learn the thermal characteristics of the certain room. The unknown 

parameters in the developed model can be trained by making effective use of the data 

available in the today’s smart in-home sensors. It can be embedded in smart HEMSs 

for optimal home load scheduling in response to DR signals. The electric utilities can 

also use the model to evaluate the potential benefits of DR programs on a large scale 

and make corresponding incentive policies before practical implementations of the DR 

programs.  

The simplified energy performance model of variable-speed ACs 

The developed simplified energy performance model of variable-speed ACs is able to 

characterize the AC performances under various operating frequencies and 

environmental conditions. The essence of the simplified AC model is a grey-box 

model which needs to be identified using performance data from either experimental 

tests from AC manufacturers or physics-based modeling technique. Since AC 

manufacturers seldom provide enough data for coefficient identification, physics-

based modeling of typical variable-speed AC is considered in our study. For this 

reason, a steady-state physical model of variable-speed ACs is developed to generate 

performance data under typical operating frequencies and environmental conditions.  

The proposed simply structured energy performance model of variable-speed ACs can 

be readily used by electrical researchers and engineers for either model-based DR 

control in smart HEMSs or DR potential estimation of a single variable-speed AC or 

a large population of variable-speed ACs. 

Indirect model-based optimal control method in response to hourly day-ahead prices 
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The proposed model-based optimal control method can reduce the peak power 

consumptions of variable-speed ACs and reduce the electricity costs while still 

satisfying the thermal comfort constraints. Sensitivity analyses of the weightings in 

the normalized objective function show that the objective function is reasonably 

formulated, which is sensitive to both peak power weighting and thermal comfort 

weighting. Minimizing the comprehensive objective function can effectively achieve 

the optimal trade-offs among the electricity costs, occupant comfort and peak power 

reductions.  

The proposed model-based optimal control method can be implemented in the smart 

HEMSs and enable the residential variable-speed ACs to automatically respond to the 

day-ahead electricity prices to achieve the optimal trade-offs. When a large number of 

residential ACs simultaneously respond to dynamic electricity prices from utilities or 

third-party load aggregators, power consumptions in grid during on-peak hours can be 

significantly reduced.  

Direct model predictive control in response to 5-minute real-time prices 

The developed MPC controller is able to directly control the operating frequency of 

variable-speed AC while considering all the influential variables including weather 

conditions, occupancy and RTP. The stochastic state-space room thermal model and 

the simplified energy performance model of variable-speed ACs are used for online 

predicting the future evolutions of the system.  

Test results show that compared with the conventional PID control, the major 

advantage of the ordinary MPC controller without DR function is to implement 
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automatic and optimal precooling to improve the thermal comfort at the beginning of 

occupancy. The precooling duration depends on the weather conditions on different 

days. However, it cannot effectively shift the peak power demands from high-RTP to 

low-RTP period, neither significantly reduce the electricity costs. To make automatic 

response to RTP, RTP is considered in the DR-enabled MPC controller. Compared 

with the MPC controller without DR function, the DR-enabled MPC controller shows 

great improvements in terms of peak power reductions and electricity cost savings 

even if the AC may consume more energy than the PID case due to precooling. 

Compared with the MPC controller without DR function, the DR-enabled MPC 

controller is more grid-friendly and cost-efficient. 

Challenges of implementing MPC for built environment control 

• System model for online applications. An appropriate system model is the 

cornerstone of MPC, which is used to predict the future evolution of the system 

and to output the optimal control inputs. The model needs to predict the 

relevant variables, e.g., indoor air temperature, in a sufficient accuracy. 

Moreover, it needs to be simple enough for the optimization task to be 

computationally tractable and numerically stable. Normally, it is much more 

suitable to use Linear Time Invariant (LTI) models for the MPC controller 

design. This results in a convex optimization problem that in general can be 

well solved by state-of-the-art optimization software. Obtaining an appropriate 

LTI model of the controlled building is, however, a delicate and laborious task 

even for experienced and knowledgeable engineers. Black-box, white-box, and 

grey-box modeling approaches have all been applied for model-based control. 
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The black-box approach is conceptually simple but technically tricky, and it 

depends crucially on the availability of appropriate input data sets. The white-

box models require availability and processing of a large amount of building-

specific information. The grey-box models are the most commonly used 

models for MPC purpose, which are not only physically interpretable but they 

also use real-time collected data from smart in-home sensors. One of the 

biggest challenges of implementing grey-box model is the parameter 

identification. 

• Data availability and analytics. Except for a feasible system model, a number 

of input data are also required at the beginning of each optimization. The 

required input data include the predictions of influential variables, such as 

solar radiation, ambient air temperature, occupancy profile and dynamic 

electricity prices, and the current state of the system. For the latter, Kalman 

filter is commonly used to optimally estimate the immeasurable variables and 

filter the noises in measurements. In order to obtain effective KF estimates, the 

sensor network in the real building and the building model need to be adjusted 

to each other. In general, effective collection, communication and analyses of 

the input data are very important for the implementation of MPC. 

• Hardware, software and communication. The commonly used 

programmable logic controllers (PLCs) in building automation systems have 

been proved incompetent for MPC, because they lack sufficient memory, 

processor speed and software support for numerical optimization. At present, 

an external dedicated computational core is required to be connected to the 

building’s automation system. In this way, some specifications are required 
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including the selection of the to-be-communicated signals, a communication 

protocol, and the implementation of mechanisms to handle communication and 

optimization problems (e.g., infeasibility or too long computation time). 

9.2 Summary of Main Contributions 

The present study aims at developing model-based optimal control strategies/methods 

for residential variable-speed ACs in response to two types of electricity pricings, i.e., 

DAP and RTP, with the assistance of advanced information and communication 

technologies and computational intelligence techniques in smart grids. 

Main contributions are summarized as follows: 

i. A semi-physical (grey-box) dynamic room thermal model is developed and 

validated for predicting the indoor air temperature under dynamic operating 

conditions. The model parameters can be learnt by making effective use of the 

data available in the today’s smart in-home sensors. Due to the simple structure 

and moderate computation load, the developed room thermal model is suitable 

for the applications in the HEMSs, such as model-based optimal control of 

residential ACs in response to dynamic DR signals.  

ii. A method is proposed to transform the dynamic room thermal model from 

ordinary differential equations to stochastic discrete-time state-space 

representation. Random white Gaussian noise is added in the system model to 

consider the uncertainty and make the model more realistic. The state space 

model explicitly expresses the relationships between the outputs and inputs. 

Moreover, it can be used to formulate convex optimization problems which in 
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general can be conveniently solved by using state-of-the-art optimization 

techniques.  

iii. A simplified energy performance model of variable-speed ACs is developed 

and validated to characterize the AC performances under various operating 

frequencies and environmental conditions. The proposed simply structured 

energy performance model of variable-speed ACs can be readily used by 

electrical researchers and engineers for either model-based DR control in smart 

HEMSs or DR potential estimation of a single variable-speed AC or a large 

population of variable-speed ACs. 

iv. In order to respond to hourly day-ahead prices, a model-based optimal control 

method is developed for variable-speed ACs, which adopts a two-level 

hierarchy structure. The high-level controller, i.e., the supervisory controller, 

is used to output the optimal set-point scheduling for the low-level local PID 

controller. The local PID controller is used to track the optimal set-points. The 

proposed model-based optimal control method enables the residential variable-

speed ACs to achieve the optimal trade-offs among electricity costs, occupant 

comfort and peak power reductions during DR hours. 

v. A frequency-based model predictive control method for variable-speed ACs is 

developed in response to 5-minute real-time prices. The advanced MPC 

method is intended to directly control the operating frequency of variable-

speed AC while considering all the influential variables including weather 

conditions, occupancy and real-time prices. The test results show that 

compared to the conventional PID controller, the MPC controller can 

implement automatic and optimal precooling based on the predictions of 
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dynamic weather conditions and occupancy. Besides, the DR-enabled MPC 

controller demonstrates great improvements in both peak power reduction and 

electricity cost savings and is thus more grid-friendly and cost-efficient. 

9.3 Recommendations for Future Work 

Major efforts of the present thesis have been made on the development of model-based 

optimal control methods of residential variable-speed ACs in response to dynamic 

electricity pricings. It would be very desirable and valuable to make further efforts on 

the following aspects: 

i. More rooms with different thermal characteristics in different cities are needed 

to test the adaptability of the grey-box room thermal model. For the same room, 

more measured real data in different seasons need to be collected to test the 

robustness of the model. Similarly, more types of residential variable-speed 

ACs could be experimentally tested to validate the simplified energy 

performance model. 

ii. On-site implementation and validation of the proposed model-based optimal 

control methods for residential variable-speed ACs are needed when the real 

conditions can meet the requirements. The on-site test results are very 

important to update them and to achieve desirable and satisfactory 

performances in practical applications. A lot of efforts need to be paid to test 

and validate the proposed DR control method in the practical buildings in 

future studies. 
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iii. For simplification purpose, the occupancy profile in this study is predefined. 

An occupant behavior model is desirable to be used for online prediction with 

the assistance of occupancy sensing system. The effects of occupant behavior 

on the performance of MPC controllers are worth being investigated.  

iv. Due to the simplified model structure, the room thermal model and the AC 

model can be used on a large scale to investigate the DR potential benefits of 

a large population of residential buildings. When a large number of residential 

ACs simultaneously respond to dynamic electricity prices from utilities or 

third-party load aggregators, power consumptions in grid during on-peak hours 

can be significantly reduced. If the residential micro-grid incorporates the 

renewable energy resources, the effects of DR control of residential ACs on 

the penetration of renewable energy resources are worthy being investigated. 

v. In the design of the economic MPC controller, different levels of penalties can 

be imposed on the dynamic electricity prices, forming a quadratic cost function. 

In this way, the optimization solver can automatically help to shift the power 

consumption from high-price to low-price periods. 
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