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Abstract 

The human face is the most widely used biometric for recognition and verification of one’s identity. It has been 

widely studied and analyzed in the past few decades due to its various advantages over other biometrics. In the past 

few years, face recognition research has reached many milestones, due to the availability of large amounts of training 

data and high computational power. Researchers have already achieved more than 99% recognition accuracy on one 

of the most challenging face datasets, namely, Labeled Faces in the Wild (LFW). In spite of this, some challenges still 

remain in the areas of low-resolution (LR), and age-invariant face recognition. Moreover, none of the research works 

have investigated the problem of noise variations in cross-age face images. The major objective of this thesis is to 

develop efficient algorithms that can handle and overcome these major challenges. 

In this thesis, we have first proposed a sparse-coding based method, which aims to recognize low-resolution face 

images up to the size of 8 × 8 captured under controlled and uncontrolled environments. We first down-sample gallery 

faces to the same resolution as a query image, and then extract effective local features, namely Gabor wavelets, and 

local binary pattern difference feature. Extracted features are then decomposed into a low-rank feature matrix, and a 

sparse error matrix. After that, a sparse coding-based objective function is proposed that projects learned gallery and 

query face images onto a discriminant low-dimensional sparse feature subspace for recognition. Our method preserves 

the structural information while projecting samples onto a new feature subspace, which results in the accurate 

classification. Our method provides state-of-the-art performance in recognizing very LR images, and outperforms both 

conventional and deep learning-based face recognition methods.  

 In the second part of this thesis, we investigate the existing work for solving age-invariant face recognition problem. 

A typical approach to solving the aging problem is to synthesize a test image to be the same age as a gallery image, 

and then perform recognition. However, development of an accurate aging model requires strong parametric 

assumptions and also a large amount of training data, which makes it unsuitable for real-world applications. Another 

approach, based on discriminative models, aims to learn high-level facial features invariant to age progression. In this 

thesis, we have proposed a robust deep-feature encoding-based discriminative model for aging face recognition. First, 

deep features are learned using a pre-trained deep convolutional neural network (AlexNet), which are then encoded 

using our proposed locality-constraint feature-encoding framework. By incorporating the locality information, 

correlation between the features of the same identity can be well captured by sharing the local bases of the learned 
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codebook. To make the codebook discriminative in terms of age-progression, canonical correlation analysis (CCA) is 

utilized to fuse the pair of training set features with large age gaps. Encoded features are then passed to the linear-

regression based classifier for recognition. Our proposed method does not require any age-label information for 

recognition purposes.  

Aging variation is a complex non-linear process, which affects various facial regions over a period of time. 

However, the periocular region of a human face contains complex biomedical features, such as eyebrows, contour, 

eyeballs, eyelids, etc. that vary very little with time. Furthermore, the available training and testing data might be 

corrupted with some random noise. Previous methods assume that training data is collected under controlled 

environments, which then degrade their performance, when corrupted testing data is presented for recognition. To solve 

this problem, we have proposed a manifold-constrained low-rank decomposition algorithm, which recovers underlying 

identity information from corrupted data samples to provide better feature representation. Furthermore, our method 

also preserves the local structure of the data samples, while removing the sparse errors. The resultant low-rank feature 

matrix is then encoded by learning an age-discriminative codebook using our proposed feature encoding-based 

framework. Since CCA cannot model the non-linear relationship between the two data samples, we utilize kernel 

canonical correlation analysis (KCCA) to fuse the pair of training set’s features with large age differences, which are 

then used to learn an age-discriminative codebook. Encoded features are then passed to the nearest neighbor classifier 

for recognition. Performance of our proposed method is evaluated using both the whole face region and the periocular 

region with different levels of corrupted pixels in both training and testing data. Our proposed method proves to be 

highly robust against different levels of noise variations, and provides superior performance in terms of recognition 

rate.   

All the proposed methods in this thesis are evaluated by conducting extensive sets of experiments on challenging 

face datasets. Furthermore, proposed methods are also compared with other state-of-the-art face-recognition methods.  
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  Introduction 

The human face is a widely used biometric for solving many identification and verification problems. It has attracted 

considerable amount of attention from the researchers around the world due to its useful applications. The main 

objective of this chapter is to give a brief introduction to facial image analysis and its real-world applications. 

Moreover, the motivation behind our research work, and existing challenges in face-recognition research, will also be 

discussed. Furthermore, we also discuss the methodologies proposed in our thesis, along with a brief outline and 

discussion.  

1.1  Research Background 

The human face, which is considered the most vital part of the human body, contains a lot of useful information, 

regarding behavior, identity, expressions, age, etc. It has many useful applications, such as criminal identification, 

finding missing children, security monitoring, etc. Although human beings have excellent capabilities for recognizing 

an unknown person from his/her face, now due to the evolution of artificial intelligence, it is possible for computers 

to meet human-level performance in many computer-vision applications. Unlike other biometrics, acquiring face 

images is non-intrusive, i.e. it has no requirements for physical contact. In 1960, Woodrow W. Bledsoe negotiated 

with the US government for developing a first-ever semi-automated face-recognition system (FRS). The system 

extracts facial landmark features from photographs to do recognition. The performance of this system depends on the 

discriminant of the feature points being used.  In 1988, researchers started searching for criminals from video 

sequences based on a database of mugshots. In the same year, two researchers, named Kirby and Sirovich, developed 

a linear algebra technique known as Principal Component Analysis (PCA) [1], and used it to solve the face recognition 

problem. It is considered as a major breakthrough in the face-recognition community, as face images were 

approximated by using less than a hundred values. In 1991, Turk and Pentland [1] found that during the usage of PCA 

technique, the generated residual errors could also be used for face detection in an image. This result brought new 

insights to the research of developing real-time FRS. After that, various programs were initiated by the US 

government to boost the research in facial biometrics. Some of the widely known programs include face recognition 

technology (FERET), face recognition grand challenge (FRGC), etc. Since then, researchers have developed highly 

efficient face recognition algorithms [2-8], but some challenges, which require considerable attention, still exist, such 

as low-resolution face recognition [9-11], age-invariant face recognition [12-14], and occluded or noisy face 
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recognition. This motivates us to propose some effective solutions for these challenging applications. Therefore, in 

this thesis, we focus on solving these three major problems by developing robust algorithms with state-of-the-art 

performance.  

1.2  Major Challenges 

Practical biometric systems are often confronted with low-resolution (LR) or poor-quality images captured by 

surveillance cameras, which are quite difficult to identify by the conventional face recognition systems. Due to the 

availability of large amounts of training data, and high computational power, face-recognition algorithms based on 

deep learning have achieved remarkable performances in recognizing medium resolution (MR) and high-resolution 

(HR) face images, captured in unconstrained environments. The highest recognition rate on one of the challenging face 

datasets, Labeled Faces in the Wild (LFW) [15], is more than 99 percent, which even outperforms human-level 

performance. However, it is still finding a way to make its mark in solving the low-resolution (LR) face recognition 

problem. Until now, many issues in LR face recognition have remained un-solved. They include super-resolution for 

face recognition, face detection from a long distance, resolution-robust features, and unified feature sub-spaces. 

Another major challenge is the large intra-personal variations caused by age progression. In this regard, the main 

challenge is to develop an efficient, discriminative feature representation and matching framework, which is robust to 

aging variations. Until now, only a few studies have addressed this problem. Furthermore, data available for training 

and testing may be corrupted by different types of noise variations, disguise or occlusion. Previously proposed methods, 

e.g. PCA [1] and sparse representation-based classifier (SRC) [7], did not pay attention to the possible contamination 

in training data, which heavily degrades their performance when corrupted testing data is presented for recognition. 

Therefore, there is a need to develop an accurate FRS, which is robust to possible corruption in both training and testing 

data. In the next chapter, we will briefly review the existing approaches for facial image analysis and recognition in 

both constrained and unconstrained environments. Particularly, we will also review the existing methodologies for 

solving the low-resolution and age-invariant face recognition problems.  

1.3  Statements of Originality 

This thesis claims the following contributions to be original. 

a) An efficient sparse coding-based algorithm is proposed to recognize low-resolution face images under both 

controlled and uncontrolled environments. Different from other approaches, our method first down-samples 
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gallery faces to the same resolution as the query face image, and performs recognition in the low-resolution 

domain. Our method first extracts robust local features from face images, which are then decomposed into a 

low-rank feature matrix and a sparse error matrix. After that, learned low-rank part is projected onto a low-

dimensional feature subspace using our proposed sparse coding-based objective function. Finally, feature 

matching is performed using the linear-regression model, which provides superior performance.  

b) An efficient and robust deep-feature encoding-based discriminative model is proposed for solving the cross-

age face recognition problem. Our algorithm first extracts deep-features from face images using a pre-trained 

deep Convolutional Neural Network (CNN) model (AlexNet), and then learns an age-discriminative 

codebook using a pair of training images with a large age gap. Finally, the gallery and query image’s features 

are encoded using our proposed locality-constrained feature encoding framework. To speed up the encoding 

process, a specific number of local bases (nearest neighbours) are selected from the learned codebook. These 

encoded features are then fed to the linear-regression-based classifier to do face recognition.  

c) To address noise variations in cross-age face images, an efficient manifold-constrained low-rank 

decomposition algorithm is proposed that converts extracted deep features into a low-rank feature matrix by 

incorporating the local structural information of the data samples. These learned low-rank features are then 

encoded using our proposed feature-encoding scheme based on locality information. Our algorithm first 

learns an age-discriminative codebook by fusing deep features from a pair of training images with a large age 

difference using kernel canonical correlation analysis (KCCA). In the testing stage, the learned low-rank 

gallery and the query image’s features are encoded using a learned codebook. Finally, the NN classifier is 

utilized to do face recognition.  

1.4  Thesis Outline 

This thesis is structured into six chapters, which are organized as follows: 

Chapter 2 reviews the state-of-the-art techniques related to facial image analysis and recognition under constrained 

and unconstrained environments. Firstly, those pioneer works in the field of face recognition are reviewed including, 

appearance-based and model-based face recognition methods. After that, some feature extraction and classification 

techniques are briefly reviewed. Some evolutionary work related to deep learning is reviewed. Previous and current 

research on existing challenges in the field of face recognition, such as low-resolution (LR), and aging face 
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recognition is briefly reviewed. Furthermore, existing state-of-the-art algorithms related to our proposed frameworks 

in this thesis are also reviewed.  

Chapter 3 presents our sparse coding-based algorithm for recognizing the LR face images. The proposed 

framework first decomposes a multiple of extracted local features into a low-rank feature matrix and an associated 

sparse-error matrix. After that, the learned low-rank part is used to learn a projection matrix based on our proposed 

sparse-coding-based algorithm, which preserves the sparse structure of the learned low-rank features, in a low-

dimensional feature subspace. Finally, a coefficient vector, based on linear regression, is computed to determine the 

similarity between the projected gallery and query image’s features. Furthermore, a new morphological pre-

processing approach is also proposed that aims to improve the visual quality of images. Our experiments were 

conducted on five available face-recognition datasets, which contain images with variations in pose, facial expressions 

and illumination conditions. The proposed approach provides superior performance in recognizing LR face images 

even of the size 8 × 8. 

Chapter 4 presents our proposed robust deep-feature encoding-based approach for solving age-invariant face 

recognition problem. It is capable of recognizing face images with large age gaps, and also has proved to be robust to 

noise variations. The algorithm first extracts high-level deep-features from face images using a pre-trained deep CNN 

model (AlexNet), which are then encoded using an age-discriminative codebook. To make the codebook discriminative 

in terms of age progression, CCA is utilized to project pairs of training face images with large age gaps onto a coherent 

feature subspace, such that correlation among them is maximized.  After learning a codebook, the gallery and query 

image’s features are encoded using our proposed locality-constrained feature-encoding framework. The encoded 

features are then passed to the linear-regression based classifier for recognition.  

Chapter 5 presents an age-invariant face recognition method based on a deep low-rank feature-learning and 

encoding framework. The method is also capable of handling possible corruption in the training and testing data by 

learning low-rank deep features, using a proposed manifold-constrained low-rank decomposition algorithm. After 

extracting deep features from corrupted face images, the learned features are then decomposed into a low-rank feature 

matrix and a sparse-error matrix by preserving the local structure of the features.  The learned low-rank features are 

then encoded using our proposed feature encoding-based algorithm, which enhances the discriminative power of the 

features. Finally, the NN classifier is employed to do face recognition. Furthermore, the periocular region of a human 
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face is investigated in terms of age progression using the proposed framework, which also provides superior 

performance in terms of recognition rate.    

Finally, our proposed research work is concluded in Chapter 6, along with the discussion. Furthermore, some more 

existing challenges and possible future research directions in the field of face recognition are also discussed.  
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  Literature Review 

In this chapter, we review existing works related to facial image analysis and recognition, along with recent 

advancements made in this field of research. The existing methods are first classified into different categories, and their 

performance in both controlled and uncontrolled environments, is discussed. Moreover, we also review some of the 

feature-extraction, feature-encoding, manifold-learning, and similarity measurement methods, which we employed in 

our proposed methods in this thesis.  

2.1 Face Recognition algorithms 

Face recognition is a widely studied research topic, which has a lot of real-world applications, such as criminal 

identification, finding missing children, healthcare, etc. The main purpose of face recognition is to identify a given 

query face image by comparing it with the face images in a database. An automated face recognition system is first 

required to locate facial features, like nose, eyes, etc., and to normalize the facial geometry and appearance, like 

illumination. This can provide a more convenient and reliable representation in the face feature space. An appropriate 

selection of facial features and classification techniques are the building blocks of the FRS. The pipeline of a face 

recognition system involves three major steps: (1) face detection and alignment, (2) facial features extraction, and (3) 

feature matching. In the first stage, a face region is first detected in each given image. It is considered an important 

pre-processing step, so it must be able to handle face images taken under large expression, pose, and lighting variations. 

For face detection, existing methods can be categorized into two classes, which are feature-based methods [16-21], and 

model-based methods [22-25]. The second and the most crucial step of face recognition is to extract distinctive useful 

information from face images. Feature-extraction techniques must be robust to various geometric and noisy variations. 

Finally, the extracted features are fed to an appropriate feature-matching module or classifier, which compares the 

query image’s features to the images in a gallery database, and identifies the one with the highest similarity score.  

                 

Fig. 2-1.  Face images captured under different lighting conditions. 
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In the real-world scenario, practical face recognition systems must be able to perform well under controlled and 

uncontrolled environments. There are various factors that affect the face-recognition performance. These include 

uneven lighting conditions, pose variations, facial expressions, low-resolution, aging variations, occlusion, disguise, 

noise, etc. Among the first three factors, pose variation is the most challenging one, as most of the images available in 

the gallery set are usually of frontal view. Similarly, images taken under uneven lighting conditions are difficult to 

identify, as most of the facial parts cannot be seen. Fig. 2-1 shows the face images taken under different lighting 

conditions. With the revolution of deep learning-based methods in the face recognition research, remarkable progress 

has been made in addressing these three facial variations. Currently, the highest recognition rate on the challenging 

LFW dataset is more than 99%. However, the performance drops rapidly when the image resolution becomes lower 

than 25 × 25. Moreover, existing face recognition methods are sensitive to noise, occlusion, and aging variations. 

Therefore, researchers are now focusing on solving these various challenges, with the aim of developing an accurate 

and robust FRS. In the coming sections, we will review and analyze the performance of existing methods in addressing 

these kinds of challenges.  

2.1.1 Appearance-based Face recognition Methods 

In addition to machine learning problem, face recognition is also considered as a space searching problem. The 

major objective of appearance-based methods is to learn a discriminant low-dimensional subspace where data samples 

(face images) can be projected for classification. In this context, the earliest method was proposed in 1991, namely 

principal component analysis (PCA) [1], also known as Eigen Face. It uses covariance matrix of the probability 

distribution over high-dimensional space. It is also known as linear dimensionality reduction technique that allows few 

principal components to represent the training set. The generated Eigenfaces can be linearly combined to reconstruct 

the images in the original training set. Another classical method is linear discriminant analysis (LDA) [26], also known 

as Fisherfaces. LDA is a supervised subspace learning technique, which maximizes the between-class scatter matrices, 

while minimizing the within class scatter matrices. Furthermore, it provides more discriminant information than PCA 

and tends to outperform it if a large number of training samples are available. Another method proposed was 

independent component analysis (ICA) [27], which is a generalized version of PCA. It minimizes the higher order 

dependencies in the given input data and projects face images onto the basis vectors that remains independent as 

possible. However, these methods do not preserve the local structure information while projecting data samples onto a 
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new low-dimensional subspace. To solve this issue, a linear mapping technique known as locality preserving projection 

(LPP) [28] was proposed, which projects data in the direction of maximum variance by preserving the neighborhood 

structure of the images. These linear mapping methods can be good enough but does not incorporate the non-linear 

structural information of the data samples. To address this issue, various non-linear dimensionality reduction methods 

[29-32] are proposed, also known as manifold-learning. Isomap [29] is the earliest proposed manifold learning 

algorithm, which projects data points onto a low-dimensional subspace, such that geodesic distances among the 

samples are preserved. The data points are reconstructed in a new subspace using nearest neighbor and shortest path 

graph search. Finally, it becomes an Eigenvalue decomposition algorithm where 𝑚 largest eigenvalues are selected to 

construct a new low-dimensional subspace. Another popular and widely used manifold learning algorithm is locally 

linear embedding (LLE) [30], which identify and exploit local symmetries of the data points to learn the manifold 

feature subspace. Instead of computing the pairwise distances, it recovers the global structure of the data from the 

locally linear fits. According to the assumption made by LLE, the data points and their corresponding neighbours have 

a linear relation in the manifold subspace, so neighboring points can be used to reconstruct each data point. Some other 

state-of-the-art manifold learning algorithms include Multidimensional scaling [31], Laplacian Eigen mapping [32], 

etc. These methods enhance the discriminative power of the input data points, and provides much better performance 

than linear-mapping-based methods.  

2.1.2 Model-based Face Recognition Methods 

To learn the variations in facial expressions, model-based methods were proposed that constructs 2D and 3D models 

of a human face image. It utilizes the prior information of the human face to design the model. Wiskott et al. [33] 

developed a feature-based model, based on elastic bunch graph. The method represents face images using a labeled 

graph, based on Gabor wavelets. A simple similarity function is then used to compare the graphs of new faces. 

Furthermore, constructed graphs are capable of handling rotational variance in depth. Cootes et al. [24] proposed a 2D 

morphable face model by utilizing both shape and texture information. The model can be generalized to any valid 

sample. In the training stage, the relationship is learned between the residual errors and the parameter displacements, 

which exist between a training sample and a synthesized image. The method is capable of performing efficient 

matching with only a small number of iterations.  
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There are various advantages and disadvantages of model-based methods because of their physical relationship with 

real faces. Extracting facial feature points with robustness is a challenging task that strongly depends on the model 

fitting. Inaccurate fitting can reduce recognition accuracy up to a considerable level. 

2.2 Feature Extraction Techniques 

Performance of face recognition systems heavily depends on type of discriminant information extracted from facial 

images. In the last two decades, several feature extraction methods have been developed, which provides superior 

performance in many machine learning tasks, e.g. object detection, image classification, face recognition, etc. Features 

can be categorized into two classes, known as global features and local features. For recognition, local features have 

been proven to be more robust to variations in facial expressions, pose and illumination as compared to global features. 

Most commonly used local feature extraction methods include 2-D Gabor wavelets (GWs) [34, 35], Local binary 

pattern (LBP) [2], Histogram of oriented gradients (HOG) [36], scale invariant feature transform (SIFT) [37], Discrete 

cosine transform (DCT) [38], etc. Among these, GWs and LBP are the widely used features for face recognition.  Gabor 

wavelets is considered as a good choice for performing space-frequency localization, and provide optimum resolution 

in both spatial and frequency domains. This makes it robust against various facial variations. LBP was originally 

proposed for texture classification having very less computational complexity. It works by comparing the given central 

pixel with the neighboring ones, and computes the binary code. If the value of central pixel is greater than the 

neighboring pixel then it assigns the value ‘1’, otherwise ‘0’. Later, it was used for face recognition, and outperforms 

Gabor wavelets. Moreover, LBP is insensitive to monotonic gray level transformations, and performs well under 

different lighting conditions.  SIFT is a widely used local feature descriptor for object recognition. First, it detects the 

key points in an image using difference of Gaussian (DOG) function, and then computes HOG at each detected key 

point. This feature has been proved to be invariant to various geometric transformations, such as translation, rotation, 

and scaling of the data samples. The faster version of SIFT is known as Dense SIFT (DSIFT) [39]. DSIFT excludes 

the step of key point detection, and extracts local features at every pixel of an image, which allows DSIFT to get more 

discriminative information for recognition as compared to SIFT. These feature descriptors can be combined with other 

recognition frameworks to achieve better performance.  

Recognizing face images under uncontrolled conditions is a challenging task, and no single feature is good enough 

to tackle all the facial variations simultaneously. Therefore, combining multiple features is a promising way to improve 
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the recognition accuracy. There are three different ways to combine the extracted information, which are: (1) Feature-

level fusion, (2) Decision-level fusion, and (3) matching score-level fusion. One major example of feature-level fusion 

was proposed in [40], where Gabor and LBP features are fused to get more discriminative information. LBP has the 

capability to extract even small appearance details, while GWs can extract shape information at multiple scales and 

orientation. Their complementary nature makes them promising candidates for feature fusion. Furthermore, fusion of 

these two feature sets produces a high-dimensional feature vector, so PCA [1] can be used to reduce the feature 

dimension. For decision-level fusion, different classification techniques are first selected that makes their own 

decisions. Finally, decisions from multiple classifiers are integrated to produce the final decision. For match score-

level fusion, scores computed using different biometric matchers are fused to get the final decision. It is worth noting 

that the matching scores generated by different matchers may have a large difference. The scores generated by different 

modalities can be combined to get a final similarity score.  

2.3 Classification techniques 

The final and the most crucial step of face recognition system is classification. There exist several methods for 

classification that includes k-Nearest Neighbour (kNN) [41], Support Vector Machine (SVM) [42], artificial neural 

network (ANN), sparse representation-based classifier (SRC) [7], Linear and logistic regression [43], Decision trees 

[44], etc. It is observed that linear classifiers cannot provide satisfactory performance, if features are not linearly 

separable. Classification techniques can be categorized as either supervised, unsupervised or semi-supervised. Most of 

the face recognition systems use supervised learning methods, e.g. kNN classifier that uses class label information and 

assigns a given sample to the class to which the majority of its k-nearest neighbors belongs to. SVM is a widely used 

classifier, which ensures the maximum distance between the hyperplane and the points near to the decision boundary. 

It is a supervised learning technique that produces an optimal hyperplane to classify new samples. There are three main 

ideas in building a good classifier which are similarity, decision boundary, and probability. Similarity concept is quite 

simple in which metric is established to define and represent the similarity between the images of the same class. In 

this regard, several metrics have been proposed including Euclidean distance, Chi-square, Hamming distance, etc. 

Some classifiers are based on probabilistic approach which assigned patterns to the class with the highest estimated 

posterior probability. Bayesian classifier [45-46], multi-layer perceptron (MLP) [47] (trained under a suitable loss 

function), and logistic regression are one of the major examples of probabilistic classifiers. Naïve Bayesian classifier 
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applies Bayes theorem with strong assumptions between the given features. It is widely used for document or text 

classification by using word frequencies as features, where the parameters are determined by using maximum-

likelihood.  MLP is a class of ANN that utilizes a backpropagation technique for training. It is different from a linear 

perceptron due to multiple layers and non-linear activation functions. Furthermore, it has a capability to classify the 

data samples which are not linearly separable.  

In decision-boundary based classifiers, the measurement error between the training and testing samples is 

minimized. Fisher discriminant analysis (FDA) [26] is one of the examples that is used to model the differences 

between the classes of data, and then minimize the mean square error. SRC [7] is a state-of-the-art classifier proposed 

for robust face recognition. According to sparse theory, each test sample can be linearly represented in terms of all 

training samples. It works by first computing the sparse coefficients using 𝑙1 minimization technique, and then 

computes the residual value. Finally, given input sample is classified based on the least residual value. Later, we will 

briefly discuss the concept of sparse coding for face recognition. Naseem et al. [43] proposed a linear regression 

concept for classifying face images. It assumes that there exists a linear relationship between a probe image and all the 

samples in a gallery set.  If a query face image fits to the 𝑖th class in the gallery set, it can be represented as a linear 

combination of the gallery-images features from the same class. The relationship between a probe image and a gallery 

image is determined using least-squares method, and a probe image is assigned to the class with the minimum 

reconstruction error.  

2.4 Deep learning-based Methods 

Deep-learning models have revolutionized pattern-recognition research by providing extra-ordinary performances, 

which is quite close to human-level performances. One of the main reasons for its success is the availability of a large 

training sets and the networks are trained for feature extraction and recognition from end to end. For face recognition, 

various deep learning (DL) models [3, 6, 48-54] have been established, and provide excellent performance. Sun et al. 

[3] proposed a deep-CNN model, namely DeepID, which learns high-level deep features from the patches of face 

regions for identification. Another deep face model [6], namely FaceNet, which uses a large network trained by distance 

constraints, was proposed. This model achieves a very high recognition accuracy of 99.60% on the challenging LFW 

dataset. Parkhi et al. [48] proposed a very deep-CNN architecture, namely VGG-Face, trained on 2.6M images from 

2,622 identities. The model has proven to be highly successful for face recognition, and achieves 99.13% recognition 
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accuracy on the LFW dataset. Wen et al. [50] proposed a deep network, which minimize the intra-class distances 

between the deep-features in a loss function, and achieves 99.2% recognition accuracy on the LFW dataset. Recently, 

Liu et al. [49] proposed an angular softmax loss function, which learns discriminative features using CNN based on 

the ResNet architecture [55]. The method achieves 99.42% accuracy on the LFW dataset. It is to be noted that the scale 

of training data used by SphereFace [49] is smaller than the other deep-learning methods. Although, deep-learning 

based methods provides powerful data representations, the method in [56] argues that deep-learning performance is 

affected by various facial variations especially pose variation. Therefore, preprocessing of data samples is necessary. 

For deep-learning, data preprocessing can be categorized into two categories: (1) Many-to-one normalization, and (2) 

One-to-many augmentation. In the first category, non-frontal face images are converted into frontal ones by using face-

frontalization method, and then FR is performed. However, in the second category, one image is used to generate 

multiple images with different poses. These images are then used to train deep neural networks, which enable it to learn 

pose-invariant features. The commonly used data-augmentation methods include various geometric and photometric 

transformations, such as mirroring, oversampling, and rotation of the face images. By doing this, DL models can learn 

a rich level of feature representations, which further improves the recognition rate. To meet the requirements in terms 

of large training data, several datasets have been released to train Deep-CNN models for recognizing face images, e.g. 

CASIA-Web Face [57], Mega Face [58], etc. CASIA-Web face contains 494,414 face images from 10,575 identities. 

In 2015, the largest dataset, namely, Mega Face was released to check the performance of existing face recognition 

methods. It consists of 1 million distractors from more than 690K identities. The training set consists of 4.7 million 

photos from 672,057 identities, while the testing set contains both images of celebrities and non-celebrities from the 

FaceScrub and FGNET datasets, respectively.  

 

Fig. 2-2. Some state-of-the-art deep architectures proposed for image classification, and successfully utilized for face recognition. 

(Image adapted from [59]).  
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  Loss Function:  Loss functions calculate the loss between the output and the target variable, which plays a major role 

in training a deep neural network. The commonly used loss function in deep-CNN architectures is softmax loss 

function. However, due to large intra-personal variations in face recognition, softmax loss function becomes 

ineffective. Researchers are now focusing on developing more novel loss functions, which makes the learned features 

more discriminative. Some of the recently proposed loss functions include: (1) Euclidean-distance-based loss function, 

which increases the discriminative power of the features by minimizing the intra-class-variance and maximizing inter-

class-variance using Euclidean distance. (2)  Cosine/Angular loss function [49], which enhances the discriminability 

of deep features by learning an angular similarity. Moreover, the performance of loss function can be enhanced by 

using L2 normalization. Once the deep-CNN models are trained using large amount of data and reasonable loss 

function, a given query input can be passed to the trained deep network to extract high-level features. After extracting 

the features, many metric learning techniques can be used to measure the similarity score.  

2.5 Review on Existing Challenges 

2.5.1 Low-resolution Face Recognition 

Face images captured by surveillance cameras are usually of low-resolution (LR) and poor-quality, with huge 

variations in pose, facial expressions and lighting conditions, as shown in Fig. 2-3. These make the low-resolution (LR) 

face recognition task very challenging. Conventional face recognition approaches [1, 26, 27] gives good performance 

when captured images are of high-resolution and taken under controlled environments, but their performance degrades 

heavily when the image resolution becomes lower than 25 × 25. A lot of research is being conducted to tackle these 

challenges separately, and handling all of them simultaneously is very challenging and requires significant attention.  

 

Fig. 2-3  Low-resolution face recognition (Image adapted from paper [193]) 
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There are three possible approaches for solving LR face recognition problem as shown in Fig. 2-4. One of the 

possible solutions is to enhance the visual quality of an input LR image using a super-resolution (SR) technique, and 

then perform recognition. Second approach is based on coupled mapping in which HR gallery image and LR query 

image are projected onto a common subspace, where recognition is performed. Third approach is to first down-sample 

the HR gallery image to the same resolution as LR query image, and perform recognition in the LR domain. In this 

section, we will discuss some possible solutions for LR face recognition along with their advantages and disadvantages.  

 

Fig. 2-4: Three possible approaches for solving LR face recognition. 

2.5.1.1 LR Face recognition using Super-resolution techniques 

    For face images, the SR process is also known as face hallucination, which was first proposed in [60]. The method 

decomposes a face image into a pyramid of features by utilizing the Gaussian and Laplacian pyramids, and then 

reconstructs the corresponding high-resolution (HR) image. In [61], the limitations of SR were discussed and some 

possible solutions to breaking them were given. Yang et al. [62] proposed a SR approach based on sparse coding, which 

generates the HR image patch by computing the sparse representation coefficients of each LR image patch from a 

dictionary. Finally, the dictionaries of both HR and LR image patches are trained simultaneously to enhance the 

similarity between the HR and LR image pairs. Wang et al. [63] utilizes principal component analysis (PCA) to linearly 

represent LR test image, in terms of similar LR training images. The HR image is constructed, by replacing the LR 
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training images with the corresponding HR training images. The SR methods in [64, 65] assume that the LR and HR 

images of the same person have some intrinsic correlation. Another face-hallucination framework presented in [66] 

assumes that two face images of the same identity have high-correlation in terms of their local-pixel structures. The 

approach learns the local-pixel structure for reconstructing a HR image by searching a face database for similar HR 

faces using the LR input image. It was reported in [10, 67] that super-resolved images contain distortion and artifacts, 

which reduce the recognition accuracy, and hence are not a feasible solution to LR face recognition. Hennings-

Yeomans et al. [68] proposed an objective function for performing hallucination and recognition simultaneously. This 

approach proves to be computationally expensive, because optimization is required for each test image. Huang et al. 

[69] proposed a SR method, which performs non-linear mappings of coherent features. The method learns a coherent 

subspace between the HR samples and LR samples using canonical correlation analysis (CCA). Radial basis function 

(RBF) is then used to learn the nonlinear mappings between the coherent features, and the super-resolved coherent 

features of a LR image are determined by using a trained RBF model. Zou et al. [9] proposed a framework for face 

hallucination, which aims to learn a mapping function that defines the relationship between the HR and LR image 

spaces by utilizing a new discriminative constraint. Jian et al. [70] proposed an improved method for performing 

hallucination and recognition simultaneously by utilizing the singular value properties of images at multiple 

resolutions. To recognize LR face images, only the super-resolved HR features are required. One way is to extract 

features from super-resolved HR images. However, these images, which are distorted versions of the true HR face 

images, are generated by estimation. Pong et al. in [71] proposed an approach, which directly estimates the HR features 

for recognition by performing super-resolution in the feature space. The method also fuses the features from different 

resolutions, so as to further improve the recognition accuracy.  

2.5.1.2 Coupled-Mapping Based Methods 

Another approach for recognizing LR face images is based on coupled mappings. Li et al. [10] proposed to learn a 

unified low-dimensional feature subspace for LR and HR images, which then facilitates the ultimate classification. 

Zhou et al. [72] presented a method, which preserves the discriminative power of the HR and LR samples in the learned 

common subspace using simultaneous discriminant analysis. Ren et al. [67] learned a common subspace for LR and 

HR samples using coupled kernel embedding, which uses a new similarity measure to compare the multimodal data. 

Biswas et al. [73] used multidimensional scaling for LR face recognition, which projects LR and HR samples into a 
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common subspace, such that the geometrical structure of the samples is preserved. This approach also ensures that the 

distance between the two LR images is nearly the same as that of its HR counterparts. Siena et al. [74] utilizes the local 

structure’s relationship between the HR gallery images and LR probe images to learn a common subspace. Similarly, 

Shi et al. [75] projects HR gallery images and LR probe images into a unified latent subspace by incorporating the 

geometrical structure of each given sample with respect to its neighboring points. The approach combines all the local 

optimizations to construct a global structure, which preserves the discriminant information of the samples in the learned 

subspace. Zhang et al. [76] proposed to learn a projection matrix, which maximizes the margin between inter-class and 

intra-class distances in the common subspace. Wang et al. [77] used CCA to determine the correlation between HR 

and LR image pairs, such that a pair of transform matrices are computed for the HR and LR face images, respectively. 

Jiang et al. [78] addressed the LR face recognition problem by proposing a coupled discriminant method based on 

multi-manifold analysis. The approach learns the local structure as well as neighborhood information about the 

manifold subspace covered by the image samples. After that, two mapping functions are learned to project the HR and 

LR samples, respectively, into a common feature subspace. Chu et al. [79] proposed a cluster-based method, based on 

simultaneous discriminant analysis. The method learns the cluster-based scatter matrices to regularize the between-

class and with-in class scatter matrices. This enhances the discriminability of the feature space. Xing et al. [80] 

proposed a coupled mappings-based approach, which projects face-image samples into a unified feature subspace using 

the topology of a generalized bipartite graph. The approach also preserves the local geometrical structure of the samples 

when they are projected into a new subspace. Recently, Yang et al. [81] proposed a discriminative multi-dimensional 

scaling (DMDS) method for LR face recognition, which considers the intra-class, as well as inter-class, distances, while 

projecting the HR and LR data samples into a unified feature subspace.  

2.5.2   Age-invariant Face Recognition  

Recognition of face images under large age-variations is a challenging research problem, which receives 

considerable amount of attention in the past few years. It has many practical applications, e.g. criminal identification 

using photographs, finding missing children, etc. The major challenge in AIFR is the considerable intra-personal 

variations due to age progression as shown in Fig. 2-5. Due to the availability of large amount of training data and 

computational power, existing deep-learning-based techniques have already achieved superior performances in 

recognizing face images under unconstrained environments. However, their performance is limited in solving aging 
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face recognition problem. There are some reasons for that. Firstly, it is quite difficult to collect training data with large 

age differences as it requires long period of time and great effort. Secondly, modeling age progression is challenging 

as it is specific to different persons. For example, some people use different kinds of make-up and skin-refreshment 

techniques to look like younger people. On the other hand, some people go through a lot of stress and problems in their 

life, which makes them look like elder people at the younger age. Moreover, photos taken at earlier ages are of poor 

quality and contains a lot of distortions, as the high-resolution cameras were not available at that time.  

 

                                  Age 18         Age 25                    Age 35                    Age 49                    Age 60 

 

                               Age 2                     Age 10                    Age 22                    Age 29                    Age 43 

Fig. 2-5. Sample face images from the FGNET dataset from two different people with large age variation, where each row 

represents the face images of the same person. 

2.5.2.1 Generative Models 

Existing research work related to facial aging mainly focuses on either age estimation [82-88] or age simulation [89-

96]. A typical approach to AIFR is to synthesize a test face image to be the same age as the gallery image before 

performing recognition, i.e. it is based on generative models. Lanitis et al. [87] developed a statistical model to encode 

face images in a compact manner. The approach utilizes training images to establish the relationship between encoded 

features and the real ages of the subjects in the corresponding images. Based on this relationship, the age of an unseen 

subject can be estimated. Ramanathan et al. [88] proposed an age-invariant face verification framework by proposing 

a fast-growing model for people whose ages are under 18 years old. Park et al. [91] proposed to compensate for the 

aging variation by developing a 3D aging model using a 2D face-aging dataset, which enhances the recognition 

performance. Suo et al. [92] developed a dynamic method for modeling human age progression. The approach 

represents face images in different age groups by using a hierarchical graph. Wang et al. [96] developed an aging 
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simulation method by transforming the shape and texture of a human face from its source age to the target age, which 

is performed in the eigenspace.  

These generative model-based methods have some limitations. First, it is quite difficult to build a face model as it 

cannot represent the aging process in an accurate way, especially when the training set is small. Constructing an 

accurate aging model requires strong parametric assumptions, as well as the real ages of the training images, which 

makes it unsuitable for real-time face recognition. Furthermore, the training data must be taken under controlled 

environments e.g., frontal pose, neutral expression, and normal lighting.  

2.5.2.2 Discriminative Models 

Recently, discriminative models have been proposed for AIFR, which focus on developing features robust to aging 

variations. Ling et al. [97] utilized the gradient orientation pyramid (GOP) for feature extraction, and the support vector 

machine (SVM) for classification. Guo et al. [98] investigated the effects of age gaps on recognition rates by performing 

experiments on a large data set, using PCA. In [14], the feature descriptors, multi-scale local binary pattern (MLBP) 

and scale invariant feature transform (SIFT), were utilized, and a fusion framework, based on random sampling, was 

proposed to enhance the recognition performance. Extended versions of random sampling, methods based on local 

discriminant analysis (LDA) were also utilized in [99, 100] to address the aging variations in face recognition task. 

These approaches have been proved to be robust with only few requirements regarding associated parameters and 

training data. Gong et al. [101] proposed a novel feature descriptor, namely maximum entropy feature descriptor 

(MEFA), which analyses facial images on a micro level and encodes the information in a form of discrete codes. The 

approach is based on a new matching framework, known as identity factor analysis, which estimates the probability 

that the two given face images are from the same identity. 

The recent work on aging face recognition in [102] proposed a probabilistic model, which represents a face image 

with two components, namely the identity component and the aging component, respectively. A learning algorithm, 

which estimates these two components simultaneously, was proposed. Chen et al. [103] proposed a new coding 

framework, which performs feature encoding by using reference images with an age-invariant reference space. It is 

based on the assumption that if two persons look similar at younger ages then they might look alike at the older ages. 

By utilizing the large size face-aging dataset as a reference set, the method learns age-invariant reference space for 

feature encoding. The approach proves to be highly scalable as it only needs a linear projection for feature encoding in 
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the testing stage. In [104], a joint additive model was proposed to perform cross-age face verification, which is solved 

by the alternating greedy coordinate descent (AGCD) algorithm. Recently, a hierarchical model with two stages of 

learning is proposed in [105]. Firstly, discriminative features are learned from microstructures of facial images, which 

are then converted into integer codes for face recognition. After that, the extracted information is polished by using the 

output obtained from the first stage.  However, these methods utilize hand-crafted features, and their performances 

strongly depend on the properly pre-processed face images.  

2.5.2.3 Deep-learning based Approaches for AIFR 

Wen et al. [106] learned age-invariant features by proposing a deep convolutional neural network based on latent 

identity analysis. The method keeps the identity components separated from the aging variations in the learned deep 

features. The model’s parameters are then used to update the parameters of a latent-factor fully connected layer. The 

latent identity model and the corresponding loss function invariant to aging variation guides the learning process of the 

proposed convolutional neural network (CNN).  However, it assumes that the combination of identity and aging 

features is linear and can be separated completely. Therefore, the method ignores the probability regarding the 

correlation between the aging and identity component. Another deep-learning framework [107], for age estimation, 

was proposed to learn age-invariant features. The method utilizes the real-age and identity labels of the training data 

to simultaneously perform age-estimation and face recognition. Recently, another deep learning framework [108] is 

proposed, which combines two networks consists of identity and aging information, respectively. Furthermore, both 

networks share the same feature layers. Cross-age identity features are separated from aging features by training the 

fused networks alternatively. Xu et al. [109] proposed to learn the complex non-linear aging progression using an auto-

encoder network. The method decomposes a face image into identity, age, and noise component by proposing a non-

linear factor analysis method. Recently, a novel distance metric optimization method [110] based on deep learning was 

proposed. The method used a large number of matched pairs from the training set to learn identification information. 

These matched pairs are then served as an input to enhance the differences between the unmatched pairs. The model 

parameters are updated using the classical gradient descent algorithm. The learned features and distance metric are 

optimized simultaneously. Wang et al. [111] proposed a deep CNN model, which learns age-invariant deep features. 

The learned deep features are decomposed into orthogonal identity and aging components. The identity components 

are then used for face recognition.   
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2.6 Review on Related Methods 

In this section, we will review some of the existing methods that are closely related to our proposed methodologies 

in this thesis. These methods include linear and nonlinear subspace learning methods, sparse representation theory, 

feature-encoding methods, low-rank feature learning, and analysis of the periocular region for face recognition.  

2.6.1 Principal component Analysis 

Principal component analysis (PCA) is an unsupervised linear dimensionality reduction technique, which uses only 

few basis vectors to represent the set of images. It is a linear mapping technique that projects high-dimensional data 

onto a low-dimensional subspace by retaining maximum amount of information. Let us consider that the high-

dimensional space is represented by 𝑥 = 𝑎1𝑣1 + 𝑎2𝑣2 +⋯+ 𝑎𝑁𝑣𝑁, where 𝑣1, 𝑣2, … , 𝑣𝑁 is the basis of the 𝑁-

dimensional space. Similarly, low-dimensional space is represented by 𝑥 = 𝑏1𝑢1 + 𝑏2𝑢2 +⋯+ 𝑏𝐾𝑢𝐾, where 

𝑢1, 𝑢2, … , 𝑢𝐾 is the basis of the 𝐾-dimensional space. PCA works by minimizing the error ‖𝑥 − 𝑥‖. The optimum low-

dimensional subspace is determined by computing the few eigenvectors of the covariance matrix of 𝑥. These 

eigenvectors are associated with the corresponding eigenvalues, which are also known as principal components. 

Suppose we are given with 𝑁-dimensional vectors 𝑥1, 𝑥2, … , 𝑥𝑀, where 𝑀 represents the total number of vectors. First 

step is to compute the mean, which is defined as �̅� =
1

𝑀
∑ 𝑥𝑖
𝑀
𝑖=1  . The second step is to subtract each sample from the 

mean defined as 𝜑𝑖 = 𝑥𝑖 − �̅�. The covariance matrix of the data sample can be computed as:  

                                                                               𝑪 =
1

𝑀
∑𝜑𝑛

𝑀

𝑛=1

𝜑𝑛
𝑇 =

1

𝑀
𝑨𝑨𝑇 ,                                                                      (2.1) 

 where 𝑨 = [𝜑1, 𝜑2, … , 𝜑𝑀] 𝜖 ℝ
𝑀×𝑁. Finally, it turns out to be an eigenvector problem of the form 𝜆𝑢 = 𝑪𝑢, where 𝑢 

are the eigenvectors of covariance matrix 𝑪, and 𝜆 are the associated eigenvalues. The first 𝐾 eigenvectors having 

largest eigenvalues are selected as the corresponding basis vectors to construct the low-dimensional space. In face 

recognition community, it is also known as Eigenfaces. From geometric point of view, PCA performs linear mapping 

of data samples in the direction of maximum variance. These directions are represented by the corresponding 

eigenvectors and eigenvalues. Furthermore, it preserves the global structure of the data samples, while projecting the 

data samples onto the low-dimensional subspace, and performs well in recognizing face images under large variations 

in facial expressions. However, it is unable to perform well under large pose and illumination variations. 
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2.6.2 Locally Linear Embedding (LLE) 

  

The local features extracted from face images contain rich amount of information, which is usually of high-

dimension. Since the 1990s, many subspace learning methods have been developed, that aims to learn a discriminative 

low-dimensional feature subspace, which reduces the computational complexity of the whole system. Most of these 

methods originated from the literature [1], where PCA was applied to represent the human face images. Another classic 

subspace method is LDA [26], which uses a smaller set of basis images to project data samples onto a new low-

dimensional subspace, according to their class labels. However, PCA and LDA cannot incorporate the local structure 

of the data samples accurately, which makes them unsuitable for face recognition in unconstrained environments. 

Previously proposed methods, including multidimensional scaling (MDS) [31], which learns a low-dimensional 

subspace, such that the pairwise distances among the data points are preserved. Instead of computing the pairwise 

distances, LLE recovers the global structure of the data from the locally linear fits. It assumes that the data points and 

their corresponding neighbours have a linear relation in the manifold, so the neighbouring points can be used to 

construct each data point in a new low-dimensional space. The cost function used to compute the reconstruction error 

can be written as follows: 

                                                                           ∈ (𝑾) =∑‖𝑭𝑖 −∑𝑾𝑖𝑘𝑭𝑘
𝑘

‖

2

,

𝑖

                                                                (2.2) 

s. t.  ∑𝑾𝑖𝑘

𝑘

= 1 , 

 where 𝑭𝑖 is the real-valued feature vector. 𝑾𝑖𝑘 indicates the weight contribution of the 𝑘th data point to reconstruct 

the 𝑖th sample. It also follows the constraint that the sum of the weights in each row of the weight matrix is equal to 

one. According to the principle discussed above, the weights 𝑾𝑖𝑘, which performs reconstruction of the 𝑖th data point 

in the 𝑄-dimensional space, can also reconstruct the corresponding data points in the 𝑞-dimensional space, where 𝑄 >

𝑞.  In this way, LLE projects the data, such that the local structural information of each data point is preserved in the 

new subspace. Finally, each feature 𝑭𝑖 is mapped into a new low-dimensional vector 𝑽𝑖, which represents the internal 

coordinates on the manifold. The objective function can be defined as follows:      

                                                                              𝜑(𝑽) =∑‖𝑽𝑖 −∑𝑾𝑖𝑘𝑽𝑘
𝑘

‖

2

.

𝑖

                                                                (2.3) 
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 According to the formulation in [30], the projection matrix learned from the computed weight matrix is given as 𝒁 =

(1 −𝑾)(1 −𝑾)𝑇. LLE is simple and computationally efficient, compared to other manifold-learning techniques, as 

its optimization process does not involve a local minimum. Some more important geometrical properties of LLE are 

as follows: 

• LLE attempts to construct the graphical representation of data points. In this context, it is similar to ISOMAP 

[29], but it is more insensitive to short-circuiting (overlapping of the samples belong to the different classes), 

as compared to ISOMAP. If short-circuiting happens, then only a few local properties will be affected.  

Furthermore, LLE results in the successful embedding of manifolds (non-convex in nature), which is due to 

the preservation of local structures.  

• LLE assumes that a manifold is locally linear, so it fits a hyper-plane by using the data points and it’s 

corresponding nearest neighbours. This assumption leads to the reconstruction weights, and makes it invariant 

to rotation, rescaling, and translation.  

• LLE is computationally inexpensive, as its optimization process does not involve a local minimum.   

2.6.3 Canonical Correlation Analysis  

Canonical correlation analysis (CCA) is a useful technique to study the relationship between the two variables. It 

works by computing the basis vectors for both variables and projects them onto a new coherent feature subspace, such 

that their correlation is maximized. Given two matrices 𝑿 and 𝒀 with columns representing the sets of variables 𝒙 and 

𝒚 having zero mean and unit variance. Let us consider that 𝜶 and 𝜷 are the pairs of direction matrices for 𝑿 and 𝒀, 

respectively. The respective projection coefficients for  𝑿 and 𝒀 are denoted as 𝑼 and 𝑽, such that 𝑼 = 𝜶𝑇 . 𝑿 and 𝑽 =

𝜷𝑇 . 𝒀. It works by maximizing the following function: 

                                                                           𝐾(𝜶, 𝜷) =
𝜶𝑇𝑪𝑋𝑌𝜷

√𝜶𝑇𝑪𝑋𝑋𝜶.𝜷
𝑇𝑪𝑌𝑌𝜷

 ,                                                                     (2.4) 

where 𝑪𝑋𝑋 and 𝑪𝑌𝑌 are the within-set covariance matrices of 𝑿 and 𝒀, respectively, and 𝑪𝑋𝑌 is the cross-variance 

matrix of 𝑿 and 𝒀, respectively. It can be shown that the learned direction matrices 𝜶 and 𝜷 are the eigenvectors of 

𝑪𝑋𝑋
−1𝑪𝑋𝑌𝑪𝑌𝑌

−1𝑪𝑋𝑌
𝑇 and 𝑪𝑌𝑌

−1𝑪𝑋𝑌
𝑇𝑪𝑋𝑋

−1𝑪𝑋𝑌, respectively. 
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2.6.4 Kernel Canonical Correlation Analysis  

To study the non-linear relationship among the data samples, an extension of CCA known as Kernel canonical 

correlation analysis (KCCA) was proposed. As discussed above, CCA seeks a linear transformation for set of variables  

𝑿 and 𝒀, such that the projected features in the transformed space have maximum correlation. The major drawback of 

CCA is that it cannot capture the nonlinear relations between the two subjects, and linear relationship cannot always 

be adequate for determining the correlation between the two subjects. Firstly, the data samples 𝒙 and 𝒚 are mapped 

onto the high-dimensional subspace by their corresponding mapping functions 𝜑𝑥, and 𝜑𝑦, respectively. It can be 

written as: 

                                             𝜑: 𝒙 = (𝑥1, … , 𝑥𝑚) → 𝜑(𝒙) = (𝜑1(𝒙), … , 𝜑𝑁(𝒙))  (𝑚 < 𝑁)                                 (2.5) 

                                             𝜑: 𝒚 = (𝑦1, … , 𝑦𝑚) → 𝜑(𝒚) = (𝜑1(𝒚),… , 𝜑𝑁(𝒚))  (𝑚 < 𝑁)                                 (2.6) 

After mapping 𝑿 using 𝜑𝑥, and 𝒀 using 𝜑𝑦, linear CCA is applied, which moves it from primary to dual 

representation. A kernel can be defined as a function 𝐾, such that for all 𝒙, 𝒛 ∈ 𝑿, 𝐾(𝒙, 𝒛) = 〈𝜑(𝒙). 𝜑(𝒛)〉. In linear 

CCA, the overall covariance matrix 𝑪 of 𝒙 and 𝒚 is given as: 

                                                                𝑪 = 𝐸 [(𝒙
𝒚
) (𝒙𝑇 𝒚𝑇)] = [

𝑪𝑥𝑥 𝑪𝑥𝑦

𝑪𝑥𝑦
𝑇 𝑪𝑦𝑦

]                                                       (2.7) 

We can rewrite the covariance matrix 𝑪  as 𝑪𝑥𝑥 = 𝑿
′𝑿 and 𝑪𝑥𝑦 = 𝑿

′𝒀. The projection of data onto the direction 𝜶 

and 𝜷 can be defined as 𝒘𝑥 = 𝑿
′𝜶 and 𝒘𝑦 = 𝒀

′𝜷, respectively. Recalling Linear CCA, function needs to be 

maximized can be defined as:           

                                                                          𝜌 = max
𝒘𝑥,𝒘𝑦

𝒘𝑥
′𝑪𝑥𝑦𝒘𝑦

√𝒘𝑥
′𝑪𝑥𝑥𝒘𝑥𝒘𝑦

′𝑪𝑦𝑦𝒘𝑦
                                                                  (2.8) 

Put 𝒘𝑥 = 𝑿
′𝜶 and 𝒘𝑦 = 𝒀

′𝜷 in (2.8), we get                                                

                                                                        𝜌 = max
𝜶,𝜷

𝜶′𝑿𝑿′𝒀𝒀′𝜷

√𝜶′𝑿𝑿′𝑿𝑿′𝜶.𝜷′𝒀𝒀′𝒀𝒀′𝜷
 .                                                              (2.9) 

Let 𝐾𝑥 = 𝑿𝑿
′ and 𝐾𝑦 = 𝒀𝒀

′ are the corresponding kernel matrices. Substitute into equation (2.9)                                                                       
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                                                                               𝜌 = max
𝜶,𝜷

𝜶′𝐾𝑥𝐾𝑦𝜷

√𝜶′𝐾𝑥
2𝜶.𝜷′𝐾𝑦

2𝜷

  .                                                                   (2.10) 

Equation (2.10) is not affected by the rescaling of 𝜶 and 𝜷. Therefore, it can be maximized subject to  𝜶′𝐾𝑥
2𝜶 = 1 

and 𝜷′𝐾𝑦
2𝜷 = 1, respectively. This can be solved using Lagrange method, which gives the corresponding equation 

as: 

                                             𝐿(𝜆, 𝜶, 𝜷) = 𝜶′𝐾𝑥𝐾𝑦𝜷 −
𝜆𝛼

2
(𝜶′𝐾𝑥

2𝜶− 1) −
𝜆𝛽

2
(𝜷′𝐾𝑦

2𝜷− 1) .                            (2.11) 

To solve equation (2.11), the derivative is taken with respect to 𝜶 and 𝜷 and set to zero, which gives the following 

equation:  

                                                                  𝐾𝑥𝐾𝑦𝐾𝑦
−1𝐾𝑥𝜶− 𝜆

2𝐾𝑥𝐾𝑥𝜶 = 0  .                                                        (2.12) 

Finally, it becomes an Eigen-value problem of the form 𝑨𝒙 = 𝜆𝒙.  

2.7 Feature-encoding-based Methods 

The pipeline of any object recognition tasks contains three major steps: (1) feature extraction, (2) feature encoding, 

and (3) classification. Feature encoding aims to represent the extracted features in a form of visual codewords, which 

proves to be quite helpful in improving the discriminative power of the extracted features. The baseline approaches 

[112-114] were proposed to compute the histogram of visual codewords. Further advancements were made in this field 

by introducing different kinds of encoding constraints that preserves the structural information of the extracted local 

features. These types of methods are categorized into two types: (1) Feature representation using visual codewords, 

and (2) Computing the difference between the extracted features and visual codewords. Two issues which were 

normally addressed in this area are the memory consumption and computational time. Any feature encoding framework 

consists of two major steps: (1) codebook learning, and (2) Feature representation in terms of visual codewords using 

learned codebook. To understand the steps of codebook generation, we will first review two clustering-based 

techniques, which are commonly used for codebook initialization.  

2.7.1 K-Means Clustering 

Most of the feature encoding methods first partitions the local feature descriptors into different clusters (regions), 

such that the internal structure can be parametrized linearly. Such informative regions are known as visual codewords, 
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and their combination is called visual vocabulary. The most widely used technique to construct this kind of vocabulary 

is k-means clustering [115]. Given 𝑀 training descriptors 𝒇1, 𝒇2, … , 𝒇𝑀  ∈  ℝ
𝐷. The k-means algorithm partitions the 

training descriptors into 𝐾 non-overlapping segments 𝑺𝑖, such that sum-of-squares criterion is minimized. It is defined 

as follows:  

                                                                                               ∑ ∑ ‖𝒇𝑚 − 𝜇𝑞𝑖‖
2
,

𝑚∈𝑆𝑖

𝑀

𝑖=1

                                                                  (2.13) 

where 𝜇𝑖 represents the geometric centroid of training descriptors in 𝑺𝑖, and 𝑞𝑖 is the data to mean assignment. By 

using the idea of clustering, the sum of squares of distances between the descriptors and the associated cluster centroid 

can be minimized. There are two main algorithms proposed for k-means clustering. An optimization technique based 

on Lloyd’s algorithm is the first one that computes the best possible means 𝜇𝑘 using given assignments 𝑞𝑖, and 

computes the best possible assignments 𝑞𝑖 given the means 𝜇𝑘, i.e., 𝑞𝑘𝑖 = argmin
𝑘
‖𝒇𝑚 − 𝜇𝑘‖

2. The second approach 

is based on an approximated version of Lloyd’s algorithm [116], where the best assignments are made by using the 

nearest-neighbor algorithm. This approach is utilized for large size vocabularies.  

2.7.2 Gaussian Mixture Model (GMM) based clustering 

Gaussian mixture model [117] is based on probability density function which assumes that all the data samples can 

be represented in terms of mixture of Gaussian functions with unknown parameters. It contains some useful information 

about the covariance matrix of the data and latent Gaussian function. It is also considered as the generalization of k-

means algorithm. GMM uses expectation-maximization (EM) algorithm to compute the unknown parameters including 

the prior probability value 𝜋𝑘, covariance matrices Σ𝑘  ∈ ℝ
𝐷×𝐷 , and the mean 𝜇𝑘  ∈ ℝ

𝐷. The probability density 

function is defined as follows: 

                                                                                   𝑝(𝒇|𝜃) = ∑𝑝(𝒇|𝜇𝑘

𝐾

𝑘=1

, Σ𝑘)𝜋𝑘  ,                                                              (2.14) 

                                                                       𝑝(𝒇|𝜇𝑘 , Σ𝑘) =
1

√(2𝜋)𝐷𝑑𝑒𝑡Σ𝑘
𝑒−
1
2
(𝒇−𝜇𝑘)

𝑇Σ𝑘
−1(𝒇−𝜇𝑘) .                                   (2.15) 

Data to cluster assignments by GMM is defined as follows:                                                                         

                                                                                   𝑞𝑘𝑖 =
𝑝(𝒇𝑖|𝜇𝑘 , Σ𝑘)𝜋𝑘

∑ 𝑝(𝒇𝑖|𝜇𝑗 , Σ𝑗)𝜋𝑗
𝐾
𝑗=1

 .                                                                    (2.16) 
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2.7.3 Feature Encoding Techniques 

Bag of features (BOF) [112] was one of the earliest proposed feature-encoding method, which provides superior 

performance in solving image classification problems. It consists of three major steps: (1) Feature detection; (2) Feature 

representation, and (3) Codebook learning. BOF can be defined as the histogram representation of local features. In 

local features, SIFT has been proved as a state-of-the-art descriptor, which is invariant to rotation, translation, and 

transformations of the data samples. An image is first divided into a number of patches, which are then represented by 

128-dimensional feature vector. The third and the last step of BOF model is to convert extracted local features into 

visual codewords, which is performed by learning a codebook. As we discussed before, K-means clustering [115] is 

considered as one of the most popular technique to initialize a codebook, which is done by dividing feature vectors 

into various clusters. The centers of the learned clusters represent the visual codewords. The modeling capacity can be 

improved by using a large size codebook, which is actually the number of clusters. However, it does not consider the 

layout structure of the features, which makes it unsuitable for capturing the shape of an object.  

To solve this problem, many extensions of BOF model [113, 118, 119] were proposed, which can be categorized 

into two categories. These two categories are generative models and discriminative models, respectively. These 

methods have achieved superior performances by using spatial pyramid matching (SPM) [113]. This matching 

approach first computes feature descriptors from densely located feature points, and then applies the learned 

vocabularies or codebook with 𝑁 entries to convert the descriptors into an 𝑁-dimensional codeword. To further 

increase the scalability, Yang et al. [120] proposed using sparse coding to obtain non-linear codes for non-linear feature 

representations. Yu et al. [121] achieved an improvement to the sparse coding (SC)-based approach by proposing a 

model, namely local coordinate coding (LCC), which performs feature-encoding based on the locality information. 

Similar to SC, the model also needs to solve the 𝑙1-norm minimization problem, which makes it computationally 

expensive. A fast implementation of LCC was proposed in [122], which incorporates the locality information while 

encoding. The method search for 𝑛 number of nearest neighbors (minimum distances) between the query image’s 

features and the learned codebook, which accelerates the process of feature encoding. Furthermore, it also preserves 

the local structural information, which favors both better feature representation and classification. 

 

 



27 

 

2.7.3.1  Locality constrained linear coding  

Locality constrained linear coding (LLC) [122] is an efficient coding technique, which projects feature descriptors 

to the local linear subspace using locality constraint. The final feature representation is obtained by performing max-

pooling operation on the projected features. The method claimed that sparsity can be achieved using locality 

information, but not vice versa. Suppose 𝑭 is a set of local feature descriptors, i.e. 𝑭 = [𝒇1, 𝒇2, … , 𝒇𝑀] ∈  ℝ
𝐷×𝑀. By 

learning a codebook having 𝑁 entries, 𝑾 = [𝒘1, 𝒘2, … ,𝒘𝑁] ∈  ℝ
𝐷×𝑁, it converts extracted local features into a 𝑁-

dimensional codeword for better image representation. To perform feature encoding, the following objective function 

is minimized:  

                                                                                  min
𝑾
∑‖𝒇𝑖 −𝑾𝒄𝑖‖

2 + 𝜆‖𝒍𝑖Θ𝒄𝑖‖
2

𝑀

𝑖=1

,                                                      (2.17) 

where Θ is an element-wise multiplication operator, 𝒍𝑖 ∈ ℝ
𝑁 is an exponential locality adaptor, and can be defined as 

follows:                                                                                

                                                                                        𝒍𝑖 = 𝑒𝑥𝑝 (
𝑑𝑖𝑠𝑡(𝒇𝑖,𝑾)

𝜎
),                                                                    (2.18) 

where 𝑑𝑖𝑠𝑡(𝒇𝑖,𝑾) is the Euclidean distance between each local descriptor 𝒇𝑖 and codebook 𝑾. 𝜎 is a constant value, 

that controls the weight decay speed of the locality adaptor. To speed-up the encoding process, LLC utilizes the k-NN 

search strategy by selecting specific number of nearest neighbors as a local bases from the codebook. The approximated 

LLC solution can be written as:  

                                                                                            min
�̃�
∑‖𝒇𝑖 − 𝒄�̃�𝑾𝑖‖

2

𝑀

𝑖=1

.                                                                   (2.19) 

Equation (2.19) can be rewritten as: 

                                                                              𝑎𝑟𝑔min
𝑪,𝑾

∑‖𝒇𝑖 −𝑾𝒄𝑖‖
2 + 𝜆‖𝒍𝑖Θ𝒄𝑖‖

2

𝑀

𝑖=1

.                                                  (2.20) 

The major objective is to represent each local feature descriptor as a product of a codebook and an LLC code. Firstly, 

codebook is initialized using k-means clustering, and then coordinate descent method is utilized to iteratively optimize 

the value of 𝑪 based on the existing value of 𝑾, and vice versa. It is proved to be computationally efficient as compared 

to sparse-coding-based approach, as it does not need to solve any 𝑙1 minimization problem for encoding.  
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2.7.3.2 Fisher Vector encoding 

The roots of fisher vector (FV) [123] can be derived from fisher kernel, which is actually used to perform 

comparative analysis of two samples produced by a generative model. Till now, various extensions [124, 125] of FV 

have been proposed. All these methods utilize GMM as the generative model of local features. It has been proved to 

be effective in modeling of low-dimensional features, such as SIFT. The number of Gaussian mixtures needed for 

feature modeling depends on the volume of feature space. Recently, high-dimensional features, such as deep neural 

networks [126], high-dimensional LBP [127], pooled feature vectors [128, 129], etc. gained a lot of attention due to 

their superior performance. To model the high-dimensional feature space, a large number of Gaussian mixtures are 

needed. Now, we will review the general formulation of FV coding along with its limitations. 

Let us assume that we have two samples generated using a generative model, Fisher kernel can be utilized to 

compute the similarity between them. Instead of using data matrices directly, set of local features are extracted from 

data samples, denoted as 𝑭 = {𝒇1, 𝒇2, … , 𝒇𝑁}. Each feature can be modeled by its corresponding probability density 

function. According to fisher kernel, a feature 𝑭 can be represented by its gradient vector computed over the model 

parameter 𝜆.  

                                                                           𝑮𝑭𝜆 = ∇𝜆 log𝑃(𝑭|𝜆) =∑∇𝜆 log𝑃(𝒇𝑗|𝜆)

𝑗

 .                                             (2.21) 

The fisher kernel can be written as 𝐾(𝑭, 𝒀) = 𝑮𝑭𝜆
𝑇
𝑰−1𝑮𝐹𝜆, where 𝑰 is an information matrix, defined as 𝑰 =

𝐸[𝑮𝑭𝜆𝑮
𝑭
𝜆
𝑇
]. Information matrix 𝑰 can be excluded to reduce the computational complexity. To compare two feature 

vectors using fisher vector encoding (FVC) method, first step is to compute their corresponding gradients, followed by 

sum-pooling. Therefore, the resultant feature vector can be considered as an encoded feature. However, there are some 

limitations associated to the FVC. To implement this framework, there is a need to define the distribution 𝑃(𝒇|𝜆). As 

we discussed above, most of the methods utilizes GMM as a generative model for feature 𝒇. First, a Gaussian model 

Ν(𝜇𝑘 , Σ𝑘) is drawn from the prior distribution 𝑃(𝑘), where 𝑘 = 1,2,… , 𝑛. After that, the extracted local feature 𝒇 is 

drawn from Ν(𝜇𝑘 , Σ𝑘). In general, the feature 𝒇 within a local region of a feature space follows a Gaussian distribution. 

It means that each Gaussian mixture only covers a little portion in the whole feature space. For low-dimensional 

features, such as SIFT, only few hundreds of Gaussian mixtures are needed.  For high-dimensional features, this number 

is insufficient, which ultimately results in inaccurate modeling. The method in [130] proposed a sparse-coding based 
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FVC method, which utilizes infinite number of Gaussian mixtures. It is based on the assumption that each local feature 

follows a Gaussian distribution, and has a random mean vector. This mean vector can be considered as a point on a 

subspace, that can be defined by a set of bases of an over-complete dictionary, and it is indexed by a coding vector 𝒖. 

The coding vector 𝒖 is drawn from a Laplacian distribution function 𝑃(𝒖) =
1

2𝜆
exp (−

|𝒖|

𝜆
). After that, local feature is 

drawn from a Gaussian distribution Ν(𝑩𝒖, Σ).  Here the Laplacian prior ensures the fisher vector to be sparse. After 

establishing the generative model of local features, the fisher coding vector can be derived by taking the derivative of 

its log-likelihood, which can be written as: 

                                                                             𝐶(𝒇) =
𝜕
1
𝜎2
‖𝒇 − 𝑩𝒖∗‖2

2 + 𝜆‖𝒖‖1

𝜕𝑩
 ,                                                        (2.22) 

where 𝒖∗ = argmax
𝒖
𝑃(𝒇|𝒖 , 𝑩)𝑃(𝒖). The further mathematical derivation can be found in [130]. After getting the 

encoded features, pooling and normalization operations are applied. Most of the feature encoding methods utilizes 

handcrafted feature descriptors, such as SIFT. However, the utilization of high-dimensional deep features can bring a 

significant improvement in recognition accuracy, as reported in [130].  

2.8  Face Recognition using sparse representation 

Face recognition can be considered as a complex high-dimensional pattern recognition problem. Sparse-coding 

aims to represent an image by selecting least number of atoms from an over-complete dictionary. Given the number of 

training images from the 𝑗𝑡ℎ class, 𝑨𝑗 = [𝒖𝑗,1, 𝒖𝑗,1, … , 𝒖𝑗,𝑛𝑗], any test image 𝒚 from the same class can be linearly 

represented in terms of training samples from the same class, i.e. 𝒚 = 𝛼𝑗,1𝒖𝑗,1 + 𝛼𝑗,2𝒖𝑗,2+,…+ 𝛼𝑗,𝑛𝑗𝒖𝑗,𝑛𝑗. In face 

recognition, we don’t know the class of the testing sample, so a new matrix 𝑨 is defined that contains 𝑛 training samples 

of all 𝑘 classes, i.e. 𝑨 = [𝑨1, 𝑨2, … , 𝑨𝑘] = [𝒖1,1, 𝒖1,2, … , 𝒖𝑘,𝑛𝑘]. So, now a test image 𝒚 can be linearly represented in 

terms of the whole training set as 𝒚 = 𝑨𝒙0, where 𝒙0 = [0,… ,0, 𝛼𝑗,1, 𝛼𝑗,2, … , 𝛼𝑗,𝑛𝑗] is an associated sparse coefficient 

vector, which has non-zero values only for the samples associated with the 𝑗𝑡ℎ class, while zero for the other remaining 

classes. The associated sparse coefficients are determined using 𝑙0 norm. As 𝑙0 norm is an NP-hard problem, so 𝑙1 

norm is used to compute these sparse coefficients. Mathematically, it can be written as:  

                                                                      min
𝛼
‖𝛼‖1   s.t. ‖𝒚 − 𝑨𝒙‖2

2 ≤ 𝜀 ,                                                        (2.23) 
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where 𝒚 is a query image, 𝑨 is a dictionary, and 𝛼 is the corresponding sparse coefficient vector. In case of noise 

variations, sparse coefficients with non-zero values can be obtained for more than one subjects in the training set. To 

solve this issue, one can classify 𝒚 to the class having a largest non-zero value. However, this is not a reliable solution. 

Therefore, a test sample 𝒚 is classified based on how well the obtained sparse coefficients can reconstruct 𝒚 with 

respect to the all training samples. So, it determines the similarity between the query image and the training samples 

from each class by computing the residual values. A query image is assigned to the class which has least residual value 

(reconstruction error). SRC proves to be quite efficient in recognizing face images suffered by noise, occlusion or 

disguise. In terms of face recognition, SRC focuses on two major issues; (1) Feature selection, and (2) robustness to 

noise, disguise and occlusion. Some more work [131, 132] based on sparse coding was proposed to tackle the pose and 

lighting variations in face recognition. To further increase the robustness to occlusion, Yang et al. [133] proposed to 

use Gabor features instead of original data matrices, and then utilizes sparse coding to solve occluded face recognition 

problem, which brings significant improvement in recognition accuracy. Yang et al. [134] proposed another sparse 

coding-based algorithm, which argues that sparse coding can be considered as a robust regression problem. The method 

assumes that the coding residuals follows either Laplacian or Gaussian distribution, which is not feasible for removing 

coding errors. Therefore, RSC [134] looks to estimate the maximum likelihood solution of sparse coding problem, 

which is proved to be more robust to noise, disguise, and occlusion. In addition to face recognition, sparse-coding has 

also provided superior performance in other machine learning tasks, such as image super-resolution [62], object 

detection, etc., which makes it a hot research topic for researchers around the world.  

2.9  Low-rank Matrix decomposition and its applications to Face Recognition 

In real world environments, the data available for training and testing may contain some random noisy components. 

Previously proposed methods, such as PCA [1], LDA [26], and SRC [7] assumes that the training data is captured 

under controlled environment, and do not contain any kind of contamination. This degrades their recognition 

performance when corrupted testing data is presented for recognition. Recently, methods based on robust PCA [135-

137] were proposed, which deals with the images containing random noise. Among all these methods, the low-rank 

approximation techniques have proven to be highly robust against various noise variations. It works by decomposing 

the corrupted data matrix into a clean low-rank matrix and a sparse error matrix. As we discussed earlier, SRC classifies 

a test sample by computing a minimum reconstruction error with respect to a training set. It is observed that if the 
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training set contains noise or occlusion, the performance of SRC degrades heavily. In addition to SRC, Wagner et al. 

[131] proposed to solve the face misalignment problem, using sequential 𝑙1 minimization algorithm. The method also 

handles lighting variations by using a projector-based illumination system. Furthermore, Zhou et al. [138] solves 

occluded face recognition problem by integrating Markov random field with SRC. However, none of these methods 

considers the possible corruption in training data, which makes them unsuitable for read-world applications. To solve 

this problem, robust face recognition method was proposed in [139, 140], which learns PCA subspace using recovered 

low-rank part for classification. However, face images of different subjects might share some similarities in their 

features, e.g. location of landmark points (eyes, nose), etc. Therefore, the learned low-rank part might not be enough 

to discriminate between the identities of the two face images. Therefore, Wei et al. [140] regularized the objective 

function with structural incoherence constraint. The constraint suppressed the shared features of the two different 

subjects, while preserving the discriminative ones. The method can be more effective, if some discriminative 

handcrafted or deep features are extracted prior to perform matrix decomposition. Jing et al. [141] proposed to solve 

multi-spectral face recognition problem when face images are contaminated by noise. The method learns a multi-

spectrum low-rank dictionary, which explores the correlation as well as complementary information between the 

different spectrums. Wu et al. [142] proposed an image classification method, which learns a multi-view low-rank 

dictionary to remove noise components in multiple views. However, the global & local structural properties of the data 

samples are not considered, while projecting the recovered low-rank data onto a low-dimensional subspace. As 

discussed earlier, face images often lie in a non-linear manifold space. By learning this manifold space, images can be 

classified with high precision. Therefore, there is a need to incorporate the manifold information, which considers the 

geometrical structure of the data samples, while learning the low-rank features. 

2.10 Analysis of Periocular Regions for face recognition 

The periocular region of a human face contains complex biomedical features, such as eyebrows, contour, eyeballs, 

eyelids, etc. From the biological point of view, the high complexity of any region leads to more coding processing, 

which means that the appearance contains more protein and genes and more discriminative information. This 

encourages researchers to consider the periocular region as the most discriminative region on a human face to 

differentiate among different people. In this regard, researchers have proposed various techniques to investigate the 

discriminative power of the periocular region to solve many biometric problems. Xu et al. [143] extracted local feature 
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descriptors from the periocular region of a human face for solving the age-invariant face recognition problem, and 

achieved a very high recognition rate on one of the most challenging face-aging datasets, FGNET [144]. It argues that 

a periocular region undergoes a very little effect over time as the shape and location of the eyes remains the same, 

while cheeks, chin, nose, etc. go through significant changes with age progression. Methods proposed in [145, 146] 

performs gender classification using periocular region. Most of the existing work employs local feature descriptors, 

e.g. Gabor wavelets, LBP, HOG, SIFT, etc. and then used SVM for classification. The method proposed in [147] 

presented a face recognition system, which extracts Gabor features from all of the facial landmarks and utilizes a 

different classifier for each landmark. The final recognition result is obtained by fusing the outputs of all the classifiers. 

Miller et al. [148] proposed to extract the LBP features from both the periocular region and the whole face. The method 

demonstrated that if the image quality is extremely poor, then the periocular region could provide better performance 

than the whole face region. Park et al. [149] applied masking below the nose to study the partial occlusion problem. 

The results revealed that the recognition performance heavily degrades due to the occlusion. However, the periocular 

region proves to be more robust against occlusion than any other facial region. Researchers in [150] matched face 

images, captured before and after plastic surgery by combining the scores of the complete face and the periocular 

region, and obtains the rank-1 recognition accuracy of 87.4%. Furthermore, the method in [151] extracts features from 

different face regions to study the facial variations due to gender transformation. The results show that the periocular 

region outperforms other regions in terms of discriminative power and obtains the highest recognition rate.  However, 

the performance of these handcrafted features depends on proper preprocessing operations, including contrast 

enhancement, pose correction, illumination normalization, etc. In most of the methods, the region of interest (ROI) is 

defined around the eye region to extract the corresponding features. However, some components in this region are not 

relevant to recognize the identity, such as hairs, and glasses. The reason for this is that the extracted features are not 

enough discriminative across all the regions. In one of our proposed frameworks, we investigate the periocular region 

of a human face to perform age-invariant face recognition, which will be explained later in this thesis.  

2.11 Conclusions 

This chapter presents the brief overview of the existing work in face recognition research. Some state-of-the-art 

techniques are reviewed including deep-learning based approaches, feature-encoding methods, subspace learning 

techniques, sparse representation, and low-rank matrix decomposition. Furthermore, the discriminative power of the 
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periocular region of a human face was briefly discussed. Particularly, existing literature on low-resolution, and aging 

face recognition are extensively studied. In the coming chapters, we will briefly discuss our proposed solutions for 

solving the problems discussed in this chapter.  
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  Learning Sparse Discriminant Low-rank Features for Low-

resolution Face Recognition 

3.1  Introduction 

Low-resolution (LR) face recognition is a challenging research problem in the field of machine learning. It has a 

huge demand in various surveillance applications. Although, remarkable progress has been made in recognizing face 

images captured under constrained environments, the problem of identifying the poor-quality images taken by security 

cameras is still unsolved. As we discussed in Chapter 2, performances of face recognition methods heavily depend on 

the amount of discriminant, robust features that can be extracted from face images, which reside in high-frequency 

components. However, when the image resolution decreases, the information available for distinguishing faces 

becomes less, and therefore Super-resolution (SR) becomes ineffective under unconstrained variations. This is because 

reconstruction from low-frequency components is an ill-posed problem and creates artifacts in the super-resolved 

images. Performances of the recognition-based and feature-based super-resolution methods depend on the feature 

extraction technique and reconstruction regularization model being used, but it is still unclear which regularization 

methods are optimal from the recognition perspectives. In addition to that, the choice of features, which need to be able 

to handle large amount of variations in unconstrained environments, is critical. As we reviewed in the previous chapter, 

most of the methods based on coupled mappings operate directly on data matrices and do not extract the robust features 

from face images while projecting the data samples into a unified feature subspace. This reduces the recognition 

accuracy in uncontrolled settings, especially under pose and illumination variations. Robustness of face recognition 

systems (FRS) can be greatly improved by using a combination of local features. Now, the question is which features 

should be selected and combined? In this chapter, we address LR face recognition problem by fusing two local feature 

descriptors, which are robust to various facial variations. As we discussed in the previous chapter, low-rank matrix has 

better feature representation ability as compared to original data matrix, so we utilize the low-rank matrix-

decomposition algorithm [137] to convert the extracted fused features into a low-rank matrix and a corresponding error 

matrix (sparse in nature). For recognition, we only utilize the low-rank component, while discarding the sparse error 

matrix. Furthermore, our approach first down-samples gallery faces to the size of the query image, and then perform 

recognition. Although the super-resolved face image or feature contains more information, the estimated information 

may be incorrect and distorted. By down-sampling the gallery faces, no prediction is necessary. In this chapter, we 
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propose an effective solution for tackling all the variations simultaneously, by utilizing the discriminative power of 

sparse representation of multiple low-rank local features for LR face recognition.  

This chapter is structured as follows. Section 3.2 discusses the motivation behind our proposed approach. Section 

3.3 introduces our proposed morphological pre-processing method, then Gabor wavelets and LBPD features are 

described. Section 3.4 explains the concept of low-rank feature learning. Section 3.5 presents our proposed framework 

based on sparse coding. Section 3.6 introduces the linear regression model used for classification. Section 3.7 provides 

brief description of our experimental setup and results. Finally, we conclude our chapter in Section 3.8.  

3.2  Motivation behind the proposed idea 

Motivated by the applications of sparse representation [7, 152] to pattern recognition, we propose a new approach 

for solving the LR face recognition problem based on sparse coding of multiple low-rank local features. The major 

idea is to compute an optimum sparse matrix, which projects the gallery and query low-rank features onto a common 

low-dimensional subspace for recognition. Sparse coding provides natural discriminant power and represents face 

images in a compact manner. There exists a linear relationship between a test sample and the other training samples of 

the same subject. Matching a HR gallery image with a LR probe image has the dimension-mismatch problem, which 

also produces noise while learning a unified feature subspace. Our proposed method first down-samples all HR gallery 

images to the same resolution as the LR probe (test) image, and performs recognition in the LR domain. In our proposed 

approach, we assume that two images of the same resolution have higher correlation as compared to having two 

different resolutions. There are two reasons for this. First, low-dimensional features are effective in computing the 

within-class as well as between-class scattering matrices, as their dimension is lower than, or closer to, the total number 

of samples available. Second, low-frequency spectrum carries the information regarding the illumination variations, so 

lighting conditions can be improved by utilizing the low-frequency information. In [9], it has also been argued that 

down-sampling both the training and testing images can increase the recognition rate, even for images of very low 

resolution, such as 6 × 6 pixels. This proves that down-sampling face images is a feasible approach to solve the 

dimension-mismatch problem. 

As discussed in the previous chapter, SR algorithms are not feasible for recognition purposes. This is because of 

the generation of artifacts in the super-resolved images, which reduce the recognition accuracy. To overcome this 

problem, a new morphological pre-processing approach based on top and bottom-hat filtering is proposed, which 
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improves an image quality, without generating any kind of distortion or artifacts in the final processed image. To make 

our approach robust to variations in unconstrained environments, two local features, Gabor wavelets and Local Binary 

Pattern Difference (LBPD) [153], are extracted from both the training and testing face images followed by 

normalization. After that, we perform feature-level fusion to form a final normalized feature vector. The normalized 

fused features are used to learn a low-rank matrix and a sparse error matrix, using an augmented Lagrangian method. 

The extracted low-rank matrix is then utilized to learn a new low-dimensional feature subspace by computing a 

projection matrix based on our proposed sparse-coding-based algorithm, such that the sparsity of the learned features 

is preserved. After that, the similarity between the gallery and query features is determined by estimating a coefficient 

vector using linear regression [43]. Based on the coefficient vector, residuals are computed for feature matching. To 

increase the discriminability between the face images of two different subjects, class-label information is utilized. 

Furthermore, our method has less computational complexity than other linear and nonlinear mapping-based methods 

[154, 28]. Our method can estimate local structures of face images by utilizing the sparse prior knowledge. Extraction 

and fusion of multiple low-rank local features make our method effective for recognition in unconstrained 

environments. 

3.3 Proposed Framework for LR Face Recognition 

3.3.1 Pre-Processing and Feature Selection 

Face alignment and normalization are considered as the most important steps prior to face recognition. Furthermore, 

face images are usually pre-processed so that they can be more standardized. This can help improve the recognition 

rate. Now, we will describe our proposed morphological pre-processing method, and the features selected for our 

proposed algorithm. 

3.3.1.1 Morphological pre-processing 

To solve the problem of artifacts and distortion produced by SR algorithms, a novel morphological pre-processing 

method based on top and bottom-hat filtering is proposed. This method not only extracts useful information from face 

images, but also eliminates low-contrast features. It can also alleviate the effects of non-uniform illumination, so it is 

suitable for tackling variations in lighting conditions.  
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Let 𝐼 be a grayscale image, and 𝑠 be a disk-shaped structuring element with radius 𝑅. The first step is to apply the 

top-hat filtering which is defined as 𝑇𝑡(𝐼) = 𝐼 − 𝐼 ∘ 𝑠, where ∘ represents the opening operation. It can extract bright 

features from an image. Similarly, dark features are extracted by bottom-hat filtering defined as 𝑇𝑏(𝐼) = 𝐼 • 𝑠 − 𝐼, 

where •  represents the closing operation. To enhance the local contrast for better image understanding, the face image 

is added to the difference between the two filtering outputs. Mathematically, it is defined as follows:   

                                                                             𝐼𝐶𝐸 = 𝐼 + 𝑇𝑡(𝐼) − 𝑇𝑏(𝐼),                                                                      (3.1)                                                                          

where 𝑇𝑡(𝐼) and 𝑇𝑏(𝐼) represent the top and bottom-hat filtering images, respectively, and 𝐼𝐶𝐸 is the contrast-enhanced 

face image.  

 

Fig. 3-1. The morphological pre-processing steps, on a LR face image. 

Fig. 3-1 shows a LR face image with uneven illumination and the corresponding contrast-enhanced image generated 

by the proposed filtering operation. Fig. 3-2 shows HR face images, and the images obtained after applying our 

proposed morphological operation. It can be seen that our method provides face image with better visual quality, which 

can be helpful in extracting more useful facial information for recognition.  
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(a) 

 

(b) 

Fig. 3-2. (a) Sample HR face images, and (b) Pre-processed images using proposed morphological pre-processing scheme. 

3.3.1.2 Gabor Wavelets 

From the biological point of view, Gabor functions can be used to model the responses of the cells in the visual 

cortex of mammalian brains. Furthermore, it exploits the local regions to extract information at multiple scales and 

orientations. It is an efficient local feature descriptor, which has been proved to be quite useful in various computer 

vision applications, such as object tracking, detection, and recognition. Gabor wavelets (GWs) can be used for spatial-

frequency analysis because they have both the multi-orientation and multi-resolution properties, which enables it to 

provide valuable information about the local structure of an image. GWs achieve optimal representation in the 

frequency domains. It is defined as a complex exponential modulated by a Gaussian function, which is written as 

follows:                                         

                                                              𝜙𝜔,𝜃(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−(
𝑥2+𝑦2

2𝜎2
)
. [𝑒𝑖(𝜔𝑥𝑐𝑜𝑠𝜃+𝜔𝑦𝑠𝑖𝑛𝜃) − 𝑒−

𝜔2𝜎2

2 ],                            (3.2) 

where (𝑥, 𝑦) represents the pixel positions, 𝜔 is the frequency of the sinusoidal plane wave, 𝜃 represents the orientation, 

and 𝜎 is the standard deviation corresponding to the Gaussian envelope. In our algorithm, we extract features at five 

scales and eight orientations. 

3.3.1.3 Local Binary Pattern Difference Feature  

Local binary pattern (LBP) feature [155] is extracted by first partitioning an image into a number of blocks. In each 

block, the LBP code at each pixel position is generated, by comparing the central pixel with its corresponding 

neighboring pixels residing on a circle of radius 𝑅, centered at the pixel under consideration. If a neighboring pixel has 

its value smaller than the central one, then it is labeled as ‘0’, otherwise as ‘1’. A string of the binary bits is used to 
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form an LBP code for the pixel. Mathematically, the LBP code of the central pixel 𝑥𝑐 with respect to the channel 𝜙 

can be defined as follows: 

                                                                        𝐼𝐿𝐵𝑃𝑁,𝑅(𝑥𝑐 , 𝜙) = ∑ 𝑢(𝜙(𝑥𝑛) − 𝜙(𝑥𝑐))2
𝑛,

𝑁−1

𝑛=0

                                                  (3.3) 

where 𝑥𝑛 (𝑛 = 0,… ,𝑁 − 1) represents the 𝑁 neighboring pixels on the circle of radius 𝑅 centered at pixel 𝑥𝑐; 𝜙 can 

be either intensity value or filter response of an image; and 𝑢(𝑥) is the step function, i.e. its value is ‘1’ if 𝑥 ≥ 0,  and 

‘0’ otherwise. There are many LBP variants [156-158], but LBP cannot combine with other features for recognition. 

The problem with LBP is that the LBP code is a non-numerical representation, which is a discrete pattern rather than 

a numerical response. Recently, a numerical variant of LBP [153], which is known as local binary pattern difference 

(LBPD), was proposed. To extract this feature, the mean LBP of a given region is computed, then the LBPD at a pixel 

position is computed as the difference between its LBP code and the mean LBP. The Karcher mean [159] is used to 

compute the mean LBP of a region, which minimizes the sum of distances to all the points in a given image region. 

Each element of a binary vector �̂�𝐿𝐵𝑃 represents a specific bit of the regular LBP. Specifically, the 𝑘th bit of �̂�𝐿𝐵𝑃 is 

given as follows: 

                                                                         �̂�𝐿𝐵𝑃(𝑘) = 𝑢(𝜙(𝑥𝑘) − 𝜙(𝑥𝑐)).                                                        (3.4)                                                              

  Suppose that there are 𝑃 LBPs in a region, represented as 𝐿 = {𝑙1, 𝑙2, … , 𝑙𝑃}. The 𝑘th element for 𝑘 = 0,… , 𝐾 − 1 of 

its Karcher mean �̂�𝐼 is defined as follows: 

                                                                                 �̂�𝐼(𝑘) = ⌊
∑ �̂�𝑝(𝑘)
𝑃
𝑝=1

𝑃
+ 0.5⌋ ,                                                                  (3.5) 

where ⌊. ⌋ is the floor function, and �̂�𝐼 belongs to the set of the 2𝐾 LBPs. To relax the constraint that the LBP mean 

is an LBP, the mean LBP vector can be a floating-point vector denoted by �̂�𝑓, as follows:                                                                                         

                                                                                            �̂�𝑓 =
∑ �̂�𝑝
𝑃
𝑝=1

𝑃
.                                                                                   (3.6) 

(a) LBP Difference 

Let us consider the LBP code �̂� and mean �̂�𝑓 of a face image. The LBPD feature vector can be computed as �̂� =

�̂� − �̂�𝑓. Magnitude of the LBPD feature is given by: 
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                                                                            𝐼𝐿𝐵𝑃𝐷
𝑠(𝑥, 𝜙) = ‖�̂� − �̂�𝑓‖ ,                                                            (3.7) 

where ‖. ‖ can be of any type of norms. Its values are positive, so it is also known as unsigned LBPD. To extract more 

discriminative information from an image, the sign is introduced by defining the LBPD feature as follows: 

                                                                    𝐼𝐿𝐵𝑃𝐷
𝑠(𝑥, 𝜙) = 𝑠(‖�̂�‖ − ‖�̂�𝑓‖)‖�̂� − �̂�𝑓‖ ,                                          (3.8) 

where 𝑠(𝑥) represents the signum function, whose value is 1 if 𝑠(𝑥) ≥ 0 and -1 if 𝑠(𝑥) < 0. This will form an ordered 

LBP feature vector. It is not affected by the permutation of bits, which makes it rotation invariant. Fig. 3-3 show two 

face images from the LFW database and their corresponding LBPD images and histograms.  

     

     

Fig. 3-3. LBPD feature and histogram representation of two face images. 

3.3.1.4 Features Selection   

Selection of appropriate feature descriptor is quite important to achieve optimum performance in image classification 

and object recognition. In the last two decades, various global and local feature descriptors have been proposed. As 

discussed earlier, local features tend to outperform global features, and have been proven to be more robust against 

various geometric variations. Some of the state-of-the-art feature descriptors include SIFT [160], SURF [161], HOG 

[162], Gabor [163], and LBP [155]. To improve the performance, various extensions of these descriptors have been 

proposed. For facial image analysis, Gabor and LBP have been proved to be the best performing feature descriptors 

for face recognition [164]. For object recognition, the most widely used local feature descriptor is SIFT, which first 

extracts relevant keypoints from given images, and then represents the gradient information in the neighborhood of 

each keypoint. This feature exhibits both scale and rotation invariance. However, its major drawback is high 

computational complexity. Inspired by SIFT, a faster version known as SURF was proposed, whose performance 

strongly depends on the relative keypoints that can have a variable geometry. It is highly desirable that the selected 
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feature descriptor has high discriminative power and low computational complexity. In comparison to SIFT, LBP is 

simple and fast to compute. It can efficiently describe the local texture information, while showing high robustness to 

monotonic gray-level transformations. Moreover, the features computed by using LBP are fixed relative to each other 

and can better distinguish between the curved surfaces, such as face images. For a difficult task, such as LR face 

recognition, using a single feature is unable to capture sufficient discriminative information from face images. In [164], 

it was argued that combining the LBP with Gabor features can enhance the recognition performance, up to a significant 

level. As discussed in the previous section, the LBP feature consists of discrete patterns or symbols, rather than a 

numerical response, so the LBP feature cannot combine with other features directly. 

In our proposed method, we employ two efficient texture descriptors (Gabor wavelets and LBPD), due to their 

supplementary natures, which makes them promising candidates for fusion. There are various reasons for this. First, 

the Gabor features can encode the facial shape information at multiple scales and orientations. Each GW may be viewed 

as a bandpass filter, which extracts features at a specific range of frequencies and orientations in the frequency domain. 

Okajima et al. [165] argued that Gabor wavelets can be used as a solution for the mutual information maximization 

problem. By using Gabor-type receptive field, maximum amount of information can be extracted from local regions. 

It is clear that image rotation affects the permutation of bits. According to Equation 3.3, LBP used the predetermined 

weights to weigh the bits, which results in the different LBP codes of the original image and its rotated version. 

Therefore, extra effort is necessary to achieve rotation invariance. LBPD is inherently rotation-invariant, as the norm 

employed in Equations (3.7) and (3.8) makes sure that the code does not depend on permutation of the bits. 

Furthermore, LBPD consists of numerical responses, whereas LBP is a collection of discrete patterns. This numerical 

property of LBPD makes it attractive in terms of texture analysis. LBPD does not consider the intensity of pixels, 

because it utilizes the sign of comparisons between the neighboring pixels, as in Equation (3.4). This makes LBPD 

invariant to lighting conditions. Due to the abovementioned properties of Gabor and LBPD features, better feature 

representation can be obtained, which is invariant to various facial variations.   

3.4 Low-rank Feature learning  

Recently, low-rank matrix recovery has gained plenty of attention due to its number of applications in many 

machine-learning tasks, such as face recognition [139, 140], data mining, image classification [166], etc. Instead of 

using data matrices directly, numerous kinds of features can first be utilized to get useful information from images that 



 

42 

 

provides better representation. As discussed in [166], extracted local features may exhibit some noisy patterns, which 

can reduce the recognition performance. Motivated by this observation, we decompose the extracted fused feature 

vectors 𝑭 into a low-rank feature matrix 𝑳 and a corresponding sparse error matrix 𝑺. The extracted low-rank feature 

matrix 𝑳 has been proved to be more discriminative for recognition, as it provides better feature representation. It works 

by minimizing the rank of the matrix 𝑳, while computing the 𝑙0-norm of 𝑺. It can be written as follows: 

                                                                    min
𝑳,𝑺
rank (𝑳) + 𝜆‖𝑺‖0  s. t. 𝑭 = 𝑳 + 𝑺.                                                (3.9) 

The second term computes the non-zero elements in 𝑺. It can be simplified by replacing the first term of Equation (3.9) 

with the nuclear norm, and the second one with 𝑙1-norm. The resulting objective function can be written as:  

                                                                    min
𝑳,𝑺
‖𝑳‖∗ + 𝜆‖𝑺‖1  s. t. 𝑭 = 𝑳 + 𝑺.                                                     (3.10) 

It turns out to be a convex optimization problem, with two major constraints. First, the rank of the recovered low-rank 

matrix 𝑳 is not too large. Second, there should be a small number of non-zero elements in 𝑺. In our method, we utilize 

Augmented Lagrange multiplier (ALM) to solve this optimization problem due to its low complexity. Let 𝑭 be the 

fused features extracted from face images. Then the Lagrange function of Equation (3.10) is written as: 

                                            𝐿𝜇(𝑳, 𝑺, 𝒀) = ‖𝑳‖∗ + 𝜆‖𝑺‖1+< 𝒀, 𝑭 − 𝑳 − 𝑺 > +
𝜇

2
‖𝑭 − 𝑳 − 𝑺‖𝐹

2 ,                        (3.11) 

where 𝒀 and 𝜇 represents a Lagrange multiplier and a penalty parameter, respectively. The matrices 𝑳 and 𝑺 are updated 

alternatively until converged, as follows:  

                                                                 (𝑳𝑗+1, 𝑺𝑗+1) = argmin
𝑳,𝑺
𝐿𝜇(𝑳, 𝑺, 𝒀

𝑗),                                                    (3.12) 

                                                                   𝒀𝑗+1 = 𝒀𝑗 + 𝜇(𝑭 − 𝑳𝑗+1 − 𝑺𝑗+1),                                                     (3.13) 

where 𝑗 is the iteration index. 

1) Updating 𝑳𝑖 

To update the low-rank matrix 𝑳𝑖
𝑗+1 of class 𝑖 at the (𝑗 + 1)st iteration, all the variables except 𝑳𝑖 are fixed, which 

leads to the following equation: 

                                                   𝑳𝑖
𝑗+1 = argmin

𝑳𝑖
𝐿(𝑳𝑖, 𝑺𝑖

𝑗, 𝒀𝑖
𝑗 , 𝜇𝑗) 

                         = argmin
𝑳𝑖
‖𝑳𝑖‖∗+< 𝒀𝑖

𝑗 , 𝑭𝒊 − 𝑳𝑖 − 𝑺𝑖
𝑗 >+

𝜇𝑗

2
‖𝑭𝒊 − 𝑳𝑖 − 𝑺𝑖

𝑗‖
𝐹

2
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                        = argmin
𝑳𝑖
∈‖𝑳𝑖‖∗ +

1

2
‖𝑿𝑙 − 𝑳𝑖‖𝐹

2 ,  (3.14) 

where ∈= (2𝜇𝑗)−1 and 𝑿𝑙 = 0.5(𝑭𝑖 − 𝑺𝑖
𝑗 +

𝟏

𝜇𝑗
𝒀𝑖
𝑗). 

According to Section 2.1 in [167], the above equation has a closed form, which is given as 𝑳𝑖
𝑗+1 = 𝑻𝑍∈[𝑹]𝑸

𝑇 , where 

𝑻𝑹𝑸𝑇 is the singular value decomposition of 𝑿𝑙, and 𝑍∈[𝑹] is the elementwise thresholding of 𝑹, i.e., 𝑍∈[𝑹](𝑖, 𝑗) =

𝑧∈[𝑹(𝑖, 𝑗)], where 𝑧∈[𝑟] is defined as 

                                                                    𝑧∈[𝑟] = {
𝑟−∈ ,     if 𝑟 >∈
𝑟+∈ ,      if 𝑟 <∈
    0,       otherwise

                                                                (3.15) 

2) Updating 𝑺𝑖 

                         𝑺𝑖
𝑗+1 = argmin

𝑺𝑖
𝐿(𝑳𝑖

𝑗+1, 𝑺𝑖 , 𝒀𝑖
𝑗, 𝜇𝑗) 

                                                             = argmin
𝑺𝑖
𝜆‖𝑺𝑖‖1+< 𝒀𝑖

𝑗 , 𝑭𝒊 − 𝑳𝑖
𝑗+1 − 𝑺𝒊 > +

𝜇𝑗

2
‖𝑭𝒊 − 𝑳𝑖

𝑗+1 − 𝑺𝒊‖𝐹
2

 

                          = argmin
𝑺𝑖
∈′ ‖𝑺𝑖‖1 +

1

2
‖𝑿𝑠 − 𝑺𝑖‖𝐹

2 ,    (3.16) 

where ∈′= (
𝜆

𝜇𝑗
) and 𝑿𝑠 = 𝑭𝑖 − 𝑳𝑖

𝑗+1 + (
1

𝜇𝑗
) 𝒀𝑖

𝑗. 

Similarly, the closed form solution of this optimization problem is given as 𝑺𝑖
𝑗+1 = 𝑍𝜖′(𝑿𝑠). We set 𝜆 = 0.001 in our 

experiments. Furthermore, we discard the sparse error term 𝑺, and use the low-rank approximation feature matrix 𝑳 

only for further processing. Fig. 3-4 shows that the recovered low-rank component of a feature can capture more facial 

details, as compared to the originally extracted Gabor features. 

        

(a)                                                                                                (b)  

Fig. 3-4. Gabor features extracted from a face image. (a) Original Gabor features with 5 scales and 8 orientations, (b) Low-rank 

Gabor features. 
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3.5 Sparse Coding of Multiple Low-Rank Features 

In context of face recognition, sparse representation has gained much attention in the last decade, due to its robustness 

against various facial variations. Wright et al. [7] proved the effectiveness of sparse theory for recognition of face 

images taken in uncontrolled environments. According to the representation, a linear relationship exists between each 

test sample and the other training samples from the same subject, which is sparse in nature. A face image 𝒚 can be 

expressed as 𝒚 = 𝑿𝒌, where 𝒌 represents the sparse coefficient vector, and 𝑿 is a data matrix whose columns represent 

the training data. It should be known that the samples of the same subject are highly correlated, while the correlation 

becomes weak when samples are from different subjects. For the samples in 𝑿 belonging to the same subject of 𝒚, the 

corresponding coefficients in the sparse coefficient vector 𝒌 should have non-zero values, while the rest of the 

coefficients are zero. Let 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝑀], where 𝒙𝑗 is the 𝑗th training sample and 𝑀 is the total number of training 

samples. Let us consider that there are 𝑐 classes in the training set, and 𝑛 samples for each class, i.e. 𝑀 = 𝑛𝑐. According 

to sparse theory, each training sample can be linearly reconstructed by the remaining 𝑀− 1 samples, with most of the 

weights of the samples being zero. Our major objective is to project the features of training and testing samples into a 

low-dimensional feature space, such that their sparsity is preserved. Let us assume that the sparse coefficient vectors 

of the training samples are denoted as 𝑲 = [𝒌1, 𝒌2, … , 𝒌𝑀], where 𝒌𝑗 ∈ 𝑅
𝑀 is the sparse vector of the 𝑗th training 

sample, computed using the 𝑙1-minimization technique.  

3.5.1 Feature Representation based on Sparse Coding 

The purpose of sparse representation is to represent test images by using the minimum number of training samples.  

Mathematically, it can be written as follows: 

                                                                          min‖𝒌‖0 s.t.  𝒚 = 𝑿𝒌.                                                                   (3.17)                                                                                        

If it contains enough sparsity, then the solution of equation (3.17) is same as solving the 𝑙1-minimization problem, i.e.  

                                                                          min‖𝒌‖1 s.t.  𝒚 = 𝑿𝒌.                                                                   (3.18)  

In an ideal situation, a test image 𝒚 from the 𝑗th class can be linearly represented in terms of all the training samples, 

which can be written as 

                                                                𝒚 = 𝑿𝒌 = 𝑿𝒌1𝑗 +𝑿𝒌2𝑗+,… ,+𝑿𝒌𝑛𝑗,                                                   (3.19) 
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where 𝑛 is the number of training samples in the 𝑗th class, and 𝒌𝑖𝑗 is the sparse coefficient vector whose entries are 

non-zero for the ones associated with the 𝑗th class and the 𝑖th training sample in the class.                                                                                                                 

In our algorithm, we propose the following objective function to compute the optimal projection matrix 𝑷, which 

preserves the sparse structure when projecting the extracted multiple low-rank features 𝑭 onto a new feature subspace. 

                                                                           𝑷 = argmin
𝑷
∑‖𝑷𝑇𝒇𝑗 − 𝑷

𝑇𝑭 𝒌𝑗‖
2

𝑀

𝑗=1

,                                                          (3.20) 

where 𝒇𝑗 is the low-rank feature vector of the 𝑗th training sample. By using simple algebraic formulation, Equation 

(3.20) can be written as: 

                                                                       min𝑷𝑇 (∑(𝒇𝑗 − 𝑭𝒌𝑗)(𝒇𝑗 − 𝑭𝒌𝑗)
𝑇

𝑀

𝑗=1

)𝑷.                                                      (3.21) 

Assume that the low-rank feature vectors are projected onto an 𝑚 dimensional vector space. Let 𝒖𝑗 be the m-

dimensional unit vector with the 𝑗th element equal to 1, and 0 otherwise. Equation (3.21) can then be written as follows: 

min 𝑷𝑇 (∑(𝑭𝒖𝑗

𝑀

𝑗=1

− 𝑭𝒌𝑗)(𝑭𝒖𝑗 − 𝑭𝒌𝑗)
𝑇
)𝑷 

= min𝑷𝑇𝑭(∑(𝒖𝑗 − 𝒌𝑗)(𝒖𝑗 − 𝒌𝑗)
𝑇

𝑀

𝑗=1

)𝑭𝑇𝑷 

                          = min 𝑷𝑇𝑭(∑(𝒖𝑗𝒖𝑗
𝑇 − 𝒖𝑗𝒌𝑗

𝑇 − 𝒌𝑗𝒖𝑗
𝑇 + 𝒌𝑗𝒌𝑗

𝑇)

𝑀

𝑗=1

)𝑭𝑇𝑷 

                                                                                                                                                                        

                                                           = min 𝑷𝑇𝑭(𝑰 − 𝑲−𝑲𝑇 +𝑲𝑇𝑲)𝑭𝑇𝑷.                                                       (3.22)                                                                             

                                                                                               

We set the constraint 𝑷𝑇𝑭𝑭𝑇𝑷 = 1. Then, the objective function is converted into the following optimization problem 

                                                                   

                                                                          min
𝑷

𝑷𝑇𝑭(𝑰 − 𝑲 −𝑲𝑇 +𝑲𝑇𝑲)𝑭𝑇𝑷

𝑷𝑇𝑭𝑭𝑇𝑷
.                                                             (3.23) 

                                                                                                                                      

To solve (3.23), the Lagrange method is used, which provides the following equation:   

                                                   𝐿(𝑷, 𝜆) = 𝑷𝑇𝑭(𝑰 − 𝑲 −𝑲𝑇 +𝑲𝑇𝑲)𝑭𝑇𝑷−  𝜆(𝑷𝑇𝑭𝑭𝑇𝑷− 1),                              (3.24) 
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where 𝜆 is a lagrange multiplier, and 𝑰 represents the identity matrix. To compute the optimum sparse projection matrix 

𝑷, we set the derivative to zero, i.e. 
𝜕𝐿

𝜕𝑷
= 0, which gives the following equation:  

                                                                𝑭(𝑰 − 𝑲 −𝑲𝑇 +𝑲𝑇𝑲)𝑭𝑇𝑷 = 𝜆𝑭𝑭𝑇𝑷.                                                 (3.25) 

Finally, it becomes an eigen-decomposition problem in which we select the 𝑚 eigenvectors of the matrix 

(𝑭𝑭𝑇)−1𝑭(𝑰 − 𝑲−𝑲𝑇 +𝑲𝑇𝑲)𝑭𝑇, with the smallest eigenvalues to construct a new low-dimensional feature 

subspace. Our proposed algorithm builds the sparse coefficient matrix by utilizing all the training data, so no search 

for nearest neighbors is required during testing. For visualization of the learned low-rank sparse features, we randomly 

selected 10 face samples from each of the 10 different classes. The low-rank sparse features are first extracted and then 

visualized using t-Distributed stochastic neighbor embedding (t-SNE) [168], as shown in Fig. 3-5. It can be observed 

that the discriminability of the learned features is enhanced, as samples from different classes are well separated in the 

feature space.  

 

Fig. 3-5. Visualization of the learned low-rank sparse features using t-SNE.  

3.5.2 Geometrical and Mathematical properties of a Generalized Eigenvalue Problem 

In this section, we explain our proposed formulation from geometrical and mathematical points of view. The 

proposed formulation involves two major steps, which are: (1) construction of the sparse coefficient matrix 𝑲, and (2) 

determination of the projection matrix 𝑷. To understand this eigenvalue problem, attention needs to be paid to these 

two major steps. Firstly, sparse coefficient vector 𝒌𝑗 is determined for each sample 𝒙𝑗 using 𝑙1 minimization. Now, we 

will analyze the effectiveness of this computed sparse coefficient matrix 𝑲. Geometrically, each sparse coefficient 

vector 𝒌𝑗 is invariant to scaling and rotation of the data samples. It is also invariant to translation due to the constraint 
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1 = 𝟏𝑇𝒌𝑗, where 𝟏𝑇 is an identity vector. Therefore, the sparse coefficient matrix 𝑲 remains unchanged whenever data 

samples are translated and rotated, which is one of its important geometrical properties. In our proposed method, we 

construct a coefficient matrix, using whole training data, instead of using the 𝑘-nearest neighbors. This helps in 

preserving the global structure of the data, while projecting them into a new sparse feature subspace. The constructed 

sparse coefficient matrix also has the capability to preserve the discriminant information. To understand this, let us 

take an example related to face recognition. It is assumed that the face images, belonging to the same class, lie on a 

linear subspace. Let 𝒙𝑗 be a face image belonging to the 𝑗th class, 𝒙𝑗 can be represented as a linear combination of the 

other face images from the same 𝑗th class, and the computed coefficient vector 𝒌𝑗 is sparse. This shows that 𝒌𝑗 naturally 

contains discriminant information, so it can easily distinguish the face images of two different classes. Fig. 3-5 shows 

the training stage of our proposed framework.  

3.5.3 Useful Properties 

Our proposed sparse-coding-based method exhibits some major useful properties, which are as follows: 

• Our proposed method uses 𝑙1 regularization, which enables it to encode the prior knowledge of sparsity, 

resulting in the extraction of more discriminative information from the data. It performs sparse reconstruction 

only in the training process. Having determined the projection matrix 𝑷, sparse reconstruction is no longer 

necessary and our algorithm is therefore efficient.  

• Samples from two different classes may have significant overlap in the subspaces obtained by using PCA, 

NPE, and LPP. Usually, PCA suffers the most, because the eigenvectors selected are those that best represent 

the data, rather than distinguishing them. To solve this issue, LPP and NPE attempt to consider the local 

properties (structure) of the data. However, the real structure cannot be identified by using a pre-defined 

neighbourhood size. In comparison to them, our proposed method can separate face images from different 

classes in an accurate way. This can be better explained using the idea of sparsity, which assumes that each 

data point can be better represented by as small number of samples as possible.  The learned projection matrix 

has a high-degree of sparseness, greater than 80%. We found that high degree of sparsity is quite useful in 

feature learning, but do not have a severe impact on the classification performance. As the sparsity decreases, 

the recognition rate drops gradually by 3-5%, and then remains unchanged.  
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Fig. 3-6.  Training stage of our proposed framework. 

3.6 Linear-Regression-based Classification 

After projecting gallery and probe features onto the sparse feature subspace, a linear regression framework [43] is 

utilized to model the similarity between them. It computes a linear mapping function between the gallery and the probe 

face images. According to the developed model, a linear relationship exists between a probe image and all the images 

in a gallery set.  If a query face image fits to the 𝑖th class in the gallery set, it can be expressed linearly in terms of the 

gallery-images features from the same class. Therefore, we have   

                                                                                    𝑰𝑅 = 𝑿𝑖𝜶𝑖 ,                                                                          (3.26)                       

where 𝑰𝑅 is the reconstructed probe image based on the gallery images from the 𝑖th class; 𝑿𝑖 = [𝒙𝑖,1, … , 𝒙𝑖,𝑛𝑖] are the 

training samples from the 𝑖𝑡ℎ class, which has 𝑛𝑖 samples; and 𝜶𝑖 represents the image coefficient vector of the probe 

image, estimated by the least-squares algorithm. The next step is to find the residual values for each class, based on the 

computed coefficient vectors. The query face image 𝒚 is assigned to the class 𝑗 which has the minimum residual value, 

i.e.              

                                                                             𝑗 = min
𝑖
‖𝒚 − 𝑿𝑖𝜶𝑖‖.                                                                   (3.27) 
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Fig. 3-7. Testing stage of the proposed framework. 

3.7 Experiments 

To evaluate the effectiveness of our proposed approach, we conduct extensive sets of experiments on five face 

datasets, which include Extended Yale-B, Multi-PIE [169], FERET [170], LFW [15], and Remote Face [171] 

databases. In the pre-processing stage, face images are first detected and aligned using MTCNN [21]. For the different 

databases, we followed the other papers on LR face recognition to down-sample face images to a specific size. This 

allows our algorithm to be directly compared to other algorithms.   

3.7.1   Experimental Results on the Extended Yale-B Dataset 

The Extended Yale-B dataset consists of 2,432 images from 38 subjects with 64 images per subject, which were 

taken with different illumination conditions. In our experiments, all 64 images per subject with different illumination 

conditions are utilized. For training, we randomly select 10, 20, and 30 images per subject. LR probe images of size 

12 × 12 are generated using a down-sampling operation. The HR and LR face images of five individuals from the 

dataset are shown in Fig. 3-9 (a). In Fig. 3-8, the recognition rate shows an increasing trend and remains stable as 

feature dimension increases. Our proposed method performs better than the other LR face recognition methods, and 

achieves the highest recognition rate of 94.74%, when the feature dimension is higher than 70. The highest recognition 

rates of CLPM [10], DSR [9], NMCF [69], MDS [73], CCA [77], CDMMA [78], and CMDA [80] are 89.35%, 62.3%, 

81.42%, 77.01%, 77.90%, 88.2%, and 89.8%, respectively, at their corresponding optimal feature dimensions.  
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Fig. 3-8. Recognition rates of different methods at different feature dimensions on the Extended Yale-B database (𝐿𝑅: 12 × 12). 

                

                    

                                            (a)                                                                                                     (b) 

                      

                    

                                                     (c)                                                                                                     (d) 

Fig. 3-9. Original images and the corresponding LR images: (a) Extended Yale-B, (b) Multi-PIE, (c) FERET, and (d) LFW 

databases. The first rows show the original face images, while the second rows show the downsampled images.  

3.7.2 Experimental Results on the Multi-PIE Dataset 

The Multi-PIE dataset consists of more than 700,000 face images of 337 persons. Images were captured in four 

different sessions. Following the protocol used in [75], we conducted experiments on a subset of session 04, which 
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contain images with frontal pose under 20 different illumination conditions. The camera and the recording numbers, 

used in our experiments, are 05-1 and 01, respectively. For training, we randomly select 50 subjects, while the rest of 

the subjects are used for testing. To construct a gallery set, 6 images of each subject are selected, while the remaining 

14 images are included in a probe set. LR probe images of size 8 × 8 are generated using a down-sampling operation. 

The sample HR and the LR images from the Multi-PIE dataset are shown in Fig. 3-9 (b). Table 3-2 shows the 

comparative results in terms of Rank-1 recognition accuracy. Fig. 3-10(a) shows the recognition rate at different feature 

dimensions. Our method outperforms the other LR face recognition methods and achieves the highest recognition 

accuracy of 97.41%.    

Table 3-1. Comparative results on the FERET (Fa) dataset, in terms of Rank-1 Recognition accuracy, at different resolutions with 

optimal feature dimensions.  

Algorithm 8*8 12*12 16*16 

CLPM [10] 79.94% 82.46% 84.48% 

CMFA [74] 72.08% 75.40% 75.60% 

SDA [72] 68.75% 71.77% 72.08% 

C-RSDA [79] 82.36% 86.29% 86.29% 

Proposed method 84.71% 89.66% 95.22% 

 

Table 3-2. Comparative results for FERET (BaBe) and Multi-PIE datasets in terms of Rank-1 Recognition accuracy at optimal 

feature dimensions (Probe image resolution:8 × 8). 

Algorithm FERET (BaBe) Multi-PIE 

CLPM [10] 55.22% 88.04% 

CMFA [74] 75.98% 93.44% 

SDA [72] 72.09% 89.51% 

Shi et al. [75] 80.90% 95.69% 

MDS [73] 85.91% 91.78% 

LMCM [76] 90.00% -------- 

DMDS [81] 90.89% 93.88% 

LDMDS [81] 93.55% 95.81% 

Proposed Method 96.22% 97.41%  
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(a) 

 

   (b) 

Fig. 3-10. Recognition rates with different feature dimensions: (a) Multi-PIE database (LR: 8 × 8) and (b) the FERET database 

(BaBe) (LR: 8 × 8).  
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3.7.3 Experimental Results on the FERET Dataset 

The FERET dataset is one of the widely used face datasets for performance evaluation. It consists of more than 

13,000 face images from 1,565 subjects.  The images of each subject are taken with variations in illumination, 

expressions, and pose. Performance on FERET dataset is evaluated using three probe sets (Fb, Dup1, and Dup2), 

against one standard gallery set (Fa), respectively. The HR and LR face images of five individuals from the FERET 

dataset are shown in Fig. 3-9(c). In our experiments, we select a group, namely Fa, which consists of 994 frontal face 

images with one image per subject, and used it as a gallery set, while Fb consists of 994 images with expression 

variations as a probe set. Throughout this chapter, we called this subset ‘FERET (Fa)’. We carried out our experiments 

by selecting a training set that consists of only one image per subject. LR probe images of size, 12 × 12, are generated 

by using a down-sampling operation. Our method outperforms other LR face recognition methods, and achieves the 

recognition rate of 89.66%, with a feature dimension of 200, whereas the recognition accuracy achieved by CLPM 

[10], CMFA [74], SDA [72] and C-RSDA [79] are 82.46%, 75.40%, 71.77%, and 86.29%, respectively, with their 

optimal feature dimensions. Table 3-1 shows the comparative results at different resolutions.  

For comprehensive analysis, we further perform experiments on another challenging subset of the FERET dataset, 

which contains images of 200 subjects having large variations in pose, and expression (including 

𝑏𝑎, 𝑏𝑑, 𝑏𝑒, 𝑏𝑓, 𝑏𝑔, 𝑏𝑗 𝑎𝑛𝑑 𝑏𝑘). Throughout this chapter, we called this subset ‘FERET (BaBe)’. In this subset, 7 images 

per subject are available. In our experiments, 50 subjects are selected for training, while the remaining 150 subjects are 

used to construct a testing set. During training, all the 7 images per subject are used. For the testing set, the first four 

images are used to construct a galley set, while the remaining 3 images are used as a probe set. For evaluation, we 

down-sample the probe images to the size of 8 × 8. Our method achieves the recognition rate of 96.22% with a feature 

dimension of 140, which is better than the other LR face recognition methods. The comparative results are shown in 

Table 3-2.  Recognition rate with different feature dimensions are shown in Fig. 3-10 (b). 

3.7.4 Experimental Results on the LFW Database 

Recognizing face images taken under unconstrained environments is more challenging. To do so, we conduct 

experiments on the LFW dataset. All the images in this dataset were captured in the wild, having large variations in 

expression, pose, make-up, lighting condition, etc. It consists of 13,233 face images from 5,749 individuals. Out of 

these, 1,680 individuals contain more than two images, and 610 of them contain more than four images in the dataset. 
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We randomly select 4 images from each of the 610 individuals. For training, we randomly select 150 subjects with 10 

images each from the CASIA-Web face dataset [57]. For testing, two images per subject from selected LFW images 

are used to construct the gallery set, and the other two are used for the probe set. LR probe images of resolutions 

12 × 12, 16 × 16, and 20 × 20 are generated using a down-sampling operation. Our method shows a promising result 

by achieving 88.23% accuracy on LR images of size 12 × 12. For the LFW dataset, we compare our results with a 

recently proposed deep-learning-based method [49], which will be shown in the next section. The HR and LR face 

images of five individuals from the LFW database are shown in Fig. 3-9(d). The recognition rate of our proposed 

method, with different feature dimensions and at three different probe image resolutions, is shown in Fig. 3-11.  

 

Fig. 3-11. Recognition rates of our proposed method on the LFW database, with different feature dimensions and at different 

probe image resolutions.  

3.7.5 Comparison with Deep-Learning Methods 

Convolutional neural networks (CNNs) have revolutionized pattern-recognition research by providing superior 

performances in various machine learning tasks. One of the main reasons for its success is the availability of a large 

amount of training data and the networks are trained for feature extraction and recognition from end to end. As 

discussed earlier, deep-learning methods have achieved more than 99% recognition accuracy on the LFW dataset. 

However, deep learning is still finding a way to make its mark in solving the LR face recognition problem. Schroff et 
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al. [6] reported around 50% decline in validation rate when the size of face images is reduced from 256 × 256 to 

40 × 40.  Similarly, Chevalier at al. [172] also reported the significant decline in recognition performance of the CNN 

models, by varying the image resolution from 100 × 100 to 20 × 20. Now, we will analyze the performance of a deep-

learning-based approach for recognition of LR face images. Then, we analyze the performance of our proposed 

approach in comparison to the deep-learning-based method. In this regard, we have conducted several experiments to 

evaluate whether current deep face models are good enough for recognizing LR face images.  

For deep-learning-based experiments, we used three different models of SphereFace [49] (a deep CNN model, 

trained on the CASIA-Web Face [57] dataset, to perform face recognition). It is worth noting that the size of the training 

data used by SphereFace is small as compared to the datasets used in VGG-Face [48], FaceNet [6], and Deep Face [3]. 

The model achieves excellent performance on both LFW [15] and YouTube face (YTF) [173] datasets. First, we used 

a pretrained model (Model no. 1) of Sphere Face to perform LR face recognition. Our experimental results show that 

using a pretrained model for LR face recognition gives the worst performance. The reason for this is that SphereFace 

is originally trained on HR images, so fine-tuning or retraining is necessary to achieve optimal performance on LR 

face images. It should be noted that the LFW and Multi-PIE datasets contain color face images. Therefore, we fine-

tune the model with a small learning rate of 0.01, which linearly decay to zero. We also randomly down-sample the 

input face images to the sizes of 8 × 8 − 95 × 95, and report the best performance for both datasets in Tables 3-4 and 

3-7, respectively. On the other hand, the Extended Yale-B and FERET datasets consist of grayscale images, so fine-

tuning the original model with color images might not give the optimal performance on these two datasets. Therefore, 

we retrain the original model using gray-scale images instead of color face images. In this case, the input size of the 

first convolutional layer is changed to 1, rather than 3. Similar to fine-tuned models, the input face images are down-

sampled to the size of 8 × 8 − 95 × 95. Initially, we set the learning rate to 0.1, which linearly decays to zero. The 

optimal recognition performances are reported in Tables 3-3, 3-5, and 3-6, respectively.  

Table 3-3. Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different 

resolutions, on the Extended Yale-B database. 

Method 12 × 12 16 × 16 20 × 20 

SphereFace-HR 61.22% 54.64% 57.12% 

SphereFace-LR 63.08% 68.03% 73.61% 

Proposed Method 94.74% 95.13% 94.87% 
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Table 3-4. Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different 

resolutions, on the Multi-PIE Dataset. 

Method 8 × 8 12 × 12 16 × 16 20 × 20 

SphereFace-HR 84.39% 90.59% 96.03% 99.02% 

SphereFace-LR 96.94% 98.41% 99.96% 100.00% 

Proposed Method 97.41% 97.94% 97.94% 98.06% 

Table 3-5. Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different 

resolutions, on the FERET (Fa) database. 

Method 8 × 8 12 × 12 16 × 16 20 × 20 

SphereFace-HR 52.73% 65.07% 72.30% 77.64% 

SphereFace-LR 59.29% 49.28% 86.76% 94.22% 

Proposed Method 84.71% 89.66% 95.22% 96.55% 

 

Table 3-6. Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different 

resolutions, on the FERET (BaBe) database. 

Method 8 × 8 12 × 12 16 × 16 20 × 20 

SphereFace-HR 42.67% 65.56% 80.22% 88.44% 

SphereFace-LR 55.11% 54.67% 94.22% 99.56% 

Proposed Method 96.22% 99.33% 98.67% 99.78% 

 

Table 3-7. Recognition results of deep-learning-based methods and the proposed method for LR face recognition at different 

resolutions, on the LFW database. 

Method 12 × 12 16 × 16 20 × 20 

Sphere-Face-HR 18.93% 19.67% 41.64% 

Sphere-Face-LR 52.70% 78.85%     89.92% 

Proposed Method 88.36% 93.28% 95.41% 

 

It can be seen that fine-tuning and retraining produce significantly major improvements in the recognition of LR 

face images. Throughout our experiments, we follow the Sphere Face’s implementation to align the face images using 

MTCNN [21].  In the testing stage, we extract deep features from the FC1 layer. In the experiments, the final feature 

of a probe face image is obtained by concatenating the original features and its horizontally flipped version. Finally, 

the similarity score is computed using the cosine similarity. In [49], the performance of the SphereFace model was 

evaluated using different numbers of layers (10, 20, 36, 40 and 64). However, a minor improvement is reported in the 
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recognition rate when the number of layers is increased from 20 to 64. Throughout our experiments, we first down-

sample the gallery faces to the same resolution as the probe image to achieve better performances.  

 

        (a) 

 

                                                                                                                                 (b) 

Fig. 3-12. Matching results of our proposed approach, with the probe images shown on the left: (a) matching under large pose 

variation, and (b) matching under expression and lighting variations.  

3.7.6. Experimental Results on the Remote Face Database 

In order to evaluate the performance of our proposed method under more challenging conditions, we conducted 

experiments on the Remote Face dataset [171], which contains images taken under unconstrained outdoor maritime 

environments. The images were taken at different distances, ranging from 10-250 m. There are 2,102 face images in 

total from 17 subjects. Each subject has a number of images, ranging between 29 and 306.  

The dataset consists of six subsets, denoted as blur, illum, illum_blur, frontal_pose, Nf_pose, and low_res, 

respectively. The blur subset contains 75 face images with blurring effects. The illum subset consists of 561 face images 

with different lighting conditions. The illum_blur subset consists of 128 images, with both lighting and blurring effects. 

The low_res subset is the most challenging one, as it contains 90 face images of very low resolution. The frontal_pose 

and non-frontal pose (Nf_pose) subsets include images having frontal and non-frontal poses, with 1,166 and 846 face 

images, respectively. The gallery set consists of five HR face images of each subject. We conducted experiments on 

all of the six subsets and achieved competitive results. For the subsets with a blur and lighting effects, all the methods 

can achieve promising results, as these effects do not have severe impact on the image’s appearance. All the methods 
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can also achieve satisfactory performance on the frontal-pose subset. For the Nf_pose subset, most of the methods have 

their performance drop significantly, while our method can achieve the best performance, with the recognition rate of 

96.4%. The low_res subset is the most challenging one, because the images are of a small size and suffered from 

blurring. The resolution of the images in this subset is 20 × 30 only. The face images of three different subjects from 

all the six subsets are shown in Fig. 3-13.  

                        

                                 Blur                                           Illum                                      Illum_blur 

                         

                           Frontal_pose                           Non-frontal pose                         Low-resolution 

Fig. 3-13. Sample face images from all the six subsets of the Remote Face database.   

No training set is provided by the Remote Face dataset [171], so we used 16,028 frontal face images from the Face 

Recognition Grand Challenge (FRGC) dataset for training. It can be seen that all the other methods do not perform 

well on the LR face images, as it is very difficult to extract useful information from such low-quality, low-resolution 

images. Similar to [36], we compare the performance of our method with different local feature descriptors, including 

binarized statistical image features [174], DFD [34], LSF [175], and two deep-learning-based methods (DL [176], and 

SphereFace (SF) [32]). Experimental results are tabulated in Table 3-8.  

It can be seen that the deep-learning-based model SF [32] can achieve state-of-the-art performance on the five 

subsets, except the low_res subset. This is because the original model was trained on HR face images. In our 

experiments, we have also fine-tuned the model using LR images from the CASIA-Web Face dataset [66], with the 

sizes between 8 × 8 and 95 × 95, for performance evaluation. In the experiment results, the fine-tuned model is 

denoted as SF-FT. It is worth noting that the original SF model performs better than the fine-tuned model (SF-FT), 

because the distribution of the downsampled faces used for fine-tuning is different from the native LR faces. It can be 

observed that the performance of the deep learning models declines when the presented probe images are of low 

resolution. However, our method performs better than all the other methods on this subset, as well as on the 
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frontal_pose, illum_blur, and Nf_pose. For the blur and illum subsets, the performance of our method is comparable to 

SF and SF-FT. 

Table 3-8. Comparative results on Remote Face dataset, in terms of Rank-1 Recognition rate on all the six subsets. 

Subset Algorithm Rate (%) Subset Algorithm Rate (%) Subset Algorithm Rate (%) 

blur BSIF 62.2 frontal_pose BSIF 70.1 Nf_pose BSIF 49.2 

 DFD 63.5  DFD 78.6  DFD 52.5 

 DL 48.6  DL 80.3  DL 49.8 

 Shearlet 62.5  Shearlet 77.8  Shearlet 51.7 

 LSF 67.3  LSF 83.8  LSF 57.2 

 SF-FT 89.4  SF-FT 95.4  SF-FT 90.1 

 SF 93.8  SF 97.8  SF 94.2 

 Ours 90.5  Ours 98.8  Ours 96.4 

illum BSIF 79.3 illum_blur BSIF 74.8 low_res BSIF 11.2 

 DFD 83.4  DFD 75.2  DFD 14.5 

 DL 80.4  DL 71.8  DL 11.5 

 Shearlet 81.6  Shearlet 74.3  Shearlet 13.8 

 LSF 92.5  LSF 76.0  LSF 19.9 

 SF-FT 99.2  SF-FT 96.9  SF-FT 51.4 

 SF 99.4  SF 98.5  SF 66.0 

 Ours 98.8  Ours 98.8  Ours 81.1 

3.7.6 Feature Fusion 

Most of the existing face recognition methods utilize only one feature descriptor. However, in difficult tasks such 

as LR face recognition, no single feature is good enough to extract all the relevant information from LR face images. 

Combining multiple efficient features is a promising way to bring major improvement in recognition accuracy. In our 

previous approach [177], we used only one local feature descriptor (Gabor wavelets) for extracting facial details from 

LR images, which provided satisfactory performance. However, it does not perform well under large pose variations 

and poor lighting conditions.  

Table 3-9. Recognition rates in comparison to the preliminary work [177], recorded at the optimal feature dimensions. 

Dataset Previous Method [177] Proposed Method 

Extended Yale-B (LR: 12 × 12) 49.21% 94.74% 

FERET (fa) (LR: 12 × 12) 70.08% 89.66% 

FERET (BaBe) (LR: 8 × 8) 46.44% 96.22% 

LFW (LR: 12 × 12) 44.34% 88.36% 

Multi-PIE (LR: 8 × 8) 56.40% 97.41% 
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To overcome this problem, we fuse two efficient local feature descriptors, i.e. Gabor wavelets and LBPD, which 

can achieve much better performance even under large unconstrained environments. Table 3-9 shows the recognition 

rates on the four databases (in comparison to previously proposed approach [177]), with and without performing feature 

fusion at the corresponding optimal feature dimensions. It can be observed that learning and fusing the low-rank 

features brings significant improvements, in terms of recognition accuracy. Two matching results are shown in Fig. 3-

12, with pose, expression and lighting variations. Recognition results based on our method recorded for all the four 

datasets, at the corresponding optimal feature dimensions, using different numbers of training samples per subject are 

shown in Tables 3-10, 3-11, 3-12, and 3-13, respectively. It should be noted that coupled mapping methods operate 

directly on data matrices by projecting HR training and LR testing samples onto a common feature subspace, without 

extracting discriminant information from the facial images. Our proposed method not only utilizes features robust to 

resolution, but also employs sparse coding, which preserves the sparsity of the data samples. This also makes our 

method suitable for recognition of very LR images, even down to the size of 8 × 8.   As discussed before, we decompose 

the extracted local features into a low-rank feature matrix, and a sparse error matrix. After that, only low-rank 

component is utilized for identification. In this section, we evaluate the performance of our proposed method with and 

without including the estimated sparse error matrix in the final feature representation. Firstly, we visualize the estimated 

low-rank and sparse error components by applying the low-rank matrix decomposition algorithm on some face images 

from the LFW dataset. Fig. 3-14 shows the low-rank representation of face images and their corresponding sparse 

errors. 

  

The low-rank representation of face images from LFW dataset. 

   

Corresponding Sparse error images  

Fig. 3-14. Low-rank representation of face images and the corresponding sparse error images.  
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Fig. 3-15. Recognition rates with and without using the sparse error matrix for all the five datasets at optimal feature dimensions.  

In our experiments, we found that by including the sparse error matrix in the final feature representation, recognition 

rate drops by a significant level. We repeat our experiments by following the protocol discussed before, and report the 

recognition rates for all of the five datasets at optimal feature dimensions. Fig. 3-15 shows the recognition rates with 

and without using the sparse error matrix. It can be observed that the recognition rate increases by 20-25%, when the 

sparse error matrix is discarded.      

3.7.7 Recognition across Different Probe Resolutions 

In this section, the performance of our proposed method is evaluated using probe images of different resolutions, 

with and without using our proposed morphological preprocessing method. For all the four datasets, three different 

probe resolutions, 8 × 8, 12 × 12, and 16 × 16, were used. Experiments were conducted by selecting a fixed number 

of training images per subject and the respective optimal feature dimensions, at different probe resolutions, and results 

are reported in Fig. 3-16.  

The results prove that our proposed method can achieve a very good recognition performance even if image 

resolution is reduced to lower than 12×12. However deep-learning-based methods are not optimistic for recognizing 

the LR images of size 8 × 8. As discussed earlier, pre-processing is considered as one of the most important steps prior 

to face-recognition, so we also compute the recognition rates with and without using the proposed morphological pre-

processing method, at the corresponding optimal feature dimensions for the four datasets. The corresponding results 
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are shown in Table 3-14. It can be observed that 1% to 6% of improvement, in terms of recognition rate, can be obtained 

when the pre-processing step is employed. 

 

Fig. 3-16. Recognition rates of the proposed method based on four datasets at different probe image resolutions. 

Table 3-10. Recognition rates, using different numbers of training images per subject, on the Extended Yale-B database 

(LR:12 × 12). 

Training images / subject Recognition rate 

10 0.9382 

20 0.9474 

30 0.9461 

Table 3-11. Recognition rate, using different numbers of training images per subject, on the Multi-PIE database (LR:8 × 8). 

Training images / subject Recognition rate 

                     10                   0.9148 

15 0.9720 

20 0.9741 

Table 3-12. Recognition rate, using different numbers of training images per subject, on the FERET (Fa) database 

(LR:12 × 12). 

Training images / subject Recognition rate 

1 0.8966 

2 0.9399 
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Table 3-13. Recognition rate, using different numbers of training images per subject, on the LFW database (LR:12 × 12). 

Training images / subject Recognition rate 

5 0.6664 

10 0.8823 

 

Table 3-14. Recognition rates of our proposed method, with and without using the morphological pre-processing method. 

 

3.8 Conclusions 

This chapter addresses the problem of low-resolution face recognition by proposing a sparse-coding-based 

approach, which first extracts multiple local features (Gabor wavelets and LBPD) of face images and then decomposes 

them into a corresponding low-rank feature matrix and a sparse error matrix. The learned low-rank features are then 

projected into a new discriminative feature subspace using the proposed sparse-coding-based algorithm. It can be 

observed that sparsity plays an important role in discriminating face images of two different classes. Our proposed 

method performs sparse reconstruction in the training process, without the need to search any nearest neighbors. The 

learned projection matrix also preserves the global structure of the data samples in the learned sparse feature subspace. 

For matching, a coefficient vector is computed to find the similarity between the training and testing image’s features 

by using linear regression. Residual values are then computed based on the estimated coefficient vectors, which 

represent a testing feature, in terms of a set of training features. Finally, the LR query face image is then assigned to 

the class label with the least residual value. Our objective function does not need to tune any model parameter. 

Furthermore, our proposed morphological pre-processing method brings significant improvements in recognition 

accuracy. Experimental results demonstrate that our proposed method shows excellent performance in recognizing the 

very LR images even of the size 8 × 8, which is better than conventional as well as deep-learning-based methods. 

Database 
Recognition rate (without pre-

processing) 

Recognition rate (after pre-

processing) 

Extended Yale-B (160-D features)  0.882 0.947 

Multi-PIE (160-D features) 0.922 0.974 

FERET (Fa) (200-D features) 0.831 0.896 

FERET (BaBe) (100-D features) 0.873 0.915 

LFW (200-D features) 0.819 0.883 
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  Deep-Feature Encoding-based Discriminative Model for Age-

invariant Face Recognition 

4.1  Introduction 

Face recognition under unconstrained environments has passed various milestones due to the development of 

various state-of-the-art techniques. However, recognizing face images with aging variations is a challenging research 

problem that needs considerable amount of attention. It has many practical applications, e.g. criminal identification 

using photographs, passport verification, etc. Due to age progression, face images go through a major change in terms 

of both shape and texture, as shown in Fig.4-1. 

In the past, various global and local feature descriptors have been proposed to perform face-recognition. As we 

discussed in the previous chapters, local features have been proven to be robust to various facial variations, such as 

illumination, expression, pose, etc. However, these features are not optimal for solving cross-age face-recognition 

problems [178], and provide limited performance. Furthermore, their performance heavily depends on the properly 

pre-processed face images. To make these features more discriminative for recognition tasks, various feature-encoding-

based methods [118-125] were proposed, which convert extracted features into a discriminative codeword for image 

representation. This brings major improvements in the recognition performance under unconstrained environments. 

Although deep learning models [48-54] have achieved outstanding performances in solving face recognition problem, 

but their performance is limited in solving the aging face-recognition problem.  

To overcome this problem, we propose a robust deep-feature-encoding method based on locality constraint, which 

converts extracted deep features into an N-dimensional codeword for face representation. In this regard, we first learn 

an age-discriminative codebook, which ensures the same codeword for the same identity at different ages. Using a pair 

of face images with a large age difference, we first exploit their correlation by projecting them into a coherent feature 

subspace using canonical correlation analysis (CCA), and then perform feature fusion. Those fused features are then 

used to learn an age-discriminative codebook. In the testing stage, the gallery and query image’s features are encoded 

using the learned codebook. The resultant encoded features are sparse, which further improves the discriminative power 

of the learned features. In the final stage, the linear-regression model [43] is utilized to determine the identity of a given 
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encoded query feature, in terms of a coefficient vector. By using this coefficient vector, residual values are computed 

for face matching.  

 

Age 19                       Age 28                       Age 51                       Age 63 

 

                                              Age 14                        Age 20                        Age 27                      Age 40 

Fig. 4-1. Sample images from the FGNET dataset from two different persons with large age variations, where each row represents 

the face images of the same person.  

4.1.1 Motivation 

In terms of face recognition with aging progression, our work is highly inspired by some recent works on age-

invariant face recognition (AIFR) [101, 105], which encode pixel values into discriminative codes, such that face 

images of the same identity at different ages are represented by the same codeword or similar codewords. However, 

these methods rely on hand-crafted feature descriptors, and do not consider the face images’ local structures while 

performing feature encoding. Data locality is considered as a key issue in many areas of pattern recognition, such as 

dimensionality reduction, clustering, image classification, etc. Wang et al. [122] proposed a feature-encoding 

framework based on locality constraint, namely locality constrained linear coding (LLC), which projects extracted 

features into a local coordinate system. It was claimed that locality information can lead to the sparsity for the resultant 

encoded coefficients, but not vice versa. Motivated by this idea, we learn an age-discriminative codebook by keeping 

the data’s local structures into account. The locality constraint captures the correlation between the features of the same 

identity by sharing the local bases of the codebook. Therefore, it ensures the same codeword for the images of the same 

identity taken at different ages. For cross-age face recognition, these codewords are explored. Furthermore, the 

utilization of locality information results in the sparse nature of the encoded features, which further enhances the 
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discriminability of the extracted features. Extracted features of the same person at different ages should have a certain 

amount of correlation, which can be exploited to learn age-invariant representation. Inspired by the application of CCA, 

we learn the coherent feature subspace using pairs of the training image’s features. Feature fusion is then performed in 

the learned CCA subspace, which is then used to learn an age-discriminative codebook.  

The major contributions of this chapter are as follows: 

• A robust feature-encoding framework based on locality constraint is proposed, which encodes the extracted deep 

facial features into a discriminative codeword. In comparison to LLC [122], our algorithm provides closed form 

solutions for both encoding and the codebook updating stage.  

• In the training stage, we maximize the correlation between the deep features of the same identity with a large age 

difference using CCA, which are then used to learn an age-discriminative codebook. The learned codebook is 

proved to be discriminative in terms of age progression, as verified by our experimental results.  

• Extensive experiments have been conducted on three challenging face-aging data sets, and experiment results show 

that our proposed method is capable of recognizing face images with large age gaps, and also outperforms other 

state-of-the-art AIFR methods, in terms of recognition rate. Furthermore, our proposed method shows robustness 

to externally added noise, and achieves state-of-the-art performance, as verified by our experimental results.  

The remaining chapter is organized as follows. In Section 4.2, we introduce the process of deep-feature extraction 

using a deep-CNN model (AlexNet). In Section 4.3, we present our feature-encoding framework based on the Euclidean 

locality adaptor, which makes the extracted deep features more robust to aging variations. In Section 4.4, we explain 

the concept of feature fusion using CCA. In Section 4.5, we discuss the use of linear regression for classification. 

Section 4.6 presents the experimental results of our proposed discriminative model, along with discussions. Finally, 

the chapter is concluded in Section 4.7.   

Our proposed discriminative model consists of four main parts: (1) deep-feature extraction, (2) age-discriminative 

codebook learning, (3) feature-encoding using learned codebook, and (4) face matching based on linear mapping. We 

will explain all the stages in the following sections. After that, we will present the comprehensive analysis of our 

experimental results.  
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4.2  Deep-Feature Extraction 

In our work, we utilize a pre-trained deep-CNN model, namely AlexNet [179], to extract high-level features for 

AIFR. CNN models have the capability of learning effective features from input images. AlexNet is selected, due to 

its simple architecture and superior performances. Fig. 4-2 shows the AlexNet architecture. It consists of five 

convolutional layers, three pooling layers, and three fully connected (FC) layers. The output of each convolutional and 

fully connected layer is fed to the ReLU. The first convolutional layer filters the input face image of size 

227 × 227 × 3, using 96 kernels of size 11 × 11 × 3. The output of the first convolutional layer is fed to the second 

convolutional layer, after passing through the normalization and pooling layer. After passing through the five 

convolutional layers, the network learns high-level deep features at the fully connected layer, with a dimension of 4096. 

All fully connected layers are regularized by using a drop-out scheme. In our method, we extract features from the FC 

layer (‘fc7’). 

 

Fig. 4-2. AlexNet architecture (Adapted from paper [197]). 

In deep learning-based methods, networks are trained for feature extraction and recognition from end to end. In our 

proposed approach, we use deep-learning-based CNN model to extract features, which are then converted into 

discriminative codewords for recognition. Fig. 4-3 shows the features learned at the different layers of the CNN.  

 

Fig. 4-3. Visualization of the learned deep features from different convolutional layers of AlexNet. 
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4.3  Feature Encoding based on locality information 

We now explain our proposed feature-encoding framework, based on the Euclidean locality adaptor. Before we 

proceed, we first explain the major differences between data sparsity and data locality. The advantages of using locality 

information for accurate classification (recognition) will also be discussed. Our proposed method provides a better 

feature-encoded representation, which enhances the discriminability of the extracted deep features in terms of age 

progression.  

4.3.1 Locality vs Sparsity 

Data locality information has been proven to be important for the success of various pattern-recognition applications, 

e.g. density estimation [180], dimensionality reduction [30], and image classification [181]. SRC [7] was used for face 

recognition under large occlusion, and achieved state-of-the-art performances. However, is it enough, or essential, for 

resolving this kind of a problem? This query has recently been examined in [122], which concluded that exploitation 

of sparse information only is not enough to handle pattern recognition problems with large occlusion. 

As discussed before, the data’s locality has more importance than sparsity, as sparse encoded coefficients can be 

achieved using locality, but not vice versa. By using locality information, codebook entries near to the query input will 

be selected for the reconstruction of data samples. However, classification based on sparse representation minimizes 

the class-wise reconstruction error, so using codebook entries far away from the query input for reconstruction is not 

desirable. According to the assumption made by the kNN classifier, those codebook entries far away from the input 

have less probability of belonging to the same class. The standard feature-encoding method [120], based on data 

sparsity, do not incorporate the local structure information of the data samples during the encoding stage, but LLC 

[122] does. This encourages us to propose a feature-encoding-based framework based on the Euclidean locality 

adaptor, which preserves the data structure and has better feature representation, and hence, enhances the recognition 

performance.  

4.3.2 Locality-based feature-encoding framework 

Now, we present our feature-encoding framework based on the Euclidean locality adaptor, which makes the extracted 

deep features discriminative in terms of age progression. We propose to encode the features by projecting each of them 

into its local coordinate system. Consider that 𝑀 feature vectors of dimension 𝐷 are extracted, and they are represented 

as 𝑭 = [𝒇1, 𝒇2, … , 𝒇𝑀] ∈ 𝑅
𝐷×𝑀. Firstly, a codebook 𝑾 with 𝑁 entries, i.e. 𝑾 = {𝒘1, 𝒘2, … ,𝒘𝑁} is generated using 
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𝑘-means clustering, which is then used to convert each deep feature into a 𝑁-dimensional codeword for final image 

description. Our proposed feature-encoding approach focuses on the Euclidean locality constraint rather than the 

sparsity constraint. The proposed locality-based objective function is defined as follows: 

                                                                         min
𝑾,𝑪
‖𝑭 −𝑾𝑪‖2 + 𝜆∑‖𝒍𝑘  ⨂ 𝒄𝑘‖2

2

𝑀

𝑘=1

,                                                               (4.1) 

 s. t. 𝟏𝑇𝒄𝑘 = 1,                                                                                                                                                                 

where ⨂ represents the element-wise multiplication operator, 𝜆 is a regularization parameter, 𝒍𝑘 ∈ 𝑅
𝑁 represents the 

locality term that consists of a Euclidean adaptor, which provides freedom to each basis vector depending on how 

similar it is to the given descriptor 𝒇𝑘, and 𝟏 is the identity vector [1, … ,1]𝑇. 𝑪 = [𝒄1, 𝒄2, … , 𝒄𝑀] is the set of codes for 

𝑭. Each entry of the locality term 𝒍𝑘 can be defined as follows: 

                                                                      𝒍𝑘𝑛 = (𝜎
2 + ‖𝒇𝑘 −𝒘𝑛‖

2)−1  ,                                                           (4.2) 

where ‖𝒇𝑘 −𝒘𝑛‖
2 is the Euclidean distance between the input feature descriptor 𝒇𝑘 and the 𝑛th codebook entry 𝒘𝑛. 

𝜎 is a constant that controls the weight decay speed for the locality term. In our method, we choose 𝜎 = 0.5. Later on, 

we will justify the selection of this constant value. The locality term in equation (4.2) is the Euclidean adaptor that 

defines how local coding varies with respect to the distances ‖𝒇𝑘 −𝒘𝑛‖. It utilizes the student 𝑡-distribution to provide 

a degree of freedom, such as Cauchy distribution. One of the major properties of student 𝑡-distribution is that 

(𝜎2 + ‖𝒇𝑘 −𝒘𝑛‖
2)−1 follows an inverse square law when the pairwise distance ‖𝒇𝑘 −𝒘𝑛‖

2 is large. 𝒍𝑘 is further 

normalized to have a value between (0, 1) by taking a difference between max (‖𝒇𝑘 −𝒘𝑛‖
2) and ‖𝒇𝑘 −𝒘𝑛‖

2. 

Furthermore, local bases 𝒘𝑘 are selected for each feature descriptor, such that a local coordinate system can be built. 

Local bases can be considered as the nearest neighbours of 𝒇𝑘, which lead to a more compact and simplified linear 

system for feature coding. 

To solve (4.1), we utilize the Lagrange multiplier, which is defined as follows: 

                                            𝐿(𝐜𝑘 , 𝜂) = ‖𝒇𝑘 −𝑾𝒄𝑘‖
2 + 𝜆‖𝒍𝑘 ⨂ 𝒄𝑘‖2

2 + 𝜂(𝟏𝑇𝒄𝑘 − 1).                                          (4.3) 

Let 𝐘 = (𝒇𝑘𝟏
𝑇 −𝑾)𝑇(𝒇𝑘𝟏

𝑇 −𝑾), which is symmetrical. Equation (4.3) can be rewritten as: 

                                              𝐿(𝒄𝑘 , 𝜂) = 𝒄𝑘
𝑇𝒀𝒄𝑘 + 𝜆𝒄𝑘

𝑇diag(𝒍𝑘)
2𝒄𝑘 + 𝜂(𝟏

T𝒄𝑘 − 1) ,                                          (4.4) 
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where diag(𝒍𝑘) is a diagonal matrix. To determine the optimal solution of (4.4), its partial derivative is set to zero, 

which gives the following equation: 

                                                        
𝜕(𝐿(𝐜𝑘,𝜂))

𝜕(𝐜𝑘)
= 2𝒀𝒄𝑘 + 2𝜆diag(𝒍𝑘)

2𝒄𝑘 + 𝜂
T𝟏 = 0 .                                               (4.5) 

Let 𝚽 = 2(𝒀 + 𝜆diag(𝒍𝑘)
2), we have 

                                                                              𝚽𝒄𝑘 + 𝜂𝟏 = 0  ,                                                                           (4.6) 

Multiply (4.6) by 𝟏𝑇Φ−1, the following equation is obtained: 

                                                                  𝟏𝑇𝚽−1𝚽𝒄𝑘 + 𝜂(𝟏
𝑇𝚽−1𝟏) = 0                                                              (4.7) 

According to the constraint 𝟏𝑇𝒄𝑘 = 1, 𝟏𝑇𝚽−1𝚽𝒄𝑘 = 1, which gives us: 

1 + 𝜂(𝟏𝑇𝚽−1𝟏) = 0, 

                                                                             𝜂 = −(𝟏𝑇𝚽−1𝟏)−1.                                                                      (4.8) 

Putting 𝜂 into (4.6), we obtain the following equation: 

𝚽𝒄𝑘 = (𝟏
𝑇𝚽−1𝟏)−1𝟏. 

After doing some transformations, we have 

                                                                              𝒄𝑘 =
𝚽−1𝟏

𝟏𝑇𝚽−1𝟏
=

1
2𝚽

−1𝟏

𝟏𝑇 (
1
2𝚽

−1𝟏)
.                                                                   (4.9) 

In this way, we obtain the analytical solution of our proposed objective function, which is given as follows: 

�̃�𝑘 =
1

2
𝚽−1𝟏 = (𝒀 + 𝜆diag(𝒍𝑘)

2)−1𝟏, 

                                                                                𝒄𝑘 = �̃�𝑘/(𝟏
𝑇�̃�𝑘).                                                                     (4.10) 

To update the codebook 𝑾, it needs to solve the following equation: 

                                                                             min
𝑾
‖𝑭 −𝑾𝑪‖2 + 𝜆∑‖𝒍𝑘 ⨂ 𝒄𝑘‖2

2

𝑀

𝑘=1

.                                                        (4.11) 
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Let the objective function (4.11) be denoted as 𝑭(𝑾), which update the codebook initialized using k-means clustering.  

Analytical solution of (4.11) can be derived by taking the partial derivative of 𝑭(𝑾) with respect to 𝒘𝑛 for 

𝑛 ϵ {1,2,… ,𝑁}, which gives us the following equation: 

                                                                    
𝜕𝑭

𝜕𝒘𝑛
=∑−2𝑐𝑘𝑛(𝒇𝑘 −𝑾𝒄𝑘

𝑀

𝑘=1

) − 2𝜆𝑐𝑘𝑛
2 (𝒇𝑘 −𝒘𝑛)                                      (4.12) 

In an equivalent form, it can be written as: 

                                          (
𝜕𝑭

𝜕𝒘𝑛
)
𝑇

=∑(−2𝑐𝑘𝑛(1 + 𝜆𝑐𝑘𝑛)(𝒇𝑘)
𝑇 + 2(𝜆𝑐𝑘𝑛

2 𝒘𝑛
𝑇 + 𝑐𝑘𝑛∑𝑐𝑘𝑗𝒘𝑗

𝑇))

𝑁

𝑗=1

𝑀

𝑘=1

 .                    (4.13) 

To compute the global minimum of (4.11), we set its partial derivatives to zero. After setting the partial derivative of 

(4.11) to zero for 𝑛 = 1, 2, 3, … ,𝑁, we obtain 

                                                                                     𝑷𝑾𝑇 = 𝑸,                                                                          (4.14) 

where the matrices 𝑷 ∈ ℝ𝑁×𝑁 and 𝑸 ∈ ℝ𝑁×𝑑 are 

𝑷 = ∑

(

 

(1 + 𝜆)𝑐𝑘1
2 𝑐𝑘1𝑐𝑘2 ⋯ 𝑐𝑘1𝑐𝑘𝑁

𝑐𝑘1𝑐𝑘2 (1 + 𝜆)𝑐𝑘2
2 ⋯ 𝑐𝑘2𝑐𝑘𝑁

⋮ ⋮ ⋱ ⋮
𝑐𝑘1𝑐𝑘𝑁 𝑐𝑘2𝑐𝑘𝑁 ⋯ (1 + 𝜆)𝑐𝑘𝑁

2 )

 

𝑀

𝑘=1

, 

                                                                           𝑸 = ∑

(

 

𝑐𝑘1(1 + 𝜆𝑐𝑘1)(𝒇𝑘)
𝑇

𝑐𝑘2(1 + 𝜆𝑐𝑘2)(𝒇𝑘)
𝑇

⋮
𝑐𝑘𝑁(1 + 𝜆𝑐𝑘𝑁)(𝒇𝑘)

𝑇)

 .              

𝑀

𝑘=1

                                                 (4.15) 

Finally, the updated codebook can be obtained by solving the equation (4.14). Therefore, the optimal solutions for 

encoding the parameters 𝑪 and the codebook 𝑾 are obtained, using coordinate descent method. In this process, we 

optimize 𝑪(𝑾) based on the existing value of 𝑾(𝑪), alternately. The solutions of both 𝑪 and 𝑾 are unique, and their 

sequences also converge to stationary points. In the encoding stage, when codebook 𝑾 is fixed, we derive the analytical 

solution of 𝑪 using (4.10). Similarly, during the codebook-updating process, the closed form solution of 𝑾 is derived 

using (4.14). During the testing stage, each query and gallery face image’s feature is encoded using the learned 

codebook 𝑾. Our experiments also show that, by encoding features at different ages using locality constraint, we can 
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obtain more discriminative feature representation for age-invariant face recognition. Algorithm 4-1, and 4-2 

summarizes the training and testing steps of our proposed feature-encoding framework. 

Algorithm 4-1: Codebook updating scheme 

Input:𝑾𝑖𝑛𝑖𝑡 ∈ 𝑅
𝐷×𝑁 , 𝑭 ∈ 𝑅𝐷×𝑀, 𝜎, 𝜆 

Output: 𝑾 

1: 𝑾 ←𝑾𝑖𝑛𝑖𝑡   (Initialize the codebook using k-means) 

2: for 𝑘 = 1:𝑀 do 

3:    𝒍 ← 1 × 𝑁  (Locality constraint) 

4:    for 𝑘 = 1:𝑁 do 

5:        𝒍𝑘𝑛 ← (𝜎
2 + ‖𝒇𝑘 −𝒘𝑛‖

2) 

6:    end for 

7:    𝒍 → 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(0,1)(𝒍) 

8:    Lagrange function to solve (4.1) 

       𝐿(𝒄𝑘 , 𝜂) = ‖𝒇𝑘 −𝑾𝒄𝑘‖
2 + 𝜆‖𝒍𝑘 ⨂ 𝒄𝑘‖2

2 + 𝜂(𝟏𝑇𝒄𝑘 − 1) 

       𝒄𝑘 = �̃�𝑘/(𝟏
T�̃�𝑘) Eq. (4.3) − (4.10) (Analytical solution) 

9:    Codebook Updating: 

(
𝜕𝑭

𝜕𝒘𝑛
)
𝑇

=∑(−2𝑐𝑘𝑛(1 + 𝜆𝑐𝑘𝑛)(𝒇𝑘)
𝑇 + 2(𝜆𝑐𝑘𝑛

2 𝒘𝑛
𝑇 + 𝑐𝑘𝑠∑𝑐𝑘𝑗𝒘𝑗

𝑇))

𝑁

𝑗=1

𝑀

𝑘=1

 

10: 𝑷𝑾𝑇 = 𝑸   

11: end for 

12: Updated Codebook 𝑾 

4.4  Feature fusion using CCA 

Codebook learning is the most important and critical step of our proposed algorithm. To recognize faces across 

different ages, the learned codebook must be discriminative in terms of age progression. To do this, we perform feature-

level fusion using CCA. The simplest way of doing feature fusion is by computing the z-score, which is done by 

normalizing the two feature vectors and then concatenating them to create a high-dimensional feature vector. However, 

it does not take the correlation between the two features into account. In our algorithm, features are extracted and 

encoded at different ages. Features of the same person at different ages should have a certain degree of correlation. 
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Therefore, we first project the features of the training image’s pairs into a coherent feature subspace and then 

concatenate them to form the final feature vector. This concatenated feature vector is used to learn a discriminative 

codebook. Given two sets of training features, with each pair extracted from images of the same subject but at different 

ages, denoted as 𝑭𝑎𝑔𝑒1, and 𝑭𝑎𝑔𝑒2, we employ CCA to learn the pairs of directions 𝜶 and 𝜷, which maximize the 

correlation among the two aging features, such that 𝑞𝑗
1 = 𝜶𝑇𝑭𝑎𝑔𝑒1 and 𝑞𝑗

2 = 𝜷𝑇𝑭𝑎𝑔𝑒2, where 𝑭𝑎𝑔𝑒1 and 𝑭𝑎𝑔𝑒2 are the 

features extracted from a younger and an older images, respectively. 𝑞𝑗
1 and 𝑞𝑗

2 are the projected training image’s 

features. 𝜶 and 𝜷 can be computed by maximizing the following function. 

                                                                      𝐾(𝜶, 𝜷) =
𝜶𝑇𝑪𝑥𝑦𝜷

√𝜶𝑇𝑪𝑥𝑥𝜶.𝜷
𝑇𝑪𝑦𝑦𝜷

.                                                              (4.16) 

where 𝑪𝑥𝑥 and 𝑪𝑦𝑦 are the covariance matrices of 𝑞𝑗
1 and 𝑞𝑗

2, respectively, while 𝑪𝑥𝑦 is the cross-variance matrix. 

After solving, it can be observed that 𝜶 and 𝜷 are the eigenvectors of 𝑪𝑥𝑥
−1𝑪𝑥𝑦𝑪𝑦𝑦

−1𝑪𝑥𝑦
𝑇 , and 

𝑪𝑦𝑦
−1𝑪𝑥𝑦

𝑇𝑪𝑥𝑥
−1𝑪𝑥𝑦, respectively. Fig. 4-4, and 4-5 shows the training and the testing stage of our proposed 

framework.  

 

Fig. 4-4. Training Stage of our proposed framework.
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Fig. 4-5. Testing stage of our proposed framework.

Algorithm 4-2: Feature encoding using a learned Codebook (Testing Stage) 

1: Input: 𝑾𝑛 for 𝑛 ∈ {1,2,… ,𝑁}, 𝒒 be a feature of a query image.  

2: for k = 1 : 𝑁𝑘𝑛𝑛 do    (where 𝑁𝑘𝑛𝑛 is number of nearest neighbors (number of local bases selected from the codebook)     

3: First Euclidean locality adaptor 𝒍𝑘 is computed 

    𝒍𝑘𝑛 = (𝜎
2 + ‖𝒒 −𝒘𝑘𝑛‖

2)−1   

4: Solve the Equation (4.1) to obtain the analytical solution 

     min
𝒄𝒌
‖𝒒 −𝑾𝒌𝐜𝒌‖

2 + 𝜆‖𝒍𝒌⨂𝒄𝑘‖2
2  

     𝜷𝑘 = (𝒀𝑘 + 𝜆diag(𝒍𝑘)
2)−1𝟏 

      𝒄𝑘 = 𝜷
𝑘/(1𝑇𝜷𝑘) 

     where 𝒀𝑘 = (𝒒𝟏
𝑇 −𝐖𝑘)

𝑇(𝒒𝟏𝑇 −𝑾𝑘) 

5: Similarly, encoding gallery image’s features using step (4). Let the set of codewords obtained for all Gallery features 

is denoted as 𝑮𝑘.  

6: Compute coefficient vector 𝜸𝑘 using Equation (4.17).   

7: Compute the residuals 𝑟𝑘(𝒒) = ‖𝒄𝑘 − 𝑮𝑘𝜸𝑘‖ 

8:  end for  

9:  identity(𝒒) = argmin
𝑘
𝑟𝑘(𝒒)    
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(a)     

            

                                                              (b) 

Fig. 4-6. Sample images with age variations, where each row represents the face images of the same person. (a) Morph dataset, 

and (b) LAG dataset. 

4.5 Feature Matching Using Linear Regression 

In order to determine the similarity between the encoded gallery and the query images’ features, we utilize a linear 

regression model [43]. The assumption is that the features of different samples lie in a linear subspace, so a query face 

image can be linearly represented in terms of all face images in the gallery. The relationship between the query (test) 

and training sample is determined by a parameter 𝜸, known as coefficient vector. This parameter is estimated by using 

the least-squares method. It is also considered as a prediction problem having a solution based on a regression 

framework. If a query image 𝒒 belongs to the 𝑘th class, then there must exist a linear relationship between this query 

image and the gallery samples 𝑿𝑘 from the same class, which is defined as follows: 

                                                                                      𝒒 = 𝑿𝑘𝜸𝑘  ,                                                                         (4.17) 

After estimating the coefficient vector 𝜸, the corresponding residual values are computed. The decision will be in favor 

of the query image, if it has a minimum distance to the gallery image. It can be written as: 

                                                                                𝑗 = min
𝑘
‖𝒒 − 𝑿𝑘𝜸𝑘‖.                                                              (4.18) 
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4.6 Experimental Results and Analysis 

Creating a data set with a large age variation is a difficult task. Currently, only a few aging datasets are available, 

which limits the research on age-invariant face recognition. For comprehensive analysis of our proposed AIFR 

algorithm, face datasets should have the following attributes: (1) a large number of samples per subject, (2) significant 

age variations among the images of the same person, and (3) images must be taken in unconstrained environments. 

The execution of our proposed method is assessed by conducting extensive set of experiments on three challenging 

face-aging data sets: FGNET [144], MORPH [182], and LAG datasets [183]. Images in FGNET and LAG datasets are 

taken in the wild, and have large age gaps. For all the three data sets, we first detect the location of the face region in 

an image using the Viola-Jones face detector [17], and then resize the face region to 227 × 227 pixels. In addition to 

linear regression (LR) based classifier, we also utilize nearest neighbor (NN) classifier for feature matching. Moreover, 

the performance of our proposed feature-encoding framework is also evaluated by fusing two efficient local features, 

namely Dense SIFT (DSIFT) [39] and local binary pattern difference feature (LBPD) [153].   

4.6.1 Experimental Results on the FGNET Database 

FGNET is considered as one of the most challenging face aging datasets, which contains 1,002 images of 82 subjects 

taken at different ages. The minimum age of a person in this dataset is less than 12 months, and maximum being 69. 

As the number of subjects are quite small, so more images per subject are available. In addition to aging variations, 

images in this data set also contain large variations in terms of expression, illumination, and pose. By following the 

same protocol as used in [14, 102], we used leave-one-out cross-validation (LOOCV) scheme for performance 

evaluation. Furthermore, our experimental results are compared with various state-of-the-art AIFR methods. These 

include: (1) the 3D age modeling technique for age estimation and recognition [91]; (2) a discriminative model for 

AIFR [14]; (3) hidden factor analysis [102], which represents face images with the identity and age components; (4) 

the maximum entropy feature descriptor [101], and (5) deep-learning approach based on latent factor guided 

convolutional neural networks [106], which has achieved the highest recognition rate so far on this most challenging 

face aging data set, and (6) method based on coupled auto-encoder network [109]. From Table 4-1, we can observe 

that our proposed feature-encoding-based discriminative model clearly outperforms other AIFR methods, and achieves 

the highest rank-1 recognition rate. 
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Table 4-1. Comparative results in terms of the Rank-1 recognition rate on the FGNET dataset. 

Algorithms Rank-1 Recognition rates 

Park et al. [91] 37.4% 

Li et al. [14] 47.5% 

Gong et al. [102] 69.0% 

MEFA [101] 76.2% 

CNN-baseline 84.4% 

LF-CNN [106] 88.1% 

Xu et al. [109] 86.5% 

Proposed Method (DSIFT+LBPD) + NN 90.48% 

Proposed Method (DSIFT+LBPD) + LR 89.13% 

Proposed Method (Deep features) + NN 91.46% 

Proposed Method (Deep features) + LR 90.24% 

Table 4-2. Comparative results in terms of the Rank-1 recognition rate on the MORPH database (Album 2). 

Algorithms Rank-1 Recognition rate 

Park et al. [91] 79.80% 

Li et al. [14] 83.90% 

Gong et al. [102] 91.14% 

MEFA [101] 92.26% 

CARC [103] 92.80% 

HOG+LPS [105] 94.20% 

LPS+HFA 94.87% 

LF-CNN [106] 97.51% 

AFJT-CNN [108] 97.85% 

Proposed Method (DSIFT+LBPD) + NN 96.06% 

Proposed Method (DSIFT+LBPD) + LR 96.50% 

Proposed Method (Deep features) + NN 97.93% 

Proposed Method (Deep features) + LR 98.00% 

4.6.2 Experimental Results on the MORPH Database 

We also conducted experiments on one of the largest face-aging data set, i.e. MORPH Album 2. This data set 

contains 78,000 face images from 20,000 subjects. The number of images per subject are small (around 4 images per 

person) due to the availability of a large number of subjects. Firstly, the dataset is split into a training and a testing set. 

To learn a codebook for feature encoding, 20,000 images from 10,000 different subjects (2 images per person), with 

the large age difference are used. For testing, a gallery set and a probe set are constructed from the other 10,000 
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subjects; the probe set consists of 10,000 face images of the oldest age of the subject, while the gallery set consists of 

10,000 face images of the youngest age. The age gap in this data set is 5-6 years. It should be noted that the age 

difference between the gallery set and a probe set is quite large. We compared our method with conventional as well 

as deep-learning-based AIFR methods. Comparative results are tabulated in Table 4-2. Results show that our method 

significantly outperforms other AIFR methods in comparison, and achieves the highest recognition rate. Sample face 

images from this dataset are shown in Fig.4-6 (a). 

4.6.3 Experimental Results on the LAG Data Set 

The Large Age-Gap (LAG) data set [183] is recently released for studying the cross-age face-recognition problem. 

All the images were taken in the wild, with a very large age difference (0-80) yrs. The dataset is created using a Google 

search. It consists of 3,828 images from 1,010 identities. At least one child and one adult image is included for each 

identity. Sample face images from the LAG data set are shown in Fig. 4-6(b). For performance evaluation, we utilize 

a two-fold cross validation scheme. Subjects are alternatively assigned to the first and the second fold, and then the 

average accuracy is computed. The training set consists of the original images and a combination of four horizontal 

flips from the LAG data set. We compare the results of our proposed method with the state-of-the-art high-dimensional 

LBP feature [127], and some similarity metric learning methods, including Cosine similarity [184], one shot similarity 

kernel (OSS) [185], and Joint Bayesian [186], and sub-SML [187]. It should be noted that all these similarity metric 

learning methods used the 𝑓𝑐7 features extracted from DCNN [3] (trained on the CASIA-WebFace data set [57]). 

Comparative results are shown in Table 4-3. Some of the correct matching results are shown in Fig. 4-7.  

Table 4-3. Comparative results in terms of Rank-1 average recognition rates, on the LAG database. 

Algorithms Rank-1 recognition rate 

DCNN [3]+SML [187] 72.43% 

DCNN [3]+OSS [185] 66.42% 

DCNN[3] + Cosine Similarity [184] 65.08% 

DCNN [3] + Joint Bayesian [186] 66.33% 

DCNN [3] + CARC [103] 74.82% 

HDLBP [127] 71.53% 

Bianco et al. [183] 84.95% 

Proposed Method (DSIFT+LBPD)+NN 79.88% 

Proposed Method (DSIFT+LBPD)+LR 80.00% 

Proposed Method (Deep features)+NN 91.00% 

Proposed Method (Deep features)+LR 89.44% 
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                                                                   (a)                                                                (b) 

Fig. 4-7. Some of the correct matching results obtained using our proposed method. First columns in (a) and (b) represents the 

probe images, while the second column represents the identified images from the gallery set.  

4.6.4 Parameter Settings  

To accelerate the encoding process, some specific number of local bases are selected from codebook to encode the 

gallery and query image’s features, as mentioned in section 4.3. Therefore, we perform comprehensive analysis of our 

proposed discriminative model, by computing the recognition rate with respect to different numbers of selected nearest 

neighbors (local bases) of the codebook for encoding. As discussed previously, the codebook is first generated by using 

k-means clustering. As the results on the FGNET data set are evaluated using the LOOCV scheme, we initialize the 

codebook with 𝑁 − 1 entries, where 𝑁 is the number of subjects in the data set. The computational complexity of the 

algorithm depends on the number of nearest neighbors of the feature descriptor 𝒇𝑘, which can also be considered as 

the local bases 𝒘𝑘. A small number of neighbors will lead to a faster computation. 

To search the nearest neighbors, the K-NN search approach based on the hierarchical model [188] is utilized. The 

approach quantizes each descriptor into 𝑃 subspaces. A codebook is then applied for each subspace. For the FGNET 

data set, we measured the recognition rates with different numbers of nearest neighbors, from 50 to 150, and the results 

are shown in Fig. 4-8(b). When we increase the number of neighbors, the recognition rate also increases. With the FG-

NET data set, the highest recognition rate obtained is 91.46%, by searching for 150 nearest neighbors to form the local 

bases in the computation of the codes. For the MORPH data set, recognition results are recorded with different numbers 

of nearest neighbors, ranging from 20 to 150, as shown in Fig. 4-9(b). The highest recognition rate obtained is 98.00%, 

which is very close to the deep-learning-based method [108]. It is found that the modeling capacity can be greatly 

improved by using a larger codebook. For the LAG data set, the highest recognition rate of 89.44% is achieved, using 

the linear-regression (LR)-based classifier. The parameter 𝜎 in Equation (4.2) is set to 0.5. The value of 𝜎 controls the 
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locality error of the encoding scheme. Theorem 2 in [189] shows that locality error reduces, as the value of 𝜎 decreases. 

Therefore, the value of 𝜎 must be as small as possible. In our experiments, we vary the value of 𝜎 from 0.1 to 0.7, and 

found that 𝜎 = 0.5 gives the optimum performance. The choice of the parameter 𝜆 in Equation (4.1) can be well 

explained by Equation (4.10). It is worth noting that the matrix 𝒀 is symmetric as well as semi-positive. If 𝒀 becomes 

singular or close to singular, the matrix 𝒀 + 𝜆diag(𝒍𝑘)
2 is still conditioned. The reason for this is that 𝜆diag(𝒍𝑘)

2 

penalizes the large distance, which captures the correlation between the data samples. By choosing 𝜆 < 10−6, the 

matrix becomes singular or close to singular, which will produce inaccurate results. Therefore, choosing 𝜆 = 0.001 

provides the optimal recognition results. Moreover, we also perform experiments, using deep features of different 

dimensions, on all the three datasets, and results are shown in Figs. 4-8, 4-9, and 4-10(a), respectively.  

 

(a)                                                                                        (b) 

Fig. 4-8. Recognition rates obtained on the FGNET data set. (a) Feature Dimensions with 150-NN; (b) Number of nearest 

neighbours (40-D features).  

 

(a)                                                                                         (b) 

Fig. 4-9. Recognition rates obtained on the MORPH data set. (a) Feature Dimensions with 150-NN; (b) Number of nearest 

neighbours (40-D features). 
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(a)                                                                                       (b) 

Fig. 4-10. Recognition rates obtained on the LAG data set. (a) Feature Dimensions with 150-NN; (b) Number of nearest neighbours 

(40-D features). 

To check the effectiveness of our proposed feature encoding framework, we evaluate the performance with and 

without performing the proposed feature-encoding scheme. The results using the nearest neighbor (NN) classifier and 

the linear regression (LR) classifier are shown in Fig. 4-11. It can be observed that our proposed feature-encoding 

framework boosts the recognition accuracy by 20-35%.  

As discussed before, CCA enhances the correlation among the images of the same subject taken at different ages. 

To evaluate the superiority of CCA-based feature fusion, we perform the comparative analysis of CCA-based feature 

fusion (CCA_FF) and simple concatenation of the two features. Experimental results are reported for all the three 

datasets at their optimal feature dimensions with different numbers of nearest neighbors used for feature encoding. The 

results are reported in Fig. 4-12. It can be observed that the feature fusion framework based on CCA brings significant 

improvement in recognition rate.  

Another important parameter of our proposed framework is the number of image pairs per person, used for the CCA 

pairwise training. For the FGNET dataset, 10 images per subject are available. Therefore, we divide these images into 

two subsets, with 5 images each, and then use them for CCA training. One subset consists of those younger images, 

while the other one contains the older images. As the performance on the FGNET data set was evaluated using the 

LOOCV scheme, we used 81 image pairs for training. For the MORPH data set, 10,000 image pairs were used. The 

training set consists of 10,000 subjects, with the two images having the largest age difference. Images of each subject 

were divided equally into two subsets for pairwise CCA training. For the LAG data set, the two-fold scheme was used 
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for performance evaluation. For training, we selected eight images per subject, with a large age difference. As the total 

number of subjects in this data set are 1,010, we used 505 image pairs for CCA training in each fold. 

 

Fig. 4-11. Recognition rates with and without performing feature encoding for all the three data sets at the corresponding optimal 

feature dimensions.  

 

Fig. 4-12. Recognition rates with and without performing feature fusion using CCA for all the three datasets at the corresponding 

optimal feature dimensions.  

4.6.5 Overall Benchmark Comparison 

In our experiments, the performances of our proposed method are compared with state-of-the-art aging face 

recognition methods. For all the three datasets, the methods used for comparison are tuned to the same settings as used 
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in their original literature, and the same protocol is used for the training and testing set. As discussed earlier, there is a 

large age gap between the images present in the gallery and the probe set, which are used for performance evaluation.  

Due to large age variations, FGNET is the challenging data set for aging-face recognition. All the images were taken 

in the wild, with the age gap 0-45. Our proposed method provides superior results on this data set, which is 91.46% by 

using the deep features. Recognition results were recorded using the nearest neighbor (NN) classifier as well as linear-

regression-based classifier. Furthermore, our proposed algorithm provides closed form solution for 𝑾 using Equation 

(4.14), in which the matrix 𝑷 is positive definite. On the other hand, analytical solution of 𝑪 can be obtained as shown 

in (4.10). In comparison to the sparse-coding-based methods, the computational complexity of our proposed algorithm 

is relatively low, as it does not need to solve the 𝑙1 minimization problem. Furthermore, the discriminant information 

of the training image pairs with a large age difference is further enhanced by exploiting the intra-person correlation, 

which is achieved by using CCA. 

4.6.6 Better Reconstruction 

According to the sparse-coding theory, each feature can be represented as a linear combination of multiple codewords 

for reconstruction. However, it is sensitive to feature variance, which may lead to selecting codewords far away from 

the input test feature in reconstruction. In this way, two similar features can select different codewords. Conversely, 

our method is based on locality information in searching nearest neighbors, so the selected local visual codewords can 

achieve better feature reconstruction. Our proposed method also leads to sparsity in the resultant encoded coefficients. 

Therefore, only the codebook entries near to the input (test) feature are selected for reconstruction. In other words, 

locality constraint ensures that the extracted features of the same person at different ages have similar codewords. As 

we discussed before, locality constraint captures the correlation among the features of the same identity by sharing the 

local bases of the codebook. However, this might not be possible for sparse coding, as non-zero sparse coefficients can 

be obtained for more than one class, especially in the presence of noise. The sparse coding approach can lead towards 

the sharing of dissimilar bases for the images of the same subject. Therefore, by incorporating both locality and sparsity 

terms in the objective function, performance will be affected along with the increase in computational complexity. Our 

proposed method learns the codebook using the Euclidean locality adaptor, which preserves the data structure for better 

feature representation, and recognition. Learning the codebook with the locality adaptor offers the following 

advantages: (1) non-smooth optimization can be avoided due to the use of a smooth objective function, and (2) 
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codebook size with locality adaptor has nothing to do with the data’s dimension. For better understanding of our 

proposed feature encoding framework, we visualize the deep feature vectors, obtained before and after encoding, using 

t-distributed stochastic neighbor embedding (t-SNE) [168]. For visualization, we randomly selected 10 subjects with 7 

images each from the LAG dataset. Fig. 4-13 show the deep features learned before and after applying our encoding 

framework. It can be seen that encoded features are well separated in the feature subspace. In other words, features of 

the same identity are represented by the same or similar codeword.  

      

                                                         (a)                                                                                      (b) 

Fig. 4-13. Visualization of the learned features before and after encoding using t-SNE. (a) before encoding, and (b) after encoding.  

Our proposed feature-encoding-based method is different from LLC [122], due to the two main reasons. First, our 

formulation does not include the constraint ‖𝒘𝑘‖2 ≤ 1, while LLC does. Due to the locality constraint‖𝒍𝑘  ⨂ 𝒄𝑘‖2
2, the 

size of the columns of 𝑾 is not large. Removing the constraint ‖𝒘𝑘‖2 ≤ 1 from the proposed formulation, we can 

obtain better optimized values, since a lesser number of constraints are included in our proposed objective function. In 

this way, the learned codebook 𝑾 can efficiently capture the local structure of the data, which improves the recognition 

accuracy. Moreover, we can also obtain the closed form solutions for both the sparse coding phase and the codebook 

updating stage. Second, our proposed algorithm directly minimizes ∑ 𝑓(𝑾, 𝒇𝑘)
𝑁
𝑘=1 , while LLC [122] minimizes 

𝑓(𝑾, 𝒇𝑘), when the feature 𝒇𝑘 is drawn from 𝑭, and hence provides the approximated form of the objective function.  
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(a)    (b)                                                                          (c) 

Fig. 4-14. Original images and noisy images obtained after adding Gaussian noise. (a) FGNET, (b) MORPH, and (3) LAG datasets. 

4.6.7 Robustness to Noise Variations 

In face recognition, a query face image may suffer from noise, due to various factors, such as environmental 

conditions, transmission errors, etc. These noise variations degrade the image quality, as well as the performance of 

face recognition systems. For comprehensive analysis, we evaluate the robustness of our proposed method, using a 

testing set contaminated by noise. Previously proposed methods [101, 102, 109] first decompose a facial image into 

identity, aging, and noise components, and then utilize the identity component for recognition. Xu et al. [109] proposed 

a coupled-auto encoder algorithm to first eliminate the noisy component from input images, and then perform 

recognition. It should be noted that these methods only consider the inherent noise in images, not the externally added 

noises, such as Gaussian noise, salt & pepper, etc. In our experiments, we add Gaussian noise into the probe face 

images, and then compute the recognition accuracy. The added Gaussian noise effects 30% of the pixels in a probe 

image. Our experimental results show the robustness of our proposed method in the presence of noise variations. Only 

3-4% drop in recognition performance is observed for the MORPH and LAG data sets. However, a 20-25% decline in 

recognition rate is observed for the FGNET data set. The reason for this is that some images in the FGNET data set are 

of very poor quality, especially those childhood images. On the other hand, face images in the MORPH and LAG data 

sets have better quality, as compared to the FGNET data set. This problem can be solved by using some denoising 

filters, prior to feature extraction. Images obtained, after adding external Gaussian noise, are shown in Fig. 4-14. Fig. 

4-15 shows the recognition results of our proposed method, with and without noise variations, using the nearest 

neighbor and the linear-regression classifiers [43].  
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Fig. 4-15. Recognition rates of our proposed method on all the three data sets, with and without noise variations.  

4.6.8 Computational Complexity Analysis 

Our proposed method consists of three major parts, which are: (1) feature fusion using CCA, (2) codebook learning, 

and (3) feature encoding. In this section, we will evaluate the computational complexities of all the three stages of 

learning. As discussed before, the computational complexity of the feature encoding stage depends on the number of 

nearest neighbors selected for encoding. Results are reported with the optimal feature dimension and the number of 

nearest neighbors for all the three datasets. Table 4-4 shows the computation time in seconds for both feature fusion 

and the codebook-learning process.  The computational complexity for the FGNET dataset is much lower than the 

MORPH and LAG dataset, as the size of the training set is small. The training set of the MORPH and LAG dataset 

consist of 20,000 and 4,000 images, respectively. For the MORPH dataset, the results are reported with a feature 

dimension of 40, and 150-NN. For the LAG dataset, the results are reported with the feature dimension of 40, and 100-

NN. Table 4-5 shows the run time required to classify the whole testing set, as well as a single testing image. It can be 

observed that our proposed method can recognize a single testing image in less than one second, which shows that it 

is computationally efficient.  
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Table 4-4. Run time in seconds for the two stages of learning (Training).  

Dataset Feature Fusion using CCA Codebook Learning 

FGNET 0.011 0.8856 

MORPH 0.264 54.8 

LAG 0.12 16.10 

Table 4-5. Run time in seconds for classifying one test image for all the three datasets (Testing).  

Dataset Feature encoding (single image) Feature encoding (Whole dataset) 

FGNET 0.0029 0.12 

MORPH 0.0096 9.6 

LAG 0.0052 0.26 

4.6.9 Comparison with Local Feature Descriptors 

In this section, the performance of our proposed feature-encoding framework is evaluated using two local feature 

descriptors, namely densely sampled scale invariant feature transform (DSIFT) [39] and local binary pattern difference 

(LBPD) feature [153]. Firstly, face regions are detected in an image using the Viola-Jones face detector [17], and are 

then resized to 150 × 200 pixels. To extract local features, an image is first divided into non-overlapping patches, and 

the selected feature descriptors are used to extract information from each of the patches. The extracted features are then 

concatenated to create a high-dimensional feature vector. In our proposed method, we perform dense sampling of the 

SIFT feature descriptors from the whole face image, which is equivalent to placing a regular grid on a face region as 

shown in Fig. 4-16.  

 

Fig. 4-16. Placement of regular grid on a face image using DSIFT. 

DSIFT is a robust local descriptor, which computes the local gradient information about image pixels. The 

neighborhood of each pixel 𝑝 = (𝑥, 𝑦) ∈ 𝐼 is divided into 4 × 4 patches, and each bin is represented by an 8-bin 

orientation histogram. This results in a 4 × 4 × 8 = 128-dimensional vector for describing the pixel 𝑝. This operation 
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is performed for each pixel. Before extracting the dense SIFT features, we first perform image smoothing by convolving 

each face image with a Gaussian kernel of variance 0.25.  

 

Fig. 4-17. Recognition rates with different feature dimensions using local feature descriptors (DSIFT+LBPD), and 150 nearest 

neighbours. 

Recently, a numerical variant of LBP [153], known as local binary pattern difference (LBPD) was proposed, which 

offers several advantages over LBP. To extract the LBPD feature, the difference is computed between the LBP codes 

and its corresponding mean of a given local region. After extracting these two local features, we perform feature fusion 

to form a final feature vector, which is of very high dimensionality. To reduce the feature dimension, we utilize PCA, 

and then perform feature encoding using our proposed framework. Recognition rates with different feature dimensions 

for all the three data sets are shown in Fig. 4-17. It is observed that our method can also obtain a superior performance 

with local feature descriptors but there are some drawbacks. First, DSIFT features are computationally expensive, as it 

includes the gradient computation at each pixel. Secondly, handcrafted features are sensitive to noise, and their 

performance heavily depends on properly pre-processed face images. 

4.6.10 Feature Selection and Fusion 

The choice of features is always critical for face recognition systems. In our proposed method, we utilized DSIFT 

and LBPD features to extract useful information from face images. There are various reasons for that, which will be 
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described in this section. SIFT descriptor first detect the keypoints on face images, and then extract gradient 

information. For AIFR, this is not enough as human faces subject to large intra-personal variations, with age 

progression. Better recognition performance can be achieved by extracting information over dense grids instead of a 

few sparse keypoints. In this way, we can extract the information about the distribution of edge directions in the entire 

face region, which has been proved to be age-invariant discriminant information in [14]. Furthermore, using a single 

feature descriptor is not good enough to tackle the complex aging face recognition problem. Therefore, we fuse DSIFT 

with the LBPD feature to obtain a more discriminative and richer image representation. According to [178], LBP 

provides better recognition performance as compared to other local feature descriptors in terms of age progression. In 

the existing approaches of feature fusion, the correlation between the fused features is usually neglected, which results 

in a loss of useful information. Actually, LBP is produced by non-numerical responses, because the LBP codes are 

symbols or discrete patterns, so the Euclidean distance between two non-numerical features cannot be computed. 

Therefore, LBP codes cannot be combined or fused directly with other features, to form a new feature vector. In our 

experiments, we employ LBPD [153] feature (a numerical variant of LBP).  It does not consider the intensity of pixels, 

because it utilizes the sign of comparisons between the neighboring pixels. This makes LBPD invariant to lighting 

conditions. As discussed in Section 3.3.1.4, one of its attractive properties is rotation invariance, as the norm used in 

Equation (3.7) and (3.8) makes sure that the code does not depend on permutation of the bits. The major difference 

between LBPD and LBP is that LBPD reflects the diversity of the local co-occurrence, instead of representing it 

directly. Furthermore, LBPD consists of numerical responses, whereas LBP is a collection of discrete patterns. This 

numerical property of LBPD makes it attractive in terms of texture analysis. Inspired by these properties, we utilize 

LBPD as a feature descriptor in our proposed framework.  

4.7 Conclusions 

In this Chapter, we have proposed a robust deep-feature-encoding-based method for age-invariant face 

recognition. Our method extracts high-level deep features using a pre-trained Deep-CNN model (AlexNet), and then 

performs feature encoding by using a Euclidean locality adaptor. At the training stage, we project pairs of training 

image’s features into a coherent feature subspace using CCA, and then perform feature fusion. These fused features 

are then used to learn an age-discriminative codebook. At the testing stage, the query and gallery image’s features are 

encoded using a learned codebook. For classification, the least squared method is first utilized to compute the 
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coefficient vector, which defines the relationship between the encoded gallery and query image’s features. Based on 

that computed coefficient vectors, residual values are calculated for each class. Finally, a probe image is classified 

based on the least residual value. It is found that the locality information not only preserves the local strructure of the 

data samples, but also introduces sparsity in the resultant encoded coefficients. By incorporating the locality 

information in the codebook-updating process, same or similar codewords can be obtained for images of the same 

subject taken at different ages. Furthermore, closed form solutions can be obtained for both the encoding phase and the 

codebook updating stage. The proposed framework makes the feature more discriminative and robust to aging, as well 

as noise variations, as shown in our experiments. Experiment results on three challenging face-aging datasets show 

that our method performs better than conventional, as well as deep learning-based, age-invariant face recognition 

methods, and obtains the highest recognition accuracy.
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   Deep Low-Rank Feature Learning and Encoding for Cross-age 

Face Recognition 

5.1  Introduction 

In Chapter 4, we proposed to solve cross-age face recognition problem using locality-constrained feature encoding 

framework.  Furthermore, we demonstrated the robustness of our proposed approach against noise variations in a 

testing set. However, possible pixel corruption (random noise) in the training set was not considered. As discussed in 

the previous chapter, SRC [7] shows high robustness against occlusion, noise, and disguise. However, it assumes that 

the training data is taken under controlled environment without any noisy component. Therefore, the performance of 

SRC degrades heavily when training as well as testing data is corrupted with random noise. In Section 2.9, we briefly 

discuss the applications of low-rank matrix approximation techniques in context of face recognition. The previously 

proposed low-rank methods have shown high robustness to various noise variations on both training and testing data 

samples. However, these methods do not preserve the local structural properties of the data samples, when recovering 

the identity information of the face images. In Chapter 2, we briefly discussed the superiority of deep learning-based 

methods [48-54] in computer vision research, especially for face recognition. However, their performance is not 

optimistic in solving cross-age face recognition problem. The reason is that extracted deep features ignores the 

correlation among the images of the same identity taken at different ages. Furthermore, it is argued in [190] that deep 

models give worst performance, when a given test image suffered with noisy components. Till now, the performance 

of deep-learning models on noisy cross-age images is not investigated, which makes it a hot research topic.  

In order to overcome the abovementioned challenges, we propose a robust deep low-rank feature-learning and 

encoding model, which consists of two stages of learning. Our method first extracts deep features from face images 

using a pre-trained deep CNN architecture (VGG16) [191], and then decomposes the extracted features into a low-rank 

feature matrix, and a sparse error matrix using our proposed manifold-constrained low-rank approximation algorithm. 

The learned low-rank features are then used to learn an age-discriminative codebook using our proposed feature-

encoding framework. In the testing stage, the gallery and query image’s low-rank features are encoded using a learned 

codebook. Finally, the nearest neighbor classifier is utilized to do face recognition. The encoded features are proved to 

be age discriminative as well as insensitive to noise variations, and provide state-of-the-art performance. Furthermore, 
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we have investigated the discriminative power of the periocular region of a human face for recognizing aging face 

images using our proposed framework.  

The major contributions of this chapter are as follows: 

• A novel low-rank decomposition algorithm based on local structural information is proposed to tackle noise 

variations in face images. We called it the manifold-constrained low-rank model. By learning a clean low-rank 

feature matrix using the proposed algorithm, better feature representation is obtained. 

• A new feature-encoding framework based on exponential locality information is proposed, which converts learned 

low-rank features into an N-dimensional codeword by learning an age-discriminative codebook for final image 

representation. Our proposed method provides closed-form solutions in both the codebook-updating and encoding 

stages. 

• Experimental results demonstrate the superiority of our proposed method over the other cross-age face recognition 

methods, in terms of recognition rate. The proposed low-rank decomposition algorithm recovers identity 

information from corrupted face images by removing sparse errors, and provides superior performance.  

• Furthermore, we are the first one to investigate the cross-age face recognition problem in the presence of noise 

variations in both training and testing set.  

The rest of the chapter is structured as follows. Section 5.2 present our proposed manifold-constrained low-rank 

approximation algorithm. In Section 5.3, we present our proposed feature encoding framework based on exponential 

locality constraint, which makes the extracted deep features more robust to age variations. Section 5.4 introduce the 

process of deep-feature extraction using a pre-trained deep-CNN model (VGG16). In Section 5.5, we explain the 

process of subspace learning and feature fusion using Kernel CCA. In Section 5.6, we present the experimental results 

of our proposed method with and without noise variations. Finally, Section 5.7 concludes our chapter.  

5.2  Manifold-constrained low-rank matrix recovery 

In this section, we will present our proposed manifold-constrained low-rank approximation function. Our major 

objective is to recover the underlying identity information from corrupted training and testing samples for better feature 

representation. Furthermore, learning low-rank features by incorporating manifold information has been proven to be 
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very helpful in generating a highly discriminative codebook for feature encoding. As our method is highly inspired by 

the low-rank approximation theory, so we will first discuss its fundamental mathematical formulation. 

5.2.1 Robust PCA and Low-Rank Matrix Decomposition 

In a real-world scenario, the data available for training and testing may be subject to occlusion, disguise or noise. 

Using these kinds of images for training and testing can significantly degrade the performance of face recognition 

systems, due to overfitting. Low-rank matrix recovery is a technique that has the ability to recover the clean data matrix 

from the given corrupted data sample, which can be used for recognition. Candes et al. [192] argues that the low-rank 

information can be retrieved under various conditions by utilizing the minimization problem with the nuclear norm. 

As discussed in Section 3.4, it minimizes the following nuclear norm regularized objective function: 

                                                                min
𝑨,𝑬
‖𝑨‖∗ + 𝜆‖𝑬‖1  𝑠. 𝑡. 𝑫 = 𝑨 + 𝑬 ,                                                        (5.1) 

where 𝑨 is a recovered low-rank matrix, 𝑬 is an associated sparse error matrix, and 𝜆 is a parameter that controls the 

influence of the error term 𝑬. Robust PCA [135] is one of the earliest proposed methods that recovers the underlying 

identity information from the corrupted data samples. To solve (5.1), several optimization algorithms have been 

proposed, such as accelerated proximal gradient (APG) [193], semi-definite programming (SPG) [194], etc. However, 

these methods have a large computational complexity, which makes them infeasible. Lin et al. [167] proposed the 

Augmented Lagrange multiplier (ALM) method, which shows promising results in solving the nuclear norm 

optimization problems with low-computational complexity. In fact, ALM is five times faster than APG [193], and it 

also requires less numbers of partial singular value decompositions (SVDs). As compared to APG, the number of non-

zero entries produced by ALM in sparse error matrix 𝑬 are small and precise. Therefore, we utilize ALM to solve our 

proposed constrained optimization problem. 

5.2.2 Proposed Formulation 

It is argued in [139] that the recovered low-rank matrix has the ability to preserve the global structural information 

of the data samples. To further enhance the discriminability of the features for representing data samples, we 

incorporate a manifold-constraint in our proposed objective function. The manifold information defines data samples 

by their nearest neighbors in the feature space, which preserves the local structure of the data samples. The proposed 

objective function is defined as follows: 
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                                                                        min
𝑨,𝑬
‖𝑨‖∗ + 𝜆‖𝑬‖1 + 𝛽𝒫(𝑨)                                                             (5.2) 

𝑠. 𝑡. 𝑫 = 𝑨 + 𝑬 

                                                                       min
𝑨,𝑬
‖𝑨‖∗ + 𝜆‖𝑬‖1 + 𝛽𝑇𝑟(𝑨𝑷𝑨

𝑇) .                                                   (5.3) 

The first two terms represent the recovered low-rank matrix 𝑨, and sparse error matrix 𝑬, respectively. The third term 

learns the manifold structure of the data samples by computing a projection matrix 𝑷 using locally linear embedding 

[30]. The reasons behind the selection of LLE in our algorithm can be found in Section 2.6.2. The parameter 𝜆 is used 

to control the impact of the sparse error term 𝑬, and 𝛽 is a manifold regularizer. The augmented lagrangian function to 

equation (5.3) is written as follows: 

𝐿(𝑨, 𝑬, 𝒀, 𝜇) = ‖𝑨‖∗ + 𝜆‖𝑬‖1 + 𝛽𝑇𝑟(𝑨𝑷𝑨
𝑇)+< 𝒀,𝑫 − 𝑨 − 𝑬 > +

𝜇

2
(‖𝑫 − 𝑨 − 𝑬‖𝐹

2) 

                                                                   = ‖𝑨‖∗ + 𝜆‖𝑬‖1 + 𝑓(𝑨, 𝑬, 𝒀, 𝜇) −
1

2𝜇
‖𝒀‖𝐹

2),                                                    (5.4) 

where <> represents the inner product,  𝒀 is a Lagrange multiplier, 𝜇 is a penalty parameter, ‖. ‖𝐹 is the Frobenius 

norm, and  

                                                            𝑓(𝑨, 𝑬, 𝒀, 𝜇) = 𝛽𝑇𝑟(𝑨𝑷𝑨𝑇) +
𝜇

2
(‖𝑫− 𝑨 − 𝑬 +

𝒀

𝜇
‖
𝐹

2

).                                        (5.5) 

Equation (5.4) is a constrained-minimization problem, where each variable is updated, while keeping the other fixed. 

In our proposed formulation, we have two variables 𝑨, and 𝑬, which are updated as follows: 

Updating 𝑨:  

𝑨𝒌+1 = arg min
𝑨
‖𝑨‖∗+< ∇A𝑓(𝑨

𝑘 , 𝑬𝑘 , 𝒀𝑘 , 𝜇𝑘), 𝑨 − 𝑨𝑘 > +𝜂
𝜇k

2
‖𝑨 − 𝑨𝑘‖

𝐹

2
 

                                         = arg min
𝑨
‖𝑨‖∗+< 2𝛽𝑨

𝑘𝑷− 𝜇𝑘 (𝑫 − 𝑨𝑘 −𝑬𝑘 +
𝒀𝑘

𝜇𝑘
) , 𝑨 − 𝑨𝑘 > +𝜂

𝜇𝑘

2
‖𝑨 − 𝑨𝑘‖

𝐹

2
 

                                         = arg min
𝑨
‖𝑨‖∗ + 𝜂

𝜇𝑘

2
‖𝑨 − 𝑨𝑘 + [

2𝛽𝑨𝑘𝑷

𝜇𝑘
− (𝑫 − 𝑨𝑘 −𝑬𝑘 +

𝒀𝑘

𝜇𝑘
)] /𝜂‖

𝐹

2

 

                                          𝑨𝑘+1 =
1

𝜂𝜇𝑘
[𝑨𝑘 + [−

2𝛽𝑨𝑘𝑷

𝜇k
+ (𝑫 − 𝑨𝑘 − 𝑬𝑘 +

𝒀𝑘

𝜇𝑘
)] /𝜂]                                              (5.6)                                    



 

95 

 

Updating 𝑬:  

𝑬𝑘+1 = argmin
𝑬
‖𝑬‖1+< 𝒀

𝑘 , 𝑫 − 𝑨𝑘+1 − 𝑬 > +
𝜇k

2
‖𝑫 − 𝑨𝑘+1 − 𝑬‖

𝐹

2
 

= argmin
𝑬

𝜆

𝜇𝑘
‖𝑬‖1 +

1

2
‖𝑬 − (𝑫 − 𝑨𝑘+1 +

𝒀𝑘

𝜇𝑘
)‖

𝐹

2

 

                                                                                  𝑬k+1 =
𝜆

𝜇𝑘
[𝑫 − 𝑨𝑘+1 +

𝒀𝑘

𝜇𝑘
]                                                                   (5.7) 

Algorithm 5-1: Manifold-constrained low-rank approximation 

Input: Deep Features 𝑫, regularization term 𝜆, parameter 𝛽, and manifold projection matrix 𝑷 

Output: 𝑨𝑘, 𝑬𝑘 

1: Initialize 𝑨0 = 𝑬0 = 𝒀0 = 0, 𝜇0 = 0.1 

2: while not converged do 

3: Update 𝑨 using equation (5.6) 

4: Update 𝑬 using equation (5.7) 

5: Update 𝒀𝑘+1 (Lagrange multiplier) as 

           𝒀𝑘+1 = 𝒀𝑘 + 𝜇𝑘(𝑫 − 𝑨𝑘+1 − 𝑬𝑘+1)                          (5.8) 

6: Update 𝑘 as 𝑘 + 1 

7: end while 

 

Fig. 5-1. Illustration of low-rank approximation algorithm. 
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In this model, the low rank matrix 𝑨 contains the identity information, which is common among all the face images 

of a particular class, while the sparse error matrix 𝑬 contains the information regarding facial variations, such as pose, 

lighting, expressions, age, etc. The learned low-rank matrix 𝑨 exhibits two major properties; (1) correlation among the 

samples of the same class is enhanced due to manifold-constrained optimization; (2) geometrical structure of the 

samples in the learned low-rank feature space is preserved. Therefore, the learned representation is actually a 

combination of both global and local structural information, due to the use of low-rankness and manifold regularization, 

respectively. It is more suitable to learn the geometrical structure in the feature space to constraint the low-rank 

minimization problem.  Therefore, we first learn the weight matrix 𝑾 in the feature space using LLE, and then use it 

directly in our proposed objective function. The preserved geometrical information is depicted by the weight matrix 

𝑾. In this case, we minimize  

                                                                                𝒫(𝑨) =∑‖𝒂𝑖 −∑𝑤𝑖𝑗𝒂𝑗
𝑗

‖

2

2
𝑛

𝑖=1

                                                                 (5.9) 

   = ‖𝑨 − 𝑨𝑾‖2
2 

        = ‖(𝑨 − 𝑨𝑾)𝑇‖2
2 

                                                                    = 𝑇𝑟(𝑨(𝑰 −𝑾)(𝑰 −𝑾)𝑇𝑨𝑇) = 𝑇𝑟(𝑨𝑷𝑨𝑇),                                                (5.10) 

where 𝑰 is the identity matrix, and 𝑷 = (𝑰 −𝑾)(𝑰 −𝑾)𝑇 is the learned projection matrix. The approach used for 

learning the manifold subspace assumes that the data points and their corresponding neighbors lie on a linear patch, 

and its geometrical properties can be characterized by the linear coefficients. As compared to other manifold-learning 

algorithms, LLE is easy to implement because its optimization process does not contain local minima. Algorithm 5-1 

summarizes our proposed manifold-constrained low-rank algorithm. Fig. 5-1 shows the decomposition of the corrupted 

face image into a recovered low-rank part and a corresponding sparse error matrix. Fig. 5-2 demonstrates the face 

images contaminated by different levels of noise variations, along with the recovered clean images and associated 

sparse errors.  
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(a) 

 

(b) 

 

(c) 

Fig. 5-2. (a) Face images suffered from different levels of salt & pepper noise, (b) recovered low-rank images using the proposed 

algorithm, and (c) the corresponding sparse errors. 

5.3  Low-rank Features Encoding based on locality information 

We now explain our proposed feature-encoding framework based on the exponential locality 

constraint. Encoding the learned low-rank features provides better feature representation, which improves 

the recognition performance.  

5.3.1 Locality information-based feature encoding framework 

Consider that 𝑀 low-rank feature vectors of dimension 𝐷 are extracted, and they are represented as 𝑨 =

[𝒂1, 𝒂2, … , 𝒂𝑀] ∈ 𝑅
𝐷×𝑀. The first step is to generate a codebook 𝒁 with 𝑁 entries, i.e. 𝒁 = {𝒛1, 𝒛2, … , 𝒛𝑁}  

using 𝑘-means clustering, which is then used to transform the extracted deep features into a 𝑁-dimensional 
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codeword for final feature representation. In other words, the extracted features are projected into a local 

coordinate system. According to the method proposed in [122], locality has been proven to be more 

important than sparsity. Feature encoding with locality constraint ensures that the resultant encoded 

coefficients are sparse. Our proposed locality-based objective function is defined as follows:  

                                                          min
𝒁,𝑪
‖𝑨 − 𝒁𝑪‖2 + 𝜆∑‖𝒍𝑘 ⨂ 𝒄𝑘‖2

2

𝑀

𝑘=1

  ,                                            (5.11) 

 s. t. 𝟏𝑇𝒄𝑘 = 1, 

where ⨂ represents the element-wise multiplication operator, 𝒍𝑘 ∈ 𝑅
𝑁 represents the locality term that 

consists of an exponential locality adaptor, which provides freedom to each basis vector depending on its 

similarity to the given descriptor 𝒂𝑘, and 𝟏 represents the identity vector [1, … ,1]𝑇. 𝑪 = [𝒄1, 𝒄2, … , 𝒄𝑀] is 

the set of codes for 𝑨. Each entry of the exponential locality term 𝒍𝑘 can be defined as follows: 

                                                                      𝑙𝑘𝑛 = √exp(
‖𝒂𝑘 − 𝒛𝑛‖2

2

𝜎
) ,                                                          (5.12) 

where ‖𝒂𝑘 − 𝒛𝑛‖
2 is the Euclidean distance between the input 𝒂𝑘 and the 𝑛th codebook entry 𝒛𝑛. 𝜎 is a 

constant, which control the weight decay speed for the locality term. In our method, we choose 𝜎 = 0.5. 

Later, we will present the justification behind the selection of this constant value. The locality term defined 

in (5.12) has an exponential growth with respect to 
‖𝒂𝑘−𝒛𝑛‖

2

𝜎
. When the distance between 𝒂𝑘 and 𝒛𝑛 is large, 

the value of 𝒍𝑘 becomes very large. As 𝒍𝑘 is the weight of the sparse coefficient  𝐜𝑘 in (5.11), large value 

of 𝒍𝑘 leads to a small 𝒄𝑘. Furthermore, the proposed locality constraint is quite different from the one 

proposed in [122], as it helps in deriving the closed-form solutions in the codebook-updating process. To 

solve (5.11), we utilize Lagrange multiplier, which is formulated as follows: 

                               𝐿(𝒄𝑘 , 𝜂) = ‖𝒂𝑘 − 𝒁𝒄𝑘‖2
2 + 𝜆‖𝒍𝑘 ⨂ 𝒄𝑘‖2

2 + 𝜂(𝟏𝑇𝒄𝑘 − 1).                          (5.13)                                                                                                                                                                                  

Let 𝑩 = (𝒂𝑘𝟏
𝑇 − 𝒁)𝑇(𝒂𝑘𝟏

𝑇 − 𝒁), which is symmetrical. Equation (5.13) can be rewritten as: 
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                                 𝐿(𝒄𝑘 , 𝜂) = 𝒄𝑘
𝑇𝑩𝒄𝑘 + 𝜆𝒄𝑘

𝑇𝑑𝑖𝑎𝑔(𝒍𝑘)
2𝒄𝑘 + 𝜂(𝟏

𝑇𝒄𝑘 − 1),                         (5.14) 

where diag(𝒍𝑘) is a diagonal matrix. To determine the optimal solution of (5.14), we take its partial 

derivative and set it to zero, which gives the following equation: 

                                                       
𝜕(𝐿(𝐜𝑘 , 𝜂))

𝜕(𝐜𝑘)
= 2𝑩𝒄𝑘 + 2𝜆𝑑𝑖𝑎𝑔(𝒍𝑘)

2𝒄𝑘 + 𝜂
𝑇𝟏 = 0                                (5.15) 

Let 𝚽 = 2(𝑩 + 𝜆diag(𝒍𝑘)
2), we have 

                                                                          𝚽𝒄𝑘 + 𝜂𝟏 = 0,                                                            (5.16)                                          

Multiply (5.16) by 𝟏𝑇𝚽−1, the following equation is obtained:  

                                                        𝟏𝑇𝚽−1𝚽𝒄𝑘 + 𝜂(𝟏
𝑇𝚽−1𝟏) = 0.                                                   (5.17)                                                    

According to the constraint 𝟏𝑇𝒄𝑘 = 1, 𝟏𝑇𝚽−1𝚽𝒄𝑘 = 1, we have: 

                                                                    1 + 𝜂(𝟏𝑇𝚽−1𝟏) = 0, 

                                                                    𝜂 = −(𝟏𝑇𝚽−1𝟏)−1.                                                          (5.18)                                                         

Putting 𝜂 into (5.16), we obtain the following equation: 

𝚽𝒄𝑘 = (𝟏
𝑇𝚽−1𝟏)−1𝟏 

After some transformations, we have 

                                                                  𝒄𝑘 =
𝚽−1𝟏

𝟏𝑇𝚽−1𝟏
=

1
2𝚽

−1𝟏

𝟏𝑇 (
1
2𝚽

−1𝟏)
 .                                                      (5.19) 

In this way, the analytical solution of our proposed objective function can be obtained, which is formulated 

as follows: 

�̃�k =
1

2
𝚽−1. 𝟏 = (𝑩 + λdiag(𝒍k)

2)−1𝟏, 
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                                                                   𝒄𝑘 = �̃�𝑘/(𝟏
𝑇�̃�𝑘).                                                                (5.20) 

The next step is to update the codebook 𝒁, which needs to solve the following equation: 

                                                                   min
𝒁
‖𝑨 − 𝒁𝑪‖2 + 𝜆∑‖𝒍𝑘 ⨂ 𝒄𝑘‖2

2

𝑀

𝑘=1

 .                                              (5.21) 

Let the objective function, (5.21) be denoted as 𝑨(𝒁), which update the codebook generated using k-means 

clustering. Therefore, equation (5.21) finds the optimal codebook 𝒁 with 𝑪 fixed. An analytical solution of 

(5.21) can be derived by taking the partial derivative of 𝑨(𝒁) with respect to the columns of 𝒁: 

                                                  
𝜕𝑨

𝜕𝒛𝑛
=∑−2𝑐𝑘𝑛(𝒂𝑘 − 𝒁𝒄𝑘

𝑀

𝑘=1

) − 2𝜆
𝒍𝑘𝑛
2

𝜎
𝑐𝑘𝑛
2 (𝒂𝑘 − 𝒛𝑛)                              (5.22) 

In an equivalent form, it can be written as: 

             (
𝜕𝑨

𝜕𝒛𝑛
)
𝑇

=∑(−2𝑐𝑘𝑛 (1 + 𝜆
𝒍𝑘𝑛
2

𝜎
𝑐𝑘𝑛
2 ) (𝒂𝑘)

𝑇 + 2(𝜆
𝒍𝑘𝑛
2

𝜎
𝑐𝑘𝑛
2 𝒛𝑛

𝑇 + 𝑐𝑘𝑛∑𝑐𝑘𝑗𝒛𝑗
𝑇))

𝑁

𝑗=1

𝑀

𝑘=1

          (5.23) 

where 𝑛 𝜖 {1,2,… ,𝑁}, and 𝑛 is an index of the codebook entries. After setting the partial derivative of 

(5.21) to zero for 𝑛 = 1,2,3, … ,𝑁, we obtain 

                                                                        𝑔(𝒁) = 𝒁𝑹 − 𝑸𝑇 ,                                                         (5.24) 

where  

𝑹 = ∑

(

 

(1 + 𝜆𝑘1)𝑐𝑘1
2 𝑐𝑘1𝑐𝑘2 ⋯ 𝑐𝑘1𝑐𝑘𝑁

𝑐𝑘1𝑐𝑘2 (1 + 𝜆𝑘2)𝑐𝑘2
2 ⋯ 𝑐𝑘2𝑐𝑘𝑁

⋮ ⋮ ⋱ ⋮
𝑐𝑘1𝑐𝑘𝑁 𝑐𝑘2𝑐𝑘𝑁 ⋯ (1 + 𝜆𝑘𝑁)𝑐𝑘𝑁

2 )

 

𝑀

𝑘=1

 

                                                     

                                                           𝑸 = ∑

(

 

𝑐𝑘1(1 + 𝜆𝑘1𝑐𝑘1)(𝒂𝑘)
𝑇

𝑐𝑘2(1 + 𝜆𝑘2𝑐𝑘2)(𝒂𝑘)
𝑇

⋮
𝑐𝑘𝑁(1 + 𝜆𝑘𝑁𝑐𝑘𝑁)(𝒂𝑘)

𝑇)

 

𝑀

𝑘=1

.                                                     (5.25) 
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In this case, 𝑔(𝒁) is a non-linear equation, so to search for the solution to 𝑔(𝒁) = 0, we utilize Newton’s 

method  

                                                             𝒁𝑝+1 = 𝒁𝑝 − 𝑔(𝒁𝑝)(𝑔
′(𝒁𝑝)

−1) ,                                            (5.26) 

where 𝒁𝑝+1 is the learned codebook at the 𝑝 + 1st iteration. It can be verified that 𝑔′(𝒁𝑝) = 𝑹𝒁𝑝 . In this 

way, we obtain 

                                                  𝒁𝑝+1 = 𝒁𝑝 − (𝒁𝑝𝑹𝒁𝑝 − 𝑸𝒁𝑝
𝑇 )𝑹𝒁𝑝

−1 = 𝑸𝒁𝑝
𝑇 𝑹𝒁𝑝

−1.                                 (5.27) 

Algorithm 5-2: Codebook updating scheme 

Input: 𝒁𝑖𝑛𝑖𝑡 ∈ 𝑅
𝐷×𝑁 , 𝑨 ∈ 𝑅𝐷×𝑀, 𝜎, 𝜆 

Output: Z 

1: 𝒁 ← 𝒁𝑖𝑛𝑖𝑡   (Initialize the codebook using k-means) 

2: for 𝑘 = 1:𝑀 do 

3:    𝒍 ← 1 × 𝑁  (Locality constraint) 

4:    for 𝑘 = 1:𝑁 do 

5:       𝒍𝑘𝑛 = √exp (
‖𝒂𝑘−𝒛𝑛‖2

2

𝜎
) 

6:    end for 

7:    𝒍 → 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(0,1)(𝒍) 

8:    Lagrange function to solve Equation (5.11) 

       𝐿(𝐜𝑘 , 𝜂) = ‖𝒂𝑘 − 𝒁𝒄𝑘‖
2 + 𝜆‖𝒍𝑘 ⨂ 𝒄𝑘‖

2 + 𝜂(𝟏𝑇𝒄𝑘 − 1) 

       𝒄𝑘 = �̃�𝑘/(𝟏
𝑇�̃�𝑘) Eq. (5.13) − (5.20) (Analytical solution) 

9:    Codebook Updating: 

(
𝜕𝑨

𝜕𝒛𝑛
)
𝑇

=∑(−2𝑐𝑘𝑛 (1 + 𝜆
𝒍𝑘𝑛
2

𝜎
𝑐𝑘𝑛
2 ) (𝒂𝑘)

𝑇 + 2(𝜆
𝒍𝑘𝑛
2

𝜎
𝑐𝑘𝑛
2 𝒛𝑛

𝑇 + 𝑐𝑘𝑛∑𝑐𝑘𝑗𝒛𝑗
𝑇))

𝑁

𝑗=1

𝑀

𝑘=1

 

10:  𝒁𝑝+1 = 𝒁𝑝 − (𝒁𝑝𝑹𝒁𝑝 −𝑸𝒁𝑝
𝑇 )𝑹𝒁𝑝

−1 = 𝑸𝒁𝑝
𝑇 𝑹𝒁𝑝

−1 

11: end for 

12: Updated Codebook 𝒁 
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Therefore, the optimal solutions for encoding the parameters C and the codebook 𝒁 are obtained. This kind 

of iterative process is known as coordinate descent method. In this process, we optimize 𝑪(𝒁) based on the 

existing value of 𝒁(𝑪), alternatively. Finally, we can obtain the updated codebook by solving the non-linear 

system (5.24). In the testing stage, we perform fast encoding by searching for 𝑁𝑘𝑛𝑛 number of local bases 

from the codebook, which have minimum distances to the query image’s feature vector. After that, the 

gallery and query image’s features are encoded using the learned codebook 𝒁. The training and testing 

stages of our proposed method are summarized in Algorithms 5-2, and 5-3, respectively.  

Algorithm 5-3: Feature encoding using a learned Codebook (testing stage) 

1: Input: 𝒁𝑛 for 𝑛 ∈ {1,2,… ,𝑁} and 𝒒 is a test image 

2: for k = 1 : 𝑁𝑘𝑛𝑛 do      

    where 𝑁𝑘𝑛𝑛 is number of nearest neighbors (number of local bases selected from the codebook) 

3: First Euclidean locality adaptor 𝒍𝑘 is computed 

    𝒍𝑘𝑛 = √exp (
‖𝒒−𝒛𝑘𝑛‖2

2

𝜎
) 

4: Solve the Equation (5.11) to obtain the analytical solution 

     min
𝒄𝑘
‖𝒒 − 𝒁𝒌𝐜𝒌‖2

2 + 𝝀‖𝒍𝒌⨂𝒄𝑘‖2
2  

     𝜷𝑘 = (𝑩𝑘 + 𝜆diag(𝒍𝑘)
2)−1𝟏 

      𝒄𝑘 = 𝜷
𝑘/(1𝑇𝜷𝑘) 

     where 𝑩𝑘 = (𝒒𝟏
𝑇 − 𝒁𝑘)

𝑇(𝒒𝟏𝑇 − 𝒁𝑘)                                                                                                                                                                            

5.4  Deep Feature Extraction 

Most of the face recognition algorithms extracts hand-crafted features from the face images before 

performing recognition. Although these features have achieved great success for some particular data, new-

domain knowledge is required in order to learn some effective features for new data samples. Moreover, 

their performance is heavily affected in the absence of proper pre-processing operations. Recently, features 
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learned using deep-CNN models gains a lot of attention due to their ability of providing multiple levels of 

feature representation. In this regard, high-level features are assumed to provide valuable semantic 

information about the data samples. Furthermore, the learned deep-features are proved to be more invariant 

to intra-class variability. Therefore, deep-features are considered as a new class of effective feature-learning 

methods. In comparison to handcrafted features, deep-features reduce the amount of feature engineering, 

which makes them computationally efficient.  

In our proposed method, we utilize a pre-trained deep CNN architecture, namely VGG16 [191], to 

extract the high-level features. Fig. 5-3 shows the VGG16 architecture. For VGG16, the input image must 

be of the size 224 × 224 × 3. This deep architecture consists of five convolutional layers, having a 

receptive field of size 3 × 3. There are five max-pooling layers. Max pooling is performed over a window 

of size 2 × 2, with a stride of 2. Each convolutional layer is followed by a fully connected (FC) layer. In 

total, there are three FC layers in this deep architecture. The first two FC layers consist of 4096 channels, 

while the third contains 1000 channels. In our proposed method, we extract deep features from the second 

fully connected layer (fc7) for further processing. In deep learning-based methods, networks are trained for 

feature extraction and recognition from end to end. In our proposed approach, we use deep-learning-based 

CNN model to extract features, which are then converted into discriminative codewords for recognition. 

Figs. 5-4, and 5-5 demonstrates the features learned by the earlier and deeper convolutional layers of 

VGG16, from the entire face region, and the periocular region, respectively. 

 

Fig. 5-3. VGG16 Architecture (Image adapted from [198]). 
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Fig. 5-4. Visualization of the learned deep features from different convolutional layers of VGG16. 

 

Fig. 5-5. (a) Original Face image, (b) Periocular region detected from face image, (c) Deep feature extracted from 

convolutional layer (conv1), (d) Deep feature extracted from convolutional layer (conv2), and (e) Deep feature 

extracted from convolutional layer (conv3). 

5.5  Subspace learning and Feature Fusion using Kernel CCA 

Features extracted from images of the same person at different ages are highly correlated, which can be 

exploited to enhance the recognition performance. As discussed before, the gallery and query image’s 

features are encoded using a learned codebook, so the codebook must be age insensitive. The most common 

approach to determine the correlation between two sets of data samples is CCA, which seeks a linear 

transformation in such a way that the projected features in the transformed space have maximum 

correlation. The major drawback of CCA is that it cannot capture the nonlinear relations between the two 

samples. Therefore, in our algorithm, we utilize kernel canonical correlation analysis (KCCA) to learn the 

coherent feature subspace from pairs of training face images. In the training stage, we first divide the images 

of each subject into two parts. The first part contains images taken at younger ages, while the second part 

contain the images taken at elder ages. Therefore, one pair of face images (one at a younger age and the 
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other at an older age) is formed for each subject. We first project the extracted deep features of these image 

pairs of each subject into a coherent feature subspace, such that their correlation is maximized. These 

projected features are fused to form a final feature vector, which is then used to learn an age-discriminative 

codebook.  

Given a pair of training image’s features 𝑭𝑎𝑔𝑒1 and 𝑭𝑎𝑔𝑒2, we first perform mapping into the high-

dimensional feature subspace by their corresponding mapping functions 𝜑𝑎𝑔𝑒1 and 𝜑𝑎𝑔𝑒2, respectively. 

After mapping 𝑭𝑎𝑔𝑒1  to 𝜑𝑎𝑔𝑒1, and 𝑭𝑎𝑔𝑒2  to 𝜑𝑎𝑔𝑒2, we apply linear CCA, which moves it from primary 

to dual representation. The pair of directions 𝜶 and 𝜷 are learned to maximize the following criterion 

function.    

                                                                𝜌 = max
𝜶,𝜷

𝜶′𝑲𝑎𝑔𝑒1𝑲𝑎𝑔𝑒2𝜷

√𝜶′𝑲𝑎𝑔𝑒1
2𝜶.𝜷′𝑲𝑎𝑔𝑒2

2𝜷

,                                                  (5.28) 

where 𝑲𝑎𝑔𝑒1 = 𝑭𝑎𝑔𝑒1 𝑭𝑎𝑔𝑒1
𝑇, and 𝑲𝑎𝑔𝑒2 = 𝑭𝑎𝑔𝑒2  𝑭𝑎𝑔𝑒2

𝑇 

Equation (5.28) can be maximized subject to two constraints 𝜶′𝑲𝑎𝑔𝑒1
2𝜶 = 1, and 𝜷′𝑲𝑎𝑔𝑒2

2𝜷 = 1, 

respectively. This can be solved using Lagrange multiplier method, which gives the corresponding 

equation: 

                     𝐿(𝜆, 𝜶, 𝜷) = 𝜶′𝑲𝑎𝑔𝑒1𝑲𝑎𝑔𝑒2𝜷 −
𝜆𝛼

2
(𝜶′𝑲𝑎𝑔𝑒1

2𝜶− 1) −
𝜆𝛽

2
(𝜷′𝑲𝑎𝑔𝑒2

2𝜷 − 1)             (5.29) 

Simplifying and solving Equation (5.29), we obtain 

   𝑲𝑎𝑔𝑒1𝑲𝑎𝑔𝑒2𝑲𝑎𝑔𝑒2
−1𝑲𝑎𝑔𝑒1𝜶− 𝜆

2𝑲𝑎𝑔𝑒1𝑲𝑎𝑔𝑒1𝜶 = 0 

Hence,  

𝑲𝑎𝑔𝑒1𝑲𝑎𝑔𝑒1𝜶− 𝜆
2𝑲𝑎𝑔𝑒1𝑲𝑎𝑔𝑒1𝜶 = 0 

It can also be written as: 

                                                                      𝑰𝜶 = 𝜆2𝜶                                                                         (5.30) 
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where 𝑰 is an identity matrix. Finally, it becomes an Eigen-value problem of the form 𝑨𝒙 = 𝜆𝒙. By doing 

this, we project the extracted low-rank features into the KCCA subspace for feature fusion. Figs. 5-6, and 

5-7 shows the training and testing stages of our proposed feature-encoding framework.  

 

Fig. 5-6. Training stage of our proposed framework. 

 

Fig. 5-7. Testing stage of our proposed framework. 
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5.6  Experimental Results and Analysis 

The effectiveness of our proposed method is evaluated by conducting extensive set of experiments on 

three challenging face aging datasets. These include the FGNET [144], MORPH Album 2 [182], and Large-

Age gap (LAG) [183] dataset. Among these datasets, FGNET and LAG contain images with very large age 

gap, which makes them challenging. For all three datasets, face regions are first detected using the Viola-

Jones algorithm [17], and are then resized to 224 × 224 × 3 pixels. Sample face images from the three 

datasets are shown in Fig. 5-8.  

 

(a) 

      

     (b) 

 

      

   (c) 

Fig. 5-8. Sample face images from the three face-aging datasets. (a) FGNET, (b) MOPRH, and (c) LAG dataset.  

Our experiments are divided into two parts. Firstly, the whole face image is used for recognition. In the 

second part, the periocular region of a human face is first detected using Viola-Jones eye detector, which is 

then used for further processing. We compare the results of our proposed method with various state-of-the-

art aging face recognition methods [14, 91, 101, 102, 103, 105, 106, 108, 109] in terms of recognition rate. 
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Furthermore, we also evaluate the performance of our proposed method with noise variations in both 

training and testing data. To the best of our knowledge, currently no literature exists for evaluating the 

cross-age face recognition problem in the presence of noise variations. Therefore, we perform some 

additional experiments on Multi-PIE dataset for comparative analysis.  

5.6.1 Experiments on FGNET Dataset  

FGNET is a small but challenging dataset, which consists of 1,002 face images from 82 identities with a 

large age difference of around 45 yrs. The number of images available per subject is large, around 10-12 

images per subject. We follow the same experimental protocol as used in other papers, and evaluate the 

performance using the LOOCV scheme. Therefore, subjects included in the probe set are not in the training 

set. Sample images from FGNET dataset are shown in Fig. 5-8 (a). The training images of each subject are 

divided into two sets for KCCA pairwise training. As the age gap is quite large in this dataset, so the first 

set contains the younger age images, while the other one contains older age images. Following the LOOCV 

scheme, our training set contains 𝑁-1 total pairs, where 𝑁 is the total number of subjects in the dataset. 

Comparative recognition rates are recorded in Table 5-1. Our proposed method achieves the recognition 

rate of 95.36%, which is better than the other aging face recognition methods. On the other hand, the 

recognition rate obtained by using the periocular region is 87.56%. Fig. 5-9 shows the face images from the 

FGNET dataset, and the corresponding detected periocular regions.  

 
 

 
 

Fig. 5-9. Original face images and the corresponding detected periocular regions. 
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Table 5-1. Comparative results in terms of the rank-1 recognition rate on the FGNET Dataset. 

Algorithms Rank-1 Recognition rates 

Park et al. [91] 37.4% 

Li et al. [14] 47.5% 

HFA [102] 69.0% 

MEFA [101] 76.2% 

CNN-baseline  84.4% 

LF-CNN [106] 88.1% 

Xu et al. [109] 86.5% 

Proposed Method (Periocular region) 87.56% 

Proposed Method (Whole face region)  95.36% 

Table 5-2. Comparative results in terms of the rank-1 recognition rates on the MORPH database.  

Algorithms Rank-1 Recognition rate 

Park et al. [91] 79.80% 

Li et al. [14] 83.90% 

HFA [102] 91.14% 

MEFA [101] 92.26% 

CARC [103] 92.80% 

HOG+LPS [105] 94.20% 

LPS [105] +HFA [102] 94.87% 

LF-CNN [106] 97.51% 

AFJT-CNN [108] 97.85% 

Proposed Method (Periocular region)  98.07% 

Proposed Method (Whole face region) 97.93% 

 

5.6.2 Experiments on the MORPH Dataset  

The MORPH dataset (Album 2) consists of 78,000 face images from 20,000 identities. The age gap 

among the images of the same subject is 5-6 yrs. Around 4 images per subject are available for each subject. 

In our experiments, we divide the dataset into independent training and a testing set. For training, the two 
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images with the largest age gap are selected from the first 10,000 subjects. The testing set is formed by 

using the remaining 10,000 subjects. Both the gallery set and the probe set are composed of one image per 

subject with a younger and an older age, respectively. This dataset is also suitable for addressing the small 

sample size problem, as only one image per subject is used in a gallery set. Most of the subjects in this 

dataset looks similar in terms of appearance, as they belong to same ethnicity. Sample images from MORPH 

dataset are shown in Fig. 5-8. (b). As training set consists of 10,000 subjects, so we utilize 10,000 image 

pairs for KCCA training. Our proposed method achieves the highest recognition rate of 97.93%, which is 

slightly better than the recently proposed deep-learning-based method in [108]. However, the recognition 

rate obtained using the periocular region is 98.07%. Table 5-2 shows the comparative analysis of our 

proposed method with respect to the other state-of-the-art aging face recognition methods.  

5.6.3 Experiments on the LAG Dataset  

LAG is a recently proposed face-aging dataset, which contain images with a very large gap, as shown in 

Fig. 5-8 (c). There are 3,828 face images from 1,010 identities. At least one child and one adult image are 

available for each identity, which makes it a very challenging dataset. For experiments, we follow the same 

experimental protocol as used in [183], and divide the dataset into two folds. Subjects are assigned to each 

fold alternately, so there is no overlapping between the training set and the testing set. The training set is 

formed by flipping the images in horizontal and vertical directions, and adding a certain amount of noise 

into each image. Therefore, we have 8 images for each subject in the training set. We conduct experiments 

for each fold independently, and then compute the average recognition rate. We compare the performance 

of our proposed method with two kinds of methods. The first kind of method employs DCNN [3] (trained 

on CASIA-Web face dataset [57]) for extracting deep features, and then use different metric learning 

techniques [181-184] for recognition. The second kind of method utilizes hand-crafted features (HDLBP 

[127]), with the abovementioned metric learning technique for recognition. Bianco et al. [183] fine-tuned 

DCNN [3], with the face images in the LAG dataset, to improve the performance. Therefore, we also 

include this method in our comparative analysis. Table 5-3 shows the comparative results, in terms of the 
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Rank-1 average recognition rate. With KCCA subspace learning and feature fusion, the training images of 

each subject are divided into two parts, with 4 images each. As the total number of subjects is 1,010, we 

utilized 505 image pairs from each fold for KCCA pairwise training.   

Table 5-3. Comparative results, in terms of the rank-1 average recognition rates, on the LAG database. 

 

Algorithms Rank-1 recognition rate 

DCNN [3]+SML [187] 72.43% 

DCNN [3]+OSS [185] 66.42% 

DCNN[3] + Cosine Similarity [184] 65.08% 

DCNN [3] + Joint Bayesian [186] 66.33% 

DCNN [3] + CARC [103] 74.82% 

HDLBP [127] 71.53% 

Bianco et al. [183] 84.95% 

Proposed Method (Periocular region) 86.23% 

Proposed Method (Deep features) 92.56% 

 

 

Fig. 5-10. The recognition rates under different feature dimensions, with and without using low-rank approximation 

on the FGNET dataset. (No noise) 
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Fig. 5-11. The recognition rates under different feature dimensions, with and without using low-rank approximation, 

on the MORPH dataset. (No noise) 

 

(c) 

Fig. 5-12. The recognition rates under different feature dimensions, with and without using low-rank approximation, 

on the LAG dataset. (No noise) 

 

 



 

 

113 

 

 

5.6.4 Experiments on the CACD-VS Dataset 

The CACD dataset is one of the largest available datasets for performing cross-age face recognition. It 

consists of 163,446 face images from 2,000 celebrities. All the images in this data set are collected from 

the Internet, with age labels. However, the whole data set consists of some incorrectly labelled samples. In 

addition to aging variations, there exist huge variations in terms of pose, expression, and illumination 

among the images of the same subject. The largest age-gap in this dataset is 10-12 yrs. For comprehensive 

analysis of our proposed method, we conducted experiments on a verification subset of CACD, named 

CACD-VS. The subset consists of 4,000 image pairs, including 2,000 positive pairs, and 2,000 negative 

pairs. All the images have been carefully annotated. Sample positive and negative pairs are shown in Fig. 

5-13.  

 

Fig. 5-13. Positive and negative pairs from the CACD-VS dataset, where first row represents the positive pairs and 

second row represents the negative pairs.  

Following the same experimental protocol as used in [106], we evaluate the performance using the tenfold 

cross-validation rule. In this regard, we use cosine similarity as a metric learning technique for each pair 

and learn the optimal threshold value using nine training folds, for face verification. The leftover fold is 

used for testing.  Experiments were repeated nine times, and average verification accuracy is reported in 

Fig. 5-14. The verification results are compared with different state-of-the-art cross-age face recognition 

methods. Our proposed method provides state-of-the-art performance, which is comparable to the deep 

learning-based method [106]. It is to be noted that the scale of the training data used by our method is 

smaller than the one used in deep learning-based methods.  
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Fig. 5-14. Comparative analysis of ROC curves of different state-of-the-art methods. 

Table 5-4. Statistics of the FGNET, MORPH (Album 2), and LAG face aging datasets. 

Database 
No of 

images 

No of 

identities 

Age 

range 
Age gap In wild 

FGNET 1,002 82 0-69 0-45 Yes 

MORPH 

(Album 2) 
78,000 20,000 16-77 0-5 No 

LAG  3828 1010 0-80 Large Yes 

5.6.5 Parameters settings for Low-rank Features Learning 

Our proposed method includes two stages of learning. The first stage is the learning of the low-rank 

matrix 𝑨 using Equation (5.6), which contains two important parameters 𝜆, and 𝛽, respectively. Parameter 

𝜆 is used to control the impact of the error term. In our experiments, we set 𝜆 = 10−7, which implies that 

the amount of corruption in images could be constant. The second term 𝛽 is used to control the impact of 

manifold regularization. As stated earlier, the projection matrix 𝑷 is learned by using LLE [30], which 

preserves the neighborhood local structure of the data by representing the data samples in terms of their 𝑘 

nearest neighbors. By using a large training set, successful embedding can be obtained using LLE. 

However, the assumption of local linearity becomes invalid, when the size of the training set is small, and 

also a large number of nearest neighbors are used for the reconstruction of data samples. On the other hand, 
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using very small value of 𝑘 may not be enough for successful embedding. The only way to find an optimal 

value of 𝑘 is by means of iterative testing.  In our experiments, we set 𝑘=60, which gives the optimum 

results. Furthermore, PCA is utilized to reduce the dimensionality of the extracted deep features. Therefore, 

we also assess the performance of our proposed method with different feature dimensions. Recognition 

rates for all the three datasets under different feature dimensions, without any noise, are shown in Figs. 5-

10, 5-11, and 5-12, respectively. It can be observed that our method achieves state-of-the-art performance 

with lower feature dimensions, which is also an indication of lower computational complexity.  

5.6.6 Parameters settings for Feature encoding 

The second stage of our method is feature encoding based on locality information, which include the 

process of codebook learning. The total number of codebook entries is equal to the number of training 

samples. For the FGNET dataset, performance is evaluated using the leave-one-out scheme, so the 

codebook is initialized with 𝑁-1 entries, where 𝑁 is the total number of subjects in the dataset. Due to the 

large number of training samples, the codebook size will be large. Therefore, the features of the gallery and 

query images encoded by using a large codebook will lead to a higher computational complexity. Inspired 

by LLC [122], we also utilize the approximate solution for fast encoding. Given a query image, we first 

compute the 𝑛 entries in the codebook that have the minimum distances from the feature of the query image. 

In this chapter, we call these minimum-distance entries as the nearest neighbors, and the number n is one 

of the important parameters for this feature-encoding framework. These nearest neighbors are determined 

using 𝑘NN strategy proposed in [188]. In our experiments, we selected different numbers of nearest 

neighbors, ranging from 50 to 150, and computed the recognition accuracy. It is observed that, by increasing 

the number of neighbors, the recognition rate also increases. Our method can achieve superior performance 

by selecting only 100 nearest neighbors. We found that the recognition rate remains the same as we increase 

the number of neighbors from 100 to 150. Another important parameter is 𝜎, which controls the locality 

error of the exponential locality adaptor, defined in Equation (5.12). If the value of 𝜎 is set such that 
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‖𝒂𝑘−𝒛𝑛‖2
2

𝜎
< 1, then we can obtain a lower error rate, as proved by Theorem 1 in [189]. Therefore, the value 

of 𝜎 should be as small as possible. In our experiments, we choose 𝜎 = 0.5, which gives the best recognition 

performance. Furthermore, the locality term 𝒍𝑘𝑛
2  defined in (5.12) has an exponential growth with respect 

to 
‖𝐚𝑘−𝐳𝑛‖2

𝜎
, which means that large value of 𝒍𝑘𝑛 is obtained if the distance between the input low-rank 

feature 𝒂𝑘 and the codebook entry 𝒛𝑛 is large. This implies the importance of data locality in the feature-

encoding framework. Similarly, a large value of 𝑙𝑘𝑛 will cause the value of 𝑐𝑘𝑛 to be quite small, as 𝑙𝑘𝑛 is 

actually the weight of the encoding coefficient 𝑐𝑘𝑛.  

The value for the parameter 𝜆 in Equation (5.11) can be well explained by Equation (5.20). It should be 

noted that matrix 𝑩 is semi-positive and symmetric. This implies that matrix 𝑩+ 𝜆diag(𝒍𝑘)
2 is still 

conditioned, if 𝑩 is singular or close to singular. In this way, the large distances will be penalized by 

𝜆diag(𝒍𝑘)
2, which analyze and capture the correlation between the two data points. In our experiments, we 

vary the value of 𝜆 from 10-9 to 10-3, and found that by selecting 𝜆 < 10−6, the resultant matrix becomes 

singular and provides inaccurate results. Therefore, we choose 𝜆 = 10−3, which provides the best 

recognition performance.  

5.6.7 Effectiveness of Low-Rank Feature Learning 

Low-rank feature learning is proved to be an efficient technique to handle large amount of corruptions 

in the data samples. It aims to learn a low-rank dictionary by optimizing the dictionary atoms and removing 

the sparse noise errors from the data samples. Furthermore, it also reveals the global structural information 

of the data samples, which helps in reconstructing a given test sample using a discriminative low-rank 

dictionary. Learned low-rank features of the samples belong to the same class are highly correlated, which 

improves the classification performance. As discussed earlier, low-rank captures the global structural 

information of the data samples, so the correct identity of any data sample can be easily revealed, if 

subspaces are independent. In context of face recognition, low-rank matrix contains the identity 

information, while the sparse error term contains information regarding the facial variations. Therefore, 
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utilizing the low-rank part only is quite beneficial for recognition purposes. The discriminative power of 

the low-rank dictionary can further be enhanced by incorporating the local structural information into 

account. By utilizing the manifold information in our proposed method, data samples of the same identity 

lie close to each other in the learned subspace, which improves the recognition rate. Therefore, the 

combination of the global and local structural information provides better feature representation. 

5.6.8 Evaluation with Noise Variations 

Practical face recognition systems must be able to handle noise variations in images for reliable 

identification. As we discussed earlier, deep neural networks are highly sensitive to noise variations. 

Therefore, we propose a manifold-constrained low-rank decomposition algorithm to recover underlying 

identity information from corrupted face images for face recognition. The sparse-representation based 

classifier (SRC) [7] provides superior performance in recognizing face images suffering from occlusion, 

disguise, and noise. However, SRC does not consider any possible contamination in the training set. 

Therefore, its performance will degrade heavily when training face images are corrupted. In our proposed 

method, we consider both the training and testing data to be contaminated with the salt & pepper noise, 

with different levels of pixels corruption. After decomposing the deep features of a noisy image into a low-

rank feature and a sparse error matrix, we only utilize the low-rank component for recognition, while 

discarding the sparse error matrix. In our experiments, we found that even if no random noise is added to 

an image, there still exist some inherent random noise, which is generated due to the camera-acquisition 

system. Previously proposed methods have been proved to be robust against such kind of noise, and provide 

superior performance. However, their performance under large externally added noise is not investigated 

yet.  

In addition to recovering the identity information, low-rank approximation is also capable of alleviating 

illumination variations, as shown in Fig. 5-2 (b). In our experiments, we randomly add 20 to 40% “salt & 

pepper” noise to the training and testing images. We evaluate the performance, with and without using our 

proposed low-rank approximation technique, under different feature dimensions on the FGNET, MORPH, 
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and LAG datasets, as shown in Figs. 5-15(a), 5-16(a), and 5-17(a), respectively. It can be observed that our 

proposed low-rank algorithm shows high robustness to different levels of pixel corruption. This is because 

of the utilization of the recovered clean feature matrix for feature encoding. Face images of the same identity 

are linearly correlated, so the learned codebook used to represent images from one class should be of low 

rank. Furthermore, the introduction of manifold regularization not only preserves the local structural 

information of the data samples, but also provides a compact and clean dictionary. Therefore, it is able to 

reconstruct clean images from noisy observations, even in the presence of corrupted training data. 

      
                                                             (a)                                                                                                               (b) 

Fig. 5-15. Recognition rates under different feature dimensions, with different levels of noise variations, on the 

FGNET dataset. (a) whole face region, and (b) the periocular region.  

      

                                     (a)                                                                                                        (b) 

Fig. 5-16. Recognition rates under different feature dimensions, with different levels of noise variations, on the 

MORPH dataset. (a) whole face region, and (b) the periocular region.  
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                                                              (a)                                                                                                          (b)  

Fig. 5-17 . Recognition rates under different feature dimensions, with different levels of noise variations, on the LAG 

dataset. (a) whole face region, and (b) the periocular region.  

Considering the whole face image, our proposed method achieves superior results on all three face-aging 

datasets. For the FGNET dataset, our method achieves the recognition accuracy of 93.17%, when 20% of 

the pixels are corrupted by noise. Only a 3% drop in recognition rate is observed when we increase the 

number of contaminated pixels from 20% to 40%. For the MORPH dataset, only a 1% decline in recognition 

rate is observed with 20, and 40% of pixels corrupted using salt & pepper noise. In the second part of our 

experiments, we investigated the use of the periocular region for face recognition on all the three datasets, 

with different noise levels, and reported the results in Figs. 5-15(b), 5-16(b), and 5-17(b), respectively. 

Although the performance of using the periocular region is not the same as using the whole face image, it 

still shows high robustness against noise variations. For the FGNET dataset, only a 10% decline in 

recognition rate is reported when 20% of the pixels are corrupted, while 20% decline is reported for 40% 

corrupted pixels. The reason for this is that most of the childhood images in the FGNET dataset were 

actually scanned from the original photographs, captured under large pose, illumination, and expression 

variations. However, face images in the MORPH dataset are captured under controlled conditions, so the 

periocular region shows high robustness to noise variations. For the LAG dataset, the results are slightly 

better than FGNET, due to the better image quality. However, under normal circumstances (no noise), using 
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the periocular region has proven to be highly discriminative and provides a recognition rate better than the 

other state-of-the-art cross-age face recognition methods.  

5.6.9 Computation time 

In this section, we will evaluate the computational efficiency of our proposed framework. The 

computation time depends on the two stages of learning, including manifold-constrained low-rank 

approximation, and feature encoding. For low-rank optimization, we measured the runtime for both a single 

image and the whole dataset. In the testing stage, our proposed method takes only 0.2 seconds to reconstruct 

the clean image from the noisy observation. The main computation in Equation (5.6) is updating the matrix 

𝑨, which involves the process of singular value decomposition (SVD) of an 𝑀 ×𝑀 matrix. For the feature-

encoding stage, the computational complexity depends on the number of local bases (nearest neighbors) 

selected from the learned codebook for encoding. Table 5-5 shows the runtime required for the feature-

encoding stage. Our proposed method takes only a few milliseconds to perform feature encoding. 

Table 5-5. Computation time in seconds for encoding one single image and the whole data set. 

Dataset Feature Encoding (Single image) Feature encoding (whole testing dataset) 

FGNET 0.0029s 0.12s 

MORPH 0.0096s 9.60s 

LAG 0.0052s 0.26s 

CACD-VS 0.0048s 3.84s 

 

    

Fig. 5-18. Sample face images from Multi-PIE Dataset. 

5.6.10 Comparative Analysis on Multi-PIE dataset 

As discussed earlier, we are the first one to investigate the recognition performance on cross-age face 

datasets in the presence of noise variations. For comparative analysis, we perform some additional 
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experiments on Multi-PIE [169] dataset, with both training and testing images to be corrupted with different 

levels of salt & pepper noise. Earlier in this chapter, we discussed some limitations and drawbacks of sparse 

representation-based classifier (SRC), in solving the noisy and occluded face recognition problem, when 

training set is corrupted with noise. To overcome the limitations of SRC, Jiang et al. [195] proposed a 

method, known as sparse and dense hybrid representation (SDR). The method first splits the training set 

into a class-specific dictionary and a non-class-specific dictionary to obtain maximum amount of 

information, so it can deal with the corrupted pixels in the face images. Although, this method provides 

satisfactory performance in dealing with little amount of corruption, but its performance heavily degrades, 

when heavily corrupted face images are presented for recognition. Moreover, the computational complexity 

of SDR depends on the size of training dictionary. Large training data leads to a very high computational 

complexity, which is infeasible.   

 

Fig. 5-19. Recognition rates with different levels of noise variations using deep features on Multi-PIE Dataset. 

Multi-PIE consists of more than 750,000 images from 337 subjects. In our experiments, we randomly 

select 68 subjects with 102 images each. For training, we randomly select 34 subjects, while the remaining 

subjects are used for testing. Sample images from the Multi-PIE dataset with different facial variations are 
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shown in Fig. 5-18. In our experiments, gallery set is assumed to be free of external noise, while training 

set and probe face images are corrupted with 20, 30, 40, and 50% of salt & pepper noise, respectively. With 

20% corrupted pixels, our method provides state-of-the-art performance by achieving the recognition rate 

of 96.60% with 60-D features. With 50% of the corrupted pixels, our method can still achieve the 

recognition rate of more than 70.00% with 60-D features. Comparative results are shown in Fig. 5-19. In 

our experiments on face-aging datasets, we divide the images of each subject into two parts with large age 

gap. As Multi-PIE is not a face-aging dataset, so we randomly divide the images of each subject into two 

parts, with 51 images each, and then use them for KCCA pairwise training. 

5.6.11 Evaluation with Local feature descriptors 

In this section, we evaluate the performance of our method using local feature descriptors, with different 

levels of corrupted pixels in the training and testing set. In our experiments, we add 20, 30, and 40% of salt 

& pepper noise in the training and testing images. To extract the features, we first detect the location of the 

face region in an image using the Viola-Jones face detector [17], and then resize the face region to 

150 × 200 pixels. Each face image is first smoothed by using a Gaussian kernel with a variance of 0.25. 

As discussed in Chapter 4, extracting information over dense grids instead of a few sparse key points can 

provide the information regarding the distribution of edge directions in the entire face region. According to 

[14], this information is proved to be age-invariant. Regarding local feature descriptors, our experiments 

are divided into three parts. In the first part, we extract only Dense SIFT (DSIFT) features from the face 

images, using the same settings as used in Chapter 4. Extracted features are then passed to our proposed 

low-rank and feature-encoding algorithm to obtain better feature representation.  

 

Fig. 5-20. Sample face images and its corresponding extracted HOG feature. 
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In the second part, we utilize two efficient local features, HOG [36], and LBPD [153]. To extract HOG 

feature, we first divide an image into small cells, and then compute the gradient information at each cell, 

respectively. In our experiments, we set the size of each cell to 8, while the number of orientations used in 

the histogram are set to 4.  LBPD feature is extracted in a same way as in previous chapters. Finally, we 

concatenate the extracted HOG and LBPD feature to extract more discriminative face representation. The 

HOG feature extracted from a face image is shown in Fig. 5-20. In the last part, we fuse LBPD and DSIFT 

features, as explained in Chapter 4, and record the recognition rate using our proposed method. In our 

experiments, we found that feature-level fusion brings a significant improvement in recognition 

performance. The best performance is obtained by fusing LBPD with DSIFT and HOG features. For all the 

three combinations of local features, the highest recognition rate is obtained using 40-D features, and by 

searching for 150 nearest neighbors (local bases) from the codebook for feature-encoding. In comparison 

to local feature descriptors, deep-features performs better against different levels of pixel corruptions, as 

shown in Figs. 5-15, 5-16, and 5-17 (a), respectively. Fig. 5-21 shows the recognition rates of our proposed 

method of all the three datasets using only DSIFT feature. Similarly, recognition rates using multiple local 

features are shown in Figs. 5-22, and 5-23, respectively. Tables 5-6, 5-7, and 5-8 shows the recognition 

results under different feature dimensions using DSIFT and LBPD feature with different levels of noise 

variations.  

 

Fig. 5-21. Recognition rates of our proposed method using DSIFT feature, with optimal feature dimensions.  
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Fig. 5-22. Highest recognition rates of our proposed method using local feature descriptors (HOG+LBPD) with 

optimal feature dimensions. 

 

Fig. 5-23. Highest recognition rates of our proposed method using local feature descriptors (DSIFT+LBPD) with 

optimal feature dimensions. 

Table 5-6. Recognition rates under different feature dimensions with 20% of noise on all the three datasets, using local 

feature descriptors (DSIFT + LBPD). 

 

Feature Dimension 40 60 80 100 120 140 

FGNET 60.24% 62.68% 73.17% 65.85% 61.46% 64.39% 

MORPH 72.5% 79.75% 88.50% 84.81% 83.87% 86.68% 

LAG 74.33% 76.77% 79% 77.33% 80.55% 82.44% 
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Table 5-7. Recognition rates under different feature dimensions with 30% of noise on all the three datasets, using local 

feature descriptors (DSIFT + LBPD). 

 

 

 

Table 5-8. Recognition rates under different feature dimensions with 40% of noise on all the three datasets, using local 

feature descriptors (DSIFT + LBPD). 

5.7  Conclusions 

This Chapter presents a novel deep low-rank feature learning and encoding method for cross-age face 

recognition, when both training and testing images are corrupted by noise. Our method learns discriminative 

low-rank features by introducing a manifold-constrained low-rank decomposition algorithm. This not only 

recovers the original image from its corrupted version, but also preserves the local structural information 

of the data samples. To make the features discriminative in terms of age progression, a locality-based 

feature-encoding framework is proposed, which encodes low-rank gallery and query image’s features using 

the learned codebook. The encoded features are then fed to nearest neighbor classifier to do face 

recognition. Furthermore, we also consider the periocular region of a human face instead of a whole face 

image to do recognition using our proposed framework. Our experimental results on three challenging face-

aging datasets demonstrates the superiority of our proposed method. 

 

 

Feature 

Dimension 
40 60 80 100 120 140 

FGNET 63.17% 62.93% 71.70% 67.56% 61.95% 57.31% 

MORPH 84.93% 90.31% 81.62% 89.50% 86.12% 88.25% 

LAG 77.11% 77.88% 76.33% 75.66% 79.44% 84.55% 

Feature 

Dimension 
40 60 80 100 120 140 

FGNET 62.92% 62.43% 66.09% 66.09% 59.26% 59.75% 

MORPH 82.87% 83.81% 82.31% 80.56% 87.18% 88.75% 

LAG 76.44% 75.66% 75.11% 81.77% 76.55% 80.77% 
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    Conclusions and Future Research Direction 

In this thesis, we first introduce the major theme of our research work by reviewing some of the existing 

challenges in face-recognition research. Our motivation behind the research is briefly discussed. From 

Chapter 3 to Chapter 5, we proposed and described complete frameworks for solving the low-resolution 

and age-invariant face-recognition problems. Furthermore, we take into account the problem of noise 

variations in face images, which heavily degrade the performance of face-recognition algorithms. In 

Chapter 3, we proposed an effective approach to solving the low-resolution face-recognition problem, based 

on sparse discriminant low-rank features. In Chapter 4, a deep-feature encoding-based discriminative model 

was presented to solve the aging face-recognition problem. In Chapter 5, another age-invariant recognition 

framework was proposed, which not only can recognize human faces with a large age gap, but also tackle 

severe noise variations by using deep low-rank feature learning and encoding. In this research, both 

handcrafted and deep-learning features have been investigated and employed for face recognition. We 

found that by encoding the features based on sparse representation and low-rank presentation, their 

discriminant ability can be greatly enhanced.  

In this final chapter, we conclude our research findings along with the major contributions. Moreover, 

future research work will also be discussed.  

6.1   Conclusions of our research findings 

In our research work, we have attempted to solve three major challenges of face recognition. These 

include low-resolution face recognition, age-invariant face recognition, and noisy face recognition.  

To solve the low-resolution face-recognition problem, an effective method based on sparse coding and 

low-rank features was proposed in Chapter 3. The proposed method includes the decomposition of extracted 

local features (Gabor wavelets, and LBPD) into a low-rank feature matrix and a sparse error matrix. The 

learned low-rank part is then used to learn a common discriminative feature subspace using our proposed 

sparse coding-based objective function. Experimental results on four challenging face datasets demonstrate 
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the superiority of this proposed method, which provides a high recognition rate for very low-resolution face 

images, even of the size 8 × 8.  

To solve the aging face-recognition problem in Chapter 4, we first utilize a pre-trained deep-CNN model 

(AlexNet) to extract high-level deep features from face images. To make the features more discriminative 

in terms of age progression, we proposed to learn a codebook from training data, which is then used to 

encode the gallery and query face image’s features, with locality information. To learn an age-

discriminative codebook, we first divide training images of each subject into two groups, with a large age 

gap. After that, the features of these two age group’s images are fused using canonical correlation analysis. 

Finally, these fused features of the training set are used to learn a codebook. The proposed feature-encoding 

method provides closed form solutions in both the sparse-coding and codebook updating stages. 

Experimental results on three challenging face-aging datasets demonstrate the superiority of this method. 

Furthermore, our method does not require any age labels for the recognition purpose.  

Another framework for aging face recognition was proposed in Chapter 5, for solving the problem in 

the presence of significant noise variations. To solve this problem, we proposed a new manifold-constrained 

low-rank approximation algorithm, which not only recovers the underlying identity information from 

corrupted face images, but also preserves the local structure of the data samples. The learned low-rank 

features are then encoded using our proposed feature-encoding framework based on the exponential locality 

information. Encoded features are then fed to the nearest neighbor classifier for recognition. Various studies 

have shown that the periocular region of a human face goes through little change with age progression, as 

compared to other facial parts. Therefore, we also investigated the use of the periocular region of a face 

image for age-invariant face recognition, based on our proposed framework, in Chapter 5. Our method 

shows high robustness against noise variations, even if around half of the image pixels are corrupted. It is 

worth noting that our method is the first one to investigate the performance of aging face recognition with 

noise variations.  
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6.2  Future Work 

This thesis has presented some techniques for effective facial feature analysis and recognition in both 

constrained and unconstrained environments. However, there still exist some challenges, which need to be 

addressed in order to develop a generic facial recognition system. In this section, we will discuss some of 

our future research directions in the field of face recognition. Future research can be conducted in the 

following areas: 

(1) Recognition of low-resolution (LR) face images: According to some recent research, super-

resolution (SR) techniques based on deep-learning can be helpful in improving the recognition 

accuracy of LR face recognition systems. However, current deep-learning models are not optimal 

for recognizing LR images of size lower than 12 × 12. Although deep learning-based SR 

techniques can generate high-resolution photorealistic images from LR face images, they often lose 

some identity information during the estimation process. Furthermore, identifying resolution 

robust features is one of the major challenges. In our future work, we will emphasis on some recent 

deep architectures which can perform super-resolution, and recognition simultaneously by 

preserving identity information. Another possible approach is to super-resolve the LR features 

extracted from deep networks, which can boost the recognition rate.  

(2) Age-invariant face-recognition problem: deep-learning has achieved superior performance in many 

machine-learning tasks, due to the availability of a large amount of training data. To further 

enhance the recognition accuracy on more challenging aging datasets, a large training set with real 

age labels should be utilized to learn deep features at different ages. Furthermore, we aim to 

improve our feature-encoding framework by incorporating manifold information in the objective 

function. The manifold-learning algorithms can learn an effective projection matrix from collected 

training data, which can improve the recognition accuracy. Furthermore, the utilization of aging 

information in manifold information can be helpful in reducing the inter-personal variations. The 

proposed encoding scheme can also be converted into an end-to-end deep learning framework. 
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This is possible by designing a new layer, which can be embedded to the feature extraction network 

to realize both feature fusion and codebook learning. Therefore, the optimization of feature 

representation and feature fusion can be conducted at the same time and maximize the correlated 

complementary information between the two steps.  

(3) Generalization of face recognition systems: A general face recognition system should be able to 

tackle all kinds of facial variations, such as pose, expression, illumination, occlusion, noise, 

resolution, etc. According to our experimental results in Chapter 3, one of the recently proposed 

deep-CNN models [49], known as SphereFace, cannot perform well when image resolution 

becomes lower than 20 × 20. Furthermore, it was argued in [190] that deep models give the worst 

performance in the presence of noise variations. In our future work, we aim to combine the 

techniques proposed in this thesis to develop a general face-recognition system, which is robust 

against all the above-mentioned variations. Regarding the low-rank feature-learning algorithm 

proposed in Chapter 5, we aim to incorporate sparse-coding information in the objective function. 

As discussed in Chapter 3, our proposed sparse-coding-based objective function can preserve the 

local structural information of data samples in the low-dimensional feature subspace, without 

searching for 𝑘-nearest neighbors. This can provide better reconstruction of data samples from its 

corrupted version, which can be helpful in tackling noise variations.  

 

 

 

 

 

 

 



 

 

130 

 

 

References 

[1] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience 3(1) (1991) 

71-86.  

[2] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns: Application 

to Face Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037-2041, Dec. 

2006.  

[3] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from predicting 10,000 classes,” 

in Proc. IEEE. Conf. Comput. Vis. Pattern Recognit., 2014, pp. 1891-1898.  

[4] S. Liao, A.K. Jain, and S.Z. Li, “Partial face recognition: Alignment-free approach,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 35, no. 5, pp. 1193-1205, May. 2013.  

[5] C. Ding, C. Xu, and D. Tao, “Multi-Task Pose-Invariant Face Recognition,” IEEE Trans. Image     

Process., vol. 24, no. 3, pp. 980-993, Mar. 2015.  

[6] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face recognition and 

clustering,” in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 815-823. 

[7] J. Wright, A. Y. Yang, and A. Ganesh, “Robust face recognition via sparse representation,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210-227, 2008.  

[8] Z. Lei, M. Pietikainen, and S. Z. Li, “Learning Discriminant Face Descriptor,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 36, no. 2, pp. 289-302, Feb. 2014.  

[9] W.W. Zou, and P.C. Yuen, “Very low-resolution face recognition problem,” IEEE Trans. Image     

Process. vol. 21, no. 1, pp. 327-340, Jan. 2012.  

[10] B. Li, H. Chang, S. Shan, and X. Chen, “Low-resolution face recognition via coupled locality 

preserving mappings,” IEEE Sig. Process Lett., vol. 17, no. 1, pp. 20-23, Jan. 2010. 

[11] Z. Wang, Z. Miao, Q.J. Wu, Y. Wan, and Z. Tang, “Low-resolution face recognition: A review,” The 

Vis. Comput., vol. 30, pp. 359-386, 2014.   



 

 

131 

 

 

[12] D. Deb, L.B-Rowden, and A. K. Jain, “Face Recognition Performance under Aging,” in: Proc. IEEE 

Conf. Comput. Vis. Pattern Recognit Workshops, 2017, pp. 1-9.  

[13] H. Zhou, and K-M. Lam, “Age-invariant face recognition based on identity inference from appearance 

age,” Pattern Recognit., vol. 76, pp. 191-202, April 2018.  

[14] Z. Li, U. Park, and A. K. Jain, “A discriminative model for age invariant face recognition,” IEEE 

Trans. Inf. Forensics Security, vol. 6, no. 2, pp. 1028–1037, Sep. 2011.  

[15] G. B. Huang, M. Ramesh, T. Berg, E. L-Miller, Labeled faces in the wild: A database for studying 

face recognition in unconstrained environments, 2007 (vol. 1, no. 2, p. 3), “Technical Report 07-49, 

UMass. 

[16] K. C. Yow, and R. Cipolla, “Feature-based human face detection,” Image and Vis. Comput., vol. 15, 

pp. 713-735, 1997.  

[17] P. Viola and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, 

vol. 57, no. 2, pp. 137-154, 2004. 

[18] C. Liu, “A Bayesian discriminating features method for face detection,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 25, no. 6, pp. 725-740, Jun. 2003.  

[19] C. Erdem, S. Ulukaya, A. Karaali, and A.T. Erdem, “Combining Haar Feature and skin color based 

classifiers for face detection,” in Proc. IEEE Conf. Acoustics. Speech, and Signal Processing 

(ICASSP), 2011, pp. 1497-1500.  

[20] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade for facial point detection,” in: 

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3476,-3483.  

[21] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and alignment using multitask cascaded 

convolutional networks,” IEEE Sig. Process Lett., vol. 23, no. 10, pp. 1499-1503, 2016.  

[22] S. Milborrow, and F. Nicolls, “Locating facial features with an extended active shape model,” in Proc. 

European Conf. Comput. Vis (ECCV), 2008, pp. 504-513. 



 

 

132 

 

 

[23] X. Zhu, and D. Ramanan, “Face detection, pose estimation, and landmark localization in the wild,” in: 

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2879-2886.  

[24] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Trans. Pattern Anal. 

Mach. Intell., vol. 23, no. 6, pp. 681-685, Jun. 2001.  

[25] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active shape models-their training and 

application,” Comput. Vis. Image. Understanding, vol. 61, pp. 38-59, 1995. 

[26] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs Fisherfaces: Recognition using 

class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 7, pp. 711-720, 

1997.  

[27] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, “Face recognition using Laplacianfaces,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 27, no. 3, pp. 328-340, 2005.  

[28] X. He and P. Niyogi, “Locality preserving projections, in: Proc. Conference on Neural Information 

Processing Systems (NIPS), 2004, pp. 153. 

[29] J. Tenenbaum, V. Silva, and J. Langford, “A global geometric framework for nonlinear dimensionality 

reduction,” Science, vol. 290, pp. 2319–2323, 2000. 

[30] S.T. Roweis, and L.K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” 

Science, vol. 290, no. 5500, 2000, pp. 2323-2326.  

[31] W.S. Torgerson, “Multidimensional scaling: I. Theory and method,” Psychometrika, vol. 17, no. 4, 

pp. 401-419, Dec. 1952.  

[32] M. Belkin, and P. Niyogi, “Laplacian Eigen maps for dimensionality reduction and data 

representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, 2003.  

[33] L. Wiskott, J-M. Fellous, N. Kruger, and C. V. D. Malsburg, “Face Recognition by Elastic Bunch 

Graph Matching,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 775–779, 1997. 

[34] B. Kepenekci, F. B. Tek, and G.B. Akar, “Occluded face recognition based on Gabor wavelets,” in 

Proc. IEEE Conf. Image. Process (ICIP), 2002, pp. 293-296.  



 

 

133 

 

 

[35] T.S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 18, no. 10, pp. 959-971, Oct. 1996.  

[36] N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection,” in: Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit., 2005, pp. 1-8.  

[37] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of 

Computer Vision, vol. 60, no.2, pp. 91-110, 2004.  

[38] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE Trans. Comput., vol. C-

23, pp. 88–93, Jan. 1974. 

[39] A. Vedaldi, and B. Fulkerson, Vlfeat: An open and portable library of computer vision algorithms,” 

in Proc. Int. Conf. Multimedia. 2010, pp. 1469-1472. Available: www.vlfeat.org/ 

[40] X. Tan, and B. Triggs, “Fusing Gabor and LBP Feature sets for kernel-based Face Recognition,” in 

Proc. International workshop analysis and modeling of faces and gestures, 2007, pp. 235-249.  

[41] K. Weinberger and L. Saul, “Distance metric learning for large margin nearest neighbour 

classification,” The Journal of Machine Learning Research, vol. 10, pp. 207–244, 2009. 

[42] T. Joachims, “Text categorization with support vector machine: Learning with many relevant 

features,” in European Conf. Machine Learning, 1998. 

[43] I. Naseem, R. Togneri, and M. Bennamoun, “Linear regression for face recognition,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2106–2112, 2010.  

[44] J.R. Quinlan, “Induction of decision trees,” Machine Learning vol. 1, 1986, pp. 81–106. 

[45] P.M. Domingos, and Pazzani, “Beyond independence: Conditions for the optimality of the simple 

Bayesian classifier,” In Proc. International Conference on Machine Learning (ICML), 1996, pp. 105–

112. 

[46] N. Friedman, D. Geiger, and M. Goldsszmidt, “Bayesian network classifiers,” Journal of Machine 

learning, vol. 29, pp. 131-163, 1997. 

http://www.vlfeat.org/


 

 

134 

 

 

[47] Z. Zhang, M. Lyons, M. Schuster, and S. Akamatsu, “Comparison between Geometry-Based and 

Gabor-Wavelets-Based Facial Expression Recognition Using Multi-Layer Perceptron,” in Proc. Third 

IEEE Conf. Face and Gesture Recognition, pp. 454-459, Apr. 1998. 

[48] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,” in: Proc. British. Mach. Vis. 

Conf. (BMVC), 2015, pp. 6.  

[49] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “SphereFace: Deep Hypersphere Embedding for 

Face Recognition,” in: Proc. IEEE Conf. Comput. Vis Pattern Recognit, 2017. 

[50] Y. Wen, K. Zhang, Z. Li, Y. Qiao, A discriminative feature learning approach for deep face 

recognition, in: European conference on 674 computer vision, 2016, pp. 499-515. 

[51] J. Hu, J. Lu, and Y-P. Tan, “Discriminative Deep Metric learning for Face verification in the wild,” 

in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014. 

[52] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deep Face: Closing the gap to human-level 

performance in face verification,” in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014. 

[53] Y. Sun, X. Wang, and X. Tang, “Hybrid deep learning for face verification,” In Proc. IEEE Conf. 

Comput. Vis. (ICCV), 2013. 

[54] Y. Sun, X. Wang, and X. Tang, “Deeply learned face representations are sparse, selective, and robust,” 

in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015. 

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual learning for Image Recognition,” in: Proc. IEEE 

Conf. Comput. Vis. Pattern Recognit., 2016. 

[56] A. Kortylewski, B. Egger, A. Schneider, T. Gerig, A. M-Forster, and T. Vetter, “Empirically analysing 

the effect of dataset biases on deep face recognition systems,” arXiv preprint arXiv: 1712.01619, 2017. 

[57] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” arXiv preprint arXiv: 

1411.7923, 2014. 

[58] I. K-Shlizerman, S.M. Seitz, D. Miller, and E. Brossard, “The MegaFace Benchmark: 1 Million Faces 

for Recognition at Scale,” in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016. 



 

 

135 

 

 

[59] M. Wang, and W. Deng, “Deep Face Recognition: A Survey,” arXiv: 1804.06655v4, Jun, 2018.  

[60] S. Baker, and T. Kanade, “Hallucinating faces,” in: Proc. IEEE Conf. Auto. Face Gest. Recognit, 2000, 

pp. 83-88.  

[61] S. Baker, and T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol. 24, no.24, no. 9, pp.1167-1183, 2002.  

[62] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse representation,” IEEE 

Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, 2010.  

[63] X. Wang, and X. Tang, “Hallucinating face by eigentransformation,” IEEE Trans. Sys. Man. Cyber, 

vol. 35, no. 3, pp. 425-434, 2005.  

[64] G. Qiu, “A progressively predictive image pyramid for efficient lossless coding,” IEEE Trans. Image 

Process., vol. 8, no. 1, pp. 109–115, 1999.  

[65] G. Qiu, “Interresolution look-up table for improved spatial magnification of image,” Journal of Visual 

Communication and Image Representation, vol. 11, no. 4, pp. 360–373, 2000.  

[66] Y. Hu, K.-M. Lam, G. Qiu, and T. Shen, “From local pixel structure to global image super-resolution: 

A new face hallucination framework,” IEEE Trans. Image Process., vol. 20, no. 2, pp.433–445, 2011.  

[67] C.-X. Ren, D.-Q. Dai, and H. Yan, “Coupled kernel embedding for low resolution face image 

recognition,” IEEE Trans. Image Process., vol. 21, no. 8, pp. 3770-3783, 2012.  

[68] P.H. Hennings-Yeomans, S. Baker, and B. V. K. V. Kumar, “Simultaneous super-resolution and 

feature extraction for recognition of low-resolution faces,” in: Proc. IEEE Conf. Comput. Vis. Pattern 

Recognit., 2008, pp. 1-8. 

[69] H. Huang, H. He, “Super-Resolution Method for Face Recognition using Nonlinear Mappings on 

Coherent Features,” IEEE Trans. Neur. Networks, vol. 22, no. 1, pp. 121-130, 2011.  

[70] M. Jian and K.–M. Lam, “Simultaneous hallucination and recognition of low-resolution faces based 

on singular value decomposition,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 11, pp. 

1761–1772, Nov. 2015. 

https://arxiv.org/abs/1804.06655v4


 

 

136 

 

 

[71] K.-H. Pong, and K.-M. Lam, “Multi-resolution feature fusion for face recognition,” Pattern Recognit, 

vol. 47, no. 2, pp. 556-567, 2014. 

[72] C. Zhou, Z. Zhang, D. Yi, Z. Lei, and S. Z. Li, “Low-resolution face recognition via simultaneous 

discriminant analysis,” in Proc. Int. Joint Conf. Biometrics, 2011, pp. 1–6. 

[73] S. Biswas, K. W. Bowyer, and P. J. Flynn, “Multidimensional scaling for matching low-resolution 

Face images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 10, pp. 2019-2030, 2012. 

[74] S. Siena, V.N. Bodetti, and B.V. Kumar, “Coupled marginal fisher analysis for low-resolution face 

recognition,” in: Proc. Eur. Conf. Comput. Vis., 2012, pp. 240-249. 

[75] J. Shi, and C. Qi, “From Local Geometry to Global Structure: Learning Latent Subspace for Low-

resolution Face Image Recognition,” IEEE Signal Process Lett, vol. 22, no. 5, pp. 554-558, 2015.  

[76] J. Zhang, Z. Guo, X. Li, and Y. Chen, “Large Margin Coupled Mapping for Low Resolution Face 

Recognition,” in: Proc. Pacific Rim International conference on Artificial Intelligence, 2016, pp. 661-

672.  

[77] Z. Wang, W. Yang, and X. Ben, “Low-resolution degradation face recognition over long distance 

based on CCA,” Neural Comput. Applicat, vol. 26, no. 7, pp. 1645-1652, 2015.  

[78] J. Jiang, R. Hu, Z. Wang, and Z. Cai, “CDMMA: Coupled discriminant multi-manifold analysis for 

matching low-resolution face images,” Signal Process., vol. 124, pp. 162-172, 2016.   

[79] Y. Chu, T. Ahmad, G. Bebis, and L. Zhao, “Low-resolution face recognition with single image per 

person,” Signal Process, vol. 141, pp.144-157, 2017.  

[80] X. Xing, and K. Wang, “Couple manifold discriminant analysis with bipartite graph embedding for 

low-resolution face recognition,” Signal Process, vol. 125, pp. 329-335, 2016. 

[81] F. Yang, W. Yang, R. Gao, and Q. Liao, “Discriminative multidimensional scaling for Low-resolution 

face recognition,” IEEE Signal Process Lett, vol. 25, no. 3, pp. 388-392, 2018. 



 

 

137 

 

 

[82] Y. Fu, and T. S. Huang, “Human age estimation with regression on discriminative aging manifold,” 

IEEE Trans. Multimedia, vol. 10, no. 4, pp. 578–584, Jun. 2008.  

[83] X. Geng, Z.-H. Zhou, and K. Smith-Mile, “Automatic age estimation based on facial aging patterns,” 

IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 12, pp. 2234–2240, 2007.  

[84] G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang, “Image-based human age estimation by manifold learning 

and locally adjusted robust regression,” IEEE Trans. Image Process., vol. 17, no. 7, pp. 1178–1188, 

Jul. 2008.  

[85] G. Guo, G. Mu, Y. Fu, and T. S. Huang, “Human age estimation using bio-inspired features,” in Proc. 

IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 112-119.  

[86] Y. H. Kwon and N. D. V. Lobo, “Age classification from facial images,” in Proc. IEEE Conf. Comput. 

Vis. Pattern Recognit, 1999, pp. 762–767.  

[87] A. Lanitis, C. Draganova, and C. Christodoulou, “Comparing different classifiers for automatic age 

estimation,” IEEE Trans. Syst., Man, Cybern. B, Cybern, vol. 34, no. 1, pp. 621–628, Feb. 2004.  

[88] N. Ramanathan and R. Chellappa, “Face verification across age progression,” IEEE Trans. Image 

Process., vol. 15, no. 11, pp. 3349–3361, Nov. 2006.  

[89] J.-X. Du, C.-M. Zhai, and Y.-Q. Ye, “Face aging simulation and recognition based on NMF algorithm 

with sparseness constraints,” Neurocomputing, vol. 116, pp. 250–259, Sep. 2013.  

[90] A. Lanitis, C. J. Taylor, and T. F. Cootes. Toward automatic simulation of aging effects on face 

images. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):442–455, 2002.  

[91]  U. Park, Y. Tong, and A. K. Jain, “Age-invariant face recognition,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 32, no. 5, pp. 947–954, May 2010.  

[92] J. Suo, X. Chen, S. Shan, and W. Gao, “Learning long term face aging patterns from partially dense 

aging databases,” in Proc. 12th ICCV, 2009, pp. 622–629.  



 

 

138 

 

 

[93] J. Suo, S.-C. Zhu, S. Shan, and X. Chen, “A compositional and dynamic model for face aging,” IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3, pp. 385–401, Mar. 2010.  

[94]  N. Tsumura et al., “Image-based skin color and texture analysis/ synthesis by extracting hemoglobin 

and melanin information in the skin,” ACM Trans. Graph., vol. 22, no. 3, pp. 770–779, 2003.  

[95]  N. Ramanathan and R. Chellappa, “Modeling age progression in young faces,” in Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit., 2006, pp. 387-394.  

[96]  J. Wang, Y. Shang, G. Su, and X. Lin, “Age simulation for face recognition,” in Proc. 18th ICPR, 

vol. 3. 2006, pp. 913–916.  

[97] H. Ling, S. Soatto, N. Ramanathan, and D. W. Jacobs, “Face verification across age progression using 

discriminative methods,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 1, pp. 82–91, Mar. 2010.  

[98] G. Guo, G.Mu, and K. Ricanek, “Cross-age face recognition on a very large database: The 

performance versus age intervals and improvement using soft biometric traits,” in Proc Int. Conf. 

Pattern Recognit., 2010, pp. 3392–3395. 

[99] B. Klare and A. K. Jain, “Face recognition across time lapse: On learning feature subspaces,” in Proc. 

IEEE Conf. Joint Biometrics., Washington, DC, USA, Oct. 2011, pp. 1–8. 

[100] C. Otto, H. Han, and A. K. Jain, “How does aging affect facial components?” in Proc. ECCV, Florence, 

Italy, Oct. 2012, pp. 189–198. 

[101] D. Gong, Z. Li, and D. Tao, “A Maximum Entropy Feature Descriptor for age-invariant face 

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 5289-5297.  

[102] D. Gong, Z. Li, D. Lin, J. Liu, and X. Tang, “Hidden factor analysis for age invariant face recognition,” 

in Proc. ICCV, 2013, pp. 2872–2879. 

[103] B.-C. Chen, C.-S. Chen, and W. H. Hsu, “Cross-age reference coding for age-invariant face 

recognition and retrieval,” in Proc. ECCV, 2014, pp. 768–783.  



 

 

139 

 

 

[104] L. Du and H. Ling, “Cross-age face verification by coordinating with cross-face age verification,” in 

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 2329-2338.  

[105] Z. Li, D. Gong, X. Li, and D. Tao, “Aging face recognition: A Hierarchical learning model based on 

local patterns selection, IEEE Trans. Image Process., vol. 25, no. 5, pp. 2146-2154, May 2016.  

[106] Y. Wen, Z. Li, and Y. Qiao, “Latent Factor Guided Convolutional Neural Networks for Age-Invariant 

Face Recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4893-4901.  

[107] T. Zheng, W. Deng, and J. Hu, “Age Estimation Guided Convolutional Neural Network for Age-

Invariant Face Recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2017, 

pp. 503-511. 

[108] H. Li, H. Hu, and C. Yip, “Age-Related Factor Guided Joint Task Modeling Convolutional Neural 

Network for Cross-Age Face Recognition,” IEEE Trans. Inf. Forensics Security, vol.13, no. 9, Sep. 

2018.  

[109] C. Xu, Q. Liu, and M. Ye, “Age invariant face recognition and retrieval by coupled auto-encoder 

networks,” Neurocomputing, vol. 222, pp. 62-71, 2017. 

[110] Y. Li, G. Wang, L. Nie, Q. Wang, and W. Tan, “Distance metric optimization driven convolutional 

neural network for age invariant face recognition,” Pattern Recognit., vol. 75, pp. 51-62, 2018.  

[111] Y. Wang, D. Gong, Z. Zhou, X. Ji, H. Wang, Z. Li, W. Liu, and T. Zhang, “Orthogonal Deep Features 

Decomposition for Age-invariant Face Recognition,” arXiv:1810.07599, 2018. 

[112] G. Csurka, C. Bray, C. Dance, and L. Fan, “Visual categorization with bags of key points,” In 

Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22, 2004. 

[113] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features: Spatial pyramid matching for 

recognizing Natural scene categories,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2006.  

[114] J. Sivic, and A. Zisserman, Video Google: A text retrieval approach to object matching in videos,” In 

Proc. IEEE Conf. Comput. Vis. (ICCV), 2003. 



 

 

140 

 

 

[115] J.A. Hartigan, and M.A. Wong, “Algorithm AS136: A k-means Clustering Algorithm,” Applied 

Statistics, vol. 28, pp. 100-108, 1979. 

[116] S.P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Infor. Theory, vol. 28, pp. 129-137, 

1982.  

[117] C. Rasmussen, “The Infinite Gaussian Mixture Model,” Advances in Neural Information Processing 

Systems, vol. 12, pp. 554-560, 2000.  

[118] A. Bosch, A. Zisserman, and X. Munoz, “Scene classification using a hybrid generative/ 

discriminative approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 4, pp. 712-727, April 

2008. 

[119] L. Yang, R. Jin, R. Sukthankar, and F. Jurie, “Unifying discriminative visual codebook generation 

with classifier training for object category recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern 

Recognit., 2008, pp. 1-8.  

[120] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for 

image classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 1794-1801. 

[121] K. Yu, T. Zhang, and Y. Gong, “Nonlinear learning using local coordinate coding,” in Proc.  Neural 

Information Processing Systems (NIPS), 2009, pp. 2223-2231. 

[122] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear coding for image 

classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2010, pp. 3360-3367. 

[123] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel for large-scale image 

classification,” In Proc. Eur. Conf. Comput. Vis. (ECCV), 2010. 

[124] F. Perronnin, Y. Liu, J. Sanchez, and H. Poirier, “Largescale image retrieval with compressed Fisher 

vectors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2010.  

[125] R. G. Cinbis, J. Verbeek, and C. Schmid, “Image categorization using Fisher kernels of non-iid image 

models,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012.  



 

 

141 

 

 

[126] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: an astounding 

baseline for recognition,” 2014, http://arxiv.org/abs/1403.6382. 

[127] D. Chen, X. Cao, F. Wen, and J. Sun, “Blessing of dimensionality: High-dimensional feature and its 

efficient compression for face verification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 

2013, pp. 3025-3032. 

[128] S. Yan, X. Xu, D. Xu, S. Lin, and X. Li, “Beyond spatial pyramids: A new feature extraction 

framework with dense spatial sampling for image classification,” in Proc. Eur. Conf. Comp. Vis., 2012, 

pp. 473–487. 

[129] L. Bo, X. Ren, and D. Fox, “Hierarchical matching pursuit for image classification: Architecture and 

fast algorithms,” in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 2115–2123. 

[130] L. Liu, C. Shen, L. Wang, A. van den Hengel, and C. Wang, “Encoding high dimensional local features 

by sparse coding based Fisher vectors,” in Proc. Advances in Neur. Infor. Process Syst., 2014. 

[131] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma, “Towards a practical face 

recognition system: Robust Alignment and Illumination by Sparse Representation,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 34, no. 2, pp. 372-386, Feb. 2012.  

[132] L. Zhang, M. Yang, and X. Feng, “Sparse representation or Collaborative representation: Which helps 

Face Recognition,” in: Proc. IEEE Conf. Comput. Vis. (ICCV), 2011.  

[133] M. Yang and L. Zhang, “Gabor feature based sparse representation for face recognition with Gabor 

occlusion dictionary,” in Proc. Eur. Conf. Comp. Vis., 2010. 

[134] M. Yang, L. Zhang, J. Yang, and D. Zhang, “Robust sparse coding for face recognition,” in Proc. 

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 625–632.  

[135] F. De la Torre and M. Black, “A framework for robust subspace learning,” Int. J. Comput. Vis., vol. 

54, no. 1, pp. 117–142, 2003. 

http://arxiv.org/abs/1403.6382


 

 

142 

 

 

[136] Q. Ke and T. Kanade, “Robust L1 norm factorization in the presence of outliers and missing data by 

alternative convex programming,” Ph.D. dissertation, Dept. Comput. Sci., Carnegie Mellon Univ., 

Pittsburgh, PA, USA, 2005. 

[137] E. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” J. ACM, vol. 58, no. 

3, article no. 11, 2011. 

[138] Z. Zhou, A. Wagner, H. Mobahi, J. Wright, and Y. Ma, “Face recognition with contiguous occlusion 

using Markov random fields,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Oct. 2009, pp. 1050–1057. 

[139] C.-F. Chen, C.-P. Wei, and Y.-C. F. Wang, “Low-rank matrix recovery with structural incoherence 

for robust face recognition,” in Proc. IEEE Conf., Comput. Vis. Pattern Recognit., CVPR, Jun. 2012, 

pp. 2618–2625. 

[140] C.-P. Wei, C.-F. Chen, and Y.-C. F. Wang, “Robust Face Recognition with structurally incoherent 

low-rank matrix decomposition,” IEEE Trans. Image Process, vol. 23, no. 8, pp. 3294-3307, Aug. 

2014.  

[141] X-Y. Jing, F. Wu, X. Zhu, X. Dong, F. Ma, and Z. Li, “Multi-spectral low-rank structured dictionary 

learning for face recognition,” Pattern Recognition, vol. 59, pp. 14-25, 2016. 

[142] F. Wu, X-Y. Jing, X. You, D. Yue, R. Hu, and J-Y. Yang, “Multi-view low-rank dictionary learning 

for image classification,” Pattern Recognition, vol. 50, pp. 143-154, Feb. 2016.  

[143] F. J. Xu, K. Luu, M. Savvides, T.D. Bui, and C.Y. Suen, Investigating Age invariant face recognition 

based on Periocular Biometrics, in Proc. Int. Joint Conf. Biometrics, 2011, pp. 1–7. 

[144] Facial Image Processing and Analysis (FIPA). FG-NET Aging Database. [Online]. Available: 

http://fipa.cs.kit.edu/433.php#Downloads. 

[145] J. Merkow, B. Jou, M. Savvides, “An exploration of gender identification using only the periocular 

region,” in  Proc. Int. Conf. Biometrics of the Theory Applications and Systems (BTAS), 2010, pp. 1–

5 . 

http://fipa.cs.kit.edu/433.php#Downloads


 

 

143 

 

 

[146] Y. Dong, D. Woodard, “Eyebrow shape-based features for biometric recognition and gender 

classification: a feasibility study,” in Proc. Int. Joint Conf. Biometrics, 2011, pp. 1–8. 

[147] F. Smeraldi, and J. Bigun, “Retinal vision applied to facial features detection and face authentication,” 

Pattern Recognit. Lett. , vol. 23, pp. 463-475, 2002.  

[148] P.E. Miller, J.R. Lyle, S.J. Pundlik, and D.L. Woodard , “Performance evaluation of local appearance 

based periocular recognition,” in Proc. Int. Conf. Biometrics of the Theory Applications and Systems 

(BTAS), 2010. 

[149] U. Park, R.R. Jillela, A. Ross, and A.K. Jain, “Periocular biometrics in the visible spectrum,” IEEE 

Trans. Inf. Forensics Security, vol. 6, no.1, pp. 96–106, Mar. 2011. 

[150] R. Jillela, and A. Ross, “Mitigating effects of plastic surgery: Fusing face and ocular bio- metrics,” in 

Proc. Int. Conf. Biometrics of the Theory Applications and Systems (BTAS), 2012, pp. 402–411. 

[151] G. Mahalingam , K. Ricanek , and A. Albert , “Investigating the periocular-based face recognition 

across gender transformation,” IEEE Trans. Inf. Forensics Security, vol. 9, pp.2180–2192, 2014.  

[152] S. Zhang, and X. Zhao, “Locality-sensitive kernel sparse representation classification for face 

recognition,” Journal of Visual Communication and Image Representation, vol. 25, pp.1878-1885, 

2014. 

[153] X. Hong, G. Zhao, M. Pietikainen, and X. Chen, “Combining LBP Difference and Feature correlation 

for texture description,” IEEE Trans. Image Process., vol. 23, no. 6, 2014.  

[154] X. He, D. Cai, S. Yan, and H. J. Zhang, “Neighbourhood preserving embedding,” in: Proc. IEEE Conf. 

Comput. Vis. (ICCV), 2005, pp. 1208-1213. 

[155] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture 

classification with local binary patterns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 

971–987, 2002.  

[156] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary pattern operator for texture 

classification,” IEEE Trans. Image Process., vol. 19, no. 6, pp. 1657–1663, 2010. 



 

 

144 

 

 

[157] Z. Guo, L. Zhang, and D. Zhang, “Rotation invariant texture classification using LBP variance (LBPV) 

with global matching,” Pattern Recognit., vol. 43, no. 3, pp. 706–719, 2010. 

[158] G. Zhao, T. Ahonen, J. Matas, and M. Pietikainen, “Rotation-invariant image and video description 

with local binary pattern features,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1465-1477, 2012.  

[159] H. Karcher, “Riemannian center of mass and mollifier smoothing,” Communications on Pure and 

Applied Mathematics, vol. 30, no. 5, pp. 509-541, 1977. 

[160] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of 

Computer Vision, vol. 60, no. 2, pp. 91-110, 2004. 

[161] H. Bay, A. Ess, T. Tuytclaars, and L.-V. Gool, “Speeded-Up Robust Features,” Computer vision and 

image understanding, vol. 110, pp. 346-359, 2008. 

[162] N. Dalal, and B. Triggs, “Histograms of Oriented Gradients for human detection,” in Proc. IEEE 

Conf., Comput. Vis. Pattern Recognit., CVPR, 2005. 

[163] T.-S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 18, no. 10, pp. 959-971, 1996.  

[164] X. Tan, and B. Triggs, “Enhanced local texture feature sets for face recognition under different lighting 

conditions, IEEE Trans. Image Process., vol. 19, no. 6, pp. 1635-1650, 2010.  

[165] K. Okajima, “Two-dimensional Gabor-type receptive field as derived by mutual information 

maximization,” Neural Networks, vol. 11, no. 3, pp. 441-447, 1998.   

[166] L. Zhang, and C. Ma, Low-Rank, “Sparse matrix decomposition and group sparse coding for image 

classification,” in Proc. IEEE Conf. Image. Process (ICIP), 2012, pp. 669-672. 

[167] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange multiplier method for exact recovery 

of corrupted low-rank matrices,” UIUC 720 Technical Report UILU-ENG-09-2215, Tech. Rep., 2009. 

[168] V.D. Maaten, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2431-2456, 2008. 

[169] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,” Image Vis. Comput., vol. 28, 

no. 5, pp. 807-813, 2010.  



 

 

145 

 

 

[170] P. J. Philips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET Evaluation Methodology for Face-

Recognition Algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1090-1104, 

2000.  

[171] R. Chellappa, J. Ni, V-M. Patel, “Remote identification of faces: Problems, prospects and progress, 

Pattern. Rec. Lett., vol. 33, no. 14, pp. 1849-1859, 2012.  

[172] M. Chevalier, N. Thome, M. Cord, J. Fournier, G. Henaff, and E. Dusch, “LR-CNN for fine-grained 

classification with varying resolution,”  in Proc. IEEE Conf. Image. Process (ICIP), 2015, pp. 3101-

3105. 

[173] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained videos with matched background 

similarity,” in Proc. IEEE Conf. Comput. Vision Pattern Recognition, 2011, pp. 529–534. 

[174] J. Kannala, and E. Rahtu, “BSIF: binarized statistical image features,” in Proc. IEEE Conf. Pattern. 

Recog (ICPR), 2012. 

[175] J. Chen, V.M. Patel, L. Liu, V. Kellokumpu, G. Zhao, M. Pietikainen, and R. Chellappa, “Robust local 

features for remote face recognition,” Image and Vision Computing, vol. 64, pp. 34-46, 2017. 

[176] G.E. Hinton, and R.R. Salukhutdinov, “Reducing the dimensionality of data with neural networks,” 

Science, vol. 313, no. 5786, pp. 504-507, 2006.  

[177] M.S. Shakeel, and K.-M. Lam, “Recognition of Low Resolution Face Images using Sparse Coding of 

Local Features,” in: Proceedings of Asia-Pacific Signal and Information Processing Association 

Annual Summit and Conference (APSIPA), 2016, pp. 1-5. 

[178] M. Bereta, P. Karczmarek, W. Pedrycz, and M. Reformat, “Local descriptors in application to the 

aging problem in face recognition,” Pattern Recognition, vol. 46, no. 10, pp. 2634-2646, 2013.  

[179] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional 

Neural Networks,” in Proc.  Neural Information Processing Systems (NIPS), 2012, pp. 1106-1114. 



 

 

146 

 

 

[180] A. Elgammal, R. Duraiswami, and L. Davis, “Efficient kernel density estimation using the fast gauss 

transform with applications to color modeling and tracking,” IEEE Trans. Pattern Anal. Mach. Intell., 

vol. 25, no. 11, pp. 1499–1504, 2003.  

[181] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai, “Graph regularized sparse coding 

for image representation,” IEEE Trans. Image Process., vol. 20, no. 5, pp. 1327-1336, 2011. 

[182] K. Ricanek, Jr., and T. Tesafaye, “MORPH: A longitudinal image database of normal adult age-

progression,” in Proc. 7th FGR, 2006, pp. 341–345. 

[183] S. Bianco, “Large Age-gap Face verification by Feature Injection in Deep Networks,” Pattern 

Recognition letters, vol. 90, pp. 36-42, 2017. 

[184] H.V. Nguyen, and L. Bai, “Cosine similarity metric learning for face verification,” in Proc. Comput. 

Vis. (ACCV), Springer, 2010, pp. 709-720. 

[185] L. Wolf, T. Hassner, and Y. Taigman, “The one-shot similarity kernel,” in Proc. 12th ICCV, 2009, pp. 

897–902. 

[186] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revisited: A joint formulation,” in 

Proc. ECCV, 2012, pp. 566–579. 

[187] Q. Cao, Y. Ying, and P. Li, “Similarity metric learning for face recognition,” in Proc. ICCV, 2013, 

pp. 2408–2415. 

[188] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Comm. ACM, 

vol.18, pp. 509-517, 1975. 

[189] J. Pang, L. Qin, C. Zhang, W. Zhang, Q. Huang, and B. Yin, “Local Laplacian coding from Theoretical 

Analysis of Local Coding Schemes for Locally Linear Classification,” IEEE Trans. Cybern., vol. 45, 

no. 12, pp. 2937-2947, 2015. 

[190] S. Dodge, and L. Karam, “Understanding How Image Quality Affects Deep Neural Networks,” in 

Proc. International Conf. on Quality of Multimedia Experience, 2016, pp. 1-6.  



 

 

147 

 

 

[191] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image 

recognition,” in Proc. International conference on Learning Representation (ICLR), 2015.  

[192] E. Candes, and B. Recht, “Exact low-rank matrix completion via convex optimization,” in: Proc. 

Allerton, 2008.  

[193] A. Ganesh, Z. Lin, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast algorithms for recovering a corrupted 

low-rank matrix, in Proc. IEEE Int. Workshops on Computational Advances in Multi-sensor Adaptive 

Processing (CAMSAP), 2009, pp. 213-216.  

[194] V. Chandrasekaran, S. Sanghavi, P.A. Parillo, and A.S. Willsky, “Rank-sparsity incoherence for 

Matrix decomposition,” SIAM J. Optim, vol. 21, no. 2, pp. 572-596, 2011.  

[195] X. Jiang, and J. Lai, “Sparse and dense hybrid representation via dictionary decomposition for face 

recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 5, pp. 1067-1079, 2015. 

[196] V.M. Patel, Y-C. Chen, R. Chellappa, and P. J. Phillips, “Dictionaries for image and video-based face 

recognition,” J. Opt. Soc. Am, vol. 31, no. 5, pp. 1090-1103, May 2014.  

[197] X. Han, Y. Zhong, L. Cao, and L. Zhang, “Pre-trained Alex Net Architecture with pyramid pooling 

and supervision for high spatial resolution remote sensing image scene classification,” Remote sensing, 

vol. 9, no. 8, pp. 848.  

[198] K. Tang, X. Hou, Z. Shao, and L. Ma, “Deep Feature Selection and Projection for Cross-Age Face 

Retrieval,” in Proc. Int. Cong. Image. Sig. Proc, Bio Medical Eng. Inform. 2017.  

 

 

 

 


