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ABSTRACT 

 

A network is made up of a set of objects and their links. It can be represented as a graph, 

with vertices representing objects and edges representing links between objects. An 

algorithm capable of learning useful representation in the network can have many 

applications in many disciplines. For example, such a technique can be used to learn 

node representation in drug-target interaction networks for link prediction or to extract 

a discriminative graph representation for social network analysis. An appropriate 

representation of a network can make it easier to extract valuable patterns when 

performing such tasks as link classification or node clustering in a network. Suppose 

we want to learn a representation that makes density estimation easier. The distribution 

of more independence is easier to model. The most common methods are to use feature 

selection in conjunction with machine learning. However, these approaches these 

methods have the disadvantage that they do not consider all available heterogeneous 

information. For example, those approaches to learning representations in 

heterogeneous networks are expected to be optimized against high dimensionality and 

multimodality. Hence, there is a need for the development of algorithms that can learn 

representations retaining heterogeneous information carried by the network. Except for 

the integrity of the heterogeneous information, patterns are required to have specific 

explainable property in some studies. Prevalent approaches to learning network 

representations tend to pay more attention to network topology. So, we also need the 

representation learning algorithms that maintain interpretability on content features 

characterizing the nodes. In this thesis, we attempt to address this challenging issue by 

proposing effective approaches that are essential to a reliable framework for learning 

network representations for pattern discovery. 

To transform data into a learnable form, we propose a multi-scale method to transform 

the raw data into the multi-scale representation, this preliminary step is to fully 

transform the data information. Then, we propose multi-scale feature deep 

representations inferring interactions (MFDR) to classify links in a network. MFDR use 

Auto-encoder as building blocks of deep networks to map high-dimensional features 
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into low-dimensional space. As for learning representations from network, we 

concentrate on two categories that are integrated representation learning and 

interpretable representation learning. For integrated representation learning, we propose 

deep multiple networks fusion (DMNF), which is a novel graph clustering approach by 

learning latent representation from multi-networks. To perform the task, DMNF first 

constructs a network representing the degree of interrelationship between pairwise 

vertices by utilizing a fusion method. Given the fused network data, DMNF attempts to 

learn the latent network representation by making use of a deep neural network model. 

We also propose a new algorithm to predict unknown links from the fused 

representation through deep network fusion (DFNet). Given heterogeneous networks, 

DFNet implements a network completion method improves network confidence. For 

interpretable representation learning, we present GraphSE to learning significant 

subgraphs in graphs so that these subgraphs can be used for the link prediction task.. In 

particular application, given the attributed graphs, we can find a set of subgraphs that 

can be explained and can be used to predict whether a node can be linked to a specific 

target. In the clustering tasks mentioned above, few of latent network representation can 

be summarized. To address this challenge, we propose a novel latent representation 

model for community identification and summarization, which is named as LFCIS. To 

perform the task, LFCIS formulates an objective function that evaluating the overall 

clustering quality by taking into the consideration both edge topology and node features 

in the network. At last, we try to take a small step forward to solve the unbalanced link 

prediction problem. We adopt a support vector data description to learn the one-class 

data representation for summarizing small samples. 

The approaches to data transformation, and the models for learning network 

representations presented in this thesis have been used in various real applications. In 

particular, we have applied them to drug-target interaction prediction, drug and side-

effect (SE) link prediction and social network clustering. The experimental results show 

that the learned representations can improve the performance of traditional algorithms 

and outperform state-of-the-art approaches.
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1. INTRODUCTION 
 
Machine learning has proven to be a useful tool for resolving artificial intelligence and 

data mining issues over the years. When we use machine learning, our goal is to develop 

algorithms that can learn rules from raw data and to make accurate predictions about 

input data through models. In the real world, machine learning has successfully solved 

many problems. For example, it has been used in computer vision recognition, natural 

language understanding, a recommendation system and other fields. There are a lot of 

differences in the application of these fields, but a common issue with machine learning, 

regardless of the area of application, is that its performance depends on the quality of 

data representation. That is to say, learning representation is a critical step in promoting 

classification, clustering, and application tasks [1-2]. With more and more large-scale 

data available, the key issue of various machine learning applications has gradually 

shifted from optimization prediction to optimization representation. To meet this 

challenge, researchers adopted data preprocessing, feature selection and data fusion 

methods when deploying algorithms, to provide the best data representation for machine 

learning models. The study of this issue has always been highly valued, but with the 

development of significant data technology, the more and more data is becoming more 

and more challenging. In particular, existing representation algorithms have long sought 

to be able to extract and organize information that's easy to distinguish from data. Two 

data characteristics mainly cause these challenges: the scale of the data is getting larger 

and the value representation is hiding deeper and deeper; more and more sources of data 

have become available, and the data representation has become increasingly diverse. 

How to transform raw data into a representation that machine learning tools can handle 

is the first step in representation learning. These raw data indicate that they are usually 

recorded manually, require a significant amount of expert resources input, and are not 

well extended to the relevant fields. Some classical algorithms are useful in some 

monotonous applications, but they may not be able to cope with specific tasks. For 

example, in many areas such as artificial intelligence, bioinformatics, and 

recommendation systems, classical models always ignore some interesting domain 

knowledge [3-5]. In other words, learning the patterns of data and discovering the 

knowledge of existing values from the data, to increase the cognitive ability of the model, 
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is a critical step in the deployment of the machine learning tool. Refer to real-world 

problems faced by the human, the limitations of machine learning is not set up their own 

cognitive systems from various prior knowledge, which makes progress in specific areas. 

A strong representation engineering has to be able to unlock the potential explanatory 

factors in the rough data. With this technology, machine learning can extend its 

applicability and usability. For example, in the process of automatic drug screening, such 

as the link between drug and protein prediction task, it is an essential requirement to 

represent the sequence data of proteins into data that can be directly calculated by 

machine learning tools. Again, the recommendation system needs first to explore 

representative data and use it to discover interesting communities. How to use multi-

domain data to construct user maps and find interesting clusters from them has attracted 

a lot of attention recently. In this thesis, we attempt to start with the  feature 

representation, then develop into an integrated representation learning method to 

combine heterogeneous data, finally try to explore the interpretative representation and 

propose interpretable graph representation solutions. 

 

The rest of this section is organized as the following. In Section 1.1, the challenges 

existing in the state-of-the-art learning representations that may motivate us to propose 

more effective computational methods are illustrated. In Section 1.2, what kinds of 

problems need to be solved in learning representations are introduced. In Section 1.3, 

the algorithms that may address the challenges are introduced. We introduced the 

application prospects of the representation learning, especially in network link prediction 

and node clustering. Section 1.4, we give the organization of the thesis. 

 

1.1. Motivation 

 

As mentioned previously, many real-world applications require the first to extract 

computable data representation from different data sources. Therefore, the method of 

transforming data from a specific domain into a computable representation has attracted 

full attention. There are many ways to solve this problem. For example, in the techniques 

of biological sequences representation, the graphical representation for DNA sequences 

and normalized feature vectors [6-7] can well transform the biological sequence data 
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into machine learning identifiable data. By feature representation, some algorithms may 

use attribute clustering and high order pattern combination to train the machine learning 

model. For example, attribute clustering [8] and high-order patterns discovering [9] can 

collect important new representation combinations based on the attributes related to 

features. Moreover, cognitive models should be able to extract comprehensive 

representations from heterogeneous data. For example, the potential broad 

representation [10-12] was found for the nodes in the graph and was used to detect the 

associations in the network, calculate the integrated representation of multiple modal 

data and predict the links. Although some existing algorithms have been used in specific 

applications, we find the following challenges in data representation, which may prompt 

us to develop more efficient algorithms. 

 

First of all, the raw data of many objects contain treasure, such as biological sequences 

containing multiple functional annotations and location information, and the chemical 

3D structure includes multi-dimensional information so that unwrought representations 

may lose some meaningful information. The new scheme should able to capture multi-

scale local information by varying the representations of the object. 

 

Second, though different techniques are used, most classical algorithms process raw data 

directly when performing prediction tasks, and these rough data may lead to the model 

being limited to the optimal solution of data in a particular region. For example, there 

are some algorithms predict drug and protein links in the network by using their 

expressions directly. This kind of solution may lead to losing a lot of meaningful 

representations in the training process. 

 

Third, the current method of data representation focuses on homogeneous relations, 

which is to measure the relationship between entities with one kind of information. 

However, each node in the network usually has some heterogeneous expressions. By 

using heterogeneous expression, we can find more patterns in the network. How to 

explore the comprehensive representation of heterogeneous information becomes the 

factor that attracts us to study representation learning. 
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Fourth, though some algorithms can use the heterogeneous information to represent the 

node in the network, their solutions may determine that certain types of patterns may not 

be truly revealed. For example, [13] could represent drugs and predict interactions by 

integrating various drug features. This is a straight set of heterogeneous properties rather 

than a set of isomorphic representation. Moreover, the strength of the relationship 

between two nodes can only be calculated by the direct collection of heterogeneous 

properties when constructing graph representation.  This way may also reduce the 

quality of the detected subgraph. 

 

Fifth, more and more attention has been paid to the interpretability of results as well as 

to the accuracy of real-world applications. In other words, existing algorithms are 

difficult to implement if the relationship between the results and the newly discovered 

data representation cannot be explained, for example, the relationship between a 

molecular graph and drug reaction. In network-based tasks, it may be preferable to 

transform the data into the graph representation and look for interpretable subgraphs. 

 

1.2. Problem statement of learning data representation 

 

How to transform the raw data into a more suitable representation is the premise of 

machine learning modeling. A sophisticated representation learning framework consists 

of multiple parts that can solve different problems and combinations of components that 

can cover more complex issues. In such ways, we can find more patterns in the network 

from learned representations and further refine the link prediction and node clustering 

models. We break learning representation down into many different problems and give 

solutions. The basic problem is to learn feature representation first, which is defined as 

data forms that machine learning tools can read directly. Based on the need for a deeper 

understanding of the feature representation, the deep representation is a new expression 

with higher intrinsic relation to original feature representation after learning from deep 

neural network. The feature representation obtained by a single standard tends to ignore 

the information in other states, but multiple networks are established to identify the fused 

network that can be used as a comprehensive view.  It should be pointed out that general 

deep learning cannot retain the interpretability of the patterns found, so many scenarios 
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cannot use this algorithm. In this case, we will use high-order patterns and graph 

representation to try to solve the problem of interpretability. All the methods proposed 

in this thesis are intended to use different algorithms to optimize the data in a more 

reasonable representation. 

 

To start with the illustration of the proposed method, we first introduce the following 

problems that will be tackled in this thesis:  

Feature Representation: Let S be the set of samples containing |S| samples and each 

sample can be made up of |F| different representation. That is to say, for each sample, its 

feature representation can be denoted as si = {fri1, fri2, fri3… fri|F|}. 

Network Representation: Let ܩ ൌ ሼܸ, ሽܧ  represent a network, where 	ܸ	 ൌ

	ሼݑଵ, ,ଶݑ … ,  vertices representing all the nodes in the network, and the	is a set of ݊	௡ሽݑ

	ܧ ൌ ൛݁௜௝	ൟ	is the edge set containing the edges between pairwise vertices, and their 

values represent how similar these vertices are. To achieve a similarity matrix of modes, 

we assess nodes similarity by use of similarity calculation method based on the feature 

representation. That is to say, edge weights of the network are constructed by a ݊ ൈ ݊ 

similarity matrix L and ܮሺ݅, ݆ሻ representing the similarity between nodes. 

Fused Network Representation: 

Traditional approaches do not allow multiple networks to be considered although the 

rapid development of techniques results in a growing diversity of network data. The 

multiple domain representations of the targets in the networks are usually ignored. Given 

m kinds of feature representations, we can construct m graphsሼܩଵ, ,ଶܩ … ,  ௠ሽ , the fusedܩ

graph representation can be obtained by a network-based fusion scheme. 

To interpret representation, we need to tackle the following problem that has not been 

addressed previously: 

Explainable Representation: To obtain an interpretable representation of the entities, we 

should identify the relationship between each entity and each desirable representation. It 

allows highly related representations to each entity to be discovered and these 

representations can be seen as the interpretable attributes used to characterize each label 

in each sample of the entity. 
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1.3. Contributions 

 

Given the challenges also the motivations mentioned, we propose to perform the task of 

learning representations using a series of solutions. In algorithm development, feature 

representation is one of the most critical components that significantly affect the 

performance of the computational model. To be able to use machine learning methods 

to predict links in raw format data, one of the most important challenges is how to 

adequately represent a sequential data by a fixed length feature vector in which the 

important information content of samples is fully encoded. A novel Multi-scale Local 

Descriptor (MLD) feature representation scheme is proposed to extract features from 

raw data. In the real-world applications, this scheme can capture multi-scale local 

information by varying the length of protein-sequence segments. Based on the MLD, an 

ensemble learning method, the Random Forest (RF) method, is used as a classifier. The 

MLD feature representation scheme facilitates the mining of link network from multi-

scale continuous amino acid segments, making it easier to capture multiple overlapping 

continuous binding patterns within a protein sequence. 

 

Then, we propose MFDR, which is a promising algorithm for predicting link in the 

network. MFDR use Auto encoder as building blocks of deep networks to reconstruct 

two kinds of feature representations to low-dimensional space. In a real-world 

application, we adopt large-scale drug chemical structures and target protein sequences 

to machine learning model predict if certain human protein link to a specific compound. 

Our approach is the first one that applies Stacked Auto encoder to represent large-scale 

drug-target interactive features for prediction. 

 

And, we propose DMNF, which is a novel deep-model-based approach to learn latent 

structural representation from multi-domain data. DMNF can discover an aggregated 

deep representation, by taking into consideration the multiple networks, which represent 

heterogeneous information carried by the network data. To perform the task, DMNF first 

constructs a network representing the total degree of interrelationship between nodes. 

Here, we use a fusion method to compute such degree by taking into consideration 
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various information embedded in the network data, e.g., node connection, and different 

kinds of properties. Given the fused network data, DMNF attempts to learn the latent 

network representation making use of a deep neural network model. Such learned 

representation can reveal the node cluster, e.g., social communities in the social network. 

 

We also propose DFNet, which is an effective algorithm to introduce network fusion and 

matrix decomposition to identify the links in the network. Given complex heterogeneous 

networks, DFNet implements a network completion approach to network confidence 

increasing. Matrix factorization is used to complement similar networks and the 

integrated representation of multiple such networks is learned. This is a new model of a 

comprehensive view of learning that involves multiple networks, and most existing 

methods rely on one. The proposed model captures deep representations of a fused 

network that is able to generate deep relations contain all related domain information.  

 

Also, we developed a GraphSE algorithm for interpretable representations discovering. 

Given a raw dataset, the GraphSE algorithm can learn interesting patterns among multi-

labels, among features, and between multiple features and the labels. GraphSE performs 

its tasks by first computing an association measure to determine the significance of co-

occurrence of each data and each specific label. Based on it, an attributed graph can be 

constructed for each task by defining a measure of attribute similarity based on a low-

rank approximation scheme. Given the attributed graphs, we can discover in them a set 

of subgraphs that can be explainable and can be used to predict if a drug may lead to a 

certain SE using a Bayesian approach. Extensive experiments using real-world drug side-

effect reports show that GraphSE can be potentially very useful. In the node clustering 

task, few of above latent network representation can be used to summarize the closely 

related nodes. To address this challenge, we propose a novel latent representation model 

for community identification and summarization, which is named as LFCIS. To perform 

the task, LFCIS firstly formulates an objective function that evaluating the overall 

clustering quality by taking into consideration both edge topology and node features in 

the network. In the objective function, LFCIS also adopts an effective component that 

ensures those vertices sharing with both similar local structures and features to be located 
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in the same clusters. 

 

Finally, scalable feature representation gives us the opportunity to express data more 

fully, and sufficient information also gives us the opportunity to predict links in 

unbalanced network data, using support vector data descriptions. Known links usually 

make up a small percentage of the population, and in many fields, especially in 

bioinformatics, negative samples carry a large number of potential positive samples. 

Existing approaches can be further improved to better prediction. To this end, we propose 

a new method to transform raw data into multi-scale representation and build a 

hyperplane model based on the known link sample. One primary task of our method is 

to discover association patterns between interacting drugs and proteins from the 

chemical structure and the protein sequence. 

 

1.4. Thesis organization 

 

To illustrate how we address the challenges mentioned, we organize the rest of the thesis as the 

following. 

 

In Section 2, we present an overview of the previous works that are related to representation 

learning. These related works are categorized based on the link classification and node clustering 

in the networks. 

 

In Section 3, how to transform original sequence information into multi-scale representation is 

introduced.  This step can sufficiently transform sequence data, extract useful information, and 

provide sufficient computable representations for machine learning models. 

 

In Section 4, how stacked auto-encoder transfers feature representations in the deep 

representations as a constrained optimization problem and how to solve the link classification and 

node clustering problem by using useful algorithms are presented. We propose DFNet to 

implements a network completion approach for drug-target link prediction. DMNF also be 

introduced to integrate multiple networks. It’s network fusion algorithm with deep representation 

technique which we applied in the social network clustering.  Besides, the experiments that may 
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test the efficiency and effectiveness of proposed solutions and other baselines are presented.  

 

In Section 5, we present the background under which we propose the algorithm GraphSE at first. 

Then, how they formulate the discovering of interpretable representations as a pattern mining 

problem, and the experiments which may test the efficiency and effectiveness of proposed 

algorithms and the compared baselines are introduced. Last, we present the algorithm LFCIS, 

which is an algorithm for identifying interesting sub-graphs making use of local information on 

topology and associated attribute values. Our approach may be sufficient for discovering 

communities in the network, and it’s able to identify communities and summarize their features 

simultaneously. The details of the proposed algorithm and how to test the effectiveness of the 

proposed algorithm and other baselines, using the experiments related to the real application, i.e., 

social network community identification and summarization, are presented. 

 

In Section 6, we also solve the data imbalance problem in the link prediction task. We present the 

background under which we propose the ODT to learn the one-class data representation at first. 

Then, we try to take a support vector data description with mutual information to discover the 

one-class data representation for summarizing small samples. Then we can take link prediction 

by modeling the one-class data representation. The details of the proposed algorithm and how to 

test the effectiveness of the proposed algorithm and other baselines, using the experiments related 

to the real application, i.e., drug and protein link prediction in a biological network, are presented. 

 

At last, in Section 7, we summarize the significances of the thesis and propose future works. 
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2. OVERVIEW OF LITERATURE 
 

Poor data quality has long been regarded as one fundamental threat to compromise the 

performance of standard classifiers, which would also lead to performance degradation 

for most graph clustering approaches. To learn the data representations, several 

algorithms have been proposed. Although there are many existing algorithms, these 

algorithms have different emphasis on link classification and node clustering 

respectively. So, the techniques used, and the scenarios used are different. In this section, 

the state-of-the-art related to link classification and node clustering are introduced 

respectively. 

 
2.1 Traditional feature learning algorithms 

 
The application of representation learning to reconstruct features is a critical step in 

optimizing prediction model. For machine learning models, the first step is usually to 

learn the transformation of data so that useful information can be extracted more easily 

when building learning functions. Feature selection is a straightforward way for handling 

high-dimensional data by removing partial data. Most existing feature selection methods 

can select feature in a pre-processing phase to convert original data into a lower-

dimensional form. Then they convey calculable data scale to machine learning models. 

The focus of feature selection for machine learning is to select the significant subset of 

variables from the ultrahigh dimensional feature input which can efficiently describe the 

input data while reducing effects from noise, redundant or irrelevant variables. Recent 

years have witnessed some extend feature selection methods using optimum structure, 

sampling or geometric model to solve substantial high-dimensional challenges [14-15]. 

Take PCA (Principal Component Analysis) as an example, it is a classical linear 

algorithm for dimensionality reduction, which produces new attributes as linear 

combinations of the original variables. As a new component, there is usually keep 

orthogonal to each other and extract the largest variation. Some PCA algorithms released 

to address data scale concerns and be computed very efficiently using randomized 

algorithms to randomly projects the original large matrix down to lower dimensions [25]. 

Further, such problems will have chance result easily and get arbitrarily close to the 
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optimal solution by using approximation algorithms. For some detail applications, the 

approximation will not work at all for precise target [16]. Approximation effectively 

plays dimensionality reduction like [179] adapted an approximate linear programming 

approach for finding L1 regularization. Group incremental approach to updating 

approximations under rough set also find new feature subset fast [180]. Another 

alternative way of handling high-dimensional biological data is sparse representation. 

The fundamental idea is to transform redundant data to a new less representation which 

obtained representation is the simplest possible [181]. Data can be approximated by a 

sparse linear combination of basis vectors [1]. Such kind of approaches has been widely 

used in the field of link classification and node clustering. Almost all tasks of sweep 

away large-scale redundant or irrelevant biomedical features can rely on variant feature 

selection [182-183]. 

 

2.2 Learning deep representations for link prediction 

 

Learning representations for link prediction has been a longstanding open problem in 

classification. There are a lot of algorithms that can learn the representations of the data 

besides the shallow models mentioned above. One of the most common scenarios for 

link prediction is biochemical interaction analysis. The link prediction algorithm can be 

used in applications including drug-target interaction prediction, protein-protein 

interaction prediction, and drug-drug interaction prediction. Previously, the leading 

research area in link prediction is similarity-based approaches that use similarities to 

represent original features. Such similarity-based methods derived from self-similarities 

exploring. In [62], they used a similar score to describe a genomic space and 

pharmaceutical space. And then, they proposed a kernel regression approach to predict 

links in the drug-target interaction network. In [72], they used the drug and target 

similarities as the support SVM kernels and classified link twice and merge the 

experimental results to provide link predictions. KBMF2K firstly map the drug and 

target spaces to low-dimensional spaces similarity for link prediction [73]. In [74], they 

developed a network-consistency-based prediction method to predict links in drug-target 

interaction network, which rely on drug similarity network and the target similarity 

network integration. Some above previous works enjoyed very high prediction accuracy. 
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However, the similarity-based direction has an underlying problem that support data is 

not a direct biological expression. The similarity represents another dimension of 

original properties that may make experiment only achieve a high rate of errors regarding 

millions of candidates. Even more interesting is feature-based methods have been 

attempts to use a classifier to infer links adopt different encoding schemes impose 

different descriptors on the original features. 

 

Deep learning is the broad term for algorithm has multiple layers aims to learn of feature 

representations in each layer that can be used to represent large-scale given data [1]. 

Therefore, a deep learning framework for unsupervised feature representation is 

attractive. The deep learning to data analysis emphasizes high volume and scalable 

models that promising chances of research into the automated extraction of complex data 

representations at high levels of abstraction [66]. It has a hierarchical architecture that 

develops several layers of units for feature extraction and transformation, then the 

supervised or unsupervised model of feature representations in each layer where higher-

level features are defined regarding lower-level features [85]. As the first and most 

popular deep learning root, deep neural networks provide the noteworthy solutions to 

many data representation problems. Deep Learning built multi-layer architecture neural 

networks and trained with the greedy layer-wise unsupervised pre-training algorithms. 

According to [85], deep learning will keep valuable information after executing the 

training process. Deep neural network is applying the greedy layer-wise unsupervised 

pre-training mechanism that can reconstruct the original raw data set. We can learn 

valuable features with neural network instead of traditional features filtering method. 

Then, we can use classifier and obtain higher accuracy with better generalization from 

the learned features. This function makes deep representation like a good recipe for link 

prediction because of it able to extract complex representations from high volume 

unsupervised data. Some work has been used to predict the link, such as drug-protein 

[184] and drug-drug [185]. In [184], Wen et al. used deep belief network (DBN) to 

predict drug-target interactions. However, due to each link has two types of feature 

representation, these deep learning based approaches are not handled link prediction well. 

 

2.3 Learning graph representations for node clustering 
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The trained features typically do not represent connectivity patterns of edges and 

relationships between the nodes. Such drawbacks lead to representations that are not 

particularly useful features for machine learning tools. Fortunately, above data 

representation algorithms such as deep representation also can be applied to graphs. It’s 

a vivid way to represent data and output as graphs. Learning graph representation would 

typically be motivated to find recurrent substructures and identify them that best 

discriminate between the different classes. In the case of the molecular network, the 

number of nodes in the graph perspective may be massive. Such nodes are often 

corresponding to atoms, and the links are considered as bonds between the atoms. The 

similarity-based method can facilitate links prediction through the use of heterogeneous 

graph representations. For example, the random walk has been used on such a 

heterogeneous network [119]. They simulated a random walker's transition to uncover 

the association between drugs and targets. A recent work [173] that used network-based 

Laplacian regularized least square synergistic for drug combination prediction, and it 

was alleged that several types of information such as known synergistic drug 

combinations, unlabeled combinations, drug-target interactions, and drug chemical 

structures were integrated. We can achieve chemical compound classification by such 

techniques have been used to find the set of graph representations occurring in at least 

some given minimum support threshold of the given graphs [187-188]. A subgraph is 

also referred to as important means of identifying markedly interacting nodes from 

networks [8, 24].  

 

Most algorithms related to graph analytics concerns the identification of communities. 

To identify the communities in the network data, there have been some so-called graph 

clustering algorithms proposed. Most of them can detect communities based on, not 

surprisingly some pre-defined measures on edge structure. One of the most widely used 

measures is modularity [153], which is defined as a function of the differences in density 

within communities and a null-graph in which nodes are randomly connected. Based on 

this measure, two approaches [154] [155] are proposed to detect communities making 

use of modularity maximization. Besides these algorithms, there are also other 

approaches proposed to detect graph communities, utilizing other topological measures. 
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For example, a clique-percolation based method is proposed in [156]. In [96], a 

clustering method called affinity propagation (AP) is proposed to detect clusters by 

maximizing the similarities of edge structure between candidates of cluster centers and 

other vertices. In [157], spectral clustering (SC) is proposed to detect communities in 

graphs by making use of normalized cut [158] which may reveal similar edge structures 

of vertices within the same communities. To reveal more meaningful communities in the 

network, there are some approaches proposed by taking into consideration both edge 

structure and attributes that may characterize the vertices. In [159] and [160], SA-Cluster 

and inc-Cluster are proposed to discover network community by making use a 

neighborhood random walk model in which the transition probability between each pair 

of vertices is evaluated by taking into the consideration edge density and attribute 

similarity. Though effective in discovering communities in network data, most of them 

cannot identify the representations that are able to characterize the discovered 

communities. To discover such representations, there are also some approaches that are 

able to discover graph communities by grouping vertices with similar attribute values. 

For example, there are some attempts making use of k-means algorithm [163] to group 

nodes with a higher similarity of attributes into the same clusters. In [164], an algorithm 

called MAC, which is based on a probabilistic generative model is proposed to discover 

graph clusters in which vertices are labeled with Boolean attribute values. In [165], a 

graph summarization algorithm called k-SNAP is proposed to detect graph clusters by 

grouping nodes into the same cluster according to a similarity measure of the attribute 

values. Though such algorithms may reveal the representations that may characterize the 

graph communities, they are not effective in discovering meaningful community 

structures as these methods ignore the edge structure of the network data. 
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3. FEATURE EXTRACTION AND PRE-PROCESSING 
 

Representational learning is a new opportunity for machine learning, a technology that 

is often placed at the beginning of the entire model. One of the difficulties of learning is 

that it is hard to establish a clear goal. In link classification and node clustering tasks, 

the goal is obvious, that is, to minimize the error prediction number of training data sets. 

In the case of representing learning, we cannot define the goal, because we focus on 

traditional machine learning. The general case is to learn a predictor after using the new 

data representation, and an appropriate data representation can eliminate potential 

changes and improve the performance. At present, several methods have been used to 

find the optimal representation of data features. Although different algorithms can be 

used, these algorithms cannot be applied to all fields, nor can special attributes, 

especially sequence data, be considered. Since the algorithm cannot directly read the 

sequence information, the feasible method is to transform the sequence into a 

computable vector including the real number or the discrete vector set. In this section, 

the state-of-the-art related to extracting multi-scale feature representation in protein 

sequence are introduced. 

 

3.1 Overview 

 

Protein-protein interaction networks (PPI) are typical large-scale networks. Link 

prediction in such PPI networks is a significant problem in both machine learning and 

bioinformatics. Protein-protein interactions (PPIs) play a crucial role in various 

biological processes and functions in living cells, including metabolic cycles, DNA 

transcription and replication, and signaling cascades [17]. Instead of acting individually 

to perform functions, proteins do so by interacting with other proteins in cellular 

environments. The study of how proteins interact plays a critical role in investigating the 

molecular mechanisms behind biological processes. Moreover, it may also be able to 

discover unknown functions of proteins based on the known functions of those 

interacting with them. Recently, people have recognized the biological significance of 

the interacting protein, and therefore many people have begun to try to develop 

techniques capable of effectively predicting protein interactions.  
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Until now, how to extract meaningful features used to represent proteins is still 

challenging. The experimental methods are costly and time-consuming. Therefore, 

current PPI links obtained with experimental methods covers only a small fraction of the 

complete PPI networks [18]. Also, large-scale experimental methods usually suffer from 

high rates of both false positive and false negative predictions [19]. Hence, it is of great 

practical significance to develop the reliable computational methods to facilitate 

identification of PPI [20, 3]. 

Recently, a couple of methods which derive information directly from the amino acid 

sequence are of particular interest [6, 7, 3, 29, 35, 38–39]. Many researchers have 

engaged in the development of a sequence-based method for discovering new PPI [38, 

42], and the experimental results showed that the information of amino acid sequences 

alone is sufficient to predict PPI [3,29,43]. Among them, one of the excellent works is 

an SVM-based method developed by Shen et al. [3]. In the study, the 20 amino acids are 

clustered into seven classes according to their dipoles and volumes of the side chains, 

and then the conjoint triad method abstracts the features of protein links based on the 

classification of amino acids. When applied to predict human PPI, this method yields a 

high prediction accuracy of 83.9%. Because the conjoint triad method cannot take 

neighboring effect into account, and the links usually occur in the discontinuous amino 

acids segments in the sequence, on the other work Guo et al. developed a method based 

on SVM and autocovariance to extract the interactions information in the discontinuous 

amino acids segments in the sequence [44]. Their method yielded a prediction accuracy 

of 86.55% when applied to predict Saccharomyces cerevisiae PPI. In some previous 

works, they also obtained good prediction performance by using autocorrelation 

descriptors and correlation coefficient, respectively [35, 45]. 

 

Also, some computational techniques have been proposed to provide either 

complementary information or supporting evidence to experimental methods [22–25]. 

Existing methods generally utilize different protein properties or origin, such as protein 

structure information [26, 27], protein domains, gene neighborhood, phylogenetic 

profiles, gene expression, to infer PPI interactions [17, 28-31]. However, these methods 

cannot be implemented if such pre-knowledge about the proteins is not available [33, 
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34]. Regarding the extraction of patterns from protein sequences, most of the existing 

algorithms intend to discover k-mers, each of which is an amino acid sequence segment 

with length k. These k-mers are then used to compose a feature vector for each protein 

sequence. Different examples of making use of k-mers to predict PPIs can be found in 

different kinds of literature. However, in recent years, with rapid development of high-

throughput genomic technologies, the vast amount of PPI data makes it difficult to 

perform an efficient process of extracting variable-length k-mer patterns. Therefore, 

besides the effectiveness from the viewpoint of accuracy, it is becoming increasingly 

urgent that the factor of efficiency is another issue that should be taken into account 

when predicting large-scale PPIs. 

In this study, a novel feature representation method for extraction of the protein sequence 

is proposed. We hypothesize that the contiguous amino acids segments with different 

segment lengths play an essential role in determining the links between proteins. In other 

words, the proposed protein representation method gives adequate consideration to mine 

the link information from multi-scale continuous amino acid segments at the same time. 

Thus, it can sufficiently capture multiple overlapping continuous binding patterns within 

a protein sequence. 

 

To sum up, in this chapter we propose a novel multi-scale local descriptor (MLD) protein 

feature representation method. And, we combine this sequence-based approach with 

random forest (RF) model for the prediction of protein-protein interaction. To evaluate 

the performance, the proposed method is applied to Saccharomyces cerevisiae PPI 

dataset. The experiment results show that our approach achieved 94.72% prediction 

accuracy with 94.34% sensitivity at the precision of 98.91%. The prediction model is 

also assessed using the independent dataset of the Helicobacter pylori PPI and yielded 

88.30% prediction accuracy, which further demonstrates the effectiveness of our method. 

 

3.2 Method 

 

In this section, we describe the proposed MLD-RF approach for predicting protein links 

from protein sequences. Our method to predict the PPI depends on two steps: (1) 

Represent protein sequences as a vector by using the proposed MLD feature 
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representation; (2) RF predictor is used to perform protein interactions prediction tasks. 

In algorithm development, feature extraction is one of the most important components 

that significantly affect the performance of the computational model. To successfully 

predict PPI from protein sequences using machine learning, one of the most important 

computational challenges is how to effectively represent a protein sequence by a fixed 

length feature vector in which the important information content of proteins is fully 

encoded. Although researchers have proposed various sequence-based methods to predict 

new PPI, one flaw of them is that the interactions information cannot be drawn from multi-

scale continuous amino acids segments with different segment lengths at the same time. 

To overcome this shortcoming, in this study we propose a novel MLD sequence 

representation approach to transform the protein sequences into feature vectors by using 

a binary coding scheme. A multi-scale decomposition technique is used to divide protein 

sequence into multiple sequence segments of varying length to describe overlapping local 

regions. Here, the continuous sequence segments are composed of residues which are 

local in the polypeptide sequence. 

 
Fig. 1. The Schematic diagram for constructing multi-scale local descriptor regions for a 

hypothetical protein sequence using 3–6 bit binary form. 
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To extract the interaction information, we first divide the entire protein sequence into 

some equal length segments. Then a new binary coding scheme is adopted to construct 

a set of contiguous regions by the above partition. For example, consider a protein 

sequence “GGYCCCYYGYYYGCCGGYYGCG” containing 22 residues. To represent 

the sequence by a feature vector, let us first divide each protein sequence into multiple 

regions. Refer to Fig 1, the protein sequence is divided into four equal length segments 

(denoted by S1, S2, S3 and S4). Then it is encoded as a sequence of 1's and 0's of 4-bit 

binary form. In binary, these combinations are written as 0000, 0001, 0010, 0011, 0100, 

0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111. The number of states 

of a group of bits can be found by the expression 2n, where n is the number of bits. It 

should be noticed that here 0 or 1 denote one of the four equal length region S1—S4 is 

excluded or included in constructing the continuous regions respectively. For example, 

0011 denotes a continuous region constructed by S3 and S4 (the final 50% of the 

sequence). Similarly, 0111 represents a continuous region constructed by S2, S3 and S4 

(the final 75% of the sequence). These regions are illustrated in Fig 1. It should be 

noticed that the proposed feature representation method can be simply and conveniently 

edited at multiple scales, which offers a promising new way for addressing 

aforementioned difficulties in a simple, unified, and theoretically sound way to represent 

protein sequence. For a given number of bits, each protein sequence may take on only a 

finite number of contiguous regions. This limits the resolution of the sequence. If more 

bits are used for each protein sequence, then a higher degree of resolution is obtained. 

For example, if the protein sequence is encoded by 5-bit binary form, each protein 

sequence may take on 30 (25–2) different regions. Higher bit encoding requires more 

storage for data and requires more computing resource to process. In this study, only the 

continuous regions are used and the discontinuous regions are discarded. 

 

For each continuous region, three types of descriptors, composition (C), transition (T) 

and distribution (D), are used to represent its characteristics. C is the number of amino 

acids of a particular property (e.g., hydrophobicity) divided by the total number of amino 
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acids in a local region.  

T represents the percentage frequency of one characteristic amino acid after another. D 

measures the chain length within which the first, 25%, 50%, 75%, and 100% of the amino 

acids of a particular property are located, respectively [50]. 

 

The three descriptors can be calculated in the following ways. Firstly, to reduce the 

complexity inherent in the representation of the 20 standard amino acids, we firstly 

clustered them into seven groups based on the dipoles and volumes of the side chains. 

Amino acids within the same groups likely involve synonymous mutations because of 

their similar characteristics [3]. The amino ac49ids belonging to each group are shown 

in Table 1. Then, every amino acid in each protein sequence is replaced by the index 

depending on its grouping. For example, protein sequence 

“GGYCCCYYGYYYGCCGGYYGCG” is replaced by 1132223313331221133121 

based on this classification of amino acids. There are eight ‘1’, six ‘2’ and eight ‘3’ in 

this protein sequence. The composition for these three symbols is 8/ (8+6+8) ×100% = 

36.36%, 6/ (8+6+8) ×100% = 27.27% and 8/ (8+6+8) ×100% = 36.36%, respectively. 

There are 4 transitions from ‘1’ to ‘2’ or from ‘2’ to ‘1’ in this sequence, and the 

percentage frequency of these transitions is (4/21) ×100% = 19%. The transitions from 

‘1’ to ‘3’ or from ‘3’ to ‘1’ in this sequence can similarly be calculated as (6/21) ×100% 

= 28.57%. The transitions from ‘2’ to ‘3’ or from ‘3’ to ‘2’ in this sequence can also 

similarly be calculated as (2/21) ×100% = 9.52%. 

 

Fig. 2. Sequence of a hypothetic protein indicating the construction of composition, 
transition and distribution descriptors of a protein region. 
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For distribution D, there are 8 residues encoded as “1” in the example of Fig 2, the 

positions for the first residue ‘1’, the 2nd residue ‘1’ (25% × 8 = 2), the 4th ‘1’ residue 

(50% × 8 = 4), the 6th ‘1’ (75% × 8 = 6) and the 8th residue ‘1’ (100% × 8) in the encoded 

sequence are 1, 2, 13, 17, 22 respectively, so the D descriptors for ‘1’ are: (1/22) ×100% 

= 4.55%, (2/22) ×100% = 9.09%, (13/22) ×100% = 59.09%, (17/22) ×100% = 77.27%, 

(22/22)×100% = 100%, respectively. Similarly, the D descriptor for ‘2’ and ‘3’ is 

(18.18%, 18.18%, 27.27%, 63.64%, 95.45%) and (13.64%, 31.82%, 45.45%, 54.55%, 

86.36%), respectively. For each continuous local region, the three descriptors (C, T and 

D) are calculated and concatenated, and a total of 63 descriptors are generated: 7 for C, 

21 ((7×6)/2) for T and 35 (7×5) for D. Then, all descriptors from 9 regions (4 bit) are 

concatenated and a total 567-dimensional vector has been built to represent each protein 

sequence. Finally, the PPI pair is characterized by concatenating the two vector spaces 

of two individual proteins. Thus, an 1134-dimensional vector has been constructed to 

represent each protein pair and used as a feature vector for input into a prediction model.  

Random Forest (RF) model is an ensemble classification algorithm that employs a 

collection of decision trees to reduce the output variance of individual trees and thus 

improves the stability and accuracy of classification. RF model is currently one of the 

most frequently employed machine learning techniques. RF takes advantage of two 

powerful machine-learning techniques: (1) the selection of training examples for each 

tree; (2) the random feature selection to split the data set. The first is performed by 

employing a bootstrap sample from original data (often referred to as bagging). Bagging 

works by sampling n samples with replacement from the original n samples, duplicating 

some examples and excluding some. The process results in two disjoint bags, one 

containing about 63.2% of examples of the training data and one bag containing the rest 

which is usually denoted as out-of-bag (OOB) examples. In general, a random forest is 

constructed using the in bag examples and the OOB examples are used to estimate its 

Group 1  
 

Group 2  
 

Group 3  
 

Group 4  
 

Group 5  
 

Group 6  
 

Group 7  
 

A,G,V  
 

C  
 

M,S,T,Y  
 

F,I,L,P  
 

H,N,Q,W  
 

K,R  
 

D,E 

 

Table 1. Division of amino acids into seven groups based on the dipoles and volumes of 
the side chains. 
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prediction performance. The second feature selection procedure works by sampling a 

small subset of features at each node in each classification tree. More specifically, at 

each node of a tree, RF randomly selected a constant number of features and the one with 

the maximum decrease in Gini index is chosen for the split when growing the tree. 

 

The RF model construction is composed of two parts, the ensemble creation and the tree 

generation. Specifically, the model construction requires a set of examples S = (((x1, x2… 

xn), y)…), where each example is described by a set of features X and a class label y; the 

number of trees to be constructed Tn; and the number of features to examine at each split 

Fn. In the ensemble creation step, t = 1, 2…, Tn trees are constructed from the in bag 

samples drawn with replacement from S. The tree construction algorithm starts by 

selecting Fn random features which can reduce the Gini index most if split upon. If no 

feature is found that reduce the error, a leaf is created predicting the most probable class 

from those examples reaching the node. Otherwise, the data is partitioned into two 

subsets: those for which the feature is positive and those for which it is negative. The 

partitions are subsequently used to recursively build new trees, with edges from the 

previous node. The recursion continues until there is no more informative feature, the 

node is pure or the total number of examples at the current node is minor 2. In the 

experiment, we used the open source machine learning toolkit Weka to conduct this 

study. 

 

3.3 Experiments with PPI datasets 

 

 Protein sequence and protein interaction dataset 

To evaluate the performance of the proposed approach, we have used eight different PPI 

data sets in our experiment, two of which are S.cerevisiae, two are H. pylori, one is 

C.elegans, one is E.coli, one is H.sapiens, and one is M.musculus. The PPI dataset which 

was derived by Guo et al. [44], are used to build the first prediction model. The dataset 

was downloaded from S.cerevisiae core subset of the database of interacting proteins 

(DIP) [46]. After the protein links that contain a protein with fewer than 50 residues or 
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have more than 40 percent sequence identity were removed, the remaining 5594 protein 

links formed the golden standard positive dataset (GSP). The construction of a negative 

PPI dataset is very important for training and evaluating prediction model. However, it 

is difficult to generate such a dataset because we have limited information about proteins 

that are non-interactive. Here, the negative dataset is generated by firstly selecting non-

interacting link uniformly at random from the set of all proteins links that are not known 

to interact. Then the protein links with the same subcellular localization information are 

excluded. Finally, the golden standard negative dataset (GSN) consisted of 5594 protein 

links whose subcellular localization is different. By combining the above GSP and GSN 

datasets, the complete dataset contains 11188 protein links, where half are from the 

positive dataset and half from the negative dataset. Note that here we have used the same 

PPI dataset as used in Guo et al. [44]. 

 

However, some researchers argue that restricting negative examples to protein links 

localized in different cellular compartments is not appropriate for evaluating classifier 

accuracy [47, 48]. The use of such negative dataset for building a model can result 

primarily in predictions of protein co-localization [49]. The fact that interacting protein 

links have to be in the same place does not mean that all proteins in the same 

compartment will be interacting with each other. Therefore, we constructed the second 

PPI dataset by using positive samples from first PPI dataset, and following a simpler 

selection scheme—choosing negative examples uniformly at random—to construct the 

negative dataset. The second PPI dataset also consists of 11188 protein links, where half 

are from the positive dataset and half from the negative dataset. 

 

The third PPI dataset is composed of 2916 Helicobacter pylori protein links (1458 

interacting pair and 1458 non-interacting links) as described by Martin et al. [50]. Other 

five species-specific PPI dataset including C.elegans, E.coli, H.sapiens, M.musculus, 

and H.pylori are employed in our experiment to verify the effectiveness of the proposed 

method. 
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 Evaluation measures 

To measure the performance of the proposed method, we adopt five-fold cross-validation 

and a couple of validation measures in this study. These criteria are as follows: (1) the 

overall prediction accuracy (ACC) is the percentage of correctly identified interacting 

and non-interacting protein links and given by: ܥܥ ൌ ்௉ା்ே

்௉ାி௉ା்ேାிே
 , the sensitivity (SN) 

is the percentage of correctly identified interacting protein links and given by:ܵܰ ൌ
்௉

்௉ାிே
 , the specificity (Spec) is the percentage of correctly identified non-interacting 

protein pairs and given by:	ܵܿ݁݌ ൌ ்ே

்ேାி௉
, the positive predictive value (PPV) is the 

positive prediction value and given by:	ܸܲܲ ൌ ்௉

்௉ାி௉
, the negative predictive value 

(NPV) is the negative prediction value and given by:	ܸܰܲ ൌ ்ே

்ேାிே
, the F-score is a 

weighted average of the PPV and sensitivity, where an F-score reaches its best value at 

1 and worst score at 0; The definitions are given as follows:ܨ௦௖௢௥௘ ൌ 2 ൈ ௌேൈ௉௉௏

ௌேା௉௉௏
, the 

Matthew’s correlation coefficient (MCC) is more stringent measure of prediction 

accuracy accounts for both under and over-predictions. Its definitions are given 

by:	ܥܥܯ ൌ ்௉ൈ்ேିி௉ൈிே

ඥሺ்௉ାிேሻൈሺ்ேାி௉ሻൈሺ்௉ାி௉ሻൈሺ்ேାிேሻ
, where true positive (TP) is the number 

of true PPIs that are predicted correctly; false negative (FN) is the number of true PPIs 

that are predicted to be non-interacting pairs; false positive (FP) is the number of true 

non-interacting pairs that are predicted to be PPIs, and true negative (TN) is the number 

of true non-interacting pairs that are predicted correctly. 

M ACC(%) SN(%) Spec PPV(%) NPV(%) F1 (%) MCC(%) 

5 94.72±0.35 94.45±0.55 95.72±1.51 98.80±0.43 82.17±1.27 96.58±0.25 85.89±0.70 

10 94.63±0.37 94.42±0.54 95.40±1.29 98.71 ±0.38 82.04±1.32 96.52±0.26 85.65±0.76 

15 94.62±0.21 94.44±0.53 95.28±1.58 98.69±0.45 82.06±1.19 96.51±0.15 85.60±0.41 

20 94.60±0.36 94.35±0.54 95.56±1.68 98.76±0.48 81,88±1.23 96.50±0.25 85.61 ±0.76 

25 94.69+0.25 94.44±0.44 95.66±1.34 98.79±0.39 82.11 ±0.99 96.56±0.18 85.82±0.47 

30 94.63±0.37 94.42±0.54 95.39±1.43 98.71 ±0.41 82.04±1.25 96.52±0.26 85.65±0.78 

Table 2. The prediction performance for six testing datasets with various number of 
feature subsets M, where the tree size N is set to 60. 



39  

 

 Experimental setting 

In this chapter, the proposed sequence-based PPI predictor is implemented using 

MATLAB platform. All the simulations are carried out on a computer with 3.1 GHz 2-

core CPU, 6 GB memory and Windows operating system. To achieve good experimental 

results, the corresponding parameters for random forest are firstly optimized. For RF 

model the parameters to be ascertained are the number of feature subset M, and the 

ensemble size N. The average prediction results for six testing datasets are listed in Table 

2 by setting M to 5, 10, 15, 20, 25 and 30, respectively. It can be found that the 

performance under different conditions varies slightly, and none of the parameters take 

obvious advantage over the other ones. So there is no consistent relationship between the 

classification accuracy and feature subset M. In this study, the value of M is set to 10 in 

all experiments, which requires the relatively less computational cost. The average 

results with different ensemble sizes are shown in Fig 3. It can be found from Fig 3 that 

 
Fig. 3. The prediction performance for classification accuracy, sensitivity, precision and 
MCC of different tree size, where the number of feature subsets M is set to 10 and the 
unpruned decision tree is employed as the base classifier. 
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RF predictor performs well when only a few of base classifiers are employed. All the 

evaluation measures including average prediction accuracy, sensitivity, specificity, PPV, 

NPV and MCC keep improving with the ensemble size increase. However, the 

improvement becomes negligible when the ensemble size is larger than 10. From the 

above analyses, we can conclude that RF model is not sensitive to the choice of 

parameters. So for the H.pylori dataset, the parameters of the RF model do not need to 

be optimized again, assuming that they are set the same values as those adopted on the 

S.cerevisiae dataset.  

 

 Prediction performance of the proposed model 

We evaluated the performance of the proposed model using the first PPIs dataset as 

investigated in Guo et al. [44]. In this experiment, we will guarantee the validity of the 

results and the predictive nature of the new data, the dataset is randomly partitioned into 

training and independent testing sets via five-fold cross-validation. Each of the five 

subsets acts as an independent holdout testing dataset for the model trained with the rest 

of four subsets. Thus, five models are generated for the five sets of data. The advantages 

of cross validation are that the impact of data dependency is minimized, and the 

reliability of the results can be improved. 

 

 

Model Features Classifier SN(%) PPV(%) ACC(%) MCC(%) 

Our 
method 

MLD RF 94.34±0.49 98.91±0.33 94.72±0.43 85.99±0.89 

Guos’ work 
ACC SVM 89.93±3.68 88.87±6.16 89.33±2.67 N/A 

AC SVM 87.30±4.68 87.82±4.33 87.36±1.38 N/A 

Zhous’ 
work 

LD SVM 87.37±0.22 89.50±0.60 88.56±0.33 77.15±0.68 

Yangs’ 
work 

Cod1 KNN 75.81±1.20 74.75±1.23 75.08±1.13 N/A 

Cod2 KNN 76.77±0.69 82.17±1.35 80.04±1.06 N/A 

Cod3 KNN 78.14±0.90 81.86±0.99 80.41±0.47 N/A 

Cod4 KNN 81.03±1.74 90.24±1.34 86.15±1.17 N/A 

Table 3. Comparison of the prediction performance by the proposed method and some 
state-of-the-art works on the yeast dataset. 
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The prediction performance of RF predictor with MLD representation of protein 

sequence across five runs is shown in Table 3. It can be observed from Table 3 that high 

prediction accuracy of 94.72% is obtained for the proposed model. To better investigate 

the prediction ability of our model, we also calculated the values of Sensitivity, Positive 

Predictive Value, and MCC. From Table 3, we can see that our model gives good 

prediction performance with an average sensitivity value of 94.34%, PPV value of 

98.91%, accuracy value of 94.72%, and MCC value of 85.99%. Further, it can also be 

seen in the Table 3 that the standard deviation of sensitivity, PPV, accuracy, and MCC 

are as low as 0.0049, 0.0033, 0.0043, and 0.0089, respectively. For the first PPI dataset, 

we define negative examples exploiting the fact that proteins from different cellular 

locations are unlikely to interact [50]. However, it was shown that this approach, when 

used to train PPI prediction methods, leads to a bias in the estimation of prediction 

accuracy since the additional constraints related to localization make the prediction task 

easier [47]. Another typical choice is to select non-interacting pairs uniformly at random 

from the set of all proteins links that are not known to interact. Therefore, in our 

experiments, we also use the second PPI dataset to verify the effectiveness of the 

proposed method. Table 3 illustrates the comparison of the prediction performance using 

two kinds of negative sample selection methods on the yeast dataset. As shown in the 

table, the performance of first PPI dataset (selecting negative examples using cellular 

localization information) is slightly better than that of the second PPI dataset (randomly 

selected negative examples without cellular localization information). We can explain 

the higher accuracy for the first PPI dataset by the fact that the constraint on localization 

 
Fig. 4. Comparison for the Sensitivity value of the ensemble classifier versus single 

classifiers on the dataset of S.cerevisiae and H.pylori. 
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restricts the negative examples to a sub-space of feature space, making the learning 

problem easier than when there is no constraint. 

 

We further compared our method with Guo et al.[44], Zhou et al.[52] and Yang et al.[53], 

where the SVM, SVM and KNN is performed with the Auto Covariance (or Auto Cross 

Covariance), Local Descriptor, and Local Descriptor with four kinds of the coding 

scheme as the input feature vectors, respectively. From Table 3, we can see that the 

performance of all of these methods with different machine learning model and 

sequence-based feature representation are lower than ours, which indicates the 

advantages of our method. To sum up, we can readily conclude that the proposed 

approach generally outperforms the previous model with higher discrimination power 

for predicting PPIs based the information on protein sequences. Therefore, we can see 

clearly that our model is a much more appropriate method for predicting new protein 

 
Fig. 5. Comparison for the Accuracy value of the ensemble classifier versus single 

classifiers on the dataset of S.cerevisiae and H.pylori. 

Methods Sensitivity PPV Accuracy MCC 

Phylogenetic 
bootstrap 

69.80% 80.20% 75.80% N/A 

HKNN 86.00% 84.00% 84.00% N/A 

Signature 
products 

79.90% 85.70% 83.40% N/A 

Ensemble of 
HKNN 

86.70% 85.00% 86.60% N/A 

Boosting 80.37% 81.69% 79.52% 70.64% 

Proposed method 92.47% 85.99% 88.30% 79.19% 
 

Table 4. Performance comparison of different methods on the H.pylori dataset. 
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interactions compared with the other methods. Consequently, it makes us more 

convinced that the proposed method can be beneficial in assisting the biologist to assist 

in the design and validation of experimental studies and for the prediction of interaction 

 

Fig. 6. Comparison for the Specificity value of the ensemble classifier versus single 
classifiers on the dataset of S.cerevisiae and H.pylori. 

 

Fig. 7. Comparison for the Predictive PositiveV value of the ensemble classifier versus 
single classifiers on the dataset of S.cerevisiae and H.pylori. 

 
Fig. 8.  Comparison for the Negative Positive Value of the ensemble classifier versus 

single classifiers on the dataset of S.cerevisiae and H.pylori. 
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partners.  

We here investigated whether the ensemble of classifiers can significantly improve the 

performance of PPI prediction compared against the individual classifier in the ensemble. 

Figs 4–10 plots the sensitivity, accuracy, specificity, PPV, NPV, F-Score, and MCC 

values for the component classifiers decision tree and the ensemble classifier random 

forest. The results in Figs 4–10 demonstrate that the ensemble classifier dominates the 

component classifiers. The PPV value obtained by the ensemble classifier is nearly 4.3% 

higher than the component classifier on the S.cerevisiae dataset. In addition, the 

sensitivity is improved from 92.66% to 95.15% while the accuracy is improved from 

90.52% to 95.80%. Further, on the H.pylori dataset, it can also be seen from the Figs 2–

8 that the ensemble classifier dominates the single classifier. We concluded that the 

ensemble classifier is much more accurate than the single classifier that makes them up.  

 

To highlight the advantage of our model, it is also tested by Helicobacter pylori dataset. 

The H. pylo Figsri dataset is composed of 2,916 protein links (1,458 interacting pair and 

1,458 non-interacting pairs) as described by Martin et al. [50]. This dataset gives a 

comparison of the proposed method with other previous works including phylogenetic 

bootstrap [56], signature products[50], HKNN[57], ensemble of HKNN[58] and 

boosting. The methods of phylogenetic bootstrap, signature products and HKNN are 

based on individual classifier system to infer PPI, while the methods of HKNN and 

s  

Fig. 9. Comparison for the F-Score value of the ensemble classifier versus single 
classifiers on the dataset of S.cerevisiae and H.pylori. 
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boosting belong to ensemble-based classifiers. The average prediction performances of 

ten-fold cross-validation over six different methods are shown in Table 4.  From Table 

4, we can see that the average prediction performance, i.e. sensitivity, PPV, accuracy and 

MCC achieved by proposed predictor, are 92.47%, 85.99%, 88.30% and 79.19%, 

respectively. It demonstrates that our method outperforms all other individual classifier-

based methods and the ensemble classifier systems (i.e. ensemble of HKNN and 

Boosting). All these results show that the proposed method not only achieves accurate 

performance but also substantially improves positive predictive value in the prediction 

of PPI.  

 

3.4 Summary 

In this chapter, we develop an efficient representation technique for extracting protein 

sequence information. For the link prediction task, we combined the proposed Multi-

Scale Local Descriptor (MLD) feature representation with the RF model and predicted 

PPI based on the protein sequence. The MLD representation takes into account the 

factors that PPI usually occurs in continuous segments with varying lengths in the protein 

sequence. In our study, protein sequences are characterized by a number of regions using 

MLD representation, which is capable of capturing multiple overlapping continuous 

binding patterns within a protein sequence. The experimental results show that the 

proposed representation method can extract feature representation effectively on 

multiple PPI data sets. Combined with RF classifier, it performs better than all previous 

 
Fig. 10. Comparison for the Matthews Correlation Coefficient value of the ensemble 

classifier versus single classifiers on the dataset of S.cerevisiae and H.pylori. 
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methods and can be used as a useful supplementary tool for traditional experimental 

methods. 
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4. DEEP REPRESENTATION 
 

As mentioned above, the new feature engineering successfully makes the original feature 

expressed as thoroughly as possible through the multi-scale transformation algorithm. 

Comprehensive feature representation can improve the performance of the machine 

learning model to some extent, while the high-dimensional feature will cause overfitting 

of the traditional model. Bengio et al. [1] believe that a good data representation is not 

merely a distinction between "signal" and "noise", but that the most useful factors are 

retained, while the minimum valuable information is discarded. A good data 

representation can even reconstruct many internal factors that cannot be represented in 

the original data. In other words, when the data is presented, it maps the object to a 

representation of an estimate that separates the effect of the latent factors from the 

nuisance parameters and allows reconstruction of the observations from the 

representation. To find better data representation, several algorithms are proposed. 

Though effective to some extent, most of these algorithms are limited by the inability to 

find latent internal factors and the comprehensive representation of multiple views. 

Different from the traditional, deep representational learning has been proposed and 

successfully used in many applications. Feature extraction and transformation is 

performed by using cascades of multiple nonlinear processing units. Each successive 

layer uses the output of the previous layer as input. Learning corresponds to multiple 

representations of different levels of abstraction, which form a hierarchy. The stacked 

auto-encoder confirms that the greedy hierarchical training strategy is largely conducive 

to optimization by initializing weights in regions close to good local minima, generating 

internal distribution representation, which is a high-level abstraction of the input and 

leads to better generalization. In addition, the stacked auto-encoder is a good architecture 

for the multi-layer neural network to deal with the problems of model overfitting and 

gradient diffusion. The performance of link classification and nodes clustering in the 

network also depends on taking into account multi-view features. In other words, the 

node in each network can be described from multiple perspectives. However, the existing 

machine learning algorithm is difficult to optimize the model with multi view features. 

In this thesis, we innovatively combined deep network and network fusion into a new 

algorithm. In this section, we introduce the latest techniques related to the discovery of 
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deep representation and deep fusion representation in link classification and nodes 

clustering. 

 

4.1 Predicting large-scale drug–target interactions from integrated deep 

representations 

 

As described above, drug-targeted interaction (DTIs) is a typical network link and 

predicting the link in the network and improving accuracy is a challenge. Traditional 

similarity-based approaches have taken hold, and they use the drug and target similarity 

matrix to infer the potential drug-target links. But these techniques do not handle 

biochemical data directly. While recent feature-based methods reveal simple patterns of 

physicochemical properties, efficient method to study large interactive features and 

precisely predict interactions is still missing. Deep learning has been found to be an 

appropriate tool for converting high-dimensional features to low-dimensional 

representations. These deep representations generated from drug-protein pair can serve 

as training examples for the interaction predictor. In this section, we propose a promising 

approach called multi-scale features deep representations (MFDR) inferring interactions. 

We extract the large-scale chemical structure and protein sequence descriptors to 

machine learning model predict if certain human target protein can interact with a 

specific drug. MFDR use Auto-Encoders as building blocks of deep network to 

reconstructing drug and protein features to low-dimensional new representations. Then, 

we make use of support vector machine to infer the potential drug-target interaction from 

deep representations. The experiment result shows that a deep neural network with 

Stacked Auto-Encoders exactly output interactive representations for the DTIs 

prediction task. MFDR is able to predict large-scale drug-target interactions with high 

accuracy and achieves results better than other feature-based approaches. 

 

 Overview 

  

Drug discovery is a comprehensive study of diverse objects and provides detailed descriptions of 

the biological activity, genomic features and chemical structure to the disease treatment. Lead 

compound interacting with human protein is one of the critical procedures responsible for driving 



49  

critical biological actions within the human body cell. The mainly treatment processes within our 

body are carried out by adjusting proteins status that physically interacts to form the counter effect 

of the disease. Discovery of such drug-target interactions that take place within a human body can 

suggest new drug target protein and aid the design of new compounds by providing rational drug 

targets [59]. As the biggest drug database, PubChem collected more than 35 million compounds 

of which 7000 compounds are containing the target protein information. During the drug 

discovery processing, medicine production line often generates results different from the original 

goal. Such effects may be raised with hidden factors and biological domains in drug target 

selection and lead compound screening. Instability and no specificity of drug-target interactions 

have to be addressed appropriately before sending them to clinical phase. The complex procedure 

of confirming lead compound ranges from target identification to lead compound optimization is 

 

Fig. 11.  The procedure of MFDR 
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a long-term work. Even many optimal approaches have been proposed to tackle the problem of 

drug-target interaction prediction, and a new drug discovery still needs cost 6-10 years. Therefore, 

the identification of potential drug-target interactions is a challenging issue at the start stage of the 

drug development process [60].  

 

To solve such problems, some interdisciplinary scientists introduce several computational 

approaches to cope with such issues. Previous attempts are divided broadly into the similarity-

based approach and feature vector-based techniques [61]. Similarity-based methods are 

developed to discover potential DTIs through the similarity matrices of drug and protein. Some 

early works to discover drug-target interactions have been proposed based on their compound and 

protein sequence similarity [62]-[63]. Feature vector-based methods are regarded as more 

advanced strategies that face drug and protein features straightforward. They can uncover the 

description of the hidden knowledge concerning significant features and then generate rules to 

reproduce experts’ decision process. These methods provide meaningful solutions for discovering 

interest patterns such as single molecule sub-structure influence, but they are not able to precisely 

reflect the molecule substructure and protein subspace interactions. It’s also tricky for current 

techniques to 

analysis real high-

dimensional protein 

descriptors except 

apply parallel 

scheme [64]. 

Fortunately, it is 

widely believed 

such a problem can 

be resolved by deep 

learning 

mechanisms [65], 

[1]. Compressed 

representation has 

been used to assess 

large volumes of Fig. 12. A Stacked Auto-Encoder composed by two visible layers and two hidden layers 
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protein attributes and possibly uncovers significant hidden relationships exist in the protein [67]-

[68]. 

 

From the perspective of the drug design, the previous drug-target prediction based on the 

data model is an excellent place to start. Previously, the leading research area in drug-

target interaction is similarity-based approaches that use drug and target similarities. The 

conventional techniques for predicting drug-target interactions are favorite in screening 

potential drug candidates for further drug action verification. Such similarity-based 

methods derived from drug-drug and target-target similarities exploring. Drug similarity 

was tested from the molecules of drugs by using SIMCOMP [69]. Target similarity was 

computed from the protein sequence by using Smith-Waterman score [70]. In [61], they 

used the Smith-Waterman score to describe a genomic space and utilized SIMCOMP 

score to describe pharmaceutical space. And then, they proposed a kernel regression 

approach called bipartite graph learning to predict drug-target interactions. In [71], they 

used the drug and target similarities as the support SVM kernels and classified 

interaction twice and merge the experimental results to provide drug target predictions. 

KBMF2K firstly map the drug and target spaces to low-dimensional spaces similarity 

for drug–target interaction prediction [72]. In [73], they developed a network-

consistency-based prediction method (NetCBP) to predict drug-target interactions, 

which rely on drug similarity network and the target similarity network integration. 

Some above previous works enjoyed very high prediction accuracy. However, the 

similarity-based direction has an underlying problem that support data is not a direct 

biological expression. The similarity represents another dimension of original drug and 

target properties that may make experiment only achieve a high rate of errors regarding 

millions of candidates. Even more interesting is feature-based methods have been 

attempts to use a classifier to infer drug-target interactions adopt different encoding 

schemes impose different descriptors on the protein sequences and compounds. A recent 

study [74] first try to address drug structures and protein sequence as a structure-activity 

relationship. They use SVM as a classifier to predict DTIs can be regarded as a 

significant direction even if a large-scale calculation is time-consuming. Bigram-PSSM 

takes advantage of PAAC descriptors for more accurate prediction [75]. Other studies of 



52  

more recent interest include heterogeneous integration [76] or rare domain knowledge 

acquisition [77]. Even so, such methods cannot be required for high dimensional 

descriptor analysis. To overcome these drawbacks, we propose a novel model to extract 

large-scale drug-target descriptors and classify output information after a deep 

representation phase. 

 

In this study, we develop a new deep learning-based method for the prediction of drug-protein 

interactions from protein sequence descriptors and molecule fingerprints with Support Vector 

Machine aiming at improving the efficiency and effectiveness of the classification accuracy. 

Firstly, we introduce a multi-scale local descriptor approach for discovering realistic large amino 

acid sequences descriptors and use chemical fingerprints to represent the chemical space. 

Secondly, to enhance the accuracy and transfer the large descriptors to deep representations, the 

extracted features of the input layer would be automatically learned by an unsupervised Stacked 

Auto-encoder for output a reconstruct lower dimensional layer. Finally, we focus on use classifier 

to judge whether one drug interacts with one target. Our method constitutes a significant advance 

because it logically considers coupled representations of protein and molecules that remain 

unobserved in any interaction. We adopt a popular data standard to test the proposed method 

which includes G protein-coupled receptor, enzyme, ion channel, and nuclear receptor dataset 

[61]. MFDR has been tested with Gold standard data sets that can be a beneficial approach to 

predict the DTIs. The necessary steps of MFDR, Fig 11 shows a procedure of the proposed 

method according to our definition. 

 

 MFDR in details 

Our method undergoes two main computational steps: the compound-protein interaction 

representations discovery step briefly describe how to extract more meaningful protein 

sequence attributes. At the representation step, we introduce Stacked Auto-encoder to 

obtain new representations instead of original high-dimensional protein and compound 

features. New representations are the statistically significant solution to the sparse and 

large data set. Then, in the classification step, we use these discovered new space sets as 

input for assigning them as DTIs associated information. 



53  

 

  Feature representations of protein sequence and chemical structure 

Feature extraction usually influences the quality of training data when we analyze large-

scale biological data. Some elaborate protein extraction methods have revealed the 

valuable representations and also have had many remarkable discoveries [78-81]. To 

fully extract the interaction related features, we adopt an advanced multi-scale protein 

sequence representation method to extract feature vectors from sequences by using a 

binary coding scheme [81]. Typically, an original polypeptide sequence should contain 

multiple continuous sequence segments which are composed of residues. For collect 

specific feature vector of the protein sequence, we will take multi-scale descriptors to 

calculate and concatenate each continuous local region by introduced decomposition 

technique. Based on the actual situation, this approach is able to transform the protein 

sequences into multi-scale feature vectors which can span several length levels. 

Molecular fingerprints are descriptions of drug chemical sub-structures originally 

introduced to assist in chemical database searching [82]. Our chemical fingerprints set 

are generated by the PubChem System to encode the 3D structure of a molecule for our 

computing method. These fingerprints are used by PubChem for similarity neighboring 

and similarity searching to idealize 3D chemical structure. A fingerprint is an ordered 

list of binary (1/0) 881 bits in length. Fingerprints property is 

"CACTVS_SUBGRAPHKEYS" in PubChem and Base64 encoded to provide a textual 

representation of the binary data.  

 

Each drug is represented by a chemical feature vector	ܦሺ௖௛௘௠ሻ	 ൌ 	 ሺ݀ଵ, . . . , 	݀௤ሻ், where 

each element encodes for the presence or absence of each substructure by 1 or 0 and q is 

the number of fingerprints. Each target protein is represented by a sequence feature 

vector		ܶሺ௣௥௢௧௘௜௡ሻ	 ൌ 	 ሺݐଵ, . . . ,  ௣ሻ் , where each element encodes for the value of eachݐ	

descriptor range from 0 to 1 and p is the number of descriptors. 

 

 Deep representations inferring interactions 

After the multi-scale feature of drug and protein collected, known drug-target interactions 
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will be represented by many factors includes the properties of drug compounds and the 

properties of the target protein. Some biochemical effect may be contained in these 

properties that including structure shape, amino acid composition, hydrophobicity, van 

der Waals force, Hydrogen bond, Water effects, Metal-ligand interactions and so on. In 

our method, each drug-target interaction sample will be represented by more than one 

thousand dimensional vectors. Each drug-target interaction features is made up of 

chemical substructures and multi-scale protein representations. That is to say, each drug-

target interaction can be represented as	ܶܦ ൌ ሺ݀ݐଵ, ,ଵݐ݀ ,ଵݐ݀  ௦), where dtx is the xthݐ݀…

drug-target interaction feature combined with dq and tp. As with the original large-scale 

interactions, however, there are sparsity and imbalance issues if we have to deal with new 

representations directly. Dimensionality reduction has proven to be a useful method deal 

with large-scale data. The only problem is dimensionality reduction usually loss some 

important information of input data. Drug discovery is directly influencing the human 

body, so any information about the medicine should keep as more as possible. Fortunately, 

deep learning will keep valuable information after executing the training process. 

According to [83-84], deep learning built multi-layer architecture neural networks and 

trained with the greedy layer-wise unsupervised pre-training algorithms. DNN is about 

applying the greedy layer-wise unsupervised pre-training mechanism that can reconstruct 

the original raw data set. We can learn valuable features with deep representation instead 

of traditional features filtering method. Then, we can use a classifier and obtain higher 

accuracy with better generalization from the learned features. Also, the risk of fall in a 

local minimum rather than a global minimum problem in traditional training method has 

been solved by a deep network that greedily trained up hidden layer with Auto-encoder 

at a time. Because of the feature type of our drug data are real numbers and sparse 

distribution, we choose to stack Sparse Auto-Encoder for building a deep architecture of 

the neural network model.  

 

Stacked Auto-Encoder is a stacked architecture network that applies Auto-Encoder in 

each layer [85]. In a neural network, each “neuron" in one layer is a computational unit 

that could be regarded as input vector	ܺ	 ൌ ሺݔଵ;	ݔଶ, … ,   (and a+1 intercept term), and	௡ሻݔ

outputs ݄ௐ,௕ሺݔሻ ൌ 	݂	ሺ்ܹݔሻ ൌ ݂	ሺ∑ ௜ܹ	ݔ௜ ൅ ܾሻଷ
௜ୀଵ  where a nonlinear function 	݂ ∶
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	Ը	 → 	Ը. is activation function. The connections among different neurons in the network 

can be taken as a weight matrix W. In usual cases of a neural network, sigmoid function 

is normally using	݂ሺݖሻ ൌ ଵ

ଵା௘௫௣	ሺି௭ሻ
 . A conventional Auto-Encoder would endeavor to 

learn a function	݄ௐ,௕ሺݔሻ ൎ x which means it is discovering an approximation to the 

identity function, to output an approximate outcome	xො. The identity function seems a 

typically small function trying to learn but by placing constraints on the network. For 

deep represent DTIs information, we can make discovery useful structure of drug-target 

interactions data from limiting hidden units. Take our multi-scale features as 

examples,	ܶܦ ൌ ሺ݀ݐଵ, ,ଵݐ݀ ,ଵݐ݀  ܺ. Suppose the original	௦) is defined as input vectorݐ݀…

feature representations are collected from a 1448-dimensional feature space, i.e. x ∈

Ըଵସସ଼ which means there are 1448 visible input units. If we set that there are 600 hidden 

units in the hidden layer1, according to the requirement	݄ௐ,௕ሺݔሻ ൎ x, the next layer need 

to learn a compressed representation of the input. This also means that the hidden layer 

will start to reconstruct the 1448-dimensional input x by a given vector of hidden unit 

activations	aሺଶሻ ∈ Ը଺଴଴. Access to the multi-scale DTIs data could then be transformed 

into deep representations through the reconstruction process, instead of the high-

dimensional and noise visible units.  There is an interesting structure hide in the input 

data like two features have a relationship. Otherwise, this reconstructive function 

wouldn’t work if the inputs features were completely random, i.e., each xi is independent 

of the other features. The overall cost function of non-sparse Auto-Encoder can be defined 

as: 

,ሺܹܬ ܾሻ 

ൌ ൥
1
݉
෍ܬ൫ܹ, ܾ; ,ሺ௜ሻݔ ሺ௜ሻ൯ݔ

௠

௜ୀଵ

൩ ൅
ߣ
2
෍ ෍෍ቀ ௝ܹ௜

ሺ௟ሻቁ
ଶ
						

௦೗శభ

௝ୀଵ

௦೗

௜ୀଵ

௡೗ିଵ

௟ୀଵ

 

ൌ ቂଵ
௠
∑ ሺଵ

ଶ
||݄ௐ,௕ሺݔ

ሺ௜ሻሻ െ	ݔሺ௜ሻ||ଶሻ௠
௜ୀଵ ቃ ൅ ఒ

ଶ
∑ ∑ ∑ ሺ ௝ܹ௜

ሺ௟ሻሻଶ௦೗శభ
௝ୀଵ

௦೗
௜ୀଵ

௡೗ିଵ
௟ୀଵ   																ሺ1ሻ 

The first term in ܬሺܹ, ܾሻ is an average sum-of-squares error term, where m is the training 

samples number. The second term is a regularization to prevent over-fitting, where λ	 be 

supposed to control the relative importance of the two terms. Normally, Auto-Encoder is 

aiming to minimize Equation (1) for that output	݄ௐ,௕ሺݔሻ ൎ  ሺ௜ሻ can approximate the rawݔ
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data ݔሺ௜ሻ as much as possible.  Further, largely hidden units still could be used to discover 

valuable information if we impose a sparsity constraint on the hidden unit [85]. Sparse 

Auto-Encoder tries to keep the output mean value of hidden layer to 0 which means most 

neurons are considered to be inactive. The overall cost function of Sparse Auto-Encoder 

can be defined as: 

,௦௣௔௥௦௘ሺܹܬ ܾሻ ൌ ,ሺܹܬ ܾሻ ൅ ∑ߚ ො௝ሻߩ||ߩሺܮܭ
௦మ
௝ୀଵ                            (2) 

 

Where 

ො௝ߩ ൌ
ଵ

௠
∑ ሾ ௝ܽ

ሺଶሻሺݔሺ௜ሻሻሿ௠
௜ୀଵ                                                     (3) 

 

ො௝൯ߩห|ߩሺܮܭ ൌ ߩ log ఘ

ఘෝೕ
൅ ሺ1 െ ሻߩ log ଵିఘ

ଵିఘෝೕ
                                     (4) 

where ρ is a sparsity parameter, ݏଶ is the number of the hidden neurons and β controls the 

weight of the sparsity penalty term. Eq. (3) is average activation of hidden unit j and we 

need to enforce the constraint ෝ௝ߩ	 ൌ  Eq. (4) is the Kullback-Leibler divergence .  ߩ

between a Bernoulli random variable with mean ρ and a Bernoulli random variable with 

mean 	ߩෝ௝ . 

 

Specifically, we should stack Sparse Auto-Encoders layer by layer to a whole deep 

network. A typical two hidden layers Stacked Auto-Encoder structure diagram is shown 

in Fig 12 describes the main procedure of the proposed model. As in Fig 12, the input 

layer is a visible layer that takes the original data set. In every hidden layer, the neurons 

receive data from the previous layer, and then they compute the received data through an 

Auto-Encoder. At the end of each hidden layer, the neurons output the computed new 

features to the next hidden layer or visible layer. After a deep network processing, the 

original data set will represent by deeper feature spaces layer by layer. Therefore, Stacked 
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Sparse Auto-Encoders can learn enriched representations from the large-scale original 

data sets. 

 

 Prediction model 

After we bring in Stacked Auto-Encoder as an unsupervised learning model to get new 

representations, one useful classifier will be used to predict whether a given drug-target 

interaction is positive or not according to the gold standard dataset. SVM (Support 

Vector Machine) will be used as the classifier to build our predicting model. SVM is a 

popular classification algorithm initially developed by Vapnik et al. and it has been 

 

 
 

 

Fig. 13. ROC curves of four different drug-target interaction predictions 
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proved extremely effective in chemical and biological classifications [86-87]. The 

necessary procedure of utilizing an SVM model for DTIs prediction can be described 

briefly as follows. Firstly, we use the open source package from LIBSVM [87] to 

implement SVM. Then, SVM maps the inputted drug and target original representations 

space X into a high dimensional feature space F with a linear algorithm due to the linear 

relations exist in training data. After that, the SVM model will find out an optimized 

linear division within the feature F. According to our test and previous experiences, 

Radial Basis Functions (RBF) kernel is the best kernel selection of the traditional kernel, 

especially it’s appropriate for the high-dimensional data sets and has better boundary 

response. 

 

 Results 

 

 Data Preparation 

In this study, the data which are used to predict DTIs come from [61]. There is a drug-

target interactions gold standard dataset formed by four types of DTIs, which includes 

enzymes, ion channels, GPCRs, and nuclear receptors. After interactions collection, the 

final number of positive drug-target interactions in the gold standard dataset are 2926, 

1476, 635 and 90, respectively. Each category is further organized in drugs are 445, 210 

223and 54, respectively and the protein numbers are 664, 204, 95, 26 with four categories. 

Table 6 shows the statistics of the used dataset.  

Table 5. Stacked auto-encoder parameters 

Parameter Value 

Neurons in hidden layer 1 600 

Neurons in hidden layer 2 200 

Beta (weight of sparsity penalty term) 5 

Sparsity (desired average activation of the hidden 
units) 

0.05 
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Suppose that we have a set of n drugs with biological profiles of m target proteins. To 

encode drugs features, chemical structures of drug compounds are extracted from 

PubChem database which uses a fingerprint corresponding to t 881 chemical 

substructures. Each drug was represented by an 881-dimensional feature 

vector 	ሺ௖௛௘௠ሻܦ	 ൌ 	 ሺ݀ଵ, . . . , 	଼଼݀ଵሻ் , where each element encodes for the presence or 

absence of each substructure by 1 or 0, respectively. To encode protein features, the 

protein sequence is extracted from the multi-scale local descriptor feature representation 

scheme. Regarding test larger descriptors influence, all descriptors calculated in 4-bit and 

5-bit are concatenated. For 4-bit binary form, each sequence was represented by a 567 

dimensional vector		ܶሺ௣௥௢௧௘௜௡ሻ	 ൌ 	 ሺݐଵ, . . . , ହ଺଻ሻ்ݐ	 . For 5-bit binary form, a total 1449 

dimensional vector 		ܶሺ௣௥௢௧௘௜௡ሻ	 ൌ 	 ሺݐଵ, . . . ,  has been built to represent the protein	ଵସସଽሻ்ݐ	

sequence.  Each element encodes for the value of each descriptor range from 0 to 1. 

 

On present understanding, known negative DTIs samples are generally much larger than 

the positive DTIs samples. Because the size of non-interactions is not comparable with 

the size of positive interactions, some works may take a high true negative result by the 

significant larger negative samples. With the goal of solving the above problems, previous 

feature-based approaches have randomly selected negative samples from the non-

interactions until the ratio hitting the one-to-one scale. We considered all real positive 

Table 6. Drug-target data statistic 

Type Ion channel Enzyme GPCR 
Nuclear 
receptor 

Drugs 
210 445 223 54 

881 bits 

Target proteins 

204 664 95 26 567 
Descriptors 

1449 
Descriptors 

Positive  
Drug–target Interactions 

1476 2926 635 90 
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drug–target interactions and randomly selected the same negative sample as many as the 

positive samples like [74]-[75]. In summary, the original features number can be extracted 

from MFDR of 4-bit is 1448 that comprise 881 chemical substructures and 567 protein 

descriptors. And so on, each of the drug-target interaction has 2330 features which 

extracted from MFDR of 5-bit.  

 

 Performance Evaluation 

Since our method like evaluates deep representations based on their profiles with protein 

and molecules, which in turn refer to specific sub-actions, we use a 2-layer Stacked 

Sparse Auto-encoder model to rebuild the drug and target features. The first hidden layer 

of our model is composed of 600 hidden units while the second hidden layer is 

composed of 200 hidden units. Which mean, there are 200 deep representations come out 

from thousands of original features. Table.5 shows the parameter configuration of the 

Stacked Sparse Auto-Encoder model. We performed the fivefold cross-validation to split 

gold-standard data into five subsets of equal size. Each subset was then taken in turn as a 

test set, and we performed the training on the remaining four sets. We used the grid search 

to select the best regularization parameter C and the kernel parameter γ for the radial basis 

function (RBF) based on the overall accuracy. In this study, the performance of MFDR 

was mainly evaluated by using ROC. The ROC (receiver operating characteristic curve) 

demonstrates the true-positive rate and false-positive rate of the experimental result, 

where true-positives are the number of correctly predicted drug-target interactions while 

Table 7. Comparison for the Auroc of the MFDR versus others on the four dataset 

Data set 

Feature-based Similarity-based 

MFDR  
Cao, D.S. et 

al. 
Bigram-
PSSM 

Bipartite 
Graph 

Learning 
KBMF2K NetCBP 

Nuclear 
receptors 

0.886 0.882 0.869 0.692 0.824 0.839 

GPCRs 0.904 0.890 0.872 0.811 0.857 0.823 

Ion 0.933 0.942 0.889 0.692 0.799 0.803 

Enzymes 0.969 0.948 0.948 0.821 0.832 0.825 
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the false-positives are the number of not correctly predicted drug-target interactions. AUC 

refers to the area under ROC curve which is an important measure which can be used for 

evaluating the classification accuracy.  

 

Given the larger number of protein sequence descriptors can reflecting structures more 

real [79], we followed two different regions outlined by 4-bit and 5-bit extraction. The 

resulting AUROC scores of MFDR(4-bit) for enzymes, ion channels, GPCRs, and nuclear 

receptors are 0.919, 0.924, 0.875 and 0.862 respectively. The resulting AUROC scores of 

classical SVM without deep representation are 0.903, 0.879, 0.851 and 0.838. As Fig 13 

shows, our prediction accuracy is higher than the classical SVM that proved the multi-

scale feature deep representations can improve the DTIs prediction while reducing high 

dimensional features. We also give the AUROC scores of MFDR(5-bit) are 0.969, 0.933, 

0.904 and 0.886 respectively. It proved that MFDR has the chance to improve 

performance under a much larger range of descriptors even project to same low-

dimensional representations. In addition, we believe MFDR should get significantly 

better performance regarding higher bit binary coding. 

 

To evaluate the performance of the method in comparison to previous work, we 

considered three important studies in this similarity-based area and two feature-based 

 

Fig. 14. Interaction matrix of nuclear receptor. Real interaction matrix is known drug-target 
interactions of nuclear receptor, predicted interaction matrix is generated by MFDR. White 
pixels represent the positive interactions, whereas Black pixels represent the negative 
interactions. 
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studies. We compared the best AUROC scores of the MFDR with these approaches 

including KBMF2K [72], NetCBP [73], Bipartite Graph Learning [61], Bigram-PSSM 

[75] and the proposed method by Cao, D.S. et al. [74]. Table 7 shows the AUROC scores 

of MFDR and others divided by four interaction types. As the results look like those 

shown above, the prediction accuracy of the MFDR is superior in comparison with most 

methods. We go further compared the predicted interactions of the nuclear receptor to 

real interactions as Fig 14 shown. As there is a high coincidence of the bright pixels to 

the predicted matrix and the real one, we can claim the deep representations successfully 

kept values from original large descriptors. 

 

 Summary 

In this work, a new prediction model was developed for inferring drug-target interactions. 

We adopt the multi-scale optimization theory to extract the drug and protein details from 

limited biological information. Deep representation approach also introduced in our 

method for retaining the realistic biological properties and reducing the high-dimensional 

features. This is the first time that deep learning was used to predict drug-target 

interactions. The key aspects of the DTIs prediction model reflect a feasible way of 

mapping the large-scale drug-target descriptors to lower-dimensional representations 

rationally. The proposed Stacked Auto-encoder model can generate representations of the 

multi-scale data layer by layer. In the last step, our model successfully reconstructs the 

representative features from the stacked hidden layers and builds an SVM as the final 

classifier. We gathered several kinds of DTIs datasets that we used to train the deep 

representation model. The experimental result shows that MFDR is able to handle the 

large-scale pharmacological data effectively and improve the performances of the drug-

target interaction prediction model. Our work can provide some important mechanisms 

of drug-target interaction to make the drug discovery navigation simpler. Also, deep 

learning successfully transfers high dimensional data to a relatively lower dimensional 

coupled description which make our model more sensitively reflect real actions. It has 

been proved in large-scale drug-target interactions and it should have the ability to solve 

other large biological data problem in the future. 
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4.2 Deep graph fusion for social network clustering  

 

 Overview 

 

Given the fact that heterogeneous social network datasets can be collected, learning 

fused representations from multiple real-world networks is increasingly becoming an 

urgent pursuit of the nodes clustering model [88-89]. Though various types of data 

modalities, they are used to characterize the same entities, which in other words are 

vertices, or nodes, in the network data. For example, social networks typically use 

vertices to represent users and edges to represent social links between users, and contents 

that may characterize users. A protein-protein interaction (PPI) network can also be 

described with vertices representing proteins, edges representing interactions between 

proteins, and GO terms that are used to represent the biological meanings of those 

proteins [90-91]. The identification of meaningful sub-groups, in which data entities are 

cohesively interrelated, may significantly enhance the learning of knowledge hidden in 

these heterogeneous networks. 

 

To discover such meaningful groups in social network data, which are also named as 

communities, or clusters, some approaches so-called graph clustering algorithms, have 

been proposed. Most traditional clustering algorithms only consider a single network 

[92-93]. Such methods, e.g., spectral clustering (SC) [94] and affinity propagation (AP) 

[95] mainly take into the consideration topological information of the network data while 

performing the task of clustering. To overcome the mentioned issue, several methods are 

proposed to detect network clusters by learning latent structures from different networks 

simultaneously. For examples, two model-based approaches, CESNA [96] and relational 

topic model (RTM) [97] may discover network clusters by taking into the consideration 

both node links and content information. In [98], an evolutionary community detection 

algorithm (ECDA) is proposed to detect graph clusters by grouping vertices into the 

same cluster according to the structural and attributed networks. In [99], an algorithm 

for mining interesting subgraphs in the attributed graph (MISAGA) is proposed to make 

use of statistical measure to solve subgraphs discovering as a constrained optimization 
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problem. Though these mentioned algorithms are used to some extent, they either 

consider the information from the single network, e.g., topological or attribute similarity 

network or do not consider the common representations of network data which involve 

information from heterogeneous sources.  

 

Besides existing in the network data, the feature of multiple modalities can also be found 

in various data types. Therefore, identifying an effective way to describe the common 

characteristics across different data modalities has drawn much attention in recent years. 

Among those presented works, there have been several ones that try to identify such 

common characteristics by taking into the consideration fusing data from multiple 

domains, such as remote sensing with multi-spectral and panchromatic images [100], 

target tracking with sensors data [101], biological applications with omics data [102], 

heterogeneous social networks detecting [103], and some applications with visual and 

temporal data [104]. These data from multiple sources are inherently correlated, and 

sometimes provide complementary information to each other. Therefore, data fusion has 

been paid much attention to, which mainly aims to generate most similar representation 

between entities under the existing domains. Many such fusion algorithms are proposed 

to attempt to fuse multiple data more effectively and efficiently. These techniques were 

drawn from a wide range of areas including data association, statistical estimation, and 

decision fusion. Data association-based methods, including the nearest-neighbor (NN) 

algorithm, the joint probabilistic data association (JPDA) method [105], the multiple 

hypothesis tracking approach (MHT) [106], Distributed JPDA and MHT, aim to 

establish the set of observations. For example, JPDA is a joint approach for tracking 

multi-target and the association probabilities are computed using all the observations. 

The goal of statistical estimation techniques is tracking the state of the target under 

measurements changing. They usually take probability theory to estimate a vector state 

from a vector measurement. Typical implementation models of estimation methods 

include maximum likelihood and Kalman filter [107-108]. Decision fusion discovers 

representations as sources and combines them to obtain a more accurate decision. 

Bayesian’s methods are typically adopted techniques in this kind of approaches [109].  
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Besides, there are also some other fusion methods proposed for fusing multi-domain 

networked data. These approaches adopt heterogeneous descriptions of the same data 

entities, generate similarity networks representing the relationship between data entities, 

and then fuse them into one single network. These fusion methods for network data are 

relatively robust to noise and bias so that weak similarities are eliminated but the strong 

ones are preserved. In [88], similarity network fusion (SNF) is applied to fuse diverse 

types of genome-wide data and identify cancer subtypes. In [90], another algorithm 

called PCIA, which concatenates both topological and attribute network for clustering. 

Moreover, deep networks also have been successfully applied to feature learning from 

multiple modalities [110]. Though effective to some extent, these algorithms are not very 

well suited for the task mentioned in this thesis, i.e., discovering interesting groups, 

which are latent representations of multi-domain network data. Despite some fusion 

methods have been proposed, the effectiveness of them, especially when they are using 

in the task of network community detection, is not satisfying. Since equalized edge 

values usually result in a poor clustering result of the fused network, the algorithm also 

needs overcome the clustering difficulty if new edge values approach to the same after 

the fusion step.  

 

To address the above challenges, in this section, we develop a new deep fusion method 

named Deep Multiple Networks Fusion (DMNF), to perform the task of learning latent 

communities in network data. We propose to treat the finding eigenvectors of a fused 

network as deep representing the process. More precisely, the deep representation can 

be used as a tool for discovering hidden relations under the fused network. Based on this 

idea, we first introduce a test statistical approach to eliminate the irrelevant attribute 

values. Second, to fuse the topology-based and content-based networks to a 

comprehensive network, we perform a nonlinear method that iteratively updates every 

network for making them more similar. Finally, we feed the fused network into a sparse 

stacked Auto-Encoder, in which we seek the best non-linear network representations that 

can approximate the input network. In Fig. 15, the procedure of the proposed method is 

shown. From the best of our knowledge, this is the first attempt that makes use of deep 

learning to deal with network fusion. The traditional fusion methods, including the 



66  

multimodal deep learning method, directly combine the features of various modes into a 

larger set of features. Even if they are fused in the deep network, it is still hidden in the 

hidden layer to combine multiple sets of features. Different from such methods, network 

fusion firstly builds the corresponding approximation network for the data of each mode 

and transforms the feature expression into network representation. The expression form 

of n*m is transformed into the network expression matrix of n*n. Next, each edge in the 

network is searched for its comprehensive representation based on multiple network 

edges.To evaluate the performance of the proposed method, we have performed 

experiments using real social network data. Experimental results show that DMNF 

outperforms most algorithms, which either or not are fusion-based. The communities 

detected by DMNF are better matching with the ground truth ones. Overall, the 

contributions of this section can be summarized as the following. 

• We present a new model to learn comprehensive view which involves multiple 

networks, while most of the existing approaches do this relying on the one kind of 

network.  

• The proposed model captures deep representations of the fused network that is able to 

generate deep relations contain both topology and content relations.  

• The proposed model may avoid noise and ensure that the attribute values it considers 

for mining of interesting subgraphs are the relevant and interesting ones. 

 

 

Fig. 15.  The procedure of DMNF. (1) Example users similarity matrix of content expression 
and topology expression for the same users of social network. (2) Preliminary fused matrix 
that constructed by matrix fusion step (3) Users are represented by nodes and fused 
similarities are represented by edges. (4) Deep autoencoder eliminate edges by generating 
deep graph representations. (5) The final clustered network. 
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 Method 

Our method undergoes three main computational steps: 1) the network learning, which 

is used to extract two networks, representing the interrelationship concerning topology 

and content, between pairwise vertices. 2) the network fusion, which may generate a 

similarity network between vertices, based on the two original ones obtained in the first 

step. 3) the deep representation of the network, which introduces the stacked Auto-

encoder for obtaining new representations instead of learned fusion network. New 

representations are statistically significant solutions to the sparse and large network. 

Then, in the network clustering step, we use these discovered new space sets as input for 

assigning network vertices into communities. 

 

 Network Learning 

For each vertex, different attribute values may have different contributions to the 

learning of network data. Interesting attribute value pair also influences the network 

learning. For example, an education degree could be a good attribute for grouping users 

with similar institutions in a social network. Hence, we like to make use of node attribute 

values relevance to eliminate the irrelevant content information while generating new 

nodes similarity within relevant internal attributes for the network learning task. To 

discover all such kinds of associated pairwise attribute values, we bring in a residual 

analysis approach from [111] to make a reasonable statistics to prove whether there is a 

relevance of ܽ݁ݐݑܾ݅ݎݐݐ	݁ݑ݈ܽݒ௣  and ݑ݈ܽݒ	݁ݐݑܾ݅ݎݐݐܽ	 ௝݁ . Let ܿݎ݋௣௝  be the number of 

connecting nodes that have ܽ݁ݐݑܾ݅ݎݐݐ	݁ݑ݈ܽݒ௣and ܽ݁ݐݑܾ݅ݎݐݐ	ݑ݈ܽݒ ௝݁, as shown in Table 

8. In this table, it shows the number of connections connecting pairwise vertices 

characterized by each pair of attribute values in the social network. Given this table, we 

may further define: 

pj݌ݔ݁ ൌ
௖௢௥p+௖௢௥+j

்
                                                                           (5) 

as the expected frequency that ܽ݁ݐݑܾ݅ݎݐݐ	݁ݑ݈ܽݒ௣and ܽ݁ݐݑܾ݅ݎݐݐ	ݑ݈ܽݒ ௝݁ are connected in 

the network, where  

+pݎ݋ܿ ൌ ∑ pkݎ݋ܿ
௡
௞ୀଵ 	                                                                    (6) 
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j+ݎ݋ܿ  ൌ ∑ kjݎ݋ܿ
௠
௞ୀଵ 	                                                                     (7) 

ܶ ൌ ∑ mnm, nݎ݋ܿ                                                                           (8) 

We bring in an approach from [111] to make a reasonable statistical test to prove whether 

there is a relevance of two attribute values: 

ܴpj ൌ
௭pj

ටሺଵି೎೚ೝp+

೅
ሻሺଵି೎೚ೝ+j

೅
ሻ
					                                                              (9) 

where ሺ1 െ ௖௢௥p+

்
ሻሺ1 െ ௖௢௥+j

்
ሻ is defined as the adjusted term of zpj. 

pjݖ ൌ
௖௢௥pj ି௘௫௣pj 

√௘௫௣pj 
			                                                                     (10) 

In previous works, Rpj has been shown to follow a standard normal distribution [111]. If 

the value of Rpj is larger than 1.96, it would be considered there is a correlation between 

௣݁ݑ݈ܽݒ	݁ݐݑܾ݅ݎݐݐܽ  and	ܽ݁ݐݑܾ݅ݎݐݐ	ݑ݈ܽݒ ௝݁, at a 95% confidence level. We use these to 

evaluate whether there is a strong association between each pair of attribute values. After 

determining the association between attribute values, we then move to the similarity 

problem base on such associations. Let ܩ ൌ ሼܸ, 	ܸ	ሽ represent a network, whereܧ ൌ

	ሼݑଵ, ,ଶݑ … ,  vertices representing all the users in the network, and the	is a set of ݊	௡ሽݑ

	ܧ ൌ ൛݁௜௝	ൟ	is the edge set containing the edges between pairwise vertices, and their 

values represent how similar these vertices are. To achieve a content-based similarity 

matrix of users, we assess nodes similarity by use of Jaccard similarity. That is to say, 

edge weights of the content network are constructed by a ݊ ൈ ݊ similarity matrix L and 

,ሺ݅ܮ ݆ሻ representing the similarity between nodes.  

Table 8. Observed Atttibute Values Co-occurrence 

 ar1 ar2 … arj … ars 

ar1 cor11 cor12 … cor1j … cor1s 

ar2 cor21 cor22 … cor1j … cor2s 

… … … … … … … 

arp corp1 corp2 … corpj … corps 

… … … … … … … 

arr corr1 corr2 … corrj … corrs 
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For the topological network, we observe that link matrix is very sparse. As cosine 

similarity is very efficient for evaluating the interrelationship between sparse vectors, 

we propose to use a link-based similarity measure to evaluate the topological similarity 

between pairwise vertices in the social network. The measure is motivated by the 

previous work developed for the genome-wide data analysis [88]. Let ܧ௧	denotes the set 

of nா edges representing all the links in a network. If there is an edge	e௜௝ ∈  ௧, it meansܧ

that the two vertices ݑ௜ and ݑ௝ are connected through the link of	݁௜௝. That is to say, edges 

are represented by an 	݊	 ൈ 	݊ adjacent matrix M with ܯሺ݅, ݆ሻ indicating the existence of 

a link between pairwise nodes. Cosine distance has been proven to be useful in 

calculating the distance for binary variables. Hence, the link-based similarity matrix 

,ሺ݅ܮ ݆ሻ	is the topological weight of the edge between user ݅	and user ݆ which is computed 

as: 

,ሺ݅ܮ ݆ሻ ൌ exp ൬െ
ఘమ൫௨೔,௨ೕ൯

ఓఌ೔,ೕ
൰	                                                                  (11) 

where 

,௜ݑሺߩ ሻݑ ൌ 1 െ
∑ ௨೔௨ೕ೔

ට∑ ௨೔
మ

೔ ට∑ ௨ೕ
మ

ೕ

ൌ 1 െ
〈௨೔,௨ೕ〉

‖௨೔‖ฮ௨ೕฮ
                                                (12) 

and 

௜,௝ߝ ൌ
ఘሺ௨ഢ,௎ഢሻതതതതതതതതതതതାఘ൫௨ണ,௎ണ൯

തതതതതതതതതതതതାఘ൫௨೔,௨ೕ൯

ଷ
                                                                      (13) 

The ߩ൫ݑ௜, ௝൯ݑ  denotes the cosine distance between nodes ݑ௜  and ௝ݑ	 ௜,௝ߝ ,  is a scale 

adjusting function,	ߤ is a hyperparameter and ߩሺݑ, ܷሻതതതതതതതതത is the mean value of the cosine 

distances between a node and each of its neighbors. 

 

 Network Fusion 

Following the criteria defined for the desired content similarity network and link 

similarity network, we now formulate a fusion problem aiming at combining the content 

network and topological network. To achieve a fused network from heterogeneous ones, 

we use a normalized weight matrix	ܭ ൌ   .as the full kernel on the vertex set V [88] ܮଵିܦ

,ሺ݅ܦis a diagonal matrix that entries ܦ ݅ሻ ൌ ∑ ,ሺ݅ܮ ݆ሻ௝ , and ∑ ,ሺ݅ܭ ݆ሻ௝ ൌ 1. To arrive a 
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better normalization, our approach looks at making this degree of the self-similarities on 

the diagonal entries of L, and keep ∑ ,ሺ݅ܭ ݆ሻ௝ ൌ 1: 

,ሺ݅ܭ ݆ሻ ൌ ௅ሺ௜,௝ሻ

ଶ∑ ௅ሺ௜,௞ሻೖಯ೔
                                                                                             (14) 

subject to the constraints: ݅ ് ݆ ,otherwise ܭሺ݅, ݆ሻ ൌ ଵ

ଶ
. Let denote ௜ܰ  as a set of ݑ௜ ’s 

neighbors including ݑ௜  in G. We then measure local affinity by using K nearest 

neighbors (KNN) as follows: 

ܳሺ݅, ݆ሻ ൌ ௅ሺ௜,௝ሻ

∑ ௅ሺ௜,௞ሻೖ∈ಿ೔
                                                                       (15) 

subject to the constraints: ݆ ∈ ௜ܰ ,otherwise ܳሺ݅, ݆ሻ ൌ 0 

Let ܭ௧ୀ଴
ሺ௩ሻ  represent the initial	ݒ status network, ܳ௧ୀ଴

ሺ௩ሻ  represents the kernel matrix, and m 

represents how many networks we should consider. In this work, the ݉ ൌ 2	as we have 

a link-based network and content-based network. The fusion step is iteratively updating 

network corresponding to each of the data types: 

ሺ௩ሻܭ ൌ ܳሺ௩ሻ ൈ ቀ
∑ ௄ሺೖሻೖಯೡ

௠ିଵ
ቁ ൈ ሺܳሺ௩ሻሻ், ݒ ൌ 1,2,3,… ,݉                         (16) 

We perform (14) on ܭሺ௩ሻ after each update for a normalization. We would run ݒ parallel 

interchanging diffusion processes by updates the status network each time in the above 

step. At last, we achieved the final status network: 

ሺ௩ሻܭ ൌ
∑ ௄ೡ೘
ೡసభ

௠
                                                                              (17) 

 

 Deep Graph 

Let ܩ௙ ൌ ሺ ௙ܸ,  ௙ሻ be the new fused graph with its similarity matrix S, the vertex setܧ	

௙ܸ 	ൌ 	 ሼݒ௙ଵ, . . . ,  ௙௡ሽ representing all the nodes. Two vertices have a fused similarity s௜௝ݒ

between the two nodes, and s௜௝ can be obtained by the fused method in the previous 

section. To infer new representation of the normalized fused network, we deploy stacked 

auto encoder [85, 112] to learn a non-linear embedding of the fused network since it has 

a similar optimizing path with spectral clustering, as well as it can also eliminate edges 

with lower degrees of similarity. Besides, according to work in [112], the computational 
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complexity of Auto-Encoder is lower than original spectral clustering in the perspective 

of capturing useful low-dimensional representation. We use the n columns of normalized 

S as n nodes to Auto-Encoder. We know that optimization target of Auto-Encoder is to 

minimize the approximate error between reconstructed output 	݄ௐ,௕ሺݔሻ ൎ ሺ௜ሻݔ  and 

inputted ିܦଵܵ. A complete deep neural network is stacked up by a layer of sparse auto-

encoders. Finally, we introduce K-means to identify clusters of nodes from the fused 

deep represented network. 

 

(a) Facebook user A 

 

(b) Facebook user B 
Fig. 16.  Attributes of two Facebook users A and B in Facebook Dataset. 

Table 9. Experimental performance of different approaches in social network data 

Methods 
NMI 

Caltech Facebook 

Fusion 

DMNF 0.337 0.610 

CESNA 0.221 0.58 

RTM 0.277 0.592 

MISAGA 0.310 0.573 

ECDA 0.156 0.353 

Non-fusion 
SC 0.305 0.569 

AP 0.279 0.580 
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 Experiment 

In this section, we experimentally evaluate the proposed deep fusion algorithm with the 

application of social network clustering, using two sets of real social network data. The 

used datasets include Caltech and Ego-Facebook.  

 

 Experimental Datasets 

 

We perform experiments on two data collections, including Caltech [115] and Ego-

Facebook [167]. Though both of these two datasets are related to social networks, the 

number of users, the social ties, and the attribute values that are used to characterize the 

social users are quite different from one to the other. The characteristics of these two 

datasets can be seen as the following. 

 

Caltech: This is a social network dataset which is collected based on the relationship 

between social network users at California Institute of Technology. The truth community 

affiliation for each user is obtained by identifying the dormitory affiliation. The Caltech 

 

Fig. 17. Sample of Fused Network obtained from topological and content network 
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dataset consists of a network of 769 vertices representing 769 social network users. It 

has 16656 edges connecting these users. There are 53 attribute values associated with 

the vertex that are used to represent the user profiles. In this social network dataset, there 

are 35 ground truth communities.  

 

Ego-Facebook: The Ego-Facebook dataset is much larger than the Caltech dataset, as 

there are 4039 vertices and 88234 edges, representing the social network users, and 

social ties between them, respectively. Besides, 1283 attribute values are used to 

characterize users. In this social network dataset, there are 193 ground truth communities 

identified in the previous work [167]. Instead, we selected two nodes and showed their 

attribute values in Fig. 16. From Fig. 16, we noted these two users have some attributes 

in common which influence their similarity calculation.  

 

 Comparison Methods and Performance Evaluation 

 

To test the performance of DMNF, we selected several methods as compared baselines. 

Based on their features, they can be categorized as fusion-ones and non-fusion-ones. The 

details of these used baselines are described as the following.  

Non-fusion 

Spectral Clustering (SC): Given the assumption that vertices in the same cluster may 

share similar edge structure, spectral clustering is proposed to group those vertices with 

similar edge structures by minimizing the objective value of normalized cut of a given 

network. 

 

AP: This method can find graph clusters by minimizing the distance between vertices 

and cluster centers in the network. These two no-fusion approaches are proposed to 

identify subgraphs by taking into consideration the information from the single network, 

e.g., the one containing the connections between vertices. 
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Fusion 

CESNA: This is a method for learning latent representations of networks that are based 

on a generative process. By taking into the consideration both network structure and 

content information of each vertex, CESNA can find the cluster affiliation for each 

vertex by maximizing the posterior probabilities representing how possible each pair of 

vertices are connected. 

 

RTM: RTM is a topic-modeling-based method which considers both graph topology and 

attributes values when detecting clusters in the network data. 

 

ECDA: This is an effective method for social community detection. ECDA makes use 

of an evolutionary optimization approach to maximize the edge density within each 

cluster while minimizing that between clusters, when it performs the task of community 

detection in social networks. 

 

MISAGA: MISAGA is an algorithm that is able to learn latent network representations 

by taking into consideration both edge structure and attribute information. The latent 

structures can be identified by solving a constrained optimization problem. These three 

fusion approaches are all proposed to identify interesting subgraphs considering both 

network topology and content information.  

 

To quantitatively evaluate the performance of the proposed model and other basslines, 

we use the normalized mutual information (NMI) as the metrics. NMI is a very prevalent 

measure for evaluating the performance of clustering algorithms. It evaluates the average 

matching rate between identified clusters and ground truth ones. Assuming that 

T	 ൌ 	 ሼT௙ሽ	ሺ1	 ൑ 	f	 ൑ 	kሻ	is the expected result, NMI is defined as: 

ܫܯܰ ൌ
∑ ∑ ௡಴೑భ,೅೑మ

୪୭୥	ሺ
೙ೡ೙೑భ,೅೑మ
೙಴೑

೙೅೑మ

ሻೖ
೑మసభ

ೖ
೑భసభ

ඨሺ∑ ௡಴೑
ೖ
೑భసభ

௟௢௚
೙಴೑
೙ೡ

ሻሺ∑ ௡೅೑
ೖ
೑భసభ

௟௢௚
೙೅೑
೙ೡ

ሻ

                                                   (18) 
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where ݊஼೑ is the number of  users in ܥ௙ , ்݊೑ is the number of users in ௙ܶ , and ݊஼೑భ,்೑మ is 

the number of users found in both ܥ௙భ and ௙ܶమ. As for the NMI measure, their values are 

larger if the clustering result ሼܥ௙ሽ matches better with the expected result T. 

 

 Experimental Results in Social network data 

 

The experimental results of different algorithms on the two social network datasets are 

shown in Table 9. As it is shown in the table, DMNF outperforms all the other baselines 

in both two datasets. For the Caltech dataset, DMNF outperforms MISAGA, which ranks 

the second best, with 10%, when NMI evaluates them. In the Facebook dataset, DMNF 

is better than second-best (RTM) by 3%. Given these obtained results, it is said that 

DMNF is a practical approach to learning latent representations of network data. Besides 

evaluating the clusters detected by DMNF using the NMI measure, we also considered 

finding whether there is some difference between the fused and non-fused networks. To 

show this difference, we draw the matrix representations of a topology-based network, 

content-based network, and fused network in Fig. 17. The depth of the color represents 

Fig. 18.  Clustering Results on Facebook and Caltech Dataset 
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the edge values of the fused network. As it shows in the figure, DMNF can use much 

more information that represents the interrelationship between vertices for learning the 

latent representations. This might be the reason why DMNF may outperform other 

baselines in our experiments.  

 

To identify the effect that is brought by the setting of cluster numbers, we used DMNF 

to detect clusters in the two mentioned social network datasets, using different numbers 

of clusters as input, and evaluate the discovered clusters using NMI. The variations of 

NMI against different settings of cluster numbers are shown in Fig. 18. As this figure 

shows, NMI can be maximized, when the number of clusters is set to approximate to that 

of ground truth communities. Based on the results obtained, it is seen that DMNF is a 

very promising approach for detecting latent communities in social network data.  

 

 Summary 

 

In this chapter, a fusion-based approach, DMNF is proposed to detect latent communities 

in the social network data. The proposed method addressed the following key challenges 

in network fusion. One is how to fuse heterogeneous domains of social network data as 

a single network. The other is how to reduce the computational complexity caused by 

the high dimensionality of the data vectors representing the characteristics of the vertices 

in the social network data. Utilizing a novel network fusion technique, DMNF can find 

a network which preserves information from different domains. Then, DMNF finds the 

deep representations of the fused network by making use of stacked Auto-Encoder. 

Given the deep fused representations of each vertex in the network, DMNF finds the 

latent communities by performing k-means clustering which can minimize the 

reconstruction error for the original fused network. By replacing the step of finding k 

largest eigenvalues of the normalized fused network, DMNF makes use of the deep 

neural network to find low-dimensional representation vectors into which both local and 

global properties of the vertices in the network are embedded. Utilizing these vectors, 

DMNF can outperform most prevalent approaches when they perform the task of 

learning latent representations, which in other words cluster in the social network data. 
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DMNF has been tested with two sets of real-world social network data. The performance 

shows that DMNF may identify the social communities with higher accuracy, compared 

with other baselines. 

 

4.3 Discovering an Integrated Network in Heterogeneous Data for Predicting Drug-

Target Interactions 

 

Many computational approaches have been developed to predict drug-target interactions (DTIs) 

perform their tasks based them on their similarity network. However, such methods do not allow 

multiple networks to be considered through the rapid development of techniques results in a 

growing diversity of biological network data. The numerous domain representations of the DTIs 

in the networks are usually ignored. Therefore, a more in-depth understanding of latent 

knowledge representing the DTIs network can be learned by combining the insights obtained 

from multiple, diverse networks. The comprehensive predicting of DTIs is highly desired for one 

to gain deep insights into both fundamental drug discovery processes and the system biology. 

  

 Overview 

 

Some DTIs related information like sequence, structure, side-effects, and function of proteins 

have been collected to public databases. For example, there are hundreds of thousands of human 

proteins that are recorded in the UniProtKB database [21]. On the other hand, there are around 

thousands known drug compounds are deposited in Drug Bank [36]. Other databases such as 

Super Target and Matador [37], Comparative Toxicogenomics Database [40] and the SIDER 

database [51] have been designed as resources for drug and protein functions. These emerging 

public databases allow access to lists of many known proteins and drugs. Therefore, the existed a 

huge number of unexplored compounds and human proteins make it impossible to evaluate drug-

target interactions effectively by biological experiment. Finely-set small-scale experiments are 

not only very expensive but also inefficient to identify numerous interactomes despite their high 

accuracy. Normal drug discovery processing may generate products different from the original 

treatment. Instability and no specificity of drug-target interactions have to be addressed 

appropriately during the screening and clinical phase. To reduce the huge time and financial cost 

of experimental approaches, many computational models have been built to elucidate interesting 
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drug-target relationships of most promising candidates for further experimental validation. 

Various methods cared about drug similarity and drug-target nature representations respectively 

[54]. 

 

A kind of popular solutions is feature vector-based methods that face drug and protein features 

straight-forward [67]. They can uncover the description of the hidden knowledge regarding 

meaningful representations and then generate rules to repeat experts’ decision process. These 

methods provide biological representations for learning interest patterns such as compound subset 

and protein subspace [84]. But, current feature-based methods are difficult to handle incomplete 

knowledge. For example, some protein expression like protein-protein interactome mapping 

hasn’t been fully discovered [113].  

 

Network-based solutions are developed to identify biological interaction by including the 

similarity matrices of related entities. Lots of computational approaches have been proposed to 

discover DTIs based on their compound and protein sequence similarity [116-120]. An attractive 

alternative approach is to integrate various descriptions of drug-target from multiple sources in a 

statistical learning framework. The comprehensive predicting of drug-target interactions (DTIs) 

is highly desired for one to gain multi-insights into both fundamental drug and protein function, 

yet the desire to further extract useful knowledge from these data leads to the problem of multiple 

similarity network fusion. Network approaches prove to be highly effective in addressing this 

problem [119]. However, their performance deteriorates significantly on two main stumbling 

blocks. One is incomplete putative related networks, and the other is each domain having  multiple 

network representations.  

 

There have also been several works of network fusion from multiple domains [88, 90]. These 

approaches adopt multiple data types of the same sample to generate similarity networks and then 

fuse them into one single network. Such fusion method is robust to noise and collection bias so 

that weak similarities are eliminated, and strong similarities are preserved. In [88], similarity 

network fusion is applied to fuse diverse types of genome-wide data and identify cancer subtypes. 

In [90], another algorithm concatenates both topological and attribute network for PPI complex 

clustering.  
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In this study, we develop a new network-based method called DFNet (integrated network 

representation through deep multiple network fusion) that motivated by the success of network 

fusion approaches to the problem of constructing networks into one network. DFNet predicts 

DTIs from multiple network’s deep representations with inductive network completion aiming at 

training a robust model to rely on known interactions. Firstly, we introduce the non-negative 

matrix factorization (NMF) to complement the unreliable similarity network. Several drug and 

protein functions about nature features have been used to construct a similarity network as well. 

Secondly, to solve the difficult problem of multiple networks understanding, we perform a 

nonlinear method that iteratively updates every network for making them more similar. Finally, 

we feed the fused network into a sparse stacked Auto-Encoder, in which we seek the best non-

linear network representations that can approximate the input network. To the best of our 

knowledge, this is the first attempt that makes use of deep learning to deal with the biological 

network fusion. To evaluate the performance of the proposed method, we have performed 

experiments using real social network data. Experimental results show that DFNet is better able 

to identify DTIs more accurately when compared with the state-of-the-art network fusion 

algorithm due to its considering of deep fused information. 

 

 DFNet in details 

 

Suppose that we are given several drug similarity networks and protein similarity 

networks constructed from multiple domain information and we want to predict 

unknown interactions between the compounds and target proteins on a genome-wide 

scale. The proposed method consists of three steps: (i) the network fusion step, which 

introduces a fusion method fuses the similarity network obtained from multiple drug or 

protein information. (ii) the deep representation step, which introduces the stacked Auto-

encoder for obtaining new representations instead of learned fusion network. (iii)  New 

representations are statistically significant solutions to the sparse and large network. 

Then, we infer the unknown drug–target interactions based on the projection distance of 

their new representations. 

 

 Constructing High Reliable Drug and Protein Networks 
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Let ܩ ൌ ሼܸ, 	ܸ	ሽ  represent a network with a two-element tuple, whereܧ ൌ 	 ሼݒ௜ሽ	ሺ1	 ൑

	݅	 ൑ 	݊௩ሻis a set of ݊௩vertices representing all the nodes in a network, and the edges 

	ܧ ൌ ൛݁௜௝ൟ	are weighted by how similar the nodes are. That is to say, edge weights of 

drug or protein network can be represented by an	݊	 ൈ 	݊ similarity matrix M with ܯሺ݅, ݆ሻ 

indicating the similarity between nodes. For some drug and protein related similarity 

network, we observed that the matrix is very sparse, and the information that we obtain 

is incomplete as protein related diseases are not fully discovered. Since matrix 

factorization is efficient to complement matrix, we propose to use NMF [122] for 

similarity network completion.  The target of NMF is to find an approximate 

factorization	ܸ ൎ -The overall cost function of NMF can be defined using Kullback .ܪܹ

Leibler divergence to measure the distance between two non-negative matrices [123]. 

We use matrix M to denote one of the original similarity matrices. This matrix first 

approximately factorized into an ݊	ݔ	ݎ  matrix W and an ݎ	ݔ	݊  matrix H, and then we 

consider following formulations as optimization problems: 
minܦ௄௅ሺܸ||ܹܪሻ ൌ 

∑ ∑ ൬ݒ௜௝ ln
௩೔ೕ

ሾௐுሿ೔ೕ
െ ௜௝ݒ ൅ ሾܹܪሿ௜௝൰

௃
௝ୀଵ

ூ
௜ୀଵ                               (19) 

subject to the constraints ܹ,ܪ ൒ ܱ. 

Where 

௜ܹ௞ ← ௜ܹ௞
∑ ுೖೕ௩೔ೕ
಻
ೕసభ /ሾௐுሿ೔ೕ

∑ ுೖೕ
಻
ೕసభ

                                           (20) 

and 

௞௝ܪ ← ௞௝ܪ
∑ ௐ೔ೖ௩೔ೕ
಺
೔సభ /ሾௐுሿ೔ೕ

∑ ௐ೔ೖ
಺
೔సభ

                                          (21)  

The purpose of this step is to insert known values for these entries, then perform NMF, 

producing W and H. Then, we can compute WH as our estimate of original similarity 

network, and now have estimates for the missing information 

 

 Network fusion and matrix completion for predicting drug–target associations 
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Above the similarity network from multiple sources are inherently correlated, and 

sometimes provide complementary information to each other. As a result, data fusion 

has been paid much attention to, which mainly aims to generate most similar 

representation between entities under the existing domains. Following the criteria 

defined for the desirable drug and protein similarity networks, we now formulate a fusion 

problem by combining several networks. This procedure is following in section 3.2. We 

first consider stack Sparse Auto-Encoders layer by layer to form a whole deep neural 

network. And then we apply inductive matrix completion [121] [124-125] to predict 

DTIs. 

Formally, let ܺ	 ൌ 	 ,ଵݔൣ … , ൧	ே೏ݔ
்
, ௜ݔ	 ∈ ܴ௙೏	, ݅ ൌ 1,… , ܰ݀	 represent a fused network of 

the drugs, where each row i represents the corresponding feature vector of drug and ܰ݀ 

stand for the numbers of drugs. That is to say, we can use ܻ ൌ ,ଵݕൣ … , ே೟ݕ 	൧
்
, ௜ݕ	 ∈

ܴ௙೟	, ݅ ൌ 1, … ,  stand for the ݐܰ to denote the corresponding feature vector of target and 	ݐܰ

numbers of targets. In particular, ܺ ∈ ܴே೏ൈ௙೏  and ܻ ∈ ܴே೟ൈ௙೟	are generated from the 

final status matrix of the network fusion section. Let A be a drug–target interaction matrix, 

where each entry A ij = 1 if drug i is known to interact with target j, and A ij = 0 otherwise. 

To infer unknown drug–target interactions in A, we deploy a bilinear function to learn 

the projection matrix P between drug space and target space. Generally, the bilinear 

function can be defined as: 

்ܻܺܲ ൎ  (22)                                                        ܣ

where ܣ ∈ ܴே೏ൈே೟ denoted as the known drug–target interaction matrix and P∈ ܴ௙೏ൈ௙೟ 

Rfd_ft  is the projection matrix that we need to learn. We then measure the possibility of 

binding each pair of drug–target to determine whether drug i is more likely to interact 

with target j: 
scoreሺ݅, ݆ሻ 	ൌ 	 x௜ܲy௝

்                                              (23) 

Obviously, the higher score means a greater chance of drug–target will interact with each 

other. We know that there's a significant correlation between the feature vectors of drugs 

or targets and they're geometrically close in space. So we have a chance to greatly reduce 

the number of effective parameters required in P to model drug-target interactions. Based 

on this idea, we apply a low-rank constraint on P by considering a low-rank 
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decomposition of the form: 

ܲ	 ൌ  (24)                                                     ܶܪܹ	

where ܹ ∈ ܴ௙೏ൈ௙೟  and ܪ ∈ ܴ௙೟ൈ௙೟. We set up such function to learn a small number of 

latent factors. This kind of low-rank constraint not only alleviates the problem of 

 
(a) 

 

(b) 

Fig. 19. Comparison of the ROC curves of DFNet and DTINet on two DTIs datasets. (a) The 
original dataset (b) the dataset removed a part of homologous proteins 
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overfitting, but also automatically separates the noise and clean data, and also has great 

benefits to the optimization process [125]. We assume that the interactions matrix is 

generated by applying feature vectors associated with its row as well as column entities 

to a low-rank matrix P. A standard relaxation of the low-rank constraint is to minimize 

the trace norm of the (24). That is to say, minimizing the trace-norm of (24) is equivalent 

to minimize:
ଵ

ଶ
ሺ‖ܹ‖ி

ଶ െ ி‖ܪ‖
ଶሻ. Therefore, factoring P into W and H are obtained as 

solutions to the following optimization problem by alternating minimization: 

min
ௐ,ு

∑ ฮܣ௜௝ െ ௝ݕ்ܪ௜ܹݔ
்ฮ

ଶ

ଶ
൅ ఒ

ଶ
ሺ‖ܹ‖ி

ଶ െ ி‖ܪ‖
ଶሻሺ௜,௝ሻ                          (25) 

 

 Experiments 

Table 10. Comparison for the Auroc, Auprc, Mcc And F-Measure Values of the DFNet versus 
DTINet on the two dataset 

Measures 

DFNet DTINet 

Original dataset Removed dataset Original dataset Removed dataset 

AUROC 0.929 0.905 0.908 0.88 

AUPRC 0.946 0.932 0.925 0.902 

ACC 0.902 0.881 0.855 0.840 

MCC 0.8208 0.801 0.748 0.731 

F-MEASURE 0.8917 0.866 0.844 0.829 

MFDR 

Original dataset Removed dataset 

0.898 0.851 

0.905 0.882 

0.823 0.817 

0.723 0.714 

0.822 0.806 



84  

 
In this study, the drug and protein networks which we used to predict DTIs come from 

[121]. There are two different scale datasets: the original dataset and removed dataset. 

The fewer number one is reconstructed by removing the homologous proteins with high 

sequence identity scores from the larger one. In the removed dataset, only the DTIs of 

the original dataset which proteins conditioned the low sequence identity scores can be 

retained. There are 708 drugs and 1512 protein in both datasets and we observed the 

number of known DTIs in original dataset and removed dataset are 1923 and 1332 

respectively. All the drugs were extracted from the DrugBank database, their related 

disease information was extracted from the Comparative Toxicogenomics Database and 

their side-effect profiles were collected from the SIDER database. All the proteins 

include the protein-protein interactions were extracted from the HPRD database [126] 

and the protein related disease associations were also extracted from Comparative 

 
 
 
 
 
 
 
 

 

Fig.20. Area under ROC of DFNet on original dataset with different drug and protein 
representations 
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Toxicogenomics Database. The data which are used to represent 708 drugs include four 

types of expressions: drug-drug interactions, drug-disease associations, drug-side-effect 

associations and their chemical structures. That is to say, we would construct four 

708×708 similarity network for drugs. The data which are used to represent 1512 

proteins include three types of expressions: protein-protein interactions, protein-disease 

associations, and their sequences. That is to say, we would construct three 1512 ×1512 

similarity network for proteins.  

 

 Evaluation measures 

 
Regarding imbalance prediction performance evaluation, it has argued for using ranking 

measures like AUC (area under the ROC curve) that the prediction performance can be 

safely unbiased [127]. We infer interactions and compare against the held-out 

interactions, measuring performance using the AUC for our evaluations. ROC curves are 

created by plotting the true positive rate versus the false positive rate at various 

thresholds. The results are shown as a ROC curve where TPR is plotted against FPR, 

calculated as follows TPR=TP/TP+FN ,  FPR=FP/FP+TN, where TP (true-positives) is 

the number of correctly predicted drug-target interactions while the FP (false-positives) 

is the number of not correctly predicted drug-target interactions.  TN (true negative) is 

the number of drug-target interactions predicted not to be in a class that is not observed 

in that class, and FN (false negative) is the number of drug-target interactions predicted 

not to be in a class that is observed in that class. To further evaluate the performance of 

the proposed method, we also use the several more measure like following criteria: the 

overall prediction accuracy, recall, precision, Matthews’s correlation coefficient (MCC) 

and F-measure were calculated.  

 

 Compare with State-of-the-art Approach 

 
To evaluate the performance of the proposed prediction method, we also applied the 

DTINet [28] to predict DTIs from multiple similarity networks. To the best of our 

knowledge, there is only one network fusion method for DTIs prediction so far.  

Regarding comparison theory, we examined the learned deep fusion representations in 
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the same inductive matrix method with DTINet. DTINet's deep learning module was 

proposed based on MFDR. Therefore, we also introduced the MFDR model based on 

drug chemical molecular information and protein sequence expression, and made a 

comparison. This comparison can help us prove that the network fusion method is better 

than the single network method. Hence, the experimental result reflects the effect of the 

proposed method. Due to our DTIs dataset is a high-class imbalance, we used 10-fold 

cross validation, where each fold leaves out 10% of the positive and negative samples 

for testing. Since the discovered positive samples are too small that may lead to 

imbalance bias if randomly divide the dataset. We randomly sampled known interactions 

and negative pairs and divided both into each fold equally. 

Table 10 reports the accuracies of different algorithms on both original dataset and 

removed dataset. The resulting Auroc for DFNet and DTINet on the original dataset are 

0.929 and 0.908, respectively. The resulting Auroc for same approaches on the removed 

dataset is 0.905 and 0.88, respectively. We got a 2% increase in the ROC score. The 

scores of AUPRC, ACC, MCC, and F-MEASURE also be listed in Table 10. We further 

compared the performance of each method by the ROC curve. Figure 19 shows the ROC 

curves of the two algorithms on the original dataset and removed dataset. As expected, 

among all measures, DFNet achieves the higher score. This result shows that DFNet 

extracted more meaningful representations to drug and protein from the fused network 

and improved the prediction performance.  

 

 Cross-Test for Parameter Setting 

 
In this subsection, we conduct a series of cross-test experiments on the original dataset 

to evaluate the influence of neurons in output layers parameters in DFNet, which are the 

dimensions of deep representations of drugs and the dimensions of deep representations 

of proteins. We test the number of deep representations among {100 200, 300, 400, 500}, 

proteins also follow the above parameters. The results in Figure 4 show that the accuracy 

increases gradually as the value of two dimensions increases. And, the accuracy 

approaches to a stable value from 300 to 500. Figure 20 also indicates that the best 

parameters for dimensions of drug and dimensions of protein are 400 and 500, 

respectively. 
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 Summary 

 
In this chapter, a network-based fusion approach for DTIs prediction is proposed. The 

proposed method addressed the following key challenges in biological net-work 

incompletion and multiple network fusion. One is fusing the diversity of heterogeneous 

information embedded in the network data, the other is reducing the incompleteness 

brought by the vertex features in the heterogeneous network data not fully discovered, 

e.g. Side-effects usually found slowly even if the drug has been listed. DFNet introduces 

NMF, which first characterizes the higher reliable information of some individual 

network. And then, we are applying an interchanging diffusion algorithm to multiple 

networks. In addition, we use stacked Auto-Encoder compute deep representations for 

each node in the networks to approximate the fused network. This is because both auto-

encoder and spectral method minimize the reconstruction error for the original 

normalized similarity matrix. Deep neural network subtly replaces the step of find k 

largest eigenvalues of the normalized graph similarity matrix in a spectral procedure. 

These low-dimensional representations encode both global and local topological 

properties for nodes in the networks and are readily incorporable for the downstream 

predictive models. Given the fused deep graph representations, we used an inductive 

matrix completion for predicting unknown DTIs. We have demonstrated that DFNet can 

display excellent ability in network integration for accurate DTIs inferring and achieve 

substantial improvement over the advanced approach. Moreover, experimental results 

on two real-world networks dataset demonstrate that DFNet able to achieves a good 

detecting performance.   
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5. INTERPRETABLE REPRESENTATION 
 
Deep representation has been widely used in various fields to improve performance. In 

predicting outcome after reaching the accuracy of the acceptable, the users want to get 

the prediction results can be explained. But in some real-world applications, accuracy is 

not the only criterion. The features and patterns related to the results, as well as their 

influence on the decision-making, have become the new focus of researchers.  Existing 

machine learning methods are also complicated to be accurate and interpretable as a 

common optimization goal. In general, the algorithm will be less accurate if it tries to 

guarantee the interpretability of the results. For example, what small molecules link to 

protein targets needs to be recognized in drug screening. In the recommendation system, 

it is also necessary to explain what factors and their combination will influence the 

strength of the recommendation. Therefore, we propose two interpretable frames for link 

classification and nodes clustering respectively. Both methods are based on graph 

analytics to provide an interpretable lens for existing models. By translating the original 

data into the representation of the graph, we use the interpretable subgraph as the basis 

for link prediction and nodes clustering. Flexible conversion of the input application can 

be made with no loss in accuracy and can get information on helpful nodes and edges. 

We achieve state-of-the-art results on drug and side-effects link prediction and social 

network users clustering using the two proposed algorithms. 

 

5.1 Discovering Graph Representation for SE prediction 

 

 Overview 

The accuracy of prediction can be satisfied in most link prediction tasks, but in some 

such as medical network and biological network, the interpretability of prediction is of 

vital importance. Drug side-effects (SEs) can range from mild irritations to serious health 

problems [128].  The link between the drug and its effects is lethal. According to statistics, 

millions of patients suffer from various adverse drug reactions every year and 0.1% die 

as a result. Unlike toxic reactions caused by excessive dosage or long-term medication, 

SEs might be caused by properties inherent in drug structures, or due to limited 

selectivity and broad effects of pharmacological actions. Pharmaceutical companies 
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usually have to invest a lot of resources to screen a large number of candidate compounds 

to identify the most suitable ones to test and then manufacture. The cost for such drug 

screening can be tremendously reduced if an effective computational approach can be 

used to better predict SEs based on various properties of drug structures. For this reason, 

SE prediction for drugs has drawn much attention recently.  

To effectively execute this mission, some computational methods have been proposed to 

discover SEs in drug-related data [129-133]. Empirical laboratory methods for predicting 

SEs is to investigate into molecular toxicology in the early stages of drug discovery [134]. 

To speed up the investigation, some machine learning algorithms have been used to 

attempt to uncover the relationship between SEs and drug molecules, but they cannot be 

used to identify which sub-component in a drug molecule that is responsible for causing 

adverse SEs [131]. A useful algorithm should be able to discover significant patterns in 

drug molecules to allow components that are responsible for generating the SEs to be 

identified, explicable and understood [133]. And to do that, several machine learning 

algorithms have been proposed to determine the possible association between drug 

substructures and drug SEs [134-135]. Unfortunately, the accuracy of prediction of SEs 

is not high enough. This is because most of those methods ignore the fact that drug 

reactions are typically found to be associated with groups, rather than individual, 

molecular substructures. And, a set of explainable patterns extracted from the original 

molecules to explain the prediction results is the urgent need of pharmaceutical 

companies. As active small molecules are usually hidden under bigger molecular 

compounds [128], a method that can take into consideration the sub-structures in a drug 

molecule is more desirable. 

 

Given the features of previous approaches for predicting drug SEs, they may perform the 

task by mainly concerning two aspects, i.e., the recognition of global functions, or the 

extraction of inducements relation. By taking into the consideration of the former aspect, 

these bottom-up methods may group all drug substructures for discovering SEs, making 

use of existing techniques, like SVM and ensemble learning [136]. Though different 

types of information, such as the association between one drug substructure and SE [103, 
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135, 137-138] might be used, these methods, may not be able to reveal the 

interrelationship between substructure sets and corresponding SE. While, those methods 

concerning the latter aspect, are model-based and perform the task by optimizing the 

objective functions which may measure the discriminants between pairwise drug 

substructure and SE. For examples, two approaches proposed in [132-133] can predict 

SEs by fitting the model which may represent the molecular influence. Though these 

mentioned approaches might be useful to some extent, they do not take into the 

consideration chemical substructure set when performing the task of SEs prediction. 

Compared with them, we may discover molecular subgraphs that jointly identify inherent 

attribute relations and SEs cross relations. The performance of graph mining methods 

heavily depends on the choice of data representations. Since drug data only provides 

structured molecular data from which it is hard to learn chemical concepts, we need an 

appropriate representation learning method for drug data. Many works are also proposed 

for improving the optimization algorithm of low-rank approximation [139-140]. 

Therefore, we use a graph description for drug data to achieve good performance and 

explainable representation.  

 

 

Fig. 21.  Flow diagram of GraphSE. 
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In this section, we present a methodology, called GraphSE, to learning significant 

subgraphs in drug molecular graphs for each SE with low-rank approximation so that 

these subgraphs can be used for SE prediction. To do so, GraphSE first identifies 

significant drug substructures by computing a degree-of-correlation between drug 

substructures and each SE. It then attempts to find low-rank representation between drug 

substructures using an NMF. The use of NMF has the advantage that they can effectively 

deal with sparse noise or outliers when determining a low-rank representation of the 

significant substructures. Based on them, GraphSE constructs an attributed graph with 

nodes representing the substructures and edges representing the existence of molecular 

binding between substructures. From these attributed graphs, GraphSE attempts to look 

for latent patterns in the form of significant subgraphs that are represented as clusters of 

interrelated molecular substructures. Once these latent subgraphs are identified, then we 

make use of a Bayesian approach to predict SEs in the candidate drug molecules. In 

Figure 21 below, we summarize the subgraph identification process for SE prediction. 

GraphSE has the following unique characteristics: (i) it can predict SEs by rep-resenting 

molecular structures as graphs so that significant substructures that interrelate with 

different SEs for each drug can be more easily identified and explained; (ii) Some SEs 

can be interrelated with each other but such interrelationship are usually not considered 

in previous work. In the case of GraphSE, it attempts to identify such interrelating SEs 

by considering co-occurring frequencies of different SEs. (iii) GraphSE can reduce noise 

and outliers by using an appropriate low-rank matrix to represent the significant 

substructures.  

GraphSE has been tested real data sets and its performance shows that it is a promising 

method for predicting drug SEs both because the prediction can be explainable and more 

accurate.  It has good potential to be used to improve the automated drug screening 

process and to prevent fatal drug SEs. 

 

 Pattern discovery 

To start with the illustration of the proposed method, we first introduce the following 

definitions:  
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Drug Representation: Let D be the set of drugs containing |D| drugs samples and each 

drug sample can be made up of |P| different chemical substructures. That is to say, for 

each example of the drug, its drug substructure can be represented as di = {csi1, csi2, 

csi3… csi|P|}, where csix is equal to 1 if di contains the xth chemical substructure, and vice 

versa. 

Drug Side Effect Representation: For |ܦ| samples of drugs and |S| possible side effects, 

we use si = {sei1, sei2, sei3… sei|S|} to represent whether a sample of the drug, di, has the 

side-effect sey. It should be noted that each SE may be incurred by the drug substructure 

of a drug sample. 

Molecular Graph Representation: For each SE, we use a graph, ܩ ൌ ሼܸ,  ሽ to representܧ

the affinity between pairwise drug substructures, where 	ܸ	 ൌ 	 ሼݒ௜ሽ	ሺ1	 ൑ 	݅	 ൑ 	 |ܲ|ሻ is 

the vertex set representing all the drug substructures and the edge set ܧ	 ൌ ൛݁௜௝ൟ	are 

weighted by how similar between a pair of substructures are. As a result, we have |S| 

molecular graphs in each of which the similarity between pairwise chemical 

substructures for a particular SE can be represented. 

To predict SEs, we need to tackle two sub-problems that have not been addressed 

previously. 

SE Related Attributes Learning: To obtain an accurate predictor of SE for the drugs, the 

first problem is we should identify the relationship between each SE, say sej and each 

drug substructure csi. It allows highly related drug substructures to each SE to be 

discovered and these substructures can be seen as the attributes used to characterize each 

SE in each sample of the drug. 

Explainable Subgraph Learning: The second problem can be stated as follows. Given 

the attributes for each SE in all drug samples, the low-rank representation of all attributes 

in each drug sample can be obtained by a low-rank approximation scheme and an affinity 

graph G which has been defined can be constructed by using the low-rank 

representations. For an edge, say ݁௜௝  in G, it represents the similarity between drug 

substructures i and j, given a particular SE. Given G, we can identify some subgraphs 

representing the sets of drug substructures that are highly related to a particular SE, by 
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utilizing an appropriate clustering method. Here, the problem of SE prediction is 

transferred to the learning of sub-graphs in G, which is the main contribution of this 

section and there are no similar approaches proposed before. 

 

 SE Related Attributes Learning with Mutual Information 

In this section, we describe how to identify significant substructures for each SE. To 

identify such attributes for SEs, we attempt to identify the degree interrelationship 

between any pair of chemical substructure (csi) and SE (sej). To determine such degree, 

we attempt to measure the difference between the observed frequency (o(csi, sej)) that 

each drug incurs each SE, and the expected frequency (e(csi, sej)) that each drug incurs 

each SE. According to Section If such difference is sufficiently large, we may determine 

that csi may incur sej, which in other words, those drugs containing csi might incur the 

side-effect sej. To determine whether or not csi may incur sej, we adopt the proposed 

statistical method from Section 3.2.2, it is defined as the following: 

 ݁ሺܿݏ௜, ݏ ௝݁ሻ ൌ
௖௦೔శ∗௦௘శೕ

்
                                                                         (26) 

    where 

+iݏܿ ൌ ∑ ijݏܿ
ௌ
௝ୀଵ                                                                                   (27) 

j+݁ݏ	  ൌ ∑ pj	݁ݏ
|ௌ|
௣ୀଵ                                                                                (28) 

 ܶ ൌ ∑ ,௜ݏሺܿ݋ ݏ ௝݁ሻi, j                                                                             (29) 

we make a reasonable statistic to prove whether there is a relevance of drug SE and 

chemical substructure 
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where ቀ1 െ ௖௦i+

்
ቁ ቀ1 െ ௦௘+j

்
ቁ is used to adjust likelihood of ܼሺܿݏ௜, ݏ ௝݁ሻ. 

 ܼሺܿݏ௜, ݏ ௝݁ሻ ൌ
௢ሺ௖௦೔,௦௘ೕሻ ି௘ሺ௖௦೔,௦௘ೕሻ 

ඥ௘ሺ௖௦೔,௦௘ೕሻ 
	                                                                                               (31) 

In previous works, R(csi, sej) measure has been shown to approximately follow the 
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standard normal distribution [141143]. Thus, whether or not the occurrence of csi and 

sej can incur each other is at some confidence level if R(csi, sej) is larger than a predefined 

value. The correlation between pairwise drug substructures and SEs at different 

confidence levels can be identified by setting corresponding thresholds. By making use 

of R measure, we may identify those significantly correlated links of drug substructures 

and SEs, while eliminating those that are insufficiently significant.  

 

 Inferring High-Order Pattern Candidates 

In this section, how GraphSE formulates the problem of SEs prediction as the detection 

of latent substructures in the matrix obtained by low-rank approximation, and how 

GraphSE solves the formulated problem, are illustrated. 

Though significantly correlated links of drug substructure and SE can be identified by 

the R measure proposed in Section 3, those attribute sets, which are contributing factors 

triggering SEs, cannot be identified immediately. To find these patterns, we assume that 

the drug attributes can be generated only from those significantly correlated links of drug 

substructure and SE. Given this assumption, whether a sample of drug contains a set of 

significant substructures that may lead to a particular SE, say di, can be represented as ai 

= {scsi1, scsi2, scsi3… scsio}, where scsix is equal to 1 if ith drug contains the xth significant 

chemical substructure resulting into a particular SE, and vice versa. O is the total number 

of drug substructures that may associate with a specific symptom of SE. Given an SE 

and |D| drugs, an attribute expression matrix, A which has the dimension of |D| by O can 

be formulated, in which each element, say aij, represents whether a significant drug 

substructure may lead to a particular side effect in drug di. 

Given a set of |D| drugs, a straightforward but efficient way to represent meaningful 

attributes is to check whether a significant chemical substructure is contained in those 

|D| drugs. In other words, we used the matrix Y, which is the transpose of A, to investigate 

the occurrence of a drug substructure in drugs that may result in a particular SE. In this 

case, Y can be seen as an attribute expression matrix. It is well known that structural 

converting, like constructing Y, based on the samples of drugs and SEs, may lead to 

inevitable structural loss and sparse noise. Thus, the reduction of such loss and noise 
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may let one find better representations of the converted data. Inspired by NMF, we 

facilitate the robust affinity constructing of attributes.  In this case, it would be 

considered there is a low-rank attribute matrix X by NMF. To achieve the molecular 

graph G for each SE, given a set of attributes S= {s1,… , sn} with their new representation 

X, we may obtain an affinity matrix M in which ܯ௜௝ ൌ exp	ሺെฮݏ௜ െ ௝ฮݏ
ଶ
/2σଶሻ, if ݅ ് ݆, 

and ܯ௜௜ ൌ 1. M can be used to represent the similarity between pairwise attributes. 

 

 Attribute Graph Clustering 

In this section, how GraphSE formulates the problem of SEs prediction as the detection 

of latent substructures in the matrix obtain by low-rank approximation, and how 

GraphSE solves the formulated problem, are illustrated.  

For clustering attributes in S, GraphSE adopts an objective-function based method to 

detect clusters in M. The objective function can be used to evaluate the overall clustering 

quality and it is defined as: 

maximize		ܱ ൌ ሻܥܯ்ܥሺݎݐ െ ி|்ܥܥ|ߙ
ଶ െ ி|ܥ|ߚ

ଶ  

Subject to  ܥ ൒ 0                                                 (32) 

where C is an n-by-k latent matrix in which each variable represents degree of cluster 

affiliation between a particular drug and each of k clusters, |்ܥܥ|ி
ଶ  is a penalization term 

which avoids the variables in C increasing infinitely within the clustering procedure,	|C|ி
ଶ  

is the regularization term for smoothing the variables in C, |	|ி  represents the matrix 

Frobenius norm, and α and β are parameters for controlling the effect of the penalization 

and regularization terms. The proposed method is able to obtain the optimal cluster 

arrangement for each attribute when (32) is optimized. Those found clusters can be seen 

optimal sets of molecular sub-graphs that may lead to a particular SE. 

To optimize the objective function (32), we derive the following iterative updating rule 

for inferencing the variables in C. Let ߟ ൌ ሾߟ௜௝ሿ be a n-by-k matrix in which elements 

represent the Lagrange multipliers for corresponding variables in C. The following 

Lagrange function can be formulated: 

,ሺηܮ Cሻ ൌ ܱ െ  ሻ                                              (33)ܥ்ߟሺݎݐ
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Based on the KKT optimality conditions for constrained optimization, we have the 

following element-wise equation system: 

ܮ߲
߲ܿ௜௝

ൌ ሾ2 ∗ MC െ ߙ4 ∗ CC்C െ ߚ2 ∗ C െ ηሿ௜௝ ൌ 0 

௜௝ߟ ∙ ܿ௜௝ ൌ 0 

௜௝ߟ ൒ 0                                                               (34) 

By solving the above system, we have the following iterative updating rule for variables 

in C: 

ܿ௜௝ ← ܿ௜௝ට
୑େ

ଶఈ∗େେ೅ୋఉ∗େ
                                                    (35) 

By using the updating rule (35), (32) is able to be optimized in a finite number of 

iterations. Once the optimization process is done, the GraphSE obtains the optimal 

clustering arrangement for all the corresponding chemical attributes. By making use of 

C, those highly correlated chemical attributes can be found in the same cluster. 

After finding the subgraphs in the attributed graph for each SE, GraphSE identifies a 

particular number of sets of chemical substructures that are potentially related to each 

SE. Hence, the subgraphs could be utilized in the construction of prediction rules. 

According to [131], Naïve Bayes (NB) is a possible approach to produce a final 

Table 11. AUROC scores of different algorithms on two datasets 

Methods 
ROC 

Liu’s Pauwels’s 

GraphSE 0.887 0.892 

GraphSE-RankClus 0.871 0.872 

GraphSE-NCut 0.869 0.870 

NB 0.868 0.863 

SVM 0.872 0.871 

OCCA 0.845 0.856 

SCCA 0.868 0.873 

LDA 0.848 0.850 

 



97  

prediction. Given data on a set of n molecular subgraphs for training S = {(SX1, SE1), 

(SX2, SE2), ..., (SXs, SEs)}, SXi = {SGi1, SGi2, …, SGin} is a vector of subgraphs where n 

relies on the number of subgraphs and each binary vector whose element of the users 

encode for the presence or absence of a subgraphs using 1 and 0. SEi is the corresponding 

SE label and ݏ relies on the number of SEs. Here, we would like to grow a score for new 

subgraphs as follows: 

݁ݎ݋ܿݏ ൌ ܲሺܻሻ∏ ܲሺܵܩ௧|ܵܧሻ௧                                                                    (36) 

To predict SEs, the final score for SE can be defined as:	∑ ௡݁ݎ݋ܿݏ
௡
௜ୀଵ . 

 

 Experiment 

 

 Datasets and Features 

GraphSE was evaluated using two sets of real publicly available data obtained from 

different sources. They include Pauwels’s dataset [135] and Liu’s dataset [131]. They 

have been widely used to test the effectiveness of SEs prediction.  

The data used to test for 881 substructures in drugs were obtained from the PubChem 

Compound Database [144], DrugBank [21] and KEGG DRUG [145]. The data of drug 

SE come from SIDER [51] which collects SEs data from FDA Adverse Event Reporting 

System (FAERS). It contains information on marketed medicines and their recorded drug 

SEs reports. The information is extracted from public documents and hospital medical 

report. Each drug can be encoded as 881-dimensional binary finger-prints whose 

elements encode for the presence or absence of a chemical substructure by 1 or 0, 

respectively.  

Pauwels’s dataset builds a dataset containing 888 drugs and 1385 kinds of SE and 61102 

drug-side-effect interactions in all. Liu’s dataset builds a dataset containing 832 drugs 

and 1385 kinds of SE and 59205 drug-side-effect interactions in all. That is to say, each 

drug can be encoded as a 1385-dimensional binary vector whose elements encode for 

the presence or absence of a side-effect by 1 or 0, respectively. 
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 Evaluation and Comparisons of Different Methods 

To evaluate the performance of the proposed prediction method, we applied well-known 

solutions of SEs prediction include SVM, OCCA, SCCA, and LDA with Gibbs Sampling 

in the experimental study. To prove the superiority of the subgraph discovering scheme, 

two state-of-the-art approaches for graph partitioning are also considered. One is NCut 

Drug 
substructure 

Peripheral Ischaemia Rales Mydriasis 

>= 8 H -0.332 -0.119 1.098 

>= 16 H -0.132 0.080 1.417 

>= 32 H 0.372 0.570 2.324 

>= 4 C -0.325 -0.111 1.110 

>= 2 N -0.054 -0.114 1.542 

>= 8 O 1.815 2.484 2.677 

Subgraph 

1 

O-C-C=N  

 

Side-effect: 

Cystitis 

Nc1c(Cl)cccc1 
 

Oc1cc(N)ccc1 
 

Subgraph 

2 

O=N-C:C-O  

C-C-C-O-[#1]  

C-C-C-O-[#1] 
 

 
Table 12.   Example of interpretable representation of drug substructure for side-effects. 
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[146] and the other is RankClus [147]. In terms of biological theory, we examined the 

sets of drug substructures identified by GraphSE, and the SE related substructure sets are 

explainable. To measure the performance of the methods, we adopted 5-fold cross-

validation. In this scenario, the results at the top K suspects might matter the most. Hence, 

we draw the receiver operating characteristic curve (ROC) for the experimental result.  

Table 11 reports the accuracies of different algorithms on both Pauwels’s dataset and 

Liu’s dataset. As the table shows, GraphSE outperforms other baselines in both two data 

sets. The resulting Auroc for GraphSE, GraphSE-RankClus, GraphSE-NCut, Naïve 

Bayes, SVM, OCCA, SCCA and LDA on Pauwels’s dataset are 0.892, 0.872, 0.866, 

0.863, 0.871, 0.856, 0.873 and 0.85, respectively. The resulting Auroc on Liu’s dataset 

are 0.887, 0.869, 0.870, 0.872, 0.845, 0.868 and 0.840, respectively. As it shows, among 

all comparisons, we achieve the highest Auroc. This means GraphSE is able to extract 

more meaningful information to drug SEs from molecular subgraphs and so that improve 

 

(a)                                                            (b) 
Fig. 22. (a) Boxplot for the ACC scores of side-effects obtained from GraphSE and NB; 
(b) Boxplot for the F-measure obtained from GraphSE and NB. 
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the prediction performance.  

 Discovered Associations Study 

To validate the interpretability of discovered patterns, we compared the proposed method 

and the base method Naïve Bayes, by using two more evaluation measures, including 

overall prediction accuracy (ACC) and f-measure. Since both methods use possibility 

scores of relationships between substructure and SEs, we would like to learn the 

prediction performance of predicted SEs for each drug. Figure 22 shows the distribution 

of the resulting ACC and F-measure for 888 drugs in GraphSE and NB. As can be seen, 

two boxplots show significant upward and stable tendency when the subgraphs 

introduced.  

An example of the significant patterns between the drug substructures and SEs is given 

in Table 12. This table lists a series of significant substructure for some SEs. As we can 

see series of Table 12, the numbers of the bold font represent a strongly correlated 

chemical structure and SE. And, Figure 23 draws an example of two explained subgraphs 

include four substructure which has a strong correlation to cystitis the depth of the edge 

color represents the weight of the connection. As the figure shows, the cystitis is strongly 

related with two attribute sub-graphs: {O-C-C=N, Nc1c(Cl)cccc1, Oc1cc(N)ccc1} and 

{O=N-C:C-O, O=N-C:C-O, O=N-C:C-O}. And, these subgraphs that cause cystitis are 

listed in Figure 23 in the form of molecular structure diagrams. Above examples show 

the explainable ability for the SEs prediction of GraphSE. Compared with the previous 

 

Fig. 23.  Example of interesting subgraphs for cystitis, the red part represents subgraph 1 
and the yellow part represents subgraph 2. 
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research work, this model can infer SEs at the data level, as well as visualize which small 

compounds may influence the SEs during the process of automated compounds 

screening. 

 

 Cross-Test for Parameter Settings 

In this subsection, we conduct a series of cross-test experiments on Pauwels’s dataset to 

evaluate the influence of main parameters in GraphSE, including the confidence level to 

an adjusted residual between SEs and chemical substructures, and the number of 

subgraphs. We test confidence level using different thresholds, including 50%, 80%, 

90%, 95%, and 99%, corresponding to adjusted residual as 0.674, 1.28, 1.645, 1.96, and 

2.57, and test number of subgraphs K using 10, 20, 100, 150, 200. The testing results are 

shown in Figure 24. As the figure shows, the accuracy increases gradually as the 

threshold of adjusted residuals increase. And, the accuracy achieves to a steady 

performance when the threshold of adjusted residuals ranging from 1.28 to 1.96. Based 

on the results shown in Figure 24, we may find the best parameter setting for our model 

is 90% of confidence level, and 50 subgraphs, respectively. 

 

 

(a)                                         (b) 
Fig. 24. (a) Area under ROC of GraphSE on Pauwels’s dataset with different confidence 
level and number of subgraphs. (b) Area under ROC of GraphSE on Liu’s dataset with 
different confidence level and number of subgraphs. 
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 Summary 

In this chapter, we propose a novel machine learning approach called GraphSE to predict 

the links between drug and SEs. It is a unique approach in the sense that it represents an 

attempt to make use of attributed subgraphs within drug substructures to predict potential 

SEs of different drugs. By taking into consideration significant relationships between 

molecular representations and SEs, the experimental results show that GraphSE is able 

to predict SEs accurately. Also, it can allow predictions to be explained easily so that the 

relationship between substructures and various SEs can be understood. Graphse is a 

promising interpretable algorithm that can be widely used in network link prediction. 

GraphSE also can be a promising intelligent tool for assisting in decision making related 

to the establishment of lead compounds at the beginning of drug design. It has good 

potential to improve the efficiency and effectiveness of automated drug screening.  

 

5.2 Learning latent representations for clustering  

In section 3.2, we have explored ways to find clusters in a social network using graph 

mining and fusion algorithm. Our approach improves the performance of social network 

clustering, but fusion is difficult to maintain the interpretability of results at the same 

time. The identification of communities and their representations becomes one of the 

most significant tasks in the analytics of different networks. To perform the task, several 

approaches have been proposed, taking into the consideration different categories of 

information carried by the network data, e.g., edge structure, node attributes, or those 

above. Such approaches may be practical for discovering communities in the network, 

but few of them can discover communities and summarize their representations 

simultaneously. 

 

 Overview 

A Network can be modeled as a graph contains a set of vertices and edges, representing 

data entities, and inter-relationship between them, respectively. Different from random 

graphs, there is some particular latent structure in those real-world graphs. There are 

many types of hidden structures that have been looked into, e.g., triadic patterns in social 
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networks [148-150]. Among these latent structures, network communities, which also 

named as clusters are the most typical ones. How to identify such communities and the 

representations that may characterize them has drawn much attention in recent years 

[151-152]. There are some approaches to discover communities effectively. Different 

from those model-based ones, such algorithms make use of different objective functions 

to measure the overall quality of discovered communities and the community 

membership of each vertex is obtained by optimizing the objective function. For example, 

MISAGA [99] is an approach to community detection in graphs, which can perform the 

task by maximizing the objective function measuring the overall edge density and 

attribute similarity in all the clusters. In [100], an evolutionary algorithm for community 

detection in social networks (ECDA) is proposed. ECDA can discover communities in 

network data by maximizing the intra-degrees of attribute similarity between connecting 

vertices in the same clusters. Inspired by probabilistic topic models [161], there are 

several topic-model based algorithms, including Relational Topic Model and 

iTopicModel [162], proposed to discover communities in relational data. The 

community membership is modeled as a posterior probability measuring the possibility 

that vertices in the same cluster are labeled with similar topics. As such topic model-

based methods always require for a high computational effort, they are not efficient 

algorithms for discovering communities and summarizing their features in the network 

data [97]. Given the prevalent algorithms, we have the following findings that may 

motivate us to develop a novel approach. First, most algorithms are proposed to either 

discover communities or summarize community representations. There are almost no 

effective algorithms that are able to complete both two tasks simultaneously. Second, 

though there have been some approaches which can simultaneously detect graph 

community and summarize their representations, e.g., those topic-models based ones, 

their high computational requirement leads them to be infeasible for the analytics in large 

network data. To address the mentioned challenges, we propose a novel Latent Factor 

Model for Community Identification and Summarization (LFCIS). By modeling edge 

structure, attribute similarity between pairwise vertices, community features, and 

community membership as low-dimensional latent spaces, LFCIS formulates the tasks 

of the identification of community membership and representations as a single 

optimization problem which is related to the learning of the factor in the mentioned latent 
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spaces. The corresponding latent spaces learned by LFCIS may reveal the community 

membership for each vertex, taking into consideration both edge structure and attribute 

similarity, and common representations of each community. For the test of the 

performance, LFCIS is used with both synthetic and real-world datasets of social 

network data. The experimental results are evaluated against known ground-truth data. 

It is found that LFCIS outperforms most of the state-of-the-art in both effectiveness and 

efficiency. Based on its performance, LFCIS is a very promising approach for 

community identification and community summarization. 

 

 Preliminaries 

Given a set of network data containing n vertices, m node attributes, and |E| edges, it can 

be represented as a graph G = {V, E, Λ}, where V, E, and Λ represent the vertex, edge, 

and attribute set in the network data, respectively. For the vertex set, it is defined as V = 

{vi |1≤i≤n}. The edge set, is defined as E = {eij=1| vi and vj are connected}. And the 

attribute set is defined as Λ = {Λi |1≤i≤m}. LFCIS makes use of two matrices, M and F, 

to represent the edge structure and node attributes in G. M is an n-by-n adjacency matrix 

each element of which, say Mij, equals to 1 if vi and vj are connected in G, and 0 if they 

are disconnected. F is an m-by-n matrix each element of which say Fij, equals to 1 if 

vertex vj is associated with attribute Λi, and vice versa. 

For notations, we use a subscript, e.g., Mi, to represent the ith column of a given matrix, 

say M. We use Mij, to represent the entry of M, in ith row, jth column. tr(·) represents 

the matrix trace. |·|F and |·|1 represent the matrix Frobenius norm, and l1 norm, 

respectively. All these mentioned mathematical preliminaries and notations are used by 

LFCIS to model the problem of community identification and summarization. 

 

 LFCIS in details 

In this section, how LFCIS models the community identification and summarization as 

an optimization problem, making use of different latent spaces, and how the factors in 

these latent spaces are fitted, are introduced in detail. 
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 Modeling community identification and summarization 

As mentioned above, there are two sub-tasks, i.e., identifying latent communities, and 

summarizing their representations, that LFCIS has to complete through latent space 

modeling. For the identification of network communities, LFCIS attempts to assign those 

vertices sharing similar edge structure and node attributes into the same communities. 

To project each vertex in G from a high dimension into a lower one, LFCIS makes use 

of a k-by-n latent matrix, S to represent the latent edge structure for each vertex. Each 

column of S, say Si, represents the inter-relationship w.r.t. edge structure between a 

vertex, say vi, and k latent structural components. Obviously, a larger value of an element 

in S, say Sij, means vj has a stronger relationship with ith latent component. Using another 

k-by-n matrix, C to represent community membership between each vertex and k 

communities, LFCIS makes use of the difference between the original adjacency matrix 

of a graph, G and the one that is jointly constructed by S and C, to measure the structural 

loss after using S and C to project the edge structures of n vertices into the k-dimensional 

latent spaces. It is apparent that a minimum of such loss leads to a better projection. And 

this quality function is defined as 

2

1 F

TO

Minimize

CSM                                                (37) 

Besides considering the edge structure of the vertices within the same community, 

LFCIS also takes into the consideration attribute similarity between each pair of vertices. 

As the feature vectors for a pair of vertices vi and vj, Fi and Fj are always with high 

dimensionality and are always different, LFCIS makes use of the following kernel 

function to measure the attribute similarity between a pair of vertices, vi and vj in G 

)
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
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ij

FF
X


                                            (38) 

(38) is a standard Gaussian kernel which can be used to measure the overall similarity 

w.r.t. attributes associated with any pair of vertices in G. A higher value of that means 

there are more attributes commonly associated with both vi and vj. Such pairwise vertices 

are considered to be more similar w.r.t. attributes. After obtaining the attribute similarity 
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between each pair of vertices, LFCIS makes use an n-by-n matrix, X to represent the 

attribute similarity between any pair of vertices in G. Similarly, LFCIS uses a k-by-n 

latent matrix, B to represent the latent attribute similarity between each vertex and k 

latent attribute components. For an element in B, say Bij, its value means the strength of 

attribute similarity between vj and ith latent component. Similar to (37), LFCIS makes 

use of the difference between X and the one jointly constructed by B, and C, to measure 

the loss of attribute similarity after projection. It is defined as 

2

2
F

TO

Minimize

CBX 
                                                    (39) 

As LFCIS aims to find k communities in each of which vertices are connecting more and 

sharing higher attribute similarity, it makes use of the following objective function to 

regulate the structure of latent spaces of S and B 

2

3 F
O

Minimize

BS 
                                                       (40) 

By making use of (40), the latent spaces, B and S are regulated to share the similar 

structure so that LFCIS is able to assign those vertices a sharing higher similarity of edge 

structure and attributes when fitting. To summarize the features that are able to 

characterize the communities, LFCIS assumes that, the community representations are 

hidden in those m attributes in G, and the representations for one community are always 

different from those for others. Based on this assumption, LFCIS utilizes a k-by-m latent 

matrix, A to represent the inter-relationship between each of m attributes and k 

communities. It is apparent that a higher value of an entry in A, say Aij, means Λj is more 

possible to become a representation characterizing community i. By making use of C as 

the latent matrix representing the community membership, LFCIS utilizing the following 

objective function to measure the overall difference between F and the one constructed 

by A and C 

2

4
F

TO

Minimize

CAF 
                                                  (41) 

It is apparent that when (41) is minimized, the corresponding latent spaces represented 
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by A may best interpret the representations characterizing the k found communities. 

Having introduced objective functions that LFCIS uses to complete the sub-tasks of 

community identification and summarization, we may know that minimizing the 

following function means completing these tasks simultaneously 

2222
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Here we assume that the objectives O1, O2, and O4 share the same latent space 

representing the community membership. Based on the introduction of each term in (42), 

we know that those vertices sharing a higher similarity of edge structure and attributes 

can be grouped, so that the community representations can be summarized based on the 

community membership, when (42) is minimized. By ignoring the terms which are 

irrelative to the model optimization, (42) is equivalent to 
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As all the entries in M, X, and F are non-negative, we propose the following objective 

function used by LFCIS to perform the tasks of community detection and summarization 
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where Ω contains the regularization terms preventing the factors in the latent spaces from 

overfitting. If (44) can be optimized, LFCIS is able to find k communities in each of 

which vertices are densely connected, share relatively high attribute similarity with each 

other, and the community representations can be obtained from m attributes in G. 

 

 Latent factor Inference through optimization 
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To identify optimal latent spaces that can be used to represent the community structure 

and community representations, LFCIS has to optimize (44). Given the characteristics 

of (44), we find that it is convex for variables in C, A, B, and S respectively, when fixing 

all variables in other matrices. Given this, we may derive a series of iterative rules for 

inferring the optimal latent factors in C, A, B, and S. 

 Inference of C 

Let βij be the Lagrange multiplier for Cij≥0, the Lagrange function for variables in C is 

shown as the following 

  )(, CββC TtrOL                                           (45) 

Based on the KKT conditions for constrained optimization, we have the following 

element-wise equation system 
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Solving the equation system in (46), we may derive the element-wise updating rule for 

inferring the latent factors in C 

 
 ijTTT

ij

ijij CCAACBBCSS

AFBXSM
CC




                                (47) 

 

 Inference of S 

Let γij be the Lagrange multiplier for Sij≥0, the Lagrange function for variables in S is 

shown as the following 

  )(, SγγS TtrOL                                       (48) 

Based on the KKT conditions for constrained optimization, we have the following 

element-wise equation system 
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Solving the equation system in (49), we may derive the element-wise updating rule for 

inferring the latent factors in S 
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 Inference of B 

Let ηij be the Lagrange multiplier for Bij≥0, the Lagrange function for variables in B is 

shown as the following 

  )(, BηηB TtrOL                                              (51) 

Based on the KKT conditions for constrained optimization, we have the following 

element-wise equation system 
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Solving the equation system in (52), we may derive the element-wise updating rule for 

inferring the latent factors in B 
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 Inference of A 

Let μij be the Lagrange multiplier for Aij≥0. The Lagrange function for variables in A is 

shown as the following 

  )(, AμμA TtrOL                                              (54) 

Based on the KKT conditions for constrained optimization, we have the following 

element-wise equation system 
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Solving the equation system in (55), we may derive the element-wise updating rule for 

inferring the latent factors in A 

 
  


ij
T

ij
T

ijij AACC

CF
AA                                        (56) 

By iteratively updating latent factors in C, S, B, and A, respectively, while fixing the 

others, LFCIS is able to find the optimal factors that maximize (44). 

  

  Convergence analysis 

To prove the convergence of the algorithm, we may make use of one property of an 

auxiliary function that is also used in the proof of the Expectation-Maximization  

To prove the convergence of the algorithm, we may make use of one property of an 

auxiliary function that is also used in the proof of the Expectation-Maximization 

algorithm [166]. The property of the auxiliary function is described as the following. If 

there exists an auxiliary function satisfying the conditions that Q(x, x’) ≤ F(x) and Q(x, 

x) = F(x), then F is non-decreasing under the updating rule that 

),(maxarg1 t

x

t xxQx 
                                         (57) 

The equality F(xt+1) = F(xt) holds only when x is a local maximum of Q(x, x’). By 

iteratively updating x according to (57), F will converge to the local maximum xmax = 

argmaxxF(x). By defining an appropriate auxiliary function for O, we may show the 

convergence of (44). 

First, we may prove the convergence of the updating rule (47) for the inference of C. Let 

Cij be any element in C, OCij be the partial of (44) that is related to Cij, OCij(C’
ij) be the 

partial objective value of (44) that is related to Cij when Cij is equal to some value, say 

C’
ij. Since the updating rule for C is element wise, it is sufficient to show OCij is non-

decreasing according to the updating rule (47). To prove this, we define the following 
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auxiliary function for OCij: 
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where O’
Cij is the first order partial derivative relevant to Cij. Although the auxiliary 

function is defined in (58), we need to prove it satisfies the aforementioned conditions. 

Apparently, Q(c, c) = OCij(c). Hence, the left we need to prove is Q(c, Ct
ij) ≤ OCij(c). To 

prove this, we compared Q(c, Ct
ij) shown in (58) with the Taylor expansion of OCij near 

to Ct
ij 
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where O’
cij and O”

cij are the first and second order partial derivatives relevant to cij. Note 

that 
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Using (60) to replace the relevant terms in (59), we can see that if Q(c, ct
ij) ≤ Ocij(c), the 

following inequality must hold 
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Therefore, to show Q(c, ct
ij) ≤ Ocij(c), it is equivalent to show 
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Since the elements in C, D, B and S are non-negative, we have 
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To prove the convergence of the algorithm, we may make use of one property of an 

auxiliary function that is also used in the proof of the Expectation-Maximization  

Up to here, Q(c, ct
ij) ≤ Ocij(c) has been proved thus (54) is an auxiliary function for Ocij. 

Next, we will define the auxiliary functions regarding the updating rules for the inference 

of S, B, and A, which are shown in (50), (53), and (56). Similarly, let OSij, OBij, and OAij 

be the partial of (41) relevant to Sij, Bij and Aij, OSij(S’
ij), OBij(B’

ij), and OAij(A’
ij) be the 

partial objective values when Sij, Bij and Aij equal to S’
ij, B’

ij and A’
ij, respectively. Since 

the updating rules for the inferring S, B, and A are also element wise, it is sufficient to 

show that OSij, OBij, and OAij are non-decreasing according to the updating rules (50), 

(53), and (56). Let the following be the auxiliary functions regarding to OSij, OBij, and 

OAij: 
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Since the proof for the above functions to be auxiliary functions for OSij, OBij, and OAij is 

similar to that for OCij, we don’t show the proof in detail due to the space limitation. 

Having obtained the auxiliary functions for OCij, OSij, OBij, and OAij, now we can show 

the convergence of (44) using the updating rules (47), (50), (53) and (56). Since (58) is 

an auxiliary for OCij, according to (59), we have 
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The above result is same to the updating rule (47). Since (58) is an auxiliary function, 

OCij is non-decreasing when Cij is updated according to (65) or (47). This is equivalent 

to say that O is non-decreasing when Cij is updated according to (47) for Cij is any 

element of C. Since (64) are auxiliary functions for OSij, OBij, and OAij, according to (57), 
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we have 
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The above results are same to the updating rules (50), (53), and (56). Since (64) are 

auxiliary functions, OSij, OBij, and OAij are non-decreasing when Sij, Bij and Aij are 

updated according to (50), (53), and (56). This is equivalent to say that O is non-

decreasing when Sij, Bij and Aij are updated according to (50), (53), and (56), respectively. 

The above proof shows that O is non-decreasing when C, S, B and A are iteratively 

updated according to (47), (50), (53) and (56). Thus, we have 
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where O shows a non-decreasing trend in each iteration of updating and it may finally 

achieve the local optima. 

 

 The termination of optimization 

As C, S, B and A are iteratively updated, the objective value converges to the local 

optima asymptotically. Simultaneously, the variation of the four matrices becomes less 

evident as the elements in each matrix are approximate to the magnitudes which lead the 

objective value to local optima. Thus, we may use the following stopping criterion to 

terminate the optimization process and LFCIS may obtain optimal latent factors in 

matrices C, S, B and A that lead O to converge approximately 

 

F

ii 1CC                                           (68) 

where Ci stands for the latent space representing the community membership after the 

ith iteration of updating, τ represents the predefined tolerance which the Frobenius norm 

of the difference of C between two iterations should satisfy. When τ is set to be a 

relatively small value, LFCIS may obtain a latent matrix C which is very approximate 
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to the optimal.  

 

 Summary remarks 

Having obtained the updating rules for C, S, B and A and the stopping criterion for the 

optimization process, now we may describe the details of LFCIS. Based on the 

aforementioned description, the proposed latent factor model can be summarized as the 

pseudo codes shown in Fig. 25. As it is seen in the figure, there are not many parameters 

that need to be input. After the parameters of maximum number of iteration 

max_iteration, tolerance for improvement τ, penalty factor α and the dimensionality of 

latent spaces, k are determined, LFCIS will iteratively update the matrices C, S, B and 

A, in which are the latent representations representing the community membership and 

features, till the variation of C between each two iterations is less than τ or the objective 

function converges to the local maxima. After the optimization process is terminated, 

LFCIS obtains the matrices for community membership and features. In this case, C and 

Inference of latent factors in LFCIS 
Input:  M, X, F, α, max_iteration, τ, k  

Output:  C, S, B, A 
Randomly initialize C, S, B, A; 
 
for count=1: max_iteration  
      Fixing S, B, A 

           update C according to (11); 
      Fixing C 

           update S according to (14); 
      update B according to (17); 
      update A according to (20); 
       if (|Ci - Ci-1|F<τ)  
            compute objective value according to (9); 
            break; 
       end if 
end for 
 
return C, S, B, A; 

 

Fig. 25.  Model fitting of LFCIS 
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A which contain the optimal or approximately optimal membership between each vertex 

and k communities and the communities representations generated based on the m 

attributes in G. Given C, LFCIS can directly identify the best community membership 

for each vertex in the attributed graph and in this regard, it is more efficient than other 

approaches. 

 

 Experiments and analysis 

To evaluate the effectiveness of LFCIS, we performed some experiments using both 

synthetic and real-world datasets. In this section, we will detail the data sets we use, the 

criteria we used to evaluate the performance, and how we performed the experiments. 

 

 Experimental set-up and performance metrics 

   

 Data sets descriptions 

We used both synthetic and real datasets with known ground truth for performance 

evaluations. We used synthetic data to test the effectiveness, efficiency of LFCIS and 

other compared baselines, and parameter sensitivity of LFCIS. We used real-world 

datasets to test the robustness of different algorithms. The details of datasets we used are 

described below. 

There are five real-world datasets used in our experiments, including Caltech [115], 

Twitter [97], Ego-facebook [167], Googleplus-1, and Googleplus-2 [167]. Compare with 

the experiment of DMNF, this part of the experiment also introduced Twitter, 

Googleplus-1, and Googleplus-2 data sets 

Twitter dataset is constructed based on a number of social circles extracted from 

twitter.com. For this dataset, there are 2511 vertices representing twitter users, 37154 

edges representing the friendship between them, and 9067 attributes, representing social 

topics they concern, and the locations where the users post twits. There are 132 social 

circles that have been verified as ground truth communities. 

Googleplus-1 is a set of online social network data which are collected from 
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plus.google.com. There are 5630 vertices, 463537 edges, and 4229 attributes in the 

dataset. In this dataset, vertices, edges, and attributes represent googleplus users, 

friendships, and user profiles, respectively. There are 58 social circles that have been 

verified as ground truth communities in Googleplus-1. 

Googleplus-2 is another set of social network data which are constructed based on the 

sub-networks from plus.google.com. There are 7856 vertices, 321268 edges, and 2024 

attributes in the dataset. In this dataset, there are 91 social communities of ground truth 

that are able to be used for benchmarking the identified ones. 

Syn1k is a set of synthetic data which is generated based on the rule that the probability 

of intra-community edges is higher than that of inter-community edges and that vertices 

in the same cluster are more related to each other than those that are not. For this dataset, 

we used 1000 vertices that are divided into 4 disjoint ground truth communities, 9900 

edges and 50 attributes that are possibly associated with each vertex. 

The above data sets are used to test the effectiveness of LFCIS and other algorithms. In 

addition, to test the scalability of LFCIS, we have generated several additional synthetic 

datasets ranging in size from 5,000 to 100,000 for our experiments. 

 

 Evaluation metrics 

For performance evaluation, we are considering different evaluation measures which are 

widely used for evaluating graph clustering algorithms. For measures used for validating 

graph clusters, we also used the Normalized Mutual Information (NMI) same with the 

measurement of DMNF, and the Average Accuracy (Acc) [168].  

The NMI measures the overall accuracy of the matches between detected communities 

and those that are considered as “ground truth”. Contrary to the NMI, the Acc measure 

evaluates individually detected community. It is defined as 

  
c

i

i
CCf

C

C
Acc ,                                                (69) 

where |C| means the size of the detected communities, and f(·) stands for a mapping 

function between cluster i and the ground truth. For our purpose, we define f(·) to be the 
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maximum overlap between detected community i and a ground-truth community. Thus, 

Acc evaluates the best matching of each cluster. A higher value of Acc, therefore means 

that each detected community has a better match with the ground truth. The higher the 

Acc of all communities detected by an algorithm, therefore means that the algorithm is 

more effective. 

 

 Baselines for comparison 

To test the effectiveness of LFCIS, we selected a number of approaches as compared 

baselines. These algorithms include Affinity Propagation clustering (AP), Spectral 

clustering (SC), k-means clustering, Relational topic model (RTM), ECDA, and 

MISAGA. Selecting these algorithms as baselines are because they are either the latest 

algorithms or classical ones and have all been used effectively to detect network 

communities in various networks. Specifically, AP and SC may detect graph clusters 

that take different topological properties of network graph data. For our experiments, we 

used the SC that makes use of the normalized cut in graph clustering. K-means is able to 

detect graph communities by grouping together those vertices with similar attributes. 

Therefore, we used the information in Λ as the input that is used to compute the similarity 

between pairwise vertices for k-means. Algorithms like RTM, ECDA, and MISAGA are 

ones taking into consideration both graph topologies and attributes. RTM has been 

shown to be a very effective topic-model based approach to segment relational data. 

ECDA performs its tasks using an evolutionary graph clustering algorithm. MISAGA is 

a very effective algorithm which is proposed recently. It can perform the task of 

community detection in graphs by taking into the consideration edge structure and 

Approach NMI Acc 

AP 0.152 0.747 
SC 0.232 0.528 
k-means 0.691 0.835 
RTM 0.797 0.797 

ECDA 0.272 0.466 
MISAGA 0.981 0.996 
LFCIS 0.995 0.999 

 

Table 13.  NMI and Acc in Syn1k 
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attribute similarity between pairwise vertices. 

For performance benchmarking, we used the source code or executables made available 

by the authors. All the experiments were conducted in the same environment which 

included a workstation with 4-core 3.4GHz CPU and 16GB RAM. 

 

 Experimental results using synthetic data 

 

 The performance of community detection 

For performance evaluation, we used a set of synthetic network data containing 1000 

vertices to test the effectiveness of all different algorithms. There are four disjoint ground 

truth clusters in the synthetic dataset. As mentioned above, the synthetic data are 

generated by assuming that the probability of vertices within the same community to be 

connected with other vertices to be higher than that of the probability between 

communities. For our experiment, the data set Syn1k was generated by setting the 

probability of intra-community connections to be 0.05 and the probability of inter-

community connections to be 0.01.  

The performance of LFCIS and other algorithms on the synthetic dataset Syn1k 

concerning  NMI, and Acc is given in Table 13. As the table shows, LFCIS performs 

 

Fig. 26.  Sensitivity test of α. 
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better than other algorithms. No matter which of NMI, or Acc is considered, LFCIS may 

outperform all the compared baselines in dataset Syn1k. These experimental results show 

that LFCIS can be very effective with the discovering of communities in the synthetic 

attributed graph. 

 

 Sensitivity test of α 

As mentioned in the above section, there is only one parameter, α, which is used to 

control the sparsity of A in LFCIS that might take effect on the performance of the model. 

To investigate how the parameter α may take effect on the performance of LFCIS, we 

performed the sensitivity test using the dataset Syn1k. In our experiment, α was set to 

different values from 0.1 to 2, with an increment of 0.1, and LFCIS was used under these 

different settings to fit the latent factors for discovering communities. The performance 

was measured with NMI, and Acc and the results are shown in Fig. 26.  

As it is shown in the figure, LFCIS may obtain a worse performance when α is set to be 

either near 0, or near 2. LFCIS may perform steadily when α is set to a value between 

0.2 and 1.5. In our experiments, we set α to 0.5, when LFCIS performs the tasks of 

community identification and summarization in all the datasets. Using this setting may 

guide LFCIS to exclude those attributes with relatively lower possibility of being ones 

that may characterize the identified communities while preserving those that are more 

possible to be community representations. 

 

 Experimental results using real-world data 

Community detection is significant to network analytics. To test the effectiveness of 

LFCIS and other compared baselines, we use them to perform the task of community 

detection in five sets of real-world network graph data, including Caltech, Twitter, Ego-

facebook, Googleplus-1, and Googleplus-2. These five sets of real-world data are 

different from vertex size and the dimensionality of attributes that are used to 

characterize the vertices. All these datasets have known ground truth communities which 

have been verified in the previous works. For this reason, the performance of LFCIS and 

other baselines can be more objectively compared.  
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The experimental results of NMI and Acc obtained with these datasets are summarized 

in Table 14. As the table shows, LFCIS performs more robustly, compared with other 

baselines. When NMI is considered, LFCIS is better than any other baselines in all the 

five datasets. LFCIS outperforms the second-best methods by 42.65%, 3.08%, 13.52%, 

5.86%, and 14.54% in Caltech, Twitter, Ego-facebook, Googleplus-1, and Googleplus-

2, respectively. When Acc is considered, LFCIS is better than any other baselines, except 

the case in Twitter dataset. In Caltech, Ego-facebook, Googleplus-1, and Googleplus-2, 

the improvement related to Acc, is 3.71%, 13.27%, 0.82%, and 30.3%, respectively, 

Table 14. Experimental results in real-world data 

Dataset 
Approach 

Caltech Twitter Ego-facebook 

NMI Acc NMI Acc NMI Acc 

AP 0.34 0.458 0.598 0.479 0.528 0.416 

SC 0.338 0.335 0.493 0.305 0.52 0.447 

k-means 0.176 0.268 0.298 0.237 0.385 0.276 

RTM 0.11 0.146 0.028 0.099 0.227 0.167 

ECDA 0.148 0.202 0.529 0.385 0.322 0.234 

MISAGA 0.2 0.256 0.65 0.503 0.54 0.452 

LFCIS 0.485 0.475 0.67 0.493 0.613 0.512 

Improvement (%) 42.65 3.71 3.08 -2.03 13.52 13.27 

Dataset 
Approach 

Googleplus-1 Googleplus-2 

NMI Acc NMI Acc 

AP 0.412 0.525 0.355 0.273 

SC 0.284 0.321 0.33 0.296 

k-means 0.16 0.221 0.154 0.195 

RTM 0.075 0.309 0.023 0.151 

ECDA 0.443 0.468 0.333 0.255 

MISAGA 0.546 0.735 0.399 0.363 

LFCIS 0.578 0.741 0.457 0.473 

Improvement (%) 5.86 0.82 14.54 30.3 
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when LFCIS is compared with the second-best algorithms. Given the robust performance 

obtained by LFCIS in these real-world datasets, it is said that LFCIS is a very effective 

model for identifying latent communities in network data, while ensuring the community 

representations also to be identified.  

 

 Summary 

In this section, a novel latent factor model for community detection and summarization, 

LFCIS is proposed. By taking into the consideration edge structure and attribute 

similarity between each pair of vertices in the network, LFCIS is able to find the optimal 

assignment of community membership for each vertex by making use of a convergent 

updating algorithm to fit the latent factors. Different from prevalent approaches that 

focus on either community identification or community summarization, LFCIS is able 

to summarize the representations of each identified community while performing the 

task of community identification in the network. Such representations are able to 

characterize both community itself and their members. Having been used with both 

synthetic and real-world network data, LFCIS outperforms most state-of-the-art 

approaches in experiments related to the test of effectiveness and efficiency. It is 

concluded that LFCIS is a very promising approach to identifying communities and 

summarizing their representations in the network data. 
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6.  ONE CLASS REPRESENTATION 
 

There is a particular case in the task of link prediction of the network, which is sample 

imbalance. An essential problem in the task of supervised link prediction is that there are 

very few samples of a particular type. In other words, the corresponding features 

representing one class of samples are also very few. Small samples also mean few 

patterns to be excavated, and machine learning does not work well in this case. For 

example, the exception instance in fault prognostic usually accounts for only one 

thousandth of the entire sample. It has become a huge challenge to reconstruct the one-

class representation and improve the prediction using the representations of one-class 

samples. This means that just example objects of the target class can be used and that no 

information about the other class of outlier objects is present. In this section, we present 

a novel approach for such a purpose. It applies a one-class representation algorithm to 

discover association patterns between interacting targets from their original features. 

 
6.1 Overview 

Drug and target protein interaction represents the procedural nature of drug act on the 

human body, and thus a crucial step in drug discovery is the identification of small 

molecules that effectively modulate the functions of disease-related target proteins. Past 

discovery campaigns have indicated that the high failure rate of drug discovery can be 

mainly attributed to the improper DTIs (drug-target interactions) occurrence. Even 

though data manufacturing technologies are accelerating faster than Moore's Law, drug 

discovery is still a costly and inefficient process. The cost of discovering a new FDA 

approved drug has doubled every 9 years since 1950, with costs for each new drug 

estimated at $2.6 billion from a 2013 estimation [169-170]. And with the enormous 

investments, pharmaceutical communities lock into their greatest losses when a drug 

fails in the later stages of development and post-market. Since the Human Genome 

Project (HGP) presented in the 80’s late and early 90’s, it gives a future promise of 

increasing the number of the potential target protein and carries it out. Many DTIs related 

information like molecule structure, protein sequence, and protein functions have been 

collected to public databases. For example, there are hundreds of thousands human 

proteins are recorded in UniProtKB database [171]. On the other hand, there are only 
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around thousands of known drug compounds are deposited in Drug Bank [21]. Other 

databases such as Super Target and Matador [172] and Therapeutic Target Database 

(TTD) [37] have been designed as resources for target functions. Therefore, the existed 

a huge number of unexplored compounds and human proteins make it impossible to 

evaluate drug-target interactions effectively by biological experiment. Normal drug 

discovery processing may generate products different from the original treatment. 

Instability and no specificity of DTIs have to be addressed appropriately during the 

screening and clinical phase. In addition, possible drug-target interactions also 

supporting other drug discovery work like drug combination prediction, adverse drug 

reaction prediction new biomarkers discovery [173]. To reduce the huge time and 

financial cost of experimental approaches, many computational models have been built 

to elucidate interesting drug-target relationships of most promising candidates for further 

experimental validation.  Various methods are caring drug similarity and drug-target 

nature representations respectively [54].  Similarity-based methods are developed to 

identify biological interaction by including the similarity matrices of related entities. 

Multiple computational techniques have been proposed to discover DTIs based on their 

molecule and protein sequence similarity [174-175], [61, 119]. An attractive approach is 

to integrate various descriptions of drug-target from multiple sources in a machine 

learning framework. Feature vector-based methods are regarded as more advanced 

strategies that face drug and protein features straightforward. These methods provide 

biological representations for learning interest patterns such as compound subset and 

protein subspace. But, current feature-based methods are not able to train full DTIs 

because of the large computing cost. It’s also difficult for current techniques to build a 

prediction model rely on reliable positive samples without the uncertain negative sample. 

Fortunately, it is widely believed such a problem can be resolved by one-classification 

techniques as follows: 

• Over-represented representations observed in interacting drug-target links can be used 

to infer DTIs. Drug chemical information and sequence descriptor about nature features 

can be used to predict potential DTIs as well. 

• Original large-scale candidate interactions have been extracted from DTIs matrix. A 

promising approach is to combine various representations and propose a one-class 

classification method for only keep reliable positive samples in our training model. And 
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all positive and negative samples can be used to test in this model. 

 

In this chapter, we develop a new feature-based method called ODT (one class drug-

target interaction prediction). ODT predicts drug-target interactions from protein 

sequence descriptors and molecule fingerprints with one-class classification aiming at 

training a robust training model to rely on known positive samples. Firstly, we introduce 

two descriptor approaches to discover protein sequences descriptors and use chemical 

fingerprints for representing the chemical space. Secondly, to solve the difficult problem 

of no certain negative samples, we introduce Support Vector Data Description (SVDD) 

to judge whether one drug interacts with one target by describing a boundary. Our 

method constitutes a significant advance because it logically just considers certain nature 

representations of positive known DTIs that remained as training data. We adopt all 

popular data standard to test the proposed method which includes G protein-coupled 

receptor, enzyme, ion channel, and nuclear receptor dataset [61]. ODT has been tested 

with Gold standard data sets that can be a beneficial approach to predict the DTIs. 

 

6.2 ODT in details 

The crucial issue of drug-target interactions problem is that reliable interactions are 

available for the only positive class, called the known interactions. In turn, most negative 

instances cannot be regarded as absolutely non-interactive samples for the negative 

concept. In experimental biology, it is hard to obtain certain interaction instances, and 

we have not enough resource to filter all the negative samples. Before, it is very 

challenging to label the uncertain samples when we train the machine learning model to 

predict interaction. When deciding which drug and protein to be grouped, previous 

approaches usually make use of both the positive and all negative interaction samples. 

Because too large-scale samples are trained, and some of them are wrongly labeled, 

general ways are difficult to build an efficient and reliable classifier. Consequently, a 

smart classification method is needed to generate a more accurate descriptive model 

based on representations of a certain positive sample.  

A skillful one-class classification model called Support vector data description (SVDD) 

[176-178] is constructed with the aim of characterizing the representation of one-class 
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examples, and then it is used to distinguish test examples which should be classified into 

the target category or not. A pretty subtle step of SVDD is making a constrained 

geometry with less number to describe the data by mapping them to a high-dimensional 

space. Here, the boundary provides a standard for classifying the outliers and targets. 

The optimal solution is one kernel find a spherically shaped boundary around the targets 

that have minimum volume containing all data. SVDD like to detect the radius and the 

center of the hypersphere by using the known data samples. The sketch map of SVDD 

in 2D graph is presented in Fig. 27. Given an instance 

set	ܺ	 ൌ 	ሾݔଵ, ,ଶݔ	 … , ௜ሿ்ݔ	 ∈ 	ܴேൈெ , where N is the number of drug-target interaction 

instances, and M is the number of their representations. 

As SVDD considers all data points with the same importance, the trained model is very 

sensitive to noise points which greatly affect the acceptance accuracy of SVDD [33]. 

The quantity of noise point in drug-target representations is considerable compared with 

the general data which should be reduced before the hyperplane making. Information 

gain ratio is a typical feature selection technique, here we present it to process the 

original high-dimensional data first. It is a widely used entropy-based analysis technique 

that allows reducing the dimensionality of the features while preserving information on 

the classified influence. The basic idea of information gain ratio [34] is to determine a 

ratio of information gain to the intrinsic information. Information gain tells us which 

 

Fig. 27.  Sketch map of SVDD in 2D 
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training attribute is most useful for deciding the instance’s classification.  All original 

high-dimensional drug-target patterns can be optimally transformed to an abridged 

feature space with lower dimensionality.  

Usually, SVDD first maps new input space with a nonlinear transformation to the feature 

space via a mapping function φ (.). Then, the general task is determining a sphere with a 

minimal volume containing all or most of the mapped data objects in the feature space. 

For a drug-target interaction data set containing N samples ሼ ௜ܵ, 	݅	 ൌ 	1, … , 	ܰሽ , let 

hypersphere characterized by a center α and radius	R. Hence, SVDD is then to describe 

the input samples by using a hypersphere with minimized radius for a minimum sphere 

volume that enclosed the target samples as many as possible. If some given objects have 

a large distance from the center, the built large sphere may decrease the model 

performance. Therefore, the far outliers should be penalized, we allow for some outliers 

outside the sphere by introducing slack variables ߦ௜  associated with the deviation, and 

the goal is to describe the hypersphere with minimum radius	R. The error function to 

minimize radius is an optimization problem as follows.  

,ሺܴܮ݊݅݉	 ܽሻ ൌ ܴଶ ൅ ܥ ∑ ௜ߦ
ே
௜ୀଵ                                          (70) 

subject to the constraints: 

௜ݔ‖ െ ܽ‖ଶ ൑ ܴଶ ൅  ௜                                                 (71)ߦ

௜ߦ ൒ 0∀݅. 

where the parameter C controls the tradeoff between the size of the hypersphere and the 

miss errors. Eq. (71) can be incorporated into Eq. (70) by using Lagrange multipliers 

with the ߙ௜ ൒ 0 and ߚ௜ ൒ 0. The corresponding Lagrange function becomes: 

,ሺܴܮ ܽ, ,௜ߙ ,௜ߚ ௜ሻߦ ൌ 

ܴଶ ൅ ܥ ∑ ௜ߦ
ே
௜ୀଵ െ ∑ ሺܴଶ ൅ ௜ߦ െ ௜ݔ‖ െ ܽ‖ଶሻߙ௜

ே
௜ୀଵ െ ∑ ௜ߦ௜ߚ

ே
௜ୀଵ                    (72)   

by using Lagrange multipliers with the ߙ௜ ൒ 0 and ߚ௜ ൒ 0. The corresponding Lagrange 

function becomes: 

The Lagrange function should be minimized with respect to	ܴ	,ߦ௜	, ܽ, and maximized 

with respect to ߙ௜  and ߚ௜  with the constraints. We should set the following limit 
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conditions at the solution point: 

∑ ௜ߙ
ே
௜ୀଵ ൌ 1                                                                     (73) 

 

ܽ	 ൌ ∑ ௜ݔ௜ߙ
ே
௜ୀଵ                                                                   (74) 

 

ܥ ൌ ௜ߙ ൅  ௜                                                                      (75)ߚ
 

where the 0	 ൑	ߙ௜	൑ ܥ	   from Eq. (75) because the ߙ௜ ൒ 0  and ߚ௜ ൒ 0 . Then 

resubstituting Eqs. (73) - (75) into Eq. (72), the problem will turn into maximizing the 

following function ܮ: 

ݔܽ݉ 	 ܮ ൌ ∑ ௜ݔ௜ሺߙ ൉ ௜ሻݔ
ே
௜ୀଵ െ ∑ ∑ ,௜ߙ ௜ݔ௝൫ߙ ൉ ௝൯ݔ

ே
௝ୀଵ 	ே

௜ୀଵ                               (76) 
 

subject to the constraints: 
 

0 ⩽ ௜ߙ ⩽ ,ܥ ܽ ൌ ∑ ௜ݔ௜ߙ
ே
௜ୀଵ , ∑ ௜ߙ

ே
௜ୀଵ ൌ 1                                           (77) 

To detect meaningful clusters in the graph data, there have been several so-called graph 

clustering algorithms proposed. These algorithms can be categorized based on the 

information of graph data they utilize 

According to the location of the training instances, there are three types of training 

instances. If  ݔ௜ is mapped to the inside of the hypersphere, ߙ௜	becomes zero. And the 

corresponding data samples ߙ௜ are called support vectors. If the training instance ݔ௜ is 

mapped on the hypersphere, ߙ௜  lies on between 0 and C. If the ݔ௜	is mapped to the 

outside of the hyperspheres, ߙ௜ becomes C. 
When an object ݖ be tested, it requires the calculation of the distance from the object ݖ 

to the center of the hypersphere. The distance to the center of the hypersphere is 

calculated by equation (78). The test object ݖ is accepted within the hypersphere when 

the distance is smaller than the radius R. 

∥ ݖ െ ܽ ∥ଶ 
ൌ ሺݖ ൉ ሻݖ െ 2∑ ݖ௜ሺߙ ൉ ௜ሻݔ

ே
௜ୀଵ ൅ ∑ ∑ ,௜ߙ ௜ݔ௝൫ߙ ൉ ௝൯ݔ

ே
௝ୀଵ

ே
௜ୀଵ ⩽ ܴଶ					              (78) 

ܴଶ	is the squared distance from the center of the sphere a	to the boundary. If 	ߙ௜ൌ  the ,	ܥ

support vectors fall outside the sphere are excluded. Therefore: 

ܴଶ 
ൌ ሺݔ௞ ൉ ௞ሻݔ െ 2∑ ௜ݔ௜ሺߙ ൉ ௞ሻݔ

ே
௜ୀଵ ൅ ∑ ∑ ,௜ߙ ௜ݔ௝ሺߙ ൉ ௝ሻݔ

ே
௝ୀଵ

ே
௜ୀଵ                  (79) 

Figure 28 shows a Samples of Gold-standard dataset by random three features in a 3D 
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graph. Because the sphere is not always a tight description for the boundary of sample 

distribution, we can replace the inner product by a kernel 

functionܭሺݔ, 	ሻݕ	 ൌ 	ሺ߮ሺݔሻ	 ⋅ 	߮ሺݕሻሻ that make more flexible. Some kernel functions 

have been used for the SVDD classifier. The Gaussian kernel is a nonlinear function that 

maps the sample data to a new feature space, and it has been proved to work well on the 

data descriptions in many previous cases. Hence, we adopt the Gaussian kernel function 

in this work. Then, we replace the inner product, and it will be obtained in the following 

form:  

,௜ݔ൫ܭ ௝൯ݔ ൌ ݌ݔ݁ ቆ
ିฮ௫೔ି௫ೕฮ

మ

ఙమ
ቇ , σ> 0                                  (80) 

where the variance parameter ߪ  is a width parameter that controls how tight the 

description is around the data. 

 

 
 

 
 

 
 
 

Fig. 28.  Samples of Gold standard data set by random three features in 3D graph 
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6.3 Experiments 

 Performance Evaluation 

For drug-target interactions, we used the DTIs dataset from Golden Standard Dataset 

same with the MFDR used. The ratio of positive-negative to enzymes, ion channels, 

GPCRs, and nuclear receptors is 99.984, 28.024, 32.362 and 14.6 respectively. Previous 

feature-based approaches have randomly selected negative samples from the non-

interactions until the ratio hitting the one-to-one scale. And yet, we considered all drug-

target interactions in our work. Due to our DTIs dataset is a high-class imbalance, we 

use 5-fold cross-validation, where each fold leaves out 20% of the positive and negative 

samples for testing. Since the true positive examples are too small, that may lead to no 

positive training samples if randomly divide the dataset. We separate positive and 

negative samples and divide both into each fold equally. Regarding extreme imbalance 

prediction performance evaluation, it has argued for using ranking measures like 

AUROC (area under the ROC curve) that the prediction performance can be safely 

unbiased. We infer interactions and compare against the held-out interactions, measuring 

performance using the AUC for our evaluations. ROC curves are created by plotting the 

true positive rate versus the false positive rate at various thresholds. We then computed 

precision-recall curves for each dataset. AUPR (area under the precision-recall curve) 

which takes into account both recall and precision, calculated as follows	ܲ݊݋݅ݏ݅ܿ݁ݎ	 ൌ
்௉

்௉ାி௉
 and		ܴ݈݈݁ܿܽ	 ൌ 	 ்௉

்௉ାிே
. We also used the grid search to select the best parameter 

C (0.1-1) and sigma (0.1-2.5) for the Gaussian kernel based on the ROC scores. SVDD 

and evaluation methods were implemented using Dd_tools [178]. Since the high-

dimensional of protein and drug descriptors, we collected 1448 features for each drug-

target interaction sample outlined by protein profiles and chemical profiles. The resulting 

AUROC scores of ODT for nuclear receptors, GPCRs, Ion channels, and Enzymes are 

0.766 obtained when C=0.5 and σ=1.3, 0.885 obtained when C=1 and σ=1.15, 0.847 

obtained when C=0.2 and σ=2.15 and 0.850 obtained when C=0.85 and σ=1.15 

respectively. The resulting AUPRC scores of ODT for nuclear receptors, GPCRs, Ion 

channels, and Enzymes are 0.3762, 0.2992, 0.3661 and 0.3263 respectively. As Figure 

29 shows, our average prediction accuracy of a 5-fold dataset is good.   

 



130  

 Performance Comparison 

At present, many studies are subtly designed for classifying the unknown drug and 

protein interactions. However, all feature-based methods are restricting practicability in 

the unreliable and incomplete training data. And, most similarity-based methods are 

restricting biological availability in the unessential representations. Thus, a reliable and 

efficient computational way is highly required to extract accurate information and target 

label directly. To evaluate the performance of ODT, we tested it with several previous 

works for comparison. Since traditional classifiers are time-consuming and costly to 

identify the high-dimensional drug-protein representations consist in hundred thousand 

DTI samples by performing experimental tests, there is no similar feature-based 

prediction work can support whole large-scale DTIs prediction. Because of computation 

limitations, we examined the prediction performance for original SVM on Nuclear 

receptors and GPCRs. We still used the grid search to select the best parameter C (1-50) 

 

 
 

 
 

Fig. 29.  5-Fold ROC curves of Nuclear Receptor, GPCR, Ion channel, and Enzyme 
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and sigma (0.001-1) for the RBF kernel based on the ROC scores. The best AUROC of 

SVM for Nuclear receptors and GPCRs are 0.7917 and 0.641 respectively. It seems that 

the proposed performance of SVDD similar to SVM on Nuclear receptors dataset. 

However, SVDD outperforms SVM on GPCRs which demonstrates the proposed SVDD 

have better prediction power on the larger scale and more imbalanced DTIs. 

 

We further considered five important studies in this similarity-based area which have 

been implemented in the whole DTIs. As AUC is the most commonly reported measure 

in our related publications and it allows us to compare against the published results of 

other methods on the same dataset. We compared the best AUROC scores of the ODT 

with these approaches including KBMF2K [73], NetCBP [74], Bipartite Graph Learning 

[62], DBSI [119] and PUDT [55]. Table 15 shows the AUROC scores of ODT and others 

divided by four interaction types. As the results look like that shown above, the 

prediction accuracy of the ODT is superior in comparison with most methods at GPCRs 

and Ion channels. In addition, instead of the common two class classifier, we made use 

of one class solution to create boundary of target class. We usually choose one class 

classifier for the imbalance data classification task. The minority class should be defined 

to target class. Using this SVDD, known positive interactions will be used to training 

model and it’s a small-scale sample under large-scale DTIs. So it has ability to obtained 

good results under considerable training time even we can collect more DTI samples. 

 

 Case Study 

 

Table 15. The average AUC of different methods on the four type dataset 
            

Method 
 
Data set 

ODT PUDT DBSI 
Bipartite 
Graph 

Learning 
KBMF2K NetCBP 

Nuclear 
receptors 

0.766± 
0.024 

0.885 0.758 0.692 0.824 0.839 

GPCRs 
0.885 ± 
0.005 

0.878 0.802 0.811 0.857 0.823 

Ion 
channels 

0.847± 
0.004 

0.831 0.803 0.692 0.799 0.803 

Enzymes 
0.850± 
0.002 

0.884 0.808 0.821 0.832 0.825 
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After evaluating the effectiveness of the proposed model by using the 5-fold cross 

validation method, we here calculate the interaction possibility for all potential drug-

target pairs in the datasets of GPCRs and Nuclear Receptors. The predicted drug-target 

pairs with top ranks in the drug’s potential target lists are considered as highly potential 

drug-target interactions and further verified by four public databases (i.e. KEGG [145], 

Drugbank [21]). These databases have been supplemented by some newly detected drug-

target interactions since the gold standard data explored in this study was collected in 

2008. All the predicted possibilities for all potential drug-target interactions in GPCRs 

and Nuclear Receptors can be obtained in Table 16. As a result, 8 new drug-target 

interactions are finally confirmed. Note that the high-ranked interactions that are not 

reported yet may also exist in reality. Based on these results, we anticipate that the 

proposed model is feasible to predict new drug-target interactions. 

 

6.4 Summary 

In this chapter, we proposed a novel method to predict potential drug-target interaction 

based on their chemical structures and their target protein sequences. We adopted two 

representation methods for multiple responses to deal with two object data sources. And 

then, we introduced SVDD to solve the large high-dimensional data sets and unreliable 

negative samples. The general task of SVDD can be regarded as drawing a decision 

Table 16. The newly confirmed drug-target interactions by public database with high scores 

Drug ID Protein ID  Evidence 

Levodopa  hsa:1814 KEGG 

Levodopa hsa:1816 KEGG 

Duratool hsa:3355 Drugbank 

Misoprostol hsa:5031 KEGG 

Isoetharine hsa:154 KEGG 

Metoprolol hsa:1814 Drugbank 

Clozapine hsa:154 Drugbank 

Dipivefrin hsa:2099 Drugbank 
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boundary for accepting most of the target and rejecting most of the outliers at the same 

time. As the known positive samples make up only a small portion of large-scale 

candidate interactions, the smart method is training target classification boundary 

obtained from calculable positive samples excluded from confused samples. To our 

knowledge, no previous feature-based work relies on all reliable positive samples in the 

training of drug-target interaction prediction. The originality of the proposed method lies 

in the get high-dimensional chemical features and biological features together in a 

unified input. At early stages, our approach could help screen the candidate molecules 

for the further development process. ODT can be used for link prediction in large 

networks. The generalization method is to filter features with mutual information first, 

and then to build the hypersphere based on one-class representation. The experimental 

result shows that ODT can handle the one-class drug-target interaction data effectively 

and provide good performance of drug-target interaction prediction. The proposed 

method depends highly on the scale of known positive samples, high-dimensional 

biological and chemical profiles also influence the model performance. 
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7. CONCLUSION AND FUTURE WORK 
 

To discover representation in the networks, several algorithms have been proposed. Though 

different computational methodologies might be utilized, these algorithms can be 

categorized according to the specific properties that are considered, the techniques that 

are used, and the particular field into which they are applied. In this section, the state-

of-the-art related to discovering clusters in graphs are introduced categorically. 

 

7.1 Conclusion 

In this thesis, we mainly address the challenges in learning appropriate and explainable network 

representations for pattern discovery. To learn representations that may consider different 

characteristics of the network data, we have proposed five different algorithms. 

First, we propose MFDR, which is an effective model for learning multi-scale representations 

from the network. MFDR is the first attempt to utilize stacked autoencoder to represent large-

scale bimodal features, i.e., network topology and node attributes. The network representations 

learned by MFDR can effectively perform the task of link prediction in biological network data. 

Second, we propose DMNF, which is an effective model for learning meaningful representations 

from networks carrying heterogeneous information. DMNF is able to construct a new network 

by fusing the heterogeneous information carried by the network and learn representations via a 

deep fusion method. The learned representations can effectively uncover the clusters hidden in 

the network. Third, we further propose a model, named as DFNet, which can learn representations 

from the fused network via matrix completion. Fourth, we propose GraphSE to learn interpretable 

network representations to construct a set of significant sub-networks which can be used for 

predicting the existence of links in the drug-side-effect network data. At last, we propose an 

effective clustering model called LFCIS. Different from previous ones, the low dimensional 

network representations learned by LFCIS can be used to summarize the group-wise node 

features that are hidden in the network data. Besides, we also attempt to address the problem of 

sample imbalance in link prediction by proposing ODT. ODT tackles the problem of unbalanced 
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samples with support vector data descriptor. It can identify those one-class nodes in a densely 

connected hypersphere, as well as the attributes of nodes are selected by mutual information. 

 

The proposed models have been used to analyze a wide range of real-world network data related 

to society and biology and have been compared to a number of prevalent approaches. The 

proposed methods are able to outperform most compared baselines in most real datasets. This 

indicates that the network representations learned by the proposed models may well capture the 

information carried by the network and they are effective in different tasks of network analytics 

 

7.2 Future work 

In the future, we attempt to improve representation learning in the network data from the 

following aspects. First, we will attempt to propose effective fuzzy-based models for 

learning representations from network data. Compared with traditional methods for 

learning representations in the network, fuzzy representation learning may reveal the 

significance of learned latent features via the degree of membership. As a result, those 

latent features that are used to dominantly describe the vertices can be easily utilized by 

a classifier and the accuracy of the discovered patterns in the network is expected to be 

higher. Second, we will attempt to investigate how the mutual effect between different 

domains of networks may affect the performance of a representation learner in multiple 

network data. Robust network representations are expected to be learned if such mutual 

effect can be quantified and considered in the learning process. Third, we will try TO 

adopt new deep learning frameworks, such as end-to-end techniques. In addition, deep 

SVDD will be an important goal for next study. 
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