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ABSTRACT 

 

Numerous vibration-based structural damage detection methods have been developed 

over the past decades. The basic idea of these methods is that structural damage may 

induce changes in vibration characteristics, such as frequencies, mode shapes, and their 

variants. Finite element model updating is a widely used technique to identify damage 

location and quantify damage extent.  

 

Most of these studies have achieved limited success in small civil structures or scaled 

models in laboratory only. There are two major difficulties and challenges, among 

others, that hinder successful applications of vibration-based damage detection methods 

to practical civil structures: First, civil structures generally contain a large number of 

elements or components whereas the number of vibration measurement data is limited 

in general. To avoid this underdetermined problem in mathematics, super-elements are 

usually employed in numerical modelling and model updating. However, the use of 

such elements hinders the direct quantification of local damage with the updating 

parameter of the entire super-element. Second, the vibration-based damage detection is 

essentially an inverse problem and typically ill-posed. A small perturbation in the input 

data (for example, measurement noise) would lead to a significant change in the 

solution. Most previous model updating techniques employ the Tikhonov regularization 

(or l2 regularization), which causes the identified damage distributed to many structural 

elements. However, this result does not match the practical situation in which damage 

usually occurs at several locations only especially at the early stage of damage 

development. 

 

Taking these difficulties into consideration, this PhD study exploits the sparsity of 

structural damage and aims to develop accurate and reliable structural damage detection 

methods based on sparse recovery and sparse Bayesian learning. The damage index is 

defined as the elemental stiffness reduction and thus can be regarded as a sparse vector 

with several non-zero items at the damaged elements but many zeros at others. 

Consequently the sparse recovery theory can be applied to obtain the sparse damage 

index.  
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An l1-regularized model updating technique is first developed to identify sparse damage 

using the first several natural frequencies and mode shapes. In regularization methods, 

the regularization parameter controls the trade-off between data fidelity and solution 

size and thus exerts a crucial effect on the solution. Two strategies of selecting the 

regularization parameter for the l1-regularized damage detection problem are proposed. 

Further, an optimal sensor placement technique is proposed using the combinatory 

genetic algorithm such that the columns of the resulting sensitivity matrix are of the 

maximum independence. 

 

Next, an iteratively reweighted l1 regularization algorithm is proposed for structural 

damage detection. The regularization parameter in one step is revised according to the 

identification results in the previous iteration, making the technique resemble the l0 

regularization technique and outperform the l1 regularization for sparse recovery. 

 

The last contribution of the study is to develop a sparse Bayesian learning method, in 

which the sparsity of structural damage is exploited as the prior information from the 

Bayesian perspective. Since structural modal parameters have a nonlinear relation with 

structural damage, the evidence function cannot be obtained explicitly. An expectation–

maximization based technique is developed to obtain the structural damage index and 

hyper-parameters iteratively.  

 

The proposed structural damage detection methods are applied to several numerical and 

laboratory structures. The results demonstrate that the proposed methods are able to 

locate and quantify the sparse damage accurately, even when the number of 

measurement data is much less than the number of structural elements. The other 

advantage of the proposed damage detection methods is that the structure of interest can 

be modelled using a relatively large number of elements. This enables the local damage 

be appropriately modelled and directly quantified, which is unable to achieve through 

the conventional l2 regularization methods. 
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CHAPTER 1   
 

INTRODUCTION 
 

 

 

1.1 Background 

 

Civil structures are inevitably subjected to deterioration and natural and manmade 

hazards, such as typhoons, earthquakes, fires, floods, erosion, collisions, and 

explosions. These hazards may cause structural damage or even collapse. The failure of 

structures could be catastrophic, not only in terms of losses in life and economy, but 

also because of the subsequent social and psychological impacts. Therefore, structural 

damage detection in the early state is very important as it could enable the identification 

of abnormal states of the structure and appropriate actions could be taken to avoid 

sudden failures. Moreover, based on damage detection and structural condition 

assessment, cost effective maintenance and retrofit decisions could be made in order to 

reduce the maintenance costs and increase reliability of the structure in the life-cycle. 

For these reasons, structural damage detection has become a worldwide research topic 

and received considerable attention in the past decades. 

 

1.2 Vibration-based Damage Detection 

 

Structural damage detection methods mainly consist of two categories, namely, non-

destructive testing (NDT) methods and vibration-based methods. The former are either 

visual or local experimental methods, which are typically expensive and time 

consuming. Moreover, NDT methods require the damage location to be known a prior. 

Therefore, these methods have difficulty in detecting damage located inside the 

structure and are prohibitive for large-scale civil structures when the damage location is 

unknown.  
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Vibration-based methods are based on changes in structural vibration characteristics, 

which are the global properties of a structure. Finite element (FE) model updating is a 

widely used technique for structural damage detection that uses vibration properties 

such as frequencies, mode shapes, mode shape curvature (MSC), modal strain energy 

(MSE), frequency response function (FRF), and so forth. With the development of 

sensing technology and signal processing techniques, the vibration properties of a 

structure can be measured more conveniently and accurately. Vibration-based methods 

have been successfully applied in mechanical and aerospace engineering. However, 

their applications in civil structures remain limited. There are several factors that hinder 

successful applications of these methods to practical civil structures: 

(1) Civil structures generally have large geometric size and thus contain a large number 

of components. However, the number of available vibration measurements is 

limited. The number of potential damage locations is typically greater than that of 

available measurements resulting in an underdetermined problem. To avoid this 

underdetermined problem, previous studies adopt super-elements in both numerical 

modeling and model updating. Due to the large size of the super-elements, the local 

small damage cannot be directly quantified using the updating parameter of the 

elements. An equivalent stiffness reduction of the elements is typically used. This 

simplification leads to a small reduction in the updating parameter, which is 

difficult to detect reliably; 

(2) The identification of structural damage based on measured modal parameters is 

essentially an inverse problem in mathematics and is typically ill-posed because the 

sensitivity matrix usually has a large condition number. Therefore, measurement 

noise would lead to inaccurate damage identification. Tikhonov regularization, also 

known as l2 regularization, is a most commonly used technique to stabilize the 

inverse problem and has been widely used in model updating. However, this 

method tends to produce over-smooth solutions because the quadratic regularizer 

cannot recover the sharp features of the solution. Consequently, damage 

identification results are usually distributed to many structural elements; that is, 

many elements may be identified as having non-zero values of damage. The result 

does not match the real situation in which damage usually occurs only in a few 

elements; 
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(3) Civil structures are under a certain operational environment. Varying environmental 

factors, particularly temperature, may cause significant changes in the identified 

modal parameters. Previous studies have found that the changes of structural modal 

parameters due to changing environmental conditions could be larger than those 

caused by structural damage. Consequently, structural damage cannot be reliably 

identified. Moreover, civil structures under the operational environment are subject 

to significant measurement noise. 

 

Subject to these difficulties, there has been a demand for more effective and accurate 

techniques to localize and quantify structural damage using only a few available 

measurements. 

 

1.3 Sparsity of Structural Damage 

 

Structural damage often occurs at several locations only especially at the early stage, 

which is sparse compared with the large total number of elements in the entire structure. 

Therefore, structural damage identification is essentially a sparse recovery problem. 

Recently, the sparse recovery theory, particularly compressive sensing (CS), has 

attracted considerable interest due to its practical utility in a wide range of applications. 

According to the sparse recovery theory, when the number of measurement is smaller 

than the size of the entire vector, the unknown sparse vector can still be accurately 

recovered using appropriate algorithms.  

 

In the past decades, a number of methods have been proposed for sparse signal 

recovery. A typical method of solving such an ill-posed and underdetermined problem 

is the penalized least-squares via an l1 regularization or its variants, which can be 

regarded as deterministic regularization-based approach. Moreover, the sparse recovery 

problem can also be formulated from a Bayesian perspective by specifying a sparsity 

inducing prior. The methods within the Bayesian framework exhibit certain distinct 

advantages over the regularization-based methods.  
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Although the sparse recovery theory has received widely applications in a number of 

areas, it is mainly employed for solving linear problems but seldom in nonlinear 

problems such as vibration-based damage detection.  

 

1.4 Research Objectives 

 

This study is to develop more accurate and reliable structural damage detection methods 

use a few number of measurements by exploiting the sparsity of the structural damage. 

This goal will be achieved from the two following perspectives: 

(1) Develop sparse damage detection methods for practical civil structures based on the 

regularization-based approach: 

 Develop an l1-regularized model updating technique with the use of a few 

natural frequencies and mode shapes; 

 Propose regularization parameter selection strategies for the l1-regularized 

damage detection problem; 

 Develop an optimal sensor placement (OSP) technique to improve the 

reliability of the sparse damage detection; 

 Develop an iteratively reweighted l1 regularization (IRLR) algorithm which is 

equivalent to the l0 regularization technique;  

(2) Develop a sparse Bayesian learning (SBL) method using an iterative expectation–

maximization (EM) technique. 

 

1.5 Thesis Organization 

 

This thesis comprises eight chapters as illustrated in Figure 1.1. Chapter 2 presents a 

literature review of damage detection methods and two relevant topics, i.e., sparse 

recovery technique and SBL. In addition, the limitations of the existing vibration-based 

damage detection methods are reviewed and the challenging issues are addressed. Two 

numerical examples and three experimental structures are described in Chapter 3 for 

applications in later chapters.  

 

In Chapter 4, an l1 regularization-based model updating technique is developed through 

exploiting the sparse property of structural damage. Moreover, two strategies for 
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selecting the regularization parameter in the l1-regularized damage detection problem 

are developed. 

 

In l1-regularized damage detection, the sensitivity matrix actually acts as the sensing 

matrix, and it is directly related to the mode shapes used or sensor locations. Therefore 

in Chapter 5, an OSP technique is proposed based on the genetic algorithm (GA) such 

that the resulting sensitivity matrix is of the maximum independence. 

 

An IRLR algorithm is proposed in Chapter 6 to improve the accuracy of the l1-

regularized damage detection method. This technique resembles the l0 regularization, of 

which the corresponding nonconvex optimization problem is solved through an iterative 

procedure. 

 

In Chapter 7, the sparsity of structural damage is exploited from the Bayesian 

perspective. An SBL method is developed based on the EM technique and two sampling 

techniques are employed.  

 

Chapter 9 concludes the thesis and discusses possible future research. 

 

 





 

6 

 

Figure 1.1 Organization of Thesis 
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CHAPTER 2   
 

LITERATURE REVIEW 
 

 

 

2.1 Introduction 

 

As introduced in Chapter 1, this study aims to develop accurate and reliable structural 

damage detection methods through exploiting the sparsity of structural damage. This 

chapter presents a review of the relevant topics.  

 

Damage is defined as changes introduced into a system that adversely affects its current 

or future performance (Sohn et al., 2003). This definition means that damage is only 

meaningful through comparison of two different states, one of which is supposed to 

represent the initial or undamaged state and the other is the damaged one. There are 

typically four levels of damage detection: determination of the existence of damage; 

determination of the geometric location of damage; quantification of the severity of 

damage; and finally prediction of the remaining service life of the structure (Rytter, 

1993). 

 

Structural damage detection methods can be divided into two categories: NDT methods 

and vibration-based methods. NDT methods, such as acoustic/ultrasonic methods, 

magnetic field methods, and radiographys, require that the damage location to be known 

a priori and they can only detect damage within the vicinity of the sensors. Subjected to 

these limitations, NDT methods have difficulty in detecting damage located inside the 

structure. When the damage location is unknown, these methods are not applicable to 

large-scale and complicated structures since extremely long inspection time is required 

due to the large geometry size. Therefore, NDT methods are generally regarded as local 

damage detection methods and restricted to the structural component level. They cannot 

assess the global performance and deterioration of the structure. Vibration-based 

methods are based on changes in structural dynamic characteristics, which provide both 
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global and local information of the structure. Therefore, they are not subjected to the 

above mentioned problems of local methods. Due to its efficiency in practice and 

simplicity of implementation, the vibration-based damage detection methods have 

attracted considerable attention over the past decades. In this chapter, only the vibration-

based damage detection methods will be reviewed.  

 

Structural damage usually appears in a few sections or members only, which is sparse 

compared with the total elements of the entire structure. Damage identification, which 

aims to induce the sparse damaged elements, is a sparse recovery problem. Recently, 

sparse signal recovery has received widely attention in a number of areas, including 

statistics, applied mathematics, and electirical engineering. According to the sparse 

recovery theory, the sparse vector of which only a few entries are non-zero can be 

recovered using a small number of measurement data only. However, this theory has 

seldom been utilized in previous damage detection until recently due to the booming of 

CS. The sparse recovery technique and its applications in structural health monitoring 

(SHM) and structural damage detection will be reviewed.  

 

Within the Bayesian framework, the SBL is effective in encouraging sparsity in the 

inferred predictors and has been rapidly developed recently in the context of regression 

and classification (Tipping, 2001). Through specifying a sparsity inducing prior over the 

inferred parameters, the desired sparse solution can be obtained using appropriate 

estimation techniques. Compared with the frequentist methods, SBL has some superior 

performances for sparse signal recovery. In recent years, SBL has received increasing 

attention and been introduced to SHM and structural damage detection. The relevant 

studies will also be reviewed in this chapter. 

 

2.2 Damage Detection Methods 

 

Vibration-based damage detection methods have been first developed and applied in 

aerospace and mechanical engineering. Until the early 1980s, the civil engineering 

community began to apply the vibration-based damage detection methods to bridge 

structures. The basic idea of vibration-based damage detection methods is that structural 

vibration characteristics are functions of the physical properties of the structure, i.e., 
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mass, damping, and stiffness. Once damage occurs, the physical properties of the 

structure will change and the vibration characteristics will change accordingly. 

Therefore, the changes in vibration characteristics can be utilized to locate and quantify 

structural damage (Doebling et al., 1996). The existing damage detection methods 

usually assume that there will be a detectable change in stiffness with the mass 

remaining unchanged (Sampaio et al., 1999). Damping is usually disregarded, although 

it has been employed by a small number of researchers for damage detection 

(Brownjohn, 1979). 

 

Over the past decades, the vibration-based damage detection methods have been 

developed within three domains, i.e., time domain, frequency domain, and time-

frequency domain. Time domain methods use time-history responses, e.g. accelerations 

(Zimmerman and Kaouk, 1994; Yang et al., 2014). The time-frequency domain 

methods are based on time-frequency analysis tools, such as Wavelet transform and 

Hilbert–Huang transform (HHT) (Hou et al., 2000; Wang and Chen, 2014). The 

frequency domain methods use modal parameters, e.g. natural frequencies (Salawu, 

1997; Kim and Stubbs, 2003), mode shapes (Shi et al., 2000b; Xia et al., 2008), and 

MSC (Pandey et al., 1991), which can be readily interpreted physically. With the 

development of modal analysis technology, the majority of vibration-based methods fall 

into the frequency domain. In order to compare the existing damage detection methods 

on a common basis, the benchmark problems have been established (Johnson et al., 

2000, 2004; Casciati, 2010) 

 

According to the algorithm used, damage detection methods can be classified into non-

model based (or data-driven methods) and model-based (usually model updating 

methods). The former are entirely built upon the vibration property measurements 

without recourse to a prior FE model (Zhong and Oyadiji, 2007; Bayissa et al., 2008). 

Model updating methods (Friswell and Mottershead, 1995) iteratively adjust the 

structural parameters of the FE model to minimize the discrepancy between analytical 

predictions and experimental data. Therefore, both damage location and severity can be 

identified by examining the change in the structural parameters of the FE model.  
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The vibration-based damage detection methods will be first introduced according to the 

damage identification index used.  

 

2.2.1 Natural Frequency-based Methods 

 

Natural frequency is one of the commonly used modal parameters for vibration-based 

damage detection. Frequency measurements can be quickly conducted and cheaply 

acquired and they are often more accurate, reliable and simpler to be measured than 

other vibration properties. In addition, due to the global nature of frequencies, one or 

two sensors are enough to obtain the first few frequencies and the measurement points 

could be selected flexibly, which is an important advantage in practical applications.  

 

Adams et al. (1978) might be the first researcher using frequencies to locate and 

quantify structural damage in a 1D component. In their method, only axial modes of 

vibration were considered and damage was represented by an infinitesimal spring. The 

damage location was determined utilizing two or more frequencies combined with a 

theoretical model. EA/k was calculated as an indicator of the severity of damage, where 

E represents the Young’s modulus, A is the cross-sectional area, and k denotes the 

stiffness of the spring. Hearn and Testa (1991) determined the damage location using 

the frequency changes based on a perturbation of the motion equation. A simplification 

was made in their method that damage will influence the primary stiffness only. The 

damage location was determined by comparing the measured and characteristic 

frequency change ratios for each member. 

 

Shah et al. (2000) found that frequencies were sensitive to the presence of fatigue-

induced cracks in concrete specimens. Therefore, shifts in the frequencies could be 

related to the remaining service life of the structure and then used to predict the fatigue 

life. Morassi (2001) detected the single crack in a vibrating rod based on the damage-

induced shifts in a pair of natural frequencies. However, cracks in different locations 

may produce identical changes in natural frequencies, especially if the uniform rod is 

under free-free boundary condition. The effect of this non-uniqueness was found to be 

reduced by means of a careful choice of the data under certain conditions. 
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Kim and Stubbs (2003) determined the damage size and location in beam-type 

structures using frequency data. Utilizing the frequency changes of different modes and 

modal sensitivities derived from the theoretical model, single damaged element was 

determined. The damage size was quantified by relating frequency changes to the 

changes of MSE based on the Euler-Bernoulli model. Moreover, increasing the number 

of modes used could improve the damage identification accuracy. Zhong et al. (2008) 

developed a new approach based on auxiliary mass spatial probing and spectral center 

correction method to identify damage of beam-like structures using the accurate natural 

frequencies. 

 

Although the use of frequency changes for damage detection has been greatly 

developed, there are still some limitations in these methods. Since the stiffness change 

is proportional to the square of the frequency change, natural frequencies are not 

sensitive to structural damage, especially for large-scale structures. Moreover, the 

ambient and environmental effects may cause significant variations (5%–10%) in nature 

frequencies, which are difficult to distinguish from the damage-induced frequency 

changes (Salawu 1997). Cawley (1997) found that the natural frequencies of a 

cantilever beam were more sensitive to thermal changes than cracks. Some experimental 

results also showed that the frequency change may be an unreliable indicator when 

damage was located at low stress region (Salane and Baldwin Jr, 1990). Another critical 

problem is that the frequency-based damage detection methods usually lead to non-

unique damage identification results. In many cases, damage with similar sizes at 

different locations are likely to cause the same amount of frequency changes, 

particularly for symmetrical structures. This problem will become more severe for 

multiple damage situations.  

 

2.2.2 Mode Shape-based Methods 

 

Compared to natural frequencies, mode shapes have some appealing features for 

damage detection. First, mode shapes could provide both local and spatial information 

of a structure and thus have higher sensitivity to local damage than natural frequencies 

(Kim et al., 2003). In addition, mode shapes are less sensitive to ambient effects than 



 

12 

natural frequencies are. Therefore, many damage detection methods have been 

developed based on mode shapes in the past decades. 

 

The modal assurance criterion (MAC) (Allemang and Brown 1982) and the coordinate 

modal assurance criterion (COMAC) (Lieven and Ewins 1988) are two commonly used 

statistical indicators of the inconsistence between different mode shapes. Salawu and 

Williams (1995) studied the mode shapes of a reinforced concrete bridge before and 

after repairs. The MAC values changed considerably after repairs and gave an 

indication of the location of repairs. Frýba and Pirner (2001) recommended that the 

COMAC could be used as a damage location indicator in practice. If the COMAC value 

was less than one, damage may occur on the target structure. The lower the COMAC 

value was, the more likely damage will occur. 

 

Shi et al. (2000b) developed a sensitivity- and statistical-based method to identify 

structural damage using incomplete mode shapes. The incomplete mode shapes were 

utilized first to locate the possible damage sites and then the accurate damage location 

and severity were determined using the measured natural frequencies. The measured 

data can be used directly to locate damage sites without mode shape expansion or 

reduction of the FE model. The performance of the proposed method was demonstrated 

on a numerical planar truss model. The results showed that the proposed method was 

accurate and robust in damage localization with or without noise effect. Abdo and Hori 

(2002) proposed that the mode shape corresponding to the rotational degree of freedom 

(DOF) was a sensitive indicator of damage, especially for multiple damage with 

different sizes. The proposed method was verified through the numerical analysis of two 

plates with different boundary conditions. An improved damage detection method based 

on modal displacement measurements was introduced by Guan and Karbhari (2008). 

The new sensitive damage index was directly calculated from the modal displacement 

and modal rotation. The modal rotation was determined from the measured modal 

displacement using a penalty-based minimization method. Since the calculation of the 

damage index did not rely on numerical differentiation, the proposed method avoided 

the problems associated with the differentiation procedures. 
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Unlike the above introduced methods, some methods only depend on the mode shapes 

obtained from the damaged structures. These methods can be termed as non-model 

based methods. Ratcliffe (1997) applied a Laplacian operator on the mode shape data to 

identify damage. This technique only used the mode shapes obtained from the damaged 

structure and required no reference to any undamaged model of the structure. If damage 

was severe, a Laplacian operator was directly applied to the mode shapes. Instead, when 

the damage was less severe, a post processing was adopted to fit the Laplacian locally 

using a cubic polynomial. The most appealing feature of the proposed technique was 

that it could identify a thickness change of a beam as small as 0.5%. Hadjileontiadis et 

al. (2005) proposed a new method for crack identification in beam-like structures based 

on fractal dimension analysis. The location and size of cracks were determined by 

sudden changes in the fractal dimension calculated from the modal shapes. This new 

method directly utilized response data and no analytical model was required for crack 

identification. Numerical studies showed that the proposed method had good robustness 

against noise. Later, Hadjileontiadis and Douka (2007) extended this method to plate-

type structures. They proved that the concept of the fractal dimension-based crack 

detector in beams could be extended to the case of 2D-structures and the performance 

was sustained. The location, length and depth of cracks could be accurately identified 

using the proposed method despite the presence of noise. 

 

The mode shape-based damage detection methods also have some disadvantages. First, 

the mode shapes of lower modes are not sensitive to small local damage especially for 

large-scale structures. When damage is located near the node of a mode, the mode shape 

may exhibit no change (Maia et al., 2003). Second, the process of extracting mode 

shapes from dynamic measurements is prone to noise amplification and thus produces 

some unavoidable errors, which makes the obtained mode shapes less accurate than 

natural frequencies. Moreover, since a series of sensors are required in order to obtain 

accurate mode shapes, the number of sensors used and the OSP may have a significant 

influence on the accuracy of damage detection (Shi et al., 2000a). 
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2.2.3 Modal Shape Curvature-based Methods 

 

Since the displacement mode shape is not very sensitive to small local damage, the 

MSC has been developed as a damage indicator to improve the sensitivity of mode 

shape data to structural damage. Pandey et al. (1991) first reported that changes in the 

curvature mode shapes can be used to detect structural damage. The MSC was 

calculated using a central difference approximation as 

 

𝜙𝑗
′′ =

𝜙𝑗+1,𝑖 − 2𝜙𝑗,𝑖 + 𝜙𝑗−1,𝑖

ℎ2
 (2.1) 

 

where 𝜙𝑗,𝑖 was the ith mode shape at jth point, and h was the distance between two 

measurement points. The absolute changes in the curvature mode shapes were proved to 

be sensitive to damage. Wahab and De Roeck (1999) proposed that a fine measurement 

grid was required in order to obtain accurate MSCs and that the lower MSCs were more 

accurate than the higher ones in general. In this regard, a new damage indicator, which 

averaged the differences in curvature mode shapes for all modes, was developed and 

applied to a prestressed concrete bridge.  

 

Some researchers also applied the signal processing method to modal curvature to 

improve the damage identification accuracy. Ratcliffe and Bagaria (1998) applied the 

gapped smoothing method (GSM) to the MSC to locate the delamination in a composite 

beam. A localized cubic polynomial curve was used to fit the MSC and the damage 

index was defined as the square of the difference between the calculated cubic and the 

curvature. The proposed method did not depend on any model or data of the undamaged 

structure. Yoon et al. (2005) later applied and generalized the 1D GSM to 2D plate-like 

structures. Xu et al. (2015) investigated the mechanism of using 2D MSC to 

characterize damage in plates. On the basis of this mechanism, a synergy between 

wavelet transform and a Teager energy operator was proposed to detect damage in 

plates. 

 

In many MSC-based methods, modal curvatures were obtained from displacement mode 

shapes through curve fitting or numerical differentiation. These strategies, such as the 
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central difference method, are essentially approximations and would introduce 

significant errors when the distance of the measurement points is too long. However, in 

practical applications, the spacing of measurement points depends on many factors, e.g. 

the availability of the equipment, and only a limited number of spatial points can be 

measured. In addition, noise in the mode shape measurements would propagate during 

this extraction process, which would have a significant effect on the final results. For 

beam-type structures satisfying the Euler-Bernoulli beam model, the curvature is 

proportional to the surface bending strain. Therefore, the MSC can be obtained directly 

by measuring strains. Yao et al. (1992) and Chang et al. (1993) pointed out that the 

strain mode shapes performed better than displacement mode shapes in damage 

detection. 

 

2.2.4 Modal Strain Energy Methods 

 

MSE is another widely used damage identification indicator derived from the mode 

shapes. For Bernoulli-Euler beams, the strain energy associated with a particular mode 

is given by 

 

𝑈𝑖 =
1

2
∫ 𝐸𝐼

𝑙

0

(
𝜕2𝝓𝑖

𝜕𝑥2
)

2

𝑑𝑥 (2.2) 

 

where I is the bending moment of inertia, 𝝓𝑖 is the ith displacement mode shape, and x 

is the coordinate along the length of the beam. 

 

Kim and Stubbs (1995) proposed a damage index based on the ratio of the original MSE 

to the damaged one and applied it for damage detection in a plate girder. The effect of 

model uncertainties on the accuracy of damage detection was also studied. Later, the 

proposed damage indicator and technique were successfully applied to damage 

identification in a bridge structure (Farrar and Doebling, 1999). The results showed that 

the proposed method performed better than the MSC-based methods.  

 

Cornwell et al. (1999) extended the MSE method for 1D beam-type structures to 2D 

plate-like structures, which were characterized by 2D curvature. The proposed method 
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used only the first several mode shapes before and after damage, which were not 

necessarily mass normalized of the structure. Therefore, it was applicable to actual 

structures under ambient excitations. However, the performance of this method was 

poor for multiple damage locations with different severities. Shi et al. (2000b) 

developed an MSE-based damage detection method with the requirement of an 

analytical model. First, the MSE change ratio was calculated to determine the suspected 

damage location. An iterative process was then adopted to calculate the damage 

coefficients, which were used to locate and quantify damage. The numerical and 

experimental studies showed that the method was able to successfully locate damage 

even for multiple damage cases, while was sensitive to noise in damage quantification. 

In later work, Shi et al. (2002) extended the technique using the elemental MSE change. 

Through reducing the modal truncation and FE modelling errors, this algorithm 

improved the convergence properties as compared with their previous study (Shi et al., 

2000b).  

 

Peterson et al. (2001) utilized changes in MSE to identify local damage and decay in 

timber beams. Both analytical and experimental results showed that the damage location 

and severity could be determined accurately even for damage with small magnitudes. 

Pradeep et al. (2014) used the MSE change ratio as an indicator to detect the 

delamination of sandwich structures. Through numerical and experimental analysis, the 

MSE change ratio was proved to be an efficient indicator of damage in sandwich 

structures. 

 

Kim and Stubbs (2002) proposed an improved MSE-based method and compare it with 

two existing strain energy based methods by eliminating the erratic assumptions and 

limits in two existing methods. However, since the MSE was calculated from MSCs, the 

problems associated with the numerical differentiation process still existed. Wang et al. 

(2014) applied two different MSE-based methods to the simulated and measured data of 

a 3D offshore platform model. Results indicated that the MSE decomposition method 

outperformed the traditional MSE-based method. 
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2.2.5 Modal Flexibility-based Methods 

 

With the development of the natural frequency-based and mode shape-based methods 

for damage identification, some researchers began to develop damage detection 

methods utilizing both the natural frequencies and mode shapes. The modal stiffness 

matrix 𝑲 could be calculated from modal data 

 

𝑲 = 𝐌𝚽𝛀𝚽𝑇𝐌 = 𝐌(∑𝜔𝑖
2𝝓𝑖

𝑚

𝑖=1

𝝓𝑖
𝑇)𝐌 (2.3) 

 

The modal flexibility matrix 𝑭 is defined as the inverse of the stiffness matrix 

 

𝑭 = 𝑲−1 = 𝚽𝛀−1𝚽𝑇 = ∑
1

𝜔𝑖
2 𝝓𝑖

𝑚

𝑖=1

𝝓𝑖
𝑇 (2.4) 

 

where M is the mass matrix, 𝚽 = [𝝓1, 𝝓2, ⋯ ,𝝓𝑛]  is the mode shape matrix, 𝛀 =

diag(𝜔𝑖
2) is the eigenvalue matrix, 𝜔𝑖 is the ith natural frequency, and m is the number 

of modes used. 

 

Mannan and Richardson (1990) directly utilized the changes in the stiffness matrix 

before and after damage of the structure to locate damage. As illustrated in Equation 

(2.3), the modal contribution to the stiffness matrix is directly proportional to the square 

of the modal frequency, which means that higher modal responses should be measured 

in order to obtain accurate damage identification results. However, in practice, it is 

difficult to measure higher modes due to experimental limitations (Hearn and Testa, 

1991). Therefore, the damage detection methods based on stiffness matrix changes are 

less practical. 

 

Since the modal flexibility is inversely proportional to the square of the natural 

frequencies, it is more sensitive to frequency changes of lower modes. Therefore, the 

modal flexibility has the potential to locate damage accurately without using the higher 

modes. Pandey and Biswas (1994) utilized the changes in flexibility matrix for damage 
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detection. The proposed method was based on the experimental data only and no 

analytical model of the target structure was required. The propagation of damage was 

detected through the increase in the flexibility change. 

 

Zhang and Aktan (1998) applied the modal flexibility and its derivative, uniform load 

surface (ULS), to structural identification. Since the ULS is a weighted average of mode 

shapes, it has less truncation effect and is insensitive to experimental error compared 

with the mode shapes. Wu and Law (2004) utilized changes in ULS curvature to detect 

damage of the 2D plate-like structures. They found that the ULS curvature was sensitive 

to the presence of local damage, even with truncated incomplete noisy measurements. 

Subsequently, Wu and Law (2005) studied the sensitivity of the ULS curvature with 

respect to the elemental stiffness parameters to locate and quantify damage for plate-like 

structures. Zhang et al. (2013) proposed a new flexibility-based damage index for 

structural damage detection, which is a function of the ULS curvature. The proposed 

method utilized the advanced signal processing procedure to identify structural 

flexibility, and each mode was weighted unequally according to their contributions for 

the structural flexibility.  

 

Montazer and Seyedpoor (2014) used the strain changes in structural elements between 

undamaged and damaged states to locate damage of truss systems. The strain of an 

element was evaluated using the columnar coefficients of the flexibility matrix 

estimated via modal analysis. Wickramasinghe et al. (2015) applied the modal 

flexibility method to locate damage in long span large diameter cables. The results 

showed that the damage index based on lateral vibration modes was able to successfully 

locate damage in suspended cables with 5% noise effect for a range of cable parameters. 

 

Shih et al. (2009) presented a multi-criteria procedure incorporating the modal 

flexibility and MSE methods for damage detection in flexural members. Neither of the 

two damage identification algorithms was effective in locating multiple damage and 

estimating the severities of damage. The proposed multi-criteria system, which 

combines the two complementary damage identification algorithms, was able to locate 

multiple damage accurately and cross check the results. 
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2.2.6 Residual Force Vector Methods 

 

Under the assumption that the mass matrix is unchanged before and after damage, the 

eigenvalue equation for the ith mode of a damaged structure is 

 

(𝑲d − 𝜔di
2 𝑴)𝝓di = 0 (2.5) 

𝑲d = 𝑲u − ∆𝑲 (2.6) 

 

where the subscripts “d” and “u” represent the terms for the damaged and undamaged 

states, respectively; ∆𝑲 is the stiffness changes after damage. Substituting Equation 

(2.6) into Equation (2.5), the ith residual force vector (RFV) is defined as 

 

𝑽i = ∆𝑲𝝓di = (𝑲u − 𝜔𝑑𝑖
2 𝑴)𝝓di (2.7) 

 

If the nature frequencies and mode shapes are determined from measured vibration data 

and an initial analytical model of the target structure is available, the right-hand side of 

Equation (2.7) is known. Each row of the RFV corresponds to one DOF of the structure. 

When damage occurs to an element, the entry in the RFV associated with this element 

would become significantly larger compared to other entries. Therefore, the entry in the 

RFV with large value could be utilized as an indicator for structural damage location. 

 

Kosmatka and Ricles (1999) presented a damage identification method for flexible 

structures. The damage location was determined using the RFV and the extent of mass 

and/or stiffness variations were estimated through a weighted sensitivity analysis. The 

mode shapes used for determination of the residual forces were measured at every DOF. 

The proposed method was applied to a ten-bay space truss and the experimental results 

showed that the location and extent of damage were estimated accurately. Variations in 

mass and centers of mass locations were determined successfully. Moreover, it was 

found that the analytical model correlated to the experimental baseline data could 

improve the prediction accuracy of damage severity. Eraky et al. (2015) used the nodal 

RFV to locate and evaluate damage for plate-like structures. Plates with three 

configurations were used to validate the efficiency of the proposed technique. The 

proposed method was proved to be able to locate single and multiple damage locations 
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in all plate models with high accuracy. Comparison studies showed that this method 

was more effective for damage detection in single plate model than in continuous and L-

shape plates, and performed better in identifying minor damage. 

 

In practice, the mode shapes cannot be measured at all DOFs of the analytical model, 

especially for large structures. In this regard, some techniques have been developed to 

deal with the incomplete measurement problem. Castello et al. (2002) introduced a 

continuum damage identification approach built on minimization of the global error, 

which is derived from the dynamic RFVs. The continuum damage model was 

established by introducing a scalar variable, which represented the local cohesion state 

of the material. Due to the incomplete measurement of the mode shapes, a mode shape 

projection technique was utilized to ensure that the dimension of the experimental mode 

shapes was compatible with that of the analytical model. The effectiveness and 

applicability of the proposed algorithm have been demonstrated through an analytical 

2D truss structure and a cantilever Euler–Bernouilli beam. Yang and Liu (2007) 

proposed a RFV-based structural damage identification method using the incomplete 

measured modal parameters. The damage locations were first determined by the nodal 

RFV. Three damage quantification techniques, i.e., the residual force based method, the 

minimum-rank elemental update technique and the natural frequency sensitivity 

method, were then examined to determine the damage severity. In consideration of the 

DOF mismatch between the test and analytical models, a mode shape expansion 

technique was presented based on the best achievable eigenvector concept. Numerical 

results showed that the natural frequency sensitivity method was the most effective 

technique, compared with the other two. 

 

2.2.7 Frequency Response Function-based Methods 

 

Since modal identification is a time-consuming process, some researchers directly 

utilized the measured FRF for damage identification. Compared with modal data, using 

measured FRFs for damage detection has some appealing advantages. The FRFs retain 

raw information about the structure and are not contaminated by modal extraction 

errors. Moreover, a complete set of modal data may not be obtained in practical 

situations due to the limited number of sensors and inaccessibility of some structural 
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components. The FRFs can provide much more information about damage in a desired 

frequency range than modal data, which are extracted from a number of FRFs around 

the resonances (Lee and Shin 2002). The FRF-based damage detection methods can be 

regarded as a generalization of the mode shape-based methods to the whole frequency 

range of the measurements.  

 

Wang et al. (1997) determined the location and magnitude of damage based on the 

nonlinear perturbation equations of FRF data. A weighting technique was introduced for 

the perturbation equations at different locations and frequencies to minimize the 

influence of measurement errors. For incomplete measurement of the receptance matrix, 

an analytical model was utilized to calculate the unmeasured coordinates through an 

iterative process. The proposed damage detection method has been demonstrated by a 

planar 3-bay frame structure numerically and experimentally. Crespo et al. (1996) 

determined the size and location of the crack of a cantilever beam using high order 

FRFs. The cracked beam was considered as an asymmetric bilinear oscillator and its 

non-linear characteristics were described using high order FRFs based on the Volterra 

Series. The numerical results showed that the high order FRFs were effective in 

exhibiting the non-linear behavior of the beam for different positions and depths of the 

cracks. Fanning and Carden (2004) detected the added mass of a frame structure based 

on a single FRF and a numerical model of the structure. 

 

Sampaio et al. (1999) located and quantified damage using the absolute differences 

between FRF curvatures, which are insensitive to noise and the exciting position, but 

sensitive to the selected frequency range. Numerical examples showed that the FRF 

curvature based method had a better performance over an MSC method and damage 

index method. Maia et al. (2003) compared several FRF-based and mode shape-based 

damage detection methods and evaluated their performance using numerical and 

experimental examples. For the FRF-based methods, the detection results degenerated 

with the increase of the frequency range. An improved technique was thus proposed to 

overcome this problem by summing the occurrences of the maximum differences of 

damage indices instead of the differences themselves. The results showed that using 

higher derivatives of the mode shapes had a better performance and the FRF-based 

damage index method was the most effective one in damage localization. 
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Reddy and Swarnamani (2012) used FRF curvature energy to detect and quantify 

damage for plate-like structures. The damage index was a function of the frequency 

bandwidth, based on which the optimum frequency range were determined. The results 

showed that damage with over 10% reduction in the elemental thickness could be 

identified with confidence and the damage identification accuracy was little affected by 

the measurement noise and excitation location. Nuno (2013) applied the FRF curvature 

method to detect damage of an actual steel truss bridge. Four damage cases with 

different severity levels were introduced to one of the crossbeams. The experimental 

results indicated that the damage index at the center location of the beam was most 

sensitive to the presence of damage and the FRF curvature method had the potential to 

be applied for damage detection of bridge structures. 

 

The above mentioned damage detection methods using the measured modal parameters 

of the structure, such as natural frequencies and mode shapes, could be classified as 

damage index methods. In the following subsections, different analysis techniques for 

damage detection will be reviewed. 

 

2.2.8 Model Updating-based Methods 

 

The model updating methods use measured response data to reproduce an optimal 

model of the structural property matrices (i.e., mass, stiffness, and damping matrices), 

so that the analytical predictions of the updated model resemble the experimental data 

as closely as possible (Friswell and Mottershead 1995). The changes in the structural 

parameters could be utilized to identify damage location and quantify damage extent. 

Model updating methods can be classified as time domain methods and frequency 

domain methods. The former directly use the time domain responses for model 

updating, while the latter are based on modal characteristics, such as frequencies, mode 

shapes, and their variants. 

 

2.2.8.1 Direct Model Updating Methods 
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The direct model updating methods modify the system matrices of the analytical model 

by perturbing the items of the matrices directly. Zimmerman and Kaouk (1994) 

developed an algorithm for structural damage detection using minimum rank update 

theory. Yang and Liu (2009) proposed a flexibility-based damage identification method. 

The number of damaged elements was determined by minimizing the rank of the 

perturbed flexibility matrix.  

 

The advantage of the direct model updating methods is that they do not require the 

parametric analytical model and iteration procedures. However, these methods have 

several apparent drawbacks. For example, the updated matrices may have no physical 

meaning. Moreover, the symmetry, sparseness, and positive-definiteness of the updated 

system matrices are not guaranteed. 

 

2.2.8.2 Iterative Model Updating Methods 

 

The iterative model updating methods update the system matrices through modifying 

the physical parameters of the FE model, such as axial stiffness (EA) and bending 

rigidity (EI). Consequently, a parametric FE model is required. Other than the direct 

model updating methods concentrating on global system matrices, the physical 

parameters are updated in elemental or substructural level and then the discrete stiffness 

and mass matrices of all elements are assembled together. Therefore, the matrix 

properties of symmetry, sparseness and positive-definiteness are retained after model 

updating and the structural connectivity is guaranteed. In addition, the updated 

parameters have meaningful interpretation (Xu and Xia, 2011). Due to these merits, the 

iterative model updating methods are widely used for structural damage detection.  

 

FE model updating mainly includes three aspects, the updating parameters, the objective 

function and the optimization algorithm (Weng, 2010, Van Overschee and De Moor, 

1996). In selecting the parameters to be updated, two critical issues should be 

considered, i.e., which parameters are used and the number of the updating parameters. 

The objective function comprises the discrepancy between the analytical predictions and 

the practical measurements, which is usually formulated as the following least square 

problem 
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�̂� = argmin
�̂�

‖𝒓(𝜽)‖2
2 = argmin

�̂�
 ‖𝑹𝐴(𝜽) − 𝑹𝐸‖2

2 (2.8) 

 

where 𝜽 is a vector of the updating parameters, 𝒓(𝜽) is the residual error, and 𝑹𝐴(𝜽) 

and 𝑹𝐸 are the analytical and measured modal parameters, respectively. In the objective 

function, different types of data can be weighted differently for taking into 

consideration of their importance and measurement accuracy. The optimization 

algorithm serves to minimize the objective function. The sensitivity-based model 

updating and the evolutionary algorithm are two widely used optimization algorithms. 

This subsection will focus on the sensitivity-based model updating. The evolutionary 

algorithms, such as neural network (NN) algorithm, will be detailed in Section 2.2.11. 

 

The sensitivity-based model updating adjusts the parameters 𝜽 of the FE model through 

an iterative process to minimize the objective function in Equation (2.8). Under the 

assumption that the structure behaves linearly before and after damage, the relationship 

between 𝜽 and ∆𝑹 can be expressed as (Zhou et al., 2015) 

 

𝐒𝜽 = ∆𝑹 = 𝑹𝐴(𝜽) − 𝑹0 (2.9) 

 

where 𝑹0  represents the initial analytical modal parameters, and 𝐒  is the sensitivity 

matrix defined as the derivative of the modal parameters with respect to the updating 

parameters. For example, the sensitivity matrices of the eigenvalues 𝛌 and mode shapes 

𝝓 can be expressed as 

 

𝐒𝛌 =
𝜕𝛌

𝜕𝜽
 (2.10) 

𝐒𝝓 =
𝜕𝝓

𝜕𝜽
 (2.11) 

 

Therefore, 𝑹(𝜽) can be calculated using the following linear equation 

 

𝑹𝐴(𝜽) = 𝐒𝜽 + 𝑹0 (2.12) 
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where 𝐒 and 𝑹0  can be obtained either from the global FE model (Nelson, 1976) or 

using the substructuring approach (Weng et al., 2011, Xia et al., 2010). The nonlinear 

minimization problem in Equation (2.8) is thus transferred into a linear optimization 

problem at each iteration. 

 

Fritzen et al. (1998) proposed a sensitivity-based model updating algorithm to locate 

and quantify structural damage. Since the sensitivity matrix is ill-conditioned, the QR 

orthogonal decomposition strategy was used to deal with the resulting ill-posed inverse 

problem by reduction of the original parameter space to a smaller subspace. Jaishi and 

Ren (2006) used the modal flexibility residue in the model updating. The effectiveness 

and robustness of the proposed method have been demonstrated numerically and 

experimentally. The damage identification pattern was well fit to the actual damage 

even though all elements of the FE model were used in the updating process. 

 

The sensitivity-based model updating for damage detection is usually ill-posed because 

the sensitivity matrix usually has a large condition number. Moreover, the optimization 

problem in Equation (2.8) is underdetermined because the number of available modal 

parameters is usually less than that of the unknown parameters. In this regard, the 

Tikhonov regularization (or l2 regularization) is commonly employed by adding a 

penalty term as (Ahmadian et al., 1998; Weber et al., 2009; Li and Law, 2010) 

 

�̂� = argmin
�̂�

 ‖𝑹𝐴(𝜽) − 𝑹𝐸‖2
2 + 𝛽 ‖𝜽‖2

2 (2.13) 

 

where 𝛽 ≥ 0 is the regularization parameter. Since the Tikhonov regularization has the 

closed-form solution and is convenient for implementation, it has received wide 

applications in structural damage detection. However, the Tikhonov regularization tends 

to produce over smooth solutions and causes the damage identification results 

distributed to many structural elements. This is not consistent with the practical 

situation, in which damage usually occurs in a few sections or members only especially 

at the early stage. This problem will be addressed in Chapter 4. 
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2.2.9 Signal-based Methods 

 

Since structural damage is typically a local phenomenon, the dynamic responses of the 

structure are usually not sensitive to damage. In order to extract sensitive features to 

structural damage, several signal processing technologies, such as wavelet transform, 

HHT, and empirical mode decomposition (EMD), have been utilized and developed for 

structural damage detection. 

 

The wavelet transform is an effective time-frequency analysis method which has 

received wide applications in signal processing area. The basic idea of this technique is 

that any signal can be decomposed into a series of local basis functions called 

"wavelets" (Liew and Wang, 1998). Compared to the traditional Fourier transform, the 

translated-version and scaled-version of wavelet transform could provide information 

about the signal in both time and frequency domains. Singularities or discontinuities in 

a signal which cannot be observed directly may cause considerable changes of the 

wavelet coefficients. Therefore, the wavelet transform is an effective tool for structural 

damage detection through close examination of the signal with multiple scales. 

 

Liew and Wang (1998) may be the first applying the wavelet theory to structural 

damage detection. They utilized the wavelet expressions in the space domain to identify 

the crack of a simply supported beam. The results showed that the wavelet analysis 

performed better than the traditional eigenvalue analysis. Hou et al. (2000) located 

damage and simultaneously determined the moment when damage occurred. In their 

method, the dynamic signal of the structural response was decomposed into details and 

approximations. Damage was located by spikes in the details of the wavelet 

decomposition. Lu and Hsu (2002) proposed the discrete wavelet transform for damage 

detection. The number and location of defects were determined through comparing the 

wavelet transforms of vibration signals of the original and defected structures in the 

space domain. Numerical results showed that the wavelet coefficients were very 

sensitive to the localized defect and the maximum change of the wavelet coefficients 

normally occurred in the proximity of the defect. Since higher mode shapes carry much 

information and are more sensitive to damage than lower modes, Rucka (2011) applied 

continuous wavelet transform to high-order mode shapes and operational deflection 
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shapes, which were obtained from scanning laser measurement. The influence of the 

mode order on the effectiveness of damage detection was also investigated. 

 

Although the wavelet transform has been widely used for damage detection, it can only 

provide a uniform time-frequency resolution. To overcome these problems, the EMD 

and HHT have been developed and introduced for structural damage detection which 

are effective in analyzing nonstationary and nonlinear signals. EMD and HHT are able 

to provide more precise decompositions of the signal in the time-frequency domain than 

the wavelet analysis (Yan et al., 2007). 

 

Yang et al. (2004) proposed two methods to analyze the measured data that contained 

damage events of the structure. The first method, based on the EMD, was capable of 

detecting the time instants of damage and damage locations. The second method, based 

on the EMD and Hilbert transform, further determined the natural frequencies and 

damping ratios of the structure before and after damage. Xu and Chen (2004) presented 

an experimental investigation on the applicability of the EMD for identifying structural 

damage caused by a sudden change of the structural stiffness. The instants of damage 

were accurately detected in terms of damage spikes extracted directly from the 

measured time histories using EMD. The spatial distribution of the spikes along the 

building was then employed to determine the damage location. Li et al. (2007) 

combined the EMD and wavelet analysis. Firstly, the EMD technique was used to 

decompose the structural response signal into several mono-component signals. Each 

mono-component signal was then analysed via the wavelet transform to detect the exact 

location and severity of damage. This combination method was capable of identifying 

the time and extent of damage more precisely than using the wavelet transform method 

alone. Roveri and Carcaterra (2012) proposed a novel HHT-based method for bridge 

structures under a moving load. The damage location was revealed by the inspection of 

the first instantaneous frequency curve. 

 

2.2.10 Statistical-based Methods 

 

Structural damage detection always entails uncertainties, which may consist of 

modeling errors, methodology errors, and measurement noise. Moreover, operational 
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and environmental variations also cause significant changes in the identified modal 

parameters. Many researchers have proposed probabilistic approaches to tackle the 

uncertainties in structural damage detection. One category is based on the perturbation 

technique, which assigns a random variable to each uncertainty and then calculates the 

statistics of the variable. The other widely used category is the Bayesian approach, 

which explicitly quantifies the posterior probability of the uncertainties according to 

observations and prior information (Beck and Katafygiotis, 1998; Katafygiotis  and 

Beck, 1998). 

 

Liu (1995) used the perturbation method to investigate the influence of measurement 

errors on the identification results of a truss. Xia et al. (2002) and Xia and Hao (2003) 

proposed the statistical damage detection method based on modal parameters taking into 

account the effects of random noise in both the vibration data and FE model. The 

statistics of stiffness parameters were estimated by the perturbation method and verified 

by Monte Carlo technique. The probability of damage existence was estimated by 

comparing the probability distributions of the stiffness parameters in the undamaged 

and damaged states. Hua et al. (2008) improved the perturbation method for the 

statistical identification of structural parameters. Two recursive systems of equations 

were derived for estimating the first two moments of random structural parameters from 

the statistics of the measured modal parameters. 

 

Bayesian inference was first introduced to structural damage identification by Sohn and 

Law (1997). They identified multiple damage locations using estimated modal 

parameters. The relative posterior probability was formulated based on the modal output 

error, which is defined as the difference between the estimated modal parameters and 

the theoretical ones. The most probable damage locations were determined by 

comparing the relative probabilities for different damage events. Later, they applied the 

approach to predict the location of plastic hinge deformation of a reinforced-concrete 

bridge column (Sohn and Law, 2000).  

 

Vanik et al. (2000) proposed a probabilistic damage measure for SHM based on 

identified modal parameters. A high likelihood of reduction in model stiffness was 

taken as a proxy for damage. Beck and Au (2001) used a sequence of identified modal 
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parameter data sets to continually compute the probability of damage for on-line SHM. 

The variation in time of a probabilistic damage measure was studied which enabled 

small levels of damage to be detected through monitoring the structure over long times. 

The applicability of the proposed SHM procedure was illustrated using a shear building 

structure with simulated data. 

 

Beck and Au (2002) developed an adaptive Markov chain Monte Carlo (MCMC) 

simulation approach for structural response predictions and performance reliability, 

which combined the Metropolis-Hastings algorithm with a concept similar to simulated 

annealing. The effectiveness of the proposed method was demonstrated using simulated 

dynamic test data, regardless of whether the class of models was identifiable for not.  

 

Jiang and Mahadevan (2008) presented a Bayesian wavelet probabilistic method for 

structural damage detection. Before damage detection, a Bayesian discrete wavelet 

packet transform-based denoising approach was employed to perform data cleansing. 

The fuzzy wavelet NN was used to perform the nonparametric system identification to 

predict dynamic responses of the structure. In order to assess the difference between the 

measured data and model prediction, Bayesian hypothesis testing was developed and 

the Bayes factor was treated as a random variable, of which the probability density 

function (PDF) was constructed using the Monte Carlo simulation technique. 

 

Mustafa et al. (2015) presented a Bayesian probabilistic methodology for structural 

model updating and damage detection using incomplete measured modal data. The 

uncertainties associated with the measurement and modelling errors were taken into 

consideration. An iterative algorithm was used to get the most probable values of the 

model parameters. Yin et al. (2017) combined the FE model reduction technique and 

Bayesian inference for detecting structural bolted-connection. The method did not need 

the system mode shapes of the full model and mode matching. An efficient iterative 

solution strategy was proposed for calculating the most probable model as well as 

system modal parameters. Lam et al. (2018) proposed a Bayesian method based on the 

MCMC algorithm. Through calculating the probability distribution of damage to 

various structural components, the damage location and damage extent were 
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determined, together with the associated uncertainties. Experimental example also 

demonstrated the ability of the proposed method to handle the unidentifiable problems.  

 

The SBL algorithms for structural damage detection will be reviewed in Section 2.4. 

 

2.2.11 Neural Network-based Methods 

 

Since structural damage detection is normally an inverse and ill-posed problem, 

optimization algorithms have been employed by many researchers for damage 

detection. With the development of signal processing and system identification, some 

intelligence algorithms have been proposed and used to identify structural damage. The 

intelligence algorithms are effective in dealing with uncertainties and insufficient 

information, that are typical problems existing in structural damage detection and 

intractable using traditional optimization algorithms. 

 

NN is a powerful intelligence optimization algorithm inspired from the study of 

biological neurons. It has received widely applications in many areas, such as artificial 

intelligence, pattern recognition, and signal processing, because of its superior nonlinear 

mapping ability. NN is particularly applicable to deal with complicated data for which 

an explicit algorithm is difficult to be identified (Carden and Fanning, 2004). 

 

Sahin and Shenoi (2003) used artificial neural networks (ANNs) for damage location 

and severity prediction in beam-like structures. The necessary features as inputs to 

ANNs were selected through performing sensitivity analyses on changes of the natural 

frequencies and curvature mode shapes. Bakhary et al. (2010) combined a multistage 

ANN model with the substructure technique to determine the location and severity of 

damage. The nature frequencies and mode shapes were used as inputs to the ANN. The 

effectiveness of the proposed approach was validated using a two-span continuous 

concrete slab and a three-storey frame. Compared with the conventional one-stage ANN 

technique, the proposed approach reduced the size of the ANN model effectively and 

thus saved the computational effort substantially. 
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Lee et al. (2005) used the differences or ratios of mode shapes, instead of mode shapes 

themselves, as the inputs to the NNs to reduce the effect of modelling errors. The 

inflicted damage in a lab tested bridge model was identified with good accuracy for 

various damage cases. For a real bridge with multiple girders, the damage locations 

were identified successfully, although there were small errors existing in the estimated 

damage severities. Bakhary et al. (2007) proposed a statistical ANN approach for 

damage identification taking into account the uncertainties from the FE modelling error 

and measurement noise. The Monte Carlo simulation was adopted to verify the accuracy 

of the statistical approach. Both numerical and experimental results showed that the 

proposed statistical ANN approach was superior to the normal ANN approach for the 

identification of structural damage under different severities and noise levels. 

 

2.2.12 Other Methods 

 

In addition to the above introduced typical vibration-based damage detection methods, 

there are some other techniques that are not classified to the above categories. Sawyer 

and Rao (2000) presented a fuzzy logic methodology for structural damage detection 

using static displacements, nature frequencies and mode shapes as inputs. A fuzzy 

associative memory, including the information of fuzzy associations between structural 

responses and damage conditions, was established through FE simulations and 

supervised learning. Then, the fuzzy associative memory as a knowledge base combined 

with a fuzzy inference algorithm were used to identify possible damage locations and 

severities based on changes in the structural states. Numerical examples showed that the 

proposed method had superior performance under noisy or uncertain conditions. 

 

Song et al. (2006) integrated independent component analysis (ICA) and support vector 

machines (SVMs). The independent components were extracted from measured sensor 

data through ICA, and were then used as input data for an SVM classifier. The 

prediction output was used to identify different types and levels of structure damage. 

The proposed method was more accurate than the approach by integrating ICA and 

ANN. 
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2.2.13 Comparative Studies 

 

The performances of different damage detection methods have been compared. For 

example, Farrar and Jauregui (1998) compared five widely used damage detection 

methods, i.e., damage index method, MSC-based method, ULS method, stiffness 

method, and flexibility method. Through experimental and numerical studies, the 

damage index and MSC methods performed better than others. 

 

Ndambi et al. (2002) conducted a comparative study of five damage detection methods 

using two reinforced concrete beams. Increasing levels of crack damage were 

introduced in different steps to simulate damage spreading and accumulation. It was 

found that: (1) The eigenfrequencies decreased monotonically with the accumulation of 

cracks but were not influenced by crack locations; (2) The MAC was less sensitive to 

crack damage than eigenfrequencies; (3) The COMAC evolution could indicate the 

existence and location of damage in the tested beams, but was not able to follow the 

damage severity and spreading; (4) The changes in flexibility matrices were only 

effective in detecting the presence of the crack damage; (5) The damage index method 

based on MSE was more precise than other methods for local damage identification. 

 

Alvandi and Cremona (2006) accessed four damage identification techniques (i.e., MSC 

method, flexibility method, flexibility curvature method, and MSE method) through a 

simply supported beam model numerically. It was found that the MSE method was least 

sensitive to noise and more efficient for multiple damage situations. The MSC method 

was the least efficient one compared with the other three methods. The damaged 

element located near the supports was difficult to identify using all four methods. 

Except for the MSE method, other methods also had difficulties in identifying damage 

near the excitation force. 

 

Zhou et al. (2007) compared five vibration-based damage detection methods through a 

lab experiment and the FE analysis on the deck slab of a simply supported bridge with 

minor damage. These methods were able to identify and locate minor damage using a 

small number of sensors and only the fundamental mode shape. Three curvature-based 

methods, i.e., the MSC method, MSE method, and flexibility curvature method, tended 
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to identify damage location at the measurement point and display a maximum error in 

damage localization of approximately half of the measurement spacing. The other two 

mode shape- and flexibility-based methods performed better with numerical data. 

However, when experimental data were used, similar results were obtained as the 

curvature-based methods. When damage was located in a near-support region, the 

performance of all five methods degraded that the localization resolution decreased by 

50%. It was found that increasing the number of measurement points could improve the 

localization resolution, particularly for the three curvature-based methods.  

 

Qiao et al. (2007) evaluated and compared three damage detection techniques, i.e., 

GSM, generalized fractal dimension method, and MSE method, for composite 

laminated plates. Two measurement systems, scanning laser vibrometer (SLV) with 

lead zirconate titanate (PZT) actuators and polyvinylidene-fluoride (PVDF) sensors 

with PZT actuators, were utilized to measure curvature mode shapes. Experimental and 

numerical analyses showed that both measurement systems could successfully extract 

the modal parameters and PZT-SLV system seemed to perform better than PZT-PVDF 

system in the numerical simulation. The non-contact PZT-SLV system was simple and 

convenient and able to account for dense measurement; while the PZT-PVDF system 

directly obtaining the curvature mode shapes was sensitive to damage and capable of 

real time on-board monitoring. The three damage detection algorithms were capable of 

identifying the presence, location, and size of the delamination in the composite plate 

using three consecutive mode curvatures and ULS curvatures. In general, the GSM was 

superior to the other two algorithms in detecting and isolating the delamination of the 

composite plate. Since the MSC-based method did not require data from the undamaged 

state of the structure, it had the potential to be applied to online structural monitoring 

system. 

 

Das et al. (2016) conducted a comparative study on different damage detection 

methods: modal-based method, local diagnostic method, non-parametric method, and 

the time series method. Integration of autoregressive moving average model with time 

series model was more successful in damage identification than the rest. The non-

parametric methods, e.g., Bayesian probabilistic method, were not able to detect 

nonlinear damage in the structure. 
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2.3 Sparse Recovery Technique 

 

As introduced previously, structural damage possesses sparsity in the spatial domain. 

Therefore, damage identification is essentially a sparse recovery problem. In practice, 

the number of vibration measurements is limited and typically less than that of the 

structural model parameters, resulting in an underdetermined system of equations.  

 

Mathematically, there is a linear model 

 

𝒚 = 𝑿𝜽 + 𝜺 (2.14) 

 

where 𝒚 ∈ 𝑅𝑀 is the available measurements, 𝜽 ∈ 𝑅𝑁 refers to the unknown vector to 

be reconstructed, 𝑿 ∈ 𝑅𝑀×𝑁 (𝑀 < 𝑁) is a linear operator, and 𝜺 is the error associated 

with the measurement noise. A priori knowledge is available that the unknown vector 𝜽 

is sparse. The sparsity of a vector is defined that only a small number of items are non-

zero and the rest are zero or very close to zero (Theodoridis, 2012). Therefore, the 

inverse mapping from 𝒚 to 𝜽 is a sparse recovery problem. Unlike the classical linear 

regression problem with 𝑀 ≥ 𝑁, the problem in Equation (2.14) is underdetermined 

which has an infinite number of solutions. Moreover, inverse problems are usually ill-

posed, which means that at least one of the three conditions is not satisfied in the sense 

of Hadamard, that is, existence, uniqueness, and stability of a solution (Isakov, 2006). A 

large number of commonly encountered problems can be cast under this scenario.  

 

In the past decades, numerous methods have been proposed and extensively studied for 

sparse recovery problem. One category is the greedy search techniques, e.g., Matching 

Pursuit (Mallat and Zhang, 1993), and Orthogonal Matching Pursuit (Davis et al., 

1994). At each iteration, these algorithms select the column of 𝑿 that is most correlated 

with the current residuals and add this column into the set of selected columns. The 

residuals are updated taking into account the columns previously selected. The 

algorithm iterates until a convergence criterion is met and a sub-optimal solution is 

obtained (Cai and Wang, 2011). The greedy search techniques have not received widely 

applications due to its computational complexity.  
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The other widely used category is based on the regularization technique, which has been 

utilized to address the underdetermined and ill-posed problems in mathematics by 

adding a regularization term in the objective function. For sparse recovery problem, a 

proper regularizier should be selected such that the resulting optimization problem is 

tractable and leads to sparse solutions. The l1 regularization technique is the most 

widely used and has been proved to be effective in promoting sparsity in the solution. 

The technique was first applied in seismology to promote sparsity, where the reflection 

signal, that indicates changes between subsurface layers, is sparse (Claerbout and Muir, 

1973; Taylor et al., 1979). Later, Donoho and Stark (1989) and Donoho and Logan 

(1992) verified the sparsity-promoting ability of the l1 regularization through rigorous 

proofs. The l1 regularization is well known as Least Absolute Shrinkage and Selection 

Operator (LASSO) in statistics (Tibshirani, 1996), and Basis Pursuit in the signal 

analysis community (Chen et al., 1998).  

 

Recently, the l1 regularization is starting to gain popularity due to the booming of the 

CS, which has received widely applications in signal processing, wireless sensing, and 

communication (Candès, 2006; Donoho, 2006a; Baraniuk, 2011). The basic idea is that, 

a signal can be recovered or reconstructed from far fewer samples than required by the 

Shannon–Nyquist sampling theorem, provided that the signal is sparse with respect to a 

known orthonornmal basis and the sensing matrix satisfies certain incoherence 

properties (Candès, 2006). The sparse signal is reconstructed through an optimization 

process, i.e., finding the sparse solution to the underdetermined linear system. A typical 

means of solving such optimization problem is via the l1 regularization technique 

(Donoho, 2006b).  

 

The small number of damage locations can be treated as spatial sparsity as compared 

with the total elements of the entire structure. Therefore, the identification of the 

damaged elements is a sparse recovery problem. However, the sparse recovery theory 

starts to attract interest and be applied in SHM and damage detection until very recently. 

Wang and Hao (2010) discussed some potential applications of the CS in structural 

engineering. These potential applications included improvement of sampling, 

optimization of model updating, and proposition of innovative damage indicators. Bao 
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et al. (2014) first introduced the CS technology to SHM and conducted a series of 

applications of CS to SHM. Bao et al. (2011) investigated the application of the CS for 

vibration data compression. In contrast to the traditional data compression methods, CS 

enabled acquiring the data directly in a compressed form. The data compression ability 

of the CS was demonstrated using the acceleration data collected from the SHM system 

of the Shandong Binzhou Yellow River Highway Bridge. Since the data loss is a 

common problem of wireless sensors, Bao et al. (2012) applied the CS to recover the 

lost data of a wireless sensor network used in the SHM system. The validity and 

accuracy of the proposed data loss recovery approach was investigated using the field 

test acceleration data. The results showed that the CS technique was able yo recover the 

data with high accuracy, provided that the original data was sparsity in some 

orthonormal basis. Later, Bao et al. (2016) identified the distribution of moving heavy 

vehicle loads for cable-stayed bridges based on the sparse l1 optimization technique 

using cable force measurements. They assumed that the vehicle loads on the bridge deck 

followed a sparse distribution. Moreover, the CS theory has been applied for denoising 

of structural vibration responses (Yang and Nagarajaiah, 2014a), and modal 

identification (Yang and Nagarajaiah, 2013; 2015).  

 

More recently, several researchers have applied the sparse recovery technique to 

structural damage detection. Bao et al. (2014) proposed the potential application of CS 

technology for structure damage detection. Yang and Nagarajaiah (2014b) developed a 

two-step damage identification method via a combination of blind feature extraction and 

sparse representation classification. In the classification step, the modal features were 

expressed as a sparse linear combination of the bases of an over-complete reference 

feature dictionary. The resulting underdetermined linear system of equations was solved 

using the l1 minimization and the sparse representation was thus recovered. Then, the 

relevant damage class was identified for damage detection. Numerical simulations and 

experimental study showed that the method was capable of identifying small and severe 

single or multiple damage with limited sensors. Moreover, the proposed method was 

robust to random excitation and noise.  

 

Hernandez (2014) expanded the sensitivity-based model updating to localize and 

quantify isolated structural damage using l1 minimization. The change in a subset of 
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eigenvalues of the system was selected as the damage sensitive feature. The proposed 

method was able to identify damage accurately using only a subset of the spectrum with 

significantly fewer elements than the potentially damaged elements through two 

different types of simulated structures. Zhou et al. (2015) applied the l1 regularization 

approach to detect structural damage using the first few frequency data. The numerical 

and experimental results showed that the proposed technique could successfully identify 

moderate damage using only a small number of measurements compared to the entire 

structural elements, whereas the l2 regularization cannot. Moreover, parametric studies 

were conducted to investigate the effects of measurement number, damage severity, 

number of damage, and noise level on the damage detection results. 

 

Zhang and Xu (2016) conducted a comparative study between Tikhonov regularization 

and sparse regularization in time-domain model updating for damage identification. A 

reweighted sparse regularization technique was utilized to not only enhance the sparsity 

of solution but also provide an alternative method for selection of the regularization 

parameter. Both numerical and experimental studies showed that the proposed sparse 

regularization provided more accurate damage identification result than the traditional 

Tikhonov regularization. Zhang et al. (2017) presented a time-domain damage detection 

algorithm based on extended Kalman filter with the l1 regularization technique using 

free vibration responses. A pseudomeasurement technique was utilized to enforce the l1 

constraint in each recursive step of the extended Kalman filter framework. The 

introduction of l1 regularization effectively suppressed the interference of measurement 

noise and improved the identification accuracy. Compared with the traditional extended 

Kalman filter, the proposed algorithm showed good robustness and excellent accuracy 

of damage identification with the unknown initial structural state.  

 

Fan et al. (2018) proposed a structural damage identification approach based on model 

updating with electromechanical impedance sensitivity and the sparse regularization 

technique to identify the location and severity of minor damage. The sensitivities of the 

resonance frequency shifts in the impedance responses with respect to the stiffness 

parameters of the host structure were calculated. The l1 regularization technique, instead 

of the traditional Tikhonov regularization, was employed for solving this inverse 

problem. The results showed that the proposed approach was able to determine the 
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location and severity of the simulated structural damage accurately, even when the 

measured signal was noisy and the number of frequency shifts was limited.  

 

2.4 Spare Bayesian Learning 

 

In recent years, the sparse recovery problem has been considered and developed from a 

Bayesian perspective. SBL, as a supervised learning framework, is first proposed by 

Tipping (2001) in the machine learning community. It has received much attention as a 

means of deriving sparse solutions to problems like (2.14) in the context of regression 

and classification (Williams et al., 2005; Zhang and Rao, 2011; Lin et al., 2013). Later, 

SBL has been introduced to deal with the problems in CS as an effective alternative to 

the existing algorithms (Wipf and Rao, 2004; Ji et al., 2008). Over the last two years, 

SBL also began to be applied to earthquake engineering (Mu and Yuen, 2017) and 

geotechnical engineering (Ching et al., 2017; Wang and Zhao, 2017). 

 

In Bayesian framework, the prior distribution can induce sparsity in the inferred 

parameters, which functions as the regularization term for the regularizaiton techniques. 

A widely used sparse prior is the Laplace distribution, which is equivalent to the l1 

regularization (Babacan et al., 2010). However, since the Laplace prior is not conjugate 

to the Gaussian likelihood, the resulting posterior probability distribution is usually 

intractable (Gelman et al., 2003). This problem has been addressed in SBL and 

specifically the relevance vector machine (Tipping, 2001). SBL proposes to use the 

automatic relevance determination (ARD) prior to incorporate a preference for sparser 

parameters which allows convenient conjugate-exponential Bayesian inference 

(Tipping, 2001; Ji et al., 2008). Rather than assuming a fixed prior, SBL relies on a 

parameterized prior. An individual hyper-parameter is assigned to each unknown 

parameter which controls the precision of the associated parameter. For linear 

regression problems, these hyper-parameters can be iteratively estimated using type-II 

maximization likelihood (Tipping, 2001; Bishop, 2006). During the iteration process, 

most hyper-parameters tend to approach infinity, and the corresponding unknown 

parameters approach zero, resulting in a sparse regression model. Considering the 

computational cost of the iterative algorithm, Faul and Tipping (2002) and Tipping and 

Faul (2003) developed the fast SBL algorithm to achieve highly efficient computation. 
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This algorithm maximize the evidence function monotonically through a sequential 

addition and deletion of candidate basis function (i.e., columns of 𝑿). Besides the well-

known sparse priors mentioned above, some priors have also shown to encourage 

sparsity in the inferred parameters, e.g., the horseshoe prior (Carvalho, 2010), double-

exponential with an exponential mixing density (Carlin and Polson, 1991; Hans, 2009), 

and normal-gamma (Griffin and Brown, 2010). 

 

The SBL has several significant advantages for sparse recovery, compared with the 

most widely used methods within the non-Bayesian framework, e.g., the l1 

regularization technique and Orthogonal Matching Pursuit. The SBL closely resembles 

the l0 regularization which typically results in a more sparse solution with high accuracy 

than the l1 regularization. For SBL, the global minimum is achieved at the maximally 

sparse solution, which is a desirable property of the l0 regularization (Wipf and Rao, 

2004). Moreover, when the sensing matrix does not satisfy the incoherence criteria, the 

performance of most existing CS algorithms will degrade, while the SBL still retains 

excellent ability for sparse recovery (Wipf, 2011).  

 

Although Bayesian probabilistic approach has been introduced and applied to structural 

damage identification for nearly two decades, SBL has seldom been utilized and 

explored in SHM and structural damage detection. Huang et al. (2014) reported that the 

SBL algorithm suffered from a robustness problem. When the number of measurements 

was considerably smaller than the number of unknown model parameters, sub-optimal 

solutions were obtained during the optimization process with large reconstruction 

errors. In this regard, they developed a stochastic optimization and successive relaxation 

for optimization of the hyperparameters to enhance the robustness. The signal 

reconstruction robustness and accuracy in CS increased significantly using the proposed 

method.  

 

Huang and Beck (2015) and Huang et al. (2017a) proposed the hierarchical SBL 

framework for damage detection. A hierarchical Bayesian model combined with 

Laplace’s asymptotic approximation was used to infer the sparse stiffness reductions on 

the basis of experimentally identified modal parameters in a way that was consistent 

with the Bayesian Ockham razor. An iterative procedure, which involved a series of 
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coupled linear regression problems, was developed to deal with the nonlinear 

eigenvalue problem.  

 

Huang et al. (2017b) used two Gibbs sampling algorithms to efficiently sample the 

posterior PDF of the uncertain parameters. Compared with the Laplace approximation, 

the proposed GS methods were able to provide a fuller treatment of the posterior 

uncertainty. Huang et al. (2018) presented a general Bayesian system identification 

framework based on full Gibbs sampling procedure and SBL. The concept of ARD was 

incorporated through a likelihood function in their improved SBL method. Moreover, an 

improved Gibbs sampling procedure for SBL was developed to characterize the full 

posterior uncertainty rather than just using maximum a posteriori (MAP) values of the 

hyperparameters. 

 

Multi-task learning is a useful tool for exploiting informative relationships or data 

redundancy. Huang et al. (2018a) presented a multi-task SBL method utilizing multiple 

groups of measurements. Two hierarchical Bayesian models for multitask SBL were 

presented and a shared sparseness-inducing ARD prior across multiple tasks was 

assigned. To obtain higher learning robustness, the precision parameters of the 

prediction error were also marginalized in the hierarchical models instead of merely 

finding its MAP value. It has been shown that the proposed multi-task SBL approach 

improved both learning robustness and uncertainty quantification of the sparse 

approximation. Huang et al. (2018b) proposed a two-stage damage identification 

method based on the fractal dimension analysis and multi-task SBL. The Higuchi’s 

fractal dimension based and Katz’s fractal dimension based damage indices were 

introduced. The multi-task SBL technique was employed to infer the damage 

localization vector, which incorporated the sparsity of structural damage as the prior 

information. 

 

A complete review on the recent development of SBL for structural damage detection 

and assessment was also provided in Huang et al. (2018). 
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2.5 Challenges in Vibration-based Damage Detection 

 

The vibration-based damage detection methods as well as their pros and cons have been 

reviewed. The applicability and effectiveness of different available techniques depend 

on the type of damage and structures to be detected and the test conditions 

(Chandrashekhar and Ganguli, 2009). There is not a universal methodology which is 

able to identify any type of damage for various different structures. Additionally, little 

existing algorithm is capable of predicting the remaining service life of the structure, 

which is regarded as Level 4 of structural damage detection.  

 

Although the vibration-based damage detection has been investigated extensively over 

the past decades, there are still some challenging issues to be addressed in this area: 

1) Most of the damage detection methods are not sensitive to initial tiny damage in 

structures. Since structural damage is typically a local phenomenon, it may not 

significantly influence the low-order modal properties of the structure that are 

typically available during vibration tests (Farrar et al., 2001). In practice, it would 

be always difficult to excite higher modes of the structure due to the limitation of 

the input energy (Alvandi and Cremona, 2006). 

2) Environmental conditions, such as temperature and humidity, may have a severe 

effect on structural vibration properties. The changes of modal parameters caused 

by the environmental variations may mask the changes due to structural damage 

and then cause false damage identification. Therefore, how to remove the 

environmental effects should be considered for accurate damage detection. A 

reliable damage detection method, which is robust to environmental effects, is 

required.  

3) Many existing algorithms depend on the analytical model or baseline data for 

structural damage detection. However, the analytical model may not be an accurate 

representation of the target structure, especially for large-scale structures. For 

example, approximation of boundary conditions, lumping of the distributed 

parameter system, lacking of the damping representation, and inadequate modeling 

of joints and couplings may cause considerable errors in the FE model. 

4) During the vibration test, the measured data are inevitably contaminated by noise, 

which may significantly influence the damage detection results (Alvandi and 
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Cremona, 2006). In addition, some problems associated with the dynamic testing, 

such as the number and layout of sensors, and consistency and reliability of the 

testing procedures should be taken into consideration. 

5) Civil structures are generally large in size and contain a large number of 

components, while the number of available vibration measurements is limited. 

Therefore, the vibration-based damage detection problem is underdetermined in the 

presence of infinite solutions. Moreover, the identification of structural damage is 

essentially an inverse problem in mathematics and is typically ill-posed. Due to the 

nature of the ill-posed problem, a small perturbation in the input data (e.g., the 

measurement noise) will be amplified and thus leads to a significant change in the 

solution (Engl et al., 1996). 

 

In summary, there is a pressing need to develop more accurate and reliable methods for 

structural damage detection using only a few vibration measurement data. 
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CHAPTER 3   
 

NUMERICAL AND EXPERIMENTAL EXAMPLES 
 

 

 

3.1 Introduction  

 

This chapter will introduce the numerical and experimental examples together for 

convenience, which will be employed in the subsequent chapters. The numerical 

examples, including a planar truss and a cantilever beam, are used to investigate the 

accuracy and robustness of the proposed damage detection methods. Three experimental 

structures, i.e., a cantilever beam, a three-storey frame, and a six-bay frame, serve to 

verify the effectiveness and applicability of the proposed methods for damage detection. 

 

3.2 Numerical Examples  

 

3.2.1 A Planar Truss 

 

A 6-bay planar truss as shown in Figure 3.1 is simply supported and consists of 31 bar 

elements and 14 pin joints, resulting in 25 DOFs in total. The total length and height of 

the truss is 9.00 m and 1.50 m, respectively. The diagonal bar is 2.12 m long. The cross 

section of each bar is a square with the dimension of 0.05 m. The mass density and 

Young’s modulus are 2.77×10
3
 kg/m3 and 7.0×10

10
 N/m2, respectively.  

 

The damage is simulated by the reduction of Young’s modulus of the bar element, or 

reduction of the axial stiffness while mass remaining unchanged. As shown in Figure 

3.1, element No.3 is assumed to be damaged by 50%. It is assumed that the complete 

mode shapes at all 25 DOFs are available in the undamaged and damaged states. The 

first six natural frequencies and MAC of the undamaged and damaged structure are 

listed in Table 3.1. It can be seen that mode No.3 is not sensitive to the simulated 
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damage. The MAC indicates the similarity between the experimental and numerical 

mode shapes and is defined as follows 

 

𝑀𝐴𝐶(𝝓𝑖  , 𝝓𝑑𝑖) =
|𝝓𝑖

𝑇𝝓𝑑𝑖|
2

(𝝓𝑖
𝑇𝝓𝑖)(𝝓𝑑𝑖

𝑇 𝝓𝑑𝑖)
 (3.1) 

 

where 𝝓𝑑𝑖  is the ith mode shape of the damaged structure. The value of MAC is 

bounded between zero and one. An MAC value of one indicates that the two vectors are 

exactly the same, whereas a value of zero represents that two vectors are orthogonal. 

 

 

Figure 3.1 Geometric configuration of the truss structure (unit: m) 

 

Table 3.1 Modal data of the truss in the undamaged and damaged states. 

Mode 
Undamaged Damaged 

Freq. (Hz) Freq. (Hz) MAC (%) 

1  36.92   34.50 (–6.55) 99.79 

2  77.11   76.00 (–1.44) 99.80 

3 135.59 135.52 (–0.06) 99.98 

4 226.36 217.90 (–3.74) 98.58 

5 253.52 252.95 (–0.22) 99.42 

6 364.15 361.33 (–0.77) 87.06 

Average             –2.26 99.51 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

 

3.2.2 A Cantilever Beam 

 

A cantilever beam (Figure 3.2) is 900 mm long, 50.75 mm wide, and 6.0 mm thick. The 

mass density and Young’s modulus are 7.67×10
3
 kg/m3  and 7.0×10

10
 N/m2 , 

6×1.50 = 9.00 
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respectively. The beam is modeled with 45 equal Euler–Bernoulli beam elements, each 

20 mm long. Damage is simulated by the reduction of the bending stiffness while mass 

remains unchanged. As shown in Figure 3.2, the clamped end and mid-span of the beam 

are assumed to be damaged by 50%, corresponding to element Nos. 1 and 23, 

respectively. For this numerical example, the natural frequencies only are used for 

damage detection. The first six natural frequencies of the beam before and after damage 

are listed in Table 3.2.  

 

 

Figure 3.2 Geometric configuration of the beam structure (unit: mm) 

 

Table 3.2 Frequencies of the beam in the undamaged and damaged states. 

Mode 

no. 

Undamaged Damaged
 

Change ratio 

(%) Freq. (Hz) Freq. (Hz) 

1     6.02     5.75 −4.56 

2    37.75    35.67 −5.50 

3   105.73   102.44 −3.11 

4   207.25   197.69 −4.61 

5   342.70   333.96 −2.55 

6   512.07   492.45 −3.83 

Average of frequency change (%) −4.03 
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3.3 Experimental Examples 

 

3.3.1 Experimental Instruments 

 

The Bruel & Kjaer accelerometers were used to measure the acceleration signals during 

the laboratory tests. It is a type of single axis piezoelectric accelerometer, which has 

small dimension and excellent anti-interference ability. The applicable frequency range 

of the accelerometers is from 0.1 Hz to maximum 7 kHz. It is especially applicable for 

low frequency vibration measurement. The operating temperature range is 

−74°C~250°C. The accelerometer has a magnetic base which enables itself to be 

directly mounted on the metallic structures.  

 

The signal amplifier employed in the experiments was Bruel & Kjaer 2962, consisting 

of four modular channels (Figure 3.3a). Each modular channel is equivalent to a four-

stage amplifier including the input amplifier, lowpass filter amplifier, integrator 

amplifier, and output amplifier. The test oscillator, overload detector, and power supply 

unit are integrated together in this system. 

 

The EDX-100A data acquisition system made by Kyowa Electronic Instruments was 

used to record the acceleration data (Figure 3.3b) and the LAN (or USB) port enables 

online data transfer to PC. EDX-100A consists of 16 channels and has a sampling rate 

of 10 kHz. The operating temperature range of this recorder is 0 to 50°C and the storage 

temperature range is −20°C to 60°C. 

 

A hammer was employed in the laboratory tests to produce excitation to the 

experimental models due to its convenience. The specification of the hammer is listed in 

Table 3.3 and the rubber tip was used during the test. The overview of the instruments 

utilized in the experiments is shown in Figure 3.4. 
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(a) Signal amplifier (Bruel & Kjaer 2962) (b) Data acquisition board (EDX-100A) 

 

(c) Hammer 

Figure 3.3 Experimental instruments 

 

Table 3.3 Specification of the hammer. 

Sensitivity (pC/N) 4 

Max. shock force (kN) 60 

Head diameter (mm) 30 

Head mass (g) 300 

Usable frequency range 

Steel tip                10 kHz 

Aluminum tip 3 kHz 

Nylon tip 2 kHz 

Rubber tip 500 Hz 
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Figure 3.4 Instruments used in the experiment 

 

3.3.2 A Cantilever Beam 

 

The first laboratory example is a steel cantilever beam as shown in Figure 3.5. The total 

length of the beam is 1000 mm, and the size of the cross section is 49.60 mm ×5.0 mm. 

The mass density and Young’s modulus are estimated as 7.67×10
3
 kg/m

3
 and 

2.0×10
11

 N/m
2
, respectively.  

 

 

Figure 3.5 Overview of the beam structure 

 

A series of modal testing was conducted on the intact beam. During the laboratory test, 

10 accelerometers were mounted on the beam to measure the acceleration responses to 

the impact force from the instrumented hammer. The measurement points were chosen 
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every 100 mm (Figure 3.6). The axial deformation of the beam is negligible; thus, only 

the out-of-plane horizontal vibration was measured.  

 

 

Figure 3.6 Locations of accelerometers and simulated damage 

 

The sampling frequency was 2000 Hz, which is adequate for the tested model (the 

frequency range of interest is about 0~300 Hz). The structure was impacted ten times 

for average purpose to improve the modal identification accuracy. Each impact lasted 

for 60 seconds. After completing the test, modal analyses were performed on the input 

force and output accelerations with the DIAMOND software (Doebling et al., 1997). 

For one typical measurement set, the input and output time histories, and the 

corresponding power spectral density, FRF function, and coherence function are shown 

in Figure 3.7~3.11. The first six frequencies and mode shapes were extracted using the 

rational fraction polynomial (RFP) method (Formenti and Richardson, 2002) and are 

illustrated in Figure 3.12.  
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Figure 3.7 Input force time history 

 

 

Figure 3.8 Acceleration response time history 

 

 

Figure 3.9 Auto-power spectral density of the input force 
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Figure 3.10 Magnitude of FRF 

 

 

Figure 3.11 Coherence function 
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Figure 3.12 Measured frequencies and mode shapes of the beam strucuture in the 

undamaged state 

 

Three saw cuts were then sequentially introduced into the beam model (Figure 3.6). The 

cuts have the same length b = 10 mm but varied depth for simulating different damage 

severities. Cut 1 at the clamped end was introduced with a depth of d = 10 mm (damage 

scenario 1, or DS1), representing 40% damage of the cut section. The depth of cut 1 was 

then increased to d = 15 mm (DS2). Cuts 2 and 3 were successively introduced with 

depth d = 15 (DS3) and 20 mm (DS4), respectively. The modal testing procedures were 

repeated for each DS. The frequencies and mode shapes of the damaged states were 

extracted accordingly (Table 3.4). The natural frequencies experience more significant 

changes compared with the mode shapes. The maximum averaged change in 

frequencies is 8.04% with the accumulation of damage, whereas the mode shapes 

almost remain unchanged, especially for the first four modes. 

 

 

 

Mode 5 - Frequency:195.3421 Hz Mode 6 - Frequency:294.7739 Hz
Mode 5 (194.78 Hz) Mode 6 (292.82 Hz) 
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Table 3.4 Modal data of the beam in the undamaged and damaged states. 

Mode 
Undamaged DS1 DS2 DS3 DS4 

Freq. (Hz) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) 

1     3.53    3.49 (−1.24) 99.99     3.38 (−4.41) 99.97     3.33 (−5.91) 99.98      3.36 (−4.91) 99.99 

2   21.77   21.39 (−1.72) 99.95   20.85 (−4.26) 99.84   20.29 (−6.81) 99.86    19.76 (−9.22) 99.95 

3   60.78   59.46 (−2.16) 99.88   58.93 (−3.04) 99.83   58.38 (−3.95) 99.57  54.37 (−10.55) 99.60 

4 119.46 118.31 (−0.96) 99.88 116.01 (−2.88) 99.51 113.35 (−5.12) 99.23 106.31 (−11.01) 99.06 

5 194.78 191.98 (−1.44) 99.78 188.74 (−3.10) 99.17 188.46 (−3.25) 98.87  187.17 (−3.91) 99.14 

6 292.82 281.56 (−3.84) 98.07 286.76 (−2.07) 94.95 275.08 (−6.06) 98.26  267.45 (−8.66) 97.26 

Average (%)            (−1.90) 99.59             (−3.29) 98.88             (−5.18) 99.30             (−8.04) 99.17 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 
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3.3.3 A Three-storey Frame  

 

The second laboratory example is a three-storey steel frame as shown in Figure 3.13. 

The bottom supports of the columns were welded on a thick plate, which was fixed on 

the strong floor in order to model the fixed boundary condition of the frame. The overall 

height of the frame is 1.5 m and each story is of the same height of 0.5 m. The span of 

the beam is also 0.5 m. The beams and columns have the same cross section dimension 

as 75.0×5.0 mm2. The mass density of the frame is 7.92×10
3
 kg/m3 and the Young’s 

modulus is estimated as 2.0×10
11

 N/m2. 

 

 

Figure 3.13 Overview of the frame structure 

 

The modal testing was first conducted in the intact state of the frame. The sampling 

frequency was set as 2000 Hz since the frequency range of interest is about 0~100 Hz. 

In order to obtain the complete mode shapes of the whole frame, the measurement 
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points were chosen every 100 mm. Due to the high axial stiffness, the horizontal 

responses of the points on the beam are identical. Therefore, there were total 39 

measurement points as illustrated in Figure 3.14. For the measurement points on the 

beam and columns, the horizontal and vertical accelerations were measured, 

respectively. Since there are only nine accelerometers available (Figure 3.15), five sets 

of experiments were employed with the accelerometers moving along the frame and the 

hammer remaining unchanged. The measured FRFs of all measurement points were 

combined together to obtain the complete mode shapes. Additional masses with the 

same weight as the accelerometers were employed as the dummy sensors as illustrated 

in Figure 3.15, in order to keep the mass of the model unchanged during the entire 

testing as the real sensors moved around. 

 

The frame was excited with an instrumented hammer. The direction and location of the 

excitation point are shown in Figure 3.14. In each set of tests, the structure was 

impacted eight times and each impact lasted for 30 seconds. After completing the test, 

the measured input and output time histories were analysed with the DIAMOND 

software (Figure 3.16 and Figure 3.17). The obtained power spectral density, FRF 

function, and coherence function are displayed in Figure 3.18~3.20. The first eight 

frequencies and mode shapes in the range of 0~300 Hz were extracted using the RFP 

method and are illustrated in Figure 3.21. 

 

The damage was introduced by saw cuts at both sides of the cross section. Two cuts 

were sequentially introduced to the frame model (Figure 3.14), corresponding to two 

DSs. Cuts 1 and 2 were located at the column end and the beam/column joint, both are 

critical locations of the frame structure. The enlarged Cut 1 is shown in Figure 3.22. 

The saw cuts have the same length b = 20 mm and depth of d = 22.5 mm, leading to the 

reduction of the moment of inertia of the cut sections by 60%. For each damage case, 

the aforementioned modal testing was repeated and the measurement points, layout of 

sensors and added masses, sampling frequency, impact location, impact times, and the 

length of recording time were exactly the same as those in the undamaged state. The 

frequencies and mode shapes of damaged states were extracted accordingly. The first 

eight frequencies and MAC of the frame structure before and after damage are listed in 

Table 3.5. With the accumulation of damage, the natural frequencies of the structure 
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decrease, so do the MAC values. In addition, the changes in natural frequency are small 

(maximum average change of 2.32%), while the changes in the mode shape are more 

significant with low MAC values.  

 

 

Figure 3.14 Locations of accelerometers and simulated damage (Unit: mm) 
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Figure 3.15 Layout of accelerometers and added mass 

 

 

Figure 3.16 Input force time history 
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Figure 3.17 Acceleration response time history 

 

 

Figure 3.18 Auto-power spectral density of the input force 

 

 

Figure 3.19 Magnitude of FRF 
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Figure 3.20 Coherence function 
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Mode 7 (72.27 Hz) Mode 8 (91.73 Hz)  

Figure 3.21 The measured frequencies and mode shapes of the frame structure in the 

undamaged state 

 

 

Figure 3.22 Configuration of cut 1 
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Table 3.5 Modal data of the frame in the undamaged and damaged states. 

Mode 

no. 

Undamaged DS1 DS2 

Freq. (Hz) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) 

1   4.23   4.13 (−2.31) 92.02   4.08 (−3.53) 95.78 

2  14.03  13.75 (−1.96) 99.02  13.45 (−4.11) 97.49 

3  25.45  25.14 (−1.19) 98.87  25.13 (−1.23) 99.01 

4  44.81  44.70 (−0.23) 94.74  44.69 (−0.27) 97.59 

5  58.12  57.39 (−1.24) 92.45  57.28 (−1.44) 91.46 

6  68.36  67.34 (−1.49) 93.01  66.11 (−3.29) 88.14 

7  72.27  72.06 (−0.28) 96.30  71.42 (−1.18) 85.80 

8  91.73  89.14 (−2.83) 86.79  88.51 (−3.52) 76.38 

Average       (−1.44) 94.15       (−2.32) 91.46 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

 

3.3.4 A Six-bay Frame 

 

The third experimental example is a 3D frame as shown in Figure 3.23. The frame 

consists of six bays with a total length of 3.0 m. Three end nodes of the structure are 

cast into a mass concrete block, which is fixed on the strong floor using four steel bolts 

to model the fixed boundary condition. The frame structure consists of 45 bars and 20 

nodes in total (Figure 3.24). The bars are alloy steel tubes and the dimensions and 

material properties are listed in Table 3.6. All bars are connected by Meroform ball 

nodes through M12 bolts (Figure 3.25), which are fastened using a torque wrench. The 

weights of the M12 bolt and the Meroform ball node are 74 g and 234 g, respectively. 

 

Figure 3.23 Overview of the frame structure 
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Figure 3.24 Configuration of the frame structure 

 

Table 3.6 Bars used in the frame model. 

Length 500 mm 

Outer diameter (D) 22 mm 

Inner diameter (d) 21 mm 

Young’s modulus (E) 2.10×10
11

 N/m2 

Mass density (𝑚/𝑉) 7850 kg/m3 

 

A vibration test was first conducted on the intact structure. The frame was excited by 

the instrumented hammer and the acceleration responses were measured by the 

accelerometers. As shown in Figure 3.25, the accelerometers were mounted on the 

Meroform ball node through a magnetic base. Since the axial deformation is negligible, 

the accelerations in the lateral and vertical directions of each node (excluding the 

supports) were measured, resulting in 34 DOFs available in the mode shapes of the 

frame.  

12

15

18

1

2

9

10

3

4

5

17

25

33

41

18

26

34

42

13

21

29

37

456

14

22

30

38

11

12

19

20

27

28

35

36

43

44

7

8

23

24

31

32

39

40

16

500×6=3000mm

50
0m

m

1

15

4

2

5

7

8

11

10

13

16

19

20

17

14

3

6

9



 

63 

 

Figure 3.25 Accelerometer at the Meroform ball node 

 

Since the frequency range of interest is from 0 to 100 Hz, the sampling frequency was 

set as 2000 Hz. Each test lasted for 60 seconds. DIAMOND software was used for 

processing the excitation and time history responses (Figure 3.26 and Figure 3.27). The 

power spectral density, FRF function, and coherence function for one measurement set 

are displayed in Figure 3.28~3.30. The first six frequencies in the range of 0~100 Hz 

and the associated mode shapes were extracted using the RFP method (Figure 3.31). 

Mode Nos. 1, 2, and 4 are all torsion modes in the lateral direction, while mode Nos. 5 

and 6 are bending modes in the lateral direction, and mode No. 3 is the bending mode in 

the vertical direction.  

 

 

Figure 3.26 Input force time history 
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Figure 3.27 Acceleration response time history 

 

 

Figure 3.28 Auto-power spectral density of the input force 

 

 

Figure 3.29 Magnitude of FRF 
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Figure 3.30 Coherence function 
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Figure 3.31 Measured frequencies and mode shapes of the three-dimensional frame in 

the undamaged state 

 

For steel structures, the joints, e.g., welds or bolts, are the most critical parts for the 

overall safety (Mehrjoo et al., 2008). The failure of most steel structures is caused by 

the damage of joints. Therefore, the safety of joints is essential to steel structures (An et 

al., 2013). In this regard, four DSs are simulated including damage in bars and joints of 

the frame model, as listed in Table 3.7. In DS1, Bar No.17 is damaged by replacing the 

original tube with one made of thinner thickness. After the replacement, all the 

connection bolts were checked and fastened to the original torsional moment (i.e., 30 

Nm) to ensure the structural connections unchanged before and after damage was 

introduced. In DS2, a joint damage was simulated by loosening the bolt connecting Bar 

No.27 and Node No.13. Two more severe damage cases, DS3 and DS4, were 

subsequently introduced. 

Mode 4 (37.43 Hz)

 

Mode 5 (40.92 Hz)

 

Mode 6 (59.97 Hz)



 

67 

 

Table 3.7 Four DSs for the frame structure. 

Scenario Description 

DS1 
Bar No.17 is damaged by replacing 

 the original tube with a damaged one 

DS2 
Bar No.27 is damaged by loosening  

the bolt near Node 13 

DS3 Bar No.27 is damaged by loosening  
the bolts at two ends 

DS4 DS1+DS3 

 

For each DS, the modal testing was similarly conducted and the frequencies and mode 

shapes of the damaged states were extracted accordingly as listed in Table 3.8. It can be 

seen that the changes in natural frequencies are very small especially for DS1 and DS2, 

while the changes in the mode shapes are more significant with low MAC values.  
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Table 3.8 Modal data of the frame in the undamaged and damaged states. 

Mode 
Undamaged DS1 DS2 DS3 DS4 

Freq. (Hz) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) 

1   7.73   7.70 (−0.30) 91.51   7.71 (−0.22) 98.23   7.68 (−0.67) 81.30   7.66 (−0.81) 92.30 

2 23.98 23.93 (−0.21) 99.74 23.93 (−0.23) 99.62 23.79 (−0.80) 58.72 23.87 (−0.45) 88.30 

3 24.83 24.69 (−0.56) 99.44 24.69 (−0.56) 98.81 24.06 (−3.12) 80.19 24.25 (−2.34) 83.34 

4 37.43 36.96 (−1.27) 89.96 37.28 (−0.42) 80.65 36.93 (−1.34) 81.73 35.66 (−4.73) 81.06 

5 40.92 40.71 (−0.53) 97.64 40.83 (−0.24) 99.97 40.56 (−0.88) 84.35 40.45 (−1.16) 98.99 

6 59.97 59.65 (−0.53) 97.54 59.86 (−0.18) 98.80 59.10 (−1.45) 82.35 59.20 (−1.27) 96.31 

Average           (−0.57) 95.97           (−0.31) 96.01           (−1.38) 78.11           (−1.79) 90.05 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 
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CHAPTER 4   
 

STRUCTURAL DAMAGE DETECTION BASED ON L1 

REGULARIZATION TECHNIQUE 
 

 

 

4.1 Introduction  

 

Conventional vibration-based damage detection methods employ the Tikhonov 

regularization in model updating to deal with the problems of underdeterminacy and 

measurement noise. However, the Tikhonov regularization tends to provide over 

smooth solutions that the identified damage is distributed to many structural elements. 

This result does not match the sparsity property of the actual damage scenario, in which 

structural damage typically occurs at a small number of locations only in comparison 

with the total elements of the entire structure. In this study, an l1 regularization-based 

model updating technique is developed by utilizing the sparsity of structural damage.  

 

For all regularization problems, the regularization parameter, which controls the trade-

off between data fidelity and solution size, exerts a crucial effect on the solution. 

However, since the l1 regularization problem has no closed-form solution, the associated 

regularization parameter is usually selected by experience. In this regard, two strategies 

of selecting the regularization parameter for the l1-regularized damage detection 

problem have been proposed. The first method utilizes the residual and solution norms 

of the optimization problem and ensures that they are both small. The other method is 

based on the discrepancy principle (DP), which requires that the variance of the 

discrepancy between the calculated and measured responses is close to the variance of 

the measurement noise. 
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4.2 Sparse Regularization Technique 

 

For the sparse recovery problem introduced in Section 2.3, the unknown vector 𝜽 could 

be obtained by minimizing the following least-squares loss function 

 

�̂� = arg min
�̂�

 ‖𝑿𝜽 − 𝒚‖2
2 (4.1) 

 

Since the regularization technique is effective in coping with the ill-posed and 

underdetermined problem, a regularization term is introduced to the objective function 

in order to obtain a unique and reasonable solution  

 

�̂� = arg min
�̂�

 ‖𝑿𝜽 − 𝒚‖2
2 + 𝛽‖𝜽‖𝑝

𝑝
 (4.2) 

 

where 𝛽  is the regularization parameter. The residual norm  ‖𝑿𝜽 − 𝒚‖2
2  is the data-

fitting term which measures the data fidelity, while ‖𝜽‖𝑝
𝑝
 (𝑝 ≥ 0) is the regularization 

term (or solution norm) reflecting the expection of the solution to be found. The value 

of p is determined by the prior information about 𝜽  corresponding to different 

regularization techniques. For 𝑝 > 0, the lp norm is defined as 

 

‖𝜽‖𝑝 = (∑|𝜃𝑖|
𝑝

𝑁

𝑖=1

)

1
𝑝

 (4.3) 

 

For 𝑝 = 0, the l0 norm is obtained as the limit for 𝑝 → 0 

 

‖𝜽‖0 = lim
𝑝→0

‖𝜽‖𝑝
𝑝 = lim

𝑝→0
(∑|𝜃𝑖|

𝑝

𝑁

𝑖=1

) (4.4) 

 

That is, the l0 norm is equal to the number of non-zero entries of the vector. It should be 

noted that for 0 ≤ 𝑝 < 1, the resulting function does not define a true norm, since it 

violates the properties defined for a norm.  
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When 𝑝 = 2 , the corresponding technique is called Tikhonov regularization (or l2 

regularization), which is the most commonly used approach of regularization 

(Tikhonov, 1963). It is also known as ridge regression in statistics. The objective 

function takes the following form 

 

�̂� = arg min
�̂�

 ‖𝑿𝜽 − 𝒚‖2
2 + 𝛽‖𝜽‖2

2 (4.5) 

 

This optimization problem has a closed-form solution as  

 

�̂� = (𝑿𝑿𝑇 + 𝛽𝑰)−1𝑿𝑇𝒚 (4.6) 

 

where 𝑰  is the identity matrix. The Tikhonov regularization has received widely 

applications since it has a closed-form solution with low computation complexity. 

Moreover, as the solution of the optimization problem is continuous with respect to 𝛽, 

there are tractable methods for choosing the regularization parameter. The main 

drawback of the Tikhonov regularization is that it has limited resolution and cannot 

recover sharp features of the unknown vector. Consequently, it results in an over 

smooth solution. 

 

The regularization term ‖𝜽‖𝑝
𝑝
 for different values of p is plotted in Figure 4.1, which 

shows the individual contribution of each entry of 𝜽 to the lp norm ‖𝜽‖𝑝
𝑝

. It can be seen 

that the curve of l2 norm is convex. For |𝜃| ≤ 1 in our problems, as 𝜃 approaches one, 

the corresponding ‖𝜃‖2
2 becomes dominant in the objective function. Accordingly, the 

optimization algorithm will concentrate on the large terms by penalizing them to get 

smaller such that the overall misfit is reduced (Theodoridis et al., 2012). For the 

Tikhonov regularization, strong features are penalized more severely compared to weak 

features and thus a smooth solution is provided. It is obvious that the Tikhonov 

regularization is not applicable to sparse recovery problems. Alternative norms in place 

of the l2 norm which have the sparsifying effect are required.  

 

In order to preserve sparsity of the unknown vector, the penalty on strong features 

should be lowered. As shown in Figure 4.1, the curves of lp-quasi-norms (0 < 𝑝 < 1) 
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are nonconvex. The contributions of small values of 𝜽 to the regularization term ‖𝜽‖𝑝
𝑝
 

could not be neglected. The components of ‖𝜽‖𝑝
𝑝
 with small values of 𝜽 can still have a 

say during the optimization process and can be penalized by being pushed to smaller 

values. Strong features are penalized less severely as compared with the l2 norm. In 

particular, the l0 norm, which counts the number of non-zero elements in the vector, is 

the extreme case. Only the components of ‖𝜽‖0 that could considerably minimize the 

objective function will be kept and the rest will be forced to zero. Therefore, the lp 

regularization with 0 ≤ 𝑝 < 1 has sparsity-preserving property and is suitable for sparse 

signal recovery (Theodoridis et al., 2012). Unfortrunately, for 0 ≤ 𝑝 < 1 , the 

corresponding nonconvex optimization problem is NP-hard. Solving this NP-hard 

problem requires a combinatory search over all possible subsets of 𝜽 , and is thus 

computationally infeasible for large scale problems since the computational complexity 

is of exponential dependence on the dimension of 𝜽 (Chartrand and Staneva, 2008; 

Natarajan, 1995). Moreover, the global optimal solution cannot be obtained for the 

nonconvex optimization problem (Chartrand and Yin, 2008). Due to these limitations, 

the lp regularization (0 ≤ 𝑝 < 1) has not received widely applications in sparse signal 

recovery. 

 

 

Figure 4.1 ‖𝜽‖𝒑
𝒑
 for different values of p 

 

For all the true norms (𝑝 ≥ 1), only the l1 norm retains relatively large values for 

|𝜃| < 1  and is the closest to the lp-quasi-norms (Figure 4.1). It has been proved 

𝜃 

‖
𝜃
‖
𝑝𝑝
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mathematically that the lp regularization techniques with 0 ≤ 𝑝 ≤ 1 all favor sparsity in 

the solution (Candes et al., 2008). Although the lp regularization (0 ≤ 𝑝 < 1) could 

provide a sparser solution, the l1 regularization is convex and could be solved 

effectively via linear programming approaches (Boyd and Vandenberghe, 2004). The l1 

regularization technique has been empolyed to promote sparsity for a long time and 

attracted considerable interest in the past decades. Some researchers proposed that, 

under certain conditions, the l1 regularization is equivalent to the l0 regularization with 

high probability (Candès and Tao, 2006; Donoho, 2006b). The l1 regularization is 

formulated as follows  

 

�̂� = arg min
�̂�

 ‖𝑿𝜽 − 𝒚‖2
2 + 𝛽‖𝜽‖1 (4.7) 

 

Although the objective function in Equation (4.7) is convex, it is not differentiable and 

thus does not have a closed-form solution (Boyd and Vandenberghe, 2004).  

 

4.3 Damage Detection using l1-regularized Model Updating 

 

Civil structures are generally large in size and contain a large number of components. 

However, the number of available vibration measurements is limited resulting in an 

underdetermined problem in mathematics. To this end, most previous studies employ 

super-elements in numerical modelling and model updating. For example, in the study 

by Hao and Xia (2002), several saw cuts each with 25 mm long were introduced to a 

portal frame to simulate damage. Euler-Bernoulli beam elements each with 100 mm 

long were used in the FE model and damage was represented by the stiffness reduction 

of the damaged elements. As the elements are significantly longer than the cuts, a cut of 

80% section reduction causes a small stiffness reduction in the corresponding element 

and there has been no quantitative relation between the cut size and the element stiffness 

reduction. Consequently, the simulated damage cannot be quantified. 

 

Another difficulty in structural damage detection is that the problem is essentially an 

inverse problem and is typically ill-posed. Therefore, measurement noise will be 

amplified and leads to inaccurate damage identification. In this regard, most vibration-

based damage detection methods employ the Tikhonov regularization (or l2 
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regularization) to deal with this problem (Ahmadian et al., 1998; Weber et al., 2009; Li 

and Law, 2010). As introduced above, the Tikhonov regularization tends to force all 

non-zero coefficients in the solution. Consequently, damage identification results are 

distributed to many structural elements, most of which are falsely identified as damage 

(Zhou et al., 2015; Zhang and Xu, 2016; Hou et al., 2018). 

 

In practice, structural damage usually occurs in a few sections or members only 

especially at the early stage. For example, structural early damage tends to appear in 

some column ends or the mid-span of beams where the maximum stresses are located. 

For steel structures, fatigue damage usually occurs at a few fatigue-critical members 

only. The small number of damage locations can be treated as sparsity as compared with 

the total elements of the entire structure. Structural damage sparsity is an important 

prior information that can be utilized for more accurate damage identification. The 

minimum-rank approach of directly model updating is the earlier study exploiting the 

concept of sparsity for structural damage detection. Since structural damage is sparse in 

the spatial domain, the perturbation matrices of the structural properties tend to be of 

small rank. Kaouk and Zimmerman (1994) proposed the minimum rank perturbation 

theory to solve the optimal matrix update problem. The modal force error was expressed 

by the perturbations to the mass, damping, and stiffness matrices, and eigenvectors 

based on the structural motion function. A non-zero entry in the modal force error was 

interpreted as the indication of the location of damage. Doebling (1996) presented the 

minimum-rank elemental update method for structural damage detection and model 

refinement. The proposed method computed a minimum-rank solution for the 

perturbations of the elemental stiffness parameters instead of the global stiffness matrix, 

while constraining the connectivity of the global stiffness matrix. It was found that the 

best identification result was obtained when the number of modes used was equal to the 

expected rank of the elemental stiffness perturbation vector.  

 

In FE model updating based structural damage identification, the stiffness matrix in the 

undamaged state can be expressed in the following form  

 

𝑲 = ∑𝛼𝑖

𝑛

𝑖=1

𝑲𝑖 (4.8) 
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where 𝑲𝑖 is the ith element stiffness matrix and 𝛼𝑖 is the element stiffness parameter, 

and n is the number of elements in the FE model. Under the assumption that only the 

element stiffness is reduced when damage occurs, the structural stiffness matrix in the 

damaged state takes the following form 

 

𝑲𝑑 = ∑�̃�𝑖

𝑛

𝑖=1

𝑲𝑖 (4.9) 

 

where �̃�𝑖 is the element stiffness parameter in the damaged state. 

 

The stiffness reduction factor (SRF) is then defined as (Xia et al., 2008; Zhou et al., 

2015) 

 

𝜃𝑖 =
�̃�𝑖 − 𝛼𝑖

𝛼𝑖
 (4.10) 

 

The SRF is chosen as the damage parameter and the values of SRF indicate both 

damage location and damage severity. 𝜃𝑖 = 0 indicates that the ith element is intact; 

while 𝜃𝑖 = −1 means the element is completely damaged. If only a small number of 

elements are damaged, 𝜽 is a sparse vector with several non-zero items at the damaged 

locations but with many zeros at others. Damage identification, which aims to induce 

the sparse damage index 𝜽, becomes a sparse recovery problem. In this regard, the 

following l1 regularization instead of the Tikhonov regularization is introduced to the 

model updating objective function to not only stabilize the ill-posed problem, but also 

enforce sparsity in the solution. 

 

�̂� = arg min
�̂�

 ‖𝑹𝐴(𝜽) − 𝑹𝐸‖2
2 + 𝛽‖𝜽‖1 (4.11) 

 

As reviewed in Section 2.3, the vibration-based damage detection methods utilizing the 

sparsity of structural damage either use natural frequency only or time-history 

acceleration responses or numerical data. Using the time-domain data for damage 

identification is not efficient as the calculation of structural responses is time-
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consuming. Frequencies are usually not sensitive to local damage and the small 

frequency changes caused by structural damage tend to be masked by noise in the 

measurement data. In general, mode shapes could provide spatial information and are 

thus more sensitive to local damage. Therefore, this study utilizes both natural 

frequencies and mode shapes in model updating for damage detection. Based on 

Equation (4.11), the optimization problem is rewritten as 

 

�̂� = argmin
�̂�

(
1

𝑚
∑[

λ𝑖
𝐴(𝜽) − λ𝑖

𝐸

λ𝑖
𝐸 ]

2𝑚

𝑖=1

+
1

𝑚 × 𝑛𝑝
∑∑[𝜙𝑗𝑖

𝐴(𝜽) − 𝜙𝑗𝑖
𝐸 ]

2

𝑛𝑝

𝑗=1

𝑚

𝑖=1

+
𝛽

𝑛
‖𝜽‖1) 

(4.12) 

 

where λ𝑖  and 𝜙𝑗𝑖  are the ith eigenvalue and corresponding mode shape at jth point, 

respectively, np is the number of measurement points, and subscripts “A” and “E” 

represent the items from the analytical model and experiment, respectively. Here the 

eigenvalue residual, eigenvector residual, and the regularization term are divided by the 

length of the vectors (i.e., m, m×np, and n, respectively) to make these three parts 

comparable. This optimization problem can be solved using the active set or conjugate 

gradient algorithms (Body, 2004). 

 

Since mode shapes are dimensionless and may differ by a constant, direct comparison 

of two mode shape vectors with different scales may cause the results completely 

incorrect. In this connection, the modes shapes calculated from the FE model should be 

adjusted such that they are in the same direction and same scale as the measured mode 

shapes, through multiplying the modal scale factor (MSF) defined as follows 

(Allemang, 2003) 

 

𝑀𝑆𝐹(𝝓𝑖
𝐴0, 𝝓𝑖

𝐸) =
(𝝓𝑖

𝐴0)
𝑇
𝝓𝑖

𝐸

(𝝓𝑖
𝐴0)

𝑇
𝝓𝑖

𝐴0
 (4.13) 

𝝓𝑖
𝐴 = 𝝓𝑖

𝐴0 × 𝑀𝑆𝐹 (4.14) 

 

where 𝝓𝑖
𝐴0 is the ith calculated mode shape before adjustment. 
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4.4 Selection Strategies for the Regularization Parameter 

 

In regularization methods, the regularization parameter plays a critical role by trading 

off the size and fitness of the regularized solution (Hansen, 2001). In general, the 

regularization parameter 𝛽  is not known a priori and problem dependent. A well-

balanced regularization parameter can effectively deal with the ill-posedness of the 

inverse problem and yield a meaningful and stable solution. A number of methods have 

been developed to determine the optimal regularization parameter for inverse problems 

in mathematics. These methods include DP (Phillips, 1962; Morozov, 1966, 2012), 

ordinary and generalized cross validations (GCV) (Golub et al., 1979), universal rules 

(Mallat, 1999), and min–max rules (Johnstone, 1994). The l2 regularization has the 

closed-form solution. As such, tractable methods have been developed (Bauer and 

Lukas, 2011), such as the widely used L-curve criterion (Hansen, 1992). However, the 

selection criterion of the regularization parameter for the l1 regularization problem is 

very limited since it has no closed-form solution. 

 

In SHM and structural damage detection, an appropriate regularization parameter for the 

l1-regularized problem is problem-dependent and typically selected by experience. 

Mascarenas et al. (2013) set the regularization parameter as unit heuristically. Yang and 

Nagarajaiah (2015) reported the insensitivity of the solution to the regularization 

parameter and set it as 0.01 in CS-based modal identification. Another study (Yang and 

Nagarajaiah, 2014a) calculated the regularization parameter using 𝛽 = 1/√𝑁 (where N 

is the number of the time history sampling points corresponding to the dimension of the 

unknown vector). Zhang and Xu (2016) chose the regularization parameter by using the 

reweighted l1 regularization technique. Yao et al. (2011) showed that the plot of the 

residual term versus the regularization term on the linear scale resembled an “L” shape; 

afterward, they selected the regularization parameter corresponding to the corner of the 

L curve.  

 

In this study, two strategies are developed for selecting the regularization parameter for 

the l1-regularized damage detecetion problem.  
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4.4.1 Parameter Selection using Residual and Solution Norms 

 

The regularization parameter controls the trade-off between data fidelity and solution 

sparsity. The 2-norm of the residue  ‖𝑹(𝜽) − 𝑹𝐸‖2
2 evaluates the data fidelity, and the 

1-norm ‖𝜽‖1 measures the sparsity of the solution. Therefore, the residual and solution 

norms are closely associated with the regularization parameter.  

 

For a small regularization parameter, the optimization algorithm will concentrate on the 

residual norm  ‖𝑹(𝜽) − 𝑹𝐸‖2
2  in order to reduce the overall misfit effectively. 

Consequently, the analytical modal parameters are very close to the measured values, 

leading to an overfitting solution. On the contrary, for a large regularization parameter, 

the regularization term 𝛽‖𝜽‖1 becomes dominant in the objective function and thus be 

penalized more severely during the optimization process. Consequently, the residual 

norm increases, and the result losses data fidelity. Moreover, if 𝛽 exceeds a threshold 

𝛽𝑚𝑎𝑥, a zero solution (𝜃 = 0) is obtained (Koh et al., 2007). Therefore, an appropriate 

regularization parameter 𝛽  should be between the two extremes and keep these two 

norms small at the same time in order to obtain a stable and reasonable solution. 

 

In Tikhonov regularization, the L-curve criterion utilized a parametric plot of the 

solution norm versus the residual norm on the log-log scale to find the optimal 

regularization parameter (Hansen, 1992). Taking Figure 4.2 for an example, it is a 

generic L-curve for the Tikhonov regularization and each marked point corresponds to a 

particular regularization parameter. The corner of the curve is a good choice of the 

regularization parameter, which results in a small solution norm as well as a small 

residual norm at the same time. However, this L-shaped curve is not guaranteed for the 

l1-regularized problem. For the standard linear optimization problem in Equation (4.2), 

the shape of the trade-off curve depends on the distribution of singular values of the 

forward operator 𝑿 (Malioutov et al., 2005). Moreover, since l1 regularization does not 

have a closed-form solution, the curvature of the “L-curve” cannot be expressed 

explicitly. Therefore, it is difficult to locate the corner of the “L-curve” to identify an 

optimal regularization parameter as that in the Tikhonov regularization. In addition, 

although the L-curve criterion has been proved to give a reasonable and good parameter 

choice for many problems, the corner sometimes does not indicate the optimal 
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regularization parameter. Au (2007) presented a numerical example and constructed the 

L-curve, in which λ represents the regularization parameter. It had been found that the 

corner did not give the optimal solution as shown in Figure 4.3 and the presented 

problem had the best fit elsewhere. Further, he showed that the solutions corresponding 

to the regularization parameters near the corner all closed to the true solution with 

adequate accuracy. In this regard, the L-curve of the solution norm versus the residual 

norm will be used as a preliminary guide for selection of the regularization parameter in 

this study. Rather than one single value, an appropriate range of the regularization 

parameter will be determined.  

  

Figure 4.2 The L-curve for a Tikhonov regularization problem 

 

 
Figure 4.3 L-curve for the Hilbert operator (Ref. Au (2007)) 
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The regularization path is the set of solutions for all values of the regularization 

parameter (Mairal and Yu, 2012). Previous studies have shown that for the l1 

regularization problem in Equation (4.7), the regularization path is piecewise linear, 

with a finite number of linear segments (Osborne et al., 2000; Efron et al., 2004; Rosset 

and Zhu, 2007). In order to explicitly illustrate the regularization path for l1 

regularization, a simple example is introduced, where 𝑿 ∈ 𝑅1000×5 is constructed from 

an orthogonal polynomial basis, 𝜽 = (1,   0,   1,   0,   0)𝑇 with two non-zero entries, and 

𝜺 is the Gaussian random noise with a zero mean and standard deviation of 30%. Figure 

4.4 shows the regularization paths of each entry of 𝜽 (𝜃𝑖 , 𝑖 = 1~5 ) with respect to the 

regularization parameter 𝛽. The vertical dash lines correspond to the steps along the 

regularization paths. 𝜃𝑖  approach zero with the increase of 𝛽 , in the order of 𝑖 =

4, 2, 5, 1, 3. For any given 𝛽, only a subset of the variables have nonzero values. For 

example, at 𝛽 = 0.35 , only 𝜃1 , 𝜃3 , and 𝜃5  remain and are used to construct the 

predictions of the measurements. The vertical solid line corresponds to the solution that 

gives the best recovery accuracy as only 𝜃1 and 𝜃3 are actually nonzero.  

 

 

Figure 4.4 Regularization paths of the l1 regularization problem (Ref. Rosset and Zhu, 

(2007)) 

 

The piecewise linear property of the regularization path has only been proved for linear 

l1-regularized problems. Although the present l1-regularized model updating prolem in 

Equation (4.11) is nonlinear, it is intuitive that with the increase of 𝛽, the undesirable 
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non-zero variables are forced to zero sequentially, while the actual non-zero variables 

likely remain. Inspired by this piecewise linear property, in this study, the curves of the 

residual and solution norms versus the regularization parameter are utilized to determine 

the appropriate regularization parameter. For a given damage detection problem, the 

corresponding objective function is first solved over a range of 𝛽 . The associated 

residual and solution norms are calculated and plotted versus the regularization 

parameter. The solution norm decreases, whereas the residual norm increases with an 

increasing regularization parameter. The optimal regularization parameter should keep 

these two norms small at the same time. There are breakpoints (also known as kinks in 

statistics) exist on the curves corresponding to the steps along the regularization paths. 

The first inflection point with the following step is thus determined as the appropriate 

range of the regularization parameter. The procedures and results will be illustrated in 

Section 4.5. 

 

4.4.2 Parameter Selection based on DP 

 

The second strategy is based on the DP used in the l2 counterpart. The DP has gained 

wide applications in machine learning and statistics areas for l2 regularization problems. 

Lukas (1995) applied the DP for choosing the regularization parameter in a discrete and 

probabilistic setting and also investigated the asymptotic properties of the estimated 

regularization parameter. Hämarik and Raus (2006) developed the DP for parameter 

selection of the Tikhonov regularization with a given error bound of data. Dong et al. 

(2018) utilized the DP to choose the regularization parameter for current distribution 

reconstruction and compared its performance with the L-curve, the GCV, and the quasi-

optimality (QO) criteria. It showed that: 1) the L-curve criterion performed much worse 

than DP, GCV, and QO; 2) GCV demands enormous computational effort and is not as 

stable as other parameter selectors; and 3) QO is not applicable to iterative and 

nonlinear regularization problems. Therefore, when the statistics of the noise could be 

estimated, the DP is a prime choice since the rationale behind is clear and only the 

residuals are required to be computed. 

 

Considering the standard l1-regularized problem in Equation (4.7), the unknown desired 

solution is denoted by �̂� ∈ 𝑅𝑁, which satisfies 𝑿�̂� = 𝒚 − 𝜺. Hence, 
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‖𝑿�̂� − 𝒚‖ = ‖𝜺‖ (4.15) 

 

The DP aims to find a regularization parameter 𝛽 ≥ 0, such that the corresponding 

solution 𝜽𝛽 satisfies the following equation 

 

‖𝑿𝜽𝛽 − 𝒚‖ = ‖𝜺‖ (4.16) 

 

Forcing 𝒚𝛽(= 𝑿𝜽𝛽) exactly the same as 𝒚 is insensible because 𝒚 contains error. The 

reproduced 𝒚𝛽 should approximate 𝒚 within the expected value of the error 𝜺 (Phillips, 

1962; Morozov, 1966, 2012).  

 

For the vibration-based damage detection problem, the perturbation 𝜺  is primarily 

attributed to the measurement noise of the modal data. According to the DP, the residual 

of the modal parameter calculated from a proper regularization parameter should match 

some statistical characteristics of the noise. The DP could be relaxed as follows 

considering the existence of uncertainties 

 

|‖𝑹𝛽(𝜽) − 𝑹𝐸‖ − ‖𝜺‖| ≤ 𝑇𝑜𝑙 (4.17) 

 

where 𝑹𝛽(𝜽) is the analytical modal parameter calculated from the identified damage 

state for a particular 𝛽. 

 

In this study, the DP is revised to be suitable to the l1-regularized problem. In practice, 

the experimentally measured modal data are contaminated by measurement noise, 

which is generally assumed as a stochastic process (Philips et al., 2009; Wu and Law, 

2004; Tondreau et al., 2011), as shown in the following equation 

 

𝑹𝐸 = (1 + 𝜺)𝑹 (4.18) 
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where 𝑹  is the true modal parameter without noise, 𝜺~𝑁(0, 𝛿−1𝑰)  following the 

Gaussian distribution, and 𝛿 denotes the noise level. The relative discrepancy between 

the calculated modal data and the measured ones is expressed by the following equation 

 

𝑫 =
𝑹𝐸 − 𝑹𝛽(𝜽) 

𝑹𝛽(𝜽) 
=  𝜺 (4.19) 

 

Therefore, the selection criterion of the regularization parameter ensures that the modal 

parameter in the identified damage state corresponding to 𝛽 satisfies the following 

 

𝑉𝑎𝑟(𝑫) = 𝐸 [‖
𝑹𝐸 − 𝑹𝛽(𝜽) 

𝑹𝛽(𝜽) 
‖

2

2

] = 𝐸[ ‖𝜺‖2
2] = 𝛿2 (4.20) 

 

The measurement noise should be estimated in advance by using prior information or 

through measurements. The implementation process will be explained in detail and 

demonstrated using the following experimental examples.  

 

4.4.3 A Summary of the Regularization Parameter Selection 

 

For a given damage detection problem, the corresponding objective function is first 

solved for different 𝛽 values ranging from 0 to 𝑖 ∙ ∆𝛽 (𝑖 = 0,1,⋯ , 𝑛), with an increment 

of ∆𝛽. Each 𝛽 results in one set of damage index 𝜽. The residual norm  ‖𝑹𝛽(𝜽) − 𝑹𝐸‖
2

2
 

and solution norm ‖𝜽‖1  are then calculated. Since the regularization parameter may 

differ by orders for different structures, the calculation range and step size ∆𝛽 should be 

set accordingly. 

 

For the first proposed method, the residual and solution norms versus the regularization 

parameter are plotted separately to determine the appropriate regularization parameter 

of which both norm values are small at the same time. If the noise information is 

available, the DP-based strategy can be utilized. The L-curve of the solution norm 

versus the residual norm is first used to identify a preliminary range of the 

regularization parameter. Then, the DP is applied within this possible range to select the 

appropriate regularization parameter. Finally, the overlapping part of the two selected 



 

84 

ranges is determined as the appropriate range of the regularization parameter. Actually, 

according to the available data, the two proposed selection strategies can be used 

individually.  

 

4.5 Case Studies  

 

Two experimental examples described in Chapter 3, i.e., a cantilever beam and a three-

storey frame, are used here to demonstrate the effectiveness of the proposed 

regularization parameter selection and the l1-regularized damage detection method. A 

numerical planar truss is employed to investigate the robustness of the proposed method 

to measurement noise. The effect of the mode number on the damage detection results is 

also investigated. The advantage of the present l1 regularization over the traditional l2 

regularization method in damage detection is demonstrated. 

 

4.5.1 The Cantilever Beam 

 

As the l1 regularization technique is able to maintain the sparsity of the solution using a 

smaller number of measurements, the structure can be modelled using a relatively large 

number of elements that enables the local damage to be directly quantified. The beam is 

modeled using 100 Euler–Bernoulli beam elements (10 mm long). The length of one 

element is identical to the length of each cut; as such, the damage severity of each cut is 

equal to the reduction in the moment of inertia of the cross section and is quantified by 

SRF. The actual damage locations and severities of the four DSs are listed in Table 4.1.  

 

Among the total 100 elements of the beam model, only 1 to 3 damaged elements have 

non-zero SRF values. Therefore, the SRF vector (𝜽)  is very sparse. The first six 

frequencies and mode shapes at 10 points are utilized for damage detection, resulting in 

66 measurement data in total. The identification is an underdetermined problem because 

100 unknown SRF values have to be identified. In order to reduce the influence of 

modelling uncertainties of the initial FE model, the measured modal data in the 

undamaged state is first used to update the initial FE model (Xia and Hao, 2003). No 

regularization is introduced in this step. The updated model represents a more accurate 
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reference model in the undamaged state as its modal properties agree with the measured 

ones. This reference FE model will be used for damage detection.  

 

Table 4.1 Damage locations and severities for the four damage scenarios. 

Scenario Element no. Damage severity (SRF) 

DS1 1 −40% 

DS2 1 −60% 

DS3 
1 −60% 
50 −60% 

DS4 
1 −60% 
50 −60% 
75 −80% 

 

4.5.1.1 Damage scenario DS1 

 

For DS1, the objective function, i.e., Equation (4.12), is solved for different 𝛽 values 

ranging from 0 to 1.0, with an increment of ∆𝛽 = 0.005. The residual and solution 

norms versus 𝛽 are plotted in Figure 4.5. Be noted that these two norms correspond to 

the terms in Equation (4.12) after normalization. With increasing 𝛽, the solution norm 

drops quickly first, then decreases slowly, and suddenly drops to zero when 𝛽 reaches 

the maximal regularization parameter 𝛽max = 0.485. The residual norm rises rapidly at 

the beginning and increases gradually from 𝛽 = 0.025. The residual and solution norms 

change slowly as 𝛽  is between 0.06 and 0.485. The regularization parameter in this 

range achieves a fair balance in keeping both norms small. Therefore, 𝛽 = 0.06 ~ 0.485 

is determined as the appropriate range. 

 

 
𝛽 

Figure 4.5 Residual and solution norms for different values of 𝜷 in DS1 
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The DP is also applied. First, a possible range of the proper regularization parameter is 

determined based on the plot of the solution norm versus the residual norm on the linear 

scale. The variance of the discrepancy between the calculated and measured modal data 

is then calculated over this possible range. 

 

In the present study, natural frequencies are assumed to contain 1% noise as suggested 

by previous studies (Philips, 2009; Weng et al., 2012; Mottershead and Friswell, 1993; 

Friswell and Penny, 1997), that is, the standard deviation of noise 𝛿 = 0.01. For each 

regularization parameter 𝛽  and the corresponding calculated 𝜽 , the discrepancy of 

natural frequencies can be calculated as  

 

𝑫 =
𝒇𝐸 − 𝒇𝛽(𝜽) 

𝒇𝛽(𝜽) 
 (4.21) 

 

where 𝒇𝐸  is the measured natural frequency vector, and 𝒇𝛽(𝜽) is the calculated natural 

frequencies of the damaged structure corresponding to 𝛽. According to Equation (4.20), 

the regularization parameter is selected such that the variance of the discrepancy 

𝑉𝑎𝑟(𝑫(𝛽)) is closest to the estimated 𝛿2 = 1×10
-4

. 

 

The solution norm versus the residual norm for DS1 is plotted in Figure 4.6 (a). The 

enlarged diagram with 𝛽 within the range of 0.025–0.485 is shown in Figure 4.6 (b). 

Although this curve has some resemblance to “L”, it bunches up at some points. 

Therefore, it is difficult to identify the optimal regularization parameter by locating the 

“corner”, as that in the l2-regularized problems. Instead, a possible range of 𝛽, which is 

around the corner of the L-shaped curve, can be determined. For DS1, the possible 

range of the regularization parameter is approximately 0.025–0.485. 
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(a) 𝛽 between 0 and 1 

 

(b) 𝛽 between 0.025 and 0.485 

Figure 4.6 Solution norm versus residual norm for 𝜷 ∈ [0, 1] (DS1) 

 

Figure 4.7 shows the 𝑉𝑎𝑟(𝑫(𝛽)) for different values of 𝛽 within the range of 0.025–

0.485. The variances in the range are all larger than the estimated value and vary 

slightly. Therefore, 𝛽 = 0.025~0.485  is determined as the appropriate range of the 

regularization parameter because the variances in this range are all close to 1×10
-4

. The 

feasible ranges determined by the two proposed strategies are almost the same.  

 

2 2.5 3 3.5 4 4.5 5

x 10
-3

0

0.005

0.01

0.015

0.02

0.025

Residual Norm

S
o

lu
ti

o
n

 N
o

rm

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

x 10
-3

3

4

5

6

7

8

9
x 10

-3

Residual Norm

S
o

lu
ti

o
n

 N
o

rm

 𝛽 = 0 

 𝛽 = 0.025 

 𝛽 = 0.485 
 𝛽≥0.49 

 𝛽 = 0.025 

 𝛽 = 0.485 

 

× 10−3 

 

× 10−3 



 

88 

 
𝛽 

Figure 4.7 𝑽𝒂𝒓(𝑫(𝜷)) as 𝜷 ∈ [0.025, 0.485] (DS1) 

 

The damage identification results of SRFs are displayed in Figure 4.8 for different 

values of 𝛽. For 𝛽 = 0.01, although the true damage at element 1 can be detected, the 

identified SRFs are distributed among a number of elements. When the regularization 

parameter is within 0.025–0.485, the damage identification results are accurate. At 

𝛽 = 0.025, although several elements are falsely identified as damaged, the identified 

SRFs are very small and can be neglected. For other three regularization parameters, the 

identified damage severities are all close to the true value (SRF1= –0.4), and no false 

identification occurs. When 𝛽 > 0.485, the solution becomes zero, and no damage can 

be detected. The plot is then not shown here.  
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(c) 𝛽 = 0.06 (d) 𝛽 = 0.25 

 

 

(e) 𝛽 = 0.485  

Figure 4.8 Damage identification results for DS1 

 

4.5.1.2 Damage scenario DS2 

 

For DS2, the objective function is similarly solved for different 𝛽 values ranging from 0 

to 1.0 with an increment ∆𝛽 = 0.005. The curves of the residual and solution norms 

versus 𝛽 are shown in Figure 4.9. At 𝛽 ≥ 0.085, the residual and solution norms are 

almost unchanged with increasing 𝛽 . Therefore, the appropriate range of the 

regularization parameter is determined as 𝛽 = 0.085~0.95, which keeps the two norms 

small at the same time.  
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𝛽 

Figure 4.9 Residual and solution norms for different values of 𝜷 in DS2 

 

The solution norm versus the residual norm is shown in Figure 4.10. The suitable 𝛽 is 

first estimated as 0.055–0.95. 𝑉𝑎𝑟(𝑫(𝛽)) in the range are displayed in Figure 4.11. The 

variances vary slightly with increasing 𝛽 and are all lower than the estimated value. 

Therefore, 𝛽 = 0.055~0.95 is selected. This range is slightly wider than that determined 

using the previous strategy. The damage identification results for different values of 𝛽 

in the range are shown in Figure 4.12. In all cases, the damage location and severity 

(SRF1= –0.6) are identified accurately. When 𝛽  is out of the range, the damage 

identification results are incorrect and not shown here for brevity. 

 

 

 

 
𝛽 

Figure 4.10 Solution norm versus residual 

norm as 𝛽 ∈ [0, 1] 
Figure 4.11 𝑉𝑎𝑟(𝑫(𝛽)) as 𝛽 ∈

[0.055, 0.95] (DS2) 
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(a) 𝛽 = 0.055 (b) 𝛽 = 0.085 

  
(c) 𝛽 = 0.49 (d) 𝛽 = 0.95 

Figure 4.12 Damage identification results for DS2 

 

4.5.1.3 Damage scenario DS3 

 

For DS3, the objective function is solved for 𝛽 ranging from 0 to 1.4 with ∆𝛽 = 0.005. 

The residual and solution norms versus 𝛽 are displayed in Figure 4.13, which exhibit a 

step-like pattern. There are two steps along the curves corresponding to two non-zero 

items in the SRF vector. Through numerical study, it has been found that the number of 

steps equals to the number of damaged elements, i.e., the number of non-zero items in 

the damage index vector.  
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𝛽 

Figure 4.13 Residual and solution norms for different values of 𝜷 in DS3 

 

It can be seen that the solution norm drops quickly first, that is, the undesirable non-zero 

variables are forced to zero. When 𝛽 is within 0.035–0.095, the residual and solution 

norms are almost unchanged with increasing 𝛽 . At 𝛽 > 0.095 , the solution norm 

decreases suddenly, whereas the residual norm increases. With the increase of 𝛽, the 

residual and solution norms are nearly constant until the maximal regularization 

parameter is reached. As introduced previously, the actual two non-zero variables are 

less likely to be eliminated and thus the curves of the residual and solution norms have 

two steps. Therefore, the appropriate range of the regularization parameter is 

determined as 𝛽 = 0.035~0.095. It is usually the case that the sparsity of the solution 

increases with increasing regularization parameter, leading to loss of data fidelity. The 

two non-zero variables are forced to be zero sequentially by increasing the 

regularization parameter. When 𝛽 is within 0.1–1.295, only one actual non-zero item 

remains, leading to the false damage identification result. This appropriate range is 

smaller than those of the previous two DSs, indicating that the inverse problem 

corresponding to DS3 is more sensitive to the regularization parameter. 

 

The solution norm versus the residual norm for DS3 is shown in Figure 4.14. The 

suitable range of the regularization parameter is estimated as 0.035~1.30. 𝑉𝑎𝑟(𝑫(𝛽)) 

for different 𝛽 values within the range are displayed in Figure 4.15, exhibiting a step-

like pattern. The variances for 𝛽 ∈ [0.035, 0.095] are very close to the estimated value 

(i.e., 1×10
-4

), whereas a big and abrupt increase occurs at 𝛽 = 0.10 . Therefore, 
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0.035~0.095  is determined as the suitable range of the regularization parameter, 

consistent with the result obtained using the previously discussed method. 

 

 

 

 
𝛽 

Figure 4.14 Solution norm versus residual 

norm as 𝛽 ∈ [0, 1] 
Figure 4.15 𝑉𝑎𝑟(𝑫(𝛽)) as 𝛽 ∈

[0.035, 1.30] (DS3) 

 

The damage identification results are displayed in Figure 4.16. For 𝛽 = 0.035  and 

𝛽 = 0.095 , both damaged elements can be located and quantified correctly. When 

𝛽 = 0.10, the damaged elements can be detected, but the severity of the damage at the 

mid-span is incorrect. For 𝛽 = 0.80, the damage at the mid-span of the beam cannot be 

identified. 
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(c) 𝛽 = 0.10 (d) 𝛽 = 0.80 

Figure 4.16 Damage identification results for DS3 

 

4.5.1.4 Damage scenario DS4 

 

For DS4, the objective function is solved for different 𝛽 values ranging from 0 to 2.2 

with the increment ∆𝛽 = 0.005 . The plots of residual and solution norms versus 

𝛽 ∈ [0, 0.4]  are shown in Figure 4.17. The appropriate range of the regularization 

parameter is determined as 𝛽 = 0.095~0.145 , which keeps both the residual and 

solution norms small at the same time. 

 

 
𝛽 

Figure 4.17 Residual and solution norms for different values of 𝜷 in DS4 
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different values of 𝛽  in the possible range are displayed in Figure 4.19. The 
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appropriate range of the regularization parameter is 𝛽 = 0.095~0.145, consistent with 

the result of previous strategy. 

 

 

 
 

𝛽 

Figure 4.18 Solution norm versus residual 

norm as 𝛽 ∈ [0, 2.2] 
Figure 4.19 𝑉𝑎𝑟(𝑫(𝛽)) as 𝛽 ∈

[0.095, 0.30] (DS4) 

 

The damage identification results for different values of 𝛽 are shown in Figure 4.20. At 

𝛽 = 0.03 , the identification result is not sparse, and a considerable number of 

undamaged elements are falsely identified as damaged. For 𝛽 = 0.095 and 𝛽 = 0.145, 

the damaged elements (nos. 1, 50, and 75) are located and quantified accurately. At 

𝛽 = 0.18, the damage in the mid-span (no. 50) cannot be detected. 
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(c) 𝛽 = 0.145 (d) 𝛽 = 0.18 

Figure 4.20 Damage identification results for DS4 

 

The experimental results show that multiple damage scenarios are more difficult to be 

identified accurately, as compared with the single damage scenario. The feasible ranges 

of the regularization parameter for DS3 and DS4 with multiple damage are narrower 

than those of the two single damage cases DS1 and DS2. Therefore, the damage 

identification accuracy for multiple damage scenarios is more sensitive to the 

regularization parameter. 

 

4.5.2 The Three-storey Frame 

 

In the FE analysis, the frame is modelled with 225 elements, and each are 20 mm long, 

which is identical to that of the cuts. Cuts 1 and 2 are located at elements 1 and 176, 

respectively. Therefore, SRF(1) = –60% in DS1, and SRF(1) = SRF(176) = –60% in 

DS2. The actual SRF vector has at most two non-zero items, which is extremely sparse 

compared to the total 225 elements. Lumped masses are added at the corresponding 

node to represent the masses of the accelerometers. With consideration of the modeling 

uncertainties, the FE model is first updated using the modal data measured from the 

undamaged state. 

 

The appropriate ranges of the regularization parameter are determined using the two 

proposed strategies. For DS1, the appropriate range of the regularization parameter is 

𝛽 = 0.06~0.93. The damage identification results for different values of 𝛽 are shown in 
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whereas a number of elements are falsely identified as damaged. For 𝛽 = 0.35, the 

damaged element can be located and quantified correctly.  

 

 
(a) 𝛽 = 0.02 

 
(b) 𝛽 = 0.35 

Figure 4.21 Damage identification results for DS1 

 

For DS2, 𝛽 = 0.12~0.35  is determined as the feasible range of the regularization 

parameter. The damage identification results for different values of 𝛽  are shown in 

Figure 4.22. Accurate damage identification results can be obtained using the 

regularization parameter within 0.12–0.35. The damaged elements can be correctly 

detected, and no false identification occurs. At 𝛽 = 0.60, which is out of the feasible 

range, only damage at the column end (element 1) is identified, and the other damage at 

element 176 is not detected. 
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(a) 𝛽 = 0.20 

 
(b) 𝛽 = 0.60 

Figure 4.22 Damage identification results for DS2 

 

In the example, all eight frequencies and mode shapes at all 39 measurement points are 

used for damage detection. To investigate the effect of the number of modes on the 

damage detection result, the first three natural frequencies and mode shapes are also 

used for DS2. In the case, there are 120 measurement data and 225 unknown SRF 

values to be identified. Using the proposed l1 regularization technique, the damage 

identification results are shown in Figure 4.23. The two damaged elements are still 

identified with good accuracy and no false identification occurs. 

 

 
Figure 4.23 Damage identification results for DS2 using three frequencies and mode 

shapes  
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The l2 regularization technique is also employed here to identify damage for 

comparison. The following objective function corresponding to Equation (4.12) is 

minimized for damage identification  

 

�̂� = argmin
�̂�

(
1

𝑚
∑[

λ𝑖
𝐴(𝜽) − λ𝑖

𝐸

λ𝑖
𝐸 ]

2𝑚

𝑖=1

+
1

𝑚 × 𝑛𝑝
∑∑[𝜙𝑗𝑖

𝐴(𝜽) − 𝜙𝑗𝑖
𝐸 ]

2

𝑛𝑝

𝑗=1

𝑚

𝑖=1

+
𝛽

𝑛
‖𝜽‖2

2) 

(4.22) 

 

The only difference between Equation (4.12) and Equation (4.22) is that the 2-norm is 

used as the solution norm in Equation (4.22). The regularization parameter 𝛽  is 

determined by the L-curve criterion used for the Tikhonov regularization (Hansen, 

1992), which is calculated as 0.0301 and 0.0292 for the present two damage scenarios. 

The corresponding damage identification results are displayed in Figure 4.25. In both 

cases, the identification results are not sparse and a considerable number of undamaged 

elements are falsely identified as damaged. The actual damaged element no. 1 cannot be 

detected for DS2. Although the damaged element 176 is detected roughly, the damage 

severity differs much from the true value (80% reduction). The above comparison 

demonstrates that the l1 regularization-based damage detection technique is able to 

identify sparse damaged elements, whereas the l2 regularization cannot.  

 

 
(a) DS1 (𝛽 = 0.0301) 
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(b) DS2 (𝛽 = 0.0292) 

Figure 4.24 Damage identification results for two damage scenarios with the l2 

regularization technique 

 

4.5.3 The Planar Truss 

 

The planar truss has no experimental data. Therefore, random noise with the normal 

distribution is added to the numerical modal parameters as shown in Equation (4.18) to 

consider the measurement noise effect. Previous studies (Mottershead and Friswell, 

1993; Friswell and Penny, 1997) have suggested that natural frequencies may contain 

1% noise and mode shapes may contain 8%-10% noise in practical ambient vibration 

tests. Therefore, two different levels of noise as listed in Table 4.2 are introduced into 

the frequencies and mode shapes of the damaged structure using Equation (4.18). The 

natural frequencies and MAC of the undamaged and damaged structures are compared 

in Table 4.3. It is noted that a few natural frequencies in the damaged states are higher 

than the undamaged ones due to the random noise. 

 

Table 4.2 Noise levels for the frequency and mode shape. 

Noise level Frequency Mode shape 

1 1% 10% 

2 2% 20% 
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Table 4.3 Frequencies and MAC of the truss in the undamaged and damaged states. 

Mode 
Undamaged 

 Damaged 

No noise Noise level 1 Noise level 2 

Freq. (Hz) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) Freq. (Hz) MAC (%) 

1  36.92  34.50 (–6.55) 99.79  34.37 (–6.91) 99.79  33.89 (–8.20) 99.78 

2  77.11  76.00 (–1.44) 99.80  76.04 (–1.39) 99.80  75.51 (–2.07) 99.80 

3 135.59 135.52 (–0.06) 99.98 136.67 (+0.80) 99.98 133.39 (–1.63) 99.98 

4 226.36 217.90 (–3.74) 98.58 221.95 (–1.95) 98.56 216.31 (–4.44) 98.56 

5 253.52 252.95 (–0.22) 99.42 250.23 (–1.30) 99.39 253.55 (+0.01) 99.38 

6 364.15 361.33 (–0.77) 87.06 361.21 (–0.81) 86.95 362.59 (–0.43) 86.93 

Average          –2.13 97.43         –1.92 97.41         –2.79 97.41 

Note: Values in parentheses are the frequency change ratios (%) between the damaged and undamaged states. 

 

The damage identification results are shown in Figure 4.26. The regularization 

parameter is selected within the specified range determined using the the residual and 

solution norms. First the modal data without any noise are used for damage detection. 

The damage location and severity can be identified accurately and no false identification 

occurs. For noise level 1, the damage location is determined correctly and the identified 

SRF is very close to the true value. In the case of noise level 2, the damage location can 

be accurately located with the damage severity slightly larger than the true value (50% 

reduction). The numerical results show that the developed l1 regularization-based 

damage detection technique has good robustness to noise and works well even under a 

high noise level.  

 

  
(a) Noise-free (𝛽 = 0.005) (b) Noise level 1 (𝛽 = 0.003) 
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(c) Noise level 2 (𝛽 = 0.145)  

Figure 4.25 Damage identification results of the planar truss 

 

4.6 Summary 

 

A sparse damage detection technique using the natural frequencies and mode shapes is 

developed in this chapter. Through exploiting the sparse property of the structural 

damage, the l1 regularization technique is employed to identify the sparse damage 

among a large number of potential elements. The proposed method enables the local 

damage being directly quantified through using fine elements in the FE modelling. The 

advantages of combining frequency changes and mode shape changes are that 

frequencies can be measured conveniently and accurately and mode shapes could 

provide spatial information of structures and are sensitive to local damage. 

 

Two strategies for selecting the regularization parameter for the l1-regularized damage 

detection problem are proposed. Following the similar idea of the L-curve criterion for 

l2 regularization, the first selection method utilizes the residual and solution norms to 

determine the appropriate range of the regularization parameter. The other selection 

criterion is developed based on the DP such that the variance of the discrepancy 

between the calculated and measured modal data is close to the variance of the 

measurement noise. 

 

Both numerical and experimental examples verify that the proposed sparse damage 

detection method can successfully identify single and multiple damage, even there are a 

large number of unknowns. It is advantageous over the traditional l2 regularization 
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technique. The examples also demonstrate that the proposed method is robust to noise 

even under the severe noise situation. An appropriate range of the regularization 

parameter can be determined using the two proposed techniques and the results are 

consistent. Accurate damage identification results can be obtained when the 

regularization parameter is selected within the specified range even for multiple damage 

scenarios. When the regularization parameter is out of the range, true damage may not 

be detected, or undamaged elements may be falsely identified as damaged. The suitable 

range depends on the structure and damage scenario. A wider range indicates that the 

damage detection problem is insensitive to the regularization parameter. 
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CHAPTER 5   
 

GENETIC ALGORITHM BASED OPTIMAL SENSOR 

PLACEMENT FOR L1-REGULARIZED DAMAGE 

DETECTION 
 

 

 

5.1 Introduction 

 

In the previous chapter, sparse recovery theory has been applied to damage detection by 

utilizing the sparsity feature of structural damage. The theory requires that the columns 

of the sensing matrix suffice certain independence criteria. In l1-regularized damage 

detection, the sensitivity matrix serves as the sensing matrix and is directly related to 

sensor locations. In this regard, an OSP technique is proposed such that the resulting 

sensitivity matrix is of the maximum independence in the columns or is of the least 

mutual coherence. Given a total number of sensors, the selection of sensor locations is a 

combinatorial problem. A GA is thus used to solve this optimization problem, in which 

the mutual coherence of the sensitivity matrix is minimized.  

 

5.2 Sensing Matrix for L1-regularized Damage Detection 

 

In sparse recovery problems, recovery accuracy largely depends on the number of 

measurements and their degree of independence. Considering the standard sparse 

recovery problem in Equation (4.7), the linear operator 𝑿 is referred to as the sensing 

matrix which projects the unknown vector into a low-dimensional measurement vector. 

Through operating on the unknown vector 𝜽 , the sensing matrix 𝑿  stores the 

information about 𝜽  in the measurement 𝒚 . Therefore, the performance of sparse 

recovery strongly relies on the properties of the sensing matrix. The measurements 

should retain as much information as possible to recover the unknown vector accurately 

using few measurements. To this end, the sensing matrix should be constructed with the 
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columns as independently as possible to ensure the stable and exact recovery of the 

sparse vector (Theodoridis et al., 2014). 

 

For an accurate sparse recovery, the sensing matrix should satisfy some certain criteria, 

such as spark (Gorodnitsky and Rao, 1997; Donoho and Elad, 2003), restricted isometry 

property (RIP) (Candès and Tao, 2005) and mutual coherence (Mallat and Zhang, 1993; 

Elad, 2007). These conditions measure the independence of the columns of the sensing 

matrix and are closely related to each another. The spark of a given matrix is the 

smallest number of its linearly dependent columns (Theodoridis, et al., 2014). The spark 

can only be obtained through a combinatorial search over all possible combinations of 

the columns of the matrix and thus is not convenient for implementation. The RIP was 

firstly proposed by Candès and Tao (2005). They define the S-restricted isometry 

constant 𝛿𝑆 to be the smallest number such that the sensing matrix 𝑿 in Equation (4.7) 

obeys 

 

(1 − 𝛿𝑆)‖𝜽‖2
2 ≤ ‖𝑿𝜽‖2

2 ≤ (1 + 𝛿𝑆)‖𝜽‖2
2 (5.1) 

 

for all S-sparse vectors 𝜽 . The sensing matrix 𝑿  satisfyies the RIP of order S. 𝛿𝑆 

measures how close all linear combinations of S columns of 𝑿  behave like an 

orthonormal system, and 𝛿𝑆 = 0 for the orthonormal matrix. The RIP is related to the 

condition number of the sensing matrix. Better conditioned 𝑿 is, more accurate for 

sparse recovery (Candès and Tao, 2005). Computing the restricted isometry constant 𝛿𝑆 

is strongly NP-hard and even difficult to approximate (Tillmann and Pfetsch, 2014; 

Natarajan and Wu, 2014). Therefore, the corresponding property is difficult to evaluate. 

Finally, the mutual coherence of the sensing matrix 𝑿 ∈ 𝑅𝑀×𝑁 is defined as (Mallat and 

Zhang, 1993) 

 

𝜇( 𝑿 ) = max
|𝒙𝑖

𝑇𝒙𝑗|

‖𝒙𝑖‖ ∙ ‖𝒙𝑗‖
,   𝑖, 𝑗 = 1,… ,𝑁 (5.2) 

 

where 𝒙𝑖  (𝑖 = 1, … , 𝑁) is the ith column of 𝑿. 𝜇( 𝑿 ) ∈ [0,1] measures the maximum 

linear dependency of the columns of matrix 𝑿. Since the spark and RIP constant are 
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difficult to compute, mutual coherence can be obtained easier and is thus used as the 

measure of the independence of the sensing matrix in this study.  

 

Comparing Equation (2.9) in sensitivity-based model updating with Equation (4.7) for 

the standard sparse recovery problem, the sensitivity matrix acts as the sensing matrix in 

l1-regularized damage detection. Since natural frequencies and mode shapes are utilized 

in the model updating, the sensitivity matrix consists of the corresponding two parts as 

 

𝐒 = [
𝐒𝛌

𝐒𝝓
] (5.3) 

 

𝐒𝛌 is the eigenvalue sensitivity matrix and can be expressed as 

 

𝐒𝛌 = [𝐒λ1
, 𝐒λ2

, ⋯ , 𝐒λ𝑚
]
𝑇
 (5.4) 

𝐒λ𝑖
=

𝜕𝜆𝑖

𝜕𝜽
= {

𝜕𝜆𝑖

𝜕𝜃1
,
𝜕𝜆𝑖

𝜕𝜃2
, ⋯ ,

𝜕𝜆𝑖

𝜕𝜃𝑛
} 

(5.5) 

 

The eigenvector sensitivity matrix 𝐒𝜙 can be expressed as 

 

𝐒𝝓 = [𝐒𝜙1
, 𝐒𝜙2

, ⋯ , 𝐒𝜙𝑚
]
𝑇
 (5.6) 

𝐒𝝓𝑖
=

𝜕𝝓𝑖

𝜕𝜽
=

[
 
 
 
 
 
 
 
𝜕𝜙1,𝑖

𝜕𝜃1

𝜕𝜙1,𝑖

𝜕𝜃2
⋯

𝜕𝜙1,𝑖

𝜕𝜃𝑛

𝜕𝜙2,𝑖

𝜕𝜃1

𝜕𝜙2,𝑖

𝜕𝜃2
⋯

𝜕𝜙2,𝑖

𝜕𝜃𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝜙𝑛𝑝,𝑖

𝜕𝜃1

𝜕𝜙𝑛𝑝,𝑖

𝜕𝜃2
⋯

𝜕𝜙𝑛𝑝,𝑖

𝜕𝜃𝑛 ]
 
 
 
 
 
 
 

 (5.7) 

 

where 𝜙𝑗,𝑖 is the ith mode shape at jth point. When point j is measured, the mode shape 

at the point 𝜙𝑗,𝑖 will be included in the model updating. Therefore, the sensitivity matrix 

𝐒 is directly related to the mode shapes in the measured points or sensor locations.  

 

Sensor placement exerts an influence on mode shapes only, not on natural frequencies. 

Therefore, this study aims to determine an OSP so that the mutual coherence of the 
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sensitivity matrix of the mode shapes, i.e. 𝜇(𝐒𝜙) , is minimized. Once the OSP is 

determined, or the measurement points are selected, the mode shape sensitivity that 

corresponds to the points will be included in the sensitivity matrix 𝐒𝜙. The obtained 

optimal sensor locations and associated sensitivity matrix are then used in the l1-

regularized damage detection. The sensing matrix is calculated from the analytical 

model, and it is thus independent on the damage states. 

 

5.3 Sensor Location Optimization using GA 

 

In practice, the number of available sensors is always limited due to the economy and 

technology considerations in practice. As aforementioned, different sensor locations 

result in different sensitivity matrices and consequently may affect the accuracy of 

sparse damage identification. Therefore, given a total number of sensors, sensor 

locations should be carefully selected or optimized, which is referred to as OSP.  

 

A number of OSP techniques have been developed in recent years (Kammer, 1991; 

Kirkegaard and Brincker, 1994; Papadimitriou, 2004; Chang and Pakzad, 2014; Heo et 

al., 1997; Meo and Zumpano, 2005; Yi et al., 2015). Hemez and Farhat (1994) extended 

the effective independence concept and proposed the OSP technique for damage 

detection according to the strain energy distribution of the structure. Zhou et al. (2013) 

introduced a new sensor placement index in terms of the ratio of two parameters, 

namely, the contribution of the measurement points to the Fisher information matrix 

(Shi et al., 2000a), and the damage sensitivity to the measurement noise (Xia and Hao, 

2000). 

 

OSP is basically a combinatorial problem. For example, we need to identify np distinct 

locations from all possible candidates. For the combinatorial problem, the global 

optimum is difficult to obtain using conventional techniques. With the development of 

computational intelligence, intelligence algorithms have been widely used for damage 

detection and SHM (Casciati, 2008; Casciati and Elia, 2017). Among them, GAs have 

been widely used and proved to be effective in solving combinatorial optimization 

problems (Goldberg, 1989). Yao et al. (1993) perhaps was the first to use a GA to 

optimize sensor placement for modal identification, in which the determinant of the 
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Fisher information matrix was selected as the fitness function. Worden and Burrows 

(2001) applied a GA to determine the sensor distribution for fault diagnosis. Liu et al. 

(2008) introduced an improved GA to find the OSP for spatial lattice structures, in 

which MSE and MAC were taken as the fitness functions.  

 

In this study, a binary-coded GA is used to explore the OSP that results in the minimum 

mutual coherence of 𝐒𝜙. Inspired by the Darwinian principle of natural selection, GA 

was firstly introduced by Holland (1975). A detailed description of GAs can be found in  

Holland (1975) and Goldberg (1989).  

 

GA is a global optimization method that starts with an initial population of randomly 

generated chromosomes. Each chromosome refers to a candidate solution, and the 

component of a chromosome is called gene, which is an integer of 0 or 1. 

 

Considering the sensor placement problem, np sensors are to be placed amongst l 

candidate locations. One sensor placement scheme is represented by one chromosome. 

Therefore, each chromosome consists of l genes that are set to 1 if a sensor is placed at 

the corresponding location or 0 otherwise. The total number of 1 in the chromosome is 

equal to np, the number of sensors. For example, the chromosome 1001000010 

represents that three sensors are placed at points 1, 4 and 9, amongst 10 candidates. 

 

Reproduction, crossover and mutation are three important genetic operators to produce a 

new offspring generation. The reproduction is conducted according to the fitness of the 

individual chromosome which is evaluated by an objective function. The chromosome 

with a high fitness has a high probability to be selected as the parent chromosome. 

 

Once the parent chromosomes have been selected, they are paired up randomly for 

mating, which is referred to as crossover. A crossover point along the chromosome pair 

is randomly assigned, then the substrings after the selected point are swapped to form 

two offspring. This process ensures that the features of two parent chromosomes are 

transferred to the next generation. A crossover probability pc is applied to all parent 

chromosomes. pc is generally close to 1 such that most parents will exchange their 

genes. 
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The operations of reproduction and crossover may reduce the population diversity, and 

thus the chromosomes tend to become significantly similar over several generations. 

Therefore, perturbations are introduced into the population to protect against the 

premature convergence to a non-optimal solution. Mutation serves the function by 

replacing a gene in a chromosome at a randomly selected location with a probability pm. 

The mutation probability is usually a small value. 

 

The processes of reproduction, crossover and mutation will repeat for many generations 

until a preset convergence criterion is satisfied. In the present OSP problem, the number 

of sensors is fixed. If the number of genes 1 in a chromosome is not np, then a forced 

mutation operator is introduced by replacing the number of genes 1 with 0 or the other 

way round. The forced mutation operator will not influence the GA convergence. 

Population size, pc and pm, affect the GA performance and should be tuned in advance. 

The GA procedure is briefly shown in Figure 5.1. 

 

A GA generally tends to maximize fitness, and the present OSP aims to minimize 

mutual coherence; hence, the minimization problem should be converted into a 

maximization problem. The concerned mutual coherence ranges between 0 and 1. The 

objective function is thus defined as 

 

𝐽 = 1 − μ(𝐒𝜙) (5.8) 

 

The fitness function operates on the encoded genes that measure the performance of a 

specific sensor configuration. A sensor configuration with a smaller mutual coherence 

has a higher fitness, then has a higher probability to survive. The OSP corresponds to 

the minimum mutual coherence, thereby containing the most information about 

structural parameters and leading to the most accurate and reliable damage 

identification results.  
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Figure 5.1 Flow chart of the GA 

 

5.4 Case Studies 

 

The experimental cantilever beam and the three-storey frame described in Chapter 3 are 

utilized to verify the effectiveness and reliability of the proposed sensor placement 

technique. 

 

5.4.1 The Cantilever Beam  

 

5.4.1.1 OSP using GA 

 

The FE model and the SRFs for DS1 to DS4 of the cantilever beam are the same as 

introduced in Section 4.5.1. Although 10 sensors have been placed on the beam (i.e. 
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Nos. 1–10 in Figure 5.2), we select 5 points out of 10 to demonstrate the proposed OSP 

technique. Equation (5.8) is then maximized, and the maximum fitness corresponds to 

OSP. In the binary-coded GA, the population size is set to 100. The probabilities of 

crossover and mutation, i.e. pc and pm, are 0.85 and 0.1, respectively. The number of 

generations is 100. 

 

 
Figure 5.2 FE model and measurement configuration of the beam structure 

 

The initial population in GA is randomly generated and may affect the converged 

results. Therefore, the presented GA runs 10 times to investigate the convergence and 

repeatability of the proposed sensor placement technique. The results show that the 

obtained sensor locations in 10 operations are identical, i.e. points 4, 6, 8, 9 and 10, as 

shown in Figure 5.3. The selected sensor locations are close to the free end of the 

cantilever beam. Be noted that the OSP is obtained from the undamaged FE model, thus 

independent of the damage condition. The numbers of generations upon convergence 

during the 10 runs are listed in Table 5.1. All runs converge within 10 generations, thus 

indicating the fast convergence of the present technique. 

 

 
Figure 5.3 OSP of the beam structure 
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Table 5.1 Convergence of different initial populations. 

Run no. 1 2 3 4 5 6 7 8 9 10 

No. of 

generations upon 

convergence 

9 8 7 8 6 8 8 8 9 5 

 

The maximal and averaged fitness with respect to the generation history during one 

operation are shown in Figure 5.4. Both increase with the generation number. The 

maximum value tends to a constant rapidly, and the averaged fitness reaches the 

maximum after nine generations. 

 

 
Figure 5.4 History of convergence for the OSP of the beam 

 

5.4.1.2 Damage detection results 

 

Damage detection is conducted using the selected sensor subset to demonstrate the 

effectiveness of the proposed OSP technique. The appropriate regularization parameter 

is determined utilizing the first strategy proposed in the previous chapter. The parameter 

which keeps both residual and solution norms small is determined as an appropriate 

regularization parameter.  

 

The damage identification results of the four DSs are shown in Figure 5.5 together with 

the corresponding regularization parameters. The actual damage locations are detected 

successfully for all DSs. For DS1 and DS2, the identified damage severities are slightly 

larger than the true values, i.e. 40% and 60% reduction, respectively. For DS3, the 
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damage at the mid-span is quantified accurately, but the severity of the damaged 

element no. 1 is still larger than the true value. For DS4, the damaged elements (nos. 1, 

50 and 75) are quantified with good accuracy. Although several elements are falsely 

identified as damaged, their SRF values are very small (less than 5%) and the errors can 

be ignored. Therefore, all DSs are correctly identified using the mode shapes that 

correspond to the proposed OSP. The present damage identification results are similar 

to those using 10 sensors as displayed in Section 4.5.1.  

 

  
(a) DS1 (SRF1= −40%, 𝛽 = 0.10) (b) DS2 (SRF1= −60%, 𝛽 = 0.20) 

  
(c) DS3 (SRF1= SRF50= −60%, 𝛽 = 0.08) (d) DS4 (SRF1= SRF50= −60%,  

SRF75= −80%, 𝛽 = 0.12) 
Figure 5.5 Damage identification results for four DSs of the beam 
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5.4.2 The Three-storey Frame 

 

5.4.2.1 OSP using GA 

 

The proposed sensor placement technique is similarly applied to determine the sensor 

locations for the frame. The population size is set to 200. The crossover and mutation 

probabilities, i.e. pc and pm, are set to 0.85 and 0.1, respectively. The number of 

generations is 150. 

 

As introduced previously, the frame has 39 candidate locations in total as shown in 

Figure 5.6. Two measurement selection schemes are studied to investigate the effect of 

the number of sensors. Scheme 1 has 20 points, and Scheme 2 has 15 points. Using the 

proposed algorithm, the selected measurement points for the two schemes are shown in 

Figure 5.7. Although the two different measurement schemes are determined 

independently, the selected sensor locations in Scheme 2 are from those of Scheme 1. 

Since the frame is symmetric, the selected sensor locations are almost symmetric. For 

both selection schemes, the selected points are all close to the free end as observed for 

the previous cantilever beam. Moreover, it can be seen that the beam-column joints are 

selected which are critical locations of the frame structure. For comparison, Scheme 3 

has 15 points that are uniformly distributed on the beams and columns. This scheme 

represents a conventional sensor placement without optimization.  
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Figure 5.6 FE model and measurement configuration of the frame 
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Figure 5.7 OSP of the frame 
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(a) Scheme 1: 20 measurement points 

 
(b) Scheme 2: 15 measurement points 

Figure 5.8 History of convergence for the OSP of the frame 

 

In Schemes 1 and 2, the proposed GA is run for 10 times with different initial 

populations. The number of generations upon convergence is listed in Table 5.2. In the 

case of 20 measurement points, all 10 runs converge within 63 generations. In the other 

case of 15 measurement points, all 10 runs converge in 92 generations. The number of 

generations required for convergence in this structure is much more than that of the 

cantilever beam because the population size and chromosome length of the present 

example are larger than the beam. In both structures, 10 runs result in the same OSP. 

This result shows that the proposed GA based on mutual coherence is robust, and the 

obtained OSP is reliable. 

 

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3
x 10

-3

Generation

F
it

n
e
ss

 

 

 

Maximum

Average

0 10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Generation

F
it

n
es

s 

 

 

Maximum

Average



  

119 

Table 5.2 Convergence for different numbers of measurement points. 

Run no. 

Number of generations 

Scheme 1 

(20 measurement points) 

Scheme 2 

(15 measurement points) 

1 58 62 

2 42 63 

3 45 84 

4 63 68 

5 62 63 

6 56 92 

7 63 64 

8 57 80 

9 50 60 

10 63 70 

 

5.4.2.2 Damage detection results 

 

Damage detection of the frame is conducted using the measured frequencies and mode 

shapes that correspond to the selected sensor locations. For measurement Schemes 1 

and 2, 168 and 128 measurement data are, respectively, available. The residual and 

solution norms are utilized to determine the appropriate regularization parameter.  

 

The damage identification results of the three schemes for two DSs are shown in Figure 

5.9. For DS1, the damage location and severity can be identified accurately using all 

three schemes. For DS2, two damaged elements (nos. 1 and 176) are located accurately, 

and no false identification occurs when Schemes 1 and 2 are used, although the 

identified damage severity has a small error. The numbers of measurement points for 

Schemes 2 and 3 are identical. However, the damage identification results for DS2 are 

different. For Scheme 3, the damaged element no. 1 is detected successfully, but the 

element no. 166 is not. These results show that sensor placement exerts a significant 

effect on damage detection accuracy and that damage can be accurately identified on the 

basis of the proposed OSP technique. 
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(a) DS1 (SRF1= −60%) 

 
(b) DS2 (SRF1= SRF176= −60%) 

Figure 5.9 Damage identification results of the frame using different measurement 

points 

 

5.5 Summary 

 

Sensor locations play an important role in damage identification, and selection of sensor 

locations is a combinatorial problem. A GA-based sensor placement technique is 

proposed in this chapter for minimizing the mutual coherence of the sensitivity matrix 

in the l1-regularized damage detection. The present technique works on the sensitivity 

matrix in the undamaged state and thus does not need the prior knowledge of damage 

location and severity. Therefore, it is applicable to damage detection of real structures. 

 

Although GAs usually depend on the initial population, the experimental studies 

demonstrate that the present GA offers consistent OSP results using different initial 

populations. Two examples also show that satisfactory damage detection results are 
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obtained using the modal data based on the optimal sensor configuration. Moreover, the 

l1 regularization technique is effective in identifying sparse damage accurately.  
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CHAPTER 6   
 

STRUCTURAL DAMAGE DETECTION BASED ON 

ITERATIVELY REWEIGHTED L1 REGULARIZATION 

ALGORITHM 
 

 

 

6.1 Introduction  

 

In Chapter 4, an l1 regularization-based damage detection method is developed to 

exploit the sparsity condition of structural damage. However, in practice, the solution 

obtained by the l1 regularization technique is typically suboptimal. The l0 regularization 

technique outperforms the l1 regularization in various aspects for sparse recovery, 

whereas the associated nonconvex optimization problem is NP-hard and 

computationally infeasible. In this chapter, a damage detection method based on the 

IRLR algorithm is proposed. An iterative procedure is employed such that the 

nonconvex optimization problem of the l0 regularization can be efficiently solved 

through transforming it into a series of weighted l1 regularization problems. 

 

6.2 L1 and L0 Regularization for Sparse Recovery 

 

As metioned previously, the l0 norm is an appropriate numerical measure of sparsity 

which counts the non-zero components of the vector. As a matter of fact, the l0 

regularization is the earliest regularization technique for sparse recovery which yields 

the sparsest solution (Taylor et al., 1979; Chartrand and Staneva, 2008; Xu et al., 2010). 

Previous studies show that the l0 regularization technique outperforms the l1 

regularization in various aspects (Chartrand, 2007; Chartrand and Yin, 2008; Foucart 

and Lai, 2009; Saab and Yilmaz, 2010). For example, the former is more robust to noise 

than the latter (Chartrand and Staneva, 2008; Chen and Gu, 2015), whereas requires 

fewer measurements for exact recovery (Chartrand and Staneva, 2008; Chartrand, 

2007).  
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Some researchers proposed that, under certain conditions, the l1 regularization is 

equivalent to the l0 regularization with high probability (Candès and Tao, 2006; 

Donoho, 2006b). However, the conditions, that guarantee the equivalence between l0 

and l1 regularizations, are usually too strong to be satisfied in practical applications. For 

example, the sensing matrix in l1 regularization should suffice certain independence 

criteria (Candès and Tao, 2005; Candès et al, 2006). For the present structural damage 

detection problem, the sensitivity matrix 𝐒 serves as the sensing matrix. It is generally 

ill-conditioned because the columns are almost linearly dependent. Once the 

independence criteria are not satisfied, the solution is suboptimal (Zuo et al., 2013; 

Zhang, 2010). Both theoretical analysis and numerical experiments have shown that 

using the l0 regularization often results in sparser solutions with smaller reconstruction 

error than using the l1 regularization (Chartrand and Staneva, 2008; Xu et al., 2010; 

Chartrand, 2007; Cetin and Karl, 2001). Nevertheless, the l0 regularization technique 

has not received widely applications due to its computational complexity as introduced 

in Section 4.2.  

 

6.3 Damage Detection using IRLR Algorithm 

 

In this chapter, a one-step FE model updating method is used, in which the measured 

modal parameters before and after damage are compared directly (Wu et al., 2018; Hao 

and Xia, 2002). Unlike the two-step model updating approach used in Chapter 4, the 

one-step technique will update the initial FE model such that the changes in the 

calculated modal parameters due to structural damage are close to the changes in the 

measured counterparts. The damage parameters 𝜽  can be calculated by solving the 

below optimization problem instead  

 

�̂� = argmin
�̂�

 ‖∆𝑹𝐴(𝜽) − ∆𝑹𝐸‖2
2 (6.1) 

 

As introduced previously, the l0 regularization technique is ideal to recover the sparse 

damage by adding an l0 regularization term in the objective function as 
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�̂� = argmin
�̂�

 ‖∆𝑹𝐴(𝜽) − ∆𝑹𝐸‖2
2 + 𝛽‖𝜽‖0 (6.2) 

 

As aforementioned, the l0 norm is nonconvex and discontinuous. Consequently, the 

optimization problem in Equation (6.2) is NP-hard and is generally impossible to be 

solved (Chartrand and Staneva, 2008; Zuo et al., 2013; Natarajan, 1995).  

 

In order to achieve a balance between the recovery performance and the computational 

complexity, the IRLR algorithm is proposed as an effective alternative to the l0 

regularization technique (Candès et al., 2008). Rather than directly solving the 

nonconvex l0 regularization problem, the IRLR algorithm proposed a weighted l1 

regularization as 

 

�̂� = argmin
�̂�

 ‖∆𝑹𝐴(𝜽) − ∆𝑹𝐸‖2
2 + 𝛽 ∑𝑤𝑖|𝜃𝑖|

𝑛

𝑖=1

 (6.3) 

 

where 𝑤𝑖 is the weight corresponding to the damage parameter 𝜃𝑖 and is constructed as 

 

𝑤𝑖 =
1

|𝜃𝑖|
 (6.4) 

 

Since the weight is inversely proportional to the solution magnitude, the weighted l1 

minimization in Equation (6.3) is equivalent to the l0 regularization.  

 

As the true damage parameters 𝜃𝑖  are unknown in advance, the appropriate weights 

cannot be obtained directly. In this regard, an iterative procedure is proposed. In each 

iteration, the damage parameter 𝜃𝑖 in the previous run is used to estimate 𝑤𝑖 as Equation 

(6.4). Equation (6.3) is then minimized to obtain a new damage parameter 𝜃𝑖. The IRLR 

algorithm for structural damage detection is implemented as follows: 

1. Initialize the weights 𝑤𝑖
(0)

= 1  (𝑖 = 1, 2, … , 𝑛). 

2. At the kth iteration (𝑘 ≥ 1) 

Solve the weighted l1 minimization problem 
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�̂�(𝑘) = argmin
�̂�

 ‖∆𝑹𝐴(𝜽) − ∆𝑹𝐸‖2
2 + 𝛽 ∑𝑤𝑖

(𝑘−1)|𝜃𝑖|

𝑛

𝑖=1

 (6.5) 

 

Update the weights 

 

𝑤𝑖
(𝑘)

=
1

|𝜃𝑖
(𝑘)

| + 𝜁
 (6.6) 

 

3. Repeat Step 2 for the (k+1)th iteration until the convergence criterion 

‖�̂�(𝑘) − �̂�(𝑘−1)‖
2

‖�̂�(𝑘)‖
2

⁄ ≤ 𝑇𝑜𝑙  is met or when k reaches a preset maximum 

iteration number kmax.  

 

The parameter 𝜁 > 0 is introduced in Equation (6.6) to provide stability and to ensure 

that the zero-valued items in 𝜽(𝑘) do not rigorously prohibit a nonzero estimate at the 

next step. Numerical results show that the IRLR algorithm is robust to the choice of 𝜀 

(Candès et al., 2008). When both natural frequencies and mode shapes are utilized for 

damage detection, Equation (6.5) can be further rewritten as  

 

�̂�(𝑘) = 𝑎𝑟𝑔min
�̂�

{
1

𝑚
∑([

λ𝑖
𝐴(𝜽) − λ𝑖

0

λ𝑖
0 ] − [

λ𝑖
𝐷 − λ𝑖

𝑈

λ𝑖
𝑈 ])

2𝑚

𝑖=1

                     

+
1

𝑚 × 𝑛𝑝
∑∑([𝜙𝑗𝑖

𝐴(𝜽) − 𝜙𝑗𝑖
0 ] − [𝜙𝑗𝑖

𝐷 − 𝜙𝑗𝑖
𝑈])

2

𝑛𝑝

𝑗=1

𝑚

𝑖=1

+
𝛽

𝑛
∑𝑤𝑖

(𝑘−1)|𝜃𝑖|

𝑛

𝑖=1

} 

(6.7) 

 

In each iteration, Step 2 solves an l1 regularization problem, to which the existing 

algorithms can be effectively applied. During the iterative process, many weights 𝑤𝑖 

approach infinity, enforcing the corresponding damage parameters 𝜃𝑖 approaches zero. 

Consequently the sparsity of damage is ensured. The experimental example presented in 

the next section shows that the IRLR algorithm converges in a few steps. 
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6.4 Case Study 

 

The 3D frame described in Chapter 3 is used here to demonstrate the effectiveness of 

the proposed method. Each bar of the frame is divided into 5 Euler-Bernoulli beam 

elements, resulting in a total of 225 elements in the FE model, each with 100 mm long. 

As shown in Table 6.1, the modal data of the FE model agree well with the 

experimental data. 

 

Table 6.1 Modal data of the experimental model and initial FE model. 

Mode No. 
Experiment 

Freq. (Hz) 

FE model 

Freq. (Hz) 

Frequency 

difference (%) 
MAC (%) 

1   7.73  7.78  0.65 99.84 

2  23.98 24.13  0.63 88.05 

3  24.83 24.45 –1.53 93.55 

4  37.43 37.03 –1.07 97.13 

5  40.92 40.73 –0.46 98.59 

6  59.97 60.58  1.02 98.72 

Average  0.89 95.98 

 

The damaged Bar Nos.17 and 27 correspond to elements 81~85 and elements 131~135 

in the FE model, respectively. The joint damage can be equivalently regarded as the 

change in the stiffness of the bar connecting the joint. The damaged elements for the 

four DSs are given in Table 6.2. The four DSs have at most seven damaged elements, 

which is extremely sparse compared to the total 225 elements. Given the first six 

frequencies and six mode shapes at 34 DOFs are utilized for damage detection, there are 

210 measurement data. Therefore, the damage identification is an underdetermined 

problem. The parameter 𝜁 used in the IRLR algorithm is suggested to be smaller than 

the expected nonzero magnitudes of the unknown vector (Candès et al., 2008). In this 

regard, the parameter 𝜁 is set as 0.001. Moreover, numerical and experimental studies 

showed that the improvement of the accuracy of sparse recovery mainly benefits from 

the first few reweighting iterations. Therefore, the maximum iteration number and the 

convergence tolerance are set as 𝑘𝑚𝑎𝑥 = 10  and 𝑇𝑜𝑙 = 0.001 , respectively. The 

regularization parameter 𝛽 used in Equation (6.7) is determined from the residual and 

solution norms.  
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Table 6.2 Four DSs of the frame structure. 

Scenario DS1 DS2 DS3 DS4 

Damaged elements 

No. in FE model 
81~85 135 131 and 135 81~85, 131, 

and 135 

 

The damage identification results for four DSs are shown in Figure 6.1 together with the 

corresponding regularization parameters. For DS1, the damaged elements (Nos.81~85) 

are detected correctly and no false identification occurs. For DS2, the joint damage at 

element 135 is correctly located with a considerable SRF. For DS3, damage at two ends 

of Bar No.27 (elements 131 and 135) are identified accurately with almost the same 

severities. For DS4, both damage of a bar and damage at the joints are located. In 

DS2~DS4, several intact elements are falsely identified with damage. Their SRFs are 

very small (less than 0.1), and the locations (elements 121 and 125 on Bar No.25) are 

very close to the true damage (Bar No.27). Therefore, the identification error is 

negligible. 

 
(a) DS1 (𝛽 = 0.015) 

 
(b) DS2 (𝛽 = 0.03) 
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(c) DS3 (𝛽 = 0.035) 

 
(d) DS4 (𝛽 = 0.01) 

Figure 6.1 Damage identification results of the frame with the IRLR algorithm 

 

For comparison purpose, the l1 regularization technique without reweighting is also 

applied for damage identification, which aims to minimize the following objective 

function 

 

�̂�(𝑘) = 𝑎𝑟𝑔min
�̂�

{
1

𝑚
∑([
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+
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2

𝑛𝑝
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𝑚

𝑖=1

+
𝛽

𝑛
∑|𝜃𝑖|

𝑛

𝑖=1

} 

(6.8) 

 

The damage identification results of the four DSs are displayed in Figure 6.2. The SRF 

of DS1 is almost the same as that using the IRLR algorithm. For DSs 2–4, the SRF 

results are not sparse enough and quite a number of undamaged elements are falsely 

identified as damaged. The actual damaged elements cannot be well identified as their 

severities do not differ much from those of the falsely identified elements. The above 
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comparison demonstrates that the present damage detection method based on the IRLR 

algorithm is able to provide sparser and more accurate damage identification results 

than the l1 regularization-based approach. 

 

 
(a) DS1 (𝛽 = 0.01) 

 
(b) DS2 (𝛽 = 0.01) 

 
(c) DS3 (𝛽 = 0.03) 
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(d) DS4 (𝛽 = 0.005) 

Figure 6.2 Damage identification results of the frame with the l1 regularization 

technique 

 

6.5 Summary 

 

A sparse damage detection method is proposed in this chapter based on the IRLR 

algorithm. The sparse property of the structural damage has been exploited through an 

iterative procedure, which is equivalent to the l0 regularization technique. Rather than 

directly solving the nonconvex l0 regularization problem, the IRLR algorithm consists of 

a series of weighted l1 minimization problem, which can be solved using the existing 

algorithms. 

 

The experimental example shows that the proposed IRLR method is effective in 

identifying the sparse damage among a large number of potential elements, even when 

the changes of the modal parameters are very small. It is advantageous over the l1 

regularization technique and results in the sparser damage identification results with 

higher accuracy. 
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CHAPTER 7   
 

SPARSE BAYESIAN LEARNING FOR STRUCTURAL 

DAMAGE DETECTION USING EXPECTATION–

MAXIMIZATION TECHNIQUE 
 

 

 

7.1 Introduction  

 

Structural damage sparsity is an important prior information in practice. Previous 

chapters have demonstrated that exploiting this prior information results in accurate 

damage identification using the developed l1 and l0 regularization techniques. In this 

chapter, the sparsity of structural damage will be exploited from a Bayesian perspective.  

 

Bayesian methods provide an efficient way to deal with the ill-posed and 

underdetermined problem by specifying probability distributions over uncertain 

parameters, which is equivalent to introducing a regularization term to the optimization 

problem (Williams, 1995). SBL is effective in promoting sparsity in the inferred 

predictors and has been rapidly developed recently in the context of regression and 

classification (Tipping, 2001; Wipf et al., 2003; Bishop, 2006). For linear regression 

problems, the latent variables and associated hyper-parameters are iteratively obtained 

using type-II maximization likelihood (Bishop, 2006). During the process, most hyper-

parameters tend to approach infinity, and thus the corresponding latent variables 

approach zero, resulting in a sparse regression model. However, this method is 

ineffective in structural damage detection using modal parameters, which have a 

nonlinear relation with structural damage. Consequently, the analytical solution of the 

type-II maximization likelihood is unavailable.  

 

Rather than directly tackling this nonlinear problem, Huang and Beck (2015) and Huang 

et al. (2017a) proposed an iterative procedure, which involves a series of coupled linear 

regression problems. A hierarchical SBL approach combined with Laplace’s asymptotic 
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approximation was used to infer the stiffness reductions on the basis of experimentally 

identified modal parameters. However, all uncertain hyper-parameters of the 

sophisticated hierarchical Bayesian model should be estimated, which is a nontrivial 

task. Huang et al. (2017b) converted the nonlinear function of structural stiffness 

parameters into a series of coupled linear-in-the-parameter problems. Two Gibbs 

sampling algorithms representing a special case of the MCMC simulation were 

proposed to provide a full treatment of the posterior PDFs of uncertain parameters for 

damage assessment. However, the computational efficiency of posterior sampling for 

the MCMC methods remains a major concern. Mustafa et al. (2015) utilized linear 

optimization to identify the posterior statistics of the model parameters for model 

updating and damage detection, instead of solving the challenging nonlinear 

optimization problem.  

 

In this chapter, an iterative EM technique is employed to tackle the nonlinear problem, 

without performing the asymptotic approximation or stochastic simulation. During the 

iteration, structural damage and hyper-parameters are updated through an expectation 

and maximization processes alternatively. Two sampling methods are utilized during 

the expectation procedure. Upon convergence, some hyper-parameters approach infinity 

and the associated damage variables become zero, resulting in the sparsity of damage.  

 

7.2 Structural Model Class  

 

The structural model class, ℳ, is based on a set of linear structural models, where each 

model has a known mass matrix M and an uncertain stiffness matrix K parameterized 

by the stiffness parameters 𝛼𝑖 . The rth structural eigenvalue and the corresponding 

mode shape are governed by the following eigenvalue equation 

 

(𝐊 − λ𝑟𝐌)𝝓𝑟 = 𝟎 (7.1) 

 

Suppose that Nm modes of vibration have been identified from modal testing so that the 

identified eigenvalues and mode shapes can be expressed as 

 

𝝀𝐸 = {λ1
𝐸 , λ2

𝐸 , ⋯ , λ𝑁𝑚

𝐸 } (7.2) 
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𝚽𝐸 = [𝝓1
𝐸 , 𝝓2

𝐸 , ⋯ , 𝝓𝑁𝑚

𝐸 ] (7.3) 

 

where 𝝓𝑟
𝐸 ∈ 𝑅𝑁𝑝 denotes the identified mode shape of the rth mode at 𝑁𝑝 measurement 

points. A set of modal data is expressed as 

 

𝓓 = [𝝀𝐸 , 𝚽𝐸] (7.4) 

 

7.3 Bayesian Probabilistic Framework 

 

Bayes’ theorem is used to develop a PDF for the damage parameters 𝜽, conditional on 

the measured modal data 𝓓 and chosen class of models ℳ (Vanik et al., 2000) 

 

𝑝(𝜽|𝓓,ℳ) = 𝑐−1𝑝(𝓓|𝜽,ℳ)𝑝(𝜽|ℳ) (7.5) 

 

where 𝑝(𝜽|𝓓,ℳ) is the posterior PDF of the damage parameters given the modal data 

𝓓 and model class ℳ; 𝑐 = 𝑝(𝓓| ℳ) is a normalizing constant referred to as evidence 

or marginal likelihood which does not affect the shape of the posterior distribution; 

𝑝(𝓓|𝜽,ℳ) is the likelihood function for the damage parameters 𝜽; and 𝑝(𝜽|ℳ) is the 

prior PDF of the damage parameters. The evidence can be used to estimate the hyper-

parameters, as described later.  

 

In Bayeisan inference, the computation of the posterior probability of unknown 

parameters is usually intractable and the approximation tools are required. For example, 

the high-dimensional integral of the posterior PDF cannot be computed analytically. 

Based on the topology of the likelihood function 𝑝(𝓓|𝜽,ℳ)  and data 𝓓 , three 

categories for a model class have been defined, i.e., globally identifiable, locally 

identifiable, and unidentifiable, corresponding to unique, multiple but isolated, and a 

continuum of maximum likelihood estimate (Huang et al., 2018).  

 

If the model class is globally identifiable according to the available data 𝓓, Laplace’s 

approximation method can be used to approximate the integral in the evidence 

𝑝(𝓓| ℳ)  (Beck and Katafygiotis, 1998; Beck, 2010). However, Laplace’s 

approximation has several limitations, one of which is that the accuracy of the 
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approximation depends on the dimension of the parameter vector (Onar, 2014). If the 

measurements are considerably fewer than the model parameters, then the 

corresponding Bayesian updating results may be inaccurate. For the unidentifiable and 

locally identifiable problems, simulation-based techniques, such as MCMC samplers, 

can be used to compute the posterior statistics of unknown parameters (Metropolis et 

al., 1953; Ching and Chen, 2007; Cheung and Beck, 2010; Lam et al., 2018; Nichols et 

al., 2010). However, the MCMC algorithm has high computational cost, especially for 

models with numerous parameters to be inferred. Moreover, evaluating convergence 

and accuracy for the MCMC methods is difficult, even when conducted empirically.  

 

7.4 Sparse Bayesian Modelling 

 

7.4.1 Likelihood Functions for Damage Parameters 

 

In this section, a sparse Bayesian model is developed which automatically promotes 

sparsity in the inferred damage parameters 𝜃. To simplify the notation, the dependence 

of the PDF on ℳ is dropped hereafter.  

 

According to the axioms of probability, the PDF of the modal data 𝑝(𝓓|𝜽) in Equation 

(7.5) can be expressed as (Vanik and Beck, 2000) 

 

𝑝(𝓓|𝜽) = ∏𝑝(λ𝑟
𝐸|𝜽)𝑝(𝝓𝑟

𝐸|𝜽)

𝑁𝑚

𝑟=1

 (7.6) 

 

To construct the prior distribution, the measurement error is introduced to the measured 

eigenvalues and mode shapes as  

 

𝜆𝑟(𝜽) = λ𝑟
𝐸(1 + 𝜈𝑟) (7.7) 

𝝓𝑟(𝜽) = 𝝓𝑟
𝐸 + 𝒆𝑟 (7.8) 

 

where 𝜈𝑟 and 𝒆𝑟 are measurement errors of frequencies and mode shapes, respectively, 

and are treated as independent Gaussian variables as (Ching and Beck, 2004; Jaynes, 

2003).  
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𝜈𝑟~𝑁(0, 𝜂−1) (7.9) 

𝒆𝑟~𝑁(0,  𝛾−1𝑰) (7.10) 

 

where hyper-parameters 𝜂 and 𝛾 reflect the precision of the identified eigenvalues 𝝀𝐸  

and mode shapes 𝚽𝐸, respectively. In this chapter, the precision, which is equal to the 

reciprocal of the variance of the variables, is used instead of the variance for 

convenience. The resulting likelihood function of 𝜽 based on the measured eigenvalues  

𝝀𝐸  is 

 

𝑝( 𝝀𝐸|𝜽, 𝜂) = (
𝜂

2𝜋
)

𝑁𝑚
2

𝑒𝑥𝑝 {−
𝜂

2
∑[

𝜆𝑟(𝜽) − λ𝑟
𝐸

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

} (7.11) 

 

and the likelihood function of 𝜽 based on the measured mode shapes 𝚽𝐸 is 

 

𝑝(𝚽𝐸|𝜽, 𝛾) = (
 𝛾

2𝜋
)

𝑁𝑝∙𝑁𝑚

2
𝑒𝑥𝑝 {−

 𝛾

2
∑‖𝝓𝑟

𝐸 − 𝝓𝑟(𝜽)‖2
2

𝑁𝑚

𝑟=1

} (7.12) 

 

7.4.2 Prior Distribution for Damage Parameters 

 

As introduced previously, the prior PDF of the damage parameters is chosen to provide 

regularization for the ill-posed inverse damage detection problem. SBL proposes to use 

the ARD prior to incorporating a preference for sparser parameters (Tipping, 2001; 

Huang et al., 2017; Mackay, 1992; Huang et al., 2018). Accordingly, the ARD prior is 

adopted in this chapter to promote sparsity in the damage parameters. The damage 

parameters 𝜽  are assumed to be Gaussian with zero mean and covariance matrix 

𝑨 = 𝑑𝑖𝑎𝑔(𝜌1
−1, ⋯ , 𝜌𝑛

−1), such that 

 

𝑝(𝜽|𝝆) = ∏𝑝(𝜃𝑖|𝜌𝑖)

𝑛

𝑖=1

= (
1

2𝜋
)

𝑛
2
∏[𝜌

𝑖

1
2 𝑒𝑥𝑝 {−

1

2
𝜌𝑖𝜃𝑖

2}]

𝑛

𝑖=1

 (7.13) 
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where the individual hyper-parameter 𝜌𝑖  represents the precision of the associated 

damage parameter 𝜃𝑖.  

 

7.4.3 Posterior Distribution for Damage Parameters 

 

From Equation (7.5), the posterior PDF of the damage parameters 𝜽 is expressed as  

 

𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾) = 𝑐−1𝑝(𝝀𝐸|𝜽, 𝜂)𝑝(𝚽𝐸|𝜽, 𝛾)𝑝(𝜽|𝝆) 

= 𝑐−1 (
𝜂

2𝜋
)

𝑁𝑚
2

(
 𝛾

2𝜋
)

𝑁𝑝∙𝑁𝑚

2
(

1

2𝜋
)

𝑛
2
(∏𝜌

𝑖

1
2

𝑛

𝑖=1

)𝑒𝑥𝑝 {−
𝜂

2
∑[

𝜆𝑟(𝜽) − λ𝑟
𝐸

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

 

−
 𝛾

2
∑‖𝝓𝑟

𝐸 − 𝝓𝑟(𝜽)‖2
2

𝑁𝑚

𝑟=1

−
1

2
∑(𝜌𝑖𝜃𝑖

2)

𝑛

𝑖=1

} 

(7.14) 

 

with the distributions on the right-hand side as defined by Equations (7.11), (7.12), and 

(7.13), respectively. This posterior probability distribution will be used to quantify the 

plausibility of all possible values of the damage parameters.  

 

7.5 Bayesian Inference Using EM Algorithm 

 

The posterior PDF of the damage parameters, as defined in Equation (7.14), depends on 

the estimates of the hyper-parameters 𝛏 = {𝝆, 𝜂, 𝛾} , which can be obtained by 

maximizing the evidence 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) , known in the statistics literature as type-II 

maximization likelihood (Bishop, 2006). As introduced previously, the evidence is the 

normalizing term that appears in the denominator in Bayes’ theorem. According to the 

Total Probability Theorem, the evidence is obtained by integrating over the damage 

parameters as 

 

𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) = ∫𝑝(𝜽, 𝝀𝐸 , 𝚽𝐸|𝝆, 𝜂, 𝛾)𝑑𝜽 = ∫𝑝(𝝀𝐸|𝜽, 𝜂)𝑝(𝚽𝐸|𝜽, 𝛾)𝑝(𝜽|𝝆)𝑑𝜽 (7.15) 

 

However, the computation of the integral in Equation (7.15) is intractable, as the 

frequencies and mode shapes are in nonlinear relations with 𝜽.  
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In this study, the EM algorithm is proposed to maximize the natural log evidence 

ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) instead. The EM algorithm enables parameter estimation in probabilistic 

models, where the model depends on unobserved latent variables. It alternates between 

performing an expectation (E) step and a maximization (M) step. 𝜽 is regarded as a 

latent variable and {𝜽, 𝝀𝐸 , 𝚽𝐸} is referred to as the complete data set. The complete-data 

natural log likelihood function is expressed as 

 

ln 𝑝 (𝜽, 𝝀𝐸 , 𝚽𝐸|𝛏) = ln 𝑝(𝝀𝐸|𝜽, 𝜂) + ln 𝑝(𝚽𝐸|𝜽, 𝛾) + ln 𝑝(𝜽|𝝆) 

=
𝑁𝑚

2
ln (

𝜂

2𝜋
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𝜂

2
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𝐸 − 𝜆𝑟(𝜽)
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]
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+
𝑁0 ∙ 𝑁𝑚

2
ln (

𝛾

2𝜋
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−
 𝛾

2
∑‖𝝓𝑟

𝐸 − 𝝓𝑟(𝜽)‖2
2
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𝑟=1
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𝑛

2
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1

2𝜋
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1

2
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𝑛

𝑖=1

−
1

2
∑(𝜌𝑖𝜃𝑖

2)

𝑛

𝑖=1

 

(7.16) 

 

Given the difficulty of direct maximization of ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) with respect to 𝛏, the EM 

algorithm proposes to maximize the expectation of the complete-data 

𝐸{ln 𝑝 (𝜽, 𝝀𝐸 , 𝚽𝐸|𝛏)} instead (Bishop, 2006; Dempster et al., 1977), such that  

 

𝐸{ln 𝑝 (𝜽, 𝝀𝐸 , 𝚽𝐸|𝛏)} =
𝑁𝑚
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+
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−
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2)

𝑛

𝑖=1

 

(7.17) 

 

In practice, the complete data set is not available and the latent variable 𝜽 is given by 

the posterior distribution 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏). In the E step, given the current value of the 

hyper-parameter 𝛏old, the posterior distribution of 𝜽 given by 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old) is used 

to determine the expectation of the complete-data 𝐸{ln 𝑝 (𝛉, 𝝀𝐸 , 𝚽𝐸|𝛏)} . In the 

subsequent M step, the new estimate 𝛏new is obtained by maximizing the expectation 
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with respect to 𝛏. By differentiating Equation (7.17) with respect to 𝝆, 𝜂, and 𝛾, and 

then setting these derivatives to zero, we obtain 

 

𝜕𝐸{ln 𝑝 (𝛉, 𝛏|𝝀𝐸 , 𝚽𝐸)}

𝜕𝜌𝑖
=

1

2𝜌𝑖
−

1

2
𝐸(𝜃𝑖

2) = 0 (7.18) 

𝜕𝐸{ln 𝑝 (𝛉, 𝛏|𝝀𝐸 , 𝚽𝐸)}

𝜕𝜂
=

𝑁𝑚

2

1

𝜂
−

1

2
 𝐸 {∑[

λ𝑟
𝐸 − 𝜆𝑟(𝜽)

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

} = 0 (7.19) 

𝜕𝐸{ln 𝑝 (𝛉, 𝛏|𝝀𝐸 , 𝚽𝐸)}

𝜕𝛾
=

𝑁𝑝 ∙ 𝑁𝑚

2

1

𝛾
−

1

2
𝐸 {∑‖𝝓𝑟

𝐸 − 𝝓𝑟(𝜽)‖2
2

𝑁𝑚

𝑟=1

} = 0 (7.20) 

 

The hyper-parameters are then solved as 

 

𝜌𝑖 =
1

𝐸(𝜃𝑖
2)

 (7.21) 

𝜂 =
𝑁𝑚

𝐸 {∑ [
λ𝑟
𝐸 − 𝜆𝑟(𝜽)

λ𝑟
𝐸 ]

2
𝑁𝑚
𝑟=1 }

 
(7.22) 

𝛾 =
𝑁𝑝 ∙ 𝑁𝑚

𝐸{∑ ‖𝝓𝑟
𝐸 − 𝝓𝑟(𝜽)‖2𝑁𝑚

𝑟=1 }
 (7.23) 

 

𝐸{∙} denotes an expectation with respect to the posterior distribution of 𝜽 using the 

current estimates of the hyper-parameters 𝛏old. 

 

7.5.1 Posterior Sampling  

 

Posterior sampling is conducted to approximate the expectations in Equations (7.21), 

(7.22), and (7.23). We first approximate the conditional posterior PDF 

𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾)  of stiffness parameter 𝜽  in Equation (7.14) by a multivariate 

Gaussian distribution using Laplace’s method of asymptotic approximation (Beck and 

Katafygiotis, 1998). This is based on the assumption that the modal data 𝓓 = [𝝀𝐸 , 𝚽𝐸] 

available is sufficient to constrain the updated parameter 𝜽  to give a globally 

identifiable model class. The mean of the Gaussian distribution is the MAP estimate �̂�, 
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which is calculated by maximizing ln 𝑝 (𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏), or equivalently minimizing the 

following objective function 

 

𝐽(𝜽) = 𝜂 ∑[
λ𝑟
𝐸 − 𝜆𝑟(𝜽)

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

+ 𝛾 ∑∑[𝜙𝑗𝑟
𝐸 − 𝜙𝑗𝑟(𝜽)]

2

𝑁𝑝

𝑗=1

𝑁𝑚

𝑟=1

+ ∑(𝜌𝑖𝜃𝑖
2)

𝑛

𝑖=1

 (7.24) 

 

The covariance matrix 𝚺𝜽  of the approximated Gaussian distribution is equal to the 

inverse of the Hessian matrix ℋ(�̂�)  calculated at �̂�, where the (i, j) component of the 

Hessian matrix ℋ(�̂�) is given by 

 

ℋ𝑖,𝑗(�̂�) =
𝜕2𝐽(𝜽)

𝜕𝜽𝑖𝜕𝜽𝑗
|
𝜽=�̂�

 (7.25) 

 

Since the dimension of 𝜽 is large, the obtained covariance matrix is not positive semi-

definiteness. In this regard, we calculate the variance for each damage parameter 𝜃𝑖 

independently (Vanik and Beck, 2000). Then we generate samples from the posterior 

PDF 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾) and the probabilistic information encapsulated in 

 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾) is characterized by the posterior samples 𝜽(𝑘), 𝑘 = 1,… , 𝐾 . The 

expectations in (7.21), (7.22) and (7.23) are finally approximated by (7.26), (7.27) and 

(7.28), respectively  

 

𝐸(𝜃𝑖
2) = ∫𝜃𝑖

2𝑝(𝜃𝑖|𝝀
𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾)𝑑𝜃𝑖 ≈

1

𝐾
∑ ((𝜃𝑖)

(𝑘))
2𝐾

𝑘=1
 (7.26) 

𝐸 {∑[
λ𝑟
𝐸 − 𝜆𝑟(𝜽)

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

} = ∫∑[
λ𝑟
𝐸 − 𝜆𝑟(𝜽)

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

𝑝(𝜃𝑖|𝝀
𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾)𝑑𝜽 

≈
1

𝐾
∑ ∑[

λ𝑟
𝐸 − 𝜆𝑟(𝜽

(𝑘))

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

𝐾

𝑘=1
 

(7.27) 
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𝐸 {∑‖𝝓𝑟
𝐸 − 𝝓𝑟(𝜽)‖2

𝑁𝑚

𝑟=1

} = ∫∑‖𝝓𝑟
𝐸 − 𝝓𝑟(𝜽)‖2

𝑁𝑚

𝑟=1

𝑝(𝜃𝑖|𝝀
𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾)𝑑𝜽 

≈
1

𝐾
∑‖𝝓𝑟

𝐸 − 𝝓𝑟(𝜽
(𝑘))‖

2

𝑁𝑚

𝑟=1

 

(7.28) 

 

7.5.2 Likelihood Sampling  

 

Considering the complexity of the posterior PDF 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝝆, 𝜂, 𝛾), which might not 

be Gaussian, another sampling method is proposed based on the likelihood function of 

𝜽. Ns sets of modal data 𝓓𝑗 = [𝝀𝐸𝑗 , 𝚽𝐸𝑗] (𝑗 = 1, 2, … , 𝑁𝑠), are generated according to 

the measured modal data following Gaussian distribution, that is, Equations (7.9) and 

(7.10). The mean of the Gaussian distribution is equal to the measured modal data with 

assigned variance. For each data set, given the current estimates of the hyper-parameters 

𝛏, the MAP estimate �̂� is calculated by minimizing the objective function in Equation 

(7.24). The expectation is then performed with respect to the MAP values of 𝜽 as 

 

𝐸(𝜃𝑖
2) = 𝐸(𝜃𝑖

2) (7.29) 

𝐸 {∑[
λ𝑟
𝐸 − 𝜆𝑟(𝜽)

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

} = 𝐸 {∑[
λ𝑟
𝐸 − 𝜆𝑟(�̂�)

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

} (7.30) 

𝐸 {∑‖𝝓𝑟
𝐸 − 𝝓𝑟(𝜽)‖2

𝑁𝑚

𝑟=1

} = 𝐸 {∑‖𝝓𝑟
𝐸 − 𝝓𝑟(�̂�)‖

2

𝑁𝑚

𝑟=1

} (7.31) 

 

7.5.3 Summary  

 

Each iteration uses estimates of 𝛏 to determine the posterior distribution of the latent 

variable 𝜽. The current distribution of 𝜽 is in turn utilized to improve the estimates of 𝛏. 

The proposed EM algorithm is implemented as follows: 

1. Initialize the hyper-parameters 𝛏(0) and latent variable 𝜽(0). 

2. At the ith iteration, 

E step: Compute the MAP estimates of �̂�(𝑖) through minimizing 𝐽(𝜽) in Equation 

(7.24) given hyper-parameters 𝛏(𝑖−1) ; Calculate the expectations in Equations 
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(7.21)~(7.23) using (7.26)~(7.28) for the posterior sampling or (7.29)~(7.31) for the 

likelihood sampling; 

M step: Through maximization of 𝐸{ln 𝑝 (𝛉, 𝝀𝐸 , 𝚽𝐸|𝛏)} with respect to 𝝆, 𝜂, and 𝛾, 

update the hyper-parameters to 𝛏(𝑖) according to Equations (7.21), (7.22), and (7.23), 

given �̂�(𝑖).  

3. Repeat Step 2 for the (i+1)th iteration until the following convergence criterion is 

met: 

‖�̂�(𝑖) − �̂�(𝑖−1)‖
2

‖�̂�(𝑖)‖
2

⁄ ≤ 𝑇𝑜𝑙 

It is noted that the posterior sampling is conducted after E step once �̂�(𝑖) is obtained at 

each iteration step, whereas the likelihood sampling is conducted at the initialization 

stage only. 

 

7.6 Case Studies 

 

A numerical and an experimental cantilever beams described in Chapter 3 are employed 

to demonstrate the effectiveness of the proposed EM-based SBL method.  

 

7.6.1 The Numerical Cantilever Beam 

 

In this numerical example, the natural frequencies only are used for damage detection. 

Therefore, the objective function in Equation (7.24) is simplified as 

 

𝐽1(𝜽) = 𝜂 ∑[
λ𝑟
𝐸 − 𝜆𝑟(𝜽)

λ𝑟
𝐸

]

2𝑁𝑚

𝑟=1

+ ∑(𝜌𝑖𝜃𝑖
2)

𝑛

𝑖=1

 (7.32) 

 

To implement the EM process, the hyper-parameters 𝝆 and 𝜂 should be initialized by 

setting them to the precision of the uncertainties. The uncertainty level of the damage 

parameters is assumed as 10% of the exact damage parameter. Therefore, the initial 

value 𝜌𝑖
(0)

= 1 (10%)2⁄ = 100 (𝑖 = 1, 2, … , 45).  In practical vibration tests, natural 

frequencies may typically contain 1% noise (Xia and Hao, 2003; Adewuyi et al., 2009; 

Mottershead and Friswell, 1993; Hou et al., 2018). Consequently, 𝜂(0) = 1 (1%)2⁄ =

1 × 10
4
. The ratio of 𝜌𝑖  to 𝜂 is analogous to the regularization parameter used in the 
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IRLS algorithm, which is 𝜌𝑖
(0)

∕ 𝜂(0) = 0.01 in the current example. The initial damage 

parameters 𝜽(0)  are set at their nominal values 𝜽(0) = {0, … ,0}𝑇 , indicating that no 

damage is present. 

 

With the minimization of Equation (7.32), the MAP values of the damage parameters 

are then obtained. Using the posterior sampling, 5000 samples of 𝜽(𝑘) are generated and 

then the hyper-parameters are calculated through Equations (7.21)~(7.23) and 

(7.26)~(7.28). With the proposed iterative EM, the MAP values of θ in each iteration 

are updated and shown in Figure 7.1. In the first iteration, a number of elements have 

non-zero SRFs. After one more iteration, the identified damage parameters tend to 

approach the actual values and the process converges after three iterations only. 

 

  
(a) Iteration no. 1 (b) Iteration no.2 

 

 

(c) Iteration no.3  

Figure 7.1 Damage identification results during the iterative process using posterior 

sampling 
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The likelihood sampling is then also applied, in which 50 sets of natural frequencies are 

generated (i.e., 𝑁𝑠=50) with Gaussian distribution having a zero mean and 1% standard 

deviations of the true values. Within EM, each set of sampled natural frequencies results 

in one set of MAP values of the damage parameters, from which the expectations are 

calculated according to Equations (7.29)~(7.31). The mean of the MAP values of θ in 

each iteration are shown in Figure 7.2. Similar to the above results, the damage 

parameters converge after four iterations only and the actual damaged elements are 

correctly located and quantified. Although the likelihood sampling approach takes one 

more iteration, the identified damage parameters are more accurate than those of the 

posterior sampling. 

 

  
(a) Iteration no. 1 (b) Iteration no.2 

  
(c) Iteration no.3 (d) Iteration no.4 

Figure 7.2 Damage identification results during the iterative process using likelihood 

sampling 
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During the iteration, the hyper-parameters also change continuously. 𝜂  and a few 

representative 𝜌𝑖 are shown in Figure 7.3 for the two sampling methods. As the iteration 

proceeds, the hyper-parameters associated with the damaged elements, i.e., 𝜌1 and 𝜌23, 

decrease quickly and converge after only a few iterations. For the undamaged Element 

45, the corresponding hyper-parameter 𝜌45 increases rapidly to a sizeable number (a 

logarithmic coordinate is used). The variation of 𝜂 is not significant during the process. 
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(a) Posterior sampling (b) Likelihood sampling 

Figure 7.3 Variation of hyper-parameters during the iterative process 

 

To investigate the effect of noise on damage detection accuracy, a different level of 

Gaussian noise of the frequencies is introduced, namely, Noise Level 2 has a zero mean 

and 2% standard deviation of the exact natural frequencies. In this regard, the initial 

estimate of the hyper-parameter 𝜂  becomes 1/(2%)2 = 2.5 × 10
3

. Therefore, the 

equivalent regularization parameters is 0.04, with the initial 𝜌𝑖
(0)

= 100  (𝑖 =

1, 2, … , 45) remaining unchanged. 

 

Using the same EM procedure, the identified MAP values of the damage parameters are 

shown in Figures 7.4 and 7.5 using two sampling methods. The convergence occurs in 

three and four iterations, respectively. In the case of the posterior sampling, the true 

damage at Element 1 is detected correctly, whereas Element 23 at the mid-span cannot. 

Using the likelihood sampling, both damaged elements are located accurately and the 

identified SRFs are close to their actual values. 

 

The above numerical results show that the proposed EM algorithm is effective in 

locating and quantifying structural damage. For the posterior sampling, the convergence 

rate is faster; while the damage identification results obtained are not accurate as 

compared with the likelihood sampling, especially at the higher noise level. Previous 

studies indicated that the main disadvantage of the EM algorithm is its slow 

convergence in some cases (Ching and Beck, 2004; Dempster et al., 1977). However, 

the proposed EM algorithm for damage detection has fast convergence. All converge 

within four iterations for the two noise levels. 
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(a) Iteration no. 1 (b) Iteration no.2 

 

 

(c) Iteration no.3  

Figure 7.4 Damage identification results for Noise level 2 using posterior sampling 
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(c) Iteration no.3 (d) Iteration no.4 

Figure 7.5 Damage identification results for Noise level 2 using likelihood sampling 

 

7.6.2 The Experimental Cantilever Beam 

 

The proposed EM technique is then applied to the experimental beam studied in Section 

4.5.1, which is divided into 100 Euler–Bernoulli beam elements, each 10 mm long. The 

damage locations and severities quantified by SRF for the four DSs are introduced in 

Table 4.1.  

 

In the experimental beam, only one set of measured modal data are available. In the 

likelihood sampling, 50 sets of modal data 𝓓𝑗 = [𝝀𝐸𝑗 , 𝚽𝐸𝑗] (𝑗 = 1, 2, … , 50)  are 

generated as λ𝑟
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𝐸  , (0.01λ𝑟

𝐸)2) (7.33) 

𝝓𝑟

𝐸𝑗~𝑁(𝝓𝑟
𝐸  , (0.05)2𝑰) (7.34) 

 

where the uncertainty levels of 1% and 5% are adopted for natural frequencies and 

mode shapes, respectively, as natural frequencies are generally measured more 

accurately than mode shapes. The hyper-parameters are thus initialized as 𝜂(0) = 1 ×

10
4
, 𝛾(0) = 400 and 𝜌𝑖

(0)
= 100 (𝑖 = 1,2, … ,100). 

 

First, only the natural frequencies are utilized for damage detection. Following the 

iterative procedures summarized in Section 7.5.3, the most plausible values of the 
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damage parameters can be obtained using the two proposed sampling methods. To 

quantify the damage identification accuracy, the identification error 𝜏 is defined as 

 

𝜏 = √‖�̂� − �̅�‖
2

2

𝑛
 

(7.35) 

 

where �̅�  denotes the actual damage parameters (i.e., SRF) in the experiment. The 

damage identification results of the four DSs using the likelihood sampling are shown in 

Figure 7.6. For DS1 and DS2, the actual damage is located and quantified with good 

accuracy. For DS3, the two damaged elements are located successfully, while the 

severity of the damage at the mid-span is smaller than the true value, i.e., with 60% 

reduction. For DS4, the actual damage locations are detected successfully with some 

errors in the identified severities. However, when using the posterior sampling, the 

results are not accurate, for example, only the damaged Element 1 can be detected for 

DS3. The results are not shown here for brevity. 

 

When both the natural frequencies and mode shapes are used, the optimal damage 

parameters are calculated by minimizing the objective function in Equation (7.30) 

iteratively. The damage identification results using the likelihood sampling are shown in 

Figure 7.7. For the single damage scenarios, i.e., DS1 and DS2, the damage 

identification results are almost the same as those using frequencies only. For DS3, the 

identified damage severity of the damage at the mid-span becomes closer to the actual 

value and the error reduces to 4.12%. For DS4, the identification error reduces to 

2.27% . Therefore the damage identification accuracy is improved significantly by 

incorporating the mode shape data. For all DSs using different kinds of modal 

parameters, the results converge within five iterations. Again the results using the 

posterior sampling are not accurate. 
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(a) DS1 (�̅�1 = −0.4, 𝜏 = 1.00%) (b) DS2 (�̅�1 = −0.6, 𝜏 = 0.83%) 

  
(c) DS3 (�̅�1 = �̅�50 = −0.6, 𝜏 = 2.36%) (d) DS4 (�̅�1 = �̅�50 = −0.6, �̅�75 = −0.8, 

𝜏 = 2.36%) 
Figure 7.6 Damage identification results for four DSs using frequencies only 
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(c) DS3 (�̅�1 = �̅�50 = −0.6, 𝜏 = 1.03%) (d) DS4 (�̅�1 = �̅�50 = −0.6, �̅�75 = −0.8, 

𝜏 = 1.06%) 
Figure 7.7 Damage identification results for for four DSs using frequencies and mode 

shapes 

 

The main advantages of the EM algorithm are its simplicity and ease of implementation. 

Moreover, the EM algorithm is proven to be stable and robust (Couvreur, 1996). In this 

study, the integral of the nonlinear inverse problem is avoided through an iterative 

procedure. The MAP values of the damage parameters are determined adaptively, and 

the sparsity of the damage parameters is secured automatically. As examples show, 

during the iterative process, many hyper-parameters 𝛼𝑖  approach infinity, and the 

corresponding 𝜃𝑖 approaches zero. 

 

7.7 Comparison of SBL with the Deterministic Regularization Approaches 

 

The SBL has some similarities with the sparse recovery theory that uses the 

regularization technique. In Equation (7.24), the first two terms are equivalent to the 

data-fitting terms with different weights and the third term to the regularization term 

with 𝜌 as the regularization parameter in sparse recovery. In this study, each damage 

parameter 𝜃𝑖  is assigned with an individual hyper-parameter 𝜌𝑖 , indicating that each 

damage parameter has a unique regularization parameter. A large 𝜌𝑖 carries a significant 

weight in the corresponding 𝜃𝑖  and thus enforces it to be close to zero during the 

optimization, thereby achieving the sparse solution to θ. From Equation (7.21), the 

regularization parameter is at the similar level of 1 𝜃2⁄ . Therefore, Equation (7.24) is 

equivalent to the iteratively reweighted least squares (IRLS) (Daubechies et al., 2010; 
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Chartrand and Yin, 2008; Chartrand and Staneva, 2008; Adewuyi et al., 2009), which is 

equivalent to the l0 regularization. 

 

If all damage parameters 𝜽 are assumed to have a uniform Gaussian prior distribution, 

the hyper-parameter 𝝆  becomes a single value. The resulting objective function 

(Equation [7.24]) is equivalent to the l2 regularization, which may cause the identified 

damage distributed to many structural elements and fail to obtain the sparse solution. 

The following prior has been shown to encourage sparsity in the solution (Wipf and 

Rao, 2004) 

 

𝑝(𝜽) ~ 𝑒𝑥𝑝 (−∑|𝜃𝑖|
𝑝

𝑛

𝑖=1

) (7.36) 

 

where 𝑝 ∈ [0, 1]. If a Laplace prior (i.e., 𝑝 = 1) is applied to the damage parameters, 

then the corresponding objective function is equivalent to the l1 regularization, or Basis 

Pursuit (Babacan et al., 2010). When 𝑝 ∈ [0, 1), the objective function with lp-norm 

regulzatization corresponds to the FOCal Underdetermined System Solver (FOCUSS) 

algorithm (Gorodnitsky and Rao, 1997).  

 

The l1 regularization problem could be solved effectively via linear programming 

approaches, which gurantee convergence to the global minimum (Boyd and 

Vandenberghe, 2004). However, the obtained global minimum does not necessarily 

coincide with the maximally sparse solution, which is referred to as structural error 

(Wipf and Rao, 2004). On the contrary, the objective function employed by FOCUSS 

with lp-norm (0 ≤ 𝑝 < 1) has many local minima. For 0 ≤ 𝑝 < 𝑝′, the global minimum 

will be achieved at the sparsest soluton, i.e., minimum l0-norm solution, where 𝑝′ can be 

arbitrarily small (Wipf and Rao, 2004; Leahy and Jeffs, 1991). Therefore, the FOCUSS 

algorithms suffer from convergence errors instead, that usually converge to suboptimal 

local minima. The SBL retains the desirable property of the l0 regularization, of which 

the global minimum is obtained at the sparsest solution. Moreover, it has been proved 

that the SBL has no structural error and fewer convergence errors than FOCUSS. 

Therefore, the SBL is more likely to converge to the optimal sparest solution. For both 
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the SBL and FOCUSS algorithms, the local minima have been demonstrated to be 

achieved at sparse solutions. 

 

Sparse recovery theory using the regularization techniques disregards the relative 

uncertainties between different variables, and requires estimation of the regularization 

parameter. However, in SBL, the hyper-parameters possess a clear physical meaning 

that represents the precision of the uncertainties. The hyper-parameters are updated 

automatically, thereby avoiding the tricky selection of the regularization parameter in 

sparse recovery theory. Therefore, the SBL technique is more general and more flexible 

relative to sparse recovery theory.  

 

7.8 Summary 

 

An SBL method has been proposed in this chapter for probabilistic structural damage 

detection using modal parameters. The sparsity of structural damage has been exploited 

as important prior information from the Bayesian perspective. The integral of the 

nonlinear eigenvalue equation is avoided through an iterative procedure based on the 

EM algorithm. Moreover, two sampling methods have been proposed and compared to 

approximate the evidence. Without employing a complicated Bayesian model with 

asymptotic approximation or utilizing stochastic simulation, this proposed method is 

concise and easy to implement.  

 

Numerical and experimental examples demonstrate that the proposed method is 

effective in identifying single and multiple damage elements, even when the 

measurement data are much fewer than the damage parameters. The damage 

identification results also show that the likelihood sampling is more robust to noise and 

accurate than the posterior sampling. The convergence using the EM for damage 

detection is very rapid. Moreover, the damage identification accuracy has been 

improved by incorporating mode shape data, especially for multiple damage scenarios.  

 

Compared with the regularization-based sparse recovery theory, the EM-based SBL is 

more general as more hyper-parameters are used and own clear physical meaning. 
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Moreover, the hyper-parameters can be updated automatically, thereby avoiding the 

selection of the regularization parameter in the sparse recovery. 
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CHAPTER 8   
 

CONCLUSIONS AND FUTURE RESEARCH 
 

 

 

8.1 Conclusions 

 

Sparse damage detection methods based on sparse recovery and SBL were developed in 

this study. First, the l1 and l0 regularization techniques have been developed and applied 

to detect sparse damage. Second, the sparsity of structural damage is exploited from the 

Bayesian perspective through specifying a sparsity inducing prior. Two numerical 

examples and three experimental structures are utilized to investigate the effectiveness 

and reliability of the proposed damage detection methods. The results and findings are 

summarized as follows.  

 

1. The l1-regularized damage detection method is able to locate and quantify single 

and multiple damage correctly using only a few vibration measurements. Moreover, 

it is robust to noise even under the severe noise situation. The l1-regularized model 

updating technique outperforms the traditional l2 regularization technique that the 

damage detection results match the sparse damage scenario in practice; 

2. An appropriate range of the regularization parameter, rather than one single value, 

can be determined using the two proposed strategies and the results are consistent. 

When any one regularization parameter in this range is selected, damage can be 

accurately identified even for multiple damage scenarios. This range also indicates 

the sensitivity degree of the damage identification problem to the regularization 

parameter; 

3. A sensor placement technique is developed based on the GA. It is independent on 

the damage states and satisfactory damage identification results can be obtained 

using the modal data based on the determined optimal sensor configuration. The 

results are more accurately than using the modal data based on empirically selected 

sensor locations; 
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4. The proposed IRLR algorithm is equivalent to the l0 regularization technique. This 

method is advantageous over the l1 regularization technique that the sparser damage 

identification results with higher accuracy are obtained; 

5. An SBL method has been proposed using the EM technique for probabilistic 

structural damage detection. The method can accurately locate and quantify the 

sparse damage, even when the measurement data are much fewer than the damage 

parameters. Compared with the regularization-based methods, the EM-based SBL 

is easy to implement while contains clear physical meaning and avoids the selection 

of the regularization parameter. 

 

As the sparsity is exploited in the proposed regularization and SBL techniques, the 

sparse damage can be identified accurately among a large number of candidate 

elements. Therefore, the structure of interest can be modelled using fine elements, 

which allows local damage be detected with a small number of vibration measurements. 

This is a big breakthrough of the global vibration-based methods. 

 

8.2 Future Research 

 

Although improvements have been made compared with the conventional damage 

detection methods, there are still a number of issues remain and require further research 

in order to apply the methods to practical full-scale structures.  

 

1. The present study does not consider the uncertainties associated with the 

environmental variations. Damage detection analysis under different environmental 

conditions is a significant challenge and merits further study. Moreover, a new 

damage index should be developed which is sensitive to damage but not sensitive to 

environmental changes; 

2. Successful sparse recovery depends on several factors, namely, number and 

severity of damage, number of measurements, number of total elements, and level 

of measurement uncertainty. Moreover, the measures of sparsity and the problem 

indeterminacy may affect the recovery accuracy significantly. Therefore, 

parametric study is highly worthwhile in the future to investigate the effect of these 



  

159 

parameters on damage detection. The success probability of damage detection can 

then be determined; 

3. For structural damage detection, it is typically assumed that the structure behaves 

linearly before and after damage. However, in practice, the structure usually 

exhibits nonlinear behaviours due to geometrical nonlinearity, material 

nonlinearity, and constraint and contact nonlinearity. The structural nonlinearity, 

which has been ignored in this study, requires further study; 

4. For large-scale structures, the FE model usually contains thousands of elements and 

damage is thus sparser compared with the structures in laboratories. Moreover, the 

problem indeterminacy increases which is defined as the ratio of the number of 

measurements to the number of total updating parameters. Therefore, the present 

sparse damage detection methods should be further studied and extended in order to 

be applied to practical large-scale structures.  
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APPENDIX A 

 

EXPECTATION–MAXIMIZATION ALGORITHM 
 

The EM algorithm is a general probabilistic technique for finding maximum likelihood 

or MAP estimates based on unobserved latent variable models (Bishop, 2006). Our goal 

in this study is to estimate the hyper-parameters 𝛏 = {𝝆, 𝜂, 𝛾} based on the observed 

modal data 𝓓 = [𝝀𝐸 , 𝚽𝐸] by treating the stiffness parameter 𝜽 as the latent variable 

using the EM algorithm. 

 

Since it is difficult to evaluate the evidence (marginal likelihood) function 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) 

analytically, direct maximization of 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏)  with respect to 𝛏 = {𝝆, 𝜂, 𝛾}  is 

blocked. In this regard, a distribution 𝑞(𝜽)  defined over the latent variable 𝜽  is 

introduced which can be any non-negative PDF of 𝜽 with unity integral. According to 

the product rule of probability 

 

ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) + ln 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏) = ln 𝑝(𝜽, 𝝀𝐸 , 𝚽𝐸|𝛏) (A.1) 

 

Therefore, for any choice of 𝑞(𝜽), the following decomposition holds  

 

ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) = ∫𝑞(𝜽) ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) 𝑑𝜽 

= ∫𝑞(𝜽) ln {
𝑝(𝜽, 𝝀𝐸 , 𝚽𝐸|𝛏)

𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏)
} 𝑑𝜽 

= ℒ(𝑞, 𝛏) + KL(𝑞 ∥ 𝑝) 

(A.2) 

 

where we have defined 

 

ℒ(𝑞, 𝛏) = ∫𝑞(𝜽) ln {
𝑝(𝜽, 𝝀𝐸 , 𝚽𝐸|𝛏)

𝑞(𝜽)
} 𝑑𝜽 (A.3) 

KL(𝑞 ∥ 𝑝) = −∫𝑞(𝜽) ln {
𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏)

𝑞(𝜽)
} 𝑑𝜽 

(A.4) 
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As shown in Equations (A.3) and (A.4), ℒ(𝑞, 𝛏) depends on the distribution 𝑞(𝜽) and 𝛏, 

and KL(𝑞 ∥ 𝑝)  is the Kullback-Leibler divergence between 𝑞(𝜽)  and the posterior 

distribution 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏)  (Kullback and Leibler, 1951). The Kullback-Leibler 

divergence KL(𝑞 ∥ 𝑝) ≥ 0, with KL(𝑞 ∥ 𝑝) = 0  if and only if 𝑞(𝜽) = 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏) 

(Kullback and Leibler, 1951; Kullback, 1968). Therefore, ℒ(𝑞, 𝛏) ≤ ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) is a 

lower bound of ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏). 

 

The EM algorithm is a two-stage iterative optimization technique. Given the current 

values of the hyper-parameters 𝛏old, the lower bound ℒ(𝑞, 𝛏) is maximized when 𝑞(𝜽) is 

equal to the posterior distribution 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old) . In this case, the lower bound 

ℒ(𝑞, 𝛏) equals to the log evidence ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) . Substituting 

𝑞(𝜽) = 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old) into Equation (A.3), the lower bound ℒ(𝑞, 𝛏) takes the form 

 

ℒ(𝑞, 𝛏) = ∫𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old) ln 𝑝(𝜽, 𝝀𝐸 , 𝚽𝐸|𝛏) 𝑑𝜽 − 

∫𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old) ln 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old) 𝑑𝜽 = 𝐸{ln 𝑝 (𝛉, 𝝀𝐸 , 𝚽𝐸|𝛏)} + const 

(A.5) 

 

where the constant term is the negative entropy of the q distribution and is independent 

of 𝜽. Subsequently, the distribution 𝑞(𝜽) = 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old) is incorporated and the 

lower bound ℒ(𝑞, 𝛏) is maximized with respect to 𝛏 to give rise to 𝛏new. As shown in 

Equation (A.5), maximization of ℒ(𝑞, 𝛏) is equivalent to maximize the expectation of 

the complete-data log likelihood 𝒬(𝛏, 𝛏old) = 𝐸{ln 𝑝 (𝛉, 𝝀𝐸 , 𝚽𝐸|𝛏)} with respect to the 

distribution 𝑞(𝜽) = 𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old).  

 

In summary, the EM algorithm seeks to find the maximum of the evidence function 

𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) by iteratively applying two steps. In the E step, the current value of the 

hyper-parameters 𝛏old is utilized to determine the posterior distribution of 𝜽 given by 

𝑝(𝜽|𝝀𝐸 , 𝚽𝐸 , 𝛏old). This posterior distribution is then used to estimate the expectation 

𝒬(𝛏, 𝛏old) = 𝐸{ln 𝑝 (𝛉, 𝝀𝐸 , 𝚽𝐸|𝛏)}. In the M step, the new parameter estimate 𝛏new is 

determined by maximizing the function 
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𝛏new = 𝑎𝑟𝑔max
𝛏

 𝒬(𝛏, 𝛏old) (A.6) 

 

The EM algorithm is initialized by choosing the starting values for 𝛏, then the E step 

and M step are performed successively until satisfactory convergence is achieved. The 

convergence of the EM algorithm has been proved that ln 𝑝(𝝀𝐸 , 𝚽𝐸|𝛏) always increases 

during the iterations and such that the estimated values approach the most probable 

values of 𝛏 monotonically (Moon, 1996; Wu, 1983; Boyles, 1983).  

 

  



 

164 

 

 

 



  

165 

 

REFERENCES 
 

Abdo MB, Hori M. A numerical study of structural damage detection using changes in 

the rotation of mode shapes. Journal of Sound and Vibration 2002; 251(2):227–239. 

 

Adams R, Cawley P, Pye C, Stone B. A vibration technique for non-destructively 

assessing the integrity of structures. Journal of Mechanical Engineering Science 1978; 

20(2):93–100. 

 

Adewuyi AP, Wu Z, Serker NHMK. Assessment of vibration-based damage 

identification methods using displacement and distributed strain measurements. 

Structural Health Monitoring 2009; 8(6):443–461. 

 

Ahmadian H, Mottershead J, Friswell M. Regularisation methods for finite element 

model updating. Mechanical Systems and Signal Processing 1998; 12(1):47–64. 

 

Allemang RJ. The modal assurance criterion–twenty years of use and abuse. Sound and 

Vibration 2003; 37(8):14–23. 

 

Allemang RJ, Brown DL. A correlation coefficient for modal vector analysis. In: 

Proceedings of the 1st International Modal Analysis Conference, Orlando, Florida, 8–

10 November 1982, pp. 110–116. 

 

Alvandi A, Cremona C. Assessment of vibration-based damage identification 

techniques. Journal of Sound and Vibration 2006; 292(1):179–202. 

 

Au JK. An ab initio approach to the inverse problem-based design of photonic bandgap 

devices. PhD Dissertation, Engineering and Applied Science, California Institute of 

Technology, California, United States, 2007. 

 

Babacan S, Molina R, Katsaggelos A. Bayesian compressive sensing using Laplace 

priors. IEEE Transactions on Image Processing 2010; 19(1):53–63. 



  

166 

 

Bakhary N, Hao H, Deeks AJ. Damage detection using artificial neural network with 

consideration of uncertainties. Engineering Structures 2007; 29(11):2806–2815. 

 

Bakhary N, Hao H, Deeks AJ. Structure damage detection using neural network with 

multi-stage substructuring. Advances in Structural Engineering 2010; 13(1):95–110. 

 

Bao Y, Beck JL, Li H. Compressive sampling for accelerometer signals in structural 

health monitoring. Structural Health Monitoring 2011; 10(3):235–246. 

 

Bao Y, Li H, Chen Z, Zhang F, Guo A. Sparse l1 optimizatio-based identification 

approach for the distribution of moving heavy vehicle loads on cable-stayed bridges. 

Structural Control and Health Monitoring 2016; 23(1):144–155. 

 

Bao Y, Li H, Ou J. Emerging data technology in structural health monitoring: 

compressive sensing technology. Journal of Civil Structural Health Monitoring 2014; 

2(4):77–90. 

 

Bao Y, Li H, Sun X, Yu Y, Ou J. A data loss recovery approach for wireless sensor 

networks using a compressive sampling technique. Structural Health Monitoring 2013; 

12(1):78–95. 

 

Baraniuk RG. More is less: signal processing and the data deluge. Science 2011; 

331(6018):717–719. 

 

Bauer F, Lukas MA. Comparingparameter choice methods for regularization of ill-

posed problems. Mathematics and Computers in Simulation 2011; 81(9):1795–1841. 

 

Bayissa WL, Haritos N, Thelandersson S. Vibration-based structural damage 

identification using wavelet transform. Mechanical Systems and Signal Processing 

2008; 22(5):1194–1215. 

 



  

167 

Beck JL. Bayesian system identification based on probability logic. Structural Control 

and Health Monitoring 2010; 17(7):825–847.  

 

Beck JL, Au SK. Bayesian updating of structural models and reliability using Markov 

Chain Monte Carlo simulation. Journal of Engineering Mechanics 2002; 128(4):380–

391. 

 

Beck JL, Katafygiotis LS. Updating models and their uncertainties. I: Bayesian 

statistical framework. Journal of Engineering Mechanics 1998; 124(4):455–461. 

 

Bishop CM. Pattern Recognition and Machine Learning. Berlin: Springer, 2006. 

 

Boyd S, Vandenberghe L. Convex optimization. New York: Cambridge University 

Press, 2004. 

 

Boyles RA. On the convergence of the EM algorithm. Journal of the Royal Statistical 

Society 1983; 45(1):47–50.  

 

Brownjohn JMW. Non-destructive testing using measurements of structural damping. 

BSc Dissertation, Department of Mechanical Engineering, University of Bristol, Bristol, 

UK, 1979. 

 

Cai TT, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise. 

IEEE Transactions on Information Theory 2011; 57(7):4680–4688. 

 

Candès EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal 

reconstruction from highly incomplete frequency information. IEEE Transactions on 

Information Theory 2006; 52(2):489–509. 

 

Candès EJ, Tao T. Decoding by linear programming. IEEE Transactions on Information 

Theory 2005; 51(12):4203–4215. 

 



  

168 

Candès EJ, Tao T. Near optimal signal recovery from random projections: universal 

encoding strategies? IEEE Transactions on Information Theory 2006; 52(12):5406–

5425. 

 

Candès EJ, Wakin M, Boyd S. Enhancing sparsity by reweighted l1 minimization. 

Journal of Fourier Analysis and Applications 2008; 14(5):877–905. 

 

Carden EP, Fanning P. Vibration based condition monitoring: a review. Structural 

Health Monitoring 2004; 3(4):355–377. 

 

Carlin BP, Polson NG. Inference for nonconjugate Bayesian models using the Gibbs 

sampler. The Canadian Journal of Statistics 1991; 19(4):399–405. 

 

Carvalho C, Polson N, Scott J. The horseshoe estimator for sparse signals. Biometrika 

2010; 97(2):465–480. 

 

Casciati S. Stiffness identification and damage localization via differential evolution 

algorithms. Structural Control and Health Monitoring 2008; 15(3):436–449. 

 

Casciati S. Statistical approach to a SHM benchmark problem. Smart Structures and 

Systems 2010; 6(1):17–27. 

 

Casciati S, Elia L. Damage localization in a cable-stayed bridge via bio-inspired 

metaheuristic tools. Structural Control and Health Monitoring 2017; 24(5):e1922. 

 

Castello D, Stutz L, Rochinha F. A structural defect identification approach based on a 

continuum damage model. Computers and Structures 2002; 80(5):417–436. 

 

Castillo I, Schmidt-Hieber J, van der Vaart A. Bayesian linear regression with sparse 

priors. The Annals of Statistics 2015; 43(5):1986–2018. 

 

Cawley P. Long range inspection of structures using low frequency ultrasound. In: 

Proceedings of the Structural Damage Assessment Using Advanced Signal Processing 

Procedures, University of Sheffield, UK, 30 June–2 July 1997, pp. 1–17.  



  

169 

 

Cetin M, Karl WC. Feature-enhanced synthetic aperture radar image formation based on 

nonquadratic regularization. IEEE Transactions on Image Processing 2001; 10(4):623–

631. 

 

Chandrashekhar M, Ganguli R. Damage assessment of structures with uncertainty by 

using mode-shape curvatures and fuzzy logic. Journal of Sound and Vibration 2009; 

326(3):939–957. 

 

Chang K, Shen Z, Lee G. Modal analysis technique for bridge damage detection. In: 

Proceedings of the Symposium of Structural Engineering Natural Hazards and 

Mitigation, Irvine, California, United States, 19–21 April 1993, pp. 1083–1088.  

 

Chang M, Pakzad SN. Optimal sensor placement for structural modal identification. 

Journal of Bridge Engineering 2014; 19(6):1–10. 

 

Chartrand R. Exact reconstruction of sparse signals via nonconvex minimizaion. IEEE 

Signal Processing Letters 2007; 14(10):707–710. 

 

Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive 

sensing. Inverse Problems 2008; 24(3):1–14. 

 

Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. In: 

Proceedings of IEEE International Conference on Acoustics, Speech and Signal 

Processing, Las Vegas, Nevada, USA, 31 March–4 April 2008, pp. 3869–3872.  

 

Chen L, Gu Y. Local and global optimality of lp minimization for sparse recovery. In: 

Proceedings of IEEE International Conference on Acoustics, Speech and Signal 

Processing, South Brisbane, Queensland, Australia, 19–24 April 2015, pp. 3596–3600.  

 

Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit. SIAM Journal 

on Scientific Computing 1998; 20(1):33–61. 

 



  

170 

Cheung SH, Beck JL. Calculation of the posterior probability for Bayesian model class 

assessment and averaging from posterior samples based on dynamic system data. 

Computer-Aided Civil and Infrastructure Engineering 2010; 25(5):304–321. 

 

Ching J, Beck JL. Bayesian analysis of the phase II IASC–ASCE structural health 

monitoring experimental benchmark data. Journal of Engineering Mechanics 2004; 

130(10):1233–44.  

 

Ching J, Chen YC. Transitional Markov Chain Monte Carlo method for Bayesian model 

updating, model class selection and model averaging. Journal of Engineering 

Mechanics 2007; 133(7):816–832. 

 

Ching J, Phoon KK, Beck JL, Huang Y. Identifiability of geotechnical site-specific 

trend functions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, 

Part A: Civil Engineering 2017; 3(4):04017021. 

 

Claerbout JF, Muir F. Robust modeling with erratic data. Geophysics 1973; 38(5):826–

844. 

 

Cornwell P, Doebling SW, Farrar CR. Application of the strain energy damage 

detection method to plate-like structures. Journal of Sound and Vibration 1999; 

224(2):359–374. 

 

Couvreur C. The EM algorithm: A guided tour. In: Proceedings of the 2nd IEEE 

European Workshop on Computer-Intensive Methods in Control and Signal Processing, 

Prague, Czech Republic, 28–30 August 1996, pp. 209–222.  

 

Crespo P, Ruotolo R, Surace C. Non-linear modeling of a cracked beam. In: 

Proceedings of the 14th International Modal Analysis Conference, Dearborn, Michigan, 

12–15 February 1996, pp. 1017–1022.  

 



  

171 

Das S, Saha P, Patro SK. Vibration-based damage detection techniques used for health 

monitoring of structures: A review. Journal of Civil Structural Health Monitoring 2016; 

6(3):477–507. 

 

Daubechies I, DeVore R, Fornasier M, GÜNTÜRK CS. Iteratively reweighted least 

squares minimization for sparse recovery. Communications on Pure and Applied 

Mathematics 2010; 63(1):1–38.  

 

Davis G, Mallat S, Zhang Z. Adaptive time-frequency decompositions with matching 

pursuits. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency 

and Time-Scale Analysis, Victoria, BC, Canada, 4–6 October 1992, pp. 7–10. 

 

Doebling SW. Minimum-rank optimal update of elemental stiffness parameters for 

structural damage identification. AIAA Journal 1996; 34(12):2615–2621. 

 

Doebling SW, Farrar CR, Prime MB, Shevitz DW. Damage identification and health 

monitoring of structural and mechanical systems from changes in their vibration 

characteristics: a literature review, Los Alamos National Laboratory Report, 1996. 

 

Dong J, Zhang G, Zhang Z, Geng Y, Wang J. Inverse problem solution and 

regularization parameter selection for current distribution reconstruction in switching 

arcs by inverting magnetic fields. Mathematical Problems in Engineering 2018; 

2018e:7452863. 

 

Donoho DL. Compressed sensing. IEEE Transactions on Information Theory 2006a; 

52(4):1289–1306. 

 

Donoho DL. For most large underdetermined systems of linear equations the minimal 

l1-norm solution is also the sparsest solution. Communications on Pure and Applied 

Mathematics 2006b; 59(7):907–934. 

 



  

172 

Donoho DL, Elad M. Optimally sparse representation in general (nonorthogonal) 

dictionaries via l1 minimization. Proceedings of the National Academy Sciences of the 

United States of America 2003; 100(5):2197–2202. 

 

Donoho DL, Logan BF. Signal recovery and the large sieve. SIAM Journal on Applied 

Mathematics 1992; 52(2):577–591. 

 

Donoho DL, Stark PB. Uncertainty principles and signal recovery. SIAM Journal on 

Applied Mathematics 1989; 49(3):906–931. 

 

Efron B, Hastie T, Johnson I, Tibshirani R. Least angle regression. The Annals of 

Statistics 2004; 32(2):407–499. 

 

Elad M. Optimized projections for compressed sensing. IEEE Transactions on Signal 

Processing 2007; 55(12):5695–5702. 

 

Engl HW, Hanke M, Neubauer A. Regularization of inverse problems. Dordrecht, 

Netherlands: Kluwer Academic Publishers, 1996. 

 

Eraky A, Saad A, Anwar AM, Abdo A. Damage detection of plate-like structures based 

on residual force vector. HBRC Journal 2016; 12(3):255–262. 

 

Fan XY, Li J, Hao H, Ma SL. Identification of minor structural damage based on 

electromechanical impedance sensitivity and sparse regularization. Journal of 

Aerospace Engineering 2018; 31(5):04018061. 

 

Fanning PJ, Carden EP. Experimentally validated added mass identification algorithm 

based on frequency response functions. Journal of Engineering Mechanics 2004; 

130(9):1045–1051. 

 

Farrar CR, Doebling SW. Damage detection and evaluation II. Modal Analysis and 

Testing. Dordrecht, Netherlands: Kluwer Academic Publishers, 1999. 

 



  

173 

Farrar CR, Doebling SW, Nix DA. Vibration–based structural damage identification. 

Philosophical Transactions of the Royal Society of London Series A-Mathematical, 

Physical and Engineering Sciences 2001; 359(1778):131–149. 

 

Farrar CR, Jauregui DA. Comparative study of damage identification algorithms 

applied to a bridge: II. Numerical study. Smart Materials and Structures 1998; 

7(5):704–719. 

 

Faul AC, Tipping ME. Analysis of sparse Bayesian learning. In: Proceedings of 

Advances in Neural Information Processing Systems (NIPS 14), Vancouver, British 

Columbia, Canada, 1 September 2002, pp. 383–389. 

 

Foucart S, Lai M. Sparsest solutions of underdetermined linear systems via lq-

minimization for 0 < q ≤ 1. Applied and Computational Harmonic Analysis 2009; 

26(3):395–407. 

 

Friswell M, Mottershead JE. Finite element model updating in structural dynamics. 

Dordrecht, Netherlands: Kluwer Academic Publishers, 1995. 

 

Friswell M, Penny JE. The practical limits of damage detection and location using 

vibration data. In: Proceedings of the 11th VPI and SU Symposium on Structural 

Dynamics and Control, Blacksburg, Virginia, 12–14 May 1997, pp. 31–40.  

 

Fritzen CP, Jennewein D, Kiefer T. Damage detection based on model updating 

methods. Mechanical Systems and Signal Processing 1998; 12(1):163–186. 

 

Frýba L, Pirner M. Load tests and modal analysis of bridges. Engineering Structures 

2001; 23(1):102–109. 

 

Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian Data Analysis. Boca Raton, 

Florida: CRC Press, 2003. 

 



  

174 

Goldberg DE. Genetic algorithms in search, machine learning and optimisation. New 

York: Addison Wesley, 1989. 

 

Golub GH, Heath M, Wahba G. Generalized cross–validation as a method for choosing 

a good ridge parameter. Technometrics 1979; 21(2):215–223. 

 

Gorodnitsky IF, Rao BD. Sparse signal reconstruction from limited data using 

FOCUSS: A reweighted minimum norm algorithm. IEEE Transactions on Signal 

Processing 1997; 45(3):600–616. 

 

Griffin J, Brown P. Inference with normal-gamma prior distributions in regression 

problems. Bayesian Analysis 2010; 5(1):171–88. 

 

Guan H, Karbhari VM. Improved damage detection method based on element modal 

strain damage index using sparse measurement. Journal of Sound and Vibration 2008; 

309(3):465–494. 

 

Hadjileontiadis L, Douka E. Crack detection in plates using fractal dimension. 

Engineering Structures 2007; 29(7):1612–1625. 

 

Hadjileontiadis L, Douka E, Trochidis A. Fractal dimension analysis for crack 

identification in beam structures. Mechanical Systems and Signal Processing 2005; 

19(3):659–674. 

 

Hämarik U, Raus T. On the choice of the regularization parameter in ill-posed problems 

with approximately given noise level of data. Journal of Inverse and Ill-posed Problems 

2006; 14(3):251–266. 

 

Hans CM. Bayesian lasso regression. Biometrika 2009; 96(4):835–45. 

 

Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM 

Review 1992; 34(4):561–580. 

 



  

175 

Hansen PC. The L-curve and its use in the numerical treatment of inverse problems. In: 

Computational Inverse Problems in Electrocardiology, WIT Press, Southampton, UK, 

pp. 119–142, 2001. 

 

Hao H, Xia Y. Vibration-based damage detection of structures by genetic algorithm. 

Journal of Computing in Civil Engineering 2002; 16(3):222–229. 

 

Hearn G, Testa RB. Modal analysis for damage detection in structures. Journal of 

Structural Engineering 1991; 117(10):3042–3063. 

 

Hemez FM, Farhat C. An energy based optimum sensor placement criterion and its 

application to structural damage detection. In: Proceedings of 12th International Modal 

Analysis Conference (IMAC), Honolulu, Hawaii, 31 January–3 February 1994, pp. 

1568–1575.  

 

Heo G, Wang ML, Satpathi D. Optimal transducer placement for health monitoring of 

long span bridge. Soil Dynamics and Earthquake Engineering 1997; 16:495–502. 

 

Hernandez EM. Identification of isolated structural damage from incomplete spectrum 

information using l1-norm minimization. Mechanical Systems and Signal Processing 

2014; 46(1):59–69. 

 

Holland JH. Adaption in natural and artificial systems. Ann Arbor: University of 

Michigan Press, 1975. 

 

Hou RR, Xia Y, Zhou XQ. Structural damage detection based on l1 regularization using 

natural frequencies and mode shapes. Structural Control and Health Monitoring 2018; 

25(3):e2107. 

 

Hou Z, Noori M, Amand RS. Wavelet-based approach for structural damage detection. 

Journal of Engineering Mechanics 2000; 126(7):677–683. 

 



  

176 

Hua XG, Ni YQ, Chen ZQ, Ko JM. An improved perturbation method for stochastic 

finite element model updating. International Journal for Numerical Method in 

Engineering 2008; 73(3):1845–1864. 

 

Huang Y, Beck JL. Hierarchical sparse Bayesian learning for structural health 

monitoring with incomplete modal data. International Journal for Uncertainty 

Quantification 2015; 5(2):139–69. 

 

Huang Y, Beck JL. Full Gibbs sampling procedure for Bayesian system identification 

incorporating sparse Bayesian learning with automatic relevance determination. 

Computer-Aided Civil and Infrastructure Engineering 2018; 33(9):712–730. 

 

Huang Y, Beck JL, Li H. Hierarchical sparse Bayesian learning for structural damage 

detection: Theory, computation and application. Structural Safety 2017a; 64:37–53. 

 

Huang Y, Beck JL, Li H. Bayesian system identification based on hierarchical sparse 

Bayesian learning and Gibbs sampling with application to structural damage 

assessment. Computer Methods in Applied Mechanics and Engineering 2017b; 

318:382–411. 

 

Huang Y, Beck JL, Li H. Multi-task sparse Bayesian learning with applications in 

Structural Health Monitoring. Computer-Aided Civil and Infrastructure Engineering 

2018a; DOI: 10.1111/mice.12408. 

 

Huang Y, Beck JL, Wu S, Li H. Robust Bayesian compressive sensing for signals in 

structural health monitoring. Computer-Aided Civil and Infrastructure Engineering 

2014; 29(3):160–179. 

 

Huang Y, Li H, Wu S, Yang YC. Fractal dimension based damage identification 

incorporating multi-task sparse Bayesian learning. Smart Materials and Structures 

2018b; 27:075020. 

 



  

177 

Huang Y, Shao C, Wu B, Beck JL, Li H. State-of-the-art review on Bayesian inference 

in structural system identification and damage assessment. Advances in Structural 

Engineering 2018; DOI: 10.1177/1369433218811540.  

 

Isakov V. Inverse Problems for Partial Differential Equations. New York: Springer, 

2006. 

 

Jaishi B, Ren WX. Damage detection by finite element model updating using modal 

flexibility residual. Journal of Sound and Vibration 2006; 290(1):369–387. 

 

Jaynes ET. Probability theory: The logic of science. Cambridge, UK: Cambridge 

University Press, 2003.  

 

Ji S, Xue Y, Carin L. Bayesian compressive sensing. IEEE Transactions on Signal 

Processing 2008; 56(6):2346–2356. 

 

Jiang X, Mahadevan S. Bayesian wavelet methodology for structural damage detection. 

Structural Control and Health Monitoring 2008; 15(7):974–991. 

 

Johnson EA, Lam HF, Katafygiotis LS, Beck JL. A benchmark problem for structural 

health monitoring and damage detection. In: Proceedings of the 14th Engineering 

Mechanics Conference, Austin, Texas, May 2000, ASCE.  

 

Johnson EA, Lam HF, Katafygiotis LS, Beck JL. Phase 1 IASC–ASCE structural health 

monitoring benchmark problem using simulated data. Journal of Engineering 

Mechanics 2004; 130(1):3–15. 

 

Johnstone IM. On minimax estimation of a sparse normal mean vector. The Annals of 

Statistics 1994; 22(1):271–289. 

 

Kammer DC. Sensor placement for on‐orbit modal identification and correlation of 

large space structures. Journal of Guidance, Control Dynamics 1991; 14(2):251–259. 

 



  

178 

Kaouk M, Zimmerman DC. Structural damage assessment using a generalized 

minimum rank perturbation theory. AIAA Journal 1994; 32(4):836–842. 

 

Katafygiotis LS, Beck JL. Updating models and their uncertainties. II: Model 

Identifiability. Journal of Engineering Mechanics 1998; 124(4):463–467. 

 

Kim JT, Stubbs N. Model-uncertainty impact and damage-detection accuracy in plate 

girder. Journal of Structural Engineering 1995; 121(10):1409–1417. 

 

Kim JT, Stubbs N. Improved damage identification method based on modal 

information. Journal of Sound and Vibration 2002; 252(2):223–238. 

 

Kim JT, Stubbs N. Crack detection in beam-type structures using frequency data. 

Journal of Sound and Vibration 2003; 259(1):145–160. 

 

Kirkegaard PH, Brincker R. On the optimal locations of sensors for parametric 

identification of linear structural systems. Mechanical Systems and Signal Processing 

1994; 8(6):639–647. 

 

Koh K, Kim SJ, Boyd S. An interior-point method for large-scale l1-regularized logistic 

regression. Journal of Machine Learning Research 2007; 8(7):1519–1555. 

 

Kosmatka JB, Ricles JM. Damage detection in structures by modal vibration 

characterization. Journal of Structural Engineering 1999; 125(12):1384–1392. 

 

Kullback S. Information Theory and Statistics. Mineola, NY: Dover Publications, 1968. 

 

Kullback S, Leibler RA. On information and sufficiency. Annals of Mathematical 

Statistics 1951; 22(1):79–86.  

 

Lam HF, Yang JH, Au SK. Markov chain Monte Carlo-based Bayesian method for 

structural model updating and damage detection. Structural Control Health Monitoring 

2018; 25:e2140. 



  

179 

 

Leahy RM, Jeffs BD. On the design of maximally sparse beamforming arrays. IEEE 

Transactions on Antennas and Propagation 1991; 39(8):1178–1187. 

 

Lee JJ, Lee JW, Yi JH, Yun CB, Jung HY. Neural networks-based damage detection for 

bridges considering errors in baseline finite element models. Journal of Sound and 

Vibration 2005; 280(3):555–578. 

 

Lee U, Shin J. A frequency response function-based structural damage identification 

method. Computers and Structures 2002; 80(2):117–132. 

 

Li HL, Deng XY, Dai HL. Structural damage detection using the combination method 

of EMD and wavelet analysis. Mechanical Systems and Signal Processing 2007; 

21(1):298–306. 

 

Li X, Law S. Adaptive Tikhonov regularization for damage detection based on 

nonlinear model updating. Mechanical Systems and Signal Processing 2010; 

24(6):1646–1664. 

 

Lieven N, Ewins D. Spatial correlation of mode shapes, the coordinate modal assurance 

criterion (COMAC). In: Proceedings of the 6th International Modal Analysis 

Conference, Orlando, Florida, USA, 1–4 February 1988, pp. 690–695.  

 

Liew K, Wang Q. Application of wavelet theory for crack identification in structures. 

Journal of Engineering Mechanics 1998; 124(2):152–157. 

 

Lin J, Nassar M, Evans BL. Impulsive noise mitigation in powerline communications 

using sparse Bayesian learning. IEEE Journal on Selected Areas of Communications 

2013; 31(7):1172–1183. 

 

Liu PL. Identification and damage detection of trusses using modal data. Journal of 

Structural Engineering 1995; 121(4):599–608. 

 



  

180 

Liu W, Gao WC, Sun YI, Xu MJ. Optimal sensor placement for spatial lattice structure 

based on genetic algorithms. Journal of Sound and Vibration 2008; 317:175–189. 

 

Lu CJ, Hsu YT. Vibration analysis of an inhomogeneous string for damage detection by 

wavelet transform. International Journal of Mechanical Sciences 2002; 44(4):745–754. 

 

Lukas MA. On the discrepancy principle and generalised maximum likelihood for 

regularisation. Bulletin of the Australian Mathematical Society 1995; 52(3):399–424.  

 

Mackay DJC. Bayesian methods for adaptive models. PhD Dissertation, Computation 

and Neural Systems, California Institute of Technology, California, United States, 1992.  

 

Maia N, Silva J, Almas E, Sampaio R. Damage detection in structures: from mode 

shape to frequency response function methods. Mechanical Systems and Signal 

Processing 2003; 17(3):489–498. 

 

Mairal J, Yu B. Complexity analysis of the Lasso regularization path. In: Proceedings 

of the International Conference on Machine Learning (ICML), Edinburgh, Scotland, 

UK, 27 June–3 July 2012, pp 353–360.  

 

Malioutov D, Çetin M, Willsky AS. A sparse signal reconstruction perspective for 

source localization with sensor arrays. IEEE Transactions on Signal Processing 2005; 

53(8):3010–3022. 

 

Mallat S. A wavelet tour of signal processing. San Diego, USA: Academic press, 1999. 

 

Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE 

Transactions on Signal Processing 1993; 41:3397–3415. 

 

Mannan M, Richardson MH. Detection and location of structural cracks using FRF 

measurements. In: Proceedings of the 8th International Modal Analysis Conference, 

Orlando, Florida, 29 January–1 February 1990, pp. 652–657.  

 



  

181 

Mascarenas D, Cattaneo A, Theiler J, Farrar C. Compressed sensing techniques for 

detecting damage in structures. Structural Health Monitoring 2013; 12(4):325–38. 

 

Meo M, Zumpano G. On the optimal sensor placement techniques for a bridge structure. 

Engineering Structures 2005; 27(10):1488–1497. 

 

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state 

calculations by fast computing machines. Journal of Chemical Physics 1953; 

21(6):1087–1092. 

 

Montazer M, Seyedpoor S. A new flexibility based damage index for damage detection 

of truss structures. Shock and Vibration 2014; 2014:460692. 

 

Moon TK. The expectation–maximization algorithm. IEEE Signal Processing Magazine 

1996; 13(6):47–60.  

 

Morassi A. Identification of a crack in a rod based on changes in a pair of natural 

frequencies. Journal of Sound and Vibration 2001; 242(4):577–596. 

 

Morozov VA. On the solution of functional equations by the method of regularization. 

Soviet Mathematics Doklady 1966; 167(3):510–512. 

 

Morozov VA. Methods for solving incorrectly posed problems. New York: Springer, 

2012. 

 

Mottershead J, Friswell M. Model updating in structural dynamics: a survey. Journal of 

Sound and Vibration 1993; 167(2):347–375. 

 

Mu HQ, Yuen KV. Novel sparse Bayesian learning and its application to ground motion 

pattern recognition. Journal of Computing in Civil Engineering 2017; 31(5):1943–5487. 

 



  

182 

Mustafa S, Debnath N, Dutta A. Bayesian probabilistic approach for model updating 

and damage detection for a large truss bridge. International Journal of Steel Structures 

2015; 15(2):473–485. 

 

Natarajan A, Wu Y. Computational complexity of certifying restricted isometry 

property. In: Leibniz International Proceedings in Informatics, Wadern, Germany, 

2014, pp. 371–380.  

 

Natarajan BK. Sparse approximate solutions to linear systems. SIAM Journal on 

Computation 1995; 24(2):227–234. 

 

Ndambi JM, Vantomme J, Harri K. Damage assessment in reinforced concrete beams 

using eigenfrequencies and mode shape derivatives. Engineering Structures 2002; 

24(4):501–515. 

 

Nelson RB. Simplified calculation of eigenvector derivatives. AIAA Journal 1976; 

14(9):1201–1205. 

 

Nichols JM, Link WA, Murphy KD, Olson CC. A Bayesian approach to identifying 

structural nonlinearity using free-decay response: application to damage detection in 

composites. Journal of Sound and Vibration 2010; 329(15):2995–3007.  

 

Nuno K. Damage detection of a steel truss bridge using frequency response function 

curvature method. Stockholm: KTH Royal Institute of Technology, 2013; 2:3–8. 

 

Onar A. Laplace approximations in Bayesian lifetime analysis. Wiley StatsRef: 

Statistics Reference Online, 2014. 

 

Osborne MR, Presnell B, Turlach BA. A new approach to variable selection in least 

squares problems. IMA Journal of Numerical Analysis, 2000; 20:389–404. 

 

Pandey A, Biswas M, Samman M. Damage detection from changes in curvature mode 

shapes. Journal of Sound and Vibration 1991; 145(2):321–332. 



  

183 

 

Pandey A, Biswas M. Damage detection in structures using changes in flexibility. 

Journal of Sound and Vibration 1994; 169(1):3–17. 

 

Papadimitriou C. Optimal sensor placement methodology for parametric identification 

of structural systems. Journal of Sound and Vibration 2004; 278:923–947. 

 

Peterson S, McLean D, Symans M, Pollock D, Cofer W, Emerson R, Fridley KJ. 

Application of dynamic system identification to timber beams. II. Journal of Structural 

Engineering 2001; 127(4):426–432. 

 

Phillips DL. A technique for the numerical solution of certain integral equations of the 

first kind. Journal of Association for Computing Machinery 1962; 9(1):84–97. 

 

Pradeep K, Rao BN, Srinivasan S, Balasubramaniamd K. Modal strain energy change 

ratio for damage identification in honeycomb sandwich structures. Canadian Journal of 

Basic and Applied Sciences 2014; 2(1):10–24. 

 

Qiao P, Lu K, Lestari W, Wang J. Curvature mode shape-based damage detection in 

composite laminated plates. Composite Structures 2007; 80(3):409–428. 

 

Ratcliffe CP. Damage detection using a modified Laplacian operator on mode shape 

data. Journal of Sound and Vibration 1997; 204(3):505–517. 

 

Ratcliffe CP, Bagaria WJ. Vibration technique for locating delamination in a composite 

beam. AIAA Journal 1998; 36(6):1074–1077. 

 

Reddy DM, Swarnamani S. Application of the FRF curvature energy damage detection 

method to plate like structures. World Journal of Modelling and Simulation 2012; 

8(2):147–153. 

 

Rosset S, Zhu J. Piecewise linear regularized solution paths. Advances in Neural 

Information Processing Systems 2004; 35(3):1012–1030. 



  

184 

 

Roveri N, Carcaterra A. Damage detection in structures under traveling loads by 

Hilbert-Huang transform. Mechanical Systems and Signal Processing 2012; 28:128–

144. 

 

Rucka M. Damage detection in beams using wavelet transform on higher vibration 

modes. Journal of Theoretical and Applied Mechanics 2011; 49(2):399–417. 

 

Rytter A. Vibration Based Inspection of Civil Engineering Structures. PhD Dissertation, 

Department of Building Technology and Structural Engineering, Aalborg University, 

Denmark, 1993. 

 

Saab R, Yilmaz Ö. Sparse recovery by non-convex op-timization – instance optimality. 

Applied and Computational Harmonic Analysis 2010; 29(1):30–48. 

 

Sahin M, Shenoi R. Quantification and localisation of damage in beam-like structures 

by using artificial neural networks with experimental validation. Engineering Structures 

2003; 25(14):1785–1802. 

 

Salane H, Baldwin Jr J. Identification of modal properties of bridges. Journal of 

Structural Engineering 1990; 116(7):2008–2021. 

 

Salawu OS. Detection of structural damage through changes in frequency: a review. 

Engineering Structures 1997; 19(9):718–723. 

 

Salawu OS, Williams C. Bridge assessment using forced-vibration testing. Journal of 

Structural Engineering 1995; 121(2):161–173. 

 

Sampaio R, Maia N, Silva J. Damage detection using the frequency-response-function 

curvature method. Journal of Sound and Vibration 1999; 226(5):1029–1042. 

 

Sawyer JP, Rao SS. Structural damage detection and identification using fuzzy logic. 

AIAA Journal 2000; 38(12):2328–2335. 



  

185 

 

Shah SP, Popovics JS, Subramaniam KV, Aldea CM. New directions in concrete health 

monitoring technology. Journal of Engineering Mechanics 2000; 126(7):754–760. 

 

Shi Z, Law S, Zhang L. Optimum sensor placement for structural damage detection. 

Journal of Engineering Mechanics 2000a; 126(11):1173–1179. 

 

Shi Z, Law S, Zhang L. Damage localization by directly using incomplete mode shapes. 

Journal of Engineering Mechanics 2000b; 126(6):656–660. 

 

Shi Z, Law S, Zhang L. Improved damage quantification from elemental modal strain 

energy change. Journal of Engineering Mechanics 2002; 128(5):521–529. 

 

Shih HW, Thambiratnam DP, Chan TH. Vibration based structural damage detection in 

flexural members using multi-criteria approach. Journal of Sound and Vibration 2009; 

323(3):645–661. 

 

Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR, Czarnecki JJ. 

A review of structural health monitoring literature: 1996–2001, Los Alamos National 

Laboratory Report, 2003. 

 

Sohn H, Law K. A Bayesian probabilistic approach for structure damage detection. 

Earthquake Engineering and Structural Dynamics 1997; 26(12):1259–1281. 

 

Sohn H, Law K. Bayesian probabilistic damage detection of a reinforced-concrete 

bridge column. Earthquake Engineering and Structural Dynamics 2000; 29(8):1131–

1152. 

 

Song H, Zhong L, Han B. Structural damage detection by integrating independent 

component analysis and support vector machines. International Journal of Systems 

Science 2005; 37(13):961–967. 

 



  

186 

Taylor HL, Banks SC, McCoy JF. Deconvolution with the l1 norm. Geophysics 1979; 

44(1):39–52. 

 

Theodoridis S, Kopsinis Y, Slavakis K. Sparsity-aware learning and compressed 

sensing: An overview. Academic Press Library in Signal Processing 2014; 1:1271–

1377. 

 

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society 1996; 58(1):267–288. 

 

Tikhonov AN. Solution of Incorrectly Formulated Problems and the Regularization 

Method. Soviet Mathematics Doklady 1963; 4:1035–1038. 

 

Tillmann AM, Pfetsch ME. The computational complexity of the restricted isometry 

property, the nullspace property, and related concepts in compressed sensing. IEEE 

Transactions on Information Theory 2014; 60(2):1248–1259. 

 

Tipping ME. Sparse Bayesian learning and the relevance vector machine. Journal of 

Machine Learning Research 2001; 1:211–244. 

 

Tipping ME, Faul AC. Fast marginal likelihood maximisation for sparse Bayesian 

models. In: Proceedings of the 9th International Workshop on Artificial Intelligence 

and Statistics, Key West, Florida, USA, 3–6 January 2003.  

 

Tondreau G, Reynders E, Deraemaeker A. Towards a more realistic modelling of the 

uncertainty on identified mode shapes due to measurement noise. In: Proceedings of the 

9th International Conference on Damage Assessment of Structures, Oxford, UK, 11–13 

July 2011, 305:012002.  

 

Van Overschee P, De Moor BL. Subspace Identification for Linear Systems: Theory, 

Implementation, Applications. Dordrecht, Netherlands: Kluwer Academic Publishers, 

1996. 

 



  

187 

Vanik MW, Beck JL, Au SK. Bayesian probabilistic approach to structural health 

monitoring. Journal of Engineering Mechanics 2000; 126(7):738–745. 

 

Wahab MA, De Roeck G. Damage detection in bridges using modal curvatures: 

application to a real damage scenario. Journal of Sound and Vibration 1999; 

226(2):217–235. 

 

Wang S, Liu F, Zhang M. Modal strain energy based structural damage localization for 

offshore platform using simulated and measured data. Journal of Ocean University of 

China 2014; 13(3):397–406. 

 

Wang Y, Hao H. An introduction to compressive sensing and its potential applications 

in structural engineering. In: The 11th International Symposium on Structural 

Engineering, Guangzhou, China, 18–20 December 2010, pp. 1089–1094.  

 

Wang Y, Zhao T. Statistical interpretation of soil property profiles from sparse data 

using Bayesian compressive sampling. Geotechnique 2017; 67(6):523–36. 

 

Wang Z, Lin R, Lim M. Structural damage detection using measured FRF data. 

Computer Methods in Applied Mechanics and Engineering 1997; 147(1):187–197. 

 

Wang ZC, Chen GD. Analytical mode decomposition with Hilbert Transform for modal 

parameter identification of buildings under ambient vibration. Engineering Structures 

2014; 59:173–184. 

 

Weber B, Paultre P, Proulx J. Consistent regularization of nonlinear model updating for 

damage identification. Mechanical Systems and Signal Processing 2009; 23(6):1965–

1985. 

 

Weng S. A new substructuring method for model updating of large scale structures. 

PhD Dissertation, Department of Civil and Structural Engineering, The Hong Kong 

Polytechnic University, Hong Kong, 2010. 

 



  

188 

Weng S, Xia Y, Xu YL, Zhu HP. An iterative substructuring approach to the calculation 

of eigensolution and eigensensitivity. Journal of Sound and Vibration 2011; 

330(14):3368–3380. 

 

Weng S, Xia Y, Zhou XQ, Xu YL, Zhu HP. Inverse substructure method for model 

updating of structures, Journal of Sound and Vibration 2012; 331(25):5449–5468. 

 

Wickramasinghe WR, Thambiratnam DP, Chan TH. Use of modal flexibility method to 

detect damage in suspended cables and the effects of cable parameters. Electronic 

Journal of Structural Engineering 2015; 14(1):133–144. 

 

Williams O, Blake A, Cipolla R. Sparse Bayesian learning for efficient visual tracking. 

IEEE Transactions on Pattern Analysis and Machine Intelligence 2005; 27(8):1292–

1304. 

 

Williams PM. Bayesian regularization and pruning using a Laplace prior. Neural 

Computation 1995; 7(1):117–14.  

 

Wipf DP. Sparse estimation with structured dictionaries. In: Proceedings of the 24th 

Advances in Neural Information Processing Systems, Granada, Spain, 12–15 December 

2011, pp. 2016–2024. 

 

Wipf DP, Palmer J, Rao B. Perspectives on sparse Bayesian learning. Advances in 

Neural Information Processing Systems 2004; 52(16):2153–2164. 

 

Wipf DP, Rao BD. Sparse Bayesian learning for basis selection. IEEE Transactions on 

Signal Processing 2004; 52(8):2153–2164. 

 

Worden K, Burrows AP. Optimal sensor placement for fault detection. Engineering 

Structures 2001; 23(8):885–901. 

 

Wu C. On the convergence properties of the EM algorithm. The Annals of Statistics 

1983; 11(1):95–103.  



  

189 

 

Wu D, Law S. Damage localization in plate structures from uniform load surface 

curvature. Journal of Sound and Vibration 2004; 276(1):227–244. 

 

Wu D, Law S. Sensitivity of uniform load surface curvature for damage identification in 

plate structures. Journal of Vibration and Acoustics 2005; 127(1):84–92. 

 

Xia Y, Hao H. Measurement selection for vibration-based structural damage 

identification. Journal of Sound and vibration 2000; 236(1):89–104. 

 

Xia Y, Hao H. Statistical damage identification of structures with frequency changes. 

Journal of Sound and Vibration 2003; 263(4):853–870. 

 

Xia Y, Hao H, Brownjohn JMW, Xia PQ. Damage identification of structures with 

uncertain frequency and mode shape data. Earthquake Engineering and Structural 

Dynamics 2002; 31(5):1053–1066. 

 

Xia Y, Hao H, Deeks AJ, Zhu X. Condition assessment of shear connectors in slab-

girder bridges via vibration measurements. Journal of Bridge Engineering 2008; 

13(1):43–54. 

 

Xia Y, Weng S, Xu YL, Zhu HP. Calculation of eigenvalue and eigenvector derivatives 

with the improved Kron’s substructuring method. Structural Engineering and 

Mechanics 2010; 36(1):37–55. 

 

Xu W, Cao M, Ostachowicz W, Radzieński M, Xia N. Two-dimensional curvature 

mode shape method based on wavelets and Teager energy for damage detection in 

plates. Journal of Sound and Vibration 2015; 347:266–278. 

 

Xu YL, Chen J. Structural damage detection using empirical modes decomposition: 

Experimental investigation. Journal of Engineering Mechanics-ASCE 2004; 

130(11):1279–1288. 

 



  

190 

Xu YL, Xia Y. Structural health monitoring of long-span suspension bridges. London: 

Spon Press, 2011. 

 

Xu ZB, Zhang H, Wang Y, Chang XY, Liang Y. L1/2 regularization. Science China 

2010; 53(6):1159–1169. 

 

Yan YJ, Cheng L, Wu ZY, Yam LH. Development in vibration-based structural damage 

detection technique. Mechanical Systems and Signal Processing 2007; 21(5):2198–

2211. 

 

Yang JN, Lei Y, Lin S, Huang N. Hilbert–Huang based approach for structural damage 

detection. Journal of Engineering Mechanics 2004; 130(1):85–95. 

 

Yang JN, Xia Y, Loh CH. Damage identification of bolt connections in a steel frame. 

Journal of Structural Engineering 2014; 140(3):04013064. 

 

Yang QW, Li JK. Damage identification by the eigenparameter decomposition of 

structural flexibility change. International Journal for Numerical Method in 

Engineering 2009; 78(4):444–459. 

 

Yang QW, Liu J. Structural damage identification based on residual force vector. 

Journal of Sound and Vibration 2007; 305(1):298–307. 

 

Yang Y, Nagarajaiah S. Output-only modal identification with limited sensors using 

sparse component analysis. Journal of Sound and Vibration 2013; 332(19):4741–4765. 

 

Yang Y, Nagarajaiah S. Blind denoising of structural vibration responses with outliers 

via principal component pursuit. Structural Control and Health Monitoring 2014a; 

21(6):962–978. 

 

Yang Y, Nagarajaiah S. Structural damage identification via a combination of blind 

feature extraction and sparse representation classification. Mechanical Systems and 

Signal Processing 2014b; 45(1):1–23. 



  

191 

 

Yang Y, Nagarajaiah S. Output-only modal identification by compressed sensing: Non-

uniform low-rate random sampling. Mechanical Systems and Signal Processing 2015; 

56–57:15–34. 

 

Yao G, Chang K, Lee G. Damage diagnosis of steel frames using vibrational signature 

analysis. Journal of Engineering Mechanics 1992; 118(9):1949–1961. 

 

Yao H, Gerstoft P, Shearer PM, Mecklenbräuker C. Compressive sensing of the 

Tohoku‐Oki Mw 9.0 earthquake: Frequency‐dependent rupture modes. Geophysical 

Research Letters 2011; 38(20):1–5. 

 

Yao L, Sethares WA, Kammer DC. Sensor placement for on-orbit modal identification 

via a genetic algorithm. AIAA Journal 1993; 31(10):1167–9. 

 

Yi TH, Li HN, Zhang XD. Health monitoring sensor placement optimization for Canton 

Tower using immune monkey algorithm. Structural Control and Health Monitoring 

2015; 22(1):123–138. 

 

Yin T, Jiang QH, Yuen KV. Vibration-based damage detection for structural 

connections using incomplete modal data by Bayesian approach and model reduction 

technique. Engineering Structures 2017; 132:260–277. 

 

Yoon M, Heider D, Gillespie J, Ratcliffe C, Cran, R. Local damage detection using the 

two-dimensional gapped smoothing method. Journal of Sound and Vibration 2005; 

279(1):119–139. 

 

Zhang C, Huang JZ, Song GQ, Chen L. Structural damage identification by extended 

kalman filter with l1-norm regularization scheme. Structural Control and Health 

Monitoring 2017; 24(11):e1999. 

 



  

192 

Zhang C, Xu Y. Comparative studies on damage identification with Tikhonov 

regularization and sparse regularization. Structural Control and Health Monitoring 

2016; 23(3):560–579. 

 

Zhang J, Li P, Wu Z. A new flexibility-based damage index for structural damage 

detection. Smart Materials and Structures 2013; 22(2):025037. 

 

Zhang Z, Aktan A. Application of modal flexibility and its derivatives in structural 

identification. Journal of Research in Nondestructive Evaluation 1998, 10(1):43–61. 

 

Zhang Z, Rao BD. Sparse signal recovery with temporally correlated source vectors 

using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing 

2011; 5(5):912–926. 

 

Zhong SC, Oyadiji SO. Crack detection in simply supported beams without baseline 

modal parameters by stationary wavelet transform. Mechanical Systems and Signal 

Processing 2007; 21(4):1853–1884. 

 

Zhong SC, Oyadiji SO, Ding K. Response-only method for damage detection of beam-

like structures using high accuracy frequencies with auxiliary mass spatial probing. 

Journal of Sound and Vibration 2008; 311(3):1075–1099. 

 

Zhou XQ, Xia Y, Hao H. Sensor placement for structural damage detection considering 

the measurement uncertainties. Advances in Structural Engineering 2013; 16(5):899–

907. 

 

Zhou XQ, Xia Y, Weng S. L1 regularization approach to structural damage detection 

using frequency data. Structural Health Monitoring 2015; 14(6):571–582. 

 

Zhou Z, Wegner LD, Sparling BF. Vibration-based detection of small-scale damage on 

a bridge deck. Journal of Structural Engineering 2007; 133(9):1257–1267. 

 



  

193 

Zimmerman DC, Kaouk M. Structural damage detection using a minimum rank update 

theory. Journal of Vibration and Acoustics 1994; 116(2):222–231. 

 

Zuo WM, Meng DY, Zhang L, Feng XC, Zhang D. A generalized iterated shrinkage 

algorithm for non-convex sparse coding. In: Proceedings of IEEE International 

Conference on Computer Vision (ICCV), Sydney, Australia, 3–6 December 2013, pp. 

217–224.  

 


