Author: Shen, Jiaxing
Title: Data-driven analytics of human dynamics using privacy-sensitive data
Advisors: Cao, Jiannong (COMP)
Degree: Ph.D.
Year: 2019
Subject: Hong Kong Polytechnic University -- Dissertations
Data mining
Big data
Information science -- Social aspects
Computer networks -- Social aspects
Information science -- Statistical methods
Department: Department of Computing
Pages: xvii, 120 pages : color illustrations
Language: English
Abstract: Human dynamics is interdisciplinary research which has been extensively investigated in various disciplines from different dimensions. As a result, it leads to somewhat different research focuses like human mobility, international and domestic migration, and population change. In this dissertation, we focus on human dynamics in computer science which refers to human activities and human interactions. The rapid development of digital information technologies, like communication technology, sensing technology, and mobile technology, has enabled a mobile and big data era for human dynamics research. These technologies keep track of our lives with digital records of places we go, products we buy, and people we meet. Human dynamics research with data from limited observations or confined experiments has transformed into tons of data records on human communications, interactions, and activities in the naturalistic environment. In Chapter 2, we study the possibility of user profile inference using privacy-sensitive audio. The contributions are three folds. First, we propose a privacy-sensitive modality for gender identification. The effectiveness and robustness are improved by ensemble feature selection and a two-stage classification. Second, an adaptive correlation-based multichannel VAD algorithm for privacy-sensitive audio is proposed. Last, we bring new insights of gender difference in interruption through analysis of group conversation in natural settings. In Chapter 3, we utilize the WiFi data to infer relational contextual information. One of our contributions is an effective heuristic that could significantly improve the detection performance of shopping groups. The heuristic indicates APs under which groups appear more frequently and barely separate should have larger weights in measuring customer similarity. The second contribution is to apply matrix factorization to detect groups without extra clustering processes. Matrix factorization could properly handle data issues in the measured similarity including noise filtering and data completion. Besides, imposing a sparsity constraint to the factorization process could derive the clustering results directly. In Chapter 4, we explore the relative contextual information based on the WiFi data and study the impact of human presence on wireless coverage. We identified the correlation between wireless coverage and the number of on-site people. Another contribution is the two observations of heuristics which could improve room-level localization. On the one hand, the duration of visit in different shops is different. On the other, different shops have different popularity in attracting customers at different time slots. These two features can be exploited to distinguish locations with similar wireless fingerprints.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
991022255758303411.pdfFor All Users7.26 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: