Full metadata record
DC FieldValueLanguage
dc.contributorMulti-disciplinary Studiesen_US
dc.contributorDepartment of Building Services Engineeringen_US
dc.creatorKwan, Wai-sang-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/1016-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleMathematical analysis of an ASET-based two-layer zone modelen_US
dcterms.abstractAn in-depth investigation of the ASET-based two-layer zone model was carried out. Studies included the assumptions made, limitations of the models, the computer programs (both ASET and ASET-B), equations of the physics and solutions to those equations. Emphasis was then made on the heat loss fraction, which is an input parameter by the program user for fire simulation. Based on the formulae derived by Cooper and Woodhouse [1986] for estimating the convective heat transfer to ceiling during enclosure fires, the heat transfer from a buoyant plume to an unconfined ceiling was studied. The heat loss fraction was estimated with different values of Reynolds number. The set of key equations was solved numerically using Simpson's 1/3 Rule. A new computer program known as ASET-CK was developed in FORTRAN 90. There, the predicted data are stored in format readable by Microsoft-EXCEL for further compilation and analysis. Asymptotic values of 撘eiling/(1-撘) against r/H are found by extrapolation on a well-developed graph. Results of the heat loss fraction were found to be from 0.63 to 0.81, with the Reynolds number varying from 7.3 x 104 to 27 x 104, which are in very good agreement with experiments reported by Cooper [1981], Zukoski et al. [1975] and Chow [1995]. Discussion on the heat loss fraction was also highlighted.en_US
dcterms.extentx, 45, [46] leaves : ill. ; 31 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued1999en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Sc.en_US
dcterms.LCSHHeat -- Convection -- Mathematical modelsen_US
dcterms.LCSHSmoke -- Measurement -- Data processingen_US
dcterms.LCSHFire prevention -- Mathematical modelsen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
b14719101.pdfFor All Users (off-campus access for PolyU Staff & Students only)2.32 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/1016