Author: Zhu, Xuezhen
Title: Chemical modulation of multidrug resistant proteins by triazole bridged flavonoid dimers
Advisors: Chow, Larry (ABCT)
Degree: Ph.D.
Year: 2019
Subject: Hong Kong Polytechnic University -- Dissertations
ATP-binding cassette transporters
Drug resistance
Department: Department of Applied Biology and Chemical Technology
Pages: 388 pages : color illustrations
Language: English
Abstract: The central theme of this thesis is the exploration of new modulators of ABC transport proteins by the design and synthesis of a series of triazole-bridged flavonoid dimers. Chapter 1 briefly introduces the background of multidrug resistance, ABC transport proteins, click chemistry as well as the objective of this thesis. Chapter 2 describes a rapid generation of a flavonoid dimer library using "click chemistry". Following this, a high-throughput screening led to the discovery of some highly potent and safe MRP1 modulators is presented. Chapter 3 elucidates the design and synthesis of a series of triazole bridged flavonoid heterodimers and homodimers. Besides, the compounds are evaluated for their potency in reversing BCRP-mediated multidrug resistance. Structure activity relationship of flavonoid dimers towards modulating BCRP is discussed. Finally, a homodimer, Ac22Az8, as a non-cytotoxic, potent and selective BCRP modulator is presented. Chapter 4 describes the design and synthesis a series of triazole bridged flavonoid heterodimers. Following this, the compounds evaluated for their potency in reversing multidrug resistance in P-gp, BCRP and MRP1. Chapter 5 describes the summary future work of this thesis.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
991022289512503411.pdfFor All Users12.29 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/10226