Author: Lin, Yangmin
Title: Could the effectiveness of orthotic management for patients with adolescent idiopathic scoliosis (AIS) be enhanced via 3D printing technology and pressure-adjustable system?
Degree: Ph.D.
Year: 2019
Subject: Hong Kong Polytechnic University -- Dissertations
Scoliosis in children
Scoliosis -- Patients -- Rehabilitation
Spine -- Abnormalities
Orthopedic apparatus
Three-dimensional printing
Department: Department of Biomedical Engineering
Pages: xxv, 262 pages : color illustrations
Language: English
Abstract: Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3D) spinal abnormality affecting 1 - 4% of adolescents with unknown causes, defined as the Cobb angle greater than 10°. Orthotic treatment is generally prescribed to manage moderate AIS (Cobb angle 25 - 40°), with which, various factors can influence the effectiveness, such as biomechanical design and patient's compliance. To date, far little attention has been paid to avoid any possible deviations from the original orthosis design custom-made by orthotist during fabrication procedures, as well as to ensure patient's compliance in a scientific way. This study aimed to apply two state-of-the-art technologies in spinal orthotic treatment for patients with AIS in aspects of orthotic design, fabrication, and patients' compliance. With the advancements of 3D printing technology, the accumulated error can be reduced during manual fabrication procedures and facilitate a more versatile design of spinal orthoses such as reduced weight and thickness. These may enhance the patient's compliance and subsequent treatment outcomes. However, the application of 3D printing in spinal orthosis is still at its embryonic stage. There are no rigorous investigations on the feasibility of 3D printing technology in the fabrication of spinal orthoses nor its clinical effectiveness for the management of AIS. Thus, this study conducted a feasibility test to apply 3D printing in spinal orthosis and to provide laboratory evidence. A prospective, randomised controlled trial was then carried to evaluate the treatment effectiveness of 3D-printed orthosis to the conventional one. Cost-effectiveness of using 3D printing to design and fabricate spinal orthosis for AIS was investigated. The findings of technological investigations in the current study suggested that spinal orthoses could be fabricated using fused deposition modelling (FDM) technique and Nylon-12 material. After a mimicked test for 3-year usage, the 3D-printed spinal orthosis was as durable as the conventional polyethene (PE) spinal orthosis. A total 30 females with AIS who met the criteria (age 10-14 years, Cobb angle 20-45°, and Risser sign 0-2) of SRS (Scoliosis Research Society) and SOSORT (Society on Scoliosis Orthopaedic and Rehabilitation Treatment). Patients were randomly allocated into the 3D-printed orthosis (3O, n=15, age 12.4 years, Cobb angle 23.9°) group and the conventional orthosis (CO3, n=15, age 12.5 years, Cobb angle 23.8°) group. The 3O was significantly lighter in weight (p<0.01) by 0.3kg. Comparable immediate in-orthosis correction was observed in the 3O group (12.3°, 37.0%, p<0.001) and the CO3 group (13.2°, 44.7%, p<0.001). There was no significant curvature change between the immediate and 3-month in-orthosis Cobb angle within the 3O group (1.7°, p=1.000) while the CO3 group had a significant increase in Cobb angle (4.8°, p<0.05). However, due to the high cost and long fabrication time, 3D printing technology may not be able to fulfil the clinical demands at the current stage.
Access: open access

Files in This Item:
File Description SizeFormat 
991022347054703411.pdfFor All Users6 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/10361