Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorFu, Tak-chung-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/1064-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleFinancial time series representation, visualization and miningen_US
dcterms.abstractFinancial time series has its own characteristics over other time series data. It is typically characterized by a few salient points and multi-resolution consideration is always necessary for long-term and short-term analyses. In addition, technical analysis is usually used to identify patterns of market behavior, which have high probability to repeat themselves. These patterns are similar in the overall shape but with different amplitudes and/or durations. While the traditional time series representation schemes may not be effective for handling these characteristics, there is a need to revise the existing technologies and build new framework and methods to carry out various financial time series data mining tasks. In this research, financial time series is represented according to the importance of data points. With the concept of data point importance, a novel time domain framework for representing time series is developed. A tree data structure is proposed to represent time series and it can be used to access the time series data according to the order of importance. One of the most significant advantages of the proposed framework over the traditional time series data representations is that it provides a mechanism for compressing a time series in different resolutions while the overall shape of the time series can still be preserved. In addition, it facilitates incremental updating and subsequence retrieval of the time series data. Based on the proposed framework and representation, different applications were investigated. First, two technical content-based searching approaches are proposed. Second, the usage of the tree representation in time series segmentation is demonstrated. In addition, an evolutionary segmentation algorithm based on a given set of pattern templates is introduced. Third, multi-resolution time series visualization for mobile finance applications is realized. Moreover, a visual mining tool for visualizing frequently appearing and surprising patterns from time series across different resolutions is developed. Finally, the process of discovering frequently appearing patterns using clustering technique is discussed. Through these applications, encouraging experimental results were obtained and the proposed methods were found particularly effective in financial time series data.en_US
dcterms.extentxix, 261 p. : ill. (some col.) ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2007en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.LCSHStock price forecasting.en_US
dcterms.LCSHData mining.en_US
dcterms.LCSHTime-series analysis.en_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b2145890x.pdfFor All Users8.14 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/1064