Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributor.advisorSu, Zhongqing (ME)en_US
dc.contributor.advisorZou, Fangxin (AAE)en_US
dc.creatorWong, Ting Yui-
dc.publisherHong Kong Polytechnic Universityen_US
dc.rightsAll rights reserveden_US
dc.titleAcoustic waveguide for high temperature range contact thermometryen_US
dcterms.abstractThis dissertation presents a very precise approach to measuring temperature in a wide temperature range using ultrasonic waves. A Lead zirconate titanate (PZT) piezoelectric transducer is used to excite ultrasonic shear waves and a solid stainless steel waveguide is selected to confine the ultrasonic wave propagation path. The shape and dimensions of the waveguide were theoretically optimized and numerically simulated to propagate robust, non-dispersive wave, and protect the fragile PZT from high temperature. Ultrasonic wave velocity is highly temperature dependent. The travelling time of wavepacket along the waveguide exhibits a corresponding relationship with the average temperature at measurement zone of the waveguide. Detailed experiment verification and validation processes, together with a calibration stage, were conducted up to 200°C, a temperature that is on par with the operating range of the resistance temperature detector (RTD) used for calibration. Stability test demonstrated that our technique attains a high accuracy (i.e. ±0.1%) which is comparable with the highest precision standard of commercial RTDs along the calibrated temperature range. Temperature tracking test was operated to unfold the temperature measuring and tracking capability of the ultrasonic wave technique in different liquids. This ultrasonic technique is robust and customizable, hence providing a promising alternative for accurate and stable contact thermometry.en_US
dcterms.extentx, 73 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.educationalLevelAll Masteren_US
dcterms.LCSHUltrasonic wavesen_US
dcterms.LCSHTemperature measurementsen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
5220.pdfFor All Users (off-campus access for PolyU Staff & Students only)7.12 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/10772