Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributor.advisorWen, Chih-yung (ME)en_US
dc.creatorFeng, Yurong-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/10798-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic Universityen_US
dc.rightsAll rights reserveden_US
dc.titleA real-time object inspection system for unmanned aerial vehiclesen_US
dcterms.abstractVisual inspections act as a foundation for maintenance of public facilities to preserve the proper and stable operation of facilities. Current methods for inspection public facilities are costly, lengthy and labor intensive. Nowadays, unmanned aerial vehicles (UAV) equipped with computer vision techniques provide a potential as a helpful tool for facility inspection. This study proposes an autonomous UAV system that detects and inspects specific facility. The system detects objects using a pre-trained deep learning model. We collect and generate a medium scale of images dataset and use it to train a set of object detection model. The best performance model integrated with a vision-based control path planning algorithm was examined on a physical UAV platform. Our system was able to successfully detect and inspect an object autonomously during flight test which validates our path planning algorithm. Detection performance was achieved by the detection algorithm's 93% accuracy in messy environment and the inference time of 2 seconds on a companion computer. Visual-servo path planning algorithm was justified in terms of the estimated objects position and dynamic characteristic of UAV.en_US
dcterms.extent74 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2020en_US
dcterms.educationalLevelM.Sc.en_US
dcterms.educationalLevelAll Masteren_US
dcterms.LCSHDrone aircraft -- Automatic controlen_US
dcterms.LCSHEmbedded computer systemsen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
5235.pdfFor All Users (off-campus access for PolyU Staff & Students only)3.29 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/10798