Full metadata record
DC FieldValueLanguage
dc.contributorMulti-disciplinary Studiesen_US
dc.contributorDepartment of Electronic Engineeringen_US
dc.creatorLee, Kin-sang Timothy-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/1223-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleCharacter recognition using digitally implementable neural networken_US
dcterms.abstractThe aim of this project is to investigate the use of digitally implementable neural networks in character recognition. This work begins with a study on the effect of using different types of activation functions for the multi-layer feed-forward neural network. The back-propagation learning algorithm is used for training all the networks that have been tested in this project. Apart from the conventional approach for character recognition that is used by neural network, an alternative approach based on function approximation have been studied and tested, and the performance is found to be satisfactory. The STBP and MS models suggested by Wang [5, 6] have been studied and tested. A 'modified' MS model is proposed to resolve the stability problem of the STBP and MS models. It is found that the 'modified' MS network can be trained to achieve the required accuracy very much faster than those conventional BP networks, and can solve the stability problem anticipated by the STBP and MS models.en_US
dcterms.extentiv, 86, 3 leaves : ill. ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued1996en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Sc.en_US
dcterms.LCSHOptical character recognition devicesen_US
dcterms.LCSHPattern perceptionen_US
dcterms.LCSHNeural networks (Computer science)en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
b15554405.pdfFor All Users (off-campus access for PolyU Staff & Students only)2.91 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/1223