Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estateen_US
dc.contributor.advisorZayed, Tarek (BRE)en_US
dc.creatorXiong, Chenqin-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/12614-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic Universityen_US
dc.rightsAll rights reserveden_US
dc.titleAI-based models for detecting and quantifying surface defects of concrete bridge decksen_US
dcterms.abstractThis dissertation presents a comprehensive investigation into bridge crack recognition, detection, and measurement, focusing on the Hong Kong context. The study encompasses three key findings that significantly contribute to advancements in this field.en_US
dcterms.abstractFirstly, a new dataset comprising images of bridge cracks specific to Hong Kong was successfully constructed. This dataset was utilized for training Convolutional Neural Networks (CNNs) models, resulting in improved robustness and generalization capabilities. This dataset's introduction addresses existing datasets limitations and facilitates more accurate and reliable crack detection.en_US
dcterms.abstractSecondly, an enhanced version of the YOLOv8 model was developed, explicitly tailored for bridge crack detection. This model outperformed other popular models in terms of accuracy and precision. Evaluation of the validation set demonstrated promising results, with a Mean Average Precision (Map50) of 95.90% and Map50:95 of 71.10%. These findings underscore the effectiveness of the tuned YOLOv8 model in accurately detecting bridge cracks, offering significant improvements over existing approaches.en_US
dcterms.abstractLastly, the study explored crack measurement models, which exhibited strong performance when applied to images depicting single cracks. These models successfully measured the geometric parameters of segmented crack images, providing reliable and accurate measurements for practical applications in bridge inspection. This aspect contributes to the practical applicability of the study's findings, enabling more precise evaluation and assessment of bridge cracks.en_US
dcterms.abstractOverall, this dissertation's key findings highlight significant contributions in terms of dataset creation, model development, and measurement capabilities. The successful construction of a new dataset specific to the Hong Kong context and the improved performance of the YOLOv8 model demonstrate notable advancements in bridge crack detection. The effective crack measurement models also enhance the practical applicability of the study's findings, contributing to improved bridge crack recognition, detection, and measurement techniques. Ultimately, these advancements enhance the efficiency and accuracy of bridge inspection processes, benefiting infrastructure maintenance and safety initiatives.en_US
dcterms.extentix, 68 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2023en_US
dcterms.educationalLevelM.Sc.en_US
dcterms.educationalLevelAll Masteren_US
dcterms.LCSHBridges -- Maintenance and repairen_US
dcterms.LCSHStructural health monitoringen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
7078.pdfFor All Users (off-campus access for PolyU Staff & Students only)2.97 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/12614