Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.contributor.advisorHo, Wang-hei Ivan (EEE)en_US
dc.contributor.advisorWang, Yuhong (CEE)en_US
dc.creatorWang, Yuhao-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/12723-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic Universityen_US
dc.rightsAll rights reserveden_US
dc.titleIntegrated smart pavement systems for environment monitoring, localization, and traffic data collectionen_US
dcterms.abstractThe traffic engineering is making considerable strides towards autonomous driving technology. Although single-vehicle autonomous driving (SAD) has advanced algorithms and sensing technology, it still has limitations on reliability and robustness, particularly in challenging weather conditions and high-density traffic. In contrast, vehicle-infrastructure cooperative autonomous driving (VICAD) can overcome many of these challenges and the key to development of VICAD is to build high-level smart roads. To address this challenge, this thesis proposes an Integrated Smart Pavement (ISP) system.en_US
dcterms.abstractSpecifically, this thesis begins with the overall framework of the ISP system, including lab and practice demonstrations that assess the system’s feasibility. Following the introduction of the overall framework, this thesis proceeds to describe in detail the various incorporated techniques of the proposed ISP system.en_US
dcterms.abstractFirstly, an artificial-intelligence-of-things (AIoT)-based framework with ISP for water quality monitoring and estimation of crucial parameters is proposed. The chapter conducts an extensive literature review to identify critical water quality parameters that inform the development of a data-driven framework. The framework includes two artificial intelligence models used to estimate unmeasurable water quality parameters and construct a real-time water quality monitoring AIoT system. A case study is conducted to validate the proposed framework, and the overall system performance is satisfactory. The prediction performance is better at river sites with higher pollutant levels.en_US
dcterms.abstractAfterwards, this thesis proposes an ISP-embedded novel pavement marking for autonomous vehicle localization and describes it in technical detail. The marking is customized, a detector is trained using YOLOv5-based object detection, and a decoding algorithm is proposed that processes marking information in real-time. The study conducted two sets of road trials to validate the efficacy of the novel marking and associated algorithms. The system’s performance was evaluated under different environmental conditions, and it was found that depression angle is the critical factor affecting performance.en_US
dcterms.abstractIn the next part, this thesis focuses on exploring the potential of ISP-embedded IRS in future 6G systems for delivering ubiquitous and reliable communication and accurate localization information. This part of study proposes a deep reinforcement learning (DRL) based framework to optimize the IRS configuration selection problem in localization process and presents a protocol for implementation. Simulation results indicate that increasing the number of IRS configurations can reduce localization errors, and with the proposed DRL-based methodology, more than a 40% improvement can be achieved. The proposed methodology exploits the localization performance in future 6G systems for intelligent transportation systems (ITS).en_US
dcterms.abstractFinally, this thesis proposes an ISP-edge-deployment solution for real-time drones-assisted turning movement counts (TMC) collection using the YOLOv5-StrongSORT-TMC algorithm in response to the increasing demand for traffic data collection. A case study is conducted at a busy intersection in Hong Kong to evaluate the method’s effectiveness. The results outperform similar approaches presented in previous studies.en_US
dcterms.abstractIn summary, the proposed ISP system offers a solution to the challenges facing conventional transportation infrastructure. By implementing adaptive traffic systems and embracing advanced technologies, the ISP system improves transportation infrastructure’s capabilities and enhances its relationship with the surrounding environment.en_US
dcterms.extentxix, 165 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2023en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHVehicle-infrastructure integrationen_US
dcterms.LCSHAutomated vehiclesen_US
dcterms.LCSHPavements -- Technological innovationsen_US
dcterms.LCSHRoads -- Technological innovationsen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
7156.pdfFor All Users26.42 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/12723