Full metadata record
DC FieldValueLanguage
dc.contributorSchool of Nursingen_US
dc.contributor.advisorQin, Harry (SN)en_US
dc.contributor.advisorChoi, Thomas (SN)en_US
dc.creatorZou, Jing-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/12729-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic Universityen_US
dc.rightsAll rights reserveden_US
dc.titleUnsupervised learning for deformable medical image registrationen_US
dcterms.abstractThis thesis focuses on advancing unsupervised learning techniques for deformable medical image registration tasks. The primary objective is to develop generic and effective methods that address the challenges of deformable image registration. Three key contributions are presented: large deformation field decomposition, stochastic decomposition, and conformal invariant regularization. These methods are extensively evaluated using publicly available datasets, showcasing their superior performance compared to existing techniques and highlighting their potential for real clinical applications.en_US
dcterms.abstractThe first contribution, large deformation field decomposition, tackles the complexity of large deformations in medical images by decomposing the deformation field into multiple continuous intermediate fields. A self-attention layer is employed to refine these intermediate fields, leading to enhanced accuracy in capturing complex and large deformations. The suggested method utilizes the temporal information presented in a breathing cycle, offering significant benefits for tasks like tumor tracking in image-guided systems.en_US
dcterms.abstractThe second contribution, stochastic decomposition, introduces a novel training algorithm that effectively learns large deformation fields in medical image registration without the need of multiple networks or manual labels. This algorithm utilizes additional supervision information by stochastically decomposing the large deformation field and leveraging synthetic data with corresponding intensity discrepancies for registration output supervision. The results illustrate enhanced precision and robustness.en_US
dcterms.abstractThe third contribution, conformal invariant regularization, presents a novel pair-wise image registration framework that eliminates the requirement for pre-training or prior affine registration. The framework incorporates a novel conformal invariant hyperelastic regularizer, which enforces the deformation field to be smooth, invertible and orientation-preserving. More importantly, the regularization strictly guarantees topology preservation yielding to a clinical meaningful registration. Additionally, a learned image deformation mapping is parameterized by coordinate MLP with periodic activation function, where one can view the to-be-registered images as continuously differentiable entities.en_US
dcterms.abstractIn summary, this thesis addresses the challenges of large deformation learning in medical image registration tasks through novel methods and algorithms. It provides new perspectives and significant advancements in improving the accuracy and efficiency of deformable image registration.en_US
dcterms.extentxiv, 112 pages : color illustrationsen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2023en_US
dcterms.educationalLevelPh.D.en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHArtificial intelligence -- Medical applicationsen_US
dcterms.LCSHDiagnostic imaging -- Data processingen_US
dcterms.LCSHImage registrationen_US
dcterms.LCSHMachine learningen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
7162.pdfFor All Users11.48 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/12729