Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorChoi, Kai-chow-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/1537-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleOn the mixture models in survival analysis with competing risks and covariatesen_US
dcterms.abstractThis thesis consists of two parts, both focus on important issues in mixture models for survival analysis with long-term survivors. In Part I, we study the large-sample properties of a class of parametric mixture models with covariates for competing risks. The models allow general distributions for the survival times and incorporate the idea of long-term survivors. Asymptotic results are obtained under a commonly assumed independent censoring mechanism and some modest regularity conditions on the survival distributions. The existence, consistency, and asymptotic normality of maximum likelihood estimators for the parameters of the model are rigorously derived under general sufficient conditions. Specific conditions for particular models can be derived from the general conditions for ready check. Two most often used models (exponential and Weibull) in survival analysis are selected for illustration. In addition, a likelihood-ratio statistic is proposed to test various hypotheses of practical interest, and its asymptotic distribution is provided. In Part II, we investigate the sufficiency of follow-up in survival analysis with long-term survivors, which is a crucial condition when estimating non-parametrically the proportion of long term-survivors in a mixture model. The concept of the degree of sufficiency of follow-up is introduced and an estimator for such a degree of sufficiency is then derived. This estimator can be used to construct a heuristic and non-parametric test for the sufficiency of follow-up. Guidelines are also provided on how to plan the duration of a follow-up experiment with long-term survivors so that sufficient follow-up can be expected in advance. The whole process is simple to implement.en_US
dcterms.extent113 leaves ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2002en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHSurvival analysis (Biometry)en_US
dcterms.LCSHCompeting risksen_US
dcterms.LCSHMathematical statisticsen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b16576597.pdfFor All Users4.14 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/1537