Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineeringen_US
dc.creatorWang, Kewen-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/1848-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleRobust PSS design based on probabilistic approachen_US
dcterms.abstractMost existing techniques for power system dynamic stability studies are based on deterministic system conditions. To consider the effect of load variations, the probabilistic approach is applied to eigenvalue analysis and robust power system stabilizer (PSS) design in this thesis. An analytical representation of eigenvalue sensitivities is prerequisite for the in-depth analysis of the statistic nature of eigenvalues. First and second order eigenvalue sensitivities with respect to arbitrary parameters, such as nodal injections, transformer taps and line admittances, are systematically derived. Based on a highly versatile multimachine modeling technique, an algorithm for probabilistic eigenvalue analysis is developed under normal distribution. This algorithm is then much improved by considering the correction of covariances on expectations, retaining the second order terms and employing high order moments and cumulants. Random variables are thereby allowed to have any distributions. In robust PSS design, two types of probabilistic sensitivity indices (PSIs) are developed. The first type of PSI is used for the selection of best PSS locations, while another is more suitable for PSS parameter adjustment. With some initial values of PSS gains and time constants determined by PSI analysis, a PSI matrix is formed to represent the sensitivity relationship between concerned eigenvalues and all adjustable PSS parameters. PSS parameters are directly tuned using the PSI matrix to improve the probabilistic distributions of concerned eigenvalues. For more complex case with multiple PSSs, a nonlinear objective function is constructed from eigenvalue expectations and variances to take account the distribution nature of eigenvalues. With all damping constants and damping ratios considered,, this optimization problem is solved by the quasi-Newton method of the nonlinear programming technique. The convergence characteristic of the proposed approach is discussed on a test system with five PSSs.en_US
dcterms.extentx, 146 leaves : ill. ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2000en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHElectric power system stabilityen_US
dcterms.LCSHElectric power systems -- Design and constructionen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b15115471.pdfFor All Users5.94 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/1848