Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorNg, Wing-yin-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/2414-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleLocalized generalization error model and its applications to supervised pattern classification problemsen_US
dcterms.abstractThe objective of this thesis is to investigate the localized generalization error of a classifier trained for supervised pattern classification problems. This is motivated by the straightforward idea that one should not expect a classifier to recognize correctly unseen samples which are totally different from the training samples. Therefore, a localized generalization error model (L-GEM) is proposed to give an upper bound on the generalization error for the unseen samples located within neighborhoods of the training samples. The L-GEM is applied to address three fundamental issues in supervised pattern classification problems: architecture selection for a neural network, feature selection and active learning. For architecture selection problem, one can use the L-GEM to select the largest neighborhoods around the training samples, subject to a predefined generalization error bound (Maximal Coverage Classification problem with Selected Generalization error bound (MC2SG)). A number of application problems in civil engineering, computer network security and image classification were solved by using Radial Basis Function Neural Network (RBFNN) trained by MC2SG L-GEM can also be used as a feature selection/reduction criterion. This is accomplished iteratively by measuring the feature which affects the generalization error the least. The problem of active learning is resolved by doing the opposite, i.e., each time selecting the training sample which yields the largest L-GEM value to the trained classifier. Since its derivation is based on the stochastic sensitivity measure of a classifier, the L-GEM is applicable to any classifier for which the stochastic sensitivity measure could be defined, e.g. RBFNN, multilayer perception neural networks and support vector machines. This thesis presents the L-GEM for a RBFNN, and a pilot study on the extension of the L-GEM to other classifiers including the multiple classifier system is discussed briefly.en_US
dcterms.extent195 p. : ill. ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2006en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHNeural networks (Computer science)en_US
dcterms.LCSHArtificial intelligenceen_US
dcterms.LCSHGenetic algorithmsen_US
dcterms.LCSHMachine learningen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b20696875.pdfFor All Users2.57 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/2414