Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor | Multi-disciplinary Studies | en_US |
dc.contributor | Department of Electronic and Information Engineering | en_US |
dc.creator | Tsang, Chi-hang Peter | - |
dc.identifier.uri | https://theses.lib.polyu.edu.hk/handle/200/241 | - |
dc.language | English | en_US |
dc.publisher | Hong Kong Polytechnic University | - |
dc.rights | All rights reserved | en_US |
dc.title | On-line recognition of digits and alphabets | en_US |
dcterms.abstract | Handwriting is a natural and fast way to input words to computers. Computer recognition of on-line handwriting offers a new way of improving the human-computer interface. The objective of this project is to study and implement efficient algorithms for recognising handwriting digits and alphabets. The system includes handwriting character capturing, feature extraction, off-line/on-line neural network training, and recognition of handwriting characters. Features used for recognition can be categorised into two groups: off-line and on-line features. On-line recognition makes use of pen trajectory data. Also spatially overlapping characters do not pose a serious segmentation problem as they are still separable by using the on-line information. On the other hand, on-line recognition should have a reliable and robust recognition unit. This can be achieved by using both on-line and off-line features, which are discussed in this dissertation. A multi-layer feedforward neural network is trained to recognise 62 handwriting characters (10 digits, 26 lowercase alphabets, and 26 uppercase alphabets) using the error back-propagation algorithm with a training data set of five samples for each character. Different weight vectors are trained for different writers. Experimental results show that the system can achieve a correct rate of about 89% for user-dependent recognition. | en_US |
dcterms.alternative | Online recognition of digits and alphabets | - |
dcterms.extent | vi, 81 leaves : ill. ; 30 cm | en_US |
dcterms.isPartOf | PolyU Electronic Theses | en_US |
dcterms.issued | 2000 | en_US |
dcterms.educationalLevel | All Master | en_US |
dcterms.educationalLevel | M.Sc. | en_US |
dcterms.LCSH | Optical pattern recognition | en_US |
dcterms.LCSH | Writing -- Data processing | en_US |
dcterms.LCSH | Imaging processing | en_US |
dcterms.LCSH | Hong Kong Polytechnic University -- Dissertations | en_US |
dcterms.accessRights | restricted access | en_US |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
b15276727.pdf | For All Users (off-campus access for PolyU Staff & Students only) | 3.45 MB | Adobe PDF | View/Open |
Copyright Undertaking
As a bona fide Library user, I declare that:
- I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
- I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
- I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.
Please use this identifier to cite or link to this item:
https://theses.lib.polyu.edu.hk/handle/200/241