Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Building Services Engineeringen_US
dc.creatorYiu, Chi-man Jacob-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/2728-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleStatistical modelling and forecasting schemes for air-conditioning systemen_US
dcterms.abstractSystem identification is a procedure to characterize the dynamic behaviour of a system, a sub-system or individual components based on measured data. This thesis presents a study on the modelling and parameter identification of air-conditioning processes by using the mathematical black-box modelling technique -AutoRegressive Moving Average eXogeneous (ARMAX) structure. A generic Multiple Input Multiple Output (MIMO) ARMAX structure has been developed for typical air-conditioning systems and the Recursive Least Square (RLS) method is used for model parameters identification. The performance of the model developed is compared with that of the Single Input Single Output (SISO) ARMAX model. Different combinations of ARMAX orders and forgetting factors are examined for the SISO and MIMO models in order to evaluate the optimum settings that maximize their accuracy. Measured data from an air-conditioning system in an existing building were used to test and validate the SISO and MIMO models. Using the MIMO ARMAX structure, a forecasting scheme for the air-conditioning system has been developed. The technique of conditional expectations at one step ahead is explained in the scheme development. The forecasting scheme is further applied to examine the system performance and predict the cooling load by a day-ahead forecast. The ARMAX model proves remarkably to examine the dynamic performance of an air-conditioning system. In addition, with the use of field data, the model shows great potential for system performance forecasting. An advanced control strategy for the air-conditioning system based on ARMAX model is also proposed.en_US
dcterms.extentxix, 181 leaves : ill. (some col.) ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2008en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.LCSHAir conditioning -- Energy consumption -- Mathematical models.en_US
dcterms.LCSHEnergy consumption -- Forecasting -- Mathematical models.en_US
dcterms.LCSHSystems engineering -- Mathematical models.en_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b21900425.pdfFor All Users2.1 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/2728