Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorCheung, Man-chiu-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/2862-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleStudies on barium titanate based 0-3 compositesen_US
dcterms.abstractFabrication and characterizations of barium titanate BaTiO3 based 0-3 composites are presented and discussed. Two types of composites are studied. First, barium titanate powder prepared by a mixed oxide route is dispersed into a poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) copolymer matrix to form ceramic/polymer composites. The second type of ceramic/ceramic composite is fabricated by mixing a sol-gel BaTiO3 powder into a BaTiO3 sol-gel matrix. BaTiO3/P(BDF-TrFE) 0-3 composites with various ceramic volume fractions are fabricated. The dielectric permittivity and loss of the 0-3 composites are measured as functions of temperature. These data are used to estimate the electric field experienced by the ceramic phase during poling and used to optimize the poling temperature. After the poling process, the pyroelectric and piezoelectric properties of the 0-3 composites were measured and compared to model calculations. The polarization distributions of the composites were also studied using the laser induced pressure pulse (LIPP) method. BaTiO3/BaTiO3 ceramic/ceramic composite filems are fabricated by a modified sol-gel process. Nano-sized BaTiO3 powder are dispersed in a BaTiO3 sol-gel matrix to form a 0-3 composite solution. Films are prepared by spin coating many layers (8 layers with thickness about 16 um) on stainless steel substrates and annealed at carious temperatures. The crystallization of the 0-3 composite film si studied by X-ray diffraction. The dielectric permittivity and the ferroelectric properties of the films are also measured. The major findings of the project included: (1) Barium titanate (BaTiO3) powders with size in the nanometer range were prepared by a sol-gel process and coprecipitation method. The average particle size of the powder prepared by a sol-gel process and coprecipitation method was 100 nm and 300 nm, respectively. BaTiO3 ceramic, with grain size >= 1 um, were prepared by sintering the sol-gel derived powder and the coprecipitation derived powder. The dielectric permittivity and the ferroelectric hysteresis loop were measured as functions of temperature. The room temperature (25 C) dielectric permittivity, pyroelectric and piezoelectric properties were also measured as functions of the poling field. The results will be submitted for publication. (2) Barium titanate/polyvinylidene fluoride-trifluoroethylene [BaTiO3/P(VDF-TrFE)] 0-3 composites with different volume fractions of ceramic were fabricated. The permittivities and electrical resistivities of the composites were measured as functions of temperature. These data were then used to find the electric field experienced by the ceramic phase and hence the optimum poling temperature. The pyroelectric and piezoelectric properties of the composites were measured and compared to model calculations. The results are published in Ferroelectrics, Vol.224, pp.113-120 (1999). (3) Barium titanate (BaTiO3) 0-3 ceramic/ceramic composite thick films (~16um) for ultrasonic transducer applications were fabricated by a modified sol-gel process. Nano-sized BaTiO3 powder was dispersed in a sol-gel matrix of BaTiO3 to form a 0-3 composite solution. Films were prepared by spin coating and then annealed at various temperatures. The crystallization of the composite film was studied by X-ray diffraction. The dielectric permittivity and the ferroelectric properties of the film were also measured. The results will be published in Proceedings 1999 Spring Meeting Symposium and in Nano Structured Materials.en_US
dcterms.extentxiii, 133 leaves : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2000en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Phil.en_US
dcterms.LCSHCeramic materialsen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b15030167.pdfFor All Users3.74 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/2862