Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorTang, Yu-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/3478-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleAttention-driven image pre-classification and retrievalen_US
dcterms.abstractThis dissertation presents attention-driven image pre-classification and retrieval. Two main contributions are reported in this dissertation, which include: (1) image database pre-classification; and (2) image retrieval with pre-classification of images. From the study of attention-driven image pre-classification and retrieval, we know that images can be classified into two types. For the images with distinct objects, we call them attentive ones. On the contrary, for the images which do not contain distinct objects, we call them non-attentive images. Furthermore, attention-driven strategy is able to extract important objects from the attentive images and retrieve this type of images efficiently. Besides, fusing-all strategy, which extracts all objects from an image and gives equal weights to all objects, is utilized to retrieve non-attentive images. Previous researchers always paid more attention to retrieval strategies instead of the pre-classification stage of the image database. In their system, the query images will be compared with the whole database, without considering the classification of the database images. If the database contains a great number of images, the retrieval strategies may take a lot of time and lead to poor retrieval results. Therefore, an neural network based pre-classification procedure is adopted to the image database before retrieval, so as to increase the retrieval efficiency and reduce the retrieval error Furthermore, besides attentive and non-attentive classes, there are some special images which can not be classified into a certain class even by manual classification. So we define a new image class named "unsure", which means we can not justify these images easily. At last, we evaluate the efficiency and performance improvements in image retrieval stage after the proposed database pre-classification.en_US
dcterms.extentx, 81 leaves : ill. (some col.) ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2009en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Sc.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.LCSHImage processing -- Mathematics.en_US
dcterms.LCSHDigital images -- Classification.en_US
dcterms.LCSHImage transmission.en_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
b23059400.pdfFor All Users (off-campus access for PolyU Staff & Students only)3.22 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/3478