Full metadata record
DC FieldValueLanguage
dc.contributorMulti-disciplinary Studiesen_US
dc.contributorDepartment of Electronic Engineeringen_US
dc.creatorTo, Siu-wah-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/409-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleApplying information theory to image segmentationen_US
dcterms.abstractImage segmentation is the process to separate an image into its constituent parts, or objects. There are many different segmentation algorithms but there is no consensus on what criterion is to be used to evaluate the performance of a particular segmentation algorithm. In this project, we shall make use of a new evaluation criterion, which is based on the information content of a segmented image, to evaluate the quality of a segmented image. We call this "Segmented Image Entropy" (SIE). A good segmented image should contain a large amount of information, and hence a large SIE. Similarly, we also measure the information content of the input gray scale image with a criterion called "Gray Scale Image Entropy" (GIE). With the use of SIE and GIE, the performance of different segmentation algorithms will be evaluated. Several common segmentation algorithms, namely Otsu's method, Maximum Entropy method, Minimum Error Thresholding, Minimum Cross Entropy method, Maximum Segmented Image Information Thresholding were evaluated and compared. According to a bi-Guassian p.d.f. model, 1400 gray scale images were generated with different combination in parameters, such as object size, mean and standard deviation of the object pixel gray-level values, mean and standard deviation of the background pixel gray-level values. Their segmented images were obtained by applying these chosen segmentation algorithms. Then, we calculated the GIE and SIE for each image. These 1400 (GIE, SIE) pairs are used in the comparison of the performance of different segmentation algorithms. Among these 1400 images, some are with good input quality but the segmentation results are not good. So, we can identity the weaknesses of a segmentation algorithm and improve it. For a particular segmentation algorithm called Maximum Segmented Image Information Thresholding MSII, improvements are incorporated and a new and better segmentation algorithm called "MSII version 2" has been proposed.en_US
dcterms.extent[119] leaves : ill. ; 31 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued1999en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Sc.en_US
dcterms.LCSHImage processing -- Digital techniquesen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
b14719666.pdfFor All Users (off-campus access for PolyU Staff & Students only)4.2 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/409