Author: | Huang, Ting |
Title: | Virtual prototyping technologies enhanced construction planning |
Degree: | Ph.D. |
Year: | 2009 |
Subject: | Hong Kong Polytechnic University -- Dissertations. Construction industry -- Planning -- Computer simulation. Virtual computer systems. Prototypes, Engineering. Rapid prototyping. |
Department: | Department of Building and Real Estate |
Pages: | xv, 216 leaves : ill. ; 30 cm. |
Language: | English |
Abstract: | With the development of building information modeling (BIM) tools over the last 20 years in the construction industry, greater use has been made of multi-dimensional models throughout the entire construction cycle. Whilst most BIM applications have focused on either four-dimensional (4D) or five-dimensional (5D) technology, the Construction Virtual Prototyping Laboratory (CVPL) in The Hong Kong Polytechnic University incorporates all possible dimensional technologies in an integrative computer-based platform known as Construction Virtual Prototyping (CVP). This platform, which supports the design and construction of buildings in a virtual environment, was customized from the DELMIA solution produced by Dassault Systemes for simulating manufacturing processes. The aim of this study was to develop an integrated framework and process for applying CVP to help project teams to improve the constructability of the design, the feasibility of construction methods, and the accuracy of construction scheduling. The primary research methodology adopted in this study was action research, which is an iterative inquiry process that consists of planning before the action, applying the action, and reviewing after the action. This study undertook the following three-cycle iterative process: (1) development of an integrated framework for applying CVP, (2) application of the framework to a real construction project using model simulation, and (3) reviewing the framework based on responses from a number of project participants. The integrated framework for each cycle of the research process was developed by coordinating various participants and their roles in the real project, collecting project-related information according to the project's delivery process, and integrating factors such as time, cost, quality and safety. The definitive framework that evolved from the iterative process is the study's main contribution to the body of knowledge. It enables contractors to experiment with various construction methods in a virtual environment before deciding on the best method for a particular project. The research also contributes to the body of knowledge through the identification of a new profession dedicated to simulating project processes. The role of this so-called 'process modeler' would be to convert conventional two-dimensional (2D) drawings into three-dimensional (3D) models and to develop construction process models in order to allow contractors to simulate different construction processes before deciding on the most suitable one for a particular project. The scope of work and skill set of a process modeler are clearly explained in the thesis. The study found that the integrated framework based on CVP technology improves collaboration efficiency between main contractor and sub-contractors by approximately 30 percent, with a concomitant 30 to 50 percent reduction in meeting time. It was also found that the most important benefits of CVP in the construction planning stage are improved accuracy of process planning and shortened planning time, whilst during the construction implementation stage the benefits are facilitation of fieldwork instruction and reduction of rework. |
Rights: | All rights reserved |
Access: | open access |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
b22858362.pdf | For All Users | 17.5 MB | Adobe PDF | View/Open |
Copyright Undertaking
As a bona fide Library user, I declare that:
- I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
- I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
- I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.
By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.
Please use this identifier to cite or link to this item:
https://theses.lib.polyu.edu.hk/handle/200/4241