Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorSin, Chi-fai-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/4419-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleImage segmentation by utilizing entropy concepten_US
dcterms.abstractIn this thesis, the template matching approach is employed in image segmentation where the search for the best template is guided by an entropy criterion. The Grayscale Image Entropy (GIE) is used to evaluate the goodness of a given template against a grayscale image. Given a grayscale image, a template is postulated to approximate the true scene that gives rise to the grayscale image. For the grayscale image and the template, the GIE is calculated. It is shown that the greater the GIE value, the better would the template resemble the true scene. The template is then adjusted until the maximum GIE value is resulted. The template is the optimum segmented image in an entropy sense. Based on the template matching approach and the maximum GIE criterion, three new image segmentation algorithms are proposed and investigated in this thesis. The first algorithm detects the boundary of the object in an image by evaluating the GIE value. It is shown that when the object in a template is at a position overlapping the true scene object boundary, the resultant GIE will be zero. By connecting all these zero GIE value points, the boundary of the true scene object can be detected and then the grayscale image segmented. The second and the third segmentation algorithms start with an initial template. Then the classification status of the template pixels adjusted either on a pixel-by-pixel or a block-by-block basis. Each adjustment would result in a new template and a new GIE value. Only those changes that lead to greater GIE value will be retained. After a series of adjustments made to the template, the optimum template that gives rise to the maximum GIE is obtained as the optimum segmented image. Segmentation results for synthetic and real images obtained in this thesis justify the approach.en_US
dcterms.extentxi, 119 leaves : ill. (some col.) ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2001en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Phil.en_US
dcterms.LCSHImage processingen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b15650315.pdfFor All Users7.98 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/4419