Full metadata record
DC FieldValueLanguage
dc.contributorMulti-disciplinary Studiesen_US
dc.creatorChan, Wing-tsun-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/5184-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleCall admission control for video sources in ATM networks using neural networksen_US
dcterms.abstractThe role of the call admission control (CAC) in Asynchronous Transfer Mode (ATM) networks becomes more and more important in order to allocate the network resources in a more efficient way yet at the same time, maintain the desired QoS for all the connections. Since there is a large bit-rate variation of digitized video data, the characterization of the video traffic and hence the CAC for such sources are in general difficult in such a dynamic environment. Neural networks are usually employed as an adaptive controller for dynamically changing situations. This project investigates the application of neural networks in CAC in ATM networks. Video sources are modeled by a first order autoregressive process. Training patterns are obtained based on delay requirement for video transmission and are used to train a feedforward neural network using mean, variance and peak values. The performance of the neural CAC is compared with those of other CAC algorithms. The proposed neural CAC is shown to outperform other CAC algorithms in term of average throughput. The adaptive nature of the neural CAC may be particularly suitable for heterogeneous sources.en_US
dcterms.extent79 leaves : ill. ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued1998en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Sc.en_US
dcterms.LCSHTelecommunication -- Trafficen_US
dcterms.LCSHNeural networks (Computer science)en_US
dcterms.LCSHAsynchronous transfer modeen_US
dcterms.LCSHImage transmissionen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
b14211294.pdfFor All Users (off-campus access for PolyU Staff & Students only)2.89 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/5184