Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorCheng, Chi-tsun-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/5307-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleSystem design for wireless sensor networksen_US
dcterms.abstractThe advent of wireless electronics and sensing technologies has made the production of versatile low-cost wireless sensor nodes possible. A wireless sensor network typically consists of a large number of wireless sensor nodes. The main use of wireless sensor networks is to collect data from sensing areas where human beings are not able to access. In contrast to conventional sensing systems, sensor networks utilize a huge volume of low-cost wireless sensor nodes to perform close-range sensing. The data collected will undergo in-network processes and then return to the user who is located in a remote site. This high redundancy of sensing power can greatly enhance the sensing resolution and make sensor networks robust to any adverse environmental conditions. However, these large number of wireless sensor nodes have also introduced a lot of challenging problems in system design. Some major problems are network lifetime, data collection efficiency, interference among wireless sensor nodes, and retransmissions due to noise and interference. Among all the problems mentioned above, the network lifetime problem and the data collection efficiency problem have been selected as the focus of this thesis. Since wireless sensor nodes are power-constrained devices, the number of distant transmissions should be minimized in order to reduce energy consumption in wireless sensor nodes and prolong the network lifetime. An effective approach to improve efficiency is to divide the network into several clusters. By raising the sensing power of a sensor network in excess of the necessary level, the overall target tracking capability can be increased. However, a high sensing power also implies a greater interference to the network in addition to higher energy consumption. Such disadvantages can be relieved by adopting appropriate scheduling schemes and putting unnecessary sensor nodes into a sleep state. As mentioned earlier, clustering can provide a significant improvement in energy saving. In practice, most nodes in a sensor network are only capable of handling a single connection at any one time. With such configurations, cluster heads may become the bottlenecks in the data collection process. This bottleneck problem can be alleviated by modifying the network structure. The contributions of this thesis are threefold. First of all, an energy-efficient clustering algorithm is proposed to tackle the network lifetime problem. Second, an energy-aware scheduling scheme is proposed to alleviate the surplus sensing power problem. Finally, a delay-aware network structure and its formation algorithms are proposed to tackle the data collection efficiency problem. Compared with other existing algorithms in wireless sensor networks, the proposed algorithms are shown to be more efficient in extending network lifetime and improving data collection efficiency.en_US
dcterms.extentxix, 151 p. : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2009en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertations.en_US
dcterms.LCSHWireless sensor networks.en_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b23212445.pdfFor All Users5.62 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/5307