Author: Leung, Yat-ki
Title: Development of an intelligent business process management decision support system for mould manufacturer
Degree: M.Phil.
Year: 2010
Subject: Hong Kong Polytechnic University -- Dissertations
Molding (Founding)
Production planning
Decision support systems
Production planning -- Data processing
Department: Department of Industrial and Systems Engineering
Pages: [12], 151 leaves : ill. ; 31 cm.
Language: English
Abstract: Manufacturers outsource mould manufacturing processes to professional subcontractors so that it is able for them to focus on core competence of their businesses. In general, a mould is manufactured in make-to-order (MTO) mode in which each product is unique but the production sequence is product oriented. Thus, it involves the collaboration of various parties like different internal functions, subcontractors and customers. In order to plan and manage the whole process that fits customers' requirements within a short lead time, mould manufacturers need to gather different production information from all parties. However, such information is usually abundant in quantity and scattered in various production sites. Therefore, it is difficult to plan and make decision within a short period of time. Hence, a system which helps (i) capture real-time production information, (ii) facilitate information sharing, and, (iii) support decision making in planning, scheduling and production operation, becomes valuable. In order to enhance the utilization of production resources and reduce the production lead time, an Intelligent Business Process Management Decision Support System (IBPMS) is proposed. The IBPMS consists of four modules: Information Collection module, Data Warehouse module, Scheduling module and Decision Support module. In the Information Collection module, Radio-Frequency Identification technology is adopted to capture real-time production information such as, staff availability, machine availability and product status information. The captured information is then stored in the Data Warehouse module and passed to the Scheduling module which is responsible to rearrange the master production schedule using an artificial intelligence technique, i.e., Genetic Algorithm. In the Decision Support module, Case-Based Reasoning technology is adopted to provide decisions, such as who to outsource, overtime level, or make a reschedule plan, for solving production planning and scheduling problems. To validate the feasibility of IBPMS, a case study has been conducted by adopting it in a local mould manufacturing company. A performance analysis showed that the performance of production planning and scheduling activities was greatly enhanced. In summary, the value of this research is in two folds: (i) an effective and efficient system, IBPMS, was developed to minimize the communication time among different parties during the manufacture of a mould; (ii) the decision making process when formulating all production and scheduling activities of a mould was made both efficient and effective by the appropriate integrative use of artificial intelligence.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
b23744923.pdfFor All Users24.01 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: