Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorTang, Qian-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/616-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleNanopatterning by atomic force microscopyen_US
dcterms.abstractFor the first time, we fabricated nanostructures of a ferroelectric polymer, poly(vinylidene fluoride-trifluorethylene) [P(VDF-TrFE)] on gold substrate via dip-pen nanolithography ink. Lines as thin as 32 nm and dot radius as small as 20 nm have been fabricated. The P(VDF-TrFE) molecules were well oriented on the gold substrate. The hydrophobic P(VDF-TrFE) produced a black contrast in the lateral force microscopy (LFM) images. The DPN-generated P(VDF-TrFE) patterns hold ferroelectric properties. The interaction between the P(VDF-TrFE) and the gold substrate was Van der Waals' interaction. The growth of dot radii/line-width was proportional to t1/2. We studied the influence of experimental conditions on dip-pen nanolithography. The results show: The transport rate of ink increased as the temperature increased for all of the inks. For P(VDF-TrFE), a deviation from Arrhenius plot at about 55C was observed. It may be caused by a ferroelectric phase transition. Surface roughness influenced both the contrast in LFM images and the transport rate of ink. Surfaces with less roughness resulted in good contrast in LFM images, while rough surfaces resulted in poor contrast. The transport rate of ink increased as the roughness decreased; however, the extent of the influence was strongly ink-dependent. The influence of relative humidity depended on the solubility of the ink in water. The transport rate of hydrophilic inks increased as the relative humidity increased, while the transport rate of hydrophobic inks experienced small change as the relative humidity increased. At the same condition, a tip with a larger curvature radius could generate a larger pattern than a tip with a smaller curvature radius due to a bigger contact point or the formation of a meniscus with a larger size. The chemical affinity was also one of the key controlling parameters for DPN. It is necessary to consider the ink affinity to both the substrate and the tip when designing a new DPN system. We fabricated nanostructures via anodic nanooxidation and force nanolithography. In addition, we characterized the protein patterns with AFM by adsorption of a protein surfaces with different adsorption properties, and discussed the mechanism of the protein adsorption on these surfaces.en_US
dcterms.extentxxix, 223 p. : ill. ; 30 cmen_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2006en_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.educationalLevelPh.D.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.LCSHFerroelectricityen_US
dcterms.LCSHNanostructuresen_US
dcterms.LCSHNanotechnologyen_US
dcterms.LCSHMicrolithographyen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b19579597.pdfFor All Users12.77 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/616