Author: Luathep, Paramet
Title: Stochastic transport network model and optimization for reliability and vulnerability analysis
Degree: Ph.D.
Year: 2011
Subject: Transportation -- Planning.
Traffic engineering.
Transport theory -- Mathematical models.
Hong Kong Polytechnic University -- Dissertations
Department: Department of Civil and Structural Engineering
Pages: 215 p. : ill. ; 30 cm.
Language: English
Abstract: This thesis aims to contribute to the rapidly growing research area of transport network reliability and vulnerability by introducing the concept of stochastic network (SN) into the reliability and vulnerability analyses. The thesis also aims to develop advanced methods for evaluating network reliability and vulnerability and solving network design problem (NDP) with reliability consideration. The thesis first derives closed-form expressions of SN flow and cost models. Three static SN traffic assignment models are also formulated, including user equilibrium (SN-UE), system optimum (SN-SO), and stochastic user equilibrium (SN-SUE). The SN-SUE model is then used to propose an evaluation and design model for network capacity reliability assessment/enhancement under travel demand variability. The implicit programming approach is applied to solve the proposed optimization problem. Sensitivity analysis (SA) is adopted to provide all necessary derivatives. For vulnerability analysis, the thesis proposes a SA-based approach to improve computational efficiency and allow for large-scale road networks. With the road networks of Sioux Falls City and Bangkok metropolitan area, the proposed method can significantly reduce computation time compared with the traditional approach. For integrated analysis, the thesis proposes an integrated scenario tree model for road network design under both recurrent day-to-day traffic congestion (evaluated by SN-SUE model) and non-recurrent events, e.g. disasters, (assessed by SN-SO model). Finally, the thesis focuses on developing a global optimization method for solving a mixed network design problem (MNDP). The MNDP is approximated as a piecewise-linear programming (P-LP) problem, which is then transformed into a mixed-integer linear programming (MILP) problem. A global optimization algorithm based on a cutting-constraint algorithm (CCA) is developed for solving the MILP problem. The proposed method and algorithm is also applied to solve a discrete stochastic network design problem and to evaluate stochastic network vulnerability.
Rights: All rights reserved
Access: open access

Files in This Item:
File Description SizeFormat 
b24562348.pdfFor All Users4.53 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show full item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/6204