Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorHe, Tiantian-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/6418-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleCommunity detection using genetic algorithm under a novel backgrounden_US
dcterms.abstractAs an extension of social communication, social network in cyber world plays an important role in people's modern life. Like solid relationship networks, social networks also have some distinguished structures such as groups or communities. In these communities, people prefer to contact with those who are in the same one rather than do with those who belong to the different. However, from a macro perspective, a social network appears its feature of disorder and it brings much inconvenience to the analysis and further research. In order to identify the structure of the social network or other complex networks, numbers of scholars plunge much effort into this research field and it becomes a hot-spot at current, which is named as Community Detection. In this paper, a novel approach to detecting community structure is proposed. Unlike previous theories which concern topological metrics as a sole factor having effect on the constitution of community, the algorithm proposed in this paper considers both topological metrics and the practical meaning of each vertex and connection in a social network as perspectives affecting community structure. In other words, we concern more about interactions led by the peculiarity people possess, and then the community is constituted by those people who possess such meaningful interactions. Through being tested by different evaluating metrics and compared to other prevalent approaches, our algorithm shows its effectiveness on Community Detection.en_US
dcterms.extentvii, 53 leaves : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2012en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Sc.en_US
dcterms.LCSHSocial media.en_US
dcterms.LCSHOnline social networks.en_US
dcterms.LCSHInternet -- Social aspects.en_US
dcterms.LCSHWorld Wide Web -- Social aspects.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsrestricted accessen_US

Files in This Item:
File Description SizeFormat 
b24736661.pdfFor All Users (off-campus access for PolyU Staff & Students only)1.23 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/6418