Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.creatorFu, Tak-chung-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/6549-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleTime series pattern matching, discovery & segmentation for numeric-to-symbolic conversionen_US
dcterms.abstractRecently, the increasing use of temporal data has initiated various research and development attempts in the field of data mining. Time series are an important class of temporal data objects and they can be easily obtained from financial and scientific applications, e.g. daily temperatures, prices of mutual funds and stocks. They are in fact major sources of temporal databases and undoubtedly finding useful time series patterns are of primordial importance. While most of the research communities have concentrated on the forecasting issues, discovery of hidden behavior and relationship within a time series or among a set of time series has so far not yet been fully addressed. Unlike the transactional databases with discrete/symbolic items, time series data are characterized by their numerical, continuous nature. Hence, time series data are difficult to manipulate. But when they can be treated as segments instead of data points, interesting patterns can be discovered and it becomes an easy task to query, understand and mine them. So, it is suggested to break down the sequences into meaningful subsequences and represent them symbolically. We term this process as numeric-to-symbolic (N/S) conversion and consider it as one of the most important components in time series data mining systems. In this thesis, various algorithms for N/S conversion is proposed. They include: a flexible temporal pattern matching scheme which attempts to locate the perceptually important points in the data sequence for similarity computation is first proposed. As to human's behavior in identifying patterns from time series, the frequently used patterns are typically characterized by a few critical points and these points are perceptually important in human's identification process and should also be taken into accounts in the pattern matching process. The proposed scheme follows this idea by locating those perceptually important points and attractive results have been obtained. Based on that, methods for discovering frequently appearing patterns from time series are developed. The raw numerical data sequence of certain length will undergo a clustering process using the Kohonen's self-organizing maps through which similar data sequences or patterns are grouped together and represented by a pattern symbol. With the new time series pattern matching scheme and the pattern discovery algorithm introduced, we propose to address the time series segmentation problem in a more flexible way so as to facilitate dynamic N/S conversion, i.e., to segment the time series irregularly. This is achieved by an evolutionary segmentation algorithm which works with the pattern matching scheme to make the cutting decisions. Simulation results on the time series of the Hang Seng Index as well as different Hong Kong stocks show that the proposed models are effective and yet efficient.en_US
dcterms.extentx, 89 leaves : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2001en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Phil.en_US
dcterms.LCSHData miningen_US
dcterms.LCSHTime-series analysisen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b1599529x.pdfFor All Users14.71 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/6549