Full metadata record
DC FieldValueLanguage
dc.contributorInstitute of Textiles and Clothingen_US
dc.creatorYam, Lim Yung-
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleA study on ultraviolet protection factor of cotton and coolmax based on plain knitted structureen_US
dcterms.abstractIn order to prevent human from the acute and chronic effects bring out by ultraviolet radiation (UV radiation), plain knitted clothing becomes a feasible alternative to prevent direct contact with UV radiation. One of the main features of knitted fabric is its certain elasticity that different from woven structure, given they are produced from same type of fibre and yarn. Such extension may favour wearer from ease of body movement. Fifteen types of plain knitted samples were produced from normal cotton, Supima cotton (both conventional and torque-free ring spun yarn of 20Ne and Coolmax yarn of 150dtex. These samples were divided into three groups, single cotton yarn (Group I), two cotton yarns combination (Group II) and Coolmax and cotton yarns combination (Group III). Ultraviolet protection factor (UPF) of samples in each group were measured in the following conditions, (a) dry and relax, (b) dry and stretch, (c) wet and relax and (d) wet and stretch. Furthermore, there were three different level of stretching, i.e. 10%, 20% and 30% stretching in both machine and cross-machine directions. Samples were wetted separately with five types of solutions including (a) chlorinated pool water, (b) sea water, (c) acidic perspiration, (d) alkaline perspiration and (e) deionized (D.I.) water respectively. The UPF values at dry and relax state of Group III was the highest while Group II and Group III came second and third. When it was in dry and stretch state, UPF of all Groups dropped and the decrease in rating is most severe in 30% stretching then 20% and 10%. While samples subjected to wetting and measured in relax condition, UPF was further reduced. UPF measured at wet and stretch state were the lowest among four testing conditions. Statistical regression models were used to predict UPF at the four different conditions by using Tightness Factor, Pore size ratio, Stitch density and Fibre combination. The coefficients of determination (R²) of all the models were all over 0.81. It could be concluded that these models are a successful tool for predicting UPF of cotton and Coolmax/cotton blends at different possible real-life wearing conditions.en_US
dcterms.extentxvii. 131 p. : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.educationalLevelAll Masteren_US
dcterms.LCSHCotton fabrics -- Testing.en_US
dcterms.LCSHTextile fabrics -- Testing.en_US
dcterms.LCSHUltraviolet radiationen_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b26526967.pdfFor All Users2.01 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/7224