Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorLin, Canhong-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/7480-
dc.languageEnglishen_US
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleA hybrid genetic algorithm-based decision support system for enhancing transportation efficiency in reverse logisticsen_US
dcterms.abstractTwo application case studies were also conducted so as to evaluate the proposed models and algorithms. The first case is motivated by the distribution and recycling of water carboys, while the second case investigates the collection of waste from the commercial and industrial sectors. The computational experiments performed in the two case studies show that the proposed models and algorithms allow fleet managers to determine cost-effective transportation plans. Particularly, the system enables a diverse control of various economic and environmental costs and a flexible approach so as to provide relevant information to enable fleet managers to consider the compromises or trade-offs among different cost indicators, such as transportation cost, manpower, service level and even the value of returned products. The models and methods enable logistics decision makers to determine proper and optimal logistics strategies. Notably, they can also be generalized to any other type of Reverse Logistics activity in practice. The contribution of this study is twofold. For industry and in general practice, a decision support system is proposed to evaluate the possible economic and environmental significance of real-world transportation problems and to take action at different levels to carry out Reverse Logistics. For academic development, this research is distinguished and featured by proposing a new variant of vehicle routing model that is characterized by optional backhauls and multiple objectives is proposed. The model aims to minimize transportation cost, balance the driver workloads, maintain high service levels, and to maximize the number of recycled products. In addition, a hybrid Genetic Algorithm characterized by a greedy look-ahead heuristics and a Pareto Ranking Scheme is proposed to seek Pareto Optimality for multi-objective optimization.en_US
dcterms.extentxxiii, 187 leaves : col. ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.issued2014en_US
dcterms.educationalLevelAll Masteren_US
dcterms.educationalLevelM.Phil.en_US
dcterms.LCSHProduction management -- Environmental aspects.en_US
dcterms.LCSHBusiness logistics -- Environmental aspects.en_US
dcterms.LCSHTransportation -- Planning -- Data processing.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b2747267x.pdfFor All Users5.62 MBAdobe PDFView/Open


Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/7480