Full metadata record
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorWang, Lei-
dc.publisherHong Kong Polytechnic University-
dc.rightsAll rights reserveden_US
dc.titleA system monitoring model by examining entity dynamicsen_US
dcterms.abstractMonitoring plays an essential role in the manufacturing processes, as it bridges the gap between system conditions and the necessary corrective activities. Generally, for a Computer Integrated Manufacturing (CIM) system, monitoring is about collecting various facility signals, which are fed into specific models to interpret the signals. However, from the managerial viewpoint, the healthiness of the whole system is more desirable than the operation detail. In effect, the monitoring operation of a CIM system is analogous to diagnosing a system by checking the functioning of some targeted domains. Inspired by the distinctive philosophy that a proper system should be working in complete harmony, a novel method for presenting a holistic picture of a manufacturing system by examining the flowing entities is presented in this research. This research was conducted in three stages. First, a manufacturing system was modelled as the integration of a set of Regions of Interest (ROIs) in a high level manner. Second, analogous to the concept of checking blood pulses in the human body, several features were extracted from a system to constitute the "pulses" of an ROI; these features include the Regional Inconsistency (RI), the Inter-component Arrival Time (IAT), the Inter-component Leaving Time (ILT), and the Instant Work-In-Progress (IWIP). A reasoning scheme was then established to detect two types of popular abnormalities (blockings and slowdowns) in an ROI. Third, an ROI segmentation technique was developed to assist in the design of the monitoring framework by taking into consideration the tolerable system response time. At the outset of the study, it was anticipated that, based on analyzing the "pulses" tones of all ROIs involved, the healthiness of the holistic system could be reflected. Simulation experiments were conducted to validate the effectiveness of the monitoring approach proposed in this research. It was found that, in terms of the hardware requirements, only simple counter devices with time-stamp functions are needed, and this highly enhances the portability of the proposed approach.en_US
dcterms.extentxii, 168 p. : ill. ; 30 cm.en_US
dcterms.isPartOfPolyU Electronic Thesesen_US
dcterms.educationalLevelAll Doctorateen_US
dcterms.LCSHManufacturing processes -- Automation.en_US
dcterms.LCSHComputer integrated manufacturing systems.en_US
dcterms.LCSHHong Kong Polytechnic University -- Dissertationsen_US
dcterms.accessRightsopen accessen_US

Files in This Item:
File Description SizeFormat 
b27472905.pdfFor All Users3.32 MBAdobe PDFView/Open

Copyright Undertaking

As a bona fide Library user, I declare that:

  1. I will abide by the rules and legal ordinances governing copyright regarding the use of the Database.
  2. I will use the Database for the purpose of my research or private study only and not for circulation or further reproduction or any other purpose.
  3. I agree to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

By downloading any item(s) listed above, you acknowledge that you have read and understood the copyright undertaking as stated above, and agree to be bound by all of its terms.

Show simple item record

Please use this identifier to cite or link to this item: https://theses.lib.polyu.edu.hk/handle/200/7493